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Abstract

In this paper we propose to transform an image descrip-
tor so that nearest neighbor (NN) search for correspon-
dences becomes the optimal matching strategy under the as-
sumption that inter-image deviations of corresponding de-
scriptors have Gaussian distribution. The Euclidean NN in
the transformed domain corresponds to the NN according to
a truncated Mahalanobis metric in the original descriptor
space. We provide theoretical justification for the proposed
approach and show experimentally that the transformation
allows a significant dimensionality reduction and improves
matching performance of a state-of-the artSIFT descrip-
tor. We observe consistent improvement in precision-recall
and speed of fast matching in tree structures at the expense
of little overhead for projecting the descriptors into trans-
formed space. In the context ofSIFT vs. transformedM-
SIFT comparison, tree search structures are evaluated ac-
cording to different criteria and query types. All search tree
experiments confirm that transformedM-SIFT performs bet-
ter than the originalSIFT.
1. Introduction

In 1999, D. Lowe published a paper [20] describing
an object recognition method that integrated three com-
ponents: (1) a scale-covariant detector of interest regions
based on the Difference-of-Gaussian filter, (2) theSIFT de-
scriptor1, an invariant and stable representation of region
appearance by a collection of weighted histograms of gra-
dient orientations and (3) a fast matcher based on kd-tree
search for establishing local correspondences. Since then,
these components have been used in many state-of-the-art
solutions for vision problems that require local image-to-
image correspondences, such as wide-baseline matching2,
panorama building [9], image retrieval [21, 27, 29] and ob-
ject recognition [23].

SIFT represents the state-of-the-art and yet few of its
standard parameter choices have a theoretical justification,

1Terminological remark. SIFT stands for “Scale-Invariant Feature
Transform”. Lowe [21] uses the term to refer to the combination of steps
(1) and (2). In the literature, the termSIFT often refers just to the descrip-
tor, as e.g. in [24, ?]. We use the termSIFT in the latter sense.

2E.g., most of the top competitors in the ICCV 2005 Computer Vision
Contest (http://research.microsoft.com/iccv2005/contest) usedSIFT.

so it is reasonable to expect that their optimization will
lead to a descriptor with performance superior to the state-
of-the-art, e.g. with higher repeatability or discriminative
power. This idea has been recently explored in [8].

In the paper, we propose to transform theSIFT space so
that the nearest neighbor (NN) search for correspondences
in step (3) becomes the optimal matching strategy under the
assumption that inter-image deviations ofSIFT descriptors
have Gaussian distribution. This assumption might not be
fully satisfied, but it is more realistic than the assumptionof
isotropic Gaussian noise implicit in standardSIFT match-
ing. The Euclidean NN in theM-SIFT space corresponds to
the NN according to a truncated Mahalanobis metric in the
original SIFT space. We carry out an extensive evaluation
which shows that the transformed descriptor is (i) more dis-
criminative than the original one, (ii) 3-4 times more mem-
ory efficient, (iii) no computational overhead, as it does
not require spatial Gaussian weighting of image measure-
ments within a patch. These properties are important since
memory and efficiency are the limiting factors of large scale
recognition methods [27].

The possibility to matchSIFT-like descriptors by sub-
linear tree-based search methods is one of its key properties
and has been explored in different systems [18, 21, 23, 27].
We therefore carefully compareSIFT and M-SIFT perfor-
mance with different search structures, variants of kd-trees
and metric (ball) trees. Besides demonstrating thatM-SIFT

outperformsSIFT, valuable insight into relative merits of
different search trees in the context of wide-baseline match-
ing, object recognition and categorization is obtained.

SIFT related work. The idea of representing image parts
by histograms of gradient locations and orientations has
been used in biologically plausible vision systems [6] and
in recognition [2]. Lowe’s [20] SIFT is a similar descriptor
which performs best in the context of matching and recog-
nition [24]. Several attempts to improve theSIFT have been
reported in the literature [3, 10, 15, 17, 24].

Ke and Sukthankar [15] developed thePCA-SIFT de-
scriptor which represents local appearance by principal
components of the normalized gradient field. Different
performance results were reported forPCA-SIFT on vari-
ous test data [15, 24], and it is also significantly slower
thanSIFT to compute. Mikolajczyk and Schmid [24] mod-
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ified theSIFT descriptor by changing the gradient location-
orientation grid as well as the quantization parameters of
the histograms. The descriptor was then projected to lower
dimensional space with PCA. This modification slightly im-
proved performance in matching tests. Dalal and Triggs
[10] proposed ‘histogram of gradients’ (HOG). The HOG

differs from theSIFT in technicalities like normalization and
spatial distribution as well as size of the bins in its many
variants. Lazebnik et al. [17] proposed a rotation invariant
version called RIFT, which overcomes the problem of dom-
inant gradient orientation estimation required bySIFT, at a
cost of lower discriminative power. Bay at al. [3] proposed
an efficient implementation ofSIFT by applying the inte-
gral image to compute image derivatives and quantizing the
gradient orientations in a small number of histogram bins.
Winder and Brown [8] learn optimal parameter setting on a
large training set to maximize the matching performance.

In summary, the modifications of theSIFT are driven by
requirements of particular applications and striking differ-
ent performance trade-offs. The modified versions outper-
form the original one in some tests, but do worse in others.
So far, no method has emerged that would replaceSIFT as
the descriptor of choice in a wide range of application. The
promising strategy seems to be a method for learning de-
scriptors for a particular application rather than designing a
general descriptor for any application.

Tree structure related work. Tree structures have been
frequently used to handle the problem of fast descriptor
matching. A vast number of data structures for fast near-
est neighbor (NN) search has been proposed in data mining
literature. We focus on two categories of search trees, which
have been recently applied in context of image recognition
like kd-trees [4, 21, 26] and metric trees [18, 23, 27]. In our
experiments, we simultaneously compare different search
methods as well as the performance ofSIFT andM-SIFT.

Kd-tree [12] belongs to a category of geometric data
structures based on hierarchical decomposition of space in
multidimensional rectangles. It is frequently reported inthe
literature that kd-trees are inefficient for dimensions larger
than 10. Given that the most powerful descriptors used in
vision have many more dimensions, one would not consider
kd-tree as a possible solution. However, an approach to
overcome the dimensionality problem is to search for ap-
proximate NN [1, 19]. Vision applications have found this
solution to be sufficient [21, 26] as other parts of the recog-
nition systems are highly inaccurate too. A modified kd-
tree with priority queue and approximate NN search in 128
dimensional space was successfully used for fast match-
ing in [21]. Superior performance of this structure over
ball-tree [25] is reported in [16]. This indicates that in
some specific problems kd-tree can provide satisfying so-
lutions. However, it is still unclear whether kd-tree outper-
forms other methods in matching image descriptors. One of

the extensions to handle the dimensionality problem in kd-
tree was proposed in [1] based on spatial decomposition to
guarantee exponential cardinality of points and geometric
reduction of node sizes as descending the tree.

Metric based indexing methods seem to be more suit-
able for general NN search problem in high dimensional
spaces. Generalized hyperplane partitioning for building
binary metric trees, termed gh-tree, was introduced in [30]
and extended in [7]. Simplified versions of such trees were
used in [18, 23, 27] for matching image descriptors. More
detailed review of metric trees and other index structures
can be found in [5, 14].

In our experiments we use several speed up techniques to
extend the trees proposed in [18, 27] and provide extensive
evaluation ofSIFT andM-SIFT features.
Overview. The rest of the paper is organized as follows.
In section2 we define the context of this work and basic
assumptions. Section3 describes our method for improving
image descriptors. Section4 revises data structures evalu-
ated in this paper. Finally, section5 presents and discusses
the experimental results.

2. Correspondence by SIFT Matching

Our objective is to transform descriptors to improve their
matching performance. More precisely, we aim at reduc-
tion of the percentage of false matches among the tentative
correspondence formed by descriptor matching while pre-
serving the desirable property of speed of computation and
compact representation. To this end, we adopt the following
model of the matching process.

Two sets of featuresFI andFD
3 are given. In differ-

ent computer vision problems, the two sets appear under
different names, but play essentially identical roles. In ob-
ject recognition,FI is the set of descriptors detected in the
test image andFD the set of descriptors in the database,
representing objects acquired in the training stage. In wide-
baseline matching,FI andFD represent features detected
in the left and right images respectively. Panorama stitching
may be formulated as either repeated wide-baseline match-
ing or a recognition problem.

The problem of finding correspondences (matching re-
gions) is defined as a search for a functionB : FI →
FD ∪ x

′
0 that assigns to everyxi ∈ FI either ax

′
j from

the databaseFD or x
′
0 representing no match. Three re-

marks about this formulation are in order. First, symmetric
wide-baseline matching can be easily formulated by either
performing the matching twice, exchanging left and right
images, or by defining bothFI andFD as unions of de-
scriptors from both images and constrainingB to avoid
matching two points from the same image. Both options

3Notation. Different fonts are used to distinguish setsS, vectorsx, ma-
tricesC and functionsB, g, λ. Symbol‖.‖2 denotes the Euclidean norm,
P (.|S) conditional probability.



are conceptually simple, but make notation more compli-
cated; for brevity, we therefore use the asymmetric formu-
lation appropriate for the object recognition problem. Sec-
ond, the formulation ignores the fact that the mappingB
should be, with the exception of the ‘no match’ element
x
′
0, one-to-one (a bijection), respecting the constraint that

no x
′
j ∈ FD\x′

0 matches more than one feature fromFI

and vice verse. Enforcing the one-to-one constraint makes
the decision whetherxi is assigned tox′

j dependent on ev-
ery single observation inFI ∪ FD . Matching algorithms
that respect this uniqueness have computational complexity
much higher than the simple kd-tree nearest neighbor al-
gorithm and are therefore not considered. We assume, in
line with common practice, that uniqueness among the ten-
tative correspondences is enforced ex post. Finally, we note
that by positingFD ∪ x

′
0 as the domain ofB, we have im-

plicitly defined that a region can be matched to either zero
or one counterpart. However, the probabilistic model pre-
sented below can be easily extended to situation whereB
maps to2FD , i.e. where the matching procedure associates
with each feature of the input image a (possibly empty) sub-
set ofFD (see sec.5).

The standard procedure ofSIFT matching (step (3) of
Lowe’s method) [20] assigns toxi its Euclidean nearest
neighbor:4 BL(xi) = arg min

x′

j
∈FD

‖xi − x
′
j‖2. (1)

For the chosen formulation of the matching process, the
optimal procedure from the point of view of generating a
maximum number of true correspondence among the estab-
lished correspondences is based on the likelihood ratio

λ(xi,x
′
j) =

P (xi,x
′
j|S)

P (xi,x′
j|S̄)

, (2)

whereP (xi,x
′
j|S) is the probability that the two observa-

tions xi,x
′
j correspond to two views of the same surface

patchS, P (xi,x
′
j|S̄) is the probability that their pre-images

are different. In other words,P (xi,x
′
j|S) models inter-

image variations of appearance of patchS, P (xi,x
′
j|S̄) ex-

presses natural image statistics. Rule (2) justifies theBL

assignment of Eq. (1) under the following condition
P (xi,x

′
j|S) = P (‖xi − x

′
j‖2|S) = g(‖xi − x

′
j‖2),

where g(.) is a monotonic function. The obvious, but
not unique, case isP (xi − x

′
j|S) ∼ N(0, diag(σ)), i.e.

P (.|S) has a zero-mean isotropic Gaussian distribution and
g(x) = e−x. The BL model thus implicitly states: (i)
the probability that two descriptors correspond to the same
surface patch depends only on their difference and (ii) the
inter-image difference has isotropic Gaussian distribution;
the value ofσ is irrelevant.

4This is a simplified description which also applies to any other de-
scriptor. The two most important technicalities omitted are: (i) no match
is assigned if the second nearest point fromxi is not far enough, i.e. if
minx′

j
∈FD

‖xi − x
′
j
‖2/ minx′

j
∈FD\BL(xi)

‖xi − x
′
j
‖2 > ǫ, default

ǫ = 0.8 and (ii) themin operation is carried out only approximately.

3. MSIFT: Mahalanobis SIFT

We discuss the descriptor transformation usingSIFT but
the procedure is applicable to any other descriptor. We
model the probability that two patches are in correspon-
dence as

P (xi,x
′
j|S) = P (‖xi − x

′
j‖2|S) = N(0, CS), (3)

whereCS is a covariance matrix with rankD. The subscript
S indicates thatCS models variations of observations of the
sameSurface. The mean of the distribution is zero, since
it is a difference of two identically distributed random vari-
ables. Estimating full-rankC is feasible on a large train-
ing set of correspondingSIFT pairs. Nevertheless, there
are several reasons to choose the dimensionalityD of the
covariance matrixC as low as possible. Firstly,D defines
the number of dot products that transformSIFT to M-SIFT.
Secondly,D/128 is the fraction of memory required by
M-SIFT compared to 128-dimensionalSIFT. Moreover,M-
SIFT matching performance peaks for values ofD that are
only a fraction of 128.

To be able to benefit from the efficiency of the fast NN
methods and yet to take into account the approximation of
the inter-image variability of region appearance modeled by
Eq. 3 we apply a whitening linear transform of theSIFT

space. The whitening transform is not defined uniquely and
we choose the linear transformation so that the new space
facilitates dimensionality reduction. Details about the linear
transformation are given next.
Computing M-SIFT by simultaneous diagonalization.
We collected a training sets of difference vectorsTS and
TS̄ . Difference vectors are inTS if they have the same
pre-image. Estimates of the covariance matricesCS andCS̄
are computed using the training sets. The linear transfor-
mation T that is applied to theSIFT space is the inverse
of the square root of the ’same surface’ covariance matrix
CS: T = CS

− 1

2 . We will denote vectors in the transformed
space asyi = Txi. In they-space, Euclidean distance is a
monotonic function of the probability that the two descrip-
tion vectors involved originate from the same surface patch:

C
y
S

=
∑

(xi,x
′

i
)∈TS

T(xi − x
′
i)(xi − x

′
i)
⊤
T
⊤ = TCST

⊤ = 1.

The diagonality ofCy
S

is preserved if (i) they-space is ro-
tated, i.e. transformed by any orthonormal matrixR, RRT =
1 and (ii) if some dimension are dropped. We use these two
properties to reduce the dimensionality of the transformed
descriptor space. A second transformation is applied, align-
ing the axis with the eigenvectors of the covariance matrix
C
y

S̄
modeling the variation of two randomly chosen patches.

The transformation is a rotation, since a symmetric ma-
trix like C

y

S̄
has orthonormal eigenvectors. Finally, we drop

128−D dimensions with the smallest variance;D is estab-
lished experimentally. The final projection into theM-SIFT

space is a matrix multiplication byD × 128 matrix
P = DRT, (4)



whereR is the matrix of eigenvectors ofCy

S̄
sorted by eigen-

value magnitude andD is a selector or the firstD-rows.
The procedure can be summarized as whitening ofCS

within a simultaneous diagonalization [13] of CS and CS̄,
followed by a PCA. (The whitening is applied so that the
data match the Euclidean nearest neighbor rule. The di-
mensionality reduction part removes directions in theSIFT

space not contributing to the match.

4. Efficient Matching

Our approach modifies the descriptor to achieve better
matching performance in different data structures. Before
we present the experiments, we briefly revise the data struc-
tures recently used for matching interest point descriptors
in the context of visual recognition. We then explain search
strategies and pruning techniques, which we apply to im-
prove the matching used in [4, 18, 21, 27].

4.1. Tree structures

Kd-tree. The recognition algorithm used in [4, 21] is
based on kd-tree structure. The tree is created by iterative
partitioning. At each iteration, the data set is split at the
median of the dimension of largest variance. This creates a
balanced binary tree with depthlog2 N (cf. Fig. 1). How-
ever, the aspect ratio of rectangular cells of the tree is not
in general bounded, e.g. the cells may be very long in one
dimension and short in others. Consequently, during search
a query sphere can intersect many such elongated cells. A
modification of kd-tree called balanced box-decomposition
tree was proposed in [1]. Its spatial decomposition guar-
antees exponential decrease of the cardinality of points and
geometric reduction of node sizes as descending the tree.
They define a cell by box or the set theoretic difference of
two boxes, outer box and an optional inner box. To obtain
even partitions, two splits are applied alternately: a regu-
lar hyperplane split and a shrinking split which uses a box
rather than a hyperplane. Thus an evenly partitioned bal-
anced tree with bounded aspect ratio of cells is constructed.
Fig. 1 illustrates the hyperplane splits in blue and box par-
titions in red.
Metric tree. A ball tree (or metric tree) is a hierarchical
structure for representing a set of points where the balls are
regions bounded by a hypersphere in a multidimensional
metric space [30]. Each node (ball) of the tree contains sev-
eral children balls and is represented by the center and ra-
dius. The center node is a mean vector of its children leaf
nodes, and the radius is determined by the point farthest
from the center. Unlike in kd-trees, cells in ball-trees canin-
tersect and do not have to partition the entire space (cf.Fig.
1). There are many methods to build metric trees [28],
the approaches can be classified as top-down partitioning,
bottom-up agglomerative and middle-out methods. A top-
down approach was used in [27] (cf. Fig. 1). K-means clus-

Figure 1. (Top-left) Kd-tree. (Top-right) Bbd-tree. (Bottom-left)
Bottom-up ball-tree. (Bottom-right) Top-down kmeans.

tering with predefined branching factor was applied recur-
sively starting from the top node to partition the data points
into children nodes. Each node was represented by a cen-
troid. The main advantage is the efficiency of the partition-
ing method but the structure suffers from problems intrin-
sic to k-means, e.g. sensitivity to outliers, imposed K, cen-
troids far from real clusters resulting in large cells. In the
bottom-up approach, agglomerative average-link clustering
was used to create the tree [18] (cf. Fig 1). The algorithm
starts with the leaf nodes centered at each data point. At
each iteration two nearest nodes are merged creating a par-
ent node. The method continues until top nodes are merged.
A post processing method merges some parents with chil-
dren to reduce the number of nodes and to form a more
compact structure. Compactness, that is the small volume
of hyperballs maximizes the number of prunings that may
occur during NN search thus makes the search faster [28].
However, the complexity of bottom-up methods makes it
impractical for large data sets. Middle-out technique [25] is
a trade-off between efficiency and compactness of the tree.

4.2. Search strategies

In this section we define different query types evaluated
in this paper, which are typically used in matching applica-
tions.

Range search. The objective is to find all data points
within a given distance from the query. Ball-trees based on
Euclidean distance are suitable for such search. The search
starts with the top nodes and verifies the query and node in-
tersections. Euclidean distance is computed to every node
center and the intersections are inferred given the query and
the node radii. All nodes which intersect with the query



radius have to be traversed.

kNN search. This method is concerned with findingk
nearest neighbors given a query point. Ifk = 1, the search
returns a single NN. The tree is first traversed by entering
cells which are closest to the query point. The branches are
explored untilk leaf nodes are found. The distance to thek-
th neighbor is then used to bound the search and only nodes
which are closer to the query have to be examined.

ANN, approximate kNN search. In high dimensional
spaces, a query sphere can intersect with a large numbers of
nodes and the search for NN becomes inefficient since all
intersecting nodes have to be visited. The number of visited
cells can be significantly reduced if the NN search is only
approximate. The procedure is similar to exact kNN except
that the search is continued while a given criterion is satis-
fied. The criterion can e.g. constrain the maximum number
of leaf nodes to visit. Another possibility is to terminate
the search if the distance from the closest cell to the query
exceedsδ = d(p, q)/(1 + ǫ), wherep is the NN found so
far, q – query,ǫ is a positive termination parameter. In other
words, it guarantees that no subsequent point to be found
can be closer toq thanδ. In ball-tree structure, the node
radius can also be defined by a quantile of ordered leaf dis-
tances from the node center. Thus points, which are far from
the node center are not considered. This reduces the number
of intersections and allows to prune many nodes early on in
the search process. These points can be still close to other
node centers since the nodes intersect. In all these tech-
niques a certain percentage of returned points are not the
exact nearest neighbors. Many parts of visual recognition
systems are highly inaccurate therefore approximate search
often provides sufficient results.

4.3. Pruning techniques

Tree search methods differ mainly in how the hierarchy
is traversed and how the branches are pruned to reduce the
number of nodes examined during search. We briefly dis-
cuss the methods used in this paper. Further details can be
found in [1, 14, 28].

Branch and bound. This method can be used in kNN
search and it makes use of the distance between the query
and the leaf points found so far to reduce the query radius
during the search. This allows to reject all the cells, to
which the distance from the query is larger than the distance
to kth neighbor found so far.

Triangle inequality. In the case of a metric obeying
this inequality, given distanced(a, b) between pointsa
and b, and d(b, c) between pointsb and c we can
compute lower and upper bounds on distanced(a, c),
|d(a, b) − d(b, c)| ≤ d(a, c) ≤ d(a, b) + d(b, c). A node
can be rejected if the bounds fall outside of query radius.
These pruning criteria can be used in both, the tree con-
struction and the search.

Priority queues. Priority queues are successful in lim-
iting the number of traversed nodes in approximate NN
search. Given a termination criterion, we increase the prob-
ability of encountering nearest points earlier by examining
nodes in order of increasing distance. One possibility is to
maintain a priority queue of all encountered nodes and dis-
tances to them. A new node from the top of the queue is
examined as soon as the tree is traversed down to the leaf
node. Another method is to verify the top node from the
queue every time the distance to a node is computed. The
node, to which the distance is smaller, is traversed.

5. Results

In this section, we present experiments testing the match-
ing performance of theSIFT transformed with the proposed
method, using tree data structures. We first describe the
evaluation framework and then investigate the performance
of the descriptors according to different criteria.

5.1. Experimental framework

We adopt the evaluation criteria and test data proposed
in [24], where the best repeatability and region accuracy is
achieved by the MSER detector [22]; we therefore use this
detector in all experiments. Three variants of theSIFT de-
scriptor are evaluated. The originalSIFT serves as a refer-
ence, with PCA projections if 40 or 20 dimensions are only
used. Next, aSIFT without spatial Gaussian weighting of
image gradients within a region, termedU-SIFT, is tested.
We also apply the Mahalanobis like normalization to the
original SIFT and denote itMO-SIFT. Finally, we include
the implementation ofM-SIFT which is transformed byP of
Eq.4, but is not weighted by the 2D spatial Gaussian.

The covariance matricesCS andCS̄ needed for computa-
tion of P are estimated on an independent set of 30 image
pairs5. DimensionalityD of M-SIFT andMO-SIFT (the rank
of P) is varied and results are presented for different number
of dimensions.

We also test the performance of the descriptors in four
different data structures for NN search: two kd-tree variants
calledBBF [4, 21] andBBD [1] and two types of ball-trees;
bottom-upBU [18] and top-downTD [27] with speedup im-
provements.

Test data. Results for the variants of theSIFT descriptor
are presented for two sequences with viewpoint and scale
change. Results on other sequences from the publicly avail-
able set6 are consistent with those presented here. Each se-
quence consists of 6 images with gradually increasing trans-
formation and ground truth homographies.

To evaluate matching in data structures,106 features
were collected from [11] training images. Furthermore, two

5http://lear.inrialpes.fr/people/mikolajczyk/Database
6 http://www.robots.ox.ac.uk/˜vgg/research/affine



sets of103 query points were prepared. ”Near queries”,
termedNQ, simulate matching and retrieval scenario. Fea-
tures from images showing the same scenes but viewed
from a different angle and scale were used. ”Far queries”,
FQ were collected from images with similar scenes to those
in the database. This set simulates matching for category
recognition and contains many points which come from a
different distribution. Note, that the difference betweenNQ

andFQ is the average distance to their nearest neighbors in
the database.

Finally, for testing the recognition performance we use
UIUC multi-scale car images and TU-Darmstadt multi-
scale motorbikes [11] .

Performance measure. Following the evaluation frame-
work proposed in [24], we match each of the images from a
sequence to the reference image. Two features are consid-
ered matched if their similarity distance is below a thresh-
old. The match is correct if the spatial overlap of regions
projected with the homography is more than 40%. We vary
the similarity threshold and obtain a precision-recall curve
for each image pair as defined in [24]. In order to present
the results for one image sequence in a compact form, we
consider the area below a precision-recall curve. One curve
represents results for entire image sequence.

Matching efficiency for different data structures is mea-
sured with respect to the exhaustive search and the tree
matches are compared with those returned by the exhaus-
tive search. If a different point was returned by the tree
search, it was counted as an approximate NN. The percent-
age of ANN was controlled withǫ based criterion or by lim-
iting the number of examined nodes. The cost of descriptor
projections is included in the comparative results. In this
evaluation we use the truncated Euclidean distance which
accelerated the exhaustive search by a factor of 1.4.

5.2. Results

Matching performance. The results shown in
Fig. 2(top) are computed for image pairs with in-
creasing transformation. Performance of the originalSIFT

is already high on this test data, therefore even small
improvements are significant. The figures demonstrates
that MO-SIFT performs better thanSIFT, which shows
that the Mahalanobis like normalization still improves
matching. Further improvement given byM-SIFT indicates
that there exist a better weighting function than a Gaussian,
which can be learnt from the training data. However, the
lower results for unweighted descriptorU-SIFT show that
the Gaussian window does have a positive impact on the
SIFT performance. These observations are consistent for
different scenes and image transformations.

Dimensionality. The main advantage of the proposed
method is the dimensionality reduction while maintain-
ing the high performance level of the originalSIFT.
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Figure 2. Precision-recall area for sequences. (Left) Viewpoint
(Grafitti). (Right) Scale change (Boat). (Top) Transformation.
(Bottom) Dimensionality.

Fig. 2(bottom) shows the precision-recall area for differ-
ent number of dimensions. The results were obtained for
40o viewpoint angle, and 2.5 scale change. We observe
that the performance increases up to 40 dimensions. Using
more dimensions does not bring significant improvements.
The top score for all sequences is obtained byM-SIFT; MO-
SIFT comes second. UnweightedSIFT obtained lower score
which again validates the use of a weighting window over
the interest region. Thus, the proposedM-SIFT projection
results in better performance and lower memory require-
ments for negligible projection cost.
Search queries. The tree structures were constructed

with algorithms proposed in the corresponding publica-
tions [1, 4, 18, 27] and the search was done with the im-
provements discussed in section4.3. Table1 shows speedup
factors and the construction time compared to exhaustive
search. The numbers show that kd-trees have a great ad-
vantage over bottom-up metric trees in the efficiency of the
tree construction. In the NN search experiments we have
obtained significantly different results for nearNQ and far
FQ queries. The methods were set to return 10% of ap-
proximate NN. Search onNQ in kd-tree is extremely fast
and accurate. 1NN was found 36000 times faster than with
the sequential search in106 128-dimensional features. The
NN feature is quite often found in first few investigated leaf
nodes and the search terminates very early. The gain in
search speed is however much lower forFQ, e.g. 2 for bbf-
tree. This discrepancy is smaller for metric trees e.g. 27
for NQ and 4.1 forFQ. In the remaining experiments we
provide results for negative far queries, which give a lower
bound on matching speed.
Fast search. In this experiment we compare the perfor-

mance of the proposed descriptor in different data struc-
tures. We search for 10NN in 40-dimensionalM-SIFT space
with FQ. Fig. 3(top-left) shows speed improvements com-



bbf-tree bbd-tree bu-tree td-tree
#NN 1 10 1 10 1 10 1 10

NQ 128 33000 83 1500 7 32 27 29 22
NQ 40 27000 8 35 2 12 11 10 9
FQ 40 2.2 2 0.3 0.1 4.4 4.1 3.7 3.3

Train. 22s 185s 47h 625s

Table 1. Comparison of speedup factors as well as tree construc-
tion time for near and far queries in 128 and 40 dimensional space.

pared to exhaustive search for different percentage of ANN.
In contrast to the results onNQ, the fastest search forFQ

was obtained with the metric trees.BBF kd-tree is on av-
erage twice slower that the metric tree built with bottom-
up techniqueBU. BBD kd-tree shows the lowest perfor-
mance. Range search is noticeably slower than 10NN since
no query radius reduction is done during search. Fig.3(top-
right) compares 1NN search with 10NN in 40 and 128-
dimensional space. The speedup gain of metric trees is
larger for 128 than 40 dimensions, as expected. Interest-
ingly, to obtain less than 20% of ANN in 128 dimensional
kd-tree the search is slower than the sequential one which
makes the use of kd-tree questionable. In contrast, kd-tree
of 40 dimensional points provides an improvement already
for 2% of ANN. The benefit of usingM-SIFT instead of PCA
projectedSIFT in both, kd-tree and metric tree, is demon-
strated in Fig.3(bottom-left). The presented experiments
show that the proposed descriptor makes possible to use kd-
trees in the categorization scenario and gives better results
than standard PCA approach.
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Figure 3. Efficiency of the similarity search. (Top-left) Tree com-
parison. (Top-right) Dimensionality results. (Bottom-left) De-
scriptor comparison. (Bottom-right) Priority queues.

Pruning. Priority queues reduce the number of traversed
nodes by examining them in order of distance to the query
but the overhead for maintaining the queues slows down
the search. We observed that, although the number of
examined nodes is low compared tonoqueuesearch (cf.
Fig. 3(bottom-right)) the actual speed decreases by a factor
of 2. This indicates that the cost of computing distance is

lower than updating and verifying the queue. The previous
experiments were therefore done without priority queues.
Priority queues can be useful in large databases where the
access to cells stored on different hard drives is expensive.
However, this may vary for different implementations since
inconsistent reports on performance of priority queues can
be found in the literature [1, 4, 5, 14, 21]. Fig. 3(bottom-
right) shows that the number of examined nodes is con-
sistently smaller forM-SIFT than SIFT in 40-dimensional
space, which indicates that similar data points inM-SIFT

space are lying closer to each other compared toSIFT. We
also observed that limiting the number of examined cells
improves the efficiency but the fraction of ANN signifi-
cantly vary for different queries. Distance based stopping
criterion allows to control the level of NN approximation at
little expense of speed. Pruning based on triangle inequal-
ity improved the search speed by a factor of 1.4. Traversing
metric tree to the first leaf node only, as done in [27], results
in 99% of ANN for FQ and 45% of ANN forNQ. Although
this search technique is extremely fast, the matching quality
is rather low. Using multiple trees with randomized parti-
tions may provide improvement as reported in [29].
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Figure 4. Object recognition results. (Left) TUD-Motorbikes.
(Right) UIUC-Cars.

Recognition. In this experiment we compare recogni-
tion results obtained with range, 1NN, and 10NN search.
We use recognition system from [23], which is based on
matching features to a visual vocabulary. The matched vi-
sual words indicate positions of objects in a voting space.
The search methods were set to return less than 10% of
ANNs. Fig.4(left) and (right) show precision-recall results
on multi-scale motorbike test set and multi-scale car test
set, both accessible from [11]. Note that although our pri-
mary goal here is to compare different matching and search
strategies, the recognition score outperforms state-of-the-art
results in [11, 23]. This is due to the large number of fea-
tures sampled from the training data which are efficiently
dealt with by trees. The processing of a test image takes
less than one second and most of the computation is in the
feature extraction. Range search in bottom-up tree ofM-
SIFT features gives the highest score. Good results are also
obtained with 10NN search in contrast to 1NN. Many ob-
ject instances are correctly detected when 1NN is correct
however any matching errors made at these stage are hard
to recover later in the recognition process. 10NN search



strategy with kd-trees seems to be a good tradeoff to avoid
complexity problems of metric trees.

Conclusions and discussion

In this paper we presented a method for improving im-
age descriptors by learning optimal projections. Experi-
mental results show that the approach leads to a significant
dimensionality reduction as well as to an improvement of
the matching performance. We observe consistent improve-
ment in matching quality and speed of fast tree search.

In addition, we perform an evaluation of tree structures
using SIFT and M-SIFT according to different criteria and
on different queries. The results show extremely high per-
formance of kd-trees in high dimensional spaces on near
queries and very low on far ones. More consistent results
are obtained with metric trees although the construction
complexity is high. Kd-tree with priority queue and lim-
ited number of examined cells seems to be good choice
for matching or retrieval of transformed images where cor-
responding descriptors are relatively close in the feature
space. In category recognition problems, range search gives
significantly better results than 1NN search. 10NN and kd-
tree is a possible trade-off if the complexity of tree construc-
tion is an issue. Finally, in all search tree experiments we
observed thatM-SIFT performs better thanSIFT.
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