
LOCAL STEREO MATCHING USING GEODESIC SUPPORT WEIGHTS

Asmaa Hosni, Michael Bleyer, Margrit Gelautz and Christoph Rhemann

Institute for Software Technology and Interactive Systems, Vienna University of Technology
Favoritenstr. 9-11/188/2, A-1040 Vienna, Austria, [asmaa, bleyer, gelautz, rhemann]@ims.tuwien.ac.at

ABSTRACT

Local stereo matching has recently experienced large progress
by the introduction of new support aggregation schemes.
These approaches estimate a pixel’s support region via color
segmentation. Our contribution lies in an improved method
for accomplishing this segmentation. Inside a square support
window, we compute the geodesic distance from all pixels to
the window’s center pixel. Pixels of low geodesic distance
are given high support weights and therefore large influence
in the matching process. In contrast to previous work, we en-
force connectivity by using the geodesic distance transform.
For obtaining a high support weight, a pixel must have a path
to the center point along which the color does not change
significantly. This connectivity property leads to improved
segmentation results and consequently to improved disparity
maps. The success of our geodesic approach is demonstrated
on the Middlebury images. According to the Middlebury
benchmark, the proposed algorithm is the top performer
among local stereo methods at the current state-of-the-art.

Index Terms— Local stereo, segmentation-based stereo,
adaptive support weights, geodesic distance transform

1. INTRODUCTION

Local stereo matching algorithms center a support window on
a pixel of the reference image. This window is then displaced
in the second view along the corresponding epipolar line in
order to find a matching point of maximum correspondence.

The major challenge in local stereo is to find a well-suited
size for the typically square support window. A window
should thereby be large enough to capture sufficient intensity
variation for handling regions of poor texture. At the same
time, the window should be small enough to not include pixels
of different disparities in order to avoid the well-known edge
fattening effect at disparity discontinuities. In practice, there
is no golden middle between these conflicting requirements.
This has led to a long track of research that varies window

Asmaa Hosni is supported by a One-World Scholarship of the Austrian
Orient Society Hammer-Purgstall. Michael Bleyer is financed by the Aus-
trian Science Fund (FWF) under project P19797. Christoph Rhemann is
supported by Microsoft Research Cambridge through its PhD Scholarship
Program.

sizes and shapes depending on the image position (e.g., [1]).
However, the moderate results of these early approaches are
in general not able to compete with state-of-the-art algorithms
that typically rely on global optimization [2].

Local stereo matching has recently experienced a renais-
sance with the upcome of novel segmentation-based support
aggregation schemes. These methods can deliver results close
to the quality of global approaches. They assume that pix-
els of homogeneous color share the same disparity value.
Hence, it is reasonable to find a pixel’s support region via the
use of color segmentation. In the original adaptive weight
approach [3], weights are computed for all pixels within a
square window. These weights regulate a pixel’s influence in
the matching process. A pixel’s weight is thereby inversely
proportional (i) to its color dissimilarity to the window’s
center pixel and (ii) to its spatial distance from the center.

Alternative methods for computing these weights have
been proposed recently. The work of [4, 5] suggests us-
ing a precomputed (mean shift-based) color segmentation in
the weight calculation. While this approach seems to work
slightly better, it takes away some elegance by “outsourcing”
the segmentation into a preprocessing step that also consumes
additional processing time. In the context of prior work, also
the approach of [6] is mentioned. Here, weight computation
is accomplished via energy minimization. For more details
and evaluation of related aggregation methods, the reader is
referred to two recent studies [7, 8].

2. ALGORITHM

2.1. Local Matching with Geodesic Support

The basic idea of this paper is to compute the support weights
within a square window via the use of geodesic distances.
This is explained as follows. The geodesic distanceD(p, c)
between a pixelp of the support window and the window’s
centerc is defined as the shortest path that connectsp with c

in the color volume:

D(p, c) = min
P∈Pp,c

d(P). (1)

Here,Pp,c denotes the set of all paths betweenp andc. A path
P is defined as a sequence of spatially neighbouring points in

(a) (b) (c)

Fig. 1. Support regions for selected windows of the Middlebury images. (First row) Image crops. (Second row) Support weights
computed by the adaptive weight method [3]. The segmentation method gives relatively high support weights to pixels whose
disparity is different from that of the center pixel (see arrows). (Third row) Our geodesic support weights. Due to enforcing
connectivity, such wrong high weights are avoided.

8-connectivity{p1, p2, · · · , pn}. The costsd() of a path are
computed by

d(P) =

i=n
∑

i=2

dC(pi, pi−1). (2)

with dC() being a function that determines the color differ-
ence. This function is implemented by

dC(p, q) =
√

(rp − rq)2 + (gp − gq)2 + (bp − bq)2 (3)

whererp, gp andbp are the values ofp’s RGB channels. Intu-
itively spoken, the geodesic distance from pixelp to the win-
dow centerc is low, if there exists a path between these points
along which the color varies only slightly. We refer to this
property asconnectivity.

We assume that pixels of low geodesic distance lie on
the same disparity asc itself. Low geodesic distances should
therefore convert into high support weights. The functionw()
implements this by

w(p, c) = exp

(

−
D(p, c)

γ

)

(4)

with γ being a user-defined parameter that defines the strength
of the resulting segmentation.

Once the support weights are know, they are exploited
to aggregate pixel dissimilarities within the support window.
The aggregated matching costs for a pixelc at disparityd are
derived by

m(c, d) =
∑

p∈Wc

w(p, c) · f(p, p − d) (5)

with Wc representing all pixels of the square support window
centered on pixelc. The window size is thereby given by the

user. The functionf(p, q) computes the color dissimilarity
between a pixelp of the reference image and a pixelq of the
match view. In principle, one can use equation (3) to imple-
mentf(). However, we have chosen Mutual Information [9]
in order to handle illumination differences that may exist be-
tween the two input images. In addition, we put an upper
boundfmax on the pixel dissimilarity so that values exceed-
ing fmax are truncated. This serves to reduce the influence of
occluded pixels [10].

Finally, we obtain a disparity map by determining the dis-
parity dp of each pixelp of the reference view using local
optimization:

dp = argmin
d∈D

m(p, d) (6)

whereD represents the set of all allowed disparities. In fact,
there is nothing that speaks against replacing this Winner-
Takes-All strategy with a global optimization technique such
as graph-cuts or belief propagation. This would most likely
further improve the quality of results.

2.2. Geodesic versus Original Adaptive Weights

Let us use the support weight examples of figure 1 to illus-
trate the advantage of our geodesic approach over the method
of [3]. Figure 1a shows an artificial image in which a fore-
ground object is placed in front of a background object of
similar color. For computing the support weights, the orig-
inal adaptive weight method just considers the color differ-
ence and the distance to the center pixel. In our example, it
therefore erroneously gives high weights to background pix-
els. In contrast to this, our approach can successfully handle
this example by considering the whole structure of the im-
age patch. Recall that our geodesic computation requires that
there is a path of approximately constant color to the center
pixel. For background pixels, such a constant color path does

Kp

p

K’

p

p

(a) (b)
Fig. 2. Efficient approximation of the geodesic distance inside
the support window. (a) Forward pass. (b) Backward pass.

not exist due to the edge that separates the foreground from
the background object. Figures 1b and 1c show this effect on
real-world images. Figures 1b thereby uses the same image
patches as in the paper of [3].

It is important to notice that the computational efficiency
of our geodesic support weight strategy is practically the same
as that of [3]. For both methods, the computation of a single
weight mask has a complexity ofO(|W|) with W being the
set of all pixels inside the square window. (We describe an ef-
ficient algorithm for approximating the geodesic weight mask
in section 2.3). However, both methods share the performance
bottleneck that originates from evaluating the window at each
disparity. This pixel comparison operation has complexity
O(|W| · |D|) with D denoting the set of allowed disparities.
Due to using adaptive weights, this operation cannot easily
be speeded up using sliding window techniques from which
local methods commonly take their high efficiency. Never-
theless, it has been shown [7] that by GPU programming a
real-time implementation of [3] can be accomplished. This
would most likely also work for our method. In our current
implementation, it takes approximately a minute to compute
the disparity map for standard test image pairs.

2.3. Approximation of Geodesic Distances

We apply the method of [11] for efficiently approximating the
geodesic distance of each pixel within the window to the cen-
ter pixel (equation (1)). This method is reviewed as follows.

Each pixelp inside the window is assigned to costsC(p).
Initially, the costs of the center pixel are set to 0, while the
costs of all other pixels are set to a large constant value. In
the forward pass of the algorithm, we traverse the support
window in row major order (see figure 2a). The costs of a
pixel p are thereby updated by

C(p) := min
q∈Kp

C(q) + dC(p, q) (7)

with the kernelKp being a set of pixels consisting ofp itself
as well as its left, left upper, upper and right upper neighbours
(figure 2a). The cost update is thereby performed immedi-
ately so that the new costs already affect the cost computation
of the next pixel. Once the forward pass is completed, we in-
voke the backward pass. This pass traverses the window in
reverse direction (figure 2b). It thereby updates the costs us-
ing equation (7) in conjunction with the kernelK ′

p of figure

2b. Forward and backward passes are iterated. (In our exper-
iments, we found 3 iterations to be sufficient for giving rea-
sonable results.) The final costsC(p) represent our estimate
of the geodesic distance ofp to the center pixel.

2.4. Occlusion Detection and Filling

Up to this point we have ignored the occlusion problem. In
order to detect occlusions, we follow common practice in lo-
cal stereo by applying left-right consistency checking. We
therefore use the algorithm of section 2.1 to compute a first
disparity map with the left image chosen as reference frame.
A second disparity map is derived by choosing the right im-
age as reference. For each pixel of the left disparity map, we
then check whether it carries the same disparity assignmentas
its matching point in the right disparity map. If this is not the
case, the pixel is invalidated. This left-right check is effective
in filtering out occluded pixels as well as mismatches.

In the occlusion filling step, we assign invalidated pixels
to new disparity values. For each invalidated pixelp, we es-
timatep’s first valid neighbour to the leftl and to the right
r. The disparitydp is then computed bymin(dl, dr). This
simple filling strategy typically generates horizontal streaks.
To eliminate these artifacts, we apply a smoothening filter on
the invalidated pixels. We thereby use a weighted median
filter with the filter weights obtained from the precomputed
geodesic weight masks of section 2.1. In comparison to stan-
dard median filtering, our weighted median filter does not suf-
fer from the problem of distorting object boundaries.

3. RESULTS

We have used the Middlebury stereo benchmark [2] to evalu-
ate the performance of our approach. In our test run, the al-
gorithm’s parameters are set to the constant values ofγ := 10
and fmax := 120. The window size is chosen to be31.
These parameters have been found empirically. We plot our
results on the Middlebury images along with corresponding
error maps in figure 3. One can see that our algorithm per-
forms well in the reconstruction of disparity borders, while
it also finds correct disparities for regions of low texture.It
is traditionally difficult for a local method to fulfill thesetwo
requirements at the same time.

Table 1 shows quantitative results that are taken from the
Middlebury online table. Our algorithm currently takes the
10th rank of 63 submissions. This is specifically promis-
ing when considering that we do not use global optimization.
This is in contrast to all better performing algorithms. Ac-
cording to the Middlebury table, our method is the currently
best performing local method. It can outperform the original
adaptive weight approach [3] relatively clearly.

Fig. 3. Results on Middlebury images generated using constant parameter settings. The first row shows the results computed by
our algorithm. The second row shows a comparison against theground truth by plotting disparity errors larger than one pixel.

Algorithm Rank
Avg. Error non-occluded pixels [%]

Error [%] Tsukuba Venus Teddy Cones

GeoSup 10 5.80 1.45 0.14 6.88 2.94
AdaptDispCalib 13 6.10 1.19 0.23 7.80 3.62
DistinctSM 18 6.14 1.21 0.35 7.45 3.91
CostAggrOcc [6] 20 6.20 1.38 0.44 6.80 3.60
SegmentSup [5] 21 6.44 1.25 0.25 8.43 3.77
AdaptWeight [3] 26 6.67 1.38 0.71 7.88 3.97
SSD+MF [2] 59 15.7 5.23 3.74 16.5 10.6

Table 1. Rankings of selected local methods in the Middle-
bury online database. Our algorithm (denoted byGeoSup) is
currently the overall best-performing local method.

4. CONCLUSIONS

This paper has proposed a novel support aggregation ap-
proach for stereo matching. To derive support weights, we
have computed geodesic distances for all pixels of the sup-
port window to the window’s center point. The advantage
over previous work is that we implement the concept of con-
nectivity that proves to be effective for obtaining improved
segmentation results. We have tested our results using the
Middlebury benchmark. According to the results, the pro-
posed geodesic support weight approach is the top performer
among stereo methods that rely on local optimization.

5. REFERENCES

[1] T. Kanade and M. Okutomi, “A stereo matching al-
gorithm with an adaptive window: Theory and experi-
ment,” PAMI, vol. 16, no. 9, pp. 920–932, 1994.

[2] D. Scharstein and R. Szeliski, “A taxonomy and eval-
uation of dense two-frame stereo correspondence al-

gorithms,” IJCV, vol. 47, no. 1/2/3, pp. 7–42, 2002.
http://www.middlebury.edu/stereo/.

[3] K.J. Yoon and I.S. Kweon, “Locally adaptive support-
weight approach for visual correspondence search,” in
CVPR, 2005.

[4] M. Gerrits and P. Bekaert, “Local stereo matching with
segmentation-based outlier rejection,” inCRV, 2006.

[5] F. Tombari, S. Mattoccia, and L. Di Stefano,
“Segmentation-based adaptive support for accurate
stereo correspondence,” inPSIVT, 2007.

[6] D. Min and K. Sohn, “Cost aggregation and occlusion
handling with wls in stereo matching,”TIP, vol. 17, no.
8, pp. 1431–1442, 2008.

[7] M. Gong, R. Yang, L. Wang, and M. Gong, “A perfor-
mance study on different cost aggregation approaches
used in real-time stereo matching,”IJCV, vol. 75, no. 2,
pp. 283–296, 2007.

[8] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addi-
manda, “Classification and evaluation of cost aggre-
gation methods for stereo correspondence,” inCVPR,
2008.

[9] H. Hirschmüller, “Stereo processing by semiglobal
matching and mutual information,”PAMI, vol. 30, no.
2, pp. 328–341, 2008.

[10] T. Noguchi and Y. Ohta, “A simple but high-quality
stereo algorithm,” inICPR, 2002.

[11] G. Borgefors, “Distance transformations in digital im-
ages,” Computer Vision, Graphics and Image Process-
ing, vol. 34, no. 3, pp. 344–371, 1986.

