
A scale space approach to the processing of point

clouds

Master MVA - 2011/2012

Julie Digne

INRIA Sophia Antipolis

Introduction

3D data can now be generated in multiple ways: triangulation laser scan-
ner, stereoscopy, LIDAR... The precision of the acquired surface increases
with the technological advances, yet it depends strongly on the acquisition
type. We focus here on surfaces obtained by triangulation laser scanner and
will describe a processing method derivated from the scale space approach
developed for 2D images ([Wit83]). We give in the remainder of this intro-
duction a short description of the acquisition process. Section 2 gives the
definition and theoretical results of the scale space for point clouds. Section
3 presents the first application of the scale space: the normal computation
and orientation of point clouds. Section 4 presents the second application
of the scale space: the reconstruction of an exhaustive point set interpolat-
ing triangular meshed surface. Section 5 describes a third application: the
seamless merging of scans once they are registered.

A typical acquisition process

A triangulation laser scanner is an acquisition device based on a camera and
a laser emitter, that are fixed together. By triangulation (hence the name)
of the intersection point between the laser ray and the surface of the object,
the 3D coordinate of the surface can be inferred. The coordinate in the CCD
camera coordinate system of the impact point yields by system calibration
the 3D coordinates of the points. This triangulation is summed up on figure
1. In our case, this camera-laser ray emitter device is set on a revolving
arm, so that all sides of an object (with the exception of the base) can be
acquired without moving the object. More informations and the data are
published online ([DAL∗11]).

1

Figure 1: Scheme of a typical triangulation laser scanner

Figure 2: Picture of the complete acquisition system

1 Prerequisites

1.1 Definition of a surface

We shall call ”surface” a two-dimensional manifold embed in a higher dimen-
sional space (3 Euclidean space in our case). Saying thatM is 2 dimensional
means that for each surface point P there exists a neighborhood V around
P where the surface is locally a graph z = g(x, y).

For example, a sphere with radius 1 is a surface. There is no way to
write it globally as z = g(x, y) for x, y some coordinate system, but at each
point P if one considers the half sphere around P then one can parameterize
it as z =

√

1− x2 − y2, so that the surface is locally a graph.

2

Figure 3: Curvatures of a surface. (Image by Eric Gaba, from Wikimedia
Commons)

Here we will assume that the surface is C2. It means that at each point
P one can define a tangent plane orthogonal to the surface normal ~n at P :
by taking an orthogonal coordinate system defined on the tangent plane and
centered at P , the surface is locally a C2 graph z = g(x, y). Then by Taylor
expansion one can write that on any orthogonal coordinate system on the
tangent plane: z = g(x, y) = ax2 + by2 + cxy + o(x2 + y2).

1.2 Curvatures

The principal curvatures k1 and k2 of a C2 surface are the eigenvalues of
D2g such that k1 ≥ k2. D

2g is the second derivative of g:

D2g =

(

2a c
c 2b

)

.

The principal directions (~t1,~t2) are defined as the eigenvectors associ-
ated to the eigenvalues of D2g. Notice that this definition is independent of
the orthogonal basis chosen in the tangent plane. Principal directions and
principal curvatures are therefore intrinsic quantities. Then ~t1 and ~t2 are or-
thogonal (eigenvectors of a symmetric matrix), see fig 3 for a representation
of the principal directions.

One should notice that this definition only gives the directions of (~t1,~t2)
but bot their orientations. These orientations depend on the orientation
choice of the normal (either inward pointing normal or outward pointing
normal.

3

We will call intrinsic coordinate system the local coordinate system
formed by (P,~t1,~t2, ~n). In this coordinate system the surface can be ex-
pressed as a graph z = g(x, y) = −1

2(k1x
2 + k2y

2) + o(x2 + y2).
The mean curvature H is defined as H = 1

2(k1 + k2).

1.3 Geometric interpretation of curvatures

Consider the curve C1 (resp. C2) formed by the intersection of the surface
with the plane (P,~t1, ~n) (resp. (P, t2, ~n)). Then k1 (resp. k2) is the curvature
of the planar curve C1 (resp. C2). In other words, k1 is, up to the sign, the
inverse of the radius of the osculating circle of curve C1 at P (see fig. 4).

Figure 4: Osculating circle of a planar curve. Image from Wikimedia Com-
mons.

1.4 Mean Curvature Motion

The equivalent of the heat equation for 2D images (isotropic diffusion) is
the mean curvature motion for surface (MCM). Let S be a surface and
P a point of S with normal n and mean curvature H(P), then the mean
curvature motion writes:

∂P

∂t
= −H(P)n(P) (1)

1.5 Principal Component Analysis (PCA)

Principal Component Analysis is another tool we will use in this course. In
a nutshell, PCA finds given a set of variables the directions capturing the
highest data variation (see fig. 5).

4

Figure 5: Principal directions found by PCA on a set of 2D points. Image
by Ben FrantzDale from Wikimedia Commons.

More precisely if we have a set of points (Pi)i=1···N the PCA first com-
putes the barycenter O of these points:

O =

N
∑

i=1

Pi

The centered covariance matrix of the Pi is:

Σ =

N
∑

i=1

(Pi −O)T (Pi −O)

Σ is a 3x3 real symmetric matrix. It can therefore be diagonalized and
its eigenvectors will be orthogonal.

Interpretation Each eigenvalue captures the variation of the point dis-
tribution along the corresponding principal direction. Principal Component
Analysis therefore comes down to analyzing a distribution of points by look-
ing for the directions that contain the largest variations. Section 2.2 will
detail PCA and its use in the scale space theory.

Armed with these definitions we can now turn to defining the scale space
for surfaces.

5

Spherical Neighborhood

Regression Plane

Cylindrical Neighborhood

P

M

Figure 6: Cylindrical and spherical neighborhood

2 Theoretical results: definition of the scale space

2.1 Continuous Theory

This section describes a consistency result for a numerical approximation
of the mean curvature motion: the iteration of a planar surface regression.
The surfaceM supporting the data point set is assumed to be at least C2.
The samples on the surfaceM are denoted byMS .

Let P (xP , yP , zP) be a point of the surface M. At each non umbilical
point P , consider the principal curvatures k1 and k2 linked to the principal
directions ~t1 and ~t2, with k1 > k2 where ~t1 and ~t2 are orthogonal vectors. (At
umbilical points, any orthogonal pair (~t1,~t2) can be taken.) Set ~n = ~t1 × ~t2
so that (~t1,~t2, ~n) is an orthonormal basis. The quadruplet (P,~t1,~t2, ~n) is
called the local intrinsic coordinate system. In this system we can express
the surface as a C2 graph z = f(x, y). By Taylor expansion,

z = f(x, y) = −
1

2
(k1x

2 + k2y
2) + o(x2 + y2). (2)

Notice that the sign of z depends on the arbitrary surface orientation.

Spherical neighborhoods vs cylindrical neighborhoods Consider
two kinds of neighborhoods in M for P defined in the local intrinsic co-
ordinate system (P,~t1,~t2, ~n):

• a neighborhood Br = Br(P) ∩M is the set of all points Q ofM with
coordinates (x, y, z) satisfying (x− xP)

2 + (y − yP)
2 + (z − zP)

2 < r2

• a cylindrical neighborhood Cr = Cr(P) ∩M is the set of all points
Q(x, y, z) onM such that (x− xP)

2 + (y − yP)
2 < r2.

For the forthcoming proofs the cylindrical neighborhood will prove much
handier than the spherical one. The next technical lemma justifies its use.

6

Lemma 1. Integrating on M any function f(x, y) such that f(x, y) =
O(rn) on a cylindrical neighborhood Cr(P) instead of a spherical neighbor-
hood Br(P) introduces an o(rn+4) error. More precisely:

∫

Br

f(x, y)dM =

∫

x2+y2<r2
f(x, y)dxdy +O(r4+n). (3)

Proof. The surface area element of a pointM(x, y, z(x, y)) on the surfaceM,

expressed as a function of x, y, dx and dy is dM(x, y) =
√

1 + z2x + z2ydxdy.

One has zx = −k1x+O(r2) and zy = −k2y +O(r2). Thus

dM(x, y) =
√

(1 + k21x
2 + k22y

2 +O(r3))dxdy

which yields

dM(x, y) = (1 +O(r2))dxdy. (4)

Using (4), the integrals we are interested in become
∫

Br

f(x, y)dM = (1 +O(r2))

∫

Br

f(x, y)dxdy; (5)

∫

Cr

f(x, y)dM = (1 +O(r2))

∫

Cr

f(x, y)dxdy (6)

= (1 +O(r2))

∫

x2+y2<r2
f(x, y)dxdy.

Consider polar coordinates (ρ, θ) such that x = ρ cos θ and y = ρ sin θ with
0ρ ≤ r and 0 ≤ θ ≤ 2π. For M(x, y, z) belonging to the surfaceM, we have
z = −1

2ρ
2(k1 cos

2 θ + k2 sin
2 θ) + O(r3) = −1

2ρ
2k(θ) + O(r3), where k(θ) =

k1 cos
2 θ+k2 sin

2 θ. The condition that (x, y, z) belongs to the neighborhood
Br(P) can therefore be rewritten as ρ2 + z2 < r2, which yields

ρ2 +
1

4
k(θ)2ρ4 < r2 +O(r5)

For each θ the extremal value ρ(θ) of this neighborhood satisfies ρ(θ)2+
1
4k(θ)

2ρ(θ)4 − r2 +O(r5) = 0. Thus

ρ(θ)2 =
−1 +

√

1 + k(θ)2(r2 +O(r5))
1
2k(θ)

2
.

This yields ρ(θ) = r − 1
8k(θ)

2r3 + O(r3). We shall use this estimate for
the error term E appearing in

∫

Br

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]
f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]
f(x, y)ρdρdθ − E =

∫

Cr∩M
f(x, y)dxdy − E,

7

with E =:
∫

[0,2π]

∫

[ρ(θ),r] f(x, y)ρdρdθ. Thus

|E| ≤
π

4
sup

x2+y2≤r2
|f(x, y)|k(θ)2r4,

which yields |E| ≤ π|k1|2

4 supx2+y2≤r2 |f(x, y)|r
4. In particular if f(x, y) =

O(rn), then |E| ≤ O(r4+n). Finally,
∫

Br

f(x, y)dxdy =

∫

Cr∩M
f(x, y)dxdy +O(r4+n), (7)

and combining (5), (6) and (7) yields (3).

Curvature Estimation By Theorem 1 projecting a point onto the neigh-
borhood barycenter approximates the mean curvature motion. We discuss
later on why this result cannot be used for implementing the mean curvature
motion.

Theorem 1. In the local intrinsic coordinate system, the barycenter of a
neighborhood Br(P) where P is the origin of the neighborhood has coordi-

nates xO = o(r2), yO = o(r2) and zO = −Hr2

4 + o(r2), where H = k1+k2
2 is

the mean curvature at P .

Proof. By Lemma 1 applied to the numerator and denominator of the fol-
lowing fraction, we have

zO =

∫

Br

zdM
∫

Br

dM
=

∫

x2+y2<r2
z(x, y)dxdy +O(r5)

∫

x2+y2<r2
dxdy +O(r3)

=

∫

x2+y2<r2

[

−1
2(k1x

2+k2y
2)+o(x2+y2)

]

dxdy
∫

x2+y2<r2
dxdy

+O(r3)

=−
1

2πr2

∫ r

ρ=0

∫ 2π

θ=0
ρ2(k1 cos

2 θ + k2 sin
2 θ)ρdρdθ + o(r2)

=−
r2

8π
(k1π + k2π) + o(r2) = −

Hr2

4
+ o(r2).

A similar but simpler computation yields the estimates of xO and yO.

Surface motion induced by projections on the regression plane
The main tool of the scale space is a simple projection of each surface sam-
ple P on the surface local regression plane. This PCA regression plane is
defined as the plane orthogonal to the least eigenvector of the centered local
covariance matrix, and passing through the centroid of the neighborhood.
The projection of P on this plane will be called P ′. The next lemma com-
pares the normal to the PCA regression plane with the normal to the surface,
~n(P).

8

Lemma 2. The normal ~v to the PCA regression plane at P ∈ M is equal
to the surface normal at point P , up to a negligible factor: ~v = ~n(P)+O(r).

Proof. The local PCA regression plane of point P is characterized as the
plane passing through the barycenter of the neighborhood Br(P) and with
normal ~v minimizing:

I(~v) =

∫

Br(P)
|〈~v, PP ′〉|2dP ′ s.t. ‖v‖ = 1

Denoting by (vx, vy, vz) the coordinates of ~v,

I(~v) =

∫

Br

(vxx+ vyy − vz
1

2
(k1x

2 + k2y
2) + o(r2))2dxdy.

Considering the particular value ~v = (0, 0, 1) shows that the minimal value
Imin of I(~v) satisfies Imin ≤ O(r6). In consequence the minimum (vx, vy, vz)
satisfies vx ≤ O(r) and vy ≤ O(r). Thus vz ≥ 1 − O(r) and therefore
~v = ~n(P) +O(r).

By Lemma 2, projecting P onto the regression plane induces a motion
which is asymptotically in the normal direction: P ′P is almost parallel to
~n(P). The simple projection of each surface point P onto its local regression
plane approximates a 3D scale space (mean curvature motion) as shown in
the next theorem.

Theorem 2. Let Tr be the operator defined on the surfaceM transforming
each point P into its projection P ′ = Tr(P) on the local regression plane.
Then

Tr(P)− P = −
Hr2

4
~n(P) + o(r2). (8)

Proof. By Theorem 1 the barycenter O of Br has local coordinates
−−→
PO =

(o(r2), o(r2),−Hr2

4 + o(r2)). On the other hand
−−→
PP ′ is proportional to the

normal to the regression plane, ~v. Thus by Lemma 2
−−→
PP ′ = λ(O(r), O(r), 1−

O(r)). To compute λ, we use the fact that P ′ is the projection on the re-
gression plane of P , and that O belongs to this plane by definition. This

implies that
−−→
PP ′ ⊥

−−→
OP ′ and therefore

λ2O(r2) + λ(1−O(r))(H
r2

4
+ o(r2) + λ(1−O(r))) = 0,

thus λ = −Hr2

4 + o(r2) and
−−→
PP ′=(O(r3),O(r3),−Hr2

4 + o(r2)). Finally
−−→
PP ′=

−Hr2

4 ~n(P) + o(r2).

9

2.2 The discrete algorithm

The previous theorems assume that the surface is a uniform Lebesgue mea-
sure. A constant sampling density is therefore necessary. This constant
density will be approximated on discrete data by weighting each point by
a weight inversely proportional to its initial density. More precisely, let p
be a point and Nr(p) = Ms ∩ Br(p). Each point q should ideally have a
weight 0 ≤ w(q) ≤ 1 such that

∑

q∈Nr(p)
w(q) = 1. This amounts to solve

a huge linear system. For this reason, we shall be contented with ensur-
ing

∑

q∈Nr(p)
w(q) ≃ 1 by taking w(p) = 1

♯(Bp(r))
, as proposed in [UH08].

Let O be the weighted barycenter of this neighborhood. In R
3, the co-

ordinates are written with superscripts, e.g. the coordinates of a point u
are (u1, u2, u3). Thus, for i = 1, 2, 3, Oi = 1∑

q∈Nr(p)
w(q)

∑

q∈Nr(p)
w(q)qi.

The centered covariance matrix Σ = (mij)i,j=1,··· ,3 is defined as mij =
∑

q∈Nr(p)
w(q)(qi −Oi) · (qj −Oj) for i, j = 1, 2, 3. Let λ0 ≤ λ1 ≤ λ2 be the

eigenvalues of Σ with corresponding eigenvectors v0, v1, v2. For k = 0, 1, 2,

λk =
∑

q∈Nr(p)

w(q)〈(q −O), vk〉
2. (9)

Each eigenvalue gives the variance of the point set in the direction of the
corresponding eigenvector. Since v1 and v2 are the vectors that capture
most variations, they define the PCA regression plane. The normal ~v to this
plane is the direction ~v minimizing

∑

q∈Nr(p)
w(q)〈(pi −O), ~v〉2.

Effectiveness of Theorems 1 and 2. Both Theorems permit a priori
to implement the mean curvature motion on the raw data point set without
any previous orientation. Nevertheless, the numerical application of these
theorems depends on the assumption that a uniform Lebesgue measure on
the surface is well represented by a uniform sample density. This is not true
for the barycenter method of Theorem 1. Iterating the barycenter method
with a small neighborhood and a slightly varying sample density leads to a
local clustering of the samples. Indeed, the barycenter method provokes a
normal motion, but also a non negligible tangential motion to the surface.
This motion is precisely the one used in the Mean Shift method [Che95]
for data clustering. This undesirable clustering effect is illustrated in fig.
7. Even though the point distribution on the sphere is probabilistically
uniform, local clustering occurs by taking local barycenters. In contrast,
for the projection filter there is no observable tangential shift on the right
image of fig. 7. Theorem 2 is in that case consistent with its numerical
implementation. This follows from the obvious fact that any (non aligned)
irregular sampling of a plane permits to exactly recover the plane by linear
regression.

10

(a) Original samples (b) 4 barycenter iter-
ations

(c) 4 projection filter
iterations

Figure 7: Comparison of the iterated barycenter and of the iterated projection
filter on a randomly sampled sphere. Both motions are consistent with the mean
curvature motion, but the iterated barycenter provokes clustering.

Back propagation A normal motion by mean curvature can be defined
for every point P0 on the initial surface as a solution of equation 1 (dP

dt
=

H(P)~n(P)) considered as an ordinary differential equation with initial point
P0. Thus, the backward scale space is trivial, provided the forward MCM
implementation actually implements the evolution of each raw data set point
P0. Let us consider a point Pt and its evolution Pt+1 at steps t and t + 1.
Now, we can build the sequence dP (t) = Pt+1−Pt and the reverse scale space
operator P−1

t (Pt+1) = Pt+1 − dP (t), this operator allows to go backward in
the scale space evolution from step t+1 to 0. This is exactly the construction
proposed in [PKG06]. If we only need to go from step t to the initial data 0,
without any intermediate step, the operator is even simpler to build, since
we only need to store for each point Pt its initial position P−1

t (Pt) = P0.
This reverse scale space operator will be called back propagation, or back
transportation.

2.3 Higher order regression surfaces

The authors of [CP03] proved that a degree n polynomial fitting estimates all
kthorder differential quantities to accuracy O(hn−k+1). In [PKG06] an order
2 Moving Least Squares (MLS2) method projecting the point onto the locally
fitted least squares surface was actually proposed as a scale space operator.
Yet these iterated projections cannot be consistent with MCM, because by
definition they leave invariant all degree two surfaces. Furthermore the first
step of MLS2 is to compute a regression plane, which is sufficient to get the
surface motion by mean curvature (Theorem 2).

Can iterated MLS2 give a better estimate of the curvature than the pro-
jection filter? Comparative experiments were performed on a randomly and
uniformly sampled sphere with added Gaussian noise. The point samples
were filtered four times by Tr. By Theorem 2, each filtering step gives an
estimate of the mean curvature. The same sampled sphere was filtered by

11

MLS2, the surface mean curvature being computed as the mean curvature
of the approximating surface at each point. This estimate is very exact,
since the difference on a C4 surface between a point and its MLS2 estimate
can be proved to be O(r4). Both mean curvature estimates are compared
by their mean and standard variations in the table of fig. 8. The result
shows that when the noise level increases the planar projection yields a
much more stable computation (see the fast decay of the standard varia-
tion for the curvature estimate). This experiment is also coherent with the
MCM consistency theorem. Indeed, the planar projection yields a point set
with (slowly) increasing curvatures (once the noise is removed, i.e., once the
standard variation is stable). This explains why Tr at iteration 10 gives a
curvature 1.05 and not 1. This result is accurate, having standard variation
0.01.

Fig. 9 is another illustration in 1D of the same phenomena: a circle with
radius 1 and added Gaussian noise with variance 0.05 is denoised by iterated
Tr and by an iterated MLS2 projection using the same neighborhood radius.
In 1D, Tr becomes a simple line regression and the MLS2 surface a degree 2
polynomial curve. The simplest MLS2 method is used: it merely performs
a weighted least squares polynomial regression on the local neighborhood.
The neighbors weights are equal to G(d) where G is a Gaussian and d is the
distance between the neighbor and the center point. The standard variation
of G is equal to the neighborhood radius.

Noise 0.01 0.05 0.1

Tr 1 1.00/1.95 1.15/5.57 1.27/4.76

Tr 2 0.99/0.07 1.02/2.16 1.17/4.89

Tr 3 1.00/0.02 1.01/0.16 1.05/2.10

Tr 4 1.01/0.01 1.01/0.05 1.02/0.27

Tr 10 1.04/0.01 1.05/0.01 1.09/0.04

MLS2 1 0.94/0.22 0.11/2.58 −0.42/2.99
MLS2 2 1.01/0.13 1.02/0.49 0.62/1.36

MLS2 3 1.01/0.10 1.02/0.36 1.06/0.68

MLS2 4 1.00/0.08 1.02/0.30 1.05/2.19

MLS2 10 1.00/0.04 1.01/0.14 1.02/0.74

Figure 8: Comparison of mean curvature estimates on a noisy sphere with radius
1 (mean/standard variations) given by iterated planar projection (Tr) and iterated
MLS2 regression (iterations 1, 2, 3, 4, 10). The curvature is evaluated at all points
as the displacement along the normal induced by the planar projection (as stated
in Thm 2) for the planar case, and by the explicit computation of the MLS2 surface
mean curvature in the MLS2 case. The same radius is used for both iterations and
both regressions.

12

Figure 9: Denoising a noisy circle with (from left to right) 1, 100 iterations of Tr

and 1, 100 iterations of MLS2. Even after 100 iterations the oscillations removed
by Tr persist with MLS2. The sphere radius decreases with Tr, which is consistent
with MCM.

3 First application: scale space raw data point ori-

entation

Given an initial non oriented raw point cloud the surface orientation is a
much needed information before meshing. The eigenvector of the least eigen-
value of the local covariance matrix is a classic approximation of the normal.
We must then pick one of two possible orientations, and this choice must
be globally coherent. The idea is to start by picking a random orientation
for one point and to propagate it to the neighboring points. Now, sharp
edges or a messy surface could fool such a propagation. If, however, the
surface is smooth enough, the propagation of the normal is safe. Thus the
overall technique to orient the raw data set will be to smooth it by the scale
space, to orient the smoothed surface, and to transport back this coherent
orientation to the initial data points.

The first tool to realize this program is a simple propagation method
for a point p whose neighborhood Nr(p) contains some previously oriented
points. The orientation is transmitted from one point to the next if their
normal directions are similar (algorithm 1).

The input parameters for the scale space orientation (algorithm 2) are
the radius r and a threshold 0 ≤t≤ 1. Steps from 8 to the end are necessary
because adding neighbors of points to the stack might not be enough to cover
the entire cloud due to sampling irregularities. Once this procedure is over,
there might remain non oriented points. These points are usually isolated

13

Algorithme 1: OrientateFromNeighbors(p,r,t)

Data : p an unoriented point, a threshold 0 < t < 1, a radius r, the
set Nr(p) of p’s neighbors within radius r

Result : true if the point was oriented, false otherwise
1 Compute the normal direction n of p by local PCA;
2 n̄← unit mean of neighboring oriented normals;
3 if (n̄ · n)2 > t then
4 if n̄ · n > 0 then
5 n(p) = n;
6 else
7 n(p) = −n;

8 Return true;

9 else
10 Return false;

Figure 10: A raw point set (left) and its orientation (right). Points in the right
figure are given a gray value equal to the scalar product of their normal and the
lighting orientation.

points, and the simplest choice is to ignore them. In all our experiments
the number of remaining non oriented points was below 0.1%. At step
10 the radius is multiplied by an α > 1 factor. Thus, all normals are not
computed with the same radius. This is why we must reverse the scale space
to come back to the original point cloud. At scale 0, the normal direction
is recomputed by local PCA for all points and the chosen orientation is the
one which has positive scalar product with the previous normals. This is an
application of the scale space paradigm, where the information is computed
at a coarse scale and propagated back to the finest scale.

14

Algorithme 2: Scale space Orientation

Data : A point cloud P, a radius r, an update parameter α > 1
1 Iterate the projection filter Tr and keep track of each raw data point
sample (mean curvature motion);

2 Find a point p0 in a flat area, pick its orientation and mark it as
oriented. Add its neighbors to the stack S;

3 while S is not empty or S does not become constant do
4 Take p the first point in S;
5 if orientateFromNeighbors(p,r,t) then
6 Mark the point as oriented and remove p from S;

7 Add the neighbors of p to S;

8 Add all remaining unoriented points to S;
9 while S is not empty and ♯S does not become constant do

10 r = αr;
11 for p in S do
12 Perform orientateFromNeighbors(p,r,t);

4 Second application: scale space meshing

We now discuss how to build a mesh on the raw point cloud. Direct meshing
is not possible because of the surface oscillation due to fine texture and noise.
The idea is again to perform meshing on the smoothed surface and to trans-
port this mesh back on the original point cloud. An efficient triangulation
technique, the ball pivoting method [BMR∗99] is used in all experiments for
the coarse scale triangulation. The crucial faithfulness requirement is that
the final vertices of the mesh must be an overwhelming majority of the raw
data set points. This conservative requirement, incompatible with level set
methods ([KBH06], [HDD∗92], [LC87]) is described in Algorithm 3.

Parameters of scale space meshing The radius can be set automatically
while computing the octree to sort the points. Indeed the root of the octree is
the bounding box of all points. Let us call Lmax the length of its largest side.
Then, each cell represents a 3D cube with size Lmax/2

d where d is the depth
of the cell. Counting the number of points in that cell gives an approximation
of the number of neighbors of a point contained in this cell for a spherical
neighborhood of radius rd = Lmax/2

d+1. Performing this approximation in
all non empty cells at the same depth gives an approximation of the number
of neighbors for spherical neighborhoods with radius rd. The projection
filter requires at least three neighbors per point to estimate a regression
plane, but a robust estimate is experimentally attained with 30 neighbors.
Of course, since the same radius is used for all points, it may occur that
there are not enough neighbors to perform the plane regression. Those

15

points must be eliminated, but in all the experiments less than 0.1% of
points were removed this way. These points are mostly outliers, or isolated
points in folds of the acquired object. Although their relative number is low,
nonetheless this represents some thousands points that are eliminated.

Algorithme 3: Scale space meshing

Data : A point set with computed normals
Result : A mesh of the original 3D data point set

1 Iterate (four times) the projection filter Tr and keep track of each raw
data point sample: this is the forward mean curvature motion;

2 Mesh the smoothed samples;
3 Transport the mesh back to the original points (thus reverting the
mean curvature motion).

Once the minimal number of neighborhood points has been fixed (and
it has been fixed once and for all on all experiments to 30), the radius is
also fixed and the meshing scale space only depends on the number of scale
space iterations. When setting the radius automatically as described above,
it was found that four iterations were always enough to smooth the point
cloud and build the mesh. Thus, the scale space is conceived as a very
local motion securing a reliable tangent space. In all experiments the points
barely moved (less than 40µ for the Tanagra point set). The scale space and
the ball pivoting reconstruction use the same ball radius. The parameter
of the Poisson reconstruction (namely the octree depth) was set to be the
largest allowed by our computing equipment (namely a 8 3Ghz processors
computer with 48 Go RAM).

Transporting back the connectivity information (step 3) can in theory
lead to a self intersecting mesh. Indeed, if two points lie too close to each
other they may “switch position” in the scale space iterations, leading to a
complicated surface topology. This problem can be solved by detecting all
pairs of intersecting triangles. Then any remeshing algorithm can solve the
problem by switching edges in quadrilaterals. However, this additional step
was not implemented for two good reasons. First, the existence of a few
intersecting triangles would be no serious visual inconvenience. Second, no
such crossing was found in many experiments on about twenty very large
data point sets.

In this algorithm, at a low scale a mesh is built from the set of smoothed
points. The only requirement for the meshing technique is that is should
interpolate the points provided the underlying surface is smooth enough. A
simple way to do that is the Ball Pivoting Algorithm ([BMR∗99]). The idea
beneath this meshing method is very simple and elegant: three points should
be linked by a triangle if and only if one can fit a ball with radius r through
the points and that this ball contains no other point. Starting with such

16

(a) Original sam-
ples

(b) Level set
method

(c) Direct Mesh-
ing

(d) Scale space
meshing

Figure 11: Comparison of three meshing methods

a triplet of points, a ball is pivoted around each edge of the triangle until
it meets another point, if the ball is empty then a new triangle is formed.
This is in fact a heuristic to build a subset . It avoids building the complete
delaunay tetrahedralization. Also it does not create triangle larger than a
given radius. It can also handle very large datasets.

(a) Original sam-
ples

(b) Projection mo-
tion

(c) Resulting sam-
ples

(d) Coarse scale
mesh

(e) Scale space
mesh

Figure 12: 2D example of the steps performed by the scale space meshing algo-
rithm.

4.1 Comparative experiments on high resolution data

The algorithms were devised for highly accurate point clouds acquired by
a laser scanner. A typical example of the scanned objects is a mould of a
fourth century B.C. Tanagra figurine acquired at the Museum of Cycladic
Arts, Athens (Fig. 13(a)). It is 22cm high and the point cloud contains
6 · 106 points.

Thanks to a very accurate calibration of the laser scanner device, the
output is a well registered non oriented point cloud containing a negligible
warp. Tests were also made on objects of the Stanford Fragment Urbis
Romae database. In that case a registration of the raw sweeps is needed to
have a point cloud representing the whole object. We do not address teh scan
registration here, so we will use single sweeps for our meshing experiments
and show that considerable texture information can be recovered from each
sweep. Figs. 13 and 14 show the application of scale space meshing with

17

a mesh rendering at fine and coarse scale. We can see on Figs. 13 and
14 that the surface texture is lost at a coarse scale, but completely and
accurately recovered by scale space meshing. Comparing the back projected
mesh to the result of a direct meshing of the initial samples (Fig. 15)
shows that the scale space triangulation is much more precise. In fact, a
direct meshing is not applicable. It creates, among other artifacts, many
spurious triangles. Tr is the simplest smoothing operation implementing
the mean curvature motion. It may be objected that the surface could
also be directly approximated by the classic order 2 moving least square
method (MLS2). The most objective way to compare Tr and MLS2 was
to implement them with exactly the same neighborhood radius. Fig. 15(f)
shows the comparative result on one of the finest details of the Tanagra data
set. The results are similar in terms of detail quality, yet the computation
time was doubled, and we have seen (Fig. 8) that MLS2 does not deliver a
scale space and keeps the smoothed out noise. Fig. 20 shows a comparison
between the reconstruction obtained by the VRIP reconstruction method
(see [CL96]) and scale space meshing. The scale space method produces
a significantly more precise mesh, as can be seen on the close up of Fig
17. Fig. 16 shows the scale space reconstruction of one scan of a fine scale
object (i.e. the mesh back-projected at all scales). Fig 18 compares the
mesh reconstruction by several meshing algorithm with scale space meshing.
The experiment clearly rules out both Ball Pivoting algorithm and Poisson
Reconstruction. Two MLS methods were also tested. APSS ([GG07]) and
RIMLS ([OGG09]). APSS builds an implicit function by evaluating the
distance between each evaluation point and an algebraic spherical fit of the
surface. Although this last method is not explicitly devised for meshing, the
iso-surface can be extracted using the marching cubes. RIMLS is another
modification of the standard MLS procedure. It is based on minimizing
an objective function that gives less weight to spatial and normal outliers
(i.e., sparse points and features). Here, the marching cubes are explicitly
mentioned for extracting the surface. For both methods, the resolution
depends on the marching cubes grid resolution: it was set so that increasing
it would not change much the visual aspect. Although the results by both
methods are visually close to scale space meshing, scale space meshing is
much simpler. Processing directly the raw points, it skips the iso-surface
extraction. It is also the only method which preserves input samples and
does not add additional vertices (both APSS and RIMLS actually introduce
more than twice the number of input samples). Another problem is that the
iso-surface extraction by marching cubes introduces aliasing-like artifacts
which are avoided by scale space meshing (see Fig. 19). The tiny vertical
ridges restituted by the scale space meshing are present in the raw set: they
reveal the scanning direction. It is precisely one of the scopes of the method
to be able to visually check the tiniest problems in the scanning process.

Fig. 13 displays the many acquisition holes at the bottom of the Tanagra

18

(a) Initial object (b) Coarse

scale

(c) Fine scale (d) Picture (e) Selection (f) Details

Figure 13: Multi-resolution mesh reconstruction of the Tanagra point set (22 cm
high) illustrating the recovery of fine texture. All back propagated textures are
present on the original object.

Figure 14: Expansion of the details (1) (left) and (2) (right) selected on fig.
13(e)

19

(a) Picture (b) Scale space mesh (c) Direct mesh

(d) Poisson Mesh (e) MLS2 + BPA (f) MLS2 scale space

Figure 15: Comparison between several meshing methods on a 1cm high logo. The
direct mesh (15(c)) creates many spurious triangles. The Poisson reconstruction
[KBH06] clearly smoothes out all details (15(d)). Filtering the logo by order two
MLS and meshing the points by the ball pivoting algorithm (15(e)) also creates a
smooth mesh. Fig 15(f) shows the result of applying the same scale space strategy
with the projection on the order 2 MLS surface instead of the regression plane. The
result is similar to 15(b) in detail quality but the computation time is double. See
figs12-11 for an explanation of this difference.

Figure 16: Back-projecting the mesh of a single scan of a fine-scale object (engrav-
ings are around 0.1mm deep). From left to right: mesh built after 4 scale space
iterations; back-projection to levels 3, 2, 1 and 0 (final mesh).

20

(a) Original Fragment (b) Scale space mesh

(c) Level Set mesh

Figure 17: Closeup of a piece of the (FUR) database reconstructed by Scale Space
Meshing and Poisson Reconstruction.

figurine, in the folds of the tunic or near the right foot. By the scale space
meshing these holes are not filled in and can be detected. Since the ball
pivoting algorithm is used for triangulation, no triangle larger than a given
threshold has been created. Indeed, to form a triangle, three points must
lie on a sphere of given radius r. Thus, low density areas are considered as
holes.

Fig. 15 illustrates the loss of detail with level sets methods. Level set
methods extract the zero level set of the signed distance to the surface.
Thus, they do not contain the input points and loose track of them. Fig. 11
shows that not only these methods, but even direct meshing methods can
miss small details. Fig. 12 illustrates why scale space meshing allows one
to recover those details: standard meshing at a smooth scale is simply easy
because details have been unfolded. It is then trivial to propagate back the
vertices of the smooth mesh to their initial positions. This yields a direct
triangulation of the original raw data set.

The quantitative performance of each algorithm can be evaluated by
meshing simple shapes. Test point sets were built by sampling perfect ge-
ometric shapes (for example a sinusoidal surface). The root mean square
distance of the triangle barycenters of the mesh to the real surface were com-
pared for each meshing method. This distance is computed by the Newton-
Raphson method. The first surface ”Wave 1” has equation z = 0.2 cos(5x),
”Wave 1” has equation z = 0.2 cos(5x) ∗ cos(5y), the third surface is a

21

Figure 18: Comparison of the Rosette reconstruction (Picture (a)) using Ball Piv-
oting Algorithm (b), Poisson Reconstruction (c), RIMLS (d), APSS (e), and scale
space meshing (f). APSS and RIMLS yield results that are really close to ours, yet
both methods need an isosurface extraction done with the marching cubes, which
creates strong artefacts (see a closeup Fig 19). Besides, RIMLS and APSS meshes
contain around 268500 vertices whereas the scale space mesh contains 132203 ver-
tices. Notice also that APSS and RIMLS introduce some denoising (visible es-
pecially in the nearly flat parts). Scale space meshing is the only method that
preserves exactly the input data.

(a) RIMLS (b) APSS (c) Scale space

Figure 19: Detail of the mesh built using (from left to right) RIMLS, APSS
and scale space meshing. Notice the horizontal artifacts caused by the isosurface
extraction for both APSS and RIMLS methods. The tiny vertical ridges restituted
by the scale space meshing are present in the raw set: they reveal the scanning
direction.

22

Figure 20: Comparison on a piece of the Fragment Urbis Romae (FUR) (left:
picture). Texture and details are better recovered on the back-propagated mesh
(middle) than on the VRIP reconstruction available on the FUR website (right)

Method Wave 1 Wave 2 sphere sharp

Scale space 0.19 0.28 0.04 0.04

BPA 0.18 0.24 0.04 1.2

Poisson 1.5 43 0.24 4

Figure 21: Quantitative comparison of scale space meshing, ball pivoting, and
Poisson reconstruction: RMSE of the distance from the triangle barycenters to the
real surface. All results are multiplied by 103 for readability

regularly sampled sphere and the last one is a sum of two close and nar-

row Gaussians z = − exp− (x−0.1)2

0.01 − exp− (x+0.1)2

0.01 . The RMSE results are
shown in the table of fig. 21. It is obvious from these results that the Pois-
son reconstruction or any level set method cannot be applied to recover a
surface with very thin details. On shapes containing no sharp edges, direct
BPA and scale space meshing perform comparably. On the thin structure
created by adding two very close Gaussians, the loss of precision of BPA is
clear. This phenomenon is similar to the one observable in Fig. 15(c) where
BPA looses thin details.

Limitations Scale space meshing builds an exact mesh for any raw in-
put point cloud. Therefore, all imperfections of the input data are visible.
Meshes produced by this meshing method are not smoothed at all, and are
by no means economical in terms of vertex number. If the goal is to build
an economical mesh of a closed surface, with no special intention for detail
preservation, then it is not the adequate method. Yet, to fix the scanning
imperfections, the raw data has to be visualized. In particular the light
offsets caused by misalignment errors between two partial scans become
terribly conspicuous. In this case, the scale space meshing method, since
it preserves all points, does not fix the misalignment problem, as would
Poisson for example. Fixing this problem is handled in [DMAL10], which

23

uses a development of the scale space meshing. The scale space meshing
method must therefore be considered as a preliminary visualization method
in a scanning loop, permitting to visualize the raw data point set, and to
uncover all imperfections at an early acquisition stage. While outliers are
automatically eliminated by the rule asking for a dense enough neighbor-
hood, it is clear that, in contrast to level sets methods, holes in the shape
are not filled in.

4.2 Complexity analysis and computation time measures

One scale-space projection requires the following operations: look for neigh-
bors within radius r, build their covariance matrix and their centroid, per-
form PCA of this 3×3 covariance matrix. Therefore, once the neighbors are
found, they are sequentially scanned in order to build the covariance matrix
and the centroid. This yields 6 multiplications and additions per point for
the covariance matrix update and 3 additions per point for the centroid up-
date. The PCA complexity does not depend on the number of neighbors:
it requires 9 operations. Knowing the least eigenvector, the projection is
only 12 operations. There is one list scan (9 operations per processed point)
and 21 operations once the covariance and centroid are built. Assuming we
have 30 neighbors, this yields a total of 200 operations per point. Finally
finding the neighbors in the octree is O(logN) (average) and one scale space
iteration therefore is O(N(logN + 200)) operations, where N is the total
number of points in the point cloud.

The computation time needed for meshing the Tanagra point set with
six millions points was as follows: Sorting the points in the octree takes 1.2s.
The scale space iterations require 3 min, leading to a total computation time
of 19min for orientation and of 27min for the whole meshing on an 8 3Ghz
processors computer with 48 Go RAM. The maximum memory usage was
less than 2Go. These figures should be compared with the time required
for directly meshing the oriented point set by the ball pivoting method
without any scale space iterations, which took 25min. Therefore, only a
two additional minutes were used to get a much more faithful mesh.

5 Application 3: Merging of Scans [DMAL10]

Triangulation laser scanner can deliver high precision scans of real objects.
Yet, although each scan has a very high precision, this precision can be lost
again when merging multiple scans and meshing them together. This loss
of precision entails a loss of visible texture, which explains the smooth and
glassy aspect of most rendered scanned objects. On the other hand the
merging of the multiple scans (often called super-resolution) is absolutely
necessary. A patch of the object may well be acquired tens and even hun-
dreds of times on well exposed parts. Indeed, many sweeps with varying

24

trajectories are necessary to acquire the less exposed parts of the object.
The main goal of the merging considered here is not to gain more detail
and texture or to denoise the data point cloud by super-resolution: recent
triangulation scanners yield scan sweeps with excellent quality. Unfortu-
nately this quality is at risk of being damaged by the merging procedure
itself. Thus, more trivially, the goal is to secure that the texture of each
scan is not lost again due to slight matching errors which force a smoothing
before a joint meshing. Fig. 22 illustrates the problem. With two overlap-
ping shifted scan grids, as seen in (a), the aliasing risk is high. Meshing
each scan separately yields two almost identical surfaces and textures (b, c).
Nevertheless, a joint meshing (d) provokes strong tiling and aliasing effects,
due to very small local offsets between both scans, in spite of the fact that
they have been globally well registered. The challenge is therefore to merge
both scans in such a way that the rendering quality does not decrease. The
numerical problem is made more acute by two facts. First, not just two, but
up to hundred scans may overlap in some region. Second, scans boundaries
appear everywhere, as illustrated in fig. 23 and make the fusion near these
boundaries still more problematic.

Each point of each scan has three-dimensional coordinates given either
in a global coordinate system if the acquisition device is calibrated, or in a
local coordinate system if the device is not calibrated. In the case of non-
calibrated devices, the scans must be registered in a common coordinate
system, and the registration problem becomes a rigid transform estima-
tion. This problem has been widely investigated and has found efficient
solutions [BM92] [RL01]. Yet if the scans had some internal local warping
(which is usually the case), the rigid transform framework is not sufficient.
A whole theory of non-rigid scan registration has therefore been developed
[BR04],[BR07]. If the acquisition device is well calibrated the delivered scans
are well registered, up to a given precision. Yet, as we already mentioned, a
tiny residual mismatch can provoke strong artifacts similar to aliasing pat-
terns (see fig. 22) and forbids a direct meshing of the union of all data
point clouds. This problem is generally solved by applying a method which
meshes an implicit zero level set of a distance function to the raw points.
The distance function is approximated by its Fourier coefficients [Kaz05] or
by radial basis functions [KBH06]. The problem is that these methods result
in a serious loss of accuracy when the final result is compared to each scan
separately.

Experiments are run on sets of scans of an object that have been either
previously optimally registered by rigid or non-rigid methods, or registered
through a high precision calibration of the acquisition tool. To demonstrate
that no texture content will be lost, the goal is to mesh the entire point
cloud. This means that all raw acquired points of all scans will ideally be
vertices of the mesh. This requirement guarantees a complete preservation
of all the acquired information, including noise and fine textures. Of course

25

(a) Overlapping
scans

(b) Mesh of scan 1 (c) Mesh of scan 2 (d) Mesh of scans
1&2

Figure 22: Example of two overlapping scans (a), points of each scan are first
meshed ((b)-(c)) separately. The result can be compared to the meshing of
points of both scans together (d)

Figure 23: Example of overlapping scans. This head is such a complex
structure that not less than 35 scans were acquired to fill in most holes.

such a mesh is not numerically economic, but it is necessary for two goals:
first to get high quality rendering of complex shapes such as archeological
objects, and second to precisely explore all remanent artifacts such as the
holes, inherent in any scanning process. For scanning control purposes, it is
anyway quite rewarding to be able to see exactly what has been scanned.

5.1 Scan Merging Principle

The general idea behind the scan merging method experimented here is to
preserve point positions in non overlapping areas, and to make a fusion of
the scans on overlapping regions while keeping all raw points. The fusion
involves a smooth-base/height-function decomposition for each scan. The
decomposition of a surface as the sum of a smooth base and of a height

26

function was proposed for a different purpose in [KST09], and [ZTS09],
where the height function was used to segment the mesh and extract features
as contours of the height function. The underlying idea is that a surface S
can be decomposed into a smooth base B and a height function h, so that:

S = B + h

B can be seen as the low frequency surface and h can be seen as the high fre-
quency term. Given several surfaces S1 = B1 + h1, S2 = B2 + h2, · · · ,SN =
BN +hN , the idea is to fuse the bases, but to keep exactly the hi terms, thus
preserving all fine details. In other terms, a common basis B for all sur-
faces must be found, the high frequencies of all scans adopting this common
basis thereafter. This strategy is comparable to the one used for morphing
applications in [PKG06]. In a way, the idea is similar to [SCOT03], where
the high frequency error due to quantization was transformed into a low
frequency error much less noticable.

The data merging using a high/low frequency decomposition has long
been a classic method in image processing [BA83]. This article introduced
the idea of separating each image into various frequency bands by a Gaus-
sian pyramid. The low frequency bands were merged separately to obtain a
smooth blending of different images. The method has been successfully used
to create panoramas from multiple images [BL07] and texture 3D models
[Bau02]. Two major differences are that in [BA83] all frequency bands are
merged, whereas the method described here only merges the low frequencies
while keeping the high frequencies intact. Another important difference is
the usage of a nonlinear heat equation instead of a linear frequency decom-
position.

The next section addresses the robust decomposition of a surface into a
base and a height.

Low/High frequency surface decomposition Since the pioneering ar-
ticle [Tau95] it is known that mesh high frequencies are removed by the
application of the intrinsic heat equation ∂P

∂t
= ∆P. Yet, our scanned sur-

faces are given as point clouds and not as meshes. A numerical scheme of
the heat equation for raw point clouds must be used. This question has been
addressed in [BSW09] and [PKG06]. The scale space introduces in section
2 will be used here.

Consider the projection operator Tr that projects each point p onto the
regression plane of the neighbors of p enclosed in a ball of radius r. Then it
can be proven that this motion is tangent to the intrinsic heat equation. The
iteration of Tr yields a scale space (a representation of the shape at various
smoothing scales). In all experiments r is set so that the ball Br centered
at P contains about 30 neighbors at almost all points, and the number of
scale space iterations n is set to 4. The first parameter (30) is fixed so

27

Figure 24: The unmerged head with aliasing artifacts (left), its smooth base
(middle) and the merged result (right)

that a reliable regression plane is always computed. The second parameter,
namely the number of iterations 4, is chosen to guarantee a smooth enough
basis in all cases. It can be increased without damage. When iterating the
projection operator with an initial surface S0, the surface St is iteratively
smoothed. To each point Pt of St corresponds a point P0 of S0, and the
height function can be taken to be the vector h(Pt) = Pt − P0.

An alternative definition for the height would be the scalar function
h(Pt) = (Pt−P0) ·~n, where ~n is the normal to St at Pt. Yet, the results with
both height variants being fairly identical, the simplest definition was kept:
it separates each data point into a smooth base point and a high frequency
vector.

Finding a common smooth basis for all surfaces Choosing a common
basis for all scans is the next question. A natural constraint on the method is
to keep fixed the points belonging to regions where only one scan is available.
Finding the common basis then becomes straightforward: It is enough to
apply the same number n of iterations of Tr with the same parameter r to
all the sets after they have been put together. This global filtering assumes
that the high frequency term of the set S = ∪iSi contains the registration
error: when filtering S the registration error is filtered away (see fig. 24).

Algorithm The method is summarized in Algorithm 4. The algorithm
is based on two applications of the intrinsic heat equation scheme (here
the iterated projection on the regression plane) with the same parameters
and the same number of iterations. All registered scans are given in the
same global coordinate system. The first application (Line 2) is done on
the separate scans yielding the intrinsic high frequencies of each scan. The

28

second application (Line 6) is done on all scans together. When filtering all
scans together (lines 5 and 6) the registration error is suppressed and we
get a common low scale registration or basis, the set of points b(P). Adding

back to them the high frequency component
−−−−→
bi(P)P restores all details from

all scans.

Algorithme 4: Scale Space Merging

Data : N point sets (scans) (Si)i=1···N , a number of projection filter
iterations n and a radius r

Result : The set of merged scans: Q
1 for i = 1 · · ·N do
2 Apply n steps of the projection filter Tr to the set Si ;
3 Store for each point P ∈ Si with corresponding filtered point

bi(P) the high frequency vector ~δ(P) =
−−−−→
bi(P)P ;

4 S ← ∪Ni=1Si;
5 Apply for each P ∈ S n steps of the projection filter Tr, yielding a
point b(P) ;

6 for P ∈ S do

7 Q = b(P) + ~δ(P);
8 Add Q to Q;

9 Return Q;

An important feature of the method is that each region A of the shape
that has been acquired by one scan only is not altered. Indeed, inside such
a region, applying the separate scale space or the common scale space is
strictly equivalent, since there is only one scan in the neighborhood of the
points of A. Then the point is first filtered to bi(P) = b(P), and therefore
moved back to its original position P at Line 8. So in areas with only one
scan, point positions are not changed. The only effect of the algorithm is
the merging of overlapping scans.

One-dimensional study It is easy to illustrate the method in 1-D on
simple 1D shapes. Our goal was to check that the proposed method super-
imposes two simulated scans without any smoothing effect. To do so, two
noisy straight lines A and B were synthesized from the same model and then
merged by the algorithm. The noise of each set A, B, A∪B was estimated as
the root mean square error to their regression lines before and after merging.
The results in Tab. 25 show that the merging did not cause any denoising.
Indeed, the RMSE does not decrease by the merging procedure. Figs 26 and
27 show other 1D examples of the merging procedure where the bases are
actually slightly different, in accordance with the real situation encountered
on real scans.

29

RMSE Both lines Line A Line B

Before Merging X 9.95e − 04 9.76e − 04

After Merging 9.85e − 04 9.94e − 04 9.75e − 04

Figure 25: Noise estimates on each separate scan A and B before and after
their merging.

(a) Without Merging (b) With Merging

Figure 26: Two noisy sine functions before and after merging.

(a) Without Merging (b) With Merging

Figure 27: Two noisy edges before and after merging.

30

5.2 Implementation and Results

The inputs of the merging algorithm are the outputs of our laser triangu-
lation scanner. This device being accurately calibrated, the scans are in
principle already registered so that no extra software registration is needed.
Nevertheless, the ICP algorithm is applied to see if it can remove the aliasing
and tiling artifacts. In this case ICP failes: the positions computed by ICP
oscillate around the input scan positions, and the resulting meshes are no
better. The registration process was implemented on a 1.5 Ghz processor
with 48GB RAM. An octree structure was first built to allow for fast access
to the neighbors of each given point. Table 28 gives the computation times
for various shapes of various sizes with varying numbers of scans. Notice
the high number of scans necessary to get a good covering of the object. It
entails that several dozens of scans have to be merged on the more exposed
parts.

Point set points scans Time(s) height

Dancer 5, 524, 627 94 321 17cm

Mime 8, 611, 522 102 140 11cm

Greek Mask 8, 961, 736 78 106 12cm

Nefertiti 15, 554, 528 115 819 18cm

Tanagra 17, 496, 999 160 1258 22cm

Rosetta 36, 201, 537 32 45min 30cm

Figure 28: Computation time for the proposed merging. It is significantly
faster than the scanning time itself

Figs 29, 30 and 31 present the results on these data. For all point
sets, two different renderings are displayed: the first one is a ball pivoting
[BMR∗99] meshing of all raw scan points without any merging. The scans
were preregistered by the calibrated acquisition device and no software post-
registration was needed. The second rendering is again a ball-pivoting mesh-
ing, but applied to the merged point set. The rendering was made using the
POV-RAY ray-tracer. The conclusion is common to all experiments: even if
the scans are actually very accurately registered, the tiny warps of the grids
always create some aliasing visible as grid or tiling effects. After the merging
procedure (which only slightly affects the low frequencies), these undesirable
effects disappear almost completely. In the procedure more than 99.9% of
the raw points were kept. Thus, the final result indeed is highly faithful
to the raw scan. Yet a careful attention shows some remains of aliasing
(Fig. 30, last column). The area of these is actually small, being inferior
to the area of the holes. They could easily be removed by a selective local
smoothing. Some of the bigger pieces, like Nefertiti, show no defect at all.

31

Figure 29: Merging of the mask scans seen from the back side (top row) and
left side (bottom row). Left: picture, middle: without merging, right: with
merging

32

Figure 30: Merging of the Dancer With Crotales. From left to right: picture,
without merging, with merging, an example of merging failure taken from
the back of the object (top: unmerged, bottom merged)

33

Figure 31: Merging of the Nefertiti (1st: picture, 2nd,4th: without merging,
3rd,5th: with merging)

34

Figure 32: Comparison of the rendering of a single scan (ground truth) and
the merging of all scans that overlap in the same region (Left: ground truth,
middle: joint mesh of all scans without merging, right: joint mesh with
merging).

Comparison To better judge the texture preservation, the rendering of a
scan alone (ground truth) was computed and compared to the rendering of
all scans in the same region on Fig 32. This shows that the visual information
loss after scale space merging is very low compared to the one due to a simple
joint meshing.

It is crucial to compare the raw merging method results with results
obtained by the level set reconstruction method of the unmerged scans point
set. The result of the level set method applied to the Tanagra head (fig.
33 b), obviously introduces an important smoothing and loses texture in
comparison to the merging result (fig. 33, a). But even with that smoothing
the result still keeps several artifact lines due to the scan offsets: these offsets
become visible at the scans boundaries. See the nearly straight long lines
on the surface, mostly vertical and horizontal. It can also be asked if an
efficient denoising method could actually restore the raw set. Fig. 33-c,
shows the result of the application of the bilateral filter [FDCO03] to the
union of the scans. This iterated filtering was applied up to the point where
aliasing artifacts were no more visible. Clearly, this entails a much too strong
smoothing of detail and texture.

The scan merging is a very local method which is therefore computa-
tionally efficient (see Tab. 28). Yet, if the input data are not already well
registered the merging could obviously fail. The method corrects the slight
misalignments only in the normal direction. A tangential drift in the orig-
inal registration could therefore cause a loss of sharpness or a loss of small
details. Nevertheless, this degradation seems to pass unnoticed. Indeed, for
the type of data used in these experiments, the registration error is very
small. For a point cloud with side-length 99mm the observed average point
offset after merging was 0.081mm, with standard deviation 0.012. The tan-
gential offset could not be measured. The explanation of the relative visual
success of the method is that even a tiny normal offset causes a dramatic
change in triangles orientation, and therefore completely jeopardizes the vi-

35

(a) Merged Result (b) Poisson Recon-
struction

(c) Bilateral filter

Figure 33: Comparisons of the merging (a) with a level set reconstruction
method ([KBH06]) of the unmerged scans point set (b) and a filtering of the
unmerged scans point set (c). The level set method obviously introduces
a serious smoothing, yet does not eliminate the scanning boundary lines.
The bilateral filter, applied until all aliasing artifacts have been eliminated,
over-smoothes some parts of the shape.

sual quality of the triangulation. An equally small tangential offset seems
to be visually undetectable. Thus, the merging method corrects the normal
error, and makes the tangential error unnoticeable.

The proposed merging can be seen as a local non rigid registration.
Therefore it can be compared to the result given by state of the art non
rigid registration methods [BR07]. To perform the comparison, the prob-
lem arose that the scans did not systematically contain strongly identified
features. Most scans of the mask point set were simply rejected by the non
rigid registration method described in [BR07]. In order to perform a serious
comparison anyway, two sweeps of the fragment 31u of the Stanford FUR
project were used. The computation times were, however, considerably dif-
ferent: it took more than 2h30 to register non rigidly these meshes. On the
same computer, using only the raw points and not the meshes, the merging
took only 84s. The final meshes were built using Poisson Reconstruction
[KBH06] in both cases. The registration artifacts (two horizontal lines lim-
iting the overlap area, fig 34) are much less visible with the scan merging
than with the non rigid registration.

Conclusion

This course showed that the scale space approach yields a generalized way of
processing various problems linked to the processing of point clouds. This
vision approach has many other possibilities: registering point sets in a
SIFT-like ways. It is a sound way of extending traditional point clouds

36

Figure 34: Comparison of registration of two scans (colored in different
colors on the first figure) using Global Non Rigid Alignment [BR07] and
scale space merging. Meshes were reconstructed using [KBH06].

(a) Result of the merging (b) Result of the Poisson reconstruction

Figure 35: Comparison of the mesh obtained by merging and by Poisson
reconstruction on a detail of nefertiti’s cheek. In this case, Poisson Recon-
struction suppresses registration artefacts but smoothes out the details.

37

(a) Picture of the object (b) Poisson Reconstruction of the input
sets

(c) Without merging (d) With merging

Figure 36: Comparison of rosetta meshes. A characteristic of this object is
that the engravings in this object are very shallow (around 50µ), which is
why Poisson fails. The artefacts in fig 36(c) are due to the 3D aliasing (this
is fixed by scale space merging) but also to the resolution variation. Indeed
the borders of the object were acquired using multiple orientations while the
middle was acquired using only one orientation. This is why we have such
a precision difference that is not fixed by the algorithm.

38

Figure 37: Details of the Rosetta object without merging (top row) and with
fusion (bottom row)

39

processing methods to point sets.

6 A short summary of the algorithmic problems

for processing 3D point clouds

All along this work an efficient fixed-radius neighbor finding algorithm was
needed. Indeed this is one of the trickiest problems in surface processing:
given a point P find the coordinates of all samples lying within a given
distance of P . Because of sampling irregularities it may happen that this
neighborhood contains either no other point than P or the whole set.

The very naive implementation would need to traverse once the whole
set of N points for each of the N points, yielding an algorithm with N2

complexity. In case of point sets with more than a million points it yields
prohibitive computation time. This is why, tree structures are usually used
to partition the space into cells. In a nutshell, this partition permits to avoid
traversing cells that are too far away from the query point ([Sam90]).

Here an octree was used: it simply divides the bounding box of side L
into eight cells of size L/2. The splitting point is of course the center of the
parent cell. All points are included in leaf cells, i.e. cells with no child that
have depth d, where d is the octree depth specified by the user.

Figure 38: An octree

Given a set of points and a depth d, the octree building proceeds as
follows:

• An initial root node is built so that it contains all points;

• When a point P is added to a cell C:

– If the cell has depth d it is a leaf and the point is simply added
to the list of points of C;

– Otherwise, look for the cell child Ci that would contain the point;

– If Ci does not exist create it and add the point to it.

This way, only nodes actually containing points are created.

40

6.1 Iterating over the octree

Iterating over the octree means from a given point position find a set of
neighbors. In this work radius fixed neighborhoods are used meaning that
given a point P and a point setMS , the set of P ’s neighbors is the subset
ofMS such that:

{m ∈ MS |‖P −m‖2 < r}

.
The iterating method is basically the one from [FP02]. Given a point P ,

a radius r and a setMS it proceeds as follows:

• In case it is not given, the leaf cell C containing P is found.

• Going upwards in the tree, it finds the cell C0 containing C and whose
edge length L is such that L

4 < r ≤ L
2

• Then the set of neighbors is included in C0 and C0’s neighboring cells
at the same depth (there is a most 8 cells to consider then).

• For each of those cells:

– Look at all non-empty children nodes

– If the hypercube maximum distance to P is below r then all points
included in its descendants are added to the set of neighbors

– If the hypercube maximum distance to P is above r and the
minimum distance is below r then, if the node is not a leaf, the
node’s children are explored recursively. If it is a leaf then all the
point distances are computed and compared to r.

– If the hypercube minimum distance to P is above r the cell is not
explored any further.

The whole neighboring cell search is made faster using Location Codes
(see [FP02] for details).

6.2 A single octree to deal with an evolving point set

Since the pointset evolves with filtering iterations, an evolving structure has
to be built. This is done by simply considering that each cell contains more
than 1 set of points. Since the initial pointset must be remembered, it is
necessary to store 3 sets per leaf: the set of initial points, the set of points
filtered at iteration N and the set of points filtered at step N + 1. Then
when performing neighbor-search, the appropriate set should be chosen.

• When filtering set 0, the results are stored in set 1

41

• When filtering set 1, neighbor-search is done in set 1, the results are
stored in set 2 and set 1 is emptied

• When filtering set 2, neighbor-search is done in set 2, the results are
stored in set 1 and set 2 is emptied

Each point links to the point of set 0 from which it originated.

6.3 Different tools used for processing 3D point clouds

All the algorithms presented in this course were implemented using C++
and the Standard Template Library (STL). It uses the Template Numerical
Toolkit and JAMA-C++ libraries1 for Principal Component Analysis and
system solving.

Reading/Writing images for color cloud filtering for example was done
using the CImg library 2.

Reading and writing mesh in Stanford PLY format used rply 3.
For perenity reasons, files are always written in ascii PLY and not binary

PLY, in order to be able to access the information on any computer in the
next years, at the cost of bigger files.

Renderings have been computed using the POV-RAY program4. No
texture was used (the triangles were colored in white) and a simulated diffuse
light was set.

MVA projects

Bilateral filtering of point sets [FDCO03]

This paper presents a generalization of the image filter to meshes. The bilat-
eral filter aims at denoising a surface without removing the sharp features.
This bilateral fiter takes as input a meshed surface and outputs a denoised
surface with preserved sharp edges. Though it is designed to work on meshes,
the adaptation to point clouds is straightforward using either the k-nearest
neighbors or a ball neighborhood. An extension of this project would be to
compare the results of the filter using the two kinds of neighborhoods.

Resampling of point sets: Parameterization-free projection
for geometry reconstruction [LCOLTE07]

In [LCOLTE07], an iterative algorithm that projects an arbitrary point set
onto an input point set P is presented. The set of pojected points minimizes

1http://math.nist.gov/tnt/index.html
2http://cimg.sourceforge.net/
3http://w3.impa.br/ diego/software/rply/
4Persistence of Vision Raytracer http://www.povray.org

42

the sum of weighted distances to the points of P . No local normal informa-
tion is needed and the surface approximation order is in O(h2) where h is the
support size for the weighting function. Applications include resampling: it
is observed that by projection a point set with fewer points than P on P a
density regularization occurs.

The goal of this project is to implement and test intensively the point
set resampling and the behavior of the resampling with respect to sharp
features and details.

References

[BA83] Burt P. J., Adelson E. H.: A multiresolution spline with
application to image mosaics. ACM Trans. Graph. 2, 4 (1983),
217–236.

[Bau02] Baumberg A.: Blending images for texturing 3d models.
In Proc. Conf. on British Machine Vision Association (2002),
pp. 404–413.

[BL07] Brown M., Lowe D. G.: Automatic panoramic image
stitching using invariant features. Int. J. Comput. Vision 74,
1 (2007), 59–73.

[BM92] Besl P. J., McKay N. D.: A method for registration of
3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2
(1992), 239–256.

[BMR∗99] Bernardini F., Mittleman J., Rushmeier H., Silva C.,

Taubin G.: The ball-pivoting algorithm for surface recon-
struction. IEEE TVCG 5 (1999), 349–359.

[BR04] Brown B., Rusinkiewicz S.: Non-rigid range-scan align-
ment using thin-plate splines. In 3DPVT’04 (2004). printed.

[BR07] Brown B., Rusinkiewicz S.: Global non-rigid alignment
of 3-D scans. ACM Transactions on Graphics (Proc. SIG-
GRAPH) 26, 3 (Aug. 2007).

[BSW09] Belkin M., Sun J., Wang Y.: Constructing laplace opera-
tor from point clouds in rd. In Proc. SODA ’09 (USA, 2009),
SIAM, pp. 1031–1040.

[Che95] Cheng Y.: Mean shift, mode seeking, and clustering. IEEE
PAMI 17, 8 (1995), 790–799.

43

[CL96] Curless B., Levoy M.: A volumetric method for building
complex models from range images. In SIGGRAPH ’96 (USA,
1996), ACM Press, pp. 303–312.

[CP03] Cazals F., Pouget M.: Estimating differential quanti-
ties using polynomial fitting of osculating jets. In SGP ’03
(Switzerland, 2003), Eurographics, pp. 177–187.

[DAL∗11] Digne J., Audfray N., Lartigue C., Mehdi-Souzani C.,

Morel J.-M.: Farman Institute 3D Point Sets - High Preci-
sion 3D Data Sets. Image Processing On Line (2011).

[DMAL10] Digne J., Morel J.-M., Audfray N., Lartigue C.: High
fidelity scan merging. Computer Graphics Forum 29, 5 (2010),
1643–1651. SGP2010.

[FDCO03] Fleishman S., Drori I., Cohen-Or D.: Bilateral mesh
denoising. ACM Trans. Graph. 22, 3 (2003), 950–953.

[FP02] Frisken S. F., Perry R.: Simple and efficient traversal
methods for quadtrees and octrees. Journal of graphics tools
7(3), 3 (2002), 1–11.

[GG07] Guennebaud G., Gross M.: Algebraic point set surfaces.
ACM Trans. Graph. 26 (2007).

[HDD∗92] Hoppe H., DeRose T., Duchamp T., McDonald J.,

Stuetzle W.: Surface reconstruction from unorganized
points. In SIGGRAPH ’92 (USA, 1992), ACM Press, pp. 71–
78.

[Kaz05] Kazhdan M.: Reconstruction of solid models from oriented
point sets. In SGP ’05 (Switzerland, 2005), Eurographics
Association, p. 73.

[KBH06] Kazhdan M., Bolitho M., Hoppe H.: Poisson surface re-
construction. In SGP ’06 (Switzerland, 2006), Eurographics,
pp. 61–70.

[KST09] Kolomenkin M., Shimshoni I., Tal A.: On edge detection
on surfaces. In CVPR (2009), pp. 2767–2774.

[LC87] Lorensen W. E., Cline H. E.: Marching cubes: A high
resolution 3d surface construction algorithm. In SIGGRAPH
’87 (USA, 1987), ACM Press, pp. 163–169.

[LCOLTE07] Lipman Y., Cohen-Or D., Levin D., Tal-Ezer H.:
Parameterization-free projection for geometry reconstruction.
ACM Trans. Graph. 26 (2007).

44

[OGG09] Oztireli A. C., Guennebaud G., Gross M.: Feature
preserving point set surfaces based on non-linear kernel re-
gression. CGF 28 (2009), 493–501(9).

[PKG06] Pauly M., Kobbelt L. P., Gross M.: Point-based multi-
scale surface representation. ACM Trans. Graph. 25, 2 (2006),
177–193.

[RL01] Rusinkiewicz S., Levoy M.: Efficient variants of the icp
algorithm. In Proc. 3DIM 2001 (2001), pp. 145–152.

[Sam90] Samet H.: The design and analysis of spatial data structures.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1990.

[SCOT03] Sorkine O., Cohen-Or D., Toledo S.: High-pass quan-
tization for mesh encoding. In Proceedings of the 2003 Euro-
graphics/ACM SIGGRAPH symposium on Geometry process-
ing (Aire-la-Ville, Switzerland, 2003), SGP ’03, Eurographics
Association, pp. 42–51.

[Tau95] Taubin G.: A signal processing approach to fair surface de-
sign. In SIGGRAPH ’95 (USA, 1995), ACM Press, pp. 351–
358.

[UH08] Unnikrishnan R., Hebert M.: Multi-scale interest regions
from unorganized point clouds. In Workshop on Search in 3D
(S3D), IEEE CVPR (2008).

[Wit83] Witkin A. P.: Scale-space filtering. In 8th Int. Joint Conf.
Artificial Intelligence (1983), vol. 2, pp. 1019–1022.

[ZTS09] Zatzarinni R., Tal A., Shamir A.: Relief analysis and
extraction. ACM Trans. Graph. 28, 5 (2009), 1–9.

45

