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Abstract. This note is devoted to a mathematical exploration of whether
Lowe’s Scale-Invariant Feature Transform (SIFT) [21], a very successful im-

age matching method, is similarity invariant as claimed. It is proved that the

method is scale invariant only if the initial image blurs is exactly guessed. Yet,
even a large error on the initial blur is quickly attenuated by this multiscale

method, when the scale of analysis increases. In consequence, its scale in-
variance is almost perfect. The mathematical arguments are given under the

assumption that the Gaussian smoothing performed by SIFT gives an aliasing

free sampling of the image evolution. The validity of this main assumption is
confirmed by a rigorous experimental procedure, and by a mathematical proof.

These results explain why SIFT outperforms all other image feature extraction

methods when it comes to scale invariance.

1. Introduction

Image comparison is a fundamental step in many computer vision and image
processing applications. A typical image matching method first detects points of
interest, then selects a region around each point, and finally associates with each
region a descriptor. Correspondences between two images can then be established
by matching the descriptors of both images. The images under comparison may
have been taken under arbitrary viewpoints. Therefore the invariance to the view-
point is crucial in image comparison. Many variations exist on the computation of
invariant interest points, following the pioneering work of Harris and Stephens [13].
The Harris-Laplace and Hessian-Laplace region detectors [23, 26] are invariant to
rotation and scale changes. Some moment-based region detectors [20, 2] including
the Harris-Affine and Hessian-Affine region detectors [24, 26], an edge-based region
detector [42], an intensity- based region detector [42], an entropy-based region detec-
tor [14], and two independently developed level line-based region detectors MSER
(“maximally stable extremal region”) [22] and LLD (“level line descriptor”) [33, 34]
are designed to be invariant to affine transformations. These two methods stem
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from the Monasse image registration method [29] that used well contrasted ex-
tremal regions to register images. MSER is the most efficient one and has shown
better performance than other affine invariant detectors [28]. However, as pointed
out in [21], none of these detectors is actually fully affine invariant: All of them start
with initial feature scales and locations selected in a non-affine invariant manner.
The difficulty comes from the scale change from an image to another: This change
of scale is in fact an under-sampling, which means that the images differ by a blur.

In his milestone paper [21], Lowe has addressed this central problem and has
proposed the so called scale-invariant feature transform (SIFT) descriptor, that
is claimed to be invariant to image translations and rotations, to scale changes
(blur), and robust to illumination changes. It is also surprisingly robust to large
enough orientation changes of the viewpoint (up to 60 degrees when one of the im-
ages is in frontal view). Based on the scale-space theory [19], the SIFT procedure
simulates all Gaussian blurs and normalizes local patches around scale covariant
image key points that are Laplacian extrema. A number of SIFT variants and
extensions, including PCA-SIFT [15] and gradient location-orientation histogram
(GLOH) [27], that claim to have better robustness and distinctiveness with scaled-
down complexity have been developed ever since [8, 18]. Demonstrated to be supe-
rior to other descriptors [25, 27], SIFT has been popularly applied for scene recogni-
tion [6, 30, 39, 44, 11, 40] and detection [9, 35], robot localization [3, 36, 32], image
retrieval [12], motion tracking [43, 16], 3D modeling and reconstruction [38, 45],
building panoramas [1, 4], or photo management [46, 17, 5]. Partially based on the
SIFT similarity invariance proved in the present paper, recently, a variant of SIFT
named affine-SIFT (ASIFT) has been mathematically proved to be fully invariant,
and has been shown to give excellent performance even under very large viewpoint
changes [31].

The initial goal of the SIFT method is to compare two images (or two image
parts) that can be deduced from each other (or from a common one) by a rotation,
a translation, and a zoom. In this method, following a classical paradigm, stable
points of interest are supposed to lie at extrema of the Laplacian of the image
in the image scale-space representation. The scale-space representation introduces
a smoothing parameter σ. Images u0 are smoothed at several scales to obtain
w(σ, x, y) := (Gσ ∗ u0)(x, y), where

Gσ(x, y) =
1

2πσ2
e−(x2+y2)/2σ2

is the 2D-Gaussian function with integral 1 and standard deviation σ. The nota-
tion ∗ stands for the space 2-D convolution in (x, y). The description of the SIFT
method involves sampling issues, which we shall discuss later.

Taking apart all sampling issues and several thresholds whose aim it is to elimi-
nate unreliable features, the whole SIFT method can be summarized in one single
sentence:

One sentence description The SIFT method computes scale-space extrema (σi, xi, yi)
of the Laplacian in (x, y) of w(σ, x, y), and then samples for each one of these ex-
trema a square image patch whose origin is (xi, yi), whose x-direction is one of the
dominant gradients around (xi, yi), and whose sampling rate is proportional to (and
usually smaller than)

√
σ2
i + c2.

The constant c ≈ 0.5 is the tentative standard deviation of the initial image
blur. The resulting samples of the digital patch at scale σi are encoded by their
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Figure 1. A result of the SIFT method, using an outliers elim-
ination method [37]. Pairs of matching points are connected by
segments.

gradient direction, which is invariant under nondecreasing contrast changes. This
accounts for the robustness of the method to illumination changes. In addition,
only local histograms of the direction of the gradient are kept, which accounts for
the robustness of the final descriptor to changes of view angle (see Fig. 2).

The goal of this paper is to give the mathematical formalism to examine whether
the method indeed is scale invariant, and to discuss whether its main assumption,
that images are well-sampled under Gaussian blur, does not entail significant errors.
We shall not propose a new variant or an extension of the SIFT method; on the
contrary we intend to demonstrate that no other method will ever improve more
than marginally the SIFT scale invariance (see Figs. 1 and 4 for striking examples).
To the best of our knowledge, and in spite of the more than ten thousand papers
quoting and using SIFT, the analysis presented here does not seem to have been
done previously.

The paper is organized as follows. In Section 2, a simple formalism is introduced
to obtain a condensed description of the SIFT shape encoding method. Using this
formalism Section 3 proves mathematically that the SIFT method indeed computes
translation, rotation and scale invariants. This proof is correct under the main
assumption that the image initial blur is Gaussian, and that images with a Gaussian
blur larger than 0.8 can be accurately retrieved by interpolation from their samples.
Section 4 checks the validity of this crucial well sampling assumption through an
experimental procedure and mathematical proofs.

2. Image operators formalizing SIFT

The analysis of the scale invariance is much easier on the continuous images
whose samples form the digital image. The Shannon-Whittaker interpolation per-
mits a perfect reconstruction of a continuous image from a discrete one, when the
continuous image has been well-sampled [41]. Under the assumption that a Gauss-
ian filtering can deliver well-sampled images up to a negligible error, (the validity
of this assumption will be confirmed in Section 4), this section gives a formalized
description of the SIFT procedure.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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We denote by u(x) a continuous image defined for every x = (x, y) ∈ R2. All
continuous image operators, including the sampling operator itself, will be written
in capital letters A, B. Their composition will be, for the sake of simplicity, written
as a mere juxtaposition AB. For any similarity transform A its application on u is
defined as Au(x) := u(Ax). For instance Hλu(x) := u(λx) denotes an expansion of
u by a factor λ−1. In the same way if R is a rotation, Ru := u(Rx) is the image
rotation by R−1.

2.1. Sampling and interpolation. Digital (discrete) images are only defined for
k = (k, l) ∈ Z2 and are denoted in bold by u(k). For example the δ-sampled image
u = Sδu is defined on Z2 by

(1) (Sδu)(k, l) := u(kδ, lδ);

Conversely, the Shannon interpolate of a digital image is defined as follows [10].
Let u be a digital image, defined on Z2 and such that

∑
k∈Z2 |u(k)|2 < ∞ and∑

k∈Z2 |u(k)| < ∞. These conditions are for example satisfied if the digital image
has a finite number of non-zero samples. We call Shannon interpolate Iu of u the
only L2(R2) function u which coincides with u on the samples k and with spectrum
support contained in (−π, π)2. Iu is defined by the Shannon-Whittaker formula

(2) Iu(x, y) :=
∑

(k,l)∈Z2

u(k, l)sinc(x− k)sinc(y − l),

where sinc x := sinπx
πx . The Shannon interpolation has the fundamental property

S1Iu = u. Conversely, if u is L2 and band-limited in (−π, π)2, then

(3) IS1u = u.

In that ideal situation we say that u is band-limited. We shall also say that the
digital image u = S1u is well-sampled if it was obtained from a band-limited image
u, and therefore permits to go back to u.

While the Shannon interpolation (2) allows a perfect reconstruction of a continu-
ous image from a discrete one when the image is well-sampled, this interpolation I is
unfortunately impractical since it assumes an infinite number of available samples.
Instead, the DFT interpolation Id that relies only on a limited number of samples
in the discrete image rectangle is predominant in image processing. The DFT inter-
polation Id will be defined in Section 4.1 where its approximation to the Shannon
interpolation I will be checked. In the following we will thus proceed in this dual
framework. For invariance proofs involving translations, rotations and zooms, the
Shannon interpolation is necessary because we need to reason in a space of functions
on R2 which is invariant by these geometric transforms. When it comes to image
interpolation operations on the limited image domain, Id will be invoked. It is well
documented that the difference between these two interpolations causes negligible
errors, but we shall anyway confirm this fact here.

2.2. The Gaussian filtering. The Gaussian convolution that implements the
scale-space plays a key role in the SIFT procedure. Gσ will denote the convolution
operator on R2 with the Gaussian kernel Gσ(x1, x2) = 1

2πσ2 e
−(x2

1+x
2
2)/2σ

2
, and the

Gaussian kernel itself. Thus we simply write Gσu(x, y) := (Gσ∗u)(x, y). Gσ satisfies
the semigroup property

(4) GσGβ = G√
σ2+β2 .
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The proof of the next formula is a mere change of variables in the integral defining
the convolution.

(5) GσHγu = HγGσγu.

The discrete Gaussian convolution applied to a digital image is defined as a digital
operator by

(6) Gδu =: S1GδIu.

This discrete convolution is nothing but the continuous Gaussian convolution ap-
plied to the underlying continuous image. This definition maintains the Gaussian
semi-group property used repeatedly in SIFT,

(7) GδGβ = G√
δ2+β2 .

Indeed, using twice (6) and once (4) and (3),

GδGβu = S1GδIS1GβIu = S1GδGβIu = S1G√δ2+β2Iu = G√
δ2+β2u.

(The same formulas are adapted without alteration when replacing I by Id.)
The SIFT method makes the following assumption, whose validity will be con-

firmed both experimentally and mathematically in Section 4.

Assumption 1. For every σ larger than 0.8 and every Shannon interpolated digital
image u0, the Gaussian blurred image Gσu0 satisfies the Shannon inversion formula
up to a negligible error, namely IS1Gσu0 ' Gσu0.

2.3. Formalized Scale Invariant Features Transform. The Assumption 1
that the Gaussian pre-filtering leads to a nearly aliasing-free subsampling allows
a perfect reconstruction of continuous images from discrete ones with Shannon-
Whittaker interpolation. The main steps of the SIFT method can therefore be
formalized in a continuous setting as follows.

1. Geometry: there is an underlying infinite resolution planar image u0(x)
that has undergone a similarity Au0 (modeling the composition of a rotation,
a translation, and a homothety) before sampling.

2. Sampling and blur: the camera blur is assumed to be a Gaussian with
standard deviation c. The initial digital image is therefore u = S1GcAu0;

3. Sampled scale space: the SIFT method computes enough samples of the
scale space function u(σ, ·) = GσGcAu0 to detect accurately “key points”
(σ,x), defined as scale and space local extrema of ∆u(σ, ·).

4. Covariant resampling: a 32× 32 grid centered at the key point is used to
sample u(σ, ·) around each key point (σ,x). The grid mesh is proportional to√
σ2 + c2. The directions of the sampling grid axes are fixed by a dominant

direction of ∇u(σ, ·) in a neighborhood of the key point, whose size is also
proportional to the key point scale σ. This yields for each key point a rotation,
translation and scale invariant square sampled subimage samples in which the
four parameters of A have been eliminated (see Fig. 3);

5. Illumination invariance: the final SIFT descriptors keep mainly the orien-
tation of the samples gradient, to gain invariance with respect to light condi-
tions.

Steps 1 to 5 are the main steps of the method. We have omitted all details
that are not relevant in the discussion to follow. Let them be mentioned briefly.
The Laplacian extrema are kept only if they are larger than a fixed threshold that
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Figure 2. Each key-point is associated a square image patch whose
size is proportional to the scale and whose side direction is given by the
assigned direction. Example of a 2 × 2 descriptor array of orientation
histograms (right) computed from an 8 × 8 set of samples (left). The
orientation histograms are quantized into 8 directions and the length of
each arrow corresponds to the magnitude of the histogram entry.

Figure 3. SIFT key points. The arrow starting point, length and
the orientation signify respectively the key point position, scale,
and dominant orientation. These features are claimed to be covari-
ant to any image similarity.

eliminates small features mainly due to noise. This threshold is not scale invariant.
The ratio of the eigenvalues of the Hessian of the Laplacian must be close enough
to 1 to ensure a good key point localization. (Typically, straight edge points have
only one large Hessian eigenvalue, are poorly localized, and are therefore ruled out
by this second threshold, which is scale invariant.)

The SIFT method assumes that the initial image satisfies c = 0.5 (meaning that
it is the result of a convolution with a Gaussian with standard deviation c). This
implies a slight under-sampling which is compensated by a complementary Gaussian
blur applied to the image. Following Assumption 1 it increases the initial blur to
0.8. In accordance with this choice, a 2 × 2 subsampling in the SIFT scale-space
computations can be made only when a 2 × 0.8 = 1.6 Gaussian blur has been
reached.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Postponing the verification of the SIFT main Assumption 1 to Section 4, the
next Section proves that SIFT has an almost perfect scale invariance, which is the
main result of the present paper.

3. Scale and SIFT: consistency of the method

Let T , R, H and G be respectively an arbitrary image translation, an arbitrary
image rotation, an arbitrary image homothety, and an arbitrary Gaussian convo-
lution, all applied to continuous images. We say that there is strong commutation
if we can exchange the order of application of two of these operators. We say
that there is weak commutation between two of these operators if we have (e.g.)
RT = T ′R, meaning that given R and T there is T ′ such that the former relation
occurs. The next lemma is straightforward.

Lemma 1. All of the aforementioned operators weakly commute. In addition, R
and G commute strongly.

In this Section, in conformity with the SIFT model of Section 2, the digital image
is a frontal view of an infinite resolution ideal image u0. In that case, A = HT R
is the composition of a rotation R, a translation T and a homothety H. Thus the
digital image is u = S1GδHT Ru0, for some H, T , R. Assuming that the image
is not aliased boils down, by the experimental results of Section 4, to assuming
δ ≥ 0.8. The next Lemma shows that SIFT is rotation- and translation-invariant.

Lemma 2. For any rotation R and any translation T , the SIFT descriptors of
S1GδHT Ru0 are identical to those of S1GδHu0.

Proof. Using the weak commutation of translations and rotations with all other
operators (Lemma 1), it is easily checked that the SIFT method is rotation and
translation invariant: The SIFT descriptors of a rotated or translated image are
identical to those of the original. Indeed, the set of scale space Laplacian extrema
is covariant to translations and rotations. Then the normalization process for each
SIFT descriptor situates the origin at each extremum in turn, thus canceling the
translation, and the local sampling grid defining the SIFT patch has axes given
by peaks in its gradient direction histogram. Such peaks are translation invariant
and rotation covariant. Thus, the normalization of the direction also cancels the
rotation.

Lemma 3. Let u and v be two digital images that are frontal snapshots of the same
continuous flat image u0, u = S1GβHλu0 and v := S1GδHµu0, taken at different
distances, with different Gaussian blurs and possibly different sampling rates. Let
w(σ,x) := (Gσu0)(x) denote the scale space of u0. Then the scale spaces of u and
v are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds to
a key point of u at the scale σ1 such that λ

√
σ2

1 + β2 = s0, whose SIFT descriptor
is sampled with mesh

√
σ2

1 + c2, where c is the tentative standard deviation of the
initial image blur as described in Section 2.3. In the same way (s0,x0) corresponds
to a key point of v at scale σ2 such that s0 = µ

√
σ2

2 + δ2, whose SIFT descriptor is
sampled with mesh

√
σ2

2 + c2.
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Proof. The interpolated initial images are by (3)

u := IS1GβHλu0 = GβHλu0 and v := IS1GδHµu0 = GδHµu0.

Computing the scale-space of these images amounts to convolve them for every
σ > 0 with Gσ, which yields, using the Gaussian semigroup property (4) and the
commutation relation (5):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HµGµ
√
σ2+δ2u0

. Let us set w(s,x) := (Gsu0)(x). Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

Let us consider an extremal point (s0,x0) of the Laplacian of the scale space function
w. If s0 ≥ max(λβ, µδ), an extremal point occurs at scales σ1 for (the Laplacian
of) u(σ,x) and σ2 for (the Laplacian of) v(σ,x) satisfying

(8) s0 = λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2.

We recall that each SIFT descriptor at a key point (σ1,x1) is computed from space
samples of x→ u(σ,x). The origin of the local grid is x1, the intrinsic axes are fixed
by one of the dominant directions of the gradient of u(σ1, ·) around x1, in a circular
neighborhood whose size is proportional to σ1. The SIFT descriptor sampling rate
around the key point is proportional to

√
σ2

1 + c2 for u(σ1,x), and to
√
σ2

2 + c2 for
u(σ2,x), as described in Section 2.3.

Theorem 1. Let u and v be two digital images that are frontal snapshots of the
same continuous flat image u0, u = S1GβHλT Ru0 and v := S1GδHµu0, taken
at different distances, with different Gaussian blurs and possibly different sampling
rates, and up to a camera translation and rotation around its optical axis. Without
loss of generality, assume λ ≤ µ. Then if the initial blurs are identical for both
images (if β = δ = c), then each SIFT descriptor of u is identical to a SIFT
descriptor of v. If β 6= δ (or β = δ 6= c), the SIFT descriptors of u and v
become (quickly) similar when their scales grow, namely as soon as σ1

max(c,β) � 1
and σ2

max(c,δ) � 1, where σ1 and σ2 are respectively the scales of the key points in
the two images.

Proof. By the result of Lemma 2, we can neglect the effect of translations and rota-
tions. Therefore assume without loss of generality that the images under comparison
are as in Lemma 3. Consider a key point (s0,x0) of w with scale s0 ≥ max(λβ, µδ).
Following Lemma 3, there is a corresponding key point (σ1,

x0
λ ) for u whose sam-

pling rate is fixed by the method to
√
σ2

1 + c2 and a corresponding key point (σ2,
x0
µ )

whose sampling rate is fixed by the method to
√
σ2

2 + c2 for v. To have a common
reference for these sampling rates, it is convenient to refer to the corresponding sam-
pling rates for w(s0,x), which are λ

√
σ2

1 + c2 for the SIFT descriptors of u at scale
σ1, and µ

√
σ2

2 + c2 for the descriptors of v at scale σ2. Thus the SIFT descriptors
of u and v for x0 will be identical if and only if λ

√
σ2

1 + c2 = µ
√
σ2

2 + c2. Since
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we have λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2, the SIFT descriptors of u and v are identical if
and only if

(9) λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2 ⇒ λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2.

In other terms λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2 if and only if

(10) λ2β2 − µ2δ2 = (λ2 − µ2)c2.

Since λ and µ correspond to camera distances to the observed object u0, their values
are arbitrary. Thus in general the only way to get (10) is to have β = δ = c, which
means that the blurs of both images have been guessed correctly.

The second statement is straightforward: if σ1 and σ2 are large enough with
respect to β, δ and c, the relation λ

√
σ2

1 + β2 = µ
√
σ2

2 + δ2, implies λ
√
σ2

1 + c2 ≈
µ
√
σ2

2 + c2.

The almost perfect scale invariance of SIFT stated in Theorem 1 is illustrated
by the striking example of Fig. 4. The 25 SIFT key points of a very small image u
are compared to the 60 key points obtained by zooming in u by a 32 factor: The
resulting digital image is v := S 1

32
Idu, again obtained by zero-padding. For better

observability, both images are displayed with the same size by enlarging the pixels
of u. Almost each key point (18 out of 25) of u finds its counterpart in v. 18
matches are detected between the descriptors as shown on the right. Let us check
how this extreme example is covered by Theorem 1. We compare an initial image
u = S1GδIdu0 (with δ = c) with its zoomed in version v = S 1

32
GδIdu0. But we

have by (5)

v = S 1
32
GδIdu0 = S1H 1

32
GδIdu0 = S1G32δH 1

32
Idu0.

Here the numerical application of the relations in the above proof give: We want
(9) to hold approximately, where µ = 1, λ = 1

32 , β = 32δ. Thus we want
1
32

√
σ2

1 + (32δ)2 =
√
σ2

2 + δ2 to imply 1
32

√
σ2

1 + c2 ≈
√
σ2

2 + c2 which means√
(σ1
32 )2 + c2 =

√
σ2

2 + c2 to imply
√

(σ1
32 )2 + ( c

32 )2 ≈
√
σ2

2 + c2. This is true only
if σ1 is significantly larger than 32, which is true, since σ1 is the scale of the SIFT
descriptors in the image v, which has been zoomed in by a 32 factor.

By the second part of Theorem 1 the reliability of the SIFT matching increases
with scale. This fact is illustrated in Fig. 5. Starting from a high resolution image
u0, two images u and v are obtained by simulated zoom out, u = S1GβHλIdu0 =
SλGλβIdu0 and v = SµGµδIdu0, with λ = 2, µ = 4, β = δ = 0.8. Pairs of
SIFT descriptors of u and v in correspondence, established by a SIFT matching,
are compared using an Euclidean distance d. The scale rate σ1/σ2 as well as the
distance d between the matched key points are plotted against σ2 in Fig. 5. That
σ1/σ2 ≈ 2 for all key points confirms that the SIFT matching process is reliable.
As stated by the theorem, the rate σ1/σ2 goes to µ/λ = 2 when σ2 increases, and
the distance d goes down. However, as also apparent in the numerical result, when
the scale is small (σ2 < 1), σ1/σ2 is very different from 2 and d is large.

4. The right Gaussian blur to achieve well-sampling

This section first checks the close relation between the impractical Shannon in-
terpolation, with which we had proved the scale invariance of SIFT, and the DFT
interpolation that is always applied in practice for image resampling. The rest of
the section checks the SIFT main Assumption 1. Assumption 1 is that a sufficiently

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Figure 4. Scale invariance of SIFT, an illustration of Theorem 1.
Left: a very small digital image u with its 25 key points. For the
conventions to represent key points and matches, see the comments
in Fig. 3. Middle: this image is over sampled by a 32 factor to
S 1

32
Idu. It has 60 key points. Right: 18 matches found between u

and S 1
32

Idu. A zoom of the small image u on the up-left corner is
shown in the bottom left. It can be observed that all the matches
are correct.

broad Gaussian blur may lead to well-sampled images. In principle, a Gaussian
blur cannot lead to well-sampled images, because it is not stricto sensu band lim-
ited. Thus, after Gaussian blur, the image is no more well sampled in the sense
defined above. However, it will be shown that Assumption 1 is approximatively
true. Section 4.2 defines an experimental procedure which checks that a Gaussian
blur works. This procedure will fix the minimum standard deviation of the Gauss-
ian blur ensuring well-sampling, up to a minor error. This error will be formally
computed and shown to be very small in Section 4.3.

4.1. Shannon interpolation vs DFT interpolation. The Shannon interpo-
lation, assuming infinitely many samples, is impractical. The image processing
interpolation is slightly different. A digital image is usually given by its samples on
a rectangle (for simplicity we take it to be a square {0, . . . N − 1}2). These sam-
ples are (implicitly) extended by N -periodicity into a periodic image on R2, and
it is assumed that the resulting underlying image is band-limited with spectrum
in [−π, π]2. Needless to say, the periodicity assumption is enforced and contra-
dicts in some extent the band-limited assumption. Even if the samples came from
a really band-limited image, the loss of the samples outside the sampling square
is irreversible. Thus, the band limited image and periodic image which is finally
interpolated from the samples is different from the Shannon interpolate, but easier
to compute. Indeed, given a digital image u(k) with k = (k, l) ∈ {0, . . . , N −1}2 its
band-limited N -periodic interpolate is nothing but the trigonometric polynomial

(11) Idu(x) =
∑

m=(m,n)∈[−N/2,N/2−1]2

ũme
2iπm.x
N ,

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Figure 5. Top (from left to right): u0, u, v. Middle: Rate of
scales σ1/σ2 of matched key points in u and v against σ2. Bottom:
Distance between matched descriptors of u and v against σ2.

where ũm with m = (m,n) are the Discrete Fourier Transform (DFT) coefficients
of the N2 samples u(k).

It is not the object of this paper to investigate in depth the interpolation error
caused by ignoring the samples outside the image domain. But, still, a fast numer-
ical experiment was made to get some hints about this DFT interpolation error.
The classic digital test image Lena was inserted in a larger digital image uz by
surrounding its samples with a frame of black (zero) samples. The width of the

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



12 Jean-Michel Morel and Guoshen Yu

(a) (b)

Figure 6. (a). The root mean square error RMS(vz,vz+1) be-
tween successive interpolation. (b). The root mean square error
RMS(vz,v50) between the current and the last interpolations.

frame evolved from z = 0 to z = 50. For each image uz, a 2 × 2 zoom-in by zero-
padding 1 was performed. Let us call vz the digital image which is the restriction
of the zoomed in image to the new samples (excluding the known samples, and also
all samples in the added frame).

To check the impact of the exterior samples on the interpolation inside, the
root mean square error RMS(vz,vz+1) was computed. As plotted in Fig. 6-(a),
RMS(vz,vz+1) converges to zero when the width of the black frame added outside
the image increases. Assuming therefore v50 to be very close to the final Shannon
interpolate (which fixes all exterior samples to zero), Fig. 6-(b) shows the root
mean square error RMS(vz,v50) as a function of z. The initial error (about 2 for
an image ranging from 0 to 255) is not negligible at all. However, for z = 20 this
error becomes negligible. This simple experiment (which should be completed by a
theoretical study in the spirit of Section 4) indicates that the perturbations of image
interpolation due to the ignorance of exterior samples only affect significantly the
image samples near the boundary. The samples at distance larger than 20 to the
image boundary can be indifferently computed by DFT or Shannon interpolation.
This justifies our dual use of the interpolation operators I and Id: They accurately
coincide away from the image boundary.

4.2. Experimental Verification of Assumption 1. To understand the right
Gaussian blur to achieve a well-sampled image, we shall distinguish two types of
blur. The absolute blur with standard deviation ca is the one that must be applied
to an ideal infinite resolution (blur free) image to create an approximately band-
limited image before 1-sampling. The relative blur σ = cr(t) is the one that must
be applied to a well-sampled image before a sub-sampling by a factor of t. In the

1The zero-padding permits to compute the values on a finer grid of the digital image with (11).
It proceeds as follows: a) apply the N × N DFT to the samples u(k, l), (k, l) ∈ {0, . . . , N − 1}2
to get the discrete Fourier coefficients, ũm, m ∈ {−N/2, N/2 − 1}2. b) complete these DFT
coefficients to get a matrix ũm, m ∈ {−N, N − 1}2, the new DFT coefficients being zeros; c)

Apply the inverse 2N × 2N DFT to get 4N2 samples vk, k ∈ {0, . . . , 2N}2. Then v2k = uk for
k ∈ {0, . . . , N − 1}2.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Figure 7. Top left: the classic test image u. Top right: relative
error ε(u1,u2) = ‖u1 − u2‖2/‖u1‖2 vs cr(4), the error introduced
by a 2 × 2 sampling after a Gaussian blur with σ = cr(2). Mid-
dle (from left to right): u1 and u2 (zoomed) with cr(2) = 0.8,
ε(u1,u2) = 1.1e − 02. The aliasing error is large and conspicuous
ringing artifacts appear on the right image (refer to the electronic
copy for better visibility). Bottom (from left to right): u1 and
u2 (zoomed) with cr(2) = 1.6. ε(u1,u2) = 9.2e − 04. These im-
ages are almost identical, which confirms that a Gaussian blur with
standard deviation 1.6 is sufficient before 2× 2-sub-sampling.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



14 Jean-Michel Morel and Guoshen Yu

case of Gaussian blur, because of the semi-group formula (4), the relation between
the absolute and relative blur is

t2c2
a = c2

r(t) + c2
a,

which yields

(12) cr(t) = ca
√
t2 − 1.

In consequence, if t� 1, then cr(t) ≈ cat.
Two experiments have been designed to calculate the anti-aliasing absolute Gauss-

ian blur ca ensuring that an image is approximately well-sampled. The first exper-
iment finds the appropriate relative blur cr(t) to achieve well-sampled images and
then calculates the absolute blur ca using (12). cr(t). It compares for several values
of cr(t) the digital images

u1 := Gcr(t)u = S1Gcr(t)Idu and u2 := (S1/tId)StGcr(t)Idu,

where u is an initial digital image that is well-sampled, St is a t-sub-sampling oper-
ator (t is an integer), S1/t a t-over-sampling operator, and Id the DFT interpolation
operator. The discrete convolution by a Gaussian is defined in (6). Since t is an
integer, the t-sub-sampling is trivial. The DFT over-sampling S1/tId with an inte-
ger zoom factor t is computed by zero-padding as explained in footnote 1. If the
anti-aliasing filter size cr(t) is too small, u1 and u2 can be very different. The right
value of cr(t) should be the smallest value permitting that, systematically, u1 ≈ u2.

Fig. 7 shows u1 and u2 with t = 2 and plots their relative error ε(u1,u2) =
‖u1 − u2‖2/‖u1‖2. An anti-aliasing filter with cr(2) = 0.8 is clearly not broad
enough: u2 presents strong ringing artifacts. The ringing artifact is instead hardly
noticeable with cr(2) = 1.6. The value cr(2) ≈ 1.6 is a good visual candidate, and
this choice is confirmed by the curve showing that ε(u1,u2) decays rapidly until
cr(2) gets close to 1.6, and is stable and small thereafter. By (12), this value of cr
yields ca ≈ 0.8. This value has been confirmed by experiments on ten digital images.
A doubt can be cast on this experiment, however: Its result slightly depends on the
assumption that the initial blur on u is equal to ca.

In a second experiment, ca has been evaluated directly by using a binary image
u0, thus containing a minimal blur. As illustrated in Fig. 8, u0 is obtained by
binarizing the classic test image Lena (Fig. 7), the threshold being the image median
value. Since u0 is now close to be blur-free, we can compare for several values of ca
and for t = 2, which is large enough, the digital images

u1 := Gtcau = S1GtcaIdu and u2 := (S1/tId)StGtcaIdu,

As shown in Fig. 8, ca = 0.8 is the smallest value ensuring no visual ringing in u2.
Under this value, for example for ca = 0.4, clear ringing artifacts are present in u2.
That ca = 0.8 is the correct value is confirmed by the ε(u1,u2) curve showing that
the relative error decays rapidly until ca goes down to 0.8, and is stable and small
thereafter. The result, confirmed in ten experiments with different initial images,
is consistent with the value obtained in the first experimental setting.

Fig. 9 illustrates the same experiment on a Gaussian white noise image that
has constant spectrum energy over all frequencies. This is not at all an unrealistic
image, since textured images can have parts with a flat spectrum which is not so
much different from white noise. The critical value ca = 0.8 is reconfirmed. Under
this value, for example for ca = 0.4, u2 is visually very different from u1, while the
two very close (numerically and visually as well) with ca = 0.8. The relative error
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for a white noise, about 4% cannot be considered negligible. But it is a worst case,
no digital image having such a flat spectrum. The experimental value of this error
will be retrieved by a formal calculation, and shown to be independent of the image
size.

4.3. Mathematical confirmation of Assumption 1. This section confirms by
exact computations the experimental estimates made on simulated Gaussian white
noise. The spectrum of natural digital images has a spectrum usually decaying
much faster than a white noise. Thus, the aliasing error can be safely estimated on
white noise, which has a flat spectrum. Sampling operations shown to be safe for
white noise will therefore also be safe for natural images. We will first calculate the
aliasing error in the general case, and then show that after an anti-aliasing Gaussian
filtering with a relative blur σ = 2× 0.8 = 1.6, the aliasing error created by a 2× 2
subsampling on a Gaussian white noise is negligible.

Consider a digital image u(k) with k = (k, l) ∈ {0, . . . , N − 1}2 and its DFT
interpolate

(13) u(x) = (Idu)(x) =
∑

m=(m,n)∈[−N/2,N/2−1]2

ũme
2iπm.x
N , x ∈ R2,

where ũm with m = (m,n) are the Discrete Fourier Transform (DFT) coefficients
of the N2 samples u(k), and the Fourier Series coefficients of u as well. Recall the
classic isometries between samples, DFT coefficients, and the L2 norm of the image:

(14) ||u||2L2([0,N ]2) = ||u||2l2({0,...,N−1}2) = N2||ũ||2l2({−N/2,...,N/2−1}2).

The scale space convolves u with a Gaussian Gσ(x) = 1
2πσ2 e

− x2

2σ2 . By computing its
DFT, an easy calculation shows that the result of the convolution of u with Gσ is

(15) v(x) := (Gσ ∗ u)(x) =
∑

m∈[−N2 ,
N
2 −1]2

ũmĜσ

(
2mπ

N

)
e

2iπm.x
N

with Ĝσ(ξ) = e
−σ2ξ2

2 . Indeed,

(Gσ∗e
2iπm.x
N )(x) =

∫
R2
Gσ(y)e

2iπm.(x−y)
N dy = e

2iπm.x
N

∫
R2
Gσ(y)e−

2iπm.y
N dy = e

2iπm.x
N Ĝσ

(
2πm
N

)
.

The convolved digital image is

(16) v(k) =
∑

m∈[−N2 ,
N
2 −1]2

ṽme
2iπm.k
N .

Subsampling this image by a factor of 2× 2 and interpolating the remaining N2/4
samples with zero-padding interpolation yields a new trigonometric polynomial

(17) w(x) =
∑

m∈[−N/4,N/4−1]2

w̃me
2iπm.x
N .

Let us compute w̃m.

Lemma 4. Let w = S2v be the N
2 ×

N
2 image obtained by a 2× 2 subsampling of a

digital N×N image v. Then w̃m,n, the DFT of w, satisfies for m,n = −N4 , ...,
N
4 −1,

(18) w̃m,n =
∑

(ε1,ε2)∈{0,1,−1}

ṽm+ε1
N
2 ,n+ε2

N
2
.
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Figure 8. Top left: u Binarized Lena (gray-levels 50 and 0). Top
right: ε(u1,u2) = ‖u1−u2‖2/‖u1‖2 vs ca, the error introduced by a
2×2 sampling after a Gaussian blur with σ = 2ca. Middle (from left
to right): u1 and u2 (zoomed) with ca = 0.4. ε(u1,u2) = 4.7e−02.
The aliasing error is large and conspicuous ringing artifacts appear
on the right image (refer to the electronic copy for better visibility).
Bottom (from left to right): u1 and u2 (zoomed) with ca = 0.8.
ε(u1,u2) = 2.5e − 03. These last two images are almost identical,
while strong aliasing artifacts are visible with ca = 0.4.
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Figure 9. Top left: u Gaussian white noise. Top right:
ε(u1,u2) = ‖u1 − u2‖2/‖u1‖2 vs ca, the error introduced by a
2 × 2 sampling after a Gaussian blur with σ = 2ca. Middle (from
left to right): u1 and u2 (zoomed) with ca = 0.4. ε(u1,u2) = 0.549
and the images are also visually very dissimilar. Bottom (from left
to right): u1 and u2 (zoomed) with ca = 0.8. ε(u1,u2) = 0.0389,
and the images are visually identical.
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Notice that ṽm,n is supported by [−N2 ,
N
2 − 1]2 and that w̃m,n is supported

by [−N4 ,
N
4 − 1]2. For each (m,n), only at most four coefficients out of the nine

vm+ε1
N
2 ,n+ε2

N
2

are non-zero, because if for example m,n ≤ 0, ṽm−N2 ,n, ṽm−N2 ,n−N2 ,
ṽm,n−N2

, ṽm+N
2 ,n−

N
2

, and ṽm−N2 ,n+N
2

are all null. To make apparent the four non-
zero coefficients, we take the convention to N ×N periodize (m,n) → ṽm,n. With
this convention, (18) rewrites

(19) ∀(m,n) ∈
[
−N

4
,
N

4
− 1
]2
, w̃m,n = ṽm,n + ṽm+N

2 ,n+N
2

+ ṽm+N
2 ,n

+ ṽm,n+N
2
.

The digital image w is twice smaller than v. To compare it with v we must go back
to the underlying trigonometric polynomials v(x) and w(x) such that w = S2w and
v = S1v, and we must compare their corresponding samples. Thus set w1 = S1w.
The image w1 is obtained by zero padding from w̃ by setting w̃1

m,n = 0 if (m,n) ∈
{−N2 , ...,

N
2 −1}2\{−N4 , . . . ,

N
4 −1}2 and w̃1

m,n = w̃m,n if (m,n) ∈ {−N4 , . . . ,
N
4 −1}2.

Then using (16), (17) and (14), we have
(20)
||v−w||2L2([0,N ]2) = ||v−w1||2l2({0,...,N−1}2) = N2||ṽ−w̃||2

l2({−N2 ,...,
N
2 −1}) = eh(v)+ea(v).

Using the above N -periodicity convention for the Fourier coefficients ṽ(m,n), we
have proved the following proposition.

Proposition 1. Let u be a digital image and v := Gσ ∗u be an image obtained after
a Gaussian convolution with standard deviation σ. Then the variance of the error
incurred in doing a 2× 2-sub-sampling followed by a zero-padding interpolation is

(21) ||v − w||22 = eh(v) + ea(v),

where

eh(v) = N
2

 ∑
(m,n)∈[−N/2,N/2−1]2\[−N/4,N/4−1]2

|ṽ(m,n)|2
(22)

= N
2

 ∑
(m,n)∈[−N/4,N/4−1]2

(
|ṽ(m,n+N/2)|2 + |ṽ(m+N/2, n)|2 + |ṽ(m+N/2, n+N/2)|2

)(23)

is the error due to the elimination of the high frequencies and
(24)

ea(v) = N2

 ∑
(m,n)∈[−N/4,N/4−1]2

|ṽ(m, n + N/2) + ṽ(m + N/2, n) + ṽ(m + N/2, n + N/2)|2


is the error introduced by the spectrum aliasing, with

(25) ṽ(m) = ũ(m)Ĝσ

(
2mπ

N

)
.

Following Shannon [41] we call white noise image with variance τ2 a continuous
image

v(x) =
∑

m∈[−N/2,N/2−1]2

ṽme
2imx
N

whose samples v(k, l), (k, l) ∈ {0, . . . , N−1}2 are i.i.d. N (0, τ2) Gaussian variables.
Using Proposition 1, the next Corollary shows that with a Gaussian anti-aliasing
filtering with σ = 2 × 0.8 = 1.6, the aliasing error created by a 2 × 2 subsampling
on a Gaussian white noise image is very small.
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Corollary 1. Let u be a Gaussian white noise image and v := u ∗ Gσ be an
image obtained after a Gaussian convolution with standard deviation σ. Then the
relative error incurred in doing a 2×2 subsampling followed by a zero-padding 2×2
interpolation is

(26) ε(σ) :=

√
E||v − w||2√

E||v||2
=

√√√√√2

∑
m∈[−N/2,N/2−1]2\[−N/4,N/4−1]2 e

−4π2σ2 |m|2
N2∑

m∈[−N/2,N/2−1]2 e
−4π2σ2 |m|2

N2

;

(27) ε(σ) ≈

√√√√2

∫
[− 1

2 ,
1
2 ]2\[− 1

4 ,
1
4 ]2
e−4π2σ2x2dx∫

[− 1
2 ,

1
2 ]2
e−4π2σ2x2dx

.

In particular, ε(1.6) ≈ 0.0389.

The aim of (27) is to point out that for white noise, the relative error incurred
by a Gaussian sub-sampling is independent from the size N of the image.

Proof. The DFT coefficients ũ(m) of a Gaussian white noise image u with stan-
dard deviation τ are independent Gaussian variables with standard deviation τ

N .
Using (21) and (25), we therefore have

E||v − w||2 = Eeh(v) + Eea(v) and

Eea(v) = N2
∑

(m,n)∈{−N/4,N/4−1}2
E
∣∣∣∣ṽ(m,n+

N

2
) + ṽ(m+

N

2
, n) + ṽ(m+

N

2
, n+

N

2
)
∣∣∣∣2

= N2
∑

(m,n)∈{−N/4,N/4−1}2
τ2

(
Ĝσ

(
2π
N

(m,n+
N

2
)
)2

+Ĝσ

(
2π
N

(m+
N

2
, n)
)2

+Ĝσ

(
2π
N

(m+
N

2
, n+

N

2
)
)2
)
.

Using (22) we deduce that

E||v−w||2 = Eeh(v)+Eea(v) = 2Eea(v) = 2N2τ2
∑

m∈{−N/2,...N/2−1}2\{−N/4,...,N/4−1}2
Ĝσ

(
2πm
N

)2

= 2N2τ2
∑

m∈{−N/2,...N/2−1}2\{−N/4,...,N/4−1}2
e−4π2σ2 |m|2

N2

On the other hand,

E||v||2 = E
∑

(k,l)∈{0,...,N−1}2
|v(k, l)|2 = N2E||ṽ||2l2({−N/2,...,N/2−1}2) =

= N2
∑

m∈{−N/2,...,N/2−1}2
E|ũm|2Ĝσ(

2mπ

N
)2 = N2τ2

∑
m∈{−N/2,...,N/2−1}2

e−4π2σ2 |m|2

N2 .

Thus√
E||v − w||2√

E||v||2
=

√√√√√2

∑
(m,n)∈{−N/2,...N/2−1}2\{−N/4,...,N/4−1}2 e

−4π2σ2 |m|2
N2∑

(m,n)∈{−N/2,...N/2−1}2 e
−4π2σ2 |m|2

N2

≈

√√√√2

∫
[− 1

2 ,
1
2 ]2\[− 1

4 ,
1
4 ]2
e−4π2σ2x2dx∫

[− 1
2 ,

1
2 ]2
e−4π2σ2x2dx

.
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The last equivalent is computed by noticing that the discrete sums are Riemann
sums for the integrals on the right. For σ = 1.6, this value is approximately 0.0389.

The error ε(1.6) ≈ 0.0389 calculated from (26) was numerically verified with the
experiments on Gaussian white noise. It is actually not negligible, but must be
considered as a worst case which is never approximated by real images. Indeed, the
power spectra of natural images having a much faster decay than Gaussian white
noise, the value ε(1.6) is smaller on natural images: For Lena, Peppers, Baboon and
Barbara as shown in Figure 10, ε(1.6) is respectively 9.2e− 04, 1.2e− 03, 1.9e− 03,
2.0e− 03.

Lena Peppers Baboon Barbara

Figure 10. Standard test images. From left to right: Lena, Pep-
pers, Baboon, and Barbara.

5. Conclusion

Our overall conclusion is that no substantial improvement of the SIFT method
can be ever hoped, as far as translation, rotation and scale invariance are concerned.
As pointed out by several benchmarks, the robustness and repeatability of the SIFT
descriptors outperforms other methods. However, such benchmarks mix three very
different criteria that, in our opinion, should have been discussed separately. The
first one is the formal invariance of each method when all thresholds have been
eliminated. This formal invariance has been proved here for SIFT when the initial
blurs of both images are equal to a known value c, and it has been proved to be
approximately true even with images having undergone very different blurs, like in
the surprising experiment of fig. 5. The second criterion is the practical validity
of the sampling method used in SIFT, that has been again checked in the present
note. The last criterion is the clever fixing of several thresholds in the SIFT method
ensuring robustness, repeatability, and a low false alarm rate. This one has been
extensively tested and confirmed in previous benchmark papers (see also the recent
and complete report [7]). We think, however, that the success of SIFT in these
benchmarks is primarily due to its full scale invariance.
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