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Chapter 1

The Heat Equation

The heat equation is the prototype of all the PDEs used in image analysis.
There are strong reasons for that and it is the aim of this chapter to explain
some of them. Some more will be given in Chapter 25. Our first section is ded-
icated to a simple example of linear smoothing illustrating the relation between
linear smoothing and the Laplacian. In the next section, we prove the existence
and uniqueness of its solutions, which incidentally establishes the equivalence
between the convolution with a Gaussian and the heat equation.

1.1 Linear smoothing and the Laplacian

Consider a continuous and bounded function u0 defined on R2. If we wish to
smooth u0, then the simplest way to do so without favoring a particular direction
is to replace u0(x) with the average of the values of u0 in a disk D(x, h) of radius
h centered at x. This means that we replace u0(x) with

Mhu0(x) =
1

πh2

∫

D(x,h)

u0(y) dy =
1

πh2

∫

D(0,h)

u0(x + y) dy. (1.1)

Although the operator Mh is quite simple, it exhibits important charac-
teristics of a general linear isotropic smoothing operator. For example, it is
localizable: As h becomes small, Mh becomes more localized, that is, Mhu0(x)
depends only on the values of u0(x) in a small neighborhood of x. Smoothing
an image by averaging over a small symmetric area is illustrated in Figure 1.1.

Our objective is to point out the relation between the action of Mh and the
action of the Laplacian, or the heat equation. To do so, we assume enough
regularity for u0, namely that it is C2. We shall actually prove in Theorem 2.2
that under that condition

Mhu0(x) = u0(x) +
h2

8
∆u0(x) + h2ε(x, h), (1.2)

where ε(x, h) tends to 0 when h → 0. As we have seen in the introduction, (1.2)
provides the theoretical basis for deblurring an image by subtracting a small
amount of its Laplacian. It also suggests that Mh acts as one step forward in
the heat equation starting with initial condition u0,

∂u

∂t
(t,x) =

1
8
∆u(t,x), u(0,x) = u0(x). (1.3)

1
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2 CHAPTER 1. THE HEAT EQUATION

Figure 1.1: Local averaging algorithm. Left to right: original image; result of
replacing the grey level at each pixel by the average of the grey levels over the
neighboring pixels. The shape of the neighborhood is shown by the black spot
displayed in the upper right-hand corner.

Figure 1.2: The Gaussian in two dimensions.

This statement is made more precise in Exercise 1.5. Equation (1.2) actually
suggests that if we let n → +∞ and at the same time require that nh2 → t,
then

(Mn
h u0)(x) → u(t,x) (1.4)

where u(t, x) is a solution of (1.3).

This heuristics justifies the need for a thorough analysis of the heat equation.
The next chapter will prove that (1.4) is true under fairly general conditions.
In the next section, we shall prove that the heat equation has a unique solution
for a given continuous initial condition u0, and that this solution at time t is
equal to the convolution Gt ∗ u0, where Gt is the Gaussian (Figure 1.2). The
effect on level lines of smoothing with the Gaussian is shown in Figure 1.4.
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1.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION3

1.2 Existence and uniqueness of solutions of the
heat equation

Definition 1.1. We say that a function g defined on RN is rapidly decreasing,
or has fast decay, if for each multi-index β there is a constant C such that

|x|β |g(x)| ≤ C.

We say that g belongs to the Schwartz class S if g ∈ C∞(RN ) and if ∂αg has
fast decay for each multi-index α.

Proposition 1.2. If g ∈ S, then g ∈ L1(RN ), that is,
∫
RN |g(x)|dx < +∞. For

each pair of multi-indices α, β, the function xβ∂αg also belongs to S, and ∂αg
is uniformly continuous on RN .

Proof. The second statement follows from the Leibnitz rule for differentiating
a product. By the definition of S, there is a constant C such that |x|N+2|g(x)| ≤
C. Thus there is another C such that |g(x)| ≤ C/(1 + |x|N+2); since C/(1 + |x|N+2) ∈
L1(RN ), g ∈ L1(RN ). Finally, note that |∂αg(x)| → 0 as |x| → ∞. But any
continuous function on RN that tends to zero at infinity is uniformly continuous.
¤

Proposition 1.3 (The Gaussian and the heat equation). For all t > 0,
the function x 7→ Gt(x) = (1/(4πt)N/2)e−|x|

2/4t belongs to S and satisfies the
heat equation

∂Gt

∂t
−∆Gt = 0.

Proof. It is sufficient to prove the first statement for the function g(x) = e−|x|
2
.

An induction argument shows that ∂αg(x) = Pα(x)e−|x|
2
, where Pα(x) is a

polynomial of degree |α| in the variables x1, x2, . . . , xN . The fact that, for every
k ∈ N, xke−x2 → 0 as |x| → +∞ finishes the proof. Differentiation shows that
Gt satisfies the heat equation. ¤

Exercise 1.1. Check that Gt is solution of the heat equation.

Linear image filtering is mainly done by convolving an image u with a positive
integrable kernel g. This means that the smoothed image is given by the function
g ∗ u defined as

g ∗ u(x) =
∫

RN

g(x− y)u(y) dy =
∫

RN

g(y)u(x− y) dy.

Exercise 1.2. Prove that the convolution, when it makes sense, is translation invari-
ant. This means that g ∗ u(x− z) = gz ∗ u(x), where gz(x) = g(x− z).

Exercise 1.3. Check that Gt ∗Gs = Gt+s.

Linear filtering with the Gaussian at several scales is illustrated in Figure
1.3. The next result establishes properties of the convolution that we need for
our treatment of the heat equation.
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4 CHAPTER 1. THE HEAT EQUATION

Figure 1.3: Convolution with Gaussian kernels (heat equation). Displayed from
top-left to bottom-right are the original image and the results of convolutions
with Gaussians of increasing variance. A grey level representation of the convo-
lution kernel is put on the right of each convolved image to give an idea of the
size of the involved neighborhood.

Proposition 1.4. Assume that u ∈ F and that g ∈ L1(RN ). Then the function
g ∗ u belongs to F and satisfies the inequality

‖g ∗ u‖F ≤ ‖g‖L1(RN )‖u‖F . (1.5)

Proof.

|g ∗ u(x)| ≤
∫

RN

|g(x−y)||u(y)| dy ≤ ‖u‖F
∫

RN

|g(x−y)| dy = ‖u‖F‖g‖L1(RN ).

¤

Exercise 1.4. Verify that g ∗ u indeed is continuous and tends to u(∞) at infinity :
this a direct application of Lebesgue Theorem.

We are now going to focus on kernels that, like the Gaussian, belong to S.

Proposition 1.5. If u ∈ F and g ∈ S, then g ∗ u ∈ C∞(RN ) ∩ F and

∂α(g ∗ u) = (∂αg) ∗ u (1.6)

for every multi-index α.

Proof. Since g ∈ S, g is in L1(RN ), and so is ∂αg for any multi-index α
(Proposition 1.2). Thus by Proposition 1.4, (∂αg) ∗ u belongs to F . To prove
(1.6), it is sufficient to prove it for α = (1, 0, . . . , 0). Indeed, we know that ∂αg
is in S if g is in S, so the general case follows from the case α = (1, 0, . . . , 0) by
induction. Letting e1 = (1, 0, . . . , 0) and using Taylor’s formula with Lagrange’s
form for the remainder, we can write
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1.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION5

g ∗ u(x + he1)− g ∗ u(x) =
∫

RN

(g(x + he1 − y)− g(x− y))u(y) dy

=
∫

RN

(g(y + he1)− g(y))u(x− y) dy

= h

∫

RN

∂g

∂x1
(y)u(x− y) dy

+
h2

2

∫

RN

∂2g

∂x2
1

(y + θ(y)he1)u(x− y) dy,

(1.7)

where 0 ≤ θ(y) ≤ 1. To complete the proof, we wish to have a bound on the
last integral that is independent of x ∈ C. This last integral is of the form f ∗u,
where f is defined by f(y) = (∂2g/∂x2

1)(y+θ(y)he1). Since g ∈ S, ∂2g/∂x2
1 ∈ S,

and from this it is a simple computation to show that f is bounded and decays
fast at infinity. Having done this, Proposition 1.4 applies, and we deduce that
g ∗ u is differentiable in x1 and that ∂(g ∗ u)/∂x1 = (∂g/∂x1) ∗ u. ¤

Proposition 1.6. Assume that g decreases rapidly at infinity, that g(x) ≥ 0 for
all x ∈ RN , and that

∫
RN g(x) dx = 1 and set, for t > 0, gt(x) = (1/tN )g(x/t).

Then: If u0 ∈ F , gt ∗ u0 converges to u0 uniformly as t → 0. In addition, we
have a maximum principle :

inf
x∈RN

u0(x) ≤ gt ∗ u0(x) ≤ sup
x∈RN

u0(x). (1.8)

Proof. Note first that gt is normalized so that
∫

RN

gt(y) dy = 1. (1.9)

A change of variable x → tx and an application of Lebesgue’s theorem shows
that, for any η > 0, ∫

|y|≥η

gt(y) dy → 0 as t → 0. (1.10)

Using (1.9), we have

gt ∗ u0(x)− u0(x) =
∫

RN

gt(y)(u0(x− y)− u0(x)) dy. (1.11)

As already mentioned, u0 ∈ F is uniformly continuous. Thus, for any ε > 0,
there is an η = η(ε) > 0 such that |u0(x− y)− u0(x)| ≤ ε when |y| ≤ η. Using
this inequality, we have

|gt ∗ u0(x)− u0(x)| ≤
∫

|y|<η

gt(y)|u0(x− y)− u0(x)|dy

+
∫

|y|≥η

gt(y)|u0(x− y)− u0(x)| dy

≤ε

∫

|y|<η

gt(y) dy + 2‖u‖L∞(C)

∫

|y|≥η

gt(y) dy.
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6 CHAPTER 1. THE HEAT EQUATION

By (1.9) and (1.10), we conclude that gt ∗u tends to u0 uniformly in x as t → 0.
Relation (1.8) is an immediate consequence of the assumption that gt(x) ≥ 0
and equation (1.9). ¤

Lemma 1.7. Let u0 ∈ F and u(t,x) = (Gt ∗ u0)(x). Then for every t0 > 0,
u(t,x) → u0(∞) uniformly for t ≤ t0 as x →∞.

Proof. By assumption,

∀ε > 0, ∃R, |x| ≥ R ⇒ |u0(x)− u0(∞)| < ε. (1.12)

Because of the fast decay of the gaussian at infinity (or using Lebesgue’s theo-
rem, as in the former proof), we have

∀ε > 0, ∃r(ε), r ≥ r(ε) ⇒
∫

|y|≥r

Gt0(y)dy < ε. (1.13)

By using
∫

Gt(y)dy = 1, we deduce that

|u(t,x)−u(∞)| ≤
∫

|y|≤r

Gt(y)|u0(x−y)−u0(∞)|dy+
∫

|y|≥r

Gt(y)|u0(x−y)−u0(∞)|dy.

(1.14)
Using (1.13), the second term in (1.14) is bound from above for r ≥ r(ε) and
t ≤ t0 by

(2 sup |u0|)
∫

|y|≥r

Gt0(y) ≤ (2 sup |u0|)ε.

Fix therefore r ≥ r(ε). Then using
∫

Gt = 1, the first term in (1.14) is bound
by ε by (1.12) for |x| ≥ R + r.

¤

Lemma 1.8. Let u0 ∈ F and Gt the gaussian. Then

(∂Gt/∂t) ∗ u0 = ∂(Gt ∗ u0)/∂t.

Proof. Proposition 1.5 does not apply directly, since it applies to the spatial
partial derivatives of Gt but not to the derivative with respect to t. Observe,
however, that a slight modification of the proof of this proposition does the job:
Replace g with Gt and x1 with t. Then the crux of the matter is to notice that,
given an interval 0 < t0 < t1, there is a rapidly decreasing function f such that
|(∂2Gt/∂t2)(t + θ(t)h,y)| ≤ f(y) uniformly for t ∈ [t0, t1], where f depends on
t0 and t1 but not on h. Then Proposition 1.4 applies, and the last integral in
equation (1.7) is uniformly bounded. ¤

All of the tools are in place to state and prove the main theorem of this
chapter.

Theorem 1.9 (Existence and uniqueness of solutions of the heat equa-
tion). Assume that u0 ∈ F and define for t > 0 and x ∈ RN , u(t,x) =
(Gt ∗ u0)(x), u(t,∞) = u0(∞) and u(0,x) = u0(x). Then
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1.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION7

(i) u is C∞ and bounded on (0, +∞)× RN ;

(ii) x → u(t,x) belongs to F for every t ≥ 0;

(iii) for any t0 ≥ 0, u(t,x) tends uniformly for t ≤ t0 to u(∞) as x →∞;

(iv) u(t,x) tends uniformly to u0(x) as t → 0;

(v) u(t,x) satisfies the heat equation with initial value u0;

∂u

∂t
= ∆u and u(0,x) = u0(x); (1.15)

(vi) More specifically,
sup

x∈RN , t≥0

|u(t,x)| ≤ ‖u0‖F . (1.16)

Conversely, given u0 ∈ F , u(t,x) = (Gt ∗ u0)(x) is the only C2 bounded
solution u of (1.15) that satisfies properties (ii)-(v).

Proof. Let us prove properties (i)-(vi). For each t > 0, Gt ∈ S, so by Proposi-
tion 1.5 and Lemma 1.8,

∂u

∂t
−∆u = u0 ∗

(
∂Gt

∂t
−∆Gt

)
. (1.17)

Proposition 1.5 also tells us that u(t, ·) ∈ C∞(RN ) ∩ F for each t > 0. The
right-hand side of (1.17) is zero by Proposition 1.3, and the fact that |u(t,x)−
u0(x)| → 0 uniformly as t → 0 follows from Proposition 1.6. The inequal-
ity (1.16) is a direct application of Proposition 1.4. Relation (iii) comes from
Lemma 1.7.

Uniqueness proof. If both v and w are solutions of the heat equation with the
same initial condition u0 ∈ F , then u = v − w is in F and satisfies (1.15) with
the initial condition u0(x) = 0 for all x ∈ RN . Also, by the assumptions of (ii),
u is bounded on [0, +∞) × RN and is C2 on (0, +∞) × RN . We wish to show
that u(t,x) = 0 for all t > 0 and all x ∈ RN . Assume that this is not the case.
Then there is some point (t,x) where u(t,x) 6= 0. Assume that u(t,x) > 0, by
changing u to −u if necessary.

We now consider the function uε defined by uε(t,x) = e−εtu(t,x). This
function tends to zero uniformly in x as t → 0 and as t → +∞. It also tends
uniformly to zero for each t ≤ t0 when x →∞. These conditions imply that uε

attains its supremum at some point (t0,x0) ∈ (0, +∞) × RN , and this means
that ∆uε(t0,x0) = e−εt∆u(t0,x0) ≤ 0 and (∂uε/∂t)(t0,x0) = 0. Here is the
payoff: Using the fact that u is a solution of the heat equation, we have the
following relations:

0 =
∂uε

∂t
(t0,x0) = −εuε(t0,x0) + e−εt ∂u

∂t
(t0,x0)

= −εuε(t0,x0) + e−εt∆u(t0,x0) ≤ −εuε(t0,x0) < 0.

This contradiction completes the uniqueness proof. ¤
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8 CHAPTER 1. THE HEAT EQUATION

Figure 1.4: Level lines and the heat equation. Top, left to right: original
410×270 grey level image; level lines of original image for levels at multiples
of 12. Bottom, left to right: original image smoothed by the heat equation
(convolution with the Gaussian). The standard deviation of the Gaussian is 4,
which means that its spatial range is comparable to a disk of radius 4. The
image gets blurred by the convolution, which averages grey level values and
removes all sharp edges. This can be appreciated on the right, where we have
displayed all level lines for levels at multiples of 12. Note how some level lines
on the boundaries of the image have split into parallel level lines that have
drifted away from each other. The image has become smooth, but it is losing
its structure.

1.3 Exercises

Exercise 1.5. The aim of this exercise is to prove relation (1.2) and its consequence:
A local average is equivalent to one step forward of the heat equation. Theorem 2.2
yields actually a more general statement.

1) Expanding u0 around the point x using Taylor’s formula, write

u0(x + y) = u0(x) + Du0(x) · y +
1

2
D2u0(x)(y,y) + o(|y|2). (1.18)

Expand the various terms using the coordinates (x, y) of x.

2) Apply Mh to both sides of this expansion and deduce relation (1.2).

3) Assume u0 ∈ F and consider the solution u(t,x) of the heat equation (1.3) Then,
for fixed t0 > 0 and x, apply Mh to the function ut0 : x → u(t0,x) and write equation
(1.2) for ut0 . Using that u(t,x) is a solution of the heat equation and its Taylor
expansion between t0 and t0 + h, deduce that

Mhu(t0,x) = u(t0 + h2,x) + h2ε(t0,x, h). (1.19)
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Exercise 1.6. Consider the sphere SN = {z ∈ RN+1, ||z|| = 1}. Prove that the
mapping T : RN ∪ {∞} → SN defined in Proposition ?? by

T (x) =

(
2x

1 + x2
,

x2 − 1

x2 + 1

)
, T (∞) = (0, 1).

is a homeomorphism.

Exercise 1.7. Let u0 be a continuous function defined on RN having the property
that there exist a constant C > 0 and an integer k such that

|u0(x)| ≤ C(1 + |x|k)

for all x ∈ RN . Show that the function u defined by u(t,x) = Gt ∗u0(x) is well defined
and C∞ on (0,∞)×RN and that it is a classical solution of the heat equation. Hints:
Everything follows from the fact that the Gaussian and all of its derivatives decay
exponentially at infinity.

Exercise 1.8. We want to prove the general principle that any linear, translation
invariant and continuous operator T is a convolution, that is Tu = g∗u for some kernel
g. This is one of the fundamental principles of both mechanics and signal processing,
and it has many generalizations that depend on the domain, range, and continuity
properties of T . For instance, assume that T is translation invariant (commutes with
translations) and is continuous from L2(RN ) into L∞(RN ) ∩ C0(RN ). Show that
Tu = g ∗ u, where the convolution kernel g is in L2(RN ). This is a direct consequence
of Riesz theorem, which states that every bounded linear functional on L2(RN ) has
the form f 7→ ∫

RN f(x)g(x) dx for some g ∈ L2(RN ). Show that if u ≥ 0 (u(x) ≥ 0
for all x) implies Tu ≥ 0, then g ≥ 0.

1.4 Comments and references

The heat equation. One should not conclude from Theorem 1.9 that the
solutions of the heat equation are always unique. The assumption in (ii) that
the solution was bounded is crucial. In fact, without this assumption, there
are solutions u that grow so fast that gu is not in L1(RN ) for g ∈ S (see, for
example, [329, page 217]). The existence and uniqueness proof of Theorem 1.9
is classic and can be found in most textbooks on partial differential equations,
such as Evans [110], Taylor [329], or Brezis [53].

Convolution. The heat equation—its solutions and their uniqueness—has
been the main topic in this chapter, but to approach this, we have studied
several aspects of the convolution, such as the continuity property (1.5). We
also noted that the convolution commutes with translation. Conversely, as a
general principle, any linear, translation invariant and continuous operator T
is a convolution, that is, Tu = g ∗ u for some kernel g. This is a direct con-
sequence of a result discovered independently by F. Riesz and M. Fréchet in
1907 (see [294, page 61] and exercise 1.8). Since we want smoothing to be
translation invariant and continuous in some topology, this means that linear
smoothing operators—which are called filters in the context of signal and image
processing—are described by their convolution kernels. The Gaussian serves as
a model for linear filters because it is the only one whose shape is stable under
iteration. Other positive filters change their shape when iterated. This fact will
be made precise in the next chapter where we show that a large class of iterated
linear filters behaves asymptotically as a convolution with the Gaussian.
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10 CHAPTER 1. THE HEAT EQUATION

Smoothing and the Laplacian. One of the first tools proposed in the early
days of image processing in the 1960s came, not surprisingly, directly from signal
processing. The idea was to restore an image by averaging the gray levels locally
(see, for example, [143] and [162]). The observation that the difference between
an image and its local average is proportional to the Laplacian of the image
has proved to be one of the most fruitful contributions to image processing. As
noted in the Introduction, this method for deblurring an image was introduced
by Kovasznay and Joseph in 1955 [202], and it was studied and optimized by
Gabor in 1965 [133] (information taken from [214]). (See also [173] and [174].)
Burt and Adelson based their Laplacian pyramid algorithm on this idea, and
this was one of the results that led to multiresolution analysis and wavelets [57].
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Chapter 2

Iterated Linear Filters and
the Heat Equation

The title of this chapter is self-explanatory. The next section fixes fairly general
conditions so that the difference of a smoothed image and the original be pro-
portional to the Laplacian. The second section proves the main result, namely
the convergence of iterated linear filters to the heat equation. So the choice
of a smoothing convolution kernel is somewhat forced : Iterating the convolu-
tion with a smoothing kernel is asymptotically equivalent to the convolution
with a Gauss function. This result is known in Probability as the central limit
theorem, where it has a quite different interpretation. In image processing, it
justifies the prominent role of Gaussian filtering. A last section is devoted to
linear directional filters and their associated differential operators.

2.1 Smoothing and the Laplacian

There are minimal requirements on the smoothing kernels g which we state in
the next definition.

Definition 2.1. We say that a real-valued kernel g ∈ L1(RN ) is Laplacian
consistent if it satisfies the following moment conditions:

(i)
∫
RN g(x) dx = 1.

( ii) For i = 1, 2, . . . , N ,
∫
RN xig(x) dx = 0.

( iii) For each pair i, j = 1, 2, . . . , N , i 6= j,
∫
RN xixjg(x) dx = 0.

( iv) For i = 1, 2, . . . , N ,
∫
RN x2

i g(x) dx = σ, where σ > 0.

(v)
∫
RN |x|3|g(x)| dx < +∞.

Note that we do not assume that g ≥ 0; in fact, many important filters used
in signal and image processing are not positive. However, condition (i) implies
that g is “on average” positive. A discussion of the necessity of the requirements
(i)− (v) is performed in Exercise 2.4.

11
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12CHAPTER 2. ITERATED LINEAR FILTERS AND THE HEAT EQUATION

Figure 2.1: The rescalings gt(x) = (1/t2)g(x/t) of a kernel for t=4, 3, and 2.

We say that a function g is radial if g(x) = g(|x|), x ∈ RN . This is equivalent
to saying that g is invariant under all rotations around the origin in RN . As
pointed out in Exercise 2.3, any radial function g ∈ L1(RN ) can be rescaled to
be Laplacian consistent if it decays fast enough at infinity and if

∫
RN x2

i g(x) dx
and

∫
RN g(x) dx have the same sign.

We consider rescalings of a kernel g defined by

gh(x) =
1

hN/2
g
( x

h1/2

)
(2.1)

for h > 0 (see Figure 2.1). Notice that this rescaling differs slightly from the
one used in Section 1.2. We have used the factor h1/2 here because it agrees
with the factor t1/2 in the Gaussian. We denote the convolution of g with itself
n times by gn∗. The main result of this section concerns the behavior of gn∗

h as
n → +∞ and h → 0.
Exercise 2.1. Prove the following two statements:

(i) gh is Laplacian consistent if and only if g is Laplacian consistent.

(ii) If g ∈ L1(RN ), then (gh)n∗ = (gn∗)h.

Theorem 2.2. If g is Laplacian consistent, then for every u ∈ F ∩ C3(IRN ),

gh ∗ u(x)− u(x) = h
σ

2
∆u(x) + ε(h,x) (2.2)

where |ε(h,x)| ≤ Ch3/2.

Proof. We use condition (i), the definition of gh, and rescaling y = h1/2z inside
the integral to see that

gh ∗ u(x)− u(x) =
∫

RN

1
hN/2

g
( y

h1/2

)(
u(x− y)− u(x)

)
dy

=
∫

RN

g(z)
(
u(x− h1/2z)− u(x)

)
dz.

Using Taylor’s formula with the Lagrange remainder (??), we have

u(x− h1/2z)− u(x) = −h1/2Du(x) · z +
h

2
D2u(x)(z, z)

−1
6
h3/2D3u(x− h1/2θz)(z, z, z),
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where θ = θ(x, z, h) ∈ [0, 1]. By condition (ii),
∫
RN g(z)Du(x) · zdz = 0; by

conditions (iii) and (iv),
∫
RN g(z)D2u(x)(z, z) dz = σ∆u(x). Thus,

gh ∗ u(x)− u(x) = h
σ

2
∆u(x)− 1

6
h3/2

∫

RN

g(z)D3u(x− h1/2θz)(z, z, z) dz.

We denote the error term by ε(h,x). Then we have the following estimate:

|ε(h,x)| ≤1
6
h3/2

∫

RN

|g(z)D3u(x− h1/2θz)(z, z, z)| dz

≤1
6
h3/2N3 sup

α,x
|∂αu(x)|

∫

RN

|z|3|g(z)| dz,

where the supremum is taken over all vectors α = (α1, α2, · · · , αN ), αj ∈
{1, 2, 3}, such that |α| = 3 and over all x ∈ RN . ¤

The preceding theorem shows a direct relation between smoothing with a
Laplacian-consistent kernel and the heat equation. It also shows why we require
σ to be positive: If it is not positive, the kernel is associated with the inverse
heat equation (see Exercise 2.4.)

2.2 The convergence theorem

The result of the next theorem is illustrated in Figure 2.2.

Theorem 2.3. Let g be a nonnegative Laplacian-consistent kernel with σ = 2
and define gh by (2.1). Write Thu0 = gh∗u0 for u0 ∈ F , and let u(t, ·) = Gt∗u0

be the solution of the heat equation (1.15). Then, for each t > 0,

(Tn
h u0)(x) → u(t,x) uniformly in x as n → +∞ and nh → t. (2.3)

Proof. Let us start with some preliminaries. We have (gh ∗ u0)(∞) = u0(∞)
and therefore Tn

h u0(∞) = u0(∞). The norm in F is ||u||F = supx∈SN
|u(x)| =

supx∈RN |u(x)|. The first order of business is to say precisely what is meant
by the asymptotic limit (2.3): Given t > 0 and given ε > 0, there exists an
n0 = n0(t, ε) and a δ = δ(t, ε) such that ‖Tn

h u0 − u(t, ·)‖F ≤ ε if n > n0 and
|nh − t| ≤ δ. This is what we must prove. We will first prove the result when
h = t/n. We will then show that the result is true when h is suitably close to
t/n.

We begin with comments about the notation. By Exercise 2.1, (Th)n =
(Tn)h, so there is no ambiguity in writing Tn

h . We will be applying Tn
h to the

solution u of the heat equation, which is C∞ on (0, +∞)×RN . In this situation,
t is considered to be a parameter, and we write Tn

h u(t,x) as shorthand for
Tn

h u(t, ·)(x). Throughout the proof, we will be dealing with error terms that we
write as O(hr). These terms invariably depend on h, t, and x. However, in all
cases, given a closed interval [t1, t2] ⊂ (0,+∞), there will be a constant C such
that |O(hr)| ≤ Chr uniformly for t ∈ [t1, t2] and x ∈ RN . Finally, keep in mind
that all functions of x tend to u0(∞) as x →∞.

We wish to fix an interval [t1, t2], but since this depends on the point t in
(2.3) and on ε, we must first choose these numbers. Thus, choose τ > 0 and
keep it fixed. This will be the “t” in (2.3). Next, choose ε > 0. Here are the
conditions we wish t1 and t2 to satisfy:
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14CHAPTER 2. ITERATED LINEAR FILTERS AND THE HEAT EQUATION

Figure 2.2: Iterated linear smoothing converges to the heat equation. In this
experiment with one-dimensional functions, it can be appreciated how fast an
iterated convolution of a positive kernel converges to a Gaussian. On the left
are displayed nine iterations of the convolution of the characteristic function
of an interval with itself, with appropriate rescalings. On the right, the same
experiment is repeated with a much more irregular kernel. The convergence is
almost as fast as the first case.

(1) t1 is small enough so ‖u(t1, ·) − u0‖F < ε. (This is possible by Theorem
1.9.)

(2) t1 is small enough so ‖u(t1 + τ, ·)−u(τ, ·)‖F < ε. (Again, by Theorem 1.9.)

(3) t2 is large enough so t1 + τ < t2.

There is no problem meeting these conditions, so we fix the interval [t1, t2] ⊂
(0,+∞).

Step 1, main argument : proof that

lim
n→+∞
nh=τ

Tn
h u(t1,x) = u(t1 + τ,x), (2.4)

where the convergence is uniform for x ∈ RN .
We can use Theorem 2.2 to write

Thu(t,x)− u(t,x) = h∆u(t,x) + O(h3/2), (2.5)

where t ∈ [t1, t2]. That the error function is bounded uniformly by Ch3/2 on
[t1, t2] × RN follows from the fact that supα,t,x |∂αu(t,x)| is finite for (t,x) ∈
[t1, t2] × RN (see the proof of Theorem 2.2). Since u is a solution of the heat
equation, we also have by Taylor-Lagrange formula (??),

u(t+h,x)−u(t,x) = h
∂u

∂t
(t,x)+

h2

2
∂2

∂t2
u(t+θh,x) = h∆u(t,x)+O(h2). (2.6)

This time the error term is bounded uniformly by Ch2 on [t1, t2]×RN because
∂2u
∂t2 (t,x) is bounded on [t1, t1]×RN . By subtracting (2.6) from (2.5) we see that

Thu(t,x) = u(t + h,x) + O(h3/2). (2.7)

This shows that applying Th to a solution of the heat equation at time t advances
the solution to time t + h, plus an error term.
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So far we have not used the assumption that g is nonnegative. Thus, (2.7)
is true for any Laplacian-consistent kernel g with σ = 2. However, we now wish
to apply the linear operator Th to both sides of equation (2.7), and in doing so
we do not want the error term to increase. Since g ≥ 0, this is not a problem:

|ThO(h3/2)| ≤
∫

RN

|O(h3/2)|gh(x− y) dy ≤
∫

RN

Ch3/2gh(x− y) dy = Ch3/2.

With this in hand, we can apply Th to both sides of (2.7) and obtain

T 2
hu(t,x) = Thu(t + h,x) + O(h3/2). (2.8)

If we write equation (2.7) with t + h in place of t and substitute the expression
for Thu(t + h,x) in equation (2.8), we have

T 2
hu(t,x) = u(t + 2h,x) + 2O(h3/2). (2.9)

We can iterate this process and get

Tn
h u(t,x) = u(t + nh,x) + nO(h3/2) (2.10)

with the same constant C in the estimate |O(h3/2)| ≤ Ch3/2 as long as t+nh ∈
[t1, t2]. To ensure that this happens, we take t = t1 and h = τ/n. Then

Tn
h u(t1,x) = u(t1 + τ,x) + O

(( τ

n

)1/2)
(2.11)

and we obtain (2.4). If we could take t1 = 0, this would end the proof. This
is not possible because all of the O terms were based on a fixed interval [t1, t2].
However, we have taken t1 small enough to finish the proof .

Step 2 : getting rid of t1.
Since

∫
RN g(x) dx = 1, ‖gh‖L1(RN ) = 1, and thus

‖gn∗
h ∗ v‖F ≤ ‖v‖F .

If we take v = u(t1, ·)− u0, then this inequality and condition (1) imply that

‖Tn
h u(t1, ·)− Tn

h u0‖F < ε. (2.12)

Relations (2.12) and (2.11) imply that

‖Tn
h u0 − u(t1 + τ, ·)‖F < 2ε. (2.13)

This inequality and condition (2) show that

‖Tn
h u0 − u(τ, ·)‖F < 3ε (2.14)

for n > n0 and h = τ/n. This proves the theorem in the case h = τ/n.

Conclusion. It is a simple matter to obtain the more general result. Again,
by Theorem 1.10, there is a δ = δ(τ, ε) such that |nh − τ | < δ implies that
‖u(nh, ·) − u(τ, ·)‖F < ε and that nh ∈ [t1, t2] (by condition (3)). Combining
this with (2.14) shows that

‖Tn
h u0 − u(nh, ·)‖F < 4ε

if n > n0 and |nh− τ | < δ, and this completes the proof. ¤
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16CHAPTER 2. ITERATED LINEAR FILTERS AND THE HEAT EQUATION

2.3 Directional averages and directional heat equa-
tions

In this section, we list easy extensions of Theorem 2.2. They analyze local
averaging processes which take averages at each point in a singular neighbor-
hood made of a segment. In that way, we will make appear several nonlinear
generalizations of the Laplacian which will accompany us throughout the book.
Consider a C2 function from RN into R and a vector z ∈ RN with |z| = 1. We
wish to compute the mean value of u along a segment of the line through x
parallel to the vector z. To do this, we define the operator Tz

h , h ∈ [−1, 1], by

Tz
h u(x) =

1
2h

∫ h

−h

u(x + sz) ds.

This operator is the directional counterpart of the isotropic operator Mh defined
by equation (1.1).

Proposition 2.4.

Tz
h u(x) = u(x) +

h2

6
D2u(x)(z, z) + o(h2).

Proposition 2.4 is deduced from Theorem 2.2, and it suggests that iterations
of the operator Tz

h are associated with the directional heat equation

∂u

∂t
(t,x) =

1
6
D2u(t,x)(z, z) (2.15)

in the same way that the iterations of the operator Th in Theorem 2.3 are
associated with the ordinary heat equation. If z is fixed, then the operator Tz

h

and equation (2.15) act on u along each line in RN parallel to z separately;
there is no “cross talk” between lines. Exercise 2.5 formalizes and clarifies these
comments when z is fixed. However, Proposition 2.4 remains true when z is a
function of x. This means that we are able to approximate the directional second
derivative by taking directional averages where z varies from point to point.
The main choices considered in the book are z = Du/|Du| and z = Du⊥/|Du|,
where Du = (ux, uy) and Du⊥ = (−uy, ux). Then by Proposition 2.4 we have
the following limiting relations:

• Average in the direction of the gradient. By choosing z = Du/|Du|,
1

|Du|2 D2u(Du, Du) = 6 lim
h→0

T
Du/|Du|
h u− u

h2
.

We will interpret this differential operator as Haralick’s edge detector in sec-
tion 4.1.

• Average in the direction orthogonal to the gradient. By choosing z = Du/|Du⊥|,
1

|Du|2 D2u(Du⊥, Du⊥) = 6 lim
h→0

T
Du⊥/|Du|
h u− u

h2
.

This differential operator appears as the second term of the curvature equa-
tion. (See Chapter 16.)

Although we have not written them as such, the limits are pointwise in both
cases.
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2.4 Exercises

Exercise 2.2. We will denote the characteristic function of a set A ⊂ RN by 1A. Thus,
1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. Consider the kernel g = (1/π)1D(0,1),
where D(0, 1) is the disk of radius one centered at zero. In this case, g is a radial
function and it is clearly Laplacian consistent. For N = 2, let A = [−1/2, 1/2] ×
[−1/2, 1/2]. Then g = 1A is not radial. Show that it is, however, Laplacian consistent.
If we take B = [−1, 1]×[−1/2, 1/2], then g = (1/2)1B is no longer Laplacian consistent
because it does not satisfy condition (iv). Show that this kernel does, however, satisfy
a relation similar to (2.2).

Exercise 2.3. The aim of the exercise is to prove roughly that radial functions with
fast decay are Laplacian consistent. Assume g ∈ L1(RN ) is radial with finite first
second moments,

∫
RN |x|k|g(x)| dx < +∞, k = 0, 1, 2, 3 and such that

∫
RN x2

i g(x) dx >
0. Show that g satisfies conditions (ii) and (iii) of Definition 2.1 and that, for suitably
chosen a, b ∈ R, the rescaled function x 7→ ag(x/b) satisfies conditions (i) and (iv),
where σ can be taken to be an arbitrary positive number.

Exercise 2.4. The aim of the exercise is to illustrate by simple examples what happens
to the iterated filter gn∗, n ∈ N when g does not satisfy some of the requirements of
the Laplacian consistency (Definition 2.1). We recall the notation (2.1), gh(x) =

1

hN/2 g
(

x
h1/2

)
.

1) Take on R, g(x) = 1 on [−1, 1], g(x) = 0 otherwise. Which one of the assumptions
(i) − (v) is not satisfied in Definition 2.1 ? Compute gn∗

1
n
∗ u, where u = 1 on R.

Conclude : the iterated filter blows up.

2) Take on R, g(x) = 1 on [0, 1], g(x) = 0 otherwise. Which one of the assumptions
(i) − (v) is not satisfied in Definition 2.1 Compute gn∗ ∗ u, where u(x) = x on R.
Conclude : the iterated filter “drifts”.

3) Assume that the assumptions (i) − (v) hold, except (iii). By a simple adaptation
of its proof, draw a more general form of Theorem 2.2.

4) Perform the same analysis as in 3) when all assumptions hold but (iv).

5) Take the case of dimension N = 1 and assume that (i) hold but (ii) does not hold.

Set gh(x) = 1
h

g
(
x
h

)
and give a version of Theorem 2.2 in that case (make an order 1

Taylor expansion of u).

Exercise 2.5. Let z be a fixed vector in RN with |z| = 1 and let u0 be in F . Define
a one-dimensional kernel g by g(s) = 1

2
1[−1,1](s).

(i) Show that g is Laplacian consistent. Compute the variance σ of g.

(ii) Show that

u(t,x) =

∫

R
u0(x + sz)Gt(s) ds

is a solution of the directional heat equation

∂u

∂t
(t,x) = D2u(t,x)(z, z), u(0,x) = u0(x). (2.16)

Give an example to show that u(t, ·) is not necessarily C2. This being the case,
how does one interpret the right-hand side of (2.16)?

(iii) Let gh(s) = (6h)−1/2g(s/(6h)−1/2) and Thu(x) =
∫
R u(x + sz)gh(s) ds. By ap-

plying Theorem 2.3 for N = 1, show that, for each t > 0,

T n
h u0 → u(t, ·) in F as n → +∞ and nh → t. (2.17)
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18CHAPTER 2. ITERATED LINEAR FILTERS AND THE HEAT EQUATION

Exercise 2.6. The Weickert equation can be viewed as a variant of the curvature equa-
tion [350]. It uses a nonlocal estimate of the direction orthogonal to the gradient for
the diffusion direction. This direction is computed as the direction v of the eigenvector
corresponding to the smallest eigenvalue of k ∗ (Du⊗Du), where (y⊗y)(x) = (x ·y)y
and k is a smooth kernel, typically a gaussian. Prove that if the convolution kernel is
removed, then this eigenvector is simply Du⊥. So the equation writes

∂u

∂t
= uηη, (2.18)

where η denotes the coordinate in the direction v.

Exercise 2.7. Suppose that u ∈ C2(R). Assuming that u′(x) 6= 0, show that

u′′(x) = lim
h→0

1

h2

(
max

s∈[−h,h]
u(x + s) + min

s∈[−h,h]
u(x + s)− 2u(x)

)
. (2.19)

What is the value of the right-hand side of (2.19) if u′(x) = 0?
Now consider u ∈ C2(R2). We wish to establish an algorithm similar to (2.19) to

compute the second derivative of u in the direction of the gradient Du = (ux, uy). For
this to make sense, we must assume that Du(x) 6= 0. With these assumptions, we
know from (2.19) that

uξξ(x) =
∂2v

∂ξ2
(x, 0) = lim

h→0

1

h2

(
max

s∈[−h,h]
u(x+ sz)+ min

s∈[−h,h]
u(x+ sz)− 2u(x)

)
, (2.20)

where v(x, ξ) = u(x + ξz) and z = Du/|Du|. The second part of the exercise is to
prove that, in fact,

uξξ(x) = lim
h→0

1

h2

(
max

y∈D(0,h)
u(x + y) + min

y∈D(0,h)
u(x + y)− 2u(x)

)
, (2.21)

where D(0, h) is the disk of radius h centered at the origin. Intuitively, (2.21) follows
from (2.20) because the gradient indicates the direction of maximal change in u(x), so
in the limit as h → 0, taking max and min in the direction of the gradient is equivalent
to taking max and min in the disk. The point of the exercise is to formalize this.

2.5 Comments and references

Asymptotics. Our proof that iterated and rescaled convolutions of a Laplacian-
consistent kernel tend asymptotically to the Gaussian is a version of the De
Moivre–Laplace formula, or the central limit theorem, adapted to image pro-
cessing [52]. This result is particularly relevant to image analysis, since it implies
that iterated linear smoothing leads inevitably to convolution with the Gaus-
sian, or equivalently, to the application of the heat equation. We do not wish to
imply, however, that the Gaussian is the only important kernel for image pro-
cessing. The Gaussian plays a significant role in our form of image analysis, but
there are other kernels that, because of their spectral and algebraic properties,
have equally important roles in other aspects of signal and image processing.
This is particularly true for wavelet theory which combines recursive filtering
and sub-sampling.

Directional diffusion. Directional diffusion has a long history that began
when Hubel and Wiesel showed the existence of direction-sensitive cells in the
visual areas of the neocortex [168]. There has been an explosion of publication
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on directional linear filters, beginning, for example, with influential papers such
as that by Daugman [97]. We note again that Gabor’s contribution to directional
filtering is described in [214].
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Chapter 3

The SIFT Method

This chapter is devoted to Lowe’s Scale-Invariant Feature Transform (SIFT
[220]), a very efficient image comparison method. The initial goal of the SIFT
method is to compare two images (or two image parts) that can be deduced from
each other (or from a common one) by a rotation, a translation, and a zoom.
The method turned out to be also robust to large enough changes in view point
angle, which explains its success. This method uses as fundamental tool the heat
equation or, in other terms, the linear scale space. The heat equation is used
to simulate all zooms out of both images that have to be compared. Indeed,
these images may contain similar objects taken at different distances. But at
least two of the simulated zoomed in images should contain these objects at the
same apparent distance. This is the principal ingredient of the SIFT method,
but other invariance requirements must be addressed as well.

Sect. 3.2 gives a detailed description of the SIFT shape encoding method.
Sect. 3.4 proves mathematically that the SIFT method indeed computes trans-
lation, rotation and scale invariants. This proof is correct under the main as-
sumption that image blur can be assumed to be gaussian, and that images with
a gaussian blur larger than 0.6 (SIFT takes 0.8) are approximately (but accu-
rately) well-sampled and can therefore be interpolated. Chapter. ?? checked
the validity of this crucial gaussian blur assumption.

3.1 Introduction

Image comparison is a fundamental step in many computer vision and image
processing applications. A typical image matching method first detects points
of interest, then selects a region around each point, and finally associates with
each region a descriptor. Correspondences between two images may then be
established by matching the descriptors of both images.

In the SIFT method, stable points of interest are supposed to lie at extrema
of the Laplacian of the image in the image scale-space representation. The
scale-space representation introduces a smoothing parameter σ. Images u0 are
smoothed at several scales to obtain w(σ, x, y) =: (Gσ ∗ u0)(x, y), where we use
the parameterization of the gaussian by its standard deviation σ,

Gσ(x, y) = G(σ, x, y) =
1

2πσ2
e−(x2+y2)/2σ2

.

21
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22 CHAPTER 3. THE SIFT METHOD

Figure 3.1: A result of the SIFT method, using an outliers elimination method
[289]. Pairs of matching points are connected by segments.

Taking apart all sampling issues and several thresholds whose aim it is to
eliminate unreliable features, the whole method can be summarized in one single
sentence:

One sentence description The SIFT method computes scale-space extrema
(σi, xi, yi) of the space Laplacian of w(σ, x, y), and then samples for each one of
these extrema a square image patch whose origin is (xi, yi), whose x-direction
is one of the dominant gradients around (xi, yi), and whose sampling rate is√

σ2
i + c2.
The constant c ' 0.8 is the tentative standard deviation of the image blur.

The resulting samples of the digital patch at scale σi are encoded by their
gradient direction, which is invariant under nondecreasing contrast changes.
This accounts for the robustness of the method to illumination changes. In
addition, only local histograms of the direction of the gradient are kept, which
accounts for the robustness of the final descriptor to changes of view angle (see
Fig. 3.5).

Figs 3.1 and 3.6 show striking examples of the method scale invariance. Lowe
claims that 1) his descriptors are invariant with respect to translation, scale and
rotation, and that 2) they provide a robust matching across a substantial range
of affine distortions, change in 3D viewpoint, addition of noise, and change in
illumination. In addition, being local, they are robust to occlusion. Thus they
match all requirements for shape recognition algorithms except one: they are
not really affine invariant but only robust to moderate affine distortions.

3.2 A Short Guide to SIFT Encoding

The SIFT encoding algorithm consists of four steps: detection of scale-space
extrema (Sect. 3.2.1), accurate localization of key points (Sect. 3.2.2), and de-
scriptor construction (Sect. 3.2.3).
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3.2. A SHORT GUIDE TO SIFT ENCODING 23

Figure 3.2: Gaussian pyramid for key points extraction (from [220])

3.2.1 Scale-Space Extrema

Following a classical paradigm, stable points of interest are supposed to lie
at extrema of the Laplacian of the image in the image scale-space represen-
tation. We recall that the scale-space representation introduces a smoothing
parameter σ, the scale, and convolves the image with Gaussian functions of
increasing standard deviation σ. By a classical approximation inspired from
psychophysics [233], the Laplacian of the Gaussian is replaced by a Difference of
Gaussians at different scales (DOG). Extrema of the Laplacian are then replaced
by extrema of DOG functions: D(σ, x, y) = w(kσ, x, y) − w(σ, x, y), where k is
a constant multiplicative factor. Indeed, it is easy to show that D(σ, x, y) is an
approximation of the Laplacian:

D(σ, x, y) ≈ (k − 1)σ2(∆Gσ ∗ u0)(x, y).

In the terms of David Lowe:

The factor (k− 1) in the equation is constant over all scales and
therefore does not influence extrema location. The approximation
error will go to zero as k goes to 1, but in practice we have found that
the approximation has almost no impact on the stability of extrema
detection or localization for even significant differences in scale, such
as k =

√
2.

To be more specific, quoting Lowe again:

D(σ, x, y) =: (G(kσ, x, y)−G(σ, x, y))∗u0(x, y) = w(kσ, x, y)−w(σ, x, y)

The relationship between D and σ2∆G can be understood from
the heat diffusion equation (parameterized in terms of σ rather than
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Figure 3.3: Neighborhood for the location of key points (from [220]). Local ex-
trema are detected by comparing each sample point in D with its eight neighbors
at scale σ and its nine neighbors in the scales above and below.

the more usual t = σ2):

∂G

∂σ
= σ∆G.

From this, we see that ∆G can be computed from the finite differ-
ence approximation to ∂G/∂σ, using the difference of nearby scales
at kσ and σ:

σ∆G =
∂G

∂σ
≈ G(kσ, x, y)−G(σ, x, y)

kσ − σ

and therefore,

G(kσ, x, y)−G(σ, x, y) ≈ (k − 1)σ2∆G.

This shows that when the difference-of-Gaussian function has
scales differing by a constant factor it already incorporates the σ2

scale normalization required for the scale-invariant Laplacian.

This leads to an efficient computation of local extrema of D by exploring neigh-
borhoods through a Gaussian pyramid ; see Figs. 3.2 and 3.3.
Exercise 3.1. Show that the gaussian Gσ parameterized by its standard deviation σ
satisfies as stated by Lowe the time-dependent heat equation ∂G

∂σ
= σ∆G.

3.2.2 Accurate Key Point Detection

In order to achieve sub-pixel accuracy, the interest point position is slightly
corrected thanks to a quadratic interpolation. Let us call x0 =: (σ0, x0, y0)
the current detected point in scale space, which is known up to the (rough)
sampling accuracy in space and scale. Notice that all points x = (σ, x, y) here
are scale-space coordinates. Let us call x1 = x0 + y the real extremum of the
DOG function. The Taylor expansion of D yields

D(x0 + y) = D(x0) + (DD) (x0) · y +
1
2

(
D2D

)
(x0)(y,y) + o(‖y‖2),

where D and its derivatives are evaluated at an interest point and y denotes
an offset from this point. Since interest points are extrema of D in scale space,
setting the derivative to zero gives:

y = − (
D2D(x0)

)−1
(DD(x0)) , (3.1)
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3.2. A SHORT GUIDE TO SIFT ENCODING 25

which is the sub-pixel correction for a more accurate position of the key point
of interest.

Exercise 3.2. Check that (3.1) is a point where the gradient of D vanishes.

Since points with low contrast are sensitive to noise, and since points that are
poorly localized along an edge are not reliable, a filtering step is called for. Low
contrast points are handled through a simple thresholding step. Edge points are
swept out following the Harris and Stephen’s interest points paradigm. Let H
be the following Hessian matrix:

H =
(
Dxx Dxy

Dxy Dyy

)
.

The reliability test is simply to assess whether the ratio between the larger
eigenvalue and the smaller one is below a threshold r. This amounts to check:

Tr(H)2

Det(H)
<

(r + 1)2

r
. (3.2)

This rules out standard edge points and puts points of interest at locations
which are strong enough extrema, or saddle points.

Exercise 3.3. Explain why (3.2) is equivalent imposing that the ratio between the
smaller eigenvalue and the larger eigenvalue of H is smaller than r. These eigenvalues
are assumed to have the same sign. Why?

3.2.3 Construction of the SIFT descriptor

In order to extract rotation-invariant patches, an orientation must be assigned
to each key point. Lowe proposes to estimate a semi-local average orientation for
each key point. From each sample image Lσ, gradient magnitude and orientation
is pre-computed using a 2 × 2 scheme. An orientation histogram is assigned
to each key point by accumulating gradient orientations weighted by 1) the
corresponding gradient magnitude and by 2) a Gaussian factor depending on
the distance to the considered key point and on the scale. The precision of this
histogram is 10 degrees. Peaks simply correspond to dominant directions of
local gradients. Key points are created for each peak with similar magnitude,
and the assigned orientation is refined by local quadratic interpolation of the
histogram values.

Once a scale and an orientation are assigned to each key point, each key-
point is associated a square image patch whose size is proportional to the scale
and whose side direction is given by the assigned direction. The next step is to
extract from this patch robust information. Gradient samples are accumulated
into orientation histograms summarizing the contents over 4 × 4 subregions
surrounding the key point of interest. Each of the 16 subregions corresponds to
a 8-orientations bins histogram, leading to a 128 element feature for each key
point (see Fig. 3.5). Two modifications are made in order to reduce the effects
of illumination changes: histogram values are thresholded to reduce importance
of large gradients (in order to deal with a strong illumination change such as
camera saturation), and feature vectors are normalized to unit length (making
them invariant to affine changes in illumination).



“JMMBookOct04”
1/5/2012
page 26

i

i

i

i

i

i

i

i

26 CHAPTER 3. THE SIFT METHOD

Figure 3.4: SIFT key points. The arrow starting point, length and the orienta-
tion signify respectively the key point position, scale, and dominant orientation.
These features are covariant to any image similarity.

3.2.4 Final matching

The outcome is for each image, a few hundreds or thousands SIFT descrip-
tors associated with as many key points. The descriptors of any image can be
compared to the descriptors of any other image, or belonging to a database
of descriptors built up from many images. The only remaining question is to
decide when two descriptors match, or not. In the terms of Lowe again:

The best candidate match for each keypoint is found by identi-
fying its nearest neighbor in the database of keypoints from training
images. The nearest neighbor is defined as the keypoint with min-
imum Euclidean distance for the invariant descriptor vector. How-
ever, many features from an image will not have any correct match
in the training database because they arise from background clutter
or were not detected in the training images. Therefore, it would be
useful to have a way to discard features that do not have any good
match to the database. A global threshold on distance to the closest
feature does not perform well, as some descriptors are much more
discriminative than others. A more effective measure is obtained by
comparing the distance of the closest neighbor to that of the second-
closest neighbor. (...) This measure performs well because correct
matches need to have the closest neighbor significantly closer than
the closest incorrect match to achieve reliable matching. For false
matches, there will likely be a number of other false matches within
similar distances due to the high dimensionality of the feature space.
We can think of the second-closest match as providing an estimate of
the density of false matches within this portion of the feature space
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Figure 3.5: Example of a 2×2 descriptor array of orientation histograms (right)
computed from an 8 × 8 set of samples (left). The orientation histograms are
quantized into 8 directions and the length of each arrow corresponds to the
magnitude of the histogram entry. (From [220])

and at the same time identifying specific instances of feature am-
biguity. (...) For our object recognition implementation, we reject
all matches in which the distance ratio is greater than 0.8, which
eliminates 90% of the false matches while discarding less than 5% of
the correct matches.

3.3 Image acquisition model underlying SIFT

3.3.1 The camera model

We always work on the camera CCD plane, whose mesh unit is taken to be
1. We shall always assume that the camera pixels are indexed by IZ2. The
image sampling operator is therefore always S1. Our second assumption is
that the digital initial image is well-sampled and obtained by a gaussian kernel.
Thus, the digital image is u = S1GδAu0, where δ ≥ c, c ' 0.6 ensures well-
sampling (see Chapter ??), and A is a similarity with positive determinant. (In
fact Lowe’s original paper assumes c ' 0.5, which amounts to assume a slight
under-sampling of the original image).

Definition 3.1. We model all digital frontal images obtained from a given ideal
planar object whose frontal infinite resolution image is u0 as

u0 =: S1GδAu0 (3.3)

where δ ≥ c and A is a A = RHλT is the composition of a translation and of a
similarity.

So the possibility of aliasing (under-sampling, δ < c is discarded). Taking
into account the way the digital image is blurred and sampled in the SIFT
method, we can now list the SIFT assumptions and formalize the method itself.
The description is by far simpler if we do it without mixing in sampling issues.
We need not mix them in, since the fact that images are well-sampled at all
stages permits equivalently to describe all operations with the continuous images
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28 CHAPTER 3. THE SIFT METHOD

directly, and to deduce afterwards the discrete operators on samples. We refer
to section ?? for this passage from continuous to discrete operations in the
well-sampled world.

3.3.2 Condensed description of the SIFT method

1. There is an underlying infinite resolution bounded planar image u0;

2. The initial digital image is S1GδAu0 where δ ≥ c, and A = RHλT is the
composition of a rotation, a zoom, and a translation;

3. the SIFT method computes a sufficient scale-space sampling of u(σ,x) =
(GσGδAu0)(x), and deduces by the Newton method the accurate loca-
tion or key points defined as extrema in scale-space of the spatial image
Laplacian, ∆u(σ;x);

4. The blurred u(σ, ·) image is then re-sampled around each characteristic
point with sampling mesh

√
σ2 + c2;

5. the directions of the sampling axes are fixed by a dominant direction of the
gradient of u(σ, ·) in a neighborhood, with size proportional to

√
σ2 + c2

around the characteristic point;

6. the rest of the operations in the SIFT method is a contrast invariant
encoding of the samples around each characteristic point. It is not needed
for the discussion to follow.

3.4 Scale and SIFT: consistency of the method

In this section, in conformity with the SIFT model of Sect. 3.3.2, the digital
image is a frontal view of an infinite resolution ideal image u0. In that case,
A = HT R is the composition of a homothety H, a translation T and a rotation
R. Thus the digital image is u = S1GδHT Ru0, for some H, T , R as above.
Assuming that the image is not aliased boils down, by the experimental results
of Sect. ??, to assuming δ ≥ 0.8.

Consider T an arbitrary image translation, R an arbitrary image rotation,
Hλ an arbitrary image homothety, G an arbitrary gaussian convolution, D the
gradient and ∆ the Laplacian, all applied to continuous images. We say that
there is strong commutation of two of these operators if we can exchange the
order of their application to any image. We say that there is weak commutation
between two of these operators if we can exchange their order by changing one
of the parameters of one of the operators. For example we have RT = T ′R,
meaning that given R and T there is T ′ such that the former relation occurs.
The next lemma is straightforward.

Lemma 3.2. All of the aforementioned operators weakly commute, with the fol-
lowing exceptions: R and G commute strongly, DHλ = λHλD, ∆Hλ = λ2Hλ∆,
and D and ∆ do not commute.

Exercise 3.4. Check all of the mentioned commutations and give their exact for-
mula. There are six kinds of operators: translations, rotations, homotheties, gaussian
convolutions, gradients, and Laplacians. Thus, there are 15 verifications to make.
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Lemma 3.3. For any rotation R and any translation T , the SIFT descriptors
of S1GδHT Ru0 are identical to those of S1GδHu0.

Proof. By the weak commutation of translations and rotations with all other
operators (Lemma 3.2), the SIFT descriptors of a rotated or translated image
are identical to those of the original. Indeed, the set of scale space Laplacian
extrema is covariant to space translations and rotations. The normalization
process for each SIFT descriptor situates the origin at each extremum in turn,
thus canceling the translation. The local sampling grid defining the SIFT patch
has axes given by peaks in its gradient direction histogram. Such peaks are
translation invariant and rotation covariant. Thus, the normalization of the
direction also cancels the rotation. ¤

Lemma 3.4. Let u and v be two digital images that are frontal snapshots of the
same continuous flat image u0, u = S1GβHλu0 and v =: S1GδHµu0, taken at
different distances, with different gaussian blurs and possibly different sampling
rates. Let w(σ,x) = (Gσu0)(x) denote the scale space of u0. Then the scale
spaces of u = GβHλu0 and v = GδHµu0 are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds
to a key point of u at the scale σ1 such that λ

√
σ2

1 + β2 = s0, whose SIFT
descriptor is sampled with mesh

√
σ1 + c2. In the same way (s0,x0) corresponds

to a key point of v at scale σ2 such that s0 = µ
√

σ2
2 + δ2, whose SIFT descriptor

is sampled with mesh
√

σ2
2 + c2.

Proof. The interpolated initial images are by (??)

u =: IS1GβHλu0 = GβHλu0 and v =: IS1GδHµu0 = GδHµu0.

Computing the scale-space of these images amounts to convolve these images
for every σ > 0 with Gσ, which yields, using the commutation relation (7.2)
and the semigroup property (7.1):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλG

λ
√

σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HµGµ
√

σ2+δ2u0.

Set w(s,x) =: Gsu0. Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

Let us consider an extremal point (s0,x0) of the Laplacian of the scale space
function w. If s0 ≥ max(λβ, µδ), an extremal point occurs at scales σ1 for the
Laplacian of u(σ,x) and at scale σ2 for the Laplacian of v(σ,x) satisfying

s0 = λ
√

σ2
1 + β2 = µ

√
σ2

2 + δ2. (3.4)

¤
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30 CHAPTER 3. THE SIFT METHOD

Theorem 3.5. Let u and v be two digital images that are frontal snapshots of
the same continuous flat image u0, u = S1GβHλT Ru0 and v =: S1GδHµu0,
taken from arbitrary distances, with possibly different camera gaussian blurs,
with an arbitrary camera translation parallel to its focal plane, and an arbitrary
rotation around its optical axe. Without loss of generality, assume λ ≤ µ. Then
if the camera blurs are standard (β = δ = c), each SIFT descriptor of u = Iu
is identical to some SIFT descriptor of v = Iv. If β 6= δ (or β = δ 6= c), the
SIFT descriptors of u become (quickly) similar to SIFT descriptors of v when
their scales grow, namely as soon as σ1

max(c,β) À 1 and σ2
max(c,δ) À 1.

Proof. By the result of Lemma 3.3, we can neglect the effect of translations
and rotations. Therefore assume w.l.o.g. that the images under comparison are
as in Lemma 3.4. Assume a key point (s0,x0) of w has scale s0 ≥ max(λβ, µδ).
This key point has a sampling rate proportional to s0. There is a corresponding
key point (σ1,

x0
λ ) for u with sampling rate

√
σ2

2 + c2 and a corresponding key
point (σ2,

x0
µ ) with sampling rate

√
σ2

2 + c2 for v. To have a common reference
for these sampling rates, it is convenient to refer to the corresponding sampling
rates for w(s0,x), which are λ

√
σ2

1 + c2 for the SIFT descriptors of u at scale σ1,
and µ

√
σ2

2 + c2 for the descriptors of v at scale σ2. Thus the SIFT descriptors
of u and v for x0 will be identical if and only if λ

√
σ2

1 + c2 = µ
√

σ2
2 + c2. Now,

we have λ
√

σ2
1 + β2 = µ

√
σ2

2 + δ2, which implies λ
√

σ2
1 + c2 = µ

√
σ2

2 + c2 if
and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2. (3.5)

Since λ and µ are proportional to camera distances to the observed object u0,
they are arbitrary and generally different. Thus, the only way to ensure (3.5)
is to have β = δ = c, which means that the blurs of both images (or of both
cameras) are ideal and gaussian. In any case, β = δ = c does imply that the
SIFT descriptors of both images are identical.

The second statement is straightforward: If σ1 and σ2 are large enough
with respect to β, δ and c, the relation λ

√
σ2

1 + β2 = µ
√

σ2
2 + δ2, implies

λ
√

σ2
1 + c2 ' µ

√
σ2

2 + c2. ¤

The almost perfect scale invariance of SIFT stated in Theorem 3.5 is illus-
trated by the striking example of Fig. 3.6. The 28 SIFT key points of a very
small digital image u are compared to the 86 key points obtained by zooming
in u by a 32 factor: The resulting digital image is the digital image v = S 1

32
Iu,

again obtained by zero-padding. For better observability, both images are dis-
played with the same size by enlarging the pixels of u. Almost each key point
(22 out of 28) of u finds its counterpart in v. 22 matches are detected between
the descriptors as shown on the right. If we trust Theorem 3.5, all descriptors of
u should have been retrieved in v. This does not fully happen for two reasons.
First, the SIFT method thresholds (not taken into account in the theorem) elim-
inate many potential key points. Second, the zero-padding interpolation giving
v is imperfect near the image boundaries.
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Figure 3.6: Scale invariance of SIFT, an illustration of Theorem 3.5. Left: a very
small digital image u with its 28 key points. For the conventions to represent
key points and matches, see the comments in Fig. 3.4. Middle: this image is
over sampled by a 32 factor to v = S 1

32
Iu. It has 86 key points. Right: 22

matches found between u and S 1
32

Iu.

3.5 Exercises

Exercise 3.5. The aim of the exercise is to explain why the experiment of Fig. 3.6
works, and to illustrate Theorem 3.5. The digital zoom in by a factor λ is nothing
but the discrete over-sampling operator S 1

λ
with sampling step 1

λ
, defined in (??).

Here, λ = 32. In the experiment an original digital image u = S1Gδu is zoomed into
v = S 1

λ
u.

1) Using the definition of the discrete zoom and the right commutation relations given
in this chapter and in the former one (give their numbers), show that

v = S 1
λ
GδIu = S1GλδH 1

λ
Iu.

2) Is v well-sampled if u was?

3) By applying carefully Theorem 3.5, assuming that δ ' c, discuss why SIFT manages
to match SIFT descriptors of u and v.

3.6 Comments and references

Many variations exist on the computation of interest points, following the pi-
oneering work of Harris and Stephens [159]. The Harris-Laplace and Hessian-
Laplace region detectors [243, 246] are invariant to rotation and scale changes.
Some moment-based region detectors [213, 41] including Harris-Affine and Hessian-
Affine region detectors [244, 246], an edge-based region detector [336], an intensity-
based region detector [336], an entropy-based region detector [187], and two
independently developed level line-based region detectors MSER (“maximally
stable extremal region”) [238] and LLD (“level line descriptor”) [260, 262, 264]
are designed to be invariant to affine transformations. These two methods stem
from the Monasse image registration method [250] that used well contrasted
extremal regions to register images. MSER is the most efficient one and has
shown better performance than other affine invariant detectors [248]. However,
as pointed out in [220], no known detector is actually fully affine invariant: All
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of them start with initial feature scales and locations selected in a non-affine
invariant manner. The difficulty comes from the scale change from an image to
another: This change of scale is actually an under-sampling, which means that
the images differ by a blur.

In his milestone paper [220], Lowe has addressed this central problem and
has proposed the so called scale-invariant feature transform (SIFT) descriptor,
that is invariant to image translations and rotations, to scale changes (blur),
and robust to illumination changes. It is also surprisingly robust to large
enough orientation changes of the viewpoint (up to 60 degrees). Based on
the scale-space theory [212], the SIFT procedure simulates all gaussian blurs
and normalizes local patches around scale covariant image key points that
are Laplacian extrema. A number of SIFT variants and extensions, includ-
ing PCA-SIFT [189] and gradient location-orientation histogram (GLOH) [247],
that claim to have better robustness and distinctiveness with scaled-down com-
plexity have been developed ever since [130, 209]. Demonstrated to be supe-
rior to other descriptors [245, 247], SIFT has been popularly applied for scene
recognition [116, 253, 301, 344, 146, 312] and detection [132, 268], robot lo-
calization [46, 271, 183], image registration [361], image retrieval [158], motion
tracking [338, 192], 3D modeling and reconstruction [295, 345], building panora-
mas [4, 54], or photo management [360, 207, 78].

As pointed out by several benchmarks, the robustness and repeatability of
the SIFT descriptors outperforms other methods. However, such benchmarks
mix three very different criteria that, in our opinion, should have been discussed
separately. The first one is the formal real invariance of each method when all
thresholds have been eliminated. This real invariance has been proved here for
SIFT. The second criterion is the practical validity of the sampling method used
in SIFT, that has been again checked in Chapter ??. The last criterion is the
clever fixing of several thresholds in the SIFT method ensuring robustness, re-
peatability, and a low false alarm rate. This one has been extensively tested and
confirmed in previous benchmark papers (see also the very recent and complete
report [121]). We think, however, that the success of SIFT in these benchmarks
is primarily due to its full scale invariance.
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Chapter 4

Linear Scale Space and
Edge Detection

The general analysis framework in which an image is associated with smoothed
versions of itself at several scales is called scale space. Following the results
of Chapter 2, a linear scale space must be performed by applying the heat
equation to the image. The main aim of this smoothing is to find out edges in
the image. We shall first explain this doctrine. In the second section, we discuss
experiments and several serious objections to such an image representation.

4.1 The edge detection doctrine

One of the uses of linear theory in two dimensions is edge detection. The as-
sumption of the edge detection doctrine is that relevant information is contained
in the traces produced in an image by the apparent contours of physical objects.
If a black object is photographed against a white background, then one expects
the silhouette of the object in the image to be bounded by a closed curve across
which the light intensity u0 varies strongly. We call this curve an edge. At
first glance, it would seem that this edge could be detected by computing the
gradient Du0, since at a point x on the edge, |Du0(x)| should be large and
Du(x) should point in a direction normal to the boundary of the silhouette. It
would therefore appear that finding edges amounts to computing the gradient
of u0 and determining the points where the gradient is large. This conclusion is
unrealistic for two reasons:

(a) There may be many points where the gradient is large due to small oscilla-
tions in the image that are not related to real objects. Recall that digital
images are always noisy, and thus there is no reason to assume the existence
or computability of a gradient.

(b) The points where the gradient exceeds a given threshold are likely to form
regions and not curves.

As we emphasized in the Introduction, objection (a) is dealt with by smooth-
ing the image. We associate with the image u0 smoothed versions u(t, ·), where
the scale parameter t indicates the amount of smoothing. In the classical linear
theory, this smoothing is done by convolving u0 with the Gaussian Gt.

33
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34 CHAPTER 4. LINEAR SCALE SPACE AND EDGE DETECTION

One way that objection (b) has been approached is by redefining edge points.
Instead of just saying an edge point is a point x where |Du0(x)| exceeds a
threshold, one requires the gradient to satisfy a maximal property. We illustrate
this in one dimension. Suppose that u ∈ C2(R) and consider the points where
|u′(x)| attains a local maximum. At some of these points, the second derivative
u′′ changes sign, that is, sign(u′′(x− h)) 6= sign(u′′(x + h)) for sufficiently small
h. These are the points where u′′ crosses zero, and they are taken to be the edge
points. Note that this criterion avoids classifying a point x as an edge point if
the gradient is constant in an interval around x. Marr and Hildreth generalized
this idea to two dimensions by replacing u′′ with the Laplacian ∆u, which is
the only isotropic linear differential operator of order two that generalizes u′′

[234]. Haralick’s edge detector is different but in the same spirit [155]. Haralick
gives up linearity and defines edge points as those points where the gradient
has a local maximum in the direction of the gradient. In other words, an edge
point x satisfies g′(0) = 0, where g(t) = |Du(x+ tDu(x)|/|Du(x)|. This implies
that D2u(x)(Du(x), Du(x)) = 0 (see Exercise 4.2). We are now going to state
these two algorithms formally. They are illustrated in Figures 4.2 and 4.3,
respectively.

Algorithm 4.1 (Edge detection: Marr–Hildreth zero-crossings).

(1) Create the multiscale images u(t, ·) = Gt ∗ u0 for increasing values of t.

(2) At each scale t, compute all the points where Du 6= 0 and ∆u changes
sign. These points are called zero-crossings of the Laplacian, or simply
zero-crossings.

(3) (Optional) Eliminate the zero-crossings where the gradient is below some
prefixed threshold.

(4) track back from large scales to fine scales the “main edges” detected at large
scales.

Algorithm 4.2 (Edge detection: The Haralick–Canny edge detector).

(1) As before, create the multiscale images u(t, ·) = Gt ∗u0 for increasing values
of t.

(2) At each scale t, find all points x where Du(x) 6= 0 and D2u(x)(z, z) crosses
zero, z = Du/|Du|. At such points, the function s 7→ u(x + sz) changes
from concave to convex, or conversely, as s passes through zero.

(3) At each scale t, fix a threshold θ(t) and retain as edge points at scale t only
those points found above that satisfy |Du(x)| > θ(t). The backtracking step
across scales is the same as for Marr–Hildreth.

In practice, edges are computed for a finite number of dyadic scales, t = 2n,
n ∈ Z.

4.1.1 Discussion and critique

The Haralick–Canny edge detector is generally preferred for its accuracy to the
Marr–Hildreth algorithm. Their use and characteristics are, however, essentially



“JMMBookOct04”
1/5/2012
page 35

i

i

i

i

i

i

i

i
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Figure 4.1: A three-dimensional representation of the Laplacian of the Gaussian.
This convolution kernel, which is a wavelet, is used to estimate the Laplacian
of an image at different scales of linear smoothing.

the same. There are also many variations—attempted improvements—of the
algorithms we have described, and the following discussion adapts easily to these
related edge detection schemes. The first thing to notice is that, by Proposition
1.5, u(t, ·) = Gt ∗ u0 is a C∞ function for each t > 0 if u0 ∈ F . Thus we can
indeed compute second order differential operators applied to u(t, ·) = Gt ∗ u0,
t > 0. In the case of linear operators like the Laplacian or the gradient, the task
is facilitated by the formula proved in the mentioned proposition. For example,
we have ∆u(t,x) = ∆(Gt ∗ u0)(x) = (∆Gt) ∗ u0(x), where in dimension two
(Figure 4.1),

∆Gt(x) =
|x|2 − 4t

16πt3
e−|x|

2/4t.

In the same way, Haralick’s edge detector makes sense, because u is C∞, at
all points where Du(x) 6= 0. If Du(x) = 0, then x cannot be an edge point, since
u is “flat” there. Thus, thanks to the filtering, there is no theoretical problem
with computing edge points. There are, however, practical objections to these
methods, which we will now discuss.

Linear scale space

The first serious problems are associated with the addition of an extra dimen-
sion: Having many images u(t, ·) at different scales t confounds our understand-
ing of the image and adds to the cost of computation. We no longer have an
absolute definition of an edge. We can only speak of edges at a certain scale.
Conceivably, a way around this problem would be to track edges across scales.
In fact, it has been observed in experiments that the “main edges” persist under
convolution as t increases, but they lose much of their spatial accuracy. On the
other hand, filtering with a sharp low-pass filter, that is, with t small, keeps
these edges in their proper positions, but eventually, as t becomes very small,
even these main edges can be lost in the crowd of spurious edge signals due to
noise and texture. The scale space theory of Witkin proposes to identify the
main edges at some scale t and then to track them backward as t decreases [359].
In theory, it would seem that this method could give an accurate location of the
main edges. In practice, any implementation of these ideas is computationally
costly due to the problems involved with multiple thresholdings and following
edges across scales. In fact, tracking edges across scales is incompatible with
having thresholds for the gradients, since such thresholds may remove edges at
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Figure 4.2: Zero-crossings of the Laplacian at different scales. This figure il-
lustrates the original scale space theory as developed by David Marr [232]. To
extract more global structure, the image is convolved with Gaussians whose
variances are powers of two. One computes the Laplacian of the smoothed
image and displays the lines along which this Laplacian changes sign: the zero-
crossings of the Laplacian. According to Marr, these zero-crossings represent
the “raw primal sketch” of the image, or the essential information on which
further vision algorithms should be based. Above, left to right: the results of
smoothing and the associated Gaussian kernels at scales 1, 2, and 4. Below,
left to right: the zero-crossings of the Laplacian and the corresponding kernels,
which are the Laplacians of the Gaussians used above.

certain scales and not at others. The conclusion is that one should trace all
zero-crossings across scales without considering whether they are true edges or
not. This makes matching edges across scales very difficult. For example, ex-
periments show that zero-crossings of sharp edges that are sparse at small scales
are no longer sparse at large scales. (Figure 4.4 shows how zero-crossings can
be created by linear smoothing.) The Haralick–Canny detector suffers from the
same problems, as is well demonstrated by experiments.

Other problems with linear scale space are illustrated in Figures 4.5 and
4.6. Figure 4.5 illustrates how linear smoothing can create new gray levels and
new extrema. Figure 4.6 shows that linear scale space does not maintain the
inclusion between objects. The shape inclusion principal will be discussed in
Chapter 21.

We must conclude that the work on linear edge detection has been an at-
tempt to build a theory that has not succeeded. After more than thirty years
of activity, it has become clear that no robust technology can be based on these
ideas. Since edge detection algorithms depend on multiple thresholds on the
gradient, followed by “filling-the-holes” algorithms, there can be no scientific
agreement on the identification of edge points in a given image. In short, the
problems associated with linear smoothing followed by edge detection have not
been resolved by the idea of chasing edges across scales.
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Figure 4.3: Canny’s edge detector. These images illustrate the Canny edge
detector. Left column: result of the Canny filter without the threshold on the
gradient. Middle column: result with a visually “optimal” scale and an image-
dependent threshold (from top to bottom: 15, 0.5, 0.6). Right column: result
with a fixed gradient threshold equal to 0.7. Note that such an edge detection
theory depends on no fewer than two parameters that must be fixed by the user:
smoothing scale and gradient threshold .

Figure 4.4: Zero-crossings of the Laplacian of a synthetic image. Left to right:
the original image; the image linearly smoothed by convolution with a Gaussian;
the sign of the Laplacian of the filtered image (the gray color corresponds to
values close to 0, black to clear-cut negative values, white to clear-cut positive
values); the zero-crossings of the Laplacian. This experiment clearly shows a
drawback of the Laplacian as edge detector.

Contrast invariance

The use of contrast-invariant operators can solve some of the technical problems
associated with linear smoothing and other linear image operators. An (image)
operator u 7→ Tu is contrast invariant if T commutes with all nondecreasing
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(a) (b) (c)

Figure 4.5: The heat equation creates structure. This experiment shows that
linear scale space can create new structures and thus increase the complexity of
an image. Left to right: The original synthetic image (a) contains three gray
levels. The black disk is a regional and absolute minimum. The “white” ring
around the black disk is a regional and absolute maximum. The outer gray ring
has a gray value between the other two and is a regional minimum. The second
image (b) shows what happens when (a) is smoothed with the heat equation:
New local extrema have appeared. Image (c) illustrates the action on (a) of a
contrast-invariant local filter, the iterated median filter, which is introduced in
Chapter 14.

functions g, that is, if

g(Tu) = T (g(u)). (4.1)

If image analysis is to be robust, it must be invariant under changes in lighting
that produce contrast changes. It must also be invariant under the nonlinear
response of the sensors used to capture an image. These, and perhaps other,
contrast changes are modeled by g. If g is strictly increasing, then relation (4.1)
ensures that the filtered image Tu = g−1(T (g(u))) does not depend on g. A
problem with linear theory is that linear smoothing, that is, convolution, is not
generally contrast invariant:

g(k ∗ u) 6= k ∗ (g(u)).

In the same way, the operator Tt that maps u0 into the solution of the heat
equation, u(t, ·) is not generally contrast invariant. In fact, if g is C2, then

∂(g(u))
∂t

= g′(u)
∂u

∂t

and

∆(g(u)) = g′(u)∆u + g′′(u)|Du|2.

Exercise 4.1. Prove this last relation. Prove that if g(s) = as + b then g(u) satisfies
the heat equation if u does.
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Figure 4.6: Violation of the inclusion by the linear scale space. Top, left: an
image that contains a black disk enclosed by a white disk. Top, right: At
a certain scale, the black and white circles mix together. Bottom, left: The
boundaries of the two circles. Bottom, right: After smoothing with a certain
value of t, the inclusion that existed for very small t in no longer preserved. We
display the level lines of the image at levels multiples of 16.

4.2 Exercises

Exercise 4.2. Define an edge point x in a smooth image u as a point x at which g(t)
attains a maximum, where

g(t) = |Du

(
x + t

Du(x)

|Du(x)|
)
|.

Prove by differentiating g(t) that edge points satisfy D2u(x)(Du(x), Du(x)) = 0

Exercise 4.3. Construct simple functions u, g, and k such that g(k ∗ u) 6= k ∗ (g(u)).

Exercise 4.4. Consider the Perona–Malik equation in divergence form:

∂u

∂t
= div(g(|Du|)Du), (4.2)

where g(s) = 1/(1+λ2s2). It is easily checked that we have a diffusion equation when
λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. To see this, consider
the second derivative of u in the direction of Du,

uξξ = D2u

(
Du

|Du| ,
Du

|Du|
)

,
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and the second derivative of u in the orthogonal direction,

uηη = D2u

(
Du⊥

|Du| ,
Du⊥

|Du|
)

,

where Du = (ux, uy) and Du⊥ = (−uy, ux). The Laplacian can be rewritten in the
intrinsic coordinates (ξ, η) as ∆u = uξξ + uηη. Prove that the Perona–Malik equation
then becomes

∂u

∂t
=

1

1 + λ2|Du|2 uηη +
1− λ2|Du|2

(1 + λ2|Du|2)2 uξξ.

Interpret the local behavior of the equation as a heat equation or a reverse heat
equation according to the size of |Du| compared to λ−1.

4.3 Comments and references

Scale space. The term “scale space” was introduced by Witkin in 1983. He
suggested tracking the zero-crossings of the Laplacian of the smoothed image
across scales [359]. Yuille and Poggio proved that these zero-crossings can be
tracked for one-dimensional signals [365]. Hummel and Moniot [171, 175] and
Yuille and Poggio [366] analyzed the conjectures of Marr and Witkin according
to which an image is completely recoverable from its zero-crossings at different
scales. Mallat formulated Marr’s conjecture as an algorithm in the context of
wavelet analysis. He replaced the Gaussian with a two-dimensional cubic spline,
and he used both the zero-crossings of the smoothed images and the nonzero
values of the gradients at these points to reconstruct the image. This algorithm
works well in practice, and the conjecture was that these zero-crossings and
the values of the gradients determined the image. A counterexample given by
Meyer shows that this is not the case. Perfect reconstruction is possible in the
one-dimensional case for signals with compact support if the smoothing kernel is
the Tukey window, k(x) = 1 + cos x for |x| ≤ π and zero elsewhere. An account
of the Mallat conjecture and these examples can be found in [181]. Koenderink
presents a general and insightful theory of image scale space in [198].

Gaussian smoothing and edge detection. The use of Gaussian filtering
in image analysis is so pervasive that it is impossible to point to a “first paper.”
It is, however, safe to say that David Marr’s famous book, Vision [232], and the
original paper by Hildreth and Marr [234] have had an immeasurable impact
on edge detection and image processing in general. The term “edge detection”
appeared as early as 1959 in connection with television transmission [184]. The
idea that the computation of derivatives of an image necessitates a previous
smoothing has been extensively developed by the Dutch school of image analysis
[49, 129]. See also the books by Florack [124], Lindeberg [211], and Romeny
[331], and the paper [115]. Haralick’s edge detector [155], as implemented by
Canny [59], is probably the best known image analysis operator. A year after
Canny’s 1986 paper, Deriche published a recursive implementation of Canny’s
criteria for edge detection [101].
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Chapter 5

Four Algorithms to Smooth
a Shape

In this short but important chapter, we discuss algorithms whose aim it is
to smooth shapes. Shape must be understood as a rough data which can be
extracted from an image, either a subset of the plane, or the curve surrounding it.
Shape smoothing is directed at the elimination of spurious, often noisy, details.
The smoothed shape can then be reduced to a compact and robust code for
recognition. The choice of the right smoothing will make us busy throughout
the book. A good part of the solution stems from the four algorithms we describe
and their progress towards more robustness, more invariance and more locality.
What we mean by such qualities will be progressively formalized. We will discuss
two algorithms which directly smooth sets, and two which smooth Jordan curves.
One of the aims of the book is actually to prove that both approaches, different
though they are, eventually yield the very same process, namely a curvature
motion.

5.1 Dynamic shape

In 1986, Koenderink and van Doorn defined a shape in RN to be a closed subset
X of RN [201]. They then proposed to smooth the shape by applying the heat
equation ∂u/∂t −∆u = 0 directly to 1X , the characteristic function of X. Of
course, the solution Gt∗1X is not a characteristic function. The authors defined
the evolved shape at scale t to be

Xt = {x | u(t,x) ≥ 1/2}.

The value 1/2 is chosen so the following simple requirement is satisfied: Suppose
that X is the half-plane X = {(x, y) | (x, y) ∈ R2, x ≥ 0}. The requirement is
that this half plane doesn’t move,

X = Xt = {(x, y) | Gt ∗ 1X(x, y) ≥ λ},

and this is true only if λ = 1/2. There are at least two problems with dynamic
shape evolution for image analysis. The first concerns nonlocal interactions, as
illustrated in Figure 5.1. Here we have two disks that are near one another.

41
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42 CHAPTER 5. FOUR ALGORITHMS TO SMOOTH A SHAPE

Figure 5.1: Nonlocal interactions in the dynamic shape method. Left to right:
Two close disks interact as the scale increases. This creates a new, qualitatively
different, shape. The change of topology, at the scale where the two disks
merge into one shape, also entails the appearance of a singularity (a cusp) on
the shape(s) boundaries.

The evolution of the union of both disks, considered as a single shape, is quite
different from the evolution of the disks separately. A related problem, also
illustrated in Figure 5.1, is the creation of singularities. Note how a singularity
in orientation and the curvature of the boundary of the shape develops at the
point where the two disks touch. Figure 5.2 further illustrates the problems
associated with the dynamic shape method.

5.2 Curve evolution using the heat equation

We consider shapes in R2 whose boundaries can be represented by a finite num-
ber of simple closed rectifiable Jordan curves. Thus, each curve we consider can
be represented by a continuous mapping f : [0, 1] → R2 such that f is one-to-one
on (0, 1) and f(0) = f(1), and each curve has a finite length. We also assume
that these curves do not intersect each other. We will focus on smoothing one
of these Jordan curves, which we call C0. We assume that C0 is parameterized
by s ∈ [0, L], where L is the length of the curve. Thus, C0 is represented as
x0(s) = (x(s), y(s)), where s is the length of the curve between x0(0) and x0(s).

At first glance, it might seem reasonable to smooth C0 by smoothing the
coordinate functions x and y separately. If this is done linearly, we have seen
from Theorem 2.3 that the process is asymptotic to smoothing with the heat
equation. Thus, one is led naturally to consider the vector heat equation

∂x
∂t

(t, s) =
∂2x
∂s2

(t, s) (5.1)

with initial condition x(0, s) = x0(s). If x(t, s) = (x(t, s), y(t, s)) is the solution
of (5.1), then we know from Proposition 1.9 that

inf
s∈[0,L]

x0(s) ≤ x(t, s) ≤ sup
s∈[0,L]

x0(s),

inf
s∈[0,L]

y0(s) ≤ y(t, s) ≤ sup
s∈[0,L]

y0(s),

for s ∈ [0, L] and t ∈ [0, +∞). Thus, the evolved curves Ct remain in the
rectangle that held C0. Also, we know from Proposition 1.5 that the coordinate
functions x(t, ·) and y(t, ·) are C∞ for t > 0. There are, however, at least two
reasons that argue against smoothing curves this way:
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5.3. RESTORING LOCALITY AND CAUSALITY 43

Figure 5.2: Nonlocal behavior of shapes with the dynamic shape method. This
image displays the smoothing of two irregular shapes by the dynamic shape
method (Koenderink–van Doorn). Top left: initial image, made of two irregular
shapes. From left to right, top to bottom: dynamic shape smoothing with
increasing Gaussian variance. Notice how the shapes merge more and more.
We do not have a separate analysis of each shape but rather a “joint analysis”
of the two shapes. The way the shapes merge is of course sensitive to the initial
distance between the shapes. Compare with Figure 5.4.

(1) When t > 0, s is no longer a length parameter for the evolved curve Ct.

(2) Although x(t, ·) and y(t, ·) are C∞ for t > 0, this does not imply that the
curves Ct have similar smoothness properties. In fact, it can be seen from
Figure 5.3 that it is possible for an evolved curve to cross itself and it is
possible for it to develop singularities.

How is this last mentioned phenomenon possible ? It turns out that one can
parameterize a curve with corners or cusps with a very smooth parameterization:
see Exercise 5.1.

In image processing, we say that a process that introduces new features,
such as described in item (2) above, is not causal. 1

5.3 Restoring locality and causality

Our main objective is to redefine the smoothing processes so they are local and
do not create new singularities. This can be done by alternating a small-scale
linear convolution with a natural renormalization process.

1This informal definition should not be confused with the use of “causality,” as it is used,
for example, when speaking about filters: A filter F is said to be causal, or realizable, if the
equality of two signals s0 and s1 up to time t0 implies that Fs0(t) = Fs1(t) for the same
period.



“JMMBookOct04”
1/5/2012
page 44

i

i

i

i

i

i

i

i

44 CHAPTER 5. FOUR ALGORITHMS TO SMOOTH A SHAPE

"A" "B"

"C" "D"

Figure 5.3: Curve evolution by the heat equation. The coordinates of the curves
are parameterized by the arc length and then smoothed as real functions of the
length using the heat equation. From A to D: the coordinates are smoothed
with an increasing scale. Each coordinate function therefore is C∞; the evolving
curve can, however, develop self-crossings (as in C) or singularities (as in D).

5.3.1 Localizing the dynamic shape method

In the case of dynamic shape analysis, we define an alternate dynamic shape
algorithm as follows:

Algorithm 5.1 (The Merriman–Bence–Osher algorithm).

(1) Convolve the characteristic function of the initial shape X0 with Gh, where
h is small.

(2) Define X1 = {x | Gh ∗ 1X0 ≥ 1/2}.
(3) Set X0 = X1 and go back to (1).

This is an iterated dynamic shape algorithm. The dynamic shape method
itself is an example of a median filter, which will be defined in Chapter 14. The
Merriman–Bence–Osher algorithm is thus an iterated median filter (see Figure
5.4). We will see in Chapters 18 and 19 that median filters have asymptotic
properties that are similar to those expressed in Theorem 2.3. In the case of
median filters, the associated partial differential equation will be a curvature
motion equation (defined in Chapter 16).

5.3.2 Renormalized heat equation for curves

In 1992, Mackworth and Mokhtarian noticed the loss of causality when the heat
equation was applied to curves [223]. Their method to restore causality looks,
at least formally, like the remedy given for the nonlocalization of the dynamic
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Figure 5.4: The Merriman–Bence–Osher shape smoothing method is a localized
and iterated version of the dynamic shape method. A convolution of the binary
image with small-sized Gaussians is alternated with mid-level thresholding. It
uses the same initial data (top, left) as in Figure 5.2. From left to right, top
to bottom: smoothing with increasing scales. Notice that the shapes remain
separate. In fact, their is no interaction between the evolving shapes. Each one
evolves as if the other did not exist.

shape method. Instead of applying the heat equation for relatively long times
(or, equivalently, convolving the curve x with the Gaussian Gt for large t), they
use the following algorithm:

Algorithm 5.2 (Renormalized heat equation for curves).

(1) Convolve the initial curve x0, parameterized by its length parameter s0 ∈
[0, L0], with the Gaussian Gh, where h is small.

(2) Let Ln denote the length of the curve xn obtained after n iterations and let
sn denote its length parameter. For n ≥ 1, write x̃n+1(sn) = Gh ∗ xn(sn).
Then reparameterize x̃n+1 by its length parameter sn+1 ∈ [0, Ln+1], and
denote it by xn+1.

(3) Iterate.

This algorithm is illustrated in Figure 5.5. It should be compared with
Figure 5.3.

Theorem 5.1. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L]. Then for small h,

Gh ∗ x(s)− x(s) = h
∂2x
∂s2

+ o(h). (5.2)
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"A" "B"

"C" "D"

Figure 5.5: Curve evolution by the renormalized heat equation (Mackworth–
Mokhtarian). After each smoothing step, the coordinates of the curve are repa-
rameterized by the arc length of the smoothed curve. From A to D: the curve is
smoothed with an increasing scale. Note that, in contrast with the linear heat
equation (Figure 5.3), the evolving curve shows no singularities and does not
cross itself.

This theorem is easily checked, see Exercise 5.2
In view of (5.2) and what we have seen regarding asymptotic limits in The-

orem 2.3 and Exercise 2.5, it is reasonable to conjecture that, in the asymptotic
limit, Algorithm 5.2 will yield the solution of following evolution equation:

∂x
∂t

=
∂2x
∂s2

, (5.3)

where x0 = x(0, ·). It is important to note that (5.3) is not the heat equa-
tion (5.1). Indeed, from Algorithm 5.2 we see that s must denote the length
parameter of the evolved curve x(t, ·) at time t. In fact ∂2x/∂s2 has a geo-
metric interpretation as a curvature vector. We will study this nonlinear curve
evolution equation in Chapter 16.

5.4 Exercises

Exercise 5.1. Construct a C∞ mapping f : [0, 1] → R2 such that the image of [0, 1]
is a square. This shows that a curve can have a C∞ parameterization without being
smooth.

Exercise 5.2. Prove Theorem 5.1. If x is a C3 function of s, then the result follows
directly from Theorem 2.2. The result holds, however, for a C2 curve.
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5.5 Comments and references

Dynamic shape, curve evolution, and restoring causality. Our account
of the dynamic shape method is based on the well-known paper by Koenderink
and van Doorn in which they introduced this notion [201]. The curve evolution
by the heat equation is from the first 1986 version of curve analysis proposed
by Mackworth and Mokhtarian [222]. See also the paper by Horn and Weldon
[165]. There were model errors in the 1986 paper [222] that were corrected
by the authors in their 1992 paper [223]. There, they also proposed the correct
intrinsic equation. However, this 1992 paper contains several inexact statements
about the properties of the intrinsic equation. The correct theorems and proofs
can be found in a paper by Grayson written in 1987 [148]. The algorithm that
restores causality and locality to the dynamic shape method was discovered by
Merriman, Bence, and Osher, who devised this algorithm for a totally different
reason: They were looking for a clever numerical implementation of the mean
curvature equation [240].

Topological change under smoothing. We have included several figures
that illustrate how essential topological properties of an image change when the
image is smoothed with the Gaussian. Damon has made a complete analysis of
the topological behavior of critical points of an image under Gaussian smoothing
[95]. This analysis had been sketched in [364].
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Chapter 6

Affine Invariant Image
Comparison

If a physical object has a smooth or piecewise smooth boundary, its images ob-
tained by cameras in varying positions undergo smooth apparent deformations.
These deformations are locally well approximated by affine transforms of the
image plane.

In consequence the solid object recognition problem has often been led back
to the computation of affine invariant image local features. Such invariant fea-
tures could be obtained by normalization methods, but no fully affine normaliza-
tion method exists for the time being. As a matter of fact, the scale invariance,
which actually means invariance to blur, is only dealt with by methods inspired
from the scale space theory, like the SIFT method. By simulating zooms out,
this method normalizes the four translation, rotation and scale (blur) param-
eters, out of the six parameters of an affine transform. Affine normalization
methods like MSER or Hessian Affine normalize with respect to all six param-
eters of the affine transform, but this normalization is imperfect, not dealing
rigorously with blur for MSER, or not starting with affine invariant scale space
extrema for Hessian Affine.

The method proposed in this chapter, affine SIFT (A-SIFT), simulates all
image views obtainable by varying the two camera parameters left over by the
SIFT method. Then it normalizes the other four parameters by simply using the
SIFT method itself. The two additional parameters are the angles (a longitude
and a latitude) defining the camera axis orientation. Mathematical arguments
will be given in Chapter 7 to prove that the resulting method is fully affine
invariant, up to an arbitrary precision.

Against any prognosis, simulating all views depending on the two camera
orientation parameters is feasible with no dramatic computational load. The
method permits to reliably identify features that have undergone tilts of large
magnitude, up to 30 and more, while state-of-the-art methods do not exceed
tilts of 2.5 (SIFT) or 4.5 (MSER). This chapter puts in evidence the role of high
transition tilts: while a tilt from a frontal to an oblique view exceeding 6 is rare,
higher transition tilts are common as soon as two oblique views of an object are
compared (see Fig. 6.1). Thus, a fully affine invariance is required for 3D scene
analysis. This fact is substantiated by many experiments.

49
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50 CHAPTER 6. AFFINE INVARIANT IMAGE COMPARISON

Figure 6.1: High transition tilts

Section 6.1 gives the main decomposition formula of affine maps used through-
out the paper and its geometric interpretation in terms of cameras at infinity.
Section 8.1 describes and discusses a method that attempts affine invariance
by normalization: MSER. Section 6.2 describes the A-SIFT algorithm and dis-
cusses precursors. Section 6.4 addresses the critical sampling issues for the
new-simulated parameters in A-SIFT (tilt and longitude). It then provides a
complexity analysis and a fast version of the method. Section 6.3 presents and
experiments the crucial notion of transition tilt.

6.1 The affine camera model

The general (solid) shape recognition problem starts with several photographs of
a physical object, possibly taken with different cameras and view points. These
digital images are the query images. Given other digital images, the search
images, the question is whether some of them contain, or not, a view of the
object taken in the query image. A solid object’s view can deform from an image
to another for two obvious reasons: First, because it underwent some physical
deformation, and second, because the change of camera position induced an
apparent deformation.

Image distortions arising from viewpoint changes can be locally modeled by
affine planar transforms, provided the object’s boundaries are piecewise smooth.
In other terms, a perspective effect can be modeled by a combination of several
different affine transforms in different image regions (see Fig. 6.3). Indeed, by
first order Taylor formula, any planar smooth deformation (x, y) → (X, Y ) =
(F1(x, y), F2(x, y)) can be locally approximated around each point (x0, y0) →
(X0, Y0) by the affine map

(
X−X0

Y−Y0

)
=

[
∂F1
∂x (x0, y0) ∂F1

∂y (x0, y0)
∂F2
∂x (x0, y0) ∂F2

∂y (x0, y0)

] (
x−x0

y−y0

)
+ O

(
(x−x0)2 + (y−y0)2

(x−x0)2 + (y−y0)2

)
.

(6.1)
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6.1. THE AFFINE CAMERA MODEL 51

Figure 6.2: Geometric interpretation of the Taylor formula (6.1): Although
the global deformation of each wall is strongly projective (a rectangle becomes
a trapezoid), the it local deformation is affine: each tile on the pavement is
almost a parallelogram. Indeed, projective maps are C1 and therefore locally
affine. The painting, due to Uccello, is one of the first Renaissance paintings with
a correct geometric perspectives following the rules invented by Brunelleschi.

Figure 6.3: Another way to understand why the local object apparent defor-
mations are affine. Local planar homographies are equivalent to multiple local
cameras at infinity. Cameras at infinity generate affine deformations of planar
objects. This is true even if the object under observation is curved, because it
is then locally planar. Thus, the overall apparent deformation of the object is
C1, and Formula (6.1) applies.
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Thus, all object deformations and all camera motions are locally approx-
imated by affine transforms. For example, in the case of a flat object, the
deformation induced by a camera motion is a planar homographic transform,
which is smooth and therefore locally tangent to affine transforms.

The converse statement is true: any affine transform with positive determi-
nant can be interpreted as the apparent deformation induced on a planar object
by a camera motion, the camera being assumed far away from the object. Thus,
under the local smoothness assumption of the object’s boundary, the (local) de-
formation model of an image u(x, y) under a deformation of the object or under
a camera motion is

u(x, y) → u(ax + by + e, cx + dy + f),

where the mapping
(

x
y

)
→

[
a b
c d

](
x
y

)
+

(
e
f

)

is any affine transform of the plane with positive determinant. The above state-
ments rely on the next crucial following decomposition formula.

Theorem 6.1. Any linear planar map whose matrix A has strictly positive
determinant, and which is not a similarity, has a unique decomposition

A=HλR1(ψ)TtR2(φ)=λ

[
cos ψ − sin ψ
sinψ cos ψ

] [
t 0
0 1

] [
cosφ − sinφ
sin φ cosφ

]
(6.2)

where λ > 0, λt is the determinant of A, Ri are rotations, φ ∈ [0, π[, and Tt is
a tilt, namely a diagonal matrix with a first eigenvalue equal to t ≥ 1 and the
second one equal to 1.

Proof. Consider the real symmetric positive semi-definite matrix AtA, where
At denotes the transposed matrix of A. By classic spectral theory there is an
orthogonal transform O such that AtA = ODOt where D a diagonal matrix
with ordered eigenvalues λ1 ≥ λ2. Set O1 = AOD− 1

2 . Then

O1O
t
1 = AOD− 1

2 D− 1
2 OtAt = AOD−1OtAt = A(AtA)−1At = I.

Thus, there are orthogonal matrices O1 and O such that

A = O1D
1
2 Ot. (6.3)

Since the determinant of A is positive, the product of the determinants of O and
O1 is positive. If both determinants are positive, then O and O1 are rotations
and we can write A = R(ψ)DR(φ). If φ is not in [0, π[, changing φ into φ−π and
ψ into ψ + π ensures that φ ∈ [0, π[. If the determinants of O and O1 are both

negative, replacing O and O1 respectively by
( −1 0

0 1

)
O and

( −1 0
0 1

)
O1

makes them into rotations without altering (6.3), and we can as above ensure
φ ∈ [0, π[ by adapting φ and ψ. The final decomposition is obtained by taking
for λ the smaller eigenvalue of D

1
2 . ¤
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Exercise 6.1. The aim of the exercise is to show the uniqueness of the decomposition

(6.2). Assume there are two decompositions λR1

[
t 0
0 1

]
R2 = λ′R′1

[
t′ 0
0 1

]
R′2. Using

the uniqueness of the eigenvalues of a matrix show first that λ = λ′, t = t′. You
will obtain a relation of the form R1DR2 = D where D is diagonal and R1 and R2

are rotations. Deduce from this relation that R1D
2Rt

1 = D2. Deduce from this last
relation the form of R1, conclude carefully.

Figure 6.4: Geometric interpretation of the decomposition formula (6.2).

Exercise 6.2. Consider two cameras looking at a flat square piece of landscape which
is assimilated to an infinite resolution image u0(x, y) (See Fig. 6.4). The first camera
is very far above the landscape and looking down perpendicularly to the landscape.

(i) Assuming the first camera is pin-hole, show that the generated image is a square

image u0(µR(ψ)(x, y)). Consider the coordinate system (O,~i,~j,~k) such that (~i,~j)
are the coordinate vectors in the square image u0, parallel to the image sides,
and O is the image center.

(ii) Assume a second pinhole camera has its optical axis pointing down to O. Assume
its optical axis is supported by the unit vector with coordinates
(sin θ cos φ, sin θ sin φ, cos θ). Assume again that this camera is very far from
the square piece of landscape, so the light rays coming from the landscape to
the camera are almost parallel. Thus the image formation on this second cam-
era is assimilated to an orthogonal projection of the landscape u0 onto a plane
passing by the camera center C and orthogonal to the optical axis. Taking ad-
equate coordinates on this coordinate plane, show that the generated image is

u0

(
R(ψ1)Tt1R(φ1)

(
x
y

))
for some values of ψ1, φ1, t, that you will relate to

φ, ψ, and θ.

Fig. 6.4 shows a camera motion interpretation of this affine decomposition:
φ and θ = arccos 1/t are the viewpoint angles and ψ parameterizes the camera
spin. Thus, this figure illustrates the four main parameters in the affine image
deformation caused by a camera motion, starting from a frontal view u. The
camera is assumed to stay far away from the image. The camera can first
move parallel to the object’s plane: this motion induces a translation T that is
not represented here. The camera can rotate around its optical axis (rotation
parameter ψ). Its optical axis can take a θ angle with respect to the normal to
the image plane u. This parameter is called latitude. The plane containing the
normal and the new position of the optical axis makes an angle φ with a fixed
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vertical plane. This angle is called longitude. Last but not least, the camera
can move forward or backward. This is the zoom parameter λ. The motion of
a frontal view λ = 1, t = 1, φ = ψ = 0 to a slanted view corresponds to the
image deformation u(x, y) → u(A(x, y)) given by (6.2).

6.2 A-SIFT : combining simulation and normal-
ization

The idea of combining simulation and normalization is the main successful ingre-
dient of the SIFT method. This method normalizes rotations and translations,
but simulates all zooms out of the query and of the search images. Because of
the feature, it is the only fully scale invariant method.

A-SIFT simulates with enough accuracy all distortions caused by a variation
of the direction of the optical axis of a camera (two parameters). Then it
normalizes the other four by the SIFT method, or any other method that is
rotation, translation, and scale invariant. More specifically, the method proceeds
by the following steps. (See Fig. 6.5.)

A-SIFT algorithm

1. Each image is transformed by simulating all possible affine distortions
caused by the change of orientation of the camera axis of camera from
a frontal position. These distortions depend upon two parameters: the
longitude φ and the latitude θ. The images undergo φ-rotations followed
by tilts with parameter t = | 1

cos θ | (a tilt by t in the direction of x is the
operation u(x, y) → u(tx, y)). For digital images, the tilt is performed
as t-subsampling, and therefore requires the previous application of an
antialiasing filter in the direction of x, namely the convolution by a gaus-
sian with standard deviation c

√
t2 − 1. For good antialiasing, c ' 0.8, see

Chapter ??.

2. These rotations and tilts are performed for a finite and small number of
latitudes and longitudes, the sampling steps of these parameters ensuring
that the simulated images keep close to any other possible view generated
by other values of φ and θ.

3. All simulated images are compared by SIFT.

4. To be more specific, the latitudes θ are such that the associated tilts follow
a geometric series 1, a, a2, , . . . , an, with a > 1. The choice a =

√
2 is

a good compromise between accuracy and sparsity. The value n can go
up to 6 or more, if the tilts are simulated on the query and the searched
image, and up to 10 and more if the tilts are simulated on one image only.
That way, transition tilts going up to 64 and more can be explored.

5. The longitudes φ are for each tilt an arithmetic series 0, b/t, . . . , kb/t,
where b ' 72◦ seems again a good compromise, and k is the last integer
such that kb/t < 180◦.
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Figure 6.5: Overview of the A-SIFT algorithm. The square images A and B
represent the compared images u and v. A-SIFT simulates arbitrary camera
changes of direction by applying rotations followed by a tilts to both images.
The simulated images, represented by the parallelograms, are then compared
with an image matching algorithm like SIFT, that is invariant to similarity
transformations, i.e., invariant to scale change, rotation and translation.

6.3 High transition tilts

Equation (6.2) and its geometric interpretation in Fig. 6.4 are crucial to the
scopes of this study. This last figure associates any linear map A with positive
singular eigenvalues with the planar deformation u(A(x, y)) of a frontal view
u(x, y), when the camera changes position. The parameter λ corresponds to
a change of scale. The non critical translation parameter has been eliminated
by assuming that the camera axis meets the image plane at a fixed point. Let
us now consider the case where two camera positions, not necessarily frontal
are at stake, corresponding to two different linear maps A and B. (Again, the
translation parameter is left out of the discussion by fixing the intersection of the
camera axis with image plane.) This physical situation is the generic one; when
taking several snapshots of a scene, there is no particular reason why objects
would be taken frontally. The resulting images are u1(x, y) = u(A(x, y)) and
u2(x, y) = u(B(x, y)). Let us now take one of these images as reference image,
and the other one as search image.

Definition 6.2. Given two views of a planar image, u1(x, y) = u(A(x, y)) and
u2(x, y) = u(B(x, y)), we call transition tilt τ(u1, u2) and transition rotation
φ(u1, u2) the unique parameters such that

BA−1 = HλR1(ψ)TτR2(φ), (6.4)

with the notation of Formula (6.2).

It is an easy check that the transition tilt is symmetric, namely τ(u1, u2) =
τ(u2, u1). Fig. 6.6 illustrates the affine transition between two images taken
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Figure 6.6: Illustration of the difference between absolute tilt and transition
tilt.

from different viewpoints, and in particular the difference between absolute tilt
and transition tilt. The camera is first put in two positions corresponding to
absolute tilts t and t′, but with φ = φ′. The transition tilt between the resulting
images v and v′ is τ = t′/t, assuming t′ = max(t′, t). On the second illustration
of Fig. 6.6, the tilts are made in two orthogonal directions: φ = φ′ + π/2. Then
an easy calculation shows that the transition tilt between v and v′ is the product
τ(v, v′) = tt′. Thus, two moderate absolute tilts can lead to a large transition tilt!
In the first case considered in the figure, the transition tilt is

√
3 and therefore

smaller than the absolute tilts. In the second case, the tilt is tt′ = 8. Since in
realistic cases the tilt can go up to 6 or even 8, is easily understood that the
transition tilt can go up to 36, 84, and more.
Exercise 6.3. The aim of the exercise is to prove that, given two views u = Au0 and
v = Bu0 of a same image, with absolute tilts s and t satisfying t ≥ s, the transition
tilt τ = τ(BA−1) between u and v satisfies t

s
≤ τ ≤ st.

(i) Set A = HλQ1TsQ2 and B = HµR1TsR2, where Q1, Q2, R1, R2 are rotations, Hλ

and Hµ homotheties and Ts and Tt tilts with t ≥ s. Show first that τ(BA−1) =
τ(TtR2Q

−1
2 T−1

s ).

(ii) Deduce that if Q2 = R2, then τ(BA−1) = t
s
.

(iii) Deduce also that if R2Q
−1
2 = R(π

2
) then τ(BA−1) = st.

(iv) Set R(φ) = R2Q
−1
2 . Thus τ(BA−1) = τ(C), with C =: TtR(φ)Ts−1 Compute

the matrix CtC. Check that its determinant is det(CtC) = t2s−2 and that its
trace is tr(CtC) = (s−2 − 1)(t2 − 1) cos2 ϕ + s−2 + t2.

(v) Show that the eigenvalues λ1 ≥ λ2 of CtC satisfy t2

s2 ≤ λ1
λ2
≤ t2s2.

(vi) Conclude.

Each recognition method can be characterized by its transition tilt, namely
the variation in relative observation angle compatible with recognition. Fig.
6.13 shows the regions of the observation half sphere that can be attained for
a given transition tilt, from a fixed viewpoint with various tilts. This figure
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shows perspective and zenith views of the observation half sphere. The central
point of the bright region on the observation sphere is the original viewpoint
from which an image has been taken. The rest of the bright region depicts the
attainable observation region, namely the subset of the observation half sphere
for which recognition succeeds for the given transition tilt. The latitude angle of
the first image is respectively θ = 45, 60, 70, 80◦ that correspond respectively
to the absolute tilts t =

√
2, 2, 2.9, 5.8. The three columns show the attainable

regions on the half sphere for transition tilts t < 2.5, 5, , and 40. From the
strong 80◦, latitude, it needs a τ = 40 transition tilt to attain the rest of the
sphere! SIFT and MSER only attain small regions.

Fig. 6.7 shows the A-SIFT results for a pair of images under orthogonal
viewpoints (transition rotation φ = 90◦) that leads to an extreme transition tilt
t ≈ 37. This is not at all an exceptional situation. It just so happens that the
object’s planar surface is observed at the same latitude by both views with a tilt
t ' t′ ' 6. This figure shows two snapshots of a magazine lying on a table, not
even really flat, and with a non lambertian surface plagued with reflections. The
difference of longitudes being about 90 degrees, the transition tilt between both
images is surprisingly high: τ = tt′ ' 37. Thus, it is many times larger than
the transition tilt attainable with SIFT or MSER. A-SIFT finds 120 matches
out of which only 4 are wrong.

Figure 6.7: Top: Image pair with transition tilt t ≈ 37. (SIFT, Harris-Affine,
Hessian-Affine and MSER fail completely.) Bottom: A-SIFT finds 120 matches
out which 4 are false. See comments in text.

The relevance of the notion of transition tilt is corroborated by the fact that
the highest transition tilt τmax permitting to match two images with absolute
tilts t and t′ is fairly independent from t and t′. It has been experimentally
checked that for SIFT τmax ' 2.5 and for MSER τmax ' 4.

To demonstrate this for SIFT, the transition tilts attainable by SIFT have
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been explored by systematic tilt simulations and tests. The experiments have
been performed in the most favorable conditions for SIFT. The seed image u0 is
a high quality frontal view of the Graffiti series. Tilted views from this frontal
view were simulated by subsampling the image in one direction by a factor

√
t,

and oversampling the image in the orthogonal direction by the same factor. That
way, the absolute tilt is t, but the image area is not decreased. A set of tilted-
rotated images u1 = u0(t1, 0) and u2 = u(t2, φ) was generated by this method
from u with absolute tilts t1 = (

√
2)k, k = 1, 2, . . . , 5, t2 = (2

1
4 )l, l = 1, 2, . . . ,

14, and φ2 in a dense subset of [0, 90◦]. The table shows for each pair t1, t2 the
maximal longitude φmax ensuring that u1(t1, 0◦) and u2(t2, φmax) match. On
the right of φmax, the table displays in each box the corresponding transition
tilt τ(t1, 0, t2, ϕmax). Conspicuously enough, τmax is most of the time close to
2.5. This experiment, and other similar ones, substantiate the empirical law
that SIFT works for comparing images with transition tilts smaller than 2.5.
In all of these tests, success with SIFT means that at least 20 correct SIFT
descriptors, or SIFs, have been found.

Figure 6.8: Top and bottom: SIFT detects respectively 234 and 28 matches
between a frontal image and two images with tilts t ≈ 2 and t ≈ 2.3. This latter
value is close to the limiting tilt for SIFT to work.
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t1 =
√

2 t1 = 2 t1 = 2
√

2 t1 = 4 t1 = 4
√

2
t2 = 21/4 90◦/1.7 60◦/2.2 0◦/2.4
t2 = 21/2 90◦/2.0 56◦/2.4 11◦/2.1
t2 = 23/4 90◦/2.4 50◦/2.6 20◦/2.1 0◦/2.4
t2 = 2 63◦/2.6 36◦/2.4 20◦/2.1 9◦/2.2

t2 = 2× 21/4 37◦/2.4 30◦/2.3 23◦/2.3 9◦/1.9
t2 = 2× 21/2 18◦/2.6 22◦/2.2 24◦/2.6 12◦/2.0 0◦/1.4
t2 = 2× 23/4 6◦/2.4 16◦/2.2 21◦2.6 16◦/2.5 5◦/1.4

t2 = 4 0◦/2.8 9◦/2.2 18◦/2.6 14◦/2.4 9◦/1.8
t2 = 4× 21/4 4◦/2.4 11◦/2.2 12◦/2.3 8◦/2.0
t2 = 4× 21/2 6◦/2.2 7◦/1.9 8◦/2.3
t2 = 4× 23/4 0◦/2.4 5◦/2.0 8◦/2.5

t2 = 8 0◦/2.0 7◦/2.5
t2 = 8× 21/4 4◦/2.6
t2 = 8× 21/2 3◦/2.9

Table 6.1: m/n in each entry means: maximal longitude angle φ giving at least
20 matches by SIFT / corresponding transition tilt τ(t1, t2, φ). This table shows
that SIFT covers a transition tilt τ ≈ 2.5.

6.4 Parameter sampling and complexity

6.4.1 Sampling ranges

The camera motion depicted in Fig. 6.4 shows that φ should naturally cover all
the directions from 0 to 2π. But, by Theorem 6.1, it is enough to simulate φ
from 0 to π to cover all possible linear transforms.

The sampling range of the tilt parameter t determines the degree of the tilt
invariance the algorithm can achieve. Image recognition under a remarkable
viewpoint change in practice requires that the scene is planar and Lambertian
and its structures are not squashed when observed from an oblique viewpoint.
Due to these physical limitations, affine image recognition is impractical under
too big a tilt t. The physical upper bound tmax can be obtained experimentally
using some images taken from indoor and outdoor scenes, each image pair being
composed of a frontal view and an oblique view.

The images used in the experiments satisfy as much as possible the physical
conditions mentioned above. The indoor scene is a magazine placed on a table
with the artificial illumination coming from the ceiling as shown in Fig. 6.9. The
outdoor scene is a building façade with some graffiti as illustrated in Fig. 6.10.
For each pair of images, the true tilt parameter t between them is obtained by
manual measurement. A-SIFT is applied with very large parameter sampling
ranges and small sampling steps, so that the simulated views cover accurately
the true affine distortion. The A-SIFT matching results depicted in Figs. 6.9
and 6.10 show that the limit is tmax ≈ 5.6 that corresponds to a view angle
θmax = arccos 1/tmax ≈ 80◦. A-SIFT finds a large number of matches when the
tilt between the frontal image and the oblique image is smaller than about 5.6.
Therefore we set the tilt simulation range tmax = 4

√
2.

Let us emphasize that when the two images under comparison are taken from



“JMMBookOct04”
1/5/2012
page 60

i

i

i

i

i

i

i

i

60 CHAPTER 6. AFFINE INVARIANT IMAGE COMPARISON

orthogonal longitude angles (see Fig. 6.7 as an example), i.e., φ = φ′ + π/2, the
maximum tilt invariance A-SIFT with tmax = 4

√
2 can achieve in theory is

about t2max = 32.
However, these experiments only fix reasonable bounds for all purpose algo-

rithms. For high resolution images, for very flat lambertian surfaces, larger tilts
might be recognizable.

Figure 6.9: A-SIFT on an indoor scene. From top to bottom: tilt distortion t
between the two images are respectively t ≈ 3, 5.2, 8.5; the number of matches
are respectively 107 (3 false), 25 (7 false), and 7 (all false).

6.4.2 Sampling steps

In order to have A-SIFT invariant to any affine transform, one needs to sample
the tilt t and angle φ with a high enough precision. The sampling steps 4t and
4φ must be fixed experimentally by testing several natural images.

The camera motion model illustrated in Fig. 6.4 indicates that the sampling
precision of the latitude angle θ = arccos 1/t should increase with θ. A geometric
sampling for t satisfies this requirement. Naturally, the sampling ratio 4t =
tk+1/tk should be independent of the angle φ. In the sequel, the tilt sampling
step is experimentally fixed to 4t =

√
2.

As can be observed from the camera motion model in Fig. 6.4, one needs
a finer φ sampling when θ = arccos 1/t increases: the image distortion caused
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Figure 6.10: A-SIFT on an outdoor scene. From top to bottom: tilt distortion
t between the two images are respectively t ≈ 3.8, 5.6, 8; the number of matches
are respectively 71 (4 false), 33 (4 false), 10 (all false).
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by a fixed longitude angle displacement 4φ, is much more drastic when the
latitude angle θ increases. The longitude sampling step in the sequel will be
4φ = 2× 36◦

t = 72◦
t .

Fig. 6.11 illustrates the sampling of the parameters θ = arccos 1/t and φ. At
bigger θ the sampling of θ as well as the sampling of φ are denser.

Figure 6.11: Sampling of the parameters θ = arccos 1/t and φ. Black dots
represent the sampling. Left: perspective illustration (only t = 2, 2

√
2, 4 are

shown). Right: zenith view of the observation half sphere. The values of θ are
indicated on the figure.

6.4.3 Acceleration with multi-resolution

The multi-resolution procedure accelerates A-SIFT by selecting the transforms
that yield SIFT matches on low-resolution (LR) versions of the compared im-
ages. In case of success only, the procedure simulates the identified affine trans-
forms on the query, and applies SIFT to compare them to the targets.

The multi-resolutions A-SIFT is summarized as follows.

1. Down-sample all compared digital images u and v by a K × K factor:
u′ = SKGKu and v′ = SKGKv, where GK is an anti-aliasing gaussian
discrete filter.

2. Low-resolution (LR) A-SIFT: perform A-SIFT between u′ and v′.

3. Identify the M affine transforms yielding the biggest numbers of matches
between u′ and v′. They are retained only if the matches are meaningful.
In practice, it is enough to put a threshold on the number k of matches,
and k = 15 seems to be a good choice.

4. High-resolution (HR) A-SIFT: apply A-SIFT between u and v by simu-
lating only the affine transforms previously identified.

Fig. 6.12 shows an example. The low-resolution A-SIFT that is applied on
the 3× 3 sub-sampled images finds 12 correspondences and identifies the 5 best
affine transforms. The high-resolution A-SIFT finds 133 matches.
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Figure 6.12: “77 Mass Ave”. Left: low-resolution A-SIFT, 12 matches, three of
which are wrong. Right: high-resolution A-SIFT, 133 matches. Due to the lack
of details in these images, the number of matches at low resolution is critically
low.

6.4.4 A-SIFT Complexity

The complexity of the A-SIFT algorithm will be estimated under the recom-
mended baseline configuration: The tilt and angle ranges are [tmin, tmax] =
[1, 4

√
2] and [φmin, φmax] = [0◦, 180◦], and the sampling steps are 4t =

√
2,

4φ = 36◦ × t
2 . Each t tilt is simulated by image sub-sampling in one direc-

tion by a t factor. All images are sub-sampled by a K ×K = 3 × 3 factor for
the low-resolution A-SIFT. Finally, the high-resolution A-SIFT simulates the
M = 5 best affine transformations that are identified, but only in case they
contain enough matches. When matching an image to a large database, the
most common event is failure. Thus, the final high-resolution step is only to be
taken into account when comparing images of the same scene.

The complexity of the descriptor computation is proportional to the input
image area. This area is proportional to the number of simulated tilts t. Indeed,
the number of φ simulations is proportional to t for each t, but the t sub-sampling
for each tilt simulation divides the area by t. More precisely, the image area
input to low-resolution A-SIFT is

1 + (|Γt| − 1) 180◦
2×36◦

K2
=

1 + 5× 2.5
9

= 1.5

times as large as that of the original images, where |Γt| is the number of tilt
simulations. Thus, the complexity of the low-resolution A-SIFT is 1.5 times as
much as that of a single SIFT routine, and generates 1.5 as many SIFs. Here
we must distinguish two cases:

1. If the comparisons involve a large database (where most comparisons will
be failures), the complexity is propositional to the number of SIFs in the
queries multiplied by the number of SIFs in the targets. Since A-SIFT
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introduces a a 1.5 area factor, the final complexity is simply 1.52 = 2.25
times the SIFT complexity.

2. If the comparisons involve a set of images with high match likeliness, then
the high resolution step is no more negligible. Then, it can only be asserted
that the complexity will be less than 6.5 + 2.5 = 9 times a SIFT routine
on the same images. However, in that case, A-SIFT ensures many more
detections than SIFT, because it explores many more viewpoint angles.
Thus, the complexity rate per detected SIF might be much closer to, or
even smaller than the per detection complexity in a SIFT routine.

For the high-resolution A-SIFT, this factor is M = 5. Therefore the total
complexity of the A-SIFT is 6.5 times a SIFT routine.

The SIFT subroutines can be implemented in parallel in A-SIFT (for both
the low-resolution and the high-resolution A-SIFT). Recently many authors have
investigated SIFT accelerations [189, 130, 209]. A realtime SIFT implementa-
tion has been proposed in [325]. Obviously, all of these accelerations directly
apply to A-SIFT.
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Figure 6.13: Each recognition method can be characterized by its transition
tilt, namely the variation in relative observation angle compatible with recogni-
tion. This figure shows perspective and zenith views of the observation sphere.
The central point of the bright region on the observation sphere is the original
viewpoint from which an image has been taken. The rest of the bright region
depicts, for several positions of this original point and several transition tilts,
the attainable observation region, namely all other view angles in the observa-
tion sphere for which recognition succeeds for the given transition tilt. From
top to bottom: latitude angle of the first image θ = 45, 60, 70, 80◦ that corre-
spond respectively to the absolute tilts t =

√
2, 2, 2.9, 5.8. From left to right:

transition tilt < 2.5, 5, 40.
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Chapter 7

The mathematical
justification

This chapter gives the mathematical formalism and a mathematical proof that
A-SIFT is fully affine invariant, up to sampling errors. The next chapter 8.3 is
devoted to many comparative experiments where all mentioned state-of-the art
algorithms are compared for their scale and tilt invariance.

In this chapter, to lighten the notation of the gaussian, Gσ will denote the

convolution operator on R2 with the gauss kernel Gσ(x, y) = 1
2π(cσ)2 e

− x2+y2

2(cσ)2 ,
namely Gu(x, y) =: (G ∗ u)(x, y). The constant c ≥ 0.8 is large enough to
ensure that all considered images can be sampled with sampling mesh 1 af-
ter convolution with G1. The one dimensional gaussians will be denoted by

Gx
σ(x, y) = 1√

2πcσ
e
− x2

2(cσ)2 and Gy
σ(x, y) = 1√

2πcσ
e
− y2

2(cσ)2 . Gσ still satisfies the
semigroup property

GσGβ = G√
σ2+β2 . (7.1)

The proof of the next formula is a mere change of variables in the integral
defining the convolution.

GσHγu = HγGσγu. (7.2)

Exercise 7.1. Prove (7.2).

Using the above notation, the next paragraph formalizes the SIFT method.

7.0.5 The image formation model

As developed in Section 6.1, the whole image comparison process, based on
local features, can proceed as though images where (locally) obtained by using
digital cameras that stand far away, at infinity. The geometric deformations
induced by the motion of such cameras are affine maps. A model is also needed
for the two main camera parameters not deducible from its position, namely
sampling and blur. The digital image is defined on the camera CCD plane.
The pixel width can be taken as length unit, and the origin and axes chosen
so that the camera pixels are indexed by IZ2. The associated image sampling
operator will be denoted by S1. The digital initial image is always assumed
well-sampled and obtained by a gaussian blur with standard deviation 0.6. (See

67
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[255] for a detailed analysis of why this model is sufficient and coherent for most
digital images, and compatible with the SIFT method.) In all that follows, u0

denotes the (theoretical) infinite resolution image that would be obtained by
a frontal snapshot of a plane object with infinitely many pixels. The digital
image obtained by any camera at infinity is u = S1G1AT u0, where A is any
linear map with positive singular values and T any plane translation. Thus we
can summarize the general image formation model with cameras at infinity as
follows.

Figure 7.1: The projective camera model u = S1G1Au0. A is a planar projective
transform (a homography). G1 is an anti-aliasing gaussian filtering. S1 is the
CCD sampling.

Definition 7.1. Image formation model. Digital images of a planar object
whose frontal infinite resolution image is u0, obtained by a digital camera far
away from the object, satisfy

u =: S1G1AT u0 (7.3)

where A is any linear map and T any plane translation. G1 denotes a gaussian
kernel broad enough to ensure no aliasing by 1-sampling, namely IS1G1AT u0 =
G1AT u0.

The formal description of A-SIFT will be by far simpler if sampling issues do
not interfere. All operations and all reasoning will be made with continuous well
sampled images. It is easy to deduce afterwards the discrete operators acting
on samples. T denotes an arbitrary translation, R an arbitrary rotation, Hλ

an arbitrary homothety, and G an arbitrary gaussian convolution, all applied
to continuous images. In the particular case in the digital image formation
model (7.3) where A is a frontal view of u0, A = HRT is the composition of
a translation T , a homothety H, and a rotation R. Thus the digital image is
u = S1G1HT Ru0.

7.0.6 Inverting tilts

We shall denote by ∗y the 1-D convolution convolution operator in the y-
direction. When we write G∗y, we mean that G is a one-dimensional gaussian,
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depending on y, and the 1-D convolution means

G ∗y u(x, y) =:
∫

Gy(z)u(x, y − z)dz.

There are three different notions of tilt, that we must carefully distinguish.

Definition 7.2. Given t > 1, the tilt factor, define

• the absolute tilt : T x
t u0(x, y) =: u0(tx, y). In case this tilt is made in the

y direction. It will be denoted by T y
t u0(x, y) =: u0(x, ty);

• the continuous tilt (taking into account camera blur): Tx
t v =: T x

t Gx√
t2−1

∗x

v. In case the simulated tilt is done in the x direction, it is denoted
Ty

t v =: T y
t Gy√

t2−1
∗y v.

• the digital tilt (transforming a digital image u into a digital image) : u →
S1Tx

t Iu. This is the one that is used in the algorithm. It is correct because,
as we shall see, the simulated tilt yields a blur permitting S1-sampling.

If u0 is an infinite resolution image observed with a t camera tilt in the
x direction, the observed image is G1T

x
t u0. Our main problem is to reverse

such tilts. This operation is in principle impossible, because absolute tilts do
not commute with blur. However, the next lemma shows that Ty

t is actually a
pseudo inverse to T x

t .

Lemma 7.3. One has

Ty
t = HtG

y√
t2−1

∗y (T x
t )−1.

Proof Since (T x
t )−1u(x, y) = u(x

t , y),

(
Gy√

t2−1
∗y (T x

t )−1u
)

(x, y) =
∫

G√t2−1(z)u(
x

t
, y − z)dz.

Thus

Ht

(
Gy√

t2−1
∗y (T x

t )−1u
)

(x, y) =
∫

G√t2−1(z)u(x, ty − z)dz =

(
Gy√

t2−1
∗y u

)
(x, ty) =

(
T y

t Gy√
t2−1

∗y u
)

(x, y).

¤
The meaning of the next result is that a tilted image G1T

x
t u can be tilted

back by tilting in the orthogonal direction. The price to pay is a t zoom out.
The second relation in the theorem means that the application of the simulated
tilt to an image that can be well sampled by S1 yields an image that keeps that
well sampling property.

Theorem 7.4. Let t ≥ 1. Then

Ty
t (G1T

x
t ) = G1Ht; (7.4)

Ty
t G1 = G1T

y
t . (7.5)
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Proof By Lemma 7.3, we recall that

Ty
t = HtG

y√
t2−1

∗y (T x
t )−1.

Thus,
Ty

t (G1T
x
t ) = HtG

y√
t2−1

∗y ((T x
t )−1G1T

x
t ). (7.6)

By a variable change in the integral defining the convolution, it is an easy check
that

(T x
t )−1G1T

x
t u =

(
1
t
G1(

x

t
, y)

)
∗ u, (7.7)

and by the separability of the 2D gaussian in two 1D gaussians,

1
t
G1(

x

t
, y) = Gt(x)G1(y). (7.8)

From (7.7) and (7.8) one obtains

(T x)−1G1T
x
t u = ((Gx

t (x)Gy
1(y)) ∗ u = Gx

t (x) ∗x Gy
1(y) ∗y u,

which implies

Gy√
t2−1

∗y (T x)−1G1T
x
t u = Gy√

t2−1
∗y (Gx

t (x) ∗x Gy
1(y) ∗y u) = Gtu.

Indeed, the 1D convolutions in x and y commute and Gy
t ∗ Gy√

t2−1
= Gy

t by
the Gaussian semigroup property (7.1). Substituting the last proven relation in
(7.6) yields

Ty
t G1T

x
t u = HtGtu = G1Htu.

The second relation (7.5) follows immediately by noting that Ht = T y
t T x

t . ¤
Exercise 7.2. Prove (7.7).

7.0.7 Proof that A-SIFT works

The meaning of Theorem 7.4 is that we can design an exact algorithm that
simulates all inverse tilts for comparing two images. After interpolation, A-SIFT
handles two images u = G1AT1u0 and v = G1BT2u0 that are two snapshots
from different view points of a flat object whose front infinite resolution image
is denoted by u0. For a sake of simplicity, we break the symmetry, and set
ũ0 =: AT1u0, so that u = G1ũ0 and v = G1BT2T −1

1 A−1ũ0 = G1BA−1T ũ0 for
a translation T that depends on T1, T2, and A. Let us use the decomposition
given by (6.2),

BA−1 = R1T
x
t HλR2,

where R1, R2 are rotations, Hλ a zoom, and T x
t (x, y) = (tx, y) is the transition

tilt from u to v. In summary A-SIFT has to compare the interpolated images

v = G1R1T
x
t HλR2T ũ0 and u = G1ũ0.
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The A-SIFT formal algorithm

The following algorithm, where image sampling issues are eliminated by inter-
polation, is actually a proof that A-SIFT manages to compare u and v obtained
from u0 by arbitrary camera positions at infinity. In this ideal algorithm, a
“‘dense enough” set of rotations and tilts is applied to v, so that each one of
the simulated rotation-tilts is “close enough” to any other rotation-tilt. In the
mathematical setting, this approximation must be infinitesimal. In the practical
empirical setting, we’ll have to explore how dense the sets of rotations and tilts
must be (see Section 6.4).

A-SIFT Algorithm (formal)

1. Apply a dense set of all possible rotations (and therefore also a rotation
close to R−1

1 ) to v. Thus, some of the simulated images will be arbitrary
close to v → R−1

1 G1R1HλT x
t R2T ũ0 = G1T

x
t HλR2T ũ0;

2. apply in continuation a dense set of simulated tilts Ty
t , and therefore

also one arbitrary close to the right one Ty
t = T y

t Gy√
t2−1

∗y, to R−1
1 v =

G1T
x
t HλR2T ũ0. By Theorem 7.4 we have the commutation T y

t G1 =
G1T

y
t , which yields

Ty
t R−1

1 v = G1HtHλR2T ũ0 = G1HtλR2T ũ0;

3. perform a SIFT comparison of G1HtλR2T ũ0, which is a frontal view of
ũ0, with u = G1ũ0 which also is a frontal view of ũ0.

The above algorithm description is also a proof of the following consistency
theorem, since the SIFT method finds all SIFs common to two frontal views
(Theorem 3.5).

Theorem 7.5. Let u = G1AT1u0 and v = BT2u0 be two images obtained from
an infinite resolution image u0 by cameras at infinity with arbitrary position
and focal lengths. Then A-SIFT, applied with a dense set of tilts and longitudes,
simulates two views of u and v that are obtained from each other by a translation,
a rotation, and a camera zoom. As a consequence, these images match by the
SIFT algorithm.

Remark 7.6. Even if the above proof, and the statement of Lemma ??, deal
with asymptotic statements when the sampling steps tend to infinity or when the
SIFT scales tend to infinity, the approximation rate is very quick, a fact that
can only be checked experimentally. This fact is actually extensively verified by
the huge amount of experimental evidence on SIFT, that shows first that the
recognition of scale invariant features (SIFs) is robust to a substantial variation
of latitude and longitude, and second that the scale invariance is quite robust to
moderate errors on scale. Section 6.4 has evaluated the adequate sampling rates
and ranges for tilts and longitudes.

Simulating midway tilts

The algorithm of Section 7.0.7 can be implemented in several ways. In the above
description, the transition tilt T x

t is directly inverted on one of the images. This
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strategy is consistent, but not optimal. As we have seen, the transition tilt can
be very large. It is preferable to simulate moderate tilts on two images that
large tilts on one of them. To this aim a midway image can be reached from
both images by applying a

√
t tilt to one of them and a

√
t tilt to the other

one. The only change to the formal algorithm will be that rotations and tilts
are applied to both images, not just to one of them.

Midway A-SIFT (formal)

1. Apply a dense set of all possible rotations to both images, and therefore
R2 to u and R−1

1 to v;

2. apply in continuation a dense set of simulated tilts Tx
t in a fixed [0, tmax]

range;

3. perform a SIFT comparison of all pairs of resulting images.

Let us now prove that this algorithm works, namely that two of the simulated
images are deduced from each other by a similarity. The query and target
images are u = G1AT1u0 and v = G1BT2u0. By the usual decomposition of a
linear map (6.2),

BA−1 = R1T
x
t R2Hλ = (R1T√t

x)(T x√
t
R2Hλ).

Notice that by the relation

Tx
t R(−π

2
) = R(

π

2
)Ty

t , (7.9)

the algorithm also simulates tilts in the y direction, up to R(π
2 ) rotation. In

particular, the above algorithm applies:

1. Tx√
t
R2 to G1AT1u0, which by (7.5) yields ũ = G1T

x√
t
R2AT1u0 =: G1ÃT1u0;

2. R(π
2 )Ty√

t
R−1

1 to G1BT2u0, which by (7.5) yields G1R(π
2 )T y√

t
R−1

1 BT2u0 =:

G1B̃T2u0.

Let us show that Ã and B̃ only differ by a similarity. Indeed,

B̃−1R(
π

2
)H√

tÃ = B−1R1T
y√

t
−1T

x√
t
H√

tR2A =

B−1R1T
y√

t
−1T

x√
t
H√

tR2A = B−1R1T
x
t R(

π

2
)R2A = B−1(BA−1)A = I,

where I is the identity. It follows that B̃ = R(π
2 )H√

tÃ. Thus,

ũ = G1ÃT1u0 and ṽ = G1R(
π

2
)H√

tÃT2u0,

that are two of the simulated images, are deduced from each other by a rotation
and a

√
t zoom. It follows that their SIFs are identical as soon as the scale of

the SIF exceeds
√

t.
¤

Exercise 7.3. There is a (non crucial) error in the above proof. Read this proof
carefully, find the error, and adjust the proof.
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7.0.8 Conclusion on the algorithms

The above descriptions have neglected the sampling issues, but care was taken
that input images and output images be always written in the G1u form. For
the digital input images, that always have the form u = S1G1u0, the Shannon
interpolation algorithm is I is first applied, to give back IS1G1u0 = G1u0. For
the output images, that always have the form G1v, the sampling S1 gives back
a digital image.

Thus, the descriptions of the formal algorithm A-SIFT and of its “midway”
version are changed into a digital algorithm by:

• replacing everywhere the inputs G1u by their digital version S1G1u;

• by applying digital rotations to digital images : u →Ru =: S1RIu;

• by applying digital tilts as defined in Def. 7.2, namely u → S1T x
t Iu.

That way, the formal algorithms are transformed into digital algorithms. The
proofs need not be repeated, since by Shannon interpolation and sampling, it is
equivalent to talk about S1G1u0 or about G1u0.

Clearly the midway algorithm is better, because it only needs simulating tilts
that are square roots of the real transition tilts. Thus, all of the forthcoming
discussion will focus on the midway version, that we’ll simply call A-SIFT.
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Chapter 8

Experiments on affine
invariant methods

8.1 Affine normalization methods: are they fully
affine invariant?

Since the affine transform depends upon six parameters, it is out of the question
to just simulate all of them and compare the original image to all deformed
images by all possible affine deformations. However, simulation can be a solution
for a few parameters: the SIFT method actually simulates zooms out.

The other way that has been tried by many authors is normalization. Nor-
malization is a magic method that, given a patch that has undergone an un-
known affine transform, transforms the patch into a standardized one, where the
effect of the affine transform has been eliminated (see Fig. 8.1). Normalization
by translation is easily achieved: A patch around (x0, y0) is translated back to
a patch around (0, 0). A rotational normalization requires a circular patch. In
this patch, a principal direction is found, and the patch is rotated so that this
principal direction coincides with a fixed direction. Thus, of the six parameters
in an affine transform, at least three are easily eliminated by normalization.

Figure 8.1: Normalization methods can eliminate the effect of a a class of affine
transforms by associating the same standard patch to all transformed patches.

However, when it comes to the other three parameters, things get difficult
and controversial. Two methods have been recently proposed to perform a level
lines based full affine normalization: MSER [238] and LLD [262]. Both of them
apply to image level lines, or to image pieces of level lines, an affine normalization

75



“JMMBookOct04”
1/5/2012
page 76

i

i

i

i

i

i

i

i

76 CHAPTER 8. EXPERIMENTS ON AFFINE INVARIANT METHODS

in the spirit of the translation and rotation normalization explained above. We
shall focus on MSER, but the discussion applies to LLD as well.

8.2 Global Normalization and Encoding

8.2.1 Global Affine Normalization

Classical shape normalization methods are based on the inertia matrix normal-
ization. We shall use Cohignac’s presentation of this method, given in [64].
Denote by 1F the indicator function of a shape domain F . The shape is usually
associated a weight function defined on the shape domain, u(x, y) = ϕ(x, y)1F .
Classically, ϕ(x, y) is the restriction of an image to the shape extracted from it,
or the restriction to the shape of the image gradient, or the restriction to the
shape of the image gradient direction, etc. Thus when we talk about “the shape
F”, we actually talk about u(x, y). Of course, when ϕ(x, y) = 1, the whole anal-
ysis of this section boils down to the analysis of the proper shape u = 1F . In all
that follows, a convenient abbreviation is F for u(x, y). If A is linear or affine
map, AF denotes the function Au defined as usual by Au(x, y) = u(A(x, y)).
In order to achieve translation invariance of the normalized representation, it
may be assumed that F has been previously translated so that its barycenter
weighted by u(x, y) is at the origin of the image plane.
Exercise 8.1. Show that this last assumption amounts to assume that

µ1,0(F) =:

∫

IR2
xu(x, y)dxdy = 0 and µ0,1(F) =:

∫

IR2
yu(x, y)dxdy = 0.

More precisely, give a formula for the weighted barycenter b(F) of F and show that the
barycenter is covariant by any affine transform, namely b(AF) = Ab(F) for every linear
transform A. Show that the weighted area of F defined by µ0,0(F) =:

∫
IR2 u(x, y)dxdy

satisfies µ0,0(AF) = |det(A)|µ0,0(F).

The moment of order (p, q) (p and q natural integers) of the shape F
(weighted by u) is defined by

µp,q(F) =
∫

IR2
xpyqu(x, y)dxdy.

Let SF be the following 2× 2 positive-definite, symmetric matrix

SF =
1

µ0,0

(
µ2,0 µ1,1

µ1,1 µ0,2

)
,

where µi,j = µi,j(F). By the uniqueness of Cholesky factorization [144], SF
may be uniquely decomposed as SF = BFBt

F where BF is a lower-triangular
real matrix with positive diagonal entries.

Definition 8.1. The pre-normalized shape associated to F is the shape F ′ =
B−1
F (F).

The aim is to prove that the pre-normalized solid shape is invariant to affine
transformations, up to a rotation.

Lemma 8.2. Let A be a non-singular 2× 2 matrix. Then SAF = ASFAt.
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Proof. Let a, b, c and d be real numbers such that:

A =
(

a b
c d

)
.

The moment of order (2, 0) associated to the solid shape AF is

µ2,0(AF) = det(A)
∫

IR2
(ax + by)2u(x, y)dxdy

= det(A)(a2µ2,0 + 2abµ1,1 + b2µ0,2).

The same computation for moments of order (0, 2) and (1, 1) yields

µ0,2(AF) = det(A)(c2µ2,0 + 2cdµ1,1 + d2µ0,2),
µ1,1(AF) = det(A)(acµ2,0 + bdµ0,2 + (ad + bc)µ1,1).

Since µ0,0(AF) = det(A)µ0,0, one can easily check that SAF = ASFAt. ¤

Exercise 8.2. Make the calculation proving that SAF = ASFAt.

Lemma 8.3. Let X0 be a 2× 2 invertible matrix. Then, for any 2× 2 matrix
X: XXt = X0X0

t if and only if there exists an orthogonal matrix Q such that
X = X0Q.

Proof. Since X0 is invertible, XXt = X0X0
t iff X−1

0 X(X−1
0 X)

t
= Id2. Let-

ting Q = X−1
0 X yields the result. ¤

Proposition 8.4. The pre-normalized solid shape is invariant to any invert-
ible, planar, linear transformation (x, y)t 7→ A(x, y)t, up to an orthogonal
transformation. Moreover, if det(A) > 0, the invariance holds up to a rotation.

Proof. Since A is a 2 × 2 non singular matrix, following Lemma 8.2, SAF =
ASFAt. By letting BF be the lower-triangular matrix of Cholesky’s decom-
position of BF , it follows that SAF = ABF (ABF )t. Now, since SAF is a
2× 2 positive-definite, symmetric matrix, Cholesky factorization yields SAF =
BAFBAF t, where BAF is a 2 × 2 non-singular, lower-triangular real matrix.
Then, by Lemma 8.3, BAF = ABFQ, where Q is a 2 × 2 orthogonal ma-
trix. Hence, B−1

AFAF = (ABFQ)−1AF = Q−1B−1
F A−1AF = Q−1B−1

F F , which
proves the invariance of F ′ = B−1

F F to planar isomorphisms, up to an orthog-
onal transformation. Finally, notice that if det(A) > 0, then det(Q) > 0. ¤

Exercise 8.3. Prove that a closed form for B−1
F in terms of the moments of F can

be computed by taking the inverse of BF , the lower-triangular matrix given by the
Cholesky decomposition of SF ,

B−1
F =

√
µ0,0




1√
µ2,0

0

− µ1,1

µ2,0

√
µ0,2−

µ2
1,1

µ2,0

1√
µ0,2−

µ2
1,1

µ2,0


 .
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The pre-normalized solid shape F ′ = B−1
F F is then an affine invariant rep-

resentation of F modulo a rotation. In order to obtain a full affine invariant
representation, only a reference angle is needed. This can be achieved, for in-
stance, by computing in polar coordinates

ϕ = Arg
(∫ 2π

0

∫ +∞

0

(B−1
F u)(r, θ)eiθrdrdθ

)
,

then rotating F ′ by −ϕ.
Putting all the steps together, the support of the affine invariant normaliza-

tion of F is the set of points (xN , yN ) given by
(

xN

yN

)
=

(
cos ϕ sinϕ
− sin ϕ cos ϕ

)
B−1
F

(
x− µ1,0

y − µ0,1

)
,

for all (x, y) ∈ F .

8.2.2 Maximally Stable Extremal Regions (MSER)

The MSER method introduced by Matas et al. [238] attempts to achieve affine
invariance by selecting the most robust connected components of upper and
lower level sets as image features.

Extremal regions is the name given by the authors to the connected com-
ponents of upper or lower level sets. Maximally stable extremal regions, or
MSERs, are defined as maximally contrasted regions in the following way. let
Q1, ..., Qi−1, Qi, ... be a sequence of nested extremal regions, i.e. Qi ⊂ Qi+1

where Qi is defined by a threshold at level i or, in other terms, Qi is an upper
(resp. lower) level set at level i. An extremal region in the list Qi0 is said
to be maximally stable if the area variation q(i) =: |Qi+1 \ Qi−1|/|Qi| has a
local minimum at i0, where |Q| denotes the area of a region |Q|. Clearly the
above measure is a measure of contrast along the boundary ∂Qi of Qi. Indeed,
assuming that u is C1 and that the grey level increment between i and i + 1 is
infinitesimal, the area |Qi+1\Qi−1| varies least when

∫
∂Qi

|∇u| is maximal. The
MSER extraction is a first step of image matching. Once MSERs are computed,
the affine normalization of Section 8.2.1 is performed on the MSERs before they
can be compared. The fact that the method is not fully scale invariant is easily
explained with the experiment of Fig. 8.2. In MSER the scale normalization is
based on the size (area) of the detected extremal regions. However, scale change
is not just a homothety: it involves a blur followed by sub-sampling. The blur
changes drastically the size of the regions. As pointed out in [65] this entails
a strong lack of scale invariance. It could only be compensated by simulating
actual blur on the images, as made by the SIFT method.

8.3 Experiments

A-SIFT image matching performance will be compared with the state-of-the-art
approaches with the detectors DoG [220], Hessian-Affine, Harris-Affine [243, 246]
and MSER [238] all coded by the most popular SIFT descriptor [220]. The
MSER detector followed by the correlation descriptor as proposed in the original
work [238] is also included in the comparison, whose performance will be shown
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Figure 8.2: Shapes change with distance: The level lines not stable by
down-sampling. This is the main problem with level lines methods
(MSER).

slightly worse than that of the MSER detector followed by the SIFT descriptor.
For simplicity, in the text the methods will be named respectively SIFT, Harris-
Affine, Hessian-Affine and MSER for short. (The MSER detector followed by
the SIFT and the correlation descriptors are sometimes denoted as MSER+SIFT
and MSER+Corr. By MSER alone, we mean the MSER detector followed by
either of the two descriptors.)

The Lowe [219] reference software was used for DoG with SIFT. For all the
other methods we used the Hessian-Affine, Harris-Affine and MSER descriptor
code provided by the authors and combined them with the SIFT descriptor
implemented by Mikolajczyk, all downloadable from [242].

Applications of A-SIFT and comparisons with the other methods will also
be performed for video object tracing and symmetry detection.

The experiments will show images taken from different viewpoints with vary-
ing tilts, zooms, and transition tilts. Correspondences will be connected by
white segments. Note that the parallelism or coherent directions of the con-
necting lines usually indicates that most correspondences are correct.

All images under comparison have a low resolution 600 × 450. As reported
under each figure, A-SIFT applied an image sub-sampling of factor K×K with
K = 3 for most images. A very few cases where objects of interest are too small
will be shown. In those cases A-SIFT only works with a more conservative
subsampling K = 2, and in one case only with K = 1.

8.3.1 Exploring tilts and zooms

Fig. 8.3 illustrates the two settings that we have adopted to make systematic
comparisons respectively for evaluating the maximum absolute tilt and tran-
sition tilt attained by each algorithm. A magazine and a painting shown in
Fig. 8.4 were photographed for the experiments. Unlike SIFT and A-SIFT,
the Hessian-Affine, Harris-Affine and MSER detectors are not robust to scale
change as shown in Fig. 8.6. Therefore the pairs of images under comparison
were chosen free of scale change so that the evaluation is focused on the tilt
invariance.
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a b

Figure 8.3: The settings adopted to systematic comparison. Left: absolute tilt
test. An object is photographed with a latitude angle θ (between the camera
axis and the normal to the object) that varies from 0 degree (frontal view) to 80
degrees, from distances varying between 1 and 10, which is the maximum focal
distance change. Right: transition tilt test. An object is photographed with a
longitude angle φ (between the camera axis projected on the object plane and
a fixed direction thereon) that varies from 0 degree to 90 degrees, from a fixed
distance.

Figure 8.4: The magazine cover and the painting are photographed in the ex-
periments.
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8.3.2 Absolute Tilt Tests

The painting illustrated in Fig. 8.4 is photographed with a reflex camera, with
distances varying between ×1 and ×10, which is the maximum focal distance
change, and with viewpoint angles between the camera axis and the normal to
the poster that varies from 0 degree (frontal view) to 80 degrees. It is clear that
beyond 80 degrees, to establish a correspondence between the frontal image and
the extreme viewpoint becomes absolutely haphazard. Even when the photo
acquisition conditions and the image resolution are excellent, with such a big
view angle change the observed surface becomes in general reflective, and the
image in the resulting photo is totally different from the frontal view. Never-
theless, A-SIFT works until 80 degrees, and it would be unrealistic to insist on
bigger angles.

Table 8.1 summarizes performance of each algorithm in terms of number of
correct matches. Some matching results are illustrated in Figs. 8.7 to 8.10.

One remarks first that MSER, which uses maximally stable level lines as
features, obtains for most time much less correspondences than other methods
whose features are based on local maxima in the scale-space. This has been
confirmed by LLD, a novel image matching approach independently developed at
ENS Cachan that applies also level lines as features [264, 262]. Let us recall that
robust image matching requires a sufficiently big number of correspondences.

For images taken at short distance as illustrated in Figs. 8.7 and 8.8, tilt
varies on the same flat object because of the perspective effect, as illustrated
in Fig. 8.5. The number of SIFT correspondences drops dramatically when the
angle is bigger than 65 degrees (that corresponds to a tilt t ≈ 2.3) and it fails
completely when the angle exceeds 75 degrees (tilt t ≈ 3.8). At 65 and 75
degrees, as shown in Fig. 8.8, most matches are located on the side closer to
the camera where the actual tilt is smaller. The performance of Harris-Affine
and Hessian-Affine degrades considerably when the angle goes over 75 degrees
(tilt t ≈ 3.8). The MSER correspondences remain at a small number with a
noticeable decline over 65 degrees (tilt t ≈ 2.4). A-SIFT works perfectly until
80 degrees (tilt t ≈ 5.8).

Images taken at a camera-object distance multiplied by 10, as shown in
Figs. 8.9 and 8.10, exhibits less perspective effects but contains less meaningful
pixels at big angles. For these images the SIFT performance drops considerably:
recognition is possible only with angles smaller than 45 degrees. The perfor-
mance of Harris-Affine and Hessian-Affine declines clear when the angle goes
from 45 to 65 degrees and beyond 65 degrees they fail completely. MSER strug-
gles at the angle of 45 degrees and fails at 65 degrees. A-SIFT again functions
perfectly until 80 degrees.

Rich in highly contrasted regions, the magazine shown in Fig. 8.4 is more
favorable to MSER. Table 8.2 shows the result of a similar experiment performed
with the magazine, with the latitude angles from 50 to 80 degrees on one side
and with the camera focus distance ×4. Fig. 8.11 shows the result with 80-
degree angle. The performance of SIFT, Harris-Affine and Hessian-Affine drops
dramatically with the angle going from 50 to 60 degrees (tilt t from 1.6 to
2). Beyond 60 degrees (tilt t = 2) they all fail completely. MSER finds many
correspondences until 70 degrees (tilt t ≈ 2.9). The number drops considerably
when the angle exceeds 70 degrees and becomes too small at 80 degrees (tilt
t ≈ 5.8) for robust recognition. A-SIFT works perfectly until 80 degrees.
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Figure 8.5: When the camera view angle is large, the absolute tilt of a plane
object can vary considerably in the same image.

Figure 8.6: Robustness to scale change. A-SIFT (shown), SIFT (shown), Harris-
Affine (shown), Hessian-Affine, MSER+Corr and MSER+SIFT find respectively
221, 86, 4, 3, 3 and 4 correct matches. Harris-Affine, Hessian-Affine and MSER
are not robust to scale change. A-SIFT is implemented with K = 2, which
means that K = 3 doesn’t work.
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Figure 8.7: Correspondences between the painting images taken from short dis-
tance (zoom ×1) at frontal view and at −45◦ angle. The absolute tilt varies:
t = 2 (middle), t < 2 (left part), t > 2 (right part). A-SIFT (shown), SIFT
(shown), Harris-Affine (shown), Hessian-Affine, MSER+Corr and MSER+SIFT
find respectively 624, 236, 28, 15, 7 and 11 correct matches. A-SIFT is imple-
mented with K = 3.

Figure 8.8: Correspondences between the painting images taken from short dis-
tance (zoom ×1) at frontal view and at 75◦ angle. The local absolute tilt varies:
t = 4 (middle), t < 4 (right part), t > 4 (left part). A-SIFT (K = 3, shown),
SIFT (shown), Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT
(shown) find respectively 202, 15, 3, 1, 5 and 5 correct matches.
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Figure 8.9: Correspondences between long distance snapshots (zoom ×10) at
frontal and 65◦ angle, absolute tilt t = 2.4. A-SIFT (K = 3, shown), SIFT
(shown), Harris-Affine (shown), Hessian-Affine, MSER+Corr and MSER+SIFT
find respectively 341, 5, 3, 0, 3 and 4 correct matches.

Figure 8.10: Correspondences between long distance views (zoom ×10), frontal
view and 80◦ angle, absolute tilt t = 5.8. A-SIFT (K = 3, shown), SIFT,
Harris-Affine, Hessian-Affine, MSER+Corr (shown) and MSER+SIFT (shown)
find respectively 75, 1, 1, 0, 2 and 2 correct matches.



“JMMBookOct04”
1/5/2012
page 85

i

i

i

i

i

i

i

i

8.3. EXPERIMENTS 85

Z× 1 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
−80◦/5.8 1 16 1 3 4 110
−75◦/3.9 24 36 7 4 3 281
−65◦/2.3 117 43 36 6 5 483
−45◦/1.4 245 83 51 9 13 559
45◦/1.4 195 86 26 10 12 428
65◦/2.3 92 58 32 10 11 444
75◦/3.9 15 12 7 7 7 203
80◦/5.8 2 6 6 5 5 204
Z× 10 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
−80◦/5.8 1 3 0 4 4 116
−75◦/3.9 0 3 0 6 6 265
−65◦/2.3 10 22 16 7 10 542
−45◦/1.4 182 68 45 18 19 722
45◦/1.4 171 54 26 14 15 707
65◦/2.3 5 12 5 5 6 468
75◦/3.9 2 1 0 4 4 152
80◦/5.8 3 0 0 4 2 110

Table 8.1: Absolute tilt invariance comparison. Summary of the results of the
experiments that compare A-SIFT with SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), MSER coded by the correlation descriptor (MSER+Corr) and
by the SIFT descriptor (MSER+SIFT) for viewpoint angles between 45 and 80
degrees. Top: images taken with zoom ×1. Bottom: images taken with zoom
×10. (The camera-object distance is 10 times bigger.) The latitude angles and
the absolute tilts are listed in the left column. With zoom ×1, the actual tilt
varies on the same object varies around the marked value due to the perspective
effect.

The above experiments lead us to the following conclusion of the maximum
absolute tilts of the approaches under comparison. SIFT exceeds hardly an ab-
solute of 2 and the limit is about 2.5 for Harris-Affine and Hessian-Affine. The
performance of MSER depends heavily on the types of image. For images with
highly contrasted regions, MSER reaches an absolute tilt about 5. However if
the images do not contain highly contrasted regions, the performance of MSER
is very limited even under small tilts. For A-SIFT, an absolute tilt of 5.8 that
corresponds to an extreme viewpoint angle of 80 degrees does not pose any dif-
ficulty to achieve robust recognition.

8.3.3 Transition Tilt Tests

The magazine shown in Fig. 8.4 is place face-up and photographed by a reflex
camera and makes two sets of images. As illustrated in Fig. 8.3-b, for each
image set, the camera with a fixed latitude angle θ, i.e., a fixed absolute tilt t
of respectively 2 and 4, circles around with the longitude angle φ going from 0
to 90 degrees. The camera focus distance is ×4. In each set the images have
the same absolute tilt t while the transition tilt τ (with respect to the image
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SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
50◦/1.6 267 131 144 129 150 1692
60◦/2.0 20 29 39 88 117 1012
70◦/2.9 1 2 2 48 69 754
80◦/5.8 0 0 0 10 17 267

Table 8.2: Absolute tilt invariance comparison. Summary of the results of the
experiments that compare A-SIFT with SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), MSER coded by the correlation descriptor (MSER+Corr) and
by the SIFT descriptor (MSER+SIFT) for viewpoint angles between 50 and 80
degrees. The latitude angles and the absolute tilts are listed in the left column.

taken at φ = 0 degree) goes from 1 to t2 when φ goes from 0 to 90 degrees. To
evaluate the maximum transition tilt, the images taken at φ 6= 0 are matched
against the one taken at φ = 0.

Table 8.3 compares the performance of the algorithms. The number of
matches under the absolute tilt t = 2 shows clearly that performance of SIFT
drops dramatically when the transition tilt goes from 1.3 to 1.7. With a tran-
sition tilt over 2.1, SIFT fails completely. Similarly a considerable performance
decline is observed for Harris-Affine and Hessian-Affine when the transition tilt
goes from 1.3 to 2.1. Hessian-Affine slightly outperform Harris-Affine but both
methods fail completely when the transition tilt goes above 3. MSER and A-
SIFT works stably until the transition tilt goes to 4. A-SIFT distinguishes itself
by finding more than 10 times as many as those of MSER that cover a much
larger area, as illustrated in Fig. 8.12.

Under an absolute tilt t = 4, SIFT, Harris-Affine and Hessian-Affine struggle
at a transition tilt of 1.9 having comparable number of matches. They fail
completely when the transition tilt goes bigger. MSER works stably until a
transition tilt of 7.7. Over this value, the number of correspondences is too
small for reliable recognition. A-SIFT works perfectly.

The transition tilt is a crucial notion that evaluates the degree of affine
invariance of the image comparison algorithms. With the ordinary viewpoint
changes the transition tilt goes easily to a big value (above 16 for example). The
experiments above show that the maximum transition tilt, about 2 for SIFT and
2.5 for Harris-Affine and Hessian-Affine, is by far not enough. MSER enables re-
liable recognition until a transition tilt of about 10, under the condition that the
images under comparison are free of scale change and contain highly contrasted
regions. The limit of A-SIFT goes beyond 16 largely. Images that have under-
gone transition tilts up to 30 and more can be reliably recognized by A-SIFT,
an example being illustrated in Fig. 6.7.

8.3.4 Comparative experiments

Fig. 8.18 compares the A-SIFT image matching with SIFT, Harris-Affine,
Hessian-Affine and MSER. Table 8.4 summarizes the results. Fig. 8.13 shows
images of a building facade taken from very different viewpoints. The transfor-
mation of the rectangle facade on the left to a trapezia on the right indicates
that the transformation is not affine, but strongly perspective. Nevertheless,
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Figure 8.11: Correspondences between images taken with zoom ×4, frontal view
and 80◦ angle, absolute tilt t = 5.8. A-SIFT (shown, K = 3), SIFT, Harris-
Affine, Hessian-Affine, MSER+Corr (shown) and MSER+SIFT (shown) find
respectively 349, 0, 0, 0, 10 and 17 correct matches.

Figure 8.12: Correspondences with absolute tilts t1 = t2 = 2 and longitude
angles φ1 = 0◦ and φ2 = 50◦, transition tilt τ = 3. A-SIFT (K = 3, shown),
SIFT, Harris-Affine, Hessian-Affine, MSER+Corr (shown) and MSER+SIFT
(shown) find respectively 881, 2, 0, 2, 70 and 87 correct matches.
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φ2/τ t = 2 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
10◦/1.3 408 233 176 110 124 1213
20◦/1.7 49 75 84 96 122 1173
30◦/2.1 5 24 32 85 103 1048
40◦/2.5 3 13 29 71 88 809
50◦/3.0 3 1 3 70 87 745
60◦/3.4 2 0 1 50 62 744
70◦/3.7 0 0 0 34 51 557
80◦/3.9 0 0 0 40 51 589
90◦/4.0 0 0 1 41 56 615

φ2/τt = 4 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
10◦/1.9 22 32 14 38 49 1054
20◦/3.3 4 5 1 32 39 842
30◦/5.3 3 2 1 24 32 564
40◦/7.7 0 0 0 22 28 351
50◦/10.2 0 0 0 15 19 293
60◦/12.4 1 0 0 12 17 145
70◦/14.3 0 0 0 6 13 90
80◦/15.6 0 0 0 6 12 106
90◦/16.0 0 0 0 5 9 88

Table 8.3: Transition tilt invariance comparison. Summary of the results of the
experiments that compare A-SIFT with SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), MSER coded by the correlation descriptor (MSER+Corr) and
by the SIFT descriptor (MSER+SIFT). The affine parameters of the two images
are φ1 = 0◦, t1 = t2 = 2 (above), t1 = t2 = 4 (below). φ2 and the transition
tilts τ are in the left column.

since a projective transformation can be locally modeled by affine transforms, a
large number of correspondences is established by A-SIFT. All the other meth-
ods fail. Fig. 8.14 shows the results of the standard test pair Graffiti 1 and
Graffiti 6 proposed by Mikolajczyk [242]. A-SIFT finds 724 correspondences,
out of which 3 are false. SIFT, Harris-Affine and Hessian-Affine find respectively
0, 3 and 1 correct correspondences: the τ = 3.2 transition tilt is just a bit too
large. MSER+Corr and MSER+SIFT find respectively 50 and 70 correct corre-
spondences. Proposed by Matas et al. in their online demo [237] as a standard
image to test MSER [238], the images in Fig. 8.15 show a number of containers
placed on a desktop 1. A-SIFT finds 194 correct correspondences. SIFT, Harris-
Affine, Hessian-AFfine, MSER+Corr and MSER+SIFT find respectively 10, 23,
11, 16 and 22 correct correspondences. Let us note that images in Figs. 8.14
and 8.15 provide optimal conditions for MSER: the camera-object distances are
similar and well contrasted shapes are present. But let us recall that MSER
fails under large scale changes or when well contrasted shapes are not present.
Fig. 8.16 contains two orthogonal road signs taken under a view change that
makes a transition tilt τ ≈ 2.6. A-SIFT successfully matches the two signs
finding 50 correspondences while all the other methods totally fail. The mon-

1We thank Michal Perdoch for having kindly provided us with the images.
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ument shown in Fig. 8.17 has undergone a viewpoint change of latitude angle
65 degrees (tilt t=2.4). A-SIFT works perfectly and finds 101 correct corre-
spondences. SIFT struggles by establishing 13 correspondences. Harris-Affine,
Hessian-Affine, MSER+Corr and MSER+SIFT fail finding only 2, 2, 5 and
4 matches. In Fig. 8.18 is the stump taking from different viewpoints which
makes a transition tilt τ ≈ 2.6. A-SIFT achieved success finding 168 correct
correspondences while all the other methods fail.

Fig. 8.19 illustrates a complex scene in a coffee room in which divers objects
are presented. A-SIFT recognizes the scene by finding 125 correspondences over
six non-coplanar objects. SIFT finds 11 correspondence on the wall and 2 on the
box over the fridge. Other methods fail finding at most a few correspondences
on the wall. Fig. 8.20 shows a coffee can that has been rotated for about
120 degrees. Over the cylinder transition tilt varies continuously and reaches
big values. A-SIFT identifies 287 correspondences that cover almost all visible
common areas. SIFT fails completely due to the too large viewpoint change.
Harris-Affine and Hessian Affine fail by finding 3 and 6 correspondences. MSER
finds a small number of correspondences that cover only part of letters that
provide highly contrasted regions but it does not catch anything on the image
part on the lower half of the can. The Palace of Versaille in Fig. 8.19 undertakes
a viewpoint change of about 50 degrees. A-SIFT detect 67 matches uniformly
distributed on the facade that can be viewed in the two images. SIFT finds
26 correspondences, mostly located in the closer end where the transition tilt
is smaller due to the perspective effect. The other methods fail completely by
finding zero or sporadic correspondences.

Fig./τ SIFT Haraff Hesaff MSER1 MSER2 A-SIFT
Fig. A/3.0 0 0 1 3 3 58

Fig. 8.13/3.8 0 0 1 0 2 68
Fig. 8.14/3.2 0 3 1 50 50 721

Fig. 8.15/[1.6,3.0] 10 23 11 16 22 254
Fig. 8.16/2.6 0 0 0 0 1 50
Fig. B/15.0 0 0 0 0 0 78
Fig. 8.17/2.4 13 2 2 5 4 101
Fig. 8.18/2.6 1 2 1 6 6 168

Fig. C/[1.6, ∞] 26 7 2 3 4 143
Fig. 8.19/[1.5, 3.3] 13 0 3 5 2 125
Fig. 8.20/[2.3, ∞] 0 6 3 12 22 287

Fig. D/[2, ∞] 19 5 7 7 13 123
Fig. 8.21/1.8 67 26 2 1 0 4

Table 8.4: Summary of the results of the experiments that compare A-SIFT with
SIFT, Harris-Affine (HarAff), Hessian-Affine (HesAff), MSER coded by the cor-
relation descriptor (MSER+Corr) and by the SIFT descriptor (MSER+SIFT).
The transition tilts or their ranges are listed in the left column. The figures
with Latin numbers are not shown in the text.
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Figure 8.13: Image matching: Facade. Absolute (and transition) tilt t = 3.8
(θ = 75◦). A-SIFT, SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and
MSER+SIFT find respectively 68, 0, 1, 1, 0 and 2 correct matches. A-SIFT is
implemented with K = 2, which means that K = 3 doesn’t work Results shown:
A-SIFT and MSER+SIFT

Figure 8.14: Image matching between Graffiti 1 and Graffiti 6. Transition tilt:
τ ≈ 3.2. From top to bottom, left to right: A-SIFT, SIFT, Harris-Affine,
Hessian-Affine, MSER+Corr and MSER+SIFT find respectively 721, 0, 3, 1, 50
and 70 correct matches. A-SIFT is implemented with K = 3. Results shown:
A-SIFT and MSER+SIFT

Figure 8.15: Image matching (images proposed by Matas et al [237]). Transition
tilt: τ ∈ [1.6, 3.0]. From top to bottom, left to right: A-SIFT (shown), SIFT
(shown), Harris-Affine, Hessian-Affine (shown), MSER+Corr and MSER+SIFT
(shown) find respectively 254, 10, 23, 11, 16 and 22 correct matches. A-SIFT is
implemented with K = 3.
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Figure 8.16: Image matching: road signs. Transition tilt τ ≈ 2.6. A-SIFT
(shown), SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT
(shown) find respectively 50, 0, 0, 0, 0 and 1 correct matches. A-SIFT is imple-
mented with K = 3.

Figure 8.17: Image matching: Ecole Polytechnique. Absolute (and transition)
tilt t ≈ 2.4 (θ = 65◦). A-SIFT (shown), SIFT, Harris-Affine, Hessian-Affine,
MSER+Corr and MSER+SIFT (shown) find respectively 101, 13, 2, 2, 5 and 4
correct matches. A-SIFT is implemented with K = 3.
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Figure 8.18: Image matching: stump. Transition tilt τ ≈ 2.6. A-SIFT (shown),
SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT (shown)
find respectively 168, 1, 2, 1, 6 and 6 correct matches. A-SIFT is implemented
with K = 3.

Figure 8.19: Image matching: coffee room. Transition tilt τ ∈ [1.5, 3.3]. A-SIFT
(shown), SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT
(shown) find respectively 125, 13, 0, 3, 5 and 2 correct matches. A-SIFT is
implemented with K = 1, which gives one of the very few examples where
details in one of the images are so small that K = 2 and K = 3 do not work.
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Figure 8.20: Image matching: can. Transition tilt τ ∈ [2.3,∞]. A-SIFT
(shown), SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT
(shown) find respectively 287, 0, 6, 3, 12 and 22 correct matches. A-SIFT is
implemented with K = 2, which means that K = 3 doesn’t work

Figure 8.21: Image matching: Palace of Versailles. Transition tilt τ = 1.8. A-
SIFT (shown), SIFT (shown), Harris-Affine, Hessian-Affine, MSER+Corr and
MSER+SIFT (shown) find respectively 67, 26, 2, 1, 0 and 4 correct matches.
A-SIFT is implemented with K = 3.
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8.3.5 Symmetry detection in perspective

Symmetry detection has drawn considerable attention in computer vision and
has been used for numerous applications such as image indexing, completion
of occluded shapes, object detection, facial image analysis and visual attention
(see, for example, [88] for a survey). The image projection is usually approxi-
mated by plane affine transforms for symmetry detection in perspective [256].
Some recent works apply SIFT, MSER and other affine-invariant detectors and
descriptors to detect bilateral symmetry [221, 88]. Conversely, symmetry has
been used to extract affine-invariant image features [24].

The image matching algorithm can be used to detect bilateral symmetry
in an image u, by simply looking for correspondences between u(x, y) and its
flipped version u(−x, y). After being flipped, symmetric structures become
either identical if taken in frontal view, or identical up to an oblique view other-
wise. A correspondence between u(x, y) and u(−x, y) therefore connects a pair
of bilateral symmetrical points in u(x, y). Fig. 8.22 shows some examples of bi-
lateral symmetry detection obtained by A-SIFT, SIFT, Harris-Affine, Hessian-
Affine, MSER+Corr and MSER+SIFT. A-SIFT that has the best performance
on affine invariant image matching, results in the best symmetry detection in
perspective.

Figure 8.22: Symmetry detection in perspective. From left to right: detection
results by A-SIFT, SIFT, Hessian-Affine, MSER+SIFT.

8.4 Comments and references

David Pritchard’s master thesis was a first step toward A-SIFT. Quoting [288]
in his 2003 master thesis on cloth parameters and motion capture:

Cloth strongly resists stretching, but permits substantial bend-
ing; folds and wrinkles are a distinctive characteristic of cloth. This
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behaviour means that sections of the cloth are often seen at oblique
angles, leading to large affine distortions of features in certain re-
gions of the cloth. Unfortunately, SIFT features are not invariant
to large affine distortions.(...) To compensate for this, we use an ex-
panded set of reference features. We generate a new reference image
by using a 2 x 2 transformation matrix T to scale the reference image
by half horizontally. We repeat three more times, scaling vertically
and along axes at 45 degrees, as shown in Figure 5.3. This simu-
lates different oblique views of the reference image. For each of these
scaled oblique views, we collect a set of SIFT features. Finally, these
new SIFT features are merged into the reference feature set. When
performing this merge, we must adjust feature positions, scales and
orientations by using T-1. This approach is compatible with the
recommendations made by Lowe for correcting SIFT’s sensitivity to
affine change.

In recent years local image detectors have bloomed. They can be classified
by their incremental invariance properties. All of them are translation invariant.
The Harris point detector [159] is also rotation invariant. The Harris-Laplace,
Hessian-Laplace and the DoG (Difference-of-Gaussian) region detectors [243,
246, 220, 121] are invariant to rotations and changes of scale. Some moment-
based region detectors [213, 41] including the Harris-Affine and Hessian-Affine
region detectors [244, 246], an edge-based region detector [337, 336], an intensity-
based region detector [335, 336], an entropy-based region detector [187], and
two level line-based region detectors MSER (“maximally stable extremal re-
gion”) [238] and LLD (“level line descriptor”) [260, 262, 264] are designed to
be invariant to affine transformations. MSER, in particular, has been demon-
strated to have often better performance than other affine invariant detectors,
followed by Hessian-Affine and Harris-Affine [248].

The mentioned methods have a varying complexity. Measured in terms
of their processing times, the fastest is MSER, followed by Harris-Affine and
Hessian-Affine. SIFT is ten times slower, but a recent acceleration has been
proposed in [147], that equals it to the other detectors.

However, the mentioned affine invariant detectors aren’t fully affine invari-
ant. As pointed out in [220], they start with initial feature scales and locations
selected in a non-affine invariant manner. As shown in [264], MSER and LLD
are not fully scale invariant, because they do not take into account the drastic
changes of level lines due to blur. This is also the case for other image local
descriptors, such as the distribution-based shape context [45], the geometric his-
togram [28] descriptors, the derivative-based complex filters [41, 310], and the
moment invariants [341].

There is, however, at least one method dealing with scale (and therefore
with blur) in a fully satisfactory way. In his milestone paper [220], Lowe has
proposed a scale-invariant feature transform (SIFT) descriptor that is invari-
ant to image scaling and rotation and partially invariant to illumination and
viewpoint changes. Although SIFT is a priori less invariant to affine trans-
forms than other descriptors such as Hessian-Affine and Harris-Affine [243, 246],
its performance turns out to be comparable, as we shall see in many experi-
ments. Furthermore, SIFT is really scale invariant (a mathematical proof of
this fact is given in [255]). A number of SIFT variants and extensions, in-
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cluding PCA-SIFT [189], GLOH (gradient location-orientation histogram) [247]
and SURF (speeded up robust features) [42], that claim to have improved ro-
bustness and distinctiveness with scaled-down complexity have been developed
ever since [130, 209]. Demonstrated to be superior to many other descrip-
tors [245, 247], SIFT and its variants have been popularly applied for scene
recognition [116, 253, 301, 344, 146, 312, 362, 254] and detection [132, 268], robot
localization [46, 313, 271, 183], image registration [361], image retrieval [158],
motion tracking [338, 192], 3D modeling and reconstruction [295, 345], building
panoramas [4, 54], photo management [360, 207, 321, 78], as well as symmetry
detection [221].
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Contrast-Invariant Image
Analysis
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How do we get this nice notation, a circle above the letter to indicate the
interior ?
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Chapter 9

Contrast-Invariant Classes
of Functions and Their
Level Sets

This chapter is about one of the major technological contributions of mathe-
matical morphology, namely the representation of images by their upper level
sets. As we shall see in this chapter, this leads to a handy contrast invariant
representation of images.

Definition 9.1. Let u ∈ F . The level set of u at level 0 ≤ λ ≤ 1 is denoted by
Xλu and defined by

Xλu = {x | u(x) ≥ λ}.

Strictly speaking, we have called level sets what should more properly be
called upper level sets. Several level sets of a digital image are shown in Figure
9.1 and all of the level sets of a synthetic image are illustrated in Figure 9.2.
The reconstruction of an image from its level sets is illustrated in Figure 9.3.
Two important properties of the level sets of a function follow directly from the
definition. The first is that the level sets provide a complete description of the
function. Indeed, we can reconstruct u from its level sets Xλu by the formula

u(x) = sup{λ | x ∈ Xλu}.

This formula is called superposition principle as u is being reconstructed by
“superposing” its level sets.
Exercise 9.1. Prove the superposition principle.

The second important property is that level sets of a function are globally
invariant under contrast changes. We say that two functions u and v have the
same level sets globally if for every λ there is µ such that Xµv = Xλu, and
conversely. Now suppose that a contrast change g : R → R is continuous and
increasing. Then it is not difficult to show that v = g(u) and u have the same
level sets globally.
Exercise 9.2. Check this last statement for any function u and any continuous in-
creasing contrast change g.
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102 CHAPTER 9. CONTRAST-INVARIANCE AND LEVEL SETS

Figure 9.1: Level sets of a digital image. Left to right, top to bottom: We first
show an image with range of gray levels from 0 to 255. Then we show eight level
sets in decreasing order from λ = 225 to λ = 50, where the grayscale step is 25.
Notice how essential features of the shapes are contained in the boundaries of
level sets, the level lines. Each level set (which appears as white) is contained
in the next one, as guaranteed by Proposition 9.2.

Conversely, we shall prove that if the level sets of a function v ∈ F are level
sets of u, then there is a continuous contrast change g such that v = g(u). This
justifies the attention we will dedicate to level sets, as they turn out to contain
all of the contrast invariant information about u.

9.1 From an image to its level sets and back

In the next proposition, for a sake of generality, we consider bounded measurable
functions on SN , not just functions in F .
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9.1. FROM AN IMAGE TO ITS LEVEL SETS AND BACK 103

Figure 9.2: A simple synthetic image and all of its level sets (in white) with
decreasing levels, from left to right and from top to bottom.

Proposition 9.2. Let Xλ denote the level sets Xλu of a bounded measurable
function u : SN → R. Then the sets Xλ satisfy the following two structural
properties:

(i) If λ > µ, then Xλ ⊂ Xµ. In addition, there are two real numbers λmax ≥
λmin so that Xλ = SN for λ < λmin, Xλ = ∅ for λ > λmax.

(ii) Xλ =
⋂

µ<λ Xµ for every λ ∈ R.

Conversely, if (Xλ)λ∈R is a family of sets of M that satisfies (i) and (ii), then
the level sets of the function u defined by superposition principle,

u(x) = sup{λ | x ∈ Xλ} (9.1)

satisfy Xλu = Xλ for all λ ∈ R and λmin ≤ u ≤ λmax.

Proof. The first part of Relation (i) follows directly from the definition of upper
level sets. The second part of (i) works with λmin = inf u and λmax = sup u.
The relation (ii) follows from the equivalence u(x) ≥ λ ⇔ u(x) ≥ µ for every
µ < λ.

Conversely, take a family of subsets (Xλ)λ∈R satisfying (i) and (ii) and define
u by the superposition principle. Let us show that Xλ = Xλu. Take first x ∈ Xλ.
Then it follows from the definition of u that u(x) ≥ λ, and hence x ∈ Xλu. Thus,
Xλ ⊂ Xλu. Conversely, let x ∈ Xλu. Then u(x) = sup{ν | x ∈ Xν} ≥ λ. Con-
sider any µ < λ. Then there exists a µ′ such that µ < µ′ ≤ sup{ν | x ∈ Xν}
and x ∈ Xµ′ . It follows from (i) that x ∈ Xµ. Since µ was any number less
that λ, we conclude by using (ii) that x ∈ ⋂

µ<λ Xµ = Xλ. It is easily checked
that λmin ≤ u ≤ λmax. ¤

Exercise 9.3. Check the last statement of the preceding proof, that λmin ≤ u ≤ λmax.



“JMMBookOct04”
1/5/2012
page 104

i

i

i

i

i

i

i

i

104 CHAPTER 9. CONTRAST-INVARIANCE AND LEVEL SETS

Figure 9.3: Reconstruction of an image from its level sets: an illustration of
Proposition 3.2. We use four different subsets of the image’s level sets to give
four reconstructions. Top, left: all level sets; top, right: all level sets whose gray
level is a multiple of 8; bottom, left: multiples of 16; bottom, right: multiples of
32. Notice the relative stability of the image shape content under these drastic
quantizations of the gray levels.

9.2 Contrast changes and level sets

Practical aspects of contrast changes are illustrated in Figures 9.4, 9.5, 9.6,
and 9.7, which illustrate how insensitive our perception of images is to contrast
changes, even when they are flat on some interval. When this happens, some
information on the image is even lost, as several grey levels melt together.

Definition 9.3. Any nondecreasing continuous surjection g : R → R will be
called a contrast change.

Exercise 9.4. Remark that g(s) → ±∞ as s → ±∞. Check that if u ∈ F and g is a
contrast change, then g(u) ∈ F .

In case g is increasing, g has an inverse contrast change g−1. In case g is flat
on some interval, we shall be happy with a pseudo-inverse for g.

Definition 9.4. The pseudo-inverse of any contrast change g : R→ R is defined
by

g(−1)(λ) = inf{r ∈ R | g(r) ≥ λ}.

Exercise 9.5. Check that g−1 is finite on R and tends to ±∞ as s → ±∞. Give an
example of g such that g−1 is not continuous.

Exercise 9.6. Compute and draw g(−1) for the function g(s) = max(0, s). Notice
that such a function is ruled out by our conditions at infinity for contrast changes.
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Figure 9.4: The histogram of the image Bird. For each i ∈ {0, 1, . . . , 255}, we
display (above, right) the function h(i) = Card {x | u(x) = i}. The function
below is the cumulative histogram, namely the primitive of h defined by Hu(i) =
Card {x | u(x) ≤ i}. The shape of h provides an indication about the overall
contrast of the image and about the contrast change imposed by the sensors.
See Chap. 10 for manipulations of the cumulative histogram.

Lemma 9.5. Let g : R → R be a contrast change. Then for every λ ∈ R,
g(g(−1))(λ) = λ and

g(s) ≥ λ if and only if s ≥ g(−1)(λ). (9.2)

Proof. The first relation follows immediately from the continuity of g. If
g(s) ≥ λ, then s ≥ g(−1)(λ) by the definition of g(−1)(λ). Conversely, if
s ≥ g(−1)(λ), then g(s) ≥ g(g(−1)(λ)) = λ and thus g(s) ≥ λ. ¤

Theorem 9.6. Let u ∈ F and g be a contrast change. Then any level set of
g(u) is a level set of u. More precisely, for λ ∈ R,

Xλg(u) = Xg(−1)(λ)u. (9.3)

Proof. The proof is read directly from Lemma 9.5 by taking s = u. ¤
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106 CHAPTER 9. CONTRAST-INVARIANCE AND LEVEL SETS

Figure 9.5: Contrast changes and an equivalence class of images. The three
images have exactly the same level sets and level lines, but their level sets are
mapped onto three different gray-level scales. The graphs on the right are the
graphs of the contrast changes u 7→ g(u) that have been applied to the initial
gray levels. The first one is concave; it enhances the darker parts of the image.
The second one is the identity; it leaves the image unaltered. The third one
is convex; it enhances the brighter parts of the image. Software allows one to
manipulate the contrast of an image to obtain the best visualization. From the
image analysis viewpoint, image data should be considered as an equivalence
class under all possible contrast changes.

The next result is a converse statement to Theorem 9.6.

Theorem 9.7. Let u and v ∈ F such that every level set of v is a level set of
u. Then v = g(u) for some contrast change g.

Proof. One can actually give an explicit formula for g, namely, for every µ ∈
u(SN ),

g(µ) = sup{λ ∈ v(SN ) | Xµu ⊂ Xλv}. (9.4)

For µ /∈ u(SN ), we can easily extend g into an nondecreasing function such that
g(±∞) = ±∞). (Take (e.g.) g piecewise affine). Note that ν > µ implies that
g(ν) ≥ g(µ). Let us first show that inf v ≤ g(µ) ≤ sup v. Set
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Figure 9.6: The two images (left) have the same set of level sets. The contrast
change that maps the upper image onto the lower image is displayed on the
right. It corresponds to one of the possible g functions whose existence is stated
in Corollary 3.14. The function g may be locally constant on intervals where
the histogram of the upper image is zero (see top, middle graph). Indeed, on
such intervals, the level sets are invariant.

Λ := {λ | Xµu ⊂ Xλv}.
Λ is not empty because Xinf v = SN and therefore inf v ∈ Λ. Thus g(µ) =
supΛ ≥ inf v. On the other hand Xsup v+εv = ∅ for every ε > 0. Since µ ∈ u(SN ),
Xµu 6= ∅ and therefore g(µ) = supΛ ≤ sup v.

Step 1: Proof that v(x) ≥ g(u(x)). By Proposition 9.2(i) Λ has the form
(−∞, sup Λ) or (−∞, supΛ]. But by Proposition 9.2(ii), Xsup Λv =

⋂
λ<sup Λ Xλv,

and this implies by the definition of Λ that g(µ) = sup Λ ∈ Λ. Thus,

Xµu ⊂ Xg(µ)v. (9.5)

Given x ∈ SN , let µ = u(x) in (9.5). Then,

Xu(x)u ⊂ Xg(u(x))v.

Since x ∈ Xu(x)u, we conclude that x ∈ Xg(u(x))v = {y | v(y) ≥ g(u(x))}.
Step 2: Proof that v(x) ≤ g(u(x)). Given x ∈ SN , we translate the
assumption with λ = v(x) as follows: There exists a µ(x) ∈ R such that

Xv(x)v = {y | u(y) ≥ µ(x)} = Xµ(x)u. (9.6)

Since x ∈ Xv(x)v, we know that x ∈ Xµ(x)u. Thus, u(x) ≥ µ(x), and Xu(x)u ⊂
Xµ(x)u = Xv(x)v. This last relation implies by the definition of g that v(x) ≤
g(u(x)).

Step 3: Proof that g is continuous. Recall that the image of a con-
nected set by a continuous function is connected. Thus u(SN ) is an interval of
R and so is v(SN ). Since g(u) = v, g(u(SN )) = v(SN ) is an interval. Now, a
nondecreasing function is continuous on an interval if and only if its range is
connected. Thus g is continuous on u(SN ) and so is its extension to R. ¤
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108 CHAPTER 9. CONTRAST-INVARIANCE AND LEVEL SETS

Figure 9.7: The original image (top, left) has a strictly positive histogram (all
gray levels between 0 and 255 are represented). Therefore, if any contrast change
g that is not strictly increasing is applied, then some data will be lost. Every
level set of the transformed image g(u) is a level set of the original image;
however, the original image has more level sets than the transformed image.

Exercise 9.7. Prove the last statement in the theorem, namely that “a nondecreasing
function is continuous on an interval if and only if its range is connected”.

Exercise 9.8. By reading carefully the steps 1 and 2 of the proof of Theorem 9.7,
check that this theorem applies with u and v just bounded and measurable on SN .
Then one has still has v = g(u) with g defined in the same way. Of course g is still
nondecreasing but not necessarily continuous. Find a simple example of functions u
and v such that g is not continuous.

9.3 Exercises

Exercise 9.9. This exercise gives a way to compute the function g such that v = g(u)
defined in the proof of Theorem 9.7 in terms of the repartition functions of u and v.
Let G be a Gauss function defined on RN such that

∫
RN G(x)dx = 1. For every

measurable subset of RN , set |A|G :=
∫

A
G(x)dx. Let u be a bounded continuous

function on RN . We can associate with u its repartition function hu(λ) := |Xλu|G.
Show that hu : λ ∈ [inf u, sup u] → hu(λ) is strictly decreasing. Show that it can
have jumps but is left-continuous, that is hu(λ) = limµ↑λ hu(µ). Define for every non
increasing function h a pseudo inverse by h((−1))(µ) := sup{λ | h(λ) ≥ µ}. Show that
h((−1)) is non increasing and that h((−1)) ◦ h(µ) ≥ µ, and that if h is left-continuous,

h ◦ h((−1))(µ) ≥ µ. Using (9.4) prove that g = h
((−1))
v ◦ hu.

Hint: prove that g(µ) = sup{λ | |Xµu|G ≤ |Xλv|G}.
Exercise 9.10. Let u be a real-valued function. If (µn)n∈N is an increasing sequence
that tends to λ, prove that

Xλu =
⋂

n∈N
Xµnu (9.7)

{x | u(x) > λ} =
⋃

µ>λ

Xµu. (9.8)
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9.4 Comments and references

Contrast invariance and level sets. It was Wertheimer who noticed that
the actual local values of the gray levels in an image could not be relevant in-
formation for the human visual system [357]. Contrast invariance is one of the
fundamental model assumptions in mathematical morphology. The two basic
books on this subject are Matheron [239] and Serra [314, 316]. See also the
fundamental paper by Serra [315]. Ballester et al. defined an “image intersec-
tion” whose principle is to keep all pieces of bilevel sets common to two images
[34]. (A bilevel set is of the form {x | λ ≤ u(x) ≤ µ}.) Monasse and Guichard
developed a fast level set transform (FLST) to associate with every image the
inclusion tree of connected components of level sets [252]. They show that the
inclusion trees of connected upper and lower level sets can be fused into a sin-
gle inclusion tree; among other applications, this tree can be used for image
registration. See Monasse [251].

Contrast changes. The ability to vary the contrast (to apply a contrast
change) of a digital image is a very useful tool for improving image visualization.
Professional image processing software has this capability, and it is also found
in popular software for manipulating digital images. For more about contrast
changes that preserve level sets, see [73]. Many reference on contrast-invariant
operators are given at the end of Chapter 11.
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Chapter 10

Specifying the contrast of
images

Midway image equalization means any method giving to a pair of images a
similar histogram, while maintaining as much as possible their previous grey
level dynamics. The comparison of two images is one of the main goals of
computer vision. The pair can be a stereo pair, two images of the same object
(a painting for example), multi-channel images of the same region, images of a
movie, etc. Image comparison is perceptually greatly improved if both images
have the same grey level dynamics (which means, the same grey level histogram).
Many image comparison algorithms are based on grey level and take as basic
assumption that intensities of corresponding points in both images are equal.
However, this assumption is generally false for stereo pairs, and deviations from
this assumption cannot even be modeled by affine transforms [90]. Consequently,
if we want to compare visually and numerically two images, it is useful to give
them first the same dynamic range and luminance.

In all of this applicative chapter the images u(x) and v(x) are defined on a
domain which is the union of M pixels. The area of each pixel is equal to 1. The
images are discrete in space and values: they attain values in a finite set L and
they are constant on each pixel of the domain. We shall call such images discrete
images. The piecewise constant interpolation is a very bad image interpolation.
It is only used here for a fast handling of image histograms. For other scopes,
better interpolation methods are of course necessary.

Definition 10.1. Let u be a discrete image. We call cumulative histogram of
u the function Hu : L→M := [0,M ] ∩ N defined by

Hu(l) =: meas({x | u(x) ≤ l}).

This cumulative histogram is a primitive of the histogram of the image h(l) =
meas({x | u(x) = l}). Figures 9.4, 9.6 and the first line of Figure 10.1. show
the histograms of some images and their cumulative histograms. In fact Figure
9.7 shows first the histogram and then the modified histogram after a contrast
change has been applied. These experiments illustrate the robustness of image
relevant information to contrast changes and even to the removal of some level
sets, when the contrast change is flat on an interval. Such experiments suggest

111
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112 CHAPTER 10. SPECIFYING THE CONTRAST OF IMAGES

that one can specify the histogram of a given image by applying the adequate
contrast change. Before proceeding, we have to define the pseudo-inverses of a
discrete function.

Proposition 10.2. Let ϕ : L → M be a nondecreasing function from a finite
set of values into another. Define two pseudo-inverse functions for ϕ :

ϕ(−1)(l) := inf{s | ϕ(s) ≥ l} and ϕ((−1))(l) := sup{s | ϕ(s) ≤ l.}

Then one has the following equivalences:

ϕ(s) ≥ l ⇔ s ≥ ϕ(−1)(l), ϕ(s) ≤ l ⇔ s ≤ ϕ((−1))(l) (10.1)

and the identity
(ϕ(−1))((−1)) = ϕ. (10.2)

Proof. The implication ϕ(s) ≥ l ⇒ s ≥ ϕ(−1)(l) is just the definition of ϕ(−1).
The converse implication is due to the fact that the infimum on a a finite set
is attained. Thus ϕ(ϕ(−1)(l)) ≥ l and therefore s ≥ ϕ(−1)(l) ⇒ ϕ(s) ≥ l. The
identity (10.2) is a direct consequence of the equivalences (10.1). Indeed,

s ≤ (ϕ(−1))((−1))(l) ⇔ ϕ(−1)(s) ≤ l ⇔ s ≤ ϕ(l).

¤

Exercise 10.1. Prove that if ϕ is increasing, ϕ(−1) ◦ ϕ(l) = l and ϕ((−1)) ◦ ϕ(l) = l.
If ϕ is surjective, ϕ ◦ ϕ(−1) = l and ϕ ◦ ϕ((−1))(l) = l.

Proposition 10.3. Let ϕ be a discrete contrast change and u a digital image.
Then

Hϕ(u) = Hu ◦ ϕ((−1)).

Proof. By (10.1), ϕ(u) ≤ l ⇔ u ≤ ϕ((−1))(l). Thus by the definitions of Hu

and Hϕ(u),

Hϕ(u)(l) = meas({x | ϕ(u) ≤ l}) = meas({x | u(x) ≤ ϕ((−1))(l)}) = Hu◦ϕ((−1))(l).

¤
Let G : L → M := [0, 1, . . . ,M ] be any discrete nondecreasing function. Can
we find a contrast change ϕ : L → L such that the cumulative histogram of
ϕ(u), Hϕ(u) becomes equal to G? Not quite: if for instance u is constant its
cumulative histogram is a one step function and Proposition 10.3 implies that
Hϕ(u) will also be a one step function. More generally if u attains k values,
then ϕ(u) attains k values or less. Hence its cumulative histogram is a step
function with k + 1 steps. Yet, at least formally, the functional equation given
by Proposition 10.3, Hu ◦ ϕ−1 = G, leads to ϕ = G−1 ◦Hu. We know that we
cannot get true inverses but we can involve pseudo-inverses. Thus, we are led
to the following definition:
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Definition 10.4. Let G : L→M be a nondecreasing function. We call specifi-
cation of u on the cumulative histogram G the image

ũ := G((−1)) ◦Hu(u).

Exercise 10.2. Prove that if G and Hu are one to one, then the cumulative histogram
of ũ is G. Is it enough to assume that Hu is one to one?

Definition 10.5. Let, for l ∈ [0, L] ∩ IN , G(l) = bM
L lc, where brc denotes

the largest integer smaller than r. Then ũ := G((−1)) ◦ Hu(u) is called the
uniform equalization of u. If v is another discrete image and one takes G = Hv,
ũ := H

((−1))
v ◦Hu(u) is called the specification of u on v.

When Hu is one to one, one can reach by applying a contrast change to u
any specified cumulative histogram G. Otherwise, the above definitions do the
best that can be expected and are actually quite efficient. For instance in the
“marshland experiment” (Figure 10.1) the equalized histogram and its cumu-
lative histogram are displayed on the second row. The cumulative histogram
is very close to its goal, the linear function. The equalized histogram does not
look flat but a sliding average of it would look almost flat.

Yet it is quite dangerous to specify the histogram of an image with an arbi-
trary histogram specification. This fact is illustrated in Figures 10.1 and 10.2
where a uniform equalization erases existing textures by making them too flat
(Figure 10.1) but also enhances the quantization noise in low contrasted regions
and produces artificial edges or textures (see Figure 10.2).

10.1 Midway equalization

We have seen that if one specifies u on v, then u inherits roughly the histogram
of v. It is sometimes more adequate to bring the cumulative histograms of u
and v towards a cumulative histogram which would be “midway” between both.
Indeed, if we want to compare visually and numerically two images, it is useful
to give them first the same dynamic range and luminance. Thus we wish:

• From two images u and v, construct by contrast changes two images ũ
and ṽ, which have a similar cumulative histogram.

• This common cumulative histogram h should stand “midway” between
the previous cumulative histograms of u and v, and be as close as possible
to each of them. This treatment must avoid to favor one cumulative
histogram rather than the other.

Definition 10.6. Let u and v be two discrete images. Set

Φ :=
1
2

(
H(−1)

u + H(−1)
v

)
.

We call midway cumulative histogram of u and v the function

G := Φ((−1)) =
(

1
2
(H(−1)

u + H(−1)
v )

)((−1))

(10.3)

and “midway specifications” of u and v the functions ũ := Φ ◦Hu(u) and ṽ :=
Φ ◦Hv(v).
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Figure 10.1: First row: Image u, the corresponding grey level histogram hu, and
the cumulative histogram Hu. Second row: Equalized image Hu(u), its histogram
and its cumulative histogram. In the discrete case, histogram equalization flat-
tens the histogram as much as possible. We see on this example that image
equalization can be visually harmful. In this marshland image, after equaliza-
tion, the water is no more distinguishable from the vegetation. The third row
shows a zoom on the rectangular zone, before and after equalization.

Exercise 10.3. Let u and v be two constant images, whose values are a and b. Prove
that their “midway” function is the right one, namely a function w which is constant
and equal to a+b

2
.

Exercise 10.4. Prove that if we take as a definition of the midway histogram

G :=

(
1

2
(H((−1))

u + H((−1))
v )

)(−1)

,

then for two constant images u = a and v = b the midway image is constant and equal
to [1/2(a + b)− 1]. This proves that Definition 10.6 is better.

Exercise 10.5. Prove that if u is a discrete image and f and g two nondecreasing
functions, then the midway image of f(u) and g(u) is f(u)+g(u)

2
.

Exercise 10.6. If we want the “midway” cumulative histogram H to be a compromise
between Hu and Hv, the most elementary function that we could imagine is their
average, which amounts to average their histograms as well. However, the following
example proves that this idea is not judicious at all.

Consider two images whose histograms are “crenel” functions on two disjoint in-
tervals, for instance u(x) := ax, v(x) = bx + c. Compute a, b, c in such a way that
hu and hv have disjoint supports. Then compute the specifications of u and v on the
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Figure 10.2: Effect of histogram equalization on the quantization noise. On the
left, the original image. On the right, the same image after histogram equaliza-
tion. The effect of this equalization on the dark areas (the piano, the left part
of the wall), which are low contrasted, is perceptually dramatic. We see many
more details but the quantization noise has been exceedingly amplified.

mean cumulative histogram G := Hu+Hv
2

. Compare with their specifications on the
midway cumulative histogram.

10.2 Midway equalization on image pairs

Results on a stereo pair

The top of Figure 10.3 shows a pair of aerial images in the region of Toulouse.
Although the angle variation between both views is small, and the photographs
are taken at nearly the same time, we see that the lightning conditions vary
significantly (the radiometric differences can also come from a change in camera
settings). The second line shows the result of the specification of the histogram
of each image on the other one. The third line shows both images after equal-
ization.

If we scan some image details, as illustrated on Figure 10.4, the damages
caused by a direct specification become obvious. Let us specify the darker
image on the brightest one. Then the information loss, due to the reduction
of dynamic range, can be detected in the brightest areas. Look at the roof of
the bright building in the top left corner of the image (first line of Figure 10.4):
the chimneys project horizontal shadows on the roof. In the specified image,
these shadows have almost completely vanished, and we cannot even discern
the presence of a chimney anymore. In the same image after equalization, the
shadows are still entirely recognizable, and their size reduction remains minimal.
The second line of Figure 10.4 illustrates the same phenomenon, observed in
the bottom center of the image. The structure present at the bottom of the
image has completely disappeared after specification and remains visible after
midway equalization. These examples show how visual information can be lost
by specification and how midway algorithms reduce significantly this loss.
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116 CHAPTER 10. SPECIFYING THE CONTRAST OF IMAGES

Figure 10.3: Stereo pair: two pieces of aerial images of a region of Toulouse.
Same images after specification of their histograms on each other (left: the
histogram of the first image has been specified on the second, and right: the
histogram of the second image has been specified on the first). Stereo pair after
midway equalization.
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Figure 10.4: Extracts from the stereo pair shown on Figure 10.3. From left to
right: in the original image, in the specified one, in the original image after
midway equalization. Notice that no detail is lost in the midway image, in
contrast with the middle image.

Figure 10.5: First line: two images of Toulouse (blue and infrared channel).
Second line: same images after midway equalization.

Multi-Channel images

The top of Figure 10.5 shows two pieces of multi-channel images of Toulouse.
The first one is extracted from the blue channel, and the other one from the
infrared channel. The second and third line of the same figure show the same
images after midway equalization. The multichannel images have the peculiarity
to present contrast inversions : for instance, the trees appear to be darker than
the church in the blue channel, and are naturally brighter than the church
in the infrared channel. The midway equalization being limited to increasing
contrast changes, it obviously cannot handle these contrast inversions. In spite
of these contrast inversions, the results remain visually good, which underlines
the robustness of the method gives globally a good equalization.
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Photographs of the same painting

The top of Figure 10.6 shows two different snapshots of the same painting, Le
Radeau de la Méduse1, by Théodore Géricault (small web public versions). The
second one is brighter and seems to be damaged at the bottom left. The second
line shows the same couple after midway equalization. Finally, the last line of
Figure 10.6 shows the difference between both images after equalization. We
see clear differences around the edges, due to the fact that the original images
are not completely similar from the geometric point of view.

10.2.1 Movie equalization

One can define a midway cumulative histogram to an arbitrary number of im-
ages. This is extremely useful for the removal of flicker in old movies. Flicker
has multiple causes, physical, chemical or numerical. The overall contrast of
successive images of the same scene in a movie oscillates, some images being
dark and others bright. Our main assumption is that image level sets are glob-
ally preserved from one image to the next, even if their level evolves. This leads
to the adoption of a movie equalization method preserving globally all level sets
of each image. We deduce from Theorem 9.7 in the previous chapter that the
correction must be a global contrast change on each image. Thus the only left
problem is to specify a common cumulative histogram (and therefore a common
histogram) to all images of a given movie scene. Noticing that the definition of
G in (10.3) for two images simply derives from a mean, its generalization is easy.
Let us denote u(t,x) the movie (now a discrete time variable has been added)
and by Ht the cumulative histogram function of x → u(t,x) at time t. Since
flicker is localized in time, the idea is to define a time dependent cumulative
histogram function Kh

t which will be the “midway” cumulative histogram of
the cumulative histograms in an interval [t−h, t+h]. Of course the linear scale
space theory of Chapter 2 applies here. The ideal average is gaussian. Hence
the following definition.

Definition 10.7. Let u(t,x) be a movie and denote by Ht the cumulative his-
togram of u(t) : x → u(t,x). Consider a discrete version of the 1-D gaussian
Gh(t) = 1

(4πh)
1
2
e−

t2
4h . Set

Φ(t,l) :=
∫

Gh(t− s)(H(−1)
s )(l)ds.

We call “midway gaussian cumulative histogram at scale h” of the movie u(t,x)
the time dependent cumulative histogram

G(t,l) := Φ((−1))
(t,l) =

(∫
Gh(t− s)(H(−1)

s )(l)ds

)((−1))

(10.4)

and “midway specification” of the movie u(t) the function ũ(t) := Φ◦Hu(t)(u(t)).
If Hu(t) is surjective, then ũ(t) has G(t,l) as common cumulative histogram.

Notice that this is a straightforward extension of Definition 10.6.
1Muse du Louvre, Paris.
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Figure 10.6: Two shots of the Radeau de la Méduse, by Géricault. The same
images after midway equalization. Image of the difference between both images
after equalization. The boundaries appearing in the difference are mainly due
to the small geometric distortions between the initial images.
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Figure 10.7: (a) Three images of Chaplin’ s film His New Job, taken at equal
intervals of time. This extract of the film suffers from a severe real flicker. (b)
Same images after the Scale-Time Equalization at scale s = 100. The flicker
observed before has globally decreased. (c) Evolution of the mean of the current
frame in time and at three different scales. The most oscillating line is the mean
of the original sequence. The second one is the mean at scale s = 10. The last
one, almost constant, corresponds to the large scale s = 1000. As expected the
mean function is smoothed by the heat equation.
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The implementation and experimentation is easy. We simply show in Figure
10.7 three images of Chaplin’ s film His New Job, taken at equal intervals of time.
This extract of the film suffers from a severe real flicker. This flicker is corrected
at the scale where, after gaussian midway equalization, the image mean becomes
nearly constant through the sequence. The effects of this equalization are usually
excellent. They are easily extended to color movies by processing each channel
independently.

10.3 Comments and references

Histogram specification As we have seen histogram specification [145] can
be judicious if both images have the same kind of dynamic range. For the same
reason as in equalization, this method can also product contouring artifacts.
The midway theory is essentially based on Julie Delons’ PhD and papers [99],
[100] where she defines two midway histogram interpolation methods. One of
them, the square root method involves the definition of a square root of any
nondecreasing function g, namely a function g such that f ◦f = g. Assume that
u and v come from the same image (this intermediate image is unknown), up
to two contrast changes f and f−1. The function f is unknown, but satisfies
formally the equality Hu ◦ f = Hv ◦ f−1. Thus

Hu
−1 ◦Hv = f ◦ f.

It follows that the general method consists in building an increasing function
f such that f ◦ f = Hu

−1 ◦ Hv and replacing v by f(v) and u by f−1(u).
This led Delon [?] to call this new histogram midway method, the “square
root” equalization. The midway interpolation developed in this chapter uses
mainly J. Delon’s second definition of the midway cumulative histogram as the
harmonic mean of the cumulative histograms of both images. This definition is
preferable to the square root. Indeed, both definitions yield very similar results
but the harmonic mean extends easily to an arbitrary number of images and
in particular to movies [100]. The Cox, Roy and Hingorani algorithm defined
in [90] performs a midway equalization. They called their algorithm “Dynamic
histogram warping” and its aim is to give a common cumulative histogram (and
therefore a common histogram) to a pair of images. Although their method is
presented as a dynamic algorithm, there is a very simple underlying formula,
which is the harmonic mean of cumulative histograms discovered by Delon [99].
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Chapter 11

Contrast-Invariant
Monotone Operators

A function operator T is monotone if u ≥ v ⇒ Tu ≥ Tv. A set operator
T is monotone if X ⊂ Y implies T X ⊂ T Y . We are mainly interested in
monotone function operators, since they are nonlinear generalizations of linear
smoothing using a nonnegative convolution kernel. We have already argued that
for image analysis to be robust, the operators must also be contrast invariant.
The overall theme here will be to develop the equivalence between monotone
contrast-invariant function operators and monotone set operators. This equiva-
lence is based on one of the fundamentals of mathematical morphology described
in Chapter 9: A real-valued function is completely described by its level sets.

This allows one to process an image u by processing separately its level sets
by some monotone set operator T and defining the processed image by the
superposition principle

Tu = sup{λ,x ∈ T (Xλu)}.

Such an operator is called in digital technology a stack filter, since it processes
an image as a stack of level sets. Conversely, we shall associate with any contrast
invariant monotone function operator T a monotone set operator by setting

T (Xλu) = Xλ(Tu).

Such a construction is called a level set extension of T .
Several questions arise, which will be all answered positively once the func-

tional framework is fixed: Are stack filters contrast invariant? Conversely, is
any monotone contrast invariant operator a stack filter? Is any monotone set
operator the level set extension of its stack filter?

In Section 11.1 we shall make definitions precise and give some remarkable
conservative properties of contrast invariant monotone operators. Section 11.2 is
devoted to stack filters and shows that they are monotone and contrast invariant.
Section 11.3 defines the level set extension and shows the converse statement:
Any contrast invariant monotone operator is a stack filter. Section 11.4 applies
this construction to a remarkable denoising stack filter due to Vincent and Serra,
the area opening.

123
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11.1 Contrast-invariance

11.1.1 Set monotone operators

We will be mostly dealing with function operators T defined on F and set
operators T defined on L, but sometimes also defined on M. We denote by
D(T ) the domain of T . Now, all set operators we shall consider in practice are
defined first on subsets of RN .

Definition 11.1. Let T a monotone operator defined on a set of subsets of RN .
We call standard extension of T to SN the operator, still denoted by T , defined
by

T (X) = T (X \ {∞}) ∪ (X ∩ {∞}).

In other terms if X doesn’t contain ∞, T (X) is already defined and if X
contains ∞, T (X) contains it too. Thus a standard extension satisfies ∞ ∈
T X ⇔∞ ∈ X.

Remark 11.2. Let us examine the case where T is initially defined on C, the
set of all closed subsets of RN . There are only two kinds of sets in L, namely

• compact sets of RN

• sets of the form X = C ∪ {∞}, where C is a closed set of RN .

Thus the standard extension of T extends T to L, the set of all closed (and
therefore compact) subsets of SN .

All of the usual monotone set operators used in shape analysis satisfy a small
list of standard properties which it is best to fix now. Their meaning will come
obvious in examples.

Definition 11.3. We say that a set operator T defined on its domain D(T ) is
standard monotone if

• X ⊂ Y =⇒ T X ⊂ T Y ;

• ∞ ∈ T X ⇐⇒∞ ∈ X;

• T (∅) = ∅, T (SN ) = SN ;

• T (X) is bounded in RN if X is;

• T (X)c is bounded in RN if Xc is.

Definition 11.4. Let T be a monotone set operator on its domain D(T ). We
call dual domain the set

D(T̃ ) := {X ⊂ SN | Xc ∈ D(T )}.
We call dual of T the operator X → T̃ X = (T (Xc))c, defined on D(T̃ ).

Proposition 11.5. T is a standard monotone operator if and only if T̃ is.

Exercise 11.1. Prove it!
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11.1.2 Monotone function operators

Function operators are usually defined on F , the set of continuous functions
having some limit u(∞) at infinity. We shall always assume that this limit
is preserved by T , that is, Tu(∞) = u(∞). Think that images are usually
compactly supported. Thus u(∞) is the “color of the frame” for a photograph.
There is no use in changing this color.

Definition 11.6. We say that a function operator T : F → F is standard
monotone if for all u, v ∈ F ,

u ≥ v =⇒ Tu ≥ Tv; Tu(∞) = u(∞). (11.1)

Exercise 11.2. Is the operator T defined by (Tu)(x) = u(x)+1 standard monotone?

Recall from Chapter 9 that any nondecreasing continuous surjection g : R→
R is called a contrast change.

Definition 11.7. A function operator T : F → F is said to be contrast invariant
if for every u ∈ F and every contrast change g,

g(Tu) = Tg(u). (11.2)

Checking contrast invariance with increasing contrast changes will make our
life simpler.

Lemma 11.8. A monotone operator is contrast invariant if and only if it com-
mutes with strictly increasing contrast changes.

Proof. Let g be a contrast change. We can find strictly increasing continuous
functions gn and hn : R→ R such that gn(s) → g(s), hn(s) → g(s) for all s and
gn ≤ g ≤ hn (see Exercise 11.12.) Thus, by using the commutation of T with
increasing contrast changes, we have

T (g(u)) ≥ T (gn(u)) = gn(Tu) → g(Tu) and

T (g(u)) ≤ T (hn(u)) = hn(Tu) → g(Tu),

which yields T (g(u)) = g(Tu). ¤
Let us give some notable properties entailed by the monotonicity and the con-
trast invariance.

Lemma 11.9. Let T be standard monotone contrast invariant operator. Then
for every constant function u ≡ c one has Tu ≡ c.

Proof. Let g be a contrast change such that g(s) = s for inf Tu ≤ s ≤ supTu.
Since Tu(∞) = u(∞) = c, this implies that inf Tu ≤ c ≤ sup Tu and therefore
g(c) = c, which means g(u) = u. By the contrast invariance we therefore obtain
Tu = Tg(u) = g(Tu) ≡ c. ¤
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We have indicated several times the importance of image operators being
contrast invariant. In practice, image operators are also translation invariant.
For x ∈ RN we are going to use the notation τx to denote the translation
operator for both sets and functions: For X ∈ M, τxX = {x + y | y ∈ X},
and for u ∈ F , τxu is defined by τxu(y) = u(y − x). Since elements of M
can contain ∞, we specify that ∞± x = ∞ when x ∈ RN . This implies that
τxu(∞) = u(∞).

Definition 11.10. A set operator T is said to be translation invariant if its
domain is translation invariant and if for all X ∈ D(T ) and x ∈ RN ,

τxT X = T τxX.

A function operator T is said to be translation invariant if for all u ∈ F and
x ∈ RN ,

τxTu = Tτxu.

We say that a function operator T commutes with the addition of constants if
u ∈ F and c ∈ R imply T (u + c) = Tu + c.

Contrast-invariant operators clearly commute with the addition of constants:
Consider the contrast change defined by g(s) = s + c.

Lemma 11.11. Let T be a translation-invariant monotone function operator
on F that commutes with the addition of constants. If u ∈ F is K-Lipschitz on
RN , namely |u(x)− u(y)| ≤ K|x− y| for all x, y in RN , then so is Tu.

Proof. For any x ∈ RN , y ∈ RN , and z ∈ SN , we have

u(y + z)−K|x− y| ≤ u(x + z) ≤ u(y + z) + K|x− y|. (11.3)

These inequalities work for z = ∞ because u(y+∞) = u(x+∞) = u(∞). Thus
we can write them as inequalities between functions on SN :

τ−yu−K|x− y| ≤ τ−xu ≤ τ−yu + K|x− y|. (11.4)

Since T is monotone, we can apply T to the functions in (11.4) and preserve
the inequalities, which yields

T (τ−yu−K|x− y|) ≤ T (τ−xu) ≤ T (τ−yu + K|x− y|).
Now use the fact that T commutes with the addition of constants and the
translation invariance of T to obtain

τ−y(Tu)−K|x− y| ≤ τ−x(Tu)) ≤ T (τ−yu) + K|x− y|).
Taking the values of these functions at 0 yields

Tu(y)−K|x− y| ≤ Tu(x) ≤ Tu(y) + K|x− y|,
which is the announced result. ¤

We say that an operator is monotone on a set of functions if u ≥ v ⇒ Tu ≥
Tv. Clearly all above proofs do not depend upon the fact that the operator is
standard, but just upon its translation invariance and monotonicity. Thus, by
considering the proof of Lemma 11.11 and the definition of uniform continuity
(Definition ??), one obtains the following generalizations.
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Corollary 11.12. Assume that T is a translation-invariant monotone operator
on a set of uniformly continuous functions, that commutes with the addition of
constants. Then Tu is uniformly continuous on RN with the same modulus of
continuity. In particular if u is L-Lipschitz on RN , then so is Tu.

Exercise 11.3. Prove corollary 11.12.

11.2 Stack filters

Definition 11.13. We say that a function operator T is obtained from a mono-
tone set operator T as a stack filter if

Tu(x) = sup{λ | x ∈ T (Xλu)} (11.5)

for every x ∈ SN .

The relation (11.5) has practical implications. It means that Tu can be
computed by applying T separately to each characteristic function of the level
sets Xλu. This leads to the following stack filter algorithm.

u

Xλu → T (Xλu)
↗ ↘

...
↘ ↗

Xµu → T (Xµu)

Tu(x) = sup{λ | x ∈ T (Xλu)}.

The image u is decomposed into the stack of level sets. Each level set is
processed independently by the monotone operator T . This yields a new stack
of sets T (Xλu) and Formula (11.5) always defines a function Tu. Now, this
construction will be perfect only if

Xλ(Tu) = T (Xλu). (11.6)

Definition 11.14. When (11.6) holds, we say that T “commutes with thresh-
olds”, or that T and T satisfy the “commutation with threshold” property.

Of course, this commutation can hold only if T sends L into itself. A further
condition which turns out to be necessary is introduced in the next definition.

Definition 11.15. We say that a monotone set operator T : L → L is upper
semicontinuous if for every sequence of compact sets Xn ∈ D(T ) = L such that
Xn+1 ⊂ Xn, we have

T (
⋂
n

Xn) =
⋂
n

T (Xn). (11.7)

Exercise 11.4. Show that a monotone operator T : L → L is upper semicontinuous
if and only if it satisfies, for every family (Xλ)λ∈R ⊂ L such that Xλ ⊂ Xµ for λ > µ,
the relation T (

⋂
λ Xλ) =

⋂
λ T (Xλ).
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Exercise 11.5. Show that a monotone operator on L is upper semicontinuous if and
only if it satisfies (11.7) for every sequence of compact sets Xn such that Xn+1 ⊂ X◦

n.
Hint: Since SN is the unit sphere in RN+1, one can endow it with the euclidian distance
d in RN+1. Given a nondecreasing sequence Yn in L, set Xn = {x, d(x, Yn) ≤ 1

n
}.

Then apply (11.7) to Xn and check that
⋂

n Xn =
⋂

n Yn.

Exercise 11.6. Show that a monotone operator T : L → L is upper semicontinuous
if and only if it satisfies, for every family (Xλ)λ∈R ⊂ L such that Xλ ⊂ X◦

µ for λ > µ,
the relation T (

⋂
λ Xλ) =

⋂
λ T (Xλ).

Theorem 11.16. Let T : L →M be a translation invariant standard monotone
set operator. Then the associated stack filter T is translation invariant, contrast
invariant and standard monotone from F into itself. If, in addition, T is upper
semicontinuous, then T commutes with thresholds.

Proof that T is monotone. One has

u ≤ v ⇔ (∀λ, Xλu ⊂ Xλv).

Since T is monotone, we deduce that

∀λ, T (Xλu) ⊂ T (Xλv)

which by (11.5) implies Tu ≤ Tv.

Proof that T is contrast invariant.
By Lemma 11.8 we can take g strictly increasing and therefore a bijection from
R to R. We notice that :
For λ > g(sup u), Xλg(u) = ∅ and therefore T (Xλg(u)) = ∅.
For λ < g(inf u), Xλg(u) = SN and therefore T (Xλg(u)) = SN .
Thus using (11.5) we can restrict the range of λ in the definition of T (g(u))(x):

T (g(u))(x) = sup{λ, g(inf u) ≤ λ ≤ g(sup u), x ∈ T (Xλg(u))}

= sup{g(µ), x ∈ T (Xg(µ)g(u))}
= sup{g(µ), x ∈ T (Xµu)} = g(Tu(x)).

Proof that Tu belongs to F .
T is by construction translation invariant. By Corollary 11.12, Tu is uniformly
continuous on RN . Let us prove that Tu(x) → u(∞) as x → ∞. We notice
that for λ > u(∞), Xλu is bounded. Since T is standard monotone T (Xλu) is
bounded too. Now, by (11.5), Tu(x) ≤ λ if x ∈ T (Xλu)c. This last condition
is satisfied if x is large enough and we deduce that lim supx→∞ Tu(x) ≤ u(∞).
In the same way notice that (Xλu)c is bounded if λ < u(∞). So by the same
argument, we also get lim infx→∞ Tu(x) ≥ u(∞). T being standard, it is easily
checked using (11.5) that Tu(∞) = u(∞). Thus, Tu is continuous on RN and
at ∞ and therefore on SN .

Proof that T commutes with thresholds, when T is upper semicon-
tinuous.
Let us show that the sets Yλ = T (Xλu) satisfy the properties (i) and (ii) in
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Proposition 9.2. By the monotonicity of T , Yλ ⊂ Yµ for λ > µ. Since T (∅) = ∅,
we have

Yλ = T (Xλu) = T (∅) = ∅
for λ > maxu and, in the same way Yλ = SN for λ < min u. So Tu has the
same bounds as u. This proves Property (i). As for Property (ii), we have for
every λ, using the upper semicontinuity and exercise 11.4,

Yλ = T (Xλu) = T (
⋂

µ<λ

Xµu) =
⋂

µ<λ

T (Xµu) =
⋂

µ<λ

Yµ.

So by applying the converse statement of Proposition 9.2, we deduce that

Xλ(Tu) = T (Xλu).

¤

Exercise 11.7. Check that Tu(∞) = u(∞), as claimed in the former proof.

The upper semicontinuity of T is necessary to ensure the commutation with
thresholds. See Exercise 11.21. The assumption that T sends bounded sets of
RN on bounded sets of RN and complementary sets of bounded sets onto com-
plementary sets of bounded sets also is necessary to ensure that Tu is continuous
at ∞: see Exercise 11.16.

11.3 The level set extension

Our aim here is just the converse as in the former section. We wish to associate
a standard monotone set operator T from L to L with any contrast invariant
standard monotone function operator T , in such a way that the whole machinery
works, namely both operators satisfy the commutation with threshold property
T (Xλu) = Xλ(Tu) and T is the stack filter of T .

Lemma 11.17. Let u ≤ 0 and v ≤ 0 ∈ F and assume that X0u = X0v (6= ∅).
Then there is a contrast change h such that h(0) = 0 and u ≥ h(v).

Proof. Define

h̃(r) =





min{u(x) | x ∈ Xrv} if min v ≤ r ≤ 0;
r if r > 0;
min u−min v + r if r ≤ min v.

Notice that h̃(0) = 0 and that h̃ is nondecreasing. The following relation holds
for all x ∈ RN by the definition of h̃ and because u(x) belongs to the set
{u(y) | v(y) ≥ v(x)}:

u(x) ≥ min{u(y) | v(y) ≥ v(x)} = h̃(v(x)).

We now use the compactness in SN of the level sets of v to show that h̃ is
continuous at zero. Let (rk)k∈N be an arbitrary increasing sequence tending to
zero. Choose xk ∈ Xrk

v such that h̃(rk) = u(xk). This is possible because u is



“JMMBookOct04”
1/5/2012
page 130

i

i

i

i

i

i

i

i

130 CHAPTER 11. CONTRAST-INVARIANT MONOTONE OPERATORS

continuous and the Xrk
v are compact and nonempty. Since h̃ is nondecreasing,

h̃(rk) → h̃−(0).
Let x be any accumulation point of the set {xk}k∈N. Since the Xrk

v are
compact, all the accumulation points of the set {xk}k∈N are contained in X0v =⋂

k∈N Xrk
v. This means that u(x) = 0. But lim u(xk) = u(x) by the continuity

of u, and we conclude that h̃−(0) = 0. At this point h̃ satisfies the announced
requirements for h, except that it is not always continuous for all r < 0. This is
easily fixed by choosing a continuous nondecreasing function h such that h̃ ≥ h
and h(0) = 0. One way to do this is to take h(r) = (1/|r|) ∫ r

2r
h̃(s) ds for r < 0.

Then u(x) ≥ h̃(v(x)) ≥ h(v(x)) as announced. ¤

Exercise 11.8. Prove that h(r) = (1/|r|) ∫ r

2r
h̃(s) ds is indeed nondecreasing and

continuous for r ≤ 0 and that h̃ ≥ h. Find examples of functions u and v defined on
S1 for which h̃ is not continuous.

Definition 11.18 (and proposition (Evans-Spruck)). 1 Given a contrast
invariant monotone operator T on F , we call level set extension of T the set
operator defined in the following way : for any X ∈ L, take u ≤ 0 such that
X0u = X and set

T (X) = X0T (u).

Then T (X) does not depend upon the particular choice of u.

Proof. The proof follows directly from Lemma 11.17: Take u and v ∈ F such
that u ≤ 0, v ≤ 0, and X0u = X0v. Let h be a contrast change such that
h(0) = 0 and u ≥ h(v). Since T is monotone and contrast invariant one has by
Lemma 11.1.2 Tu ≤ 0, and Tu ≥ Th(v) = h(Tv). Using the fact that h(0) = 0,
we obtain that Tv(x) = 0 implies that Tu(x) = 0. By interchanging the roles of
u and v, Tu(x) = 0 implies that Tv(x) = 0. We conclude that X0Tu = X0Tv. ¤

Exercise 11.9. Definition 11.18 would’nt be complete if we did not prove that for any
X ∈ L we can find u ≤ 0 in F such that X0u = X. Hint: Since SN is the unit sphere
in RN+1, one can endow it with the euclidian distance d in RN+1. Use the distance
function d(x, X) to define u. This distance function is continuous: see Exercise 11.18.

Theorem 11.19 (Evans–Spruck). Let T be a contrast-invariant monotone
operator on F and T its level set extension on L. Then T is monotone, T and
T satisfy the commutation with thresholds T Xλu = XλTu for all λ ∈ R, T is the
stack filter associated with T and T is upper semicontinuous on L. In addition,
if T is standard, then so is T .

Proof. Commutation with thresholds: Given u and λ, let g(s) = s − λ,
which is a continuous contrast change. We then have X0g(u) = Xλu. Using this
relation, the level set extension and the contrast invariance of T ,

T (Xλu) = T (X0g(u)) = X0(T (g(u))) = X0(g(Tu)) = Xλ(Tu).

1What we are doing here is related to the scheme originally introduced by Osher and
Sethian as a numerical method for front propagation [278]. We briefly described their work
in the Introduction (see page ??).
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Proof of the stack filter property: This is an immediate consequence of the
superposition principle and the commutation with thresholds :

Tu(x) = sup{λ | x ∈ XλTu} = sup{λ | x ∈ T (Xλu)}.

Proof that T is upper semicontinuous on L: By the result of Exercise
11.5, it is enough to consider a sequence (Xn)n≥1 in L such that Xn+1 ⊂ X◦

n.
By Lemma 11.20 below there is a function u ∈ F such that X1− 1

n
u = Xn and

X1u =
⋂

n Xn. Finally, using twice the just proven commutation of thresholds,

T (
⋂
n

Xn) = T (X1u) = X1(Tu) =
⋂
n

X1− 1
n
Tu =

⋂
n

T (X1− 1
n
u) =

⋂
n

T (Xn).

Proof that T is standard if T is: Recall that T is standard if Tu(∞) = u(∞).
By using the commutation with thresholds, all of the standard properties for T
are straightforward. For instance, taking some u ∈ F ,

T (∅) = T (Xmax u+1u) = Xmax u+1Tu = ∅.

Indeed, by the monotonicity, the contrast invariance, and Lemma 11.1.2, u ≤
C ⇒ Tu ≤ C.
In the same way, let X ∈ L and u a function such that X0u = X. If X is
bounded, then u(∞) < 0, so that Tu(∞) = u(∞) < 0. Thus T (X) = X0Tu is
bounded. If Xc = {x | u(x) < 0} is bounded, then Tu(∞) = u(∞) ≥ 0. Thus
T (X)c = (X0Tu)c is bounded. Finally by the commutation with thresholds,

∞ ∈ X ⇔ u(∞) ≥ 0 ⇔ Tu(∞) ≥ 0 ⇔∞ ∈ X0(Tu) = T (X).

¤

Exercise 11.10. Prove that the level set extension T is monotone. The argument is
not given in the above proof.

Lemma 11.20. Let (Xn)n≥1 be a sequence in L such that Xn+1 ⊂ X◦
n. There

is a function u ∈ F such that X1− 1
n
u = Xn for n ≥ 1 and X1u =

⋂
n≥1 Xn.

Proof. Let us use the euclidian distance d of RN+1 restricted to SN considered
as a subset of RN+1. Set u(x) = 1 if x ∈ ⋂

n Xn,

u(x) = (1− 1
n

)
d(x, Xn+1)

d(x, Xc
n) + d(x, Xn+1)

+ (1− 1
n + 1

)
d(x, Xc

n)
d(x, Xc

n) + d(x, Xn+1)

for x ∈ Xn \ Xn+1 and n ≥ 1, u(x) = − sup(−1,−d(x, X1)) if x /∈ X1. It is
easily checked that u belongs in F and satisfies the announced properties. ¤

11.4 A first application: the extrema killer

This section is devoted to the study of operators that remove “peaks,” or ex-
treme values, from an image. Such peaks are often created by impulse noise,
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that is, local destruction of pixel values and their replacement by a random
value. Old movies present this kind of noise and it also occurs by transmission
failure in satellite imaging. The operators we study are called area opening, or
extrema killer operators, and they have been shown to be very effective at re-
moving this kind of noise. The action of these operators is illustrated in Figures
11.1 and 11.2.

The following definitions are standard, but we include them here for com-
pleteness.

Definition 11.21. Consider a closed subset X of SN . X is disconnected if it
can be written as X = (A ∩ X) ∪ (B ∩ X), where A and B are disjoint open
sets and both A ∩ X and B ∩ X are not empty. X is connected if it is not
disconnected. The connected component of x in X, denoted by cc(x, X), is the
maximal connected subset of X that contains x.

We wish to define a denoising operator on L ; since some sets therein contain
∞, we need an extension of the Lebesgue measure on RN to SN . This is
immediately fixed by setting meas({∞}) = +∞. The only property of this
extended measure that we need to check is following:

Lemma 11.22. if Yn is a nonincreasing sequence of compact sets of SN , then
meas(∩nYn) = limn meas(Yn).

Proof. If the compact sets Yn do not contain ∞ for n large enough, then they
are bounded in RN for n large and the result just follows from Lebesgue theo-
rem. If instead the sets Yn all contain ∞, then ∩nYn contains it too and all sets
have infinite measure. ¤

Definition 11.23. Let a > 0 a scale parameter and denote for every X ∈ L
by Xi its connected components, so that X =

⋃
i Xi. We call small component

killer the operator on L which removes from X all connected components with
area stricly less than a :

TaX =
⋃

meas (Xi)≥a

Xi. (11.8)

Theoretically, X can have an uncountable number of components; take, for
example, the Cantor set. However, X can have only a countable number of
components with positive measure. The assumption meas({∞}) = +∞ implies
that all connected components of X containing ∞ stay in TaX. We are going
to prove that the small component killer is upper semicontinuous and this uses
some elementary topological lemmas.

Lemma 11.24. Consider an arbitrary nonincreasing sequence of nonempty
compact sets (Yn)n∈N of SN and its limit Y =

⋂
n∈N Yn. Then Y is not empty

and compact. In addition, for any open set Z that contains Y , there is an index
n0 such that Yn ⊂ Z for all n ≥ n0.
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Proof. The first property is a classical property of compact sets. Assume by
contradiction that the second property is not true. Then Yn ∩ (SN \ Z) 6= ∅
infinitely often. This implies that (Yn∩(SN \Z))n∈N is a nonincreasing sequence
of nonempty compact sets. But this means that Y ∩ (SN \ Z) 6= ∅, which is a
contradiction. ¤

Lemma 11.25. Let (Yn)n∈N be a nonincreasing sequence of nonempty com-
pact subsets of SN and consider the intersection Y =

⋂
n∈N Yn. If the Yn are

connected, then Y is connected.

Proof. We know that Y is not empty and compact. Suppose, by contradiction,
that Y is not connected. Then we can represent Y by Y = (Y ∩Z1)∪ (Y ∩Z2),
where Z1 and Z2 are disjoint open sets, Y ∩ Z1 6= ∅, and Y ∩ Z1 6= ∅. Since
Y ⊂ Z1 ∪Z2, by Lemma 11.24 there exists an n0 such that Yn ⊂ Z1 ∪Z2 for all
n ≥ n0, and for these n we have

Yn = Yn ∩ (Z1 ∪ Z2) = (Yn ∩ Z1) ∪ (Yn ∩ Z2).

Furthermore, Yn ∩ Z1 6= ∅ and Yn ∩ Z1 6= ∅. This contradicts the fact that the
Yn are connected. ¤

Exercise 11.11. Show that Ta is idempotent: Ta
2X = TaX and that it is a contrac-

tion mapping: TaX ⊂ X.

With the extrema killer we have a prime example of a theory that begins
with a set operator Ta defined on L.

Lemma 11.26. The small component killer Ta is upper semicontinuous on L.

Proof. We first prove that Ta is monotone. Assume X ⊂ Y . Then for every
x ∈ X, cc(x, X) ⊂ cc(x, Y ). If meas (cc(x, X)) ≥ a, then meas (cc(x, Y )) ≥
a, and we conclude that TaX ⊂ TaY . Now let (Xn)n be any nonincreasing
sequence of nonempty compact sets and X = ∩nXn. We wish to show that
TaX =

⋂
n TaXn. By monotonicity of Ta,

TaX ⊂
⋂
n

Ta(Xn).

Let us show the converse inclusion. Let x ∈ ∩nTa(Xn). Then Yn := cc(x,Xn)
has measure larger than a for all n. In addition if m < n then Yn ⊂ Ym. By
Lemmas 11.24 and 11.25, Y := ∩nYn is a connected compact set that contains
x. In addition by Lemma 11.22, measure(Y ) = limn measure(Yn) ≥ a. Since
Y = ∩nYn ⊂ ∩nXn = X, we have cc(x, X) ⊇ Y and therefore x ∈ Ta(X). ¤

We can now build a stack filter from Ta.

Definition 11.27 (and proposition). The stack filter Ta of Ta is called a
maxima killer. Ta and Ta satisfy the commutation with thresholds. As a conse-
quence, no connected component of a level set of Tau has measure less than a.
Furthermore, Ta is standard monotone, translation and contrast invariant from
F into F .
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Figure 11.1: Extrema killer: maxima killer followed by minima killer. The
extrema killer removes all connected components of upper and lower level sets
with area less than some threshold, which here equals 20 pixels. Notice how
texture disappears in the second image. All other features seem preserved. On
the second row, we see for both the original and the processed image the level
lines at 16 equally spaced levels. The level lines on the right hand side are a
subset of the level lines of the left hand. All level lines surrounding extremal
regions with area smaller than 20 have been removed and the other ones are
untouched.

Proof. We just have to check that all assumptions of Theorem 11.16 are satis-
fied. Ta is obviously translation invariant, monotone and is upper semicontinu-
ous by Lemma 11.26. It satisfies Ta(∅) = ∅, Ta(SN ) = SN . Ta(E) is compact if
E is. Indeed, it is the union of a finite set of compact connected components.
If E is bounded in RN , then so is TaE ⊂ E. (TaE)c is bounded in SN if Ec

is. Indeed, if Ec is bounded, then E has a connected component Y containing
B(0, R)c for some R > 0. This connected component has infinite measure. Then
Ta(E) still contains Y and Ta(E)c is contained in B(0, R). By construction, ∞
belongs to TaX if and only if it belongs to X. Thus, Ta is standard monotone. ¤
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A maxima killer Ta cuts off the maxima of continuous functions, but it does
nothing for the minima. We can immediately define a minima killer T−a as the
dual operator of Ta,

T−a u = −Ta(−u).

A good denoising process is to alternate Ta and T−a , as illustrated in Figures
11.1 and 11.2 . We note, however, that Ta and T−a do not necessarily commute,
as is shown in Exercise 11.17.

11.5 Exercises

Exercise 11.12. Let g : R→ R be a contrast change. Construct increasing contrast
changes gn and hn such that gn(s) → g(s), hn(s) → g(s) for all s and gn ≤ g ≤ hn.
Hint : define first an increasing continuous function f(s) on R such that f(−∞) = 0
and f(+∞) = 1

n
.

Exercise 11.13. Let u : RN → R. Show that τxXλu = Xλτxu, x ∈ RN .

Exercise 11.14. Prove that a translation invariant operator T from L to L satisfies
one of the three possibilities : T ({∞}) = {∞}, T ({∞}) = SN or T ({∞}) = ∅.
Exercise 11.15. Let T be a translation invariant standard monotone operator on F .
Prove the following statements:

(i) Tu = c for every constant function u : SN → c.

(ii) u ≥ c implies Tu ≥ c, and u ≤ c implies Tu ≤ c.

(iii) If in addition T commutes with the addition of constants, supx∈RN |Tu(x) −
Tv(x)| ≤ supx∈RN |u(x)− v(x)|.
(Hint: Write − sup |u(x)− v(x)| ≤ u(x)− v(x) ≤ sup |u(x)− v(x)|.)

Exercise 11.16.

1) In dimension 1, consider the set operator defined on L by T X = [inf X,∞] if
inf(X ∩ R) ∈ R, T X = S1 if inf(X ∩ R) = −∞, T ({∞}) = {∞}, T (∅) = ∅. Check
that T satisfies all assumptions of Theorem 11.16 except one. Compute the stack filter
associated with T and show that it satisfies all conclusions of the mentioned theorem
except one : Tu does not belong to F and more specifically Tu(x) is not continuous
at ∞.

2) Consider the function operator on F , Tu(x) = supx∈SN
u(x). Check that T is

monotone, contrast invariant, and sends F to F . Compute the level set extension T
of T .

Exercise 11.17. Let N = 1 and take u(x) = sin x for |x| ≤ 8π, u(x) = 0 otherwise.
Compute Tau and T−a u and show that they commute on u if a ≤ π and do not commute
if a > π. Following the same idea, construct a function u ∈ F in dimension two such
that TaT−a u 6= T−a Tau.

Exercise 11.18. Let X be a closed subset of a metric space endowed with a distance
d and consider the distance function to X,

d(y) = d(y, X) = inf
x∈X

d(x,y).

Show that d is 1-Lipschitz, that is, |d(x, X)− d(y, X)| ≤ d(x,y).
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Exercise 11.19. In the following questions, we explain the necessity of the assump-
tions T (∅) = ∅, T (SN ) = SN for defining function monotone operators from F to F .

1) Set T (X) = X0 for all X ∈ L, where X0 6= ∅ is a fixed set. Check that the
associated stack filter satisfies Tu(x) = +∞ if x ∈ X0, Tu(x) = −∞ otherwise.

2) Let T be a monotone set operator, without further assumption. Show that its as-
sociated stack filter T is, however, monotone and commutes with all contrast changes.
(We extend each contrast change g by setting g(±∞) = ±∞.)

Exercise 11.20. Take an operator T satisfying the same assumptions as in Theorem
11.16, but defined on M and apply the arguments of the proof of Theorem 11.16.
Check that the stack filter associated with T is a contrast invariant, translation in-
variant monotone operator on the set of all bounded measurable functions, L∞(RN ).
If in addition T is upper semicontinuous on M, then the commutation with thresholds
holds.

Exercise 11.21. The upper semicontinuity is necessary to ensure that a monotone
set operator defines a function operator such that the commutation with thresholds
Xλ(Tu) = T (Xλ(u)) holds for every λ. Let us choose for example the following set
operator T ,

T (X) = X if meas(X) > a and T (X) = ∅ otherwise .

(We use the Lebesgue measure on RN , with the completion meas({∞}) = +∞)

1) Prove that T is standard monotone.

2) Let u be the function from S1 into S1 defined by u(x) = max(−|x|,−2a) for some
a > 0, with u(∞) = −2a. Check that u belongs to F . Then, applying the stack filter
T of T , check that

T (u)(x) = sup{λ, x ∈ T (Xλu)} = max(min(−|x|,−a/2),−2a).

3) Deduce that X−a/2T (u) = [−a/2, a/2], X−a/2u = [−a/2, a/2] and therefore

T (X−a/2u) = ∅ 6= X−a/2T (u),

which means that T does not commute with thresholds.

Exercise 11.22. Like in the preceding exercise, we consider here contrast invariant
operators defined on all measurable bounded functions of RN . The aim of the exercise
is to show that such operators send images with finite range into images with finite
range. More precisely, denote by R(u) = u(RN ) the range of u. Then we shall prove
that for every u, R(Tu) ⊂ Ru. In particular, if R(u) is finite, then the range of Tu
is a finite subset of Ru. If u is binary, Tu is, etc. This shows that contrast invariant
operators preserve sharp contrasts. A binary image is transformed into a binary image.
So contrast invariant operators create no blur, as opposed to linear operators, which
always create new intermediate grey levels.

1) Consider

g(s) = s +
1

2
d(s, Ru)

where d(s, X) denotes the distance from s to X, that is, d(s, X) = infx∈X |s−x|. Show
that g is a contrast change satisfying g(s) = s for s ∈ Ru and g(s) > s otherwise.

2) Check that g(s) = s if and only if s ∈ Ru. In particular, g(u) = u. Deduce from
this and from the contrast invariance of T that for every x ∈ RN , Tu(x) is a fixed
point of g. Conclude.
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Figure 11.2: Extrema killer: maxima killer followed by minima killer. Above,
left: original image. Above, right: image after extrema killer removed connected
components of 20 pixels or less. Below: level lines (levels of multiples of 16) of
the image before and after the application of the extrema killer.

11.6 Comments and references

Contrast invariance and stack filters. Image operators that commute with
thresholds have been popular because, among other reasons, they are easily
implemented in hardware (VLSI). This led to very simple patents being awarded
in signal and image processing as late as 1987 [91]. These operators have been
given four different names, although operators are equivalent: stack filters [58,
157, 356]; threshold decomposition [163]; rank filters [80, 193, 358]; and order
filters [328]. The best known of these are the sup, inf, and median operators.
The implementation of the last named has received much attention because of
its remarkable denoising properties [123, 272, 363].

Maragos and Shafer [229, 230] and Maragos and Ziff [231] introduced the
functional notation and established the link between stack filters and the Math-
eron formalism in “flat” mathematical morphology. The complete equivalence
between contrast-invariant operators and stack filters, as developed in this chap-
ter, does not seem to have appeared elsewhere; at least we do not know of other
references. A related classification of rank filters with elegant and useful gener-
alizations to the so-called neighborhood filters can be found in [193].

The extrema killer. The extrema killer is probably the most efficient de-
noising filter for images degraded by impulse noise, which is manifest by small
spots. In spite of its simplicity, this filter has only recently seen much use. This
is undoubtedly due to the nontrivial computations involved in searching for the
connected components of upper and lower level sets. The first reference to the
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extrema killer that we know is [83]. The filter in its generality was defined by
Vincent in [346]. This definition fits into the general theory of connected filters
developed by Salembier and Serra [304]. Masnou defined a variant called the
grain filter that is both contrast invariant and invariant under reverse contrast
changes [236]. Monasse and Guichard developed a fast implementation of this
filter based on the so-called fast level set transform [252].

We will develop in Chapter 19 a theory of scale space that is based on a
family of image smoothing operators Tt, where t is a scale parameter. We note
here that the family (Ta)a∈R+ of extrema killers does not constitute a scale space
because it does not satisfy one of the conditions, namely, what we call the local
comparison principle. That this is so, is the content of Exercise 19.1.
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Chapter 12

Sup-Inf Operators

The main contents of this chapter are two representation theorems: one for
translation-invariant monotone set operators and one for functions operators
that are monotone, contrast invariant, and translation invariant. If T is a func-
tion operator satisfying these three conditions, then it has a “sup-inf” represen-
tation of the form

Tu(x) = sup
B∈B

inf
y∈B

u(x + y),

where B is a family of subsets of M(SN ), the set of all measurable subsets of
SN . This theorem is a nonlinear analogue of the Riesz theorem that states that
a continuous linear translation-invariant operator from L2(RN ) to C0(RN ) can
be represented as a convolution

Tu(x) =
∫

RN

u(x− y)k(y) dy.

In this case, the kernel k ∈ L2(RN ) is called the impulse response. In the same
way, B is an impulse response for the nonlinear operator.

12.1 Translation-invariant monotone set opera-
tors

Recall that a set of M can contain ∞. We have specified that x +∞ = ∞ for
every x ∈ SN . As a consequence, for any subset B of SN , ∞ + B = {∞}. In
this chapter we shall associate with any nonempty subset B of M a set operator
defined by

T X = {x ∈ SN | x + B ⊂ X for some B ∈ B}. (12.1)

Definition 12.1. We say that a subset B of M is standard if it is not empty
and if its associated operator satisfies

(i) ∀R > 0, ∃R′ > 0, T (B(0, R)) ⊂ B(0, R′);

(ii) ∀R > 0, ∃R′ > 0, B(0, R′)c ⊂ T (B(0, R)c).

139
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Exercise 12.1. Conditions (i) and (ii) on B are easily satisfied. Check that Condition
(i) is equivalent to

∀R > 0, ∃C > 0, (B ∈ B, and diameter(B) ≤ R) ⇒ B ⊂ B(0, C).

Check that this condition is achieved (e.g.) if all elements of B contain 0. Check that
Condition (ii) is achieved if B contains at least one bounded element B.

Exercise 12.2. Show that if B contains ∅, then B is not standard.

Theorem 12.2 (Matheron). Let T be a translation-invariant and standard
monotone set operator. Consider the subset of D(T ),

B = {B ∈ D(T ) | 0 ∈ T B} (12.2)

Then B is standard and the operator T is associated with B by (12.1). Con-
versely, if B is any standard subset of M, then (12.1) defines a translation-
invariant standard monotone set operator on M.

Definition 12.3. In Mathematical Morphology, a set B such that (12.1) holds
is called a set of structuring elements of T and B = {X ∈ D(T ) | 0 ∈ T X} is
called the canonical set of structuring elements of T .

Proof of Theorem 12.2.

Proof of (12.1).
Let B = {X ∈ D(T ) | 0 ∈ T X}. Then for any x ∈ RN ,

x ∈ T X
(1)⇐⇒ 0 ∈ T X − x

(2)⇐⇒ 0 ∈ T (X − x)
(3)⇐⇒ X − x ∈ B

(4)⇐⇒ X − x = B for some B ∈ B (5)⇐⇒ x + B ⊂ X for some B ∈ B.

The equivalence (2) follows from the translation invariance of T X; (3) is just
the definition of B; and (4) is a restatement of (3). The implication from left
to right in (5) is obvious. The implication from right to left in (5) is the point
where the monotonicity of T is used: Since B ⊂ X − x, it follows from the
monotonicity of T that X − x ∈ B.
Let now x = ∞. Since T is standard, B is not empty (it contains SN because
T (SN ) = SN ) and we have

∞ ∈ T X ⇔∞ ∈ X ⇔ ∃B ∈ B, ∞+ B ⊂ X,

because ∞+ SN = {∞}.
Proof that B is standard if T is standard monotone.
Since T (SN ) = SN , B contains SN and is therefore not empty. The other
properties are straightforward.

Proof that (12.1) defines a standard monotone set operator if B is
standard.
Using (12.1), it is a straightforward calculation to check that T is monotone
and translation invariant, and that T (SN ) = SN , T (∅) = ∅. The equivalence
∞ ∈ T X if and only if ∞ ∈ X follows from the fact that B is not empty. T
sends bounded sets onto bounded sets and complementary sets of bounded sets
onto complementary sets of bounded sets by definition of a standard set B. ¤
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Exercise 12.3. Check that if T is standard monotone, then its canonical set of
structuring elements satisfies (ii).

B0 = {X | 0 ∈ T X} is not the only set that can be used to represent T . A
monotone operator T can have many such sets and here is their characterization.

Proposition 12.4. Let T be a translation invariant standard monotone set
operator and let B0 its canonical set of structuring elements. Then B1 is another
standard set of structuring elements for T if and only if it satisfies

(i) B1 ⊂ B0,

(ii) for all B0 ∈ B0, there is B1 ∈ B1 such that B1 ⊂ B0.

Proof. Assume that T is obtained from some set B1 by (12.1) and let B0

be the canonical set of structuring elements of T . Then for every B1 ∈ B1,
T B1 = {x | x + B ⊂ B1 for some B ∈ B1}. It follows that 0 ∈ T B1 and
therefore B1 ∈ B0. Thus B1 ⊂ B0. In addition, if B0 ∈ B0, then 0 ∈ T B0, which
means that 0 ∈ {x | x + B1 ⊂ B0 for some B1 ∈ B1}, that is B1 ⊂ B0 for some
B1 ∈ B1.

Conversely, let B1 satisfy (i) and (ii) and let

T1X = {x | ∃B1 ∈ B1, x + B1 ⊂ X}.
Using (i), one deduces that T1X ⊂ T X for every X and using (ii) yields the
converse inclusion. Thus B1 is a structuring set for T . The fact that B1 is
standard is an obvious check using (i) and (ii). ¤

12.2 The sup-inf form

Lemma 12.5. Let T : F → F be a standard monotone function operator, T a
standard monotone translation invariant set operator and B a set of structuring
elements for T . If T and T satisfy the commutation of thresholds T Xλu =
XλTu, then T has the “sup-inf” representation

Tu(x) = sup
B∈B

inf
y∈x+B

u(y). (12.3)

Proof. For u ∈ F , set T̃ u(x) = supB∈B infy∈x+B u(y). We shall derive the
identity T = T̃ from the equivalence

T̃ u(x) ≥ λ ⇐⇒ Tu(x) ≥ λ. (12.4)

Assume first that x ∈ RN . Then

Tu(x) ≥ λ
(1)⇐⇒ Tu(x) ≥ µ for all µ < λ

(2)⇐⇒ x ∈ XµTu for all µ < λ

(3)⇐⇒ x ∈ T Xµu for all µ < λ
(4)⇐⇒ ∃B ∈ B, x + B ⊂ Xµu for all µ < λ

(5)⇐⇒ There is a B ∈ B such that inf
y∈x+B

u(y) ≥ µ for all µ < λ

(6)⇐⇒ sup
B∈B

inf
y∈x+B

u(y) ≥ λ
(7)⇐⇒ T̃ u(x) ≥ λ.
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Equivalence (1) is just a statement about real numbers and (2) is the definition
of a level set. It is at (3) that we replace XµTu with T Xµu. Equivalence (4)
follows by the definition of T from B by (12.1). The equivalence (5) is the
definition of the level set Xµu. Equivalence (6) is another statement about real
numbers, and (7) is the definition of T̃ .
Assume now that x = ∞. Since for all B ∈ L, ∞ + B = {∞}, one obtains
T̃ u(∞) = u(∞). By assumption Tu(∞) = u(∞). This completes the proof of
(12.3). ¤

From the preceding result, we can easily derive a general form for translation
and contrast invariant standard monotone operators.

Theorem 12.6. Let T : F → F be a translation and contrast invariant stan-
dard monotone operator. Then it has a “sup-inf” representation (12.3) with a
standard set of structuring elements.

Proof. By the level set extension (Theorem 11.19), T defines a unique stan-
dard monotone set operator T : L 7→ L. T is defined by the commutation of
thresholds, T Xλu = XλTu. By Lemma 12.5, the commutation with thresholds
is enough to ensure that T has the sup-inf representation (12.3) for any set of
structuring elements B of T . ¤

Definition 12.7. As a consequence of the preceding theorem, the canonical
set of structuring elements of T will also be called canonical set of structuring
elements of T .

The next theorem closes the loop.

Theorem 12.8. Given any standard subset B of M, Equation (12.3),

Tu(x) = sup
B∈B

inf
y∈x+B

u(y),

defines a contrast and translation invariant standard monotone function opera-
tor from F into itself.

Proof. By Theorem 11.16, it is enough to prove that T is the stack filter of T ,
the standard monotone set operator associated with B. Let us call T ′ this stack
filter and let us check that Tu(x) ≥ λ ⇔ T ′u(x) ≥ λ.
we have T ′u = sup{λ, x ∈ T (Xλu)}. Thus by (12.1),

T ′u(x) ≥ λ ⇔ ∀µ < λ, ∃B, x + B ⊂ Xµu.

On the other hand,

Tu(x) = sup
B∈B

inf
y∈x+B

u ≥ λ ⇔
∀µ < λ, ∃B ∈ B, inf

y∈x+B
u ≥ µ ⇔

∀µ < λ,∃B ∈ B, x + B ⊂ Xµu.
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Thus, T = T ′. ¤

We end this section by showing that sup-inf operators can also be represented
as inf-sup operators,

Tu(x) = inf
B∈B

sup
y∈x+B

u(y).

This is done, in the mathematical morphology terminology, by “duality”. The
dual operator of a function operator is defined by T̃ u = −T (−u). Notice that
˜̃T = T .

Proposition 12.9. If T is a standard monotone, translation invariant and
contrast invariant operator, then so is T̃ . As a consequence, T has a dual “inf-
sup” form

Tu = inf
B∈B̃

sup
y∈x+B

u(y),

where B̃ is any set of structuring elements for T̃

Proof. Setting g̃(s) = −g(−s), it is easily checked that g̃ is a contrast change
if and only if g is. One has by the contrast invariance of T ,

T̃ (g(u)) = −T (−g(u)) = −T (g̃(−u)) = −g̃(T (−u)) = g(−T (−u)) = g(T̃ u).

Thus, T̃ is contrast invariant. The standard monotonicity and translation in-
variance of T̃ are obvious. Finally, if we have T̃ u(x) = supB∈B̃ infy∈x+B u(y),
then

Tu = − sup
B∈B̃

inf
y∈x+B

(−u(y)) = − sup
B∈B̃

(− sup
y∈x+B

u(y)) = inf
B∈B̃

sup
y∈x+B

u(y).

¤

Exercise 12.4. Check the standard monotonicity and translation invariance of T̃ .

12.3 Locality and isotropy

For linear filters, locality can be defined by the fact that the convolution kernel
is compactly supported. This property is important, as it guarantees that the
smoothed image is obtained by a local average. Morphological filters may need
a locality property for the same reason.

Definition 12.10. We say that a translation invariant function operator T on
F is local if there is some M ≥ 0 such that

(u = u′ on B(0, M)) ⇒ Tu(0) = Tu′(0).

The point 0 plays no special role in the definition. By translation invariance
it is easily deduced from the definition that for x ∈ RN , the values of Tu(x)
only depend upon the restriction of u to B(x, M).
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Proposition 12.11. Let T : F → F be a contrast and translation invariant
standard monotone operator and B a set of structuring elements for T . If T is
local, then BM = {B ∈ B | B ⊂ B(0,M)} also is a set of structuring elements
for T . Conversely, if all elements of B are contained in B(0,M), then T is
local.

Proof. We prove the statement with the sup-inf form for T given by Theorem
12.6,

Tu(x) = sup
B∈B

inf
y∈B

u(x + y). (12.5)

Consider the new function uε(x) = u(x) − 1
εd(x, B(0,M)), where we take for

d a distance function on SN ⊂ RN+1, so that uε ∈ F . Take any B ∈ B
containing a point z /∈ B(0,M) and therefore not belonging to BM . Then
infy∈B uε(y) ≤ u(z) − 1

εd(z, B(0,M)) < Tu(0) for ε small enough. So we can
discard such B’s in the computation of Tu(0) by (12.5). Since by the locality
assumption Tu(0) = Tuε(0), we obtain

Tu(0) = Tuε(0) = sup
B∈BM

inf
y∈B

u(y).

By the translation invariance of all all considered operators, this proves the di-
rect statement. The converse statement is straightforward. ¤

We end this paragraph with a definition and an easy characterization of
isotropic operators in the sup-inf form. In the next proposition, we actually
consider a more general setting, namely the invariance of T under some geo-
metric group G of transformations of RN , for example the isometries. Since we
use to extend the set and function operators to SN , we must also extend such
transforms by setting g(∞) = ∞ for g ∈ G. Also, define the operator Ig on
functions u : SN → R by Igu(x) = u(gx).

Definition 12.12. • We say that B is invariant under a group G of trans-
formations of SN onto SN if, for all g ∈ G, B ∈ B implies gB ∈ B.

• If, for all g ∈ G, TIg = IgT (resp. T g = gT ), we say that T (resp. T ) is
invariant under G.

• In particular, we say that T (resp. T ) is isotropic if it commutes with
all linear isometries R of RN , and affine invariant if it commutes with all
linear maps A with determinant 1.

Proposition 12.13. Let G be any group of linear maps : g : RN → RN

extended to SN by setting g(∞) = ∞. If T (resp. T ) is translation invariant
and invariant under G and B is a standard set of structuring elements for T
(resp T ), then GB = {gB | g ∈ G, B ∈ B} is another, G-invariant, standard
set of structuring elements. Conversely, if B is a standard and G-invariant set
of structuring elements for T (resp. T ), then this operator is G-invariant (and
translation invariant.)

Proof. All the verifications are straightforward. The only point to mention is
that the considered groups are made of transforms sending bounded sets onto
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bounded sets and complementary sets of bounded sets onto complementary sets
of bounded sets. ¤

Exercise 12.5. Prove carefully Proposition 12.13.

Some terminology.
It would be tedious to state theorems on operators on F with such a long list
of requirements as Standard Monotone, Translation and Contrast Invariant,
Isotropic. We shall call such operators Morpho operators because they retain
the essential requirements of morphological smoothing filters . All the examples
we consider in this book are actually Morpho operators. Not all are local, so
we will specify it when needed. Operators can be still more invariant, in fact
affine invariant, and we will specify it as well. Since all of these operators T
have an inf-sup or a sup-inf form, we always take for B a standard structuring
set reflecting the properties of T , that is, bounded in B(0,M) when T is local
and invariant by the same group as T . A last thing to specify is this: We have
restricted our analysis to operators defined on F . On the other hand, their
inf-sup form permits to extend them to all measurable functions and we shall
still denote the resulting operator by T . Tu can then assume the −∞ and +∞
values. All the same, it is an immediate check to see that this extension still is
monotone and commutes with contrast changes:

Proposition 12.14. Let T be a function operator in the inf-sup or sup-inf
form associated with a standard set of structuring elements B ⊂M. Then T is
monotone and contrast invariant on the set of all bounded measurable functions
of SN .

Exercise 12.6. Prove Proposition 12.14.

12.4 The who’s who of monotone contrast in-
variant operators

The aim of this short section is to draw a synthetic picture of an equivalence
chain built up in this chapter and in Chapter 11. We have constructed three
kinds of objects,

• contrast and translation invariant standard monotone function operators
T : F → F ;

• translation invariant standard monotone set operators T defined on L;

• standard sets of structuring elements B.

The results proven so far can be summarized in the following theorem.

Theorem 12.15. Given any of the standard objects T , T and B mentioned
above, one can pass to any other one by using one of the six formulae given
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below.

B → T, Tu(x) = sup
B∈B

inf
y∈x+B

u(y);

B → T , T X = {x | ∃B ∈ B, x + B ⊂ X};
T → T, Tu(x) = sup{λ | x ∈ T Xλu};
T → T , T (X0u) = X0(Tu);
T → B, B = {B ∈ L | 0 ∈ T B};
T → B, by T → T and T → B.

In addition, B can be bounded in some B(0,M) if and only if T is local; T
or T is G-invariant, for instance isotropic, if and only if it derives from some
G-invariant (isotropic) B. If an operator has the inf-sup or sup-inf form for
some B, it can be extended to all measurable functions on RN into a monotone
and contrast invariant operator.

Proof. Theorem 12.2 yields T → B and B → T ; Theorem 11.16 yields T → T ;
Theorem 12.6 yields T → T → B; Theorem 11.19 yields T → T . The final
statements come from Propositions 12.11, 12.13 and 12.14. ¤

So we get a full equivalence between all objects, but we have left apart the com-
mutation with thresholds property. When we define a set operator T from a
function operator T by the level set extension, we know that T : L → L is upper
semicontinuous and that the commutation with thresholds Xλ(Tu) = T (Xλu)
holds. Conversely, if we define a function operator T as the stack filter of a stan-
dard monotone set T , we do not necessarily have the commutation of thresholds;
this is true only if T is upper semicontinuous on L (see Theorem 11.16) and this
upper semicontinuity property is not always granted for interesting monotone
operators, particularly when they are affine invariant. Fortunately enough, the
commutation with thresholds is “almost” satisfied for any stack filter as we state
in Proposition 12.18 in the next section.

12.4.1 Commutation with thresholds almost everywhere

In this section we always assume the considered sets to belong toM and the con-
sidered functions to be Lebesgue measurable. We say that a set X is contained
in a set Y almost everywhere if

measure(X \ Y ) = 0,

where measure denotes the usual Lebesgue measure in RN . We say that X = Y
almost everywhere if X ⊂ Y and Y ⊂ X almost everywhere. We say that two
functions u and v are almost everywhere equal if measure({x, u(x) 6= v(x)}) = 0.

Lemma 12.16. Let (Xλ)λ∈R be a nonincreasing family of sets of M, that is
Xλ ⊂ Xµ if λ ≥ µ. Then, for almost every λ in R,

Xλ =
⋂

µ<λ

Xµ, almost everywhere. (12.6)
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Proof. Consider an integrable and strictly positive continuous function h ∈
L1(RN ) (for instance, the gaussian.) Set m(X) =

∫
X

h(x)dx. We notice that
m(X) = 0 if and only if measure(X) = 0. The function λ → m(Xλ) is nonin-
creasing. Thus, it has a countable set of jumps. Since every countable set has
zero Lebesgue measure, we deduce that for almost every λ,

lim
µ→λ

m(Xµ) = m(Xλ).

As a consequence, for those λ’s, m(
⋂

µ<λ Xµ \Xλ) = 0, which implies (12.6).
¤

Corollary 12.17. Let (Xλ)λ∈R be a family of measurable subsets of SN such
that Xλ ⊂ Xµ for λ ≥ µ, Xλ = ∅ for λ ≥ λ0, Xλ = SN for λ ≤ µ0. Then the
function u defined on SN by the superposition principle

u(x) = sup{λ | x ∈ Xλ}

is bounded and satisfies for almost every λ, Xλ = Xλu almost everywhere.

Proof. It is easily checked that µ0 ≤ u ≤ λ0. We have

Xλu = {x | sup{µ,x ∈ Xµ} ≥ λ}

Now, if x ∈ Xλ, we have sup{µ | x ∈ Xµ} ≥ λ which implies x ∈ Xλu. Thus,
Xλ ⊂ Xλu. Conversely, let λ be chosen so that Xλ = ∩µ<λXµ almost every-
where. This is by Lemma 12.16 true for almost every λ ∈ R. Then if x ∈ Xλu,
we have by definition of u, x ∈ Xµ for every µ < λ. Thus x ∈ ⋂

µ<λ Xµ. We
conclude that Xλu ⊂ ⋂

µ<λ Xµ and therefore Xλu ⊂ Xλ almost everywhere. ¤

Exercise 12.7. By using Corollary 12.17 show that if two measurable functions u
and v are such that Xλu = Xλv almost everywhere for almost every λ, then u and v
are almost everywhere equal.

Proposition 12.18. Let T : L →M be a standard monotone set operator and
T its stack filter. If u ∈ F then for almost every level λ ∈ R,

Xλ(Tu) = T (Xλ(u)) almost everywhere.

Proof. Since Tu is obtained from the sets T (Xλu) by superposition principle,
this is an immediate consequence of Corollary 12.17. ¤

12.5 Exercises

Exercise 12.8. It is useful to have a test for B to determine whether or not the oper-
ator T can be expected to be upper semicontinuous on L. Prove that the translation-
invariant monotone operator in Theorem 12.2 defined by a given set B is upper semi-
continuous on L if and only if the following condition holds: If

⋂
n∈N T Xn 6= ∅, then

there is a B ∈ B such that x + B ⊂ ⋂
n∈NXn, where x ∈ ⋂

n∈N T Xn and (Xn)n∈N is
any nonincreasing sequence in L.
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Exercise 12.9. Suppose that B ⊂ L contains exactly one set. Show that T is u.s.c.
Generalize this to the case where B contains a finite number of sets.

Exercise 12.10. Use Theorem 12.6 and Proposition 12.4 to show that the extrema
killer Ta can be represented as a sup-inf function operator with the structuring elements

Ba = {B | B is compact, connected, meas (B) = a, and 0 ∈ B} ∪ {∞}.

Check that Ba is standard.

Exercise 12.11. Let B = {{x} | x ∈ D(0, 1)}, D(0, 1) = {x | |x| ≤ 1} and consider
the associated set operator T and the associated function operator T , defined on all
measurable sets and functions of RN by formulas (12.1) and (12.3).

1) Check that Tu(x) = supy∈x+D u(y).

2) Let (qn)n∈N be a countable dense set in RN and consider u defined by u(x) = 1−1/n
if x = qn and u(x) = 0 otherwise. Show that T X1u 6= X1Tu. The operator T in this
exercise is one of the classic image operators called a dilation. Check that T commutes
with thresholds when its domain of definition is restricted to F and the domain of T
to L. This example shows that this restriction is useful to get a simple theory.

Exercise 12.12. Show the following property used in the proof of Lemma : if h is a
positive continuous integrable function on RN and if we set m(X) =

∫
X

h(x)dx, then
for every measurable set X, m(X) = 0 if and only if measure(X) = 0.

12.6 Comments and references

The formalism presented in this chapter is due to Matheron [239] in the case
of set operators and to Serra [314] and Maragos [226] in the case of function
operators. Serra’s formalism is actually more general than the one presented
here; it will be developed in Chapter 27, which is about “nonflat” morphology.
Our presentation relating the sup-inf form of the operator directly to contrast
invariance and establishing the full equivalence between sup-inf operators and
contrast-invariant monotone operators is original. The fact, proven in Proposi-
tion 12.18 that commutation with thresholds occurs almost everywhere without
further assumption was proven in [152].

The mysterious “set of structuring elements” has received a great deal of
attention in the literature. Here are a few references: on finding the right set
of structuring elements [303, 327]; on simplifying them [311]; on decomposing
them into simpler ones as one does with linear filters [279, 368, 369]; on reducing
the number [293].
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Chapter 13

Erosions and Dilations

We are going to study in detail two of the simplest operators of mathematical
morphology, the erosions and dilations. In fact, there will be essentially four
operators: two set operators and the two related function operators. These
operators will depend on a scale parameter t. We will also study the underlying
PDEs ∂u/∂t = c|Du|, where c = 1 for dilations and c = −1 for erosions.

13.1 Set and function erosions and dilations

We saw in Chapter 12 that every contrast-invariant monotone function operator
has a sup-inf and an inf-sup representation in terms of some set of structuring
elements. This is the point of view we take here, and furthermore, we assume
that the set of structuring elements B has the simplest possible form, namely,
B = {B}. We actually introduce a parameter t scaling the size of B and therefore
consider the two operators of the next definition.

Definition 13.1. For u ∈ F , define DtBu = Dtu by

Dtu(x) = sup
y∈tB

u(x− y), (13.1)

the “dilation of u by tB. In the same way, define EtBu = Etu, the “erosion of
u by −tB”, by

Etu(x) = inf
y∈−tB

u(x− y). (13.2)

These function operators have associated set operators.

Definition 13.2. Let B be a non empty subset of RN and let t ≥ 0 be a scale
parameter. The set operators DtB and EtB are defined on subsets X ∈ M(RN )
by

DtBX = DtX = X + tB = {x | ∃b ∈ B,x− tb ∈ X}, (13.3)

EtB = EtX = {x | x + tB ⊂ X}, (13.4)

and extended to M(SN ) by the standard extension (Definition 11.1.) DtX is
called the dilation of X by B at scale t. EtX is called the erosion of X by B at
scale t.

149
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Exercise 13.1. (Duality formulas.) Show that EtBu = −D−tB(−u) and EtBX =
(D−tBXc)c.

Exercise 13.2. Show that if B is bounded, dilations and erosions are standard mono-
tone operators. Compute their associated set of structuring elements (Proposition
12.2) and check that it is standard.

Theorem 13.3. The function erosion by tB is the stack filter of the set erosion
by tB ; the function dilation by tB is the stack filter of the set dilation by tB
and the commutation with thresholds holds. In other terms for u ∈ F and all λ
in R, and calling Dt the dilation by tB,

Dtu(x) = sup{λ | x ∈ DtXλu}, DtXλu = XλDtu; (13.5)

Etu(x) = sup{λ | x ∈ EtXλu}, EtXλu = XλEtu. (13.6)

Proof. We prove the statement for the dilations, the case of the erosions being
just simpler. Consider some X ∈ L and u(x) ≤ 0 a function vanishing on X only.
By the definition 11.18 of the level set extension D̃t of Dt, D̃t(X) = X0Dt(u).
Thus, using (13.3),

x ∈ D̃t(X) ⇔ (Dtu)(x) = 0 ⇔ sup
y∈−tB

u(x− y) = 0 ⇔

∃y ∈ tB, x− y ∈ X ⇔ x ∈ X + tB ⇔ x ∈ Dt(X).

¤

The operators Dt and Et are in a certain sense the inverse of each other. This
is clearly the case, for example, if B = {x0}. Then Dt is just the translation by
tx0, and Et = D−1

t is the translation by −tx0. If B is the open ball centered at
zero with radius one, then DtX is the set of all points whose distance from X
is less than t, or the t-neighborhood of X. When B is symmetric with respect
to zero, the operator DtEt is called an opening at scale t and EtDt is called a
closing at scale t. These names have a topological origin. If B is the open ball
centered at zero with radius one, then the opening at scale t of a set X is the
union of all balls with radius t contained in X. The interior of X is the union
of all open balls contained in X; it is also the largest open set contained in X.
If we call the interior map T ◦X = X◦ the opening, then an opening at scale t
appears as a quantified opening (see Exercise 13.6). The topological statement
“the closure of the complement of X is the complement of the interior of X”
has its counterpart for openings and closings at scale t, as shown in Exercise
13.6. The actions of erosions and dilations are illustrated in Figures 13.2, 13.2,
and 13.2; actions of openings and closings are illustrated in Figures 13.2, 13.2,
13.2, 13.3, and 13.3.

13.2 Multiscale aspects

We say that the family of dilations {Dt | t > 0} associated with a structuring
element B is recursive if DtDs = Dt+s for all s, t > 0, and similarly for the
family {Et | t > 0}. (A recursive family is also called a semigroup.) Being
recursive is a very desirable property for any family of scaled operators used
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Figure 13.1: Dilation of a set. Left to right: A set; its dilation by a ball of
radius 20; the difference set.

Figure 13.2: Erosion of a set. Left to right: A set; its erosion by a ball of radius
20; the difference set.

Figure 13.3: Opening of a set as curvature threshold from above. Left to right:
A set X; its opening by a ball of radius 20; the difference set. This opening
transforms X into the union of all balls of radius 20 contained in it. The resulting
operation can be understood as a threshold from above of the curvature of the
set boundary.

for image analysis. Having Dt = (Dt/n)n is useful for practical computations.
{Dt | t > 0} and {Et | t > 0} will be recursive if and only if B is convex, but
before proving this result we need the condition for B to be convex given in the
next lemma. The proof of the next statement is an easy exercise.

Lemma 13.4. B is convex if and only if (s + t)B = sB + tB for all s, t ≥ 0.

Proposition 13.5. The dilations Dt and the erosions Et are recursive if and
only the structuring element B is convex.
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Figure 13.4: Closing of a set as a curvature threshold from below. Left to right:
A set X; its closing by a ball of radius 20; the difference set. The closing of X
is just the opening of Xc. It can be viewed as a threshold from below of the
curvature of the set boundary.

Proof. Taking for simplicity B closed, we have

DtDsX = (X + sB) + tB = X + sB + tB

and
Ds+tX = X + (s + t)B.

If (t + s)B = tB + sB, then clearly DtDsX = Ds+tX. Conversely, if DtDsX =
Ds+tX, then by taking X = {0} we see that (t+s)B = tB+sB. One can deduce
the corresponding equivalence for erosions from the duality formula (Exercise
13.1). ¤

13.3 The PDEs associated with erosions and di-
lations

As indicated in the introduction to the chapter, scaled dilations and erosions
are associated with the equations ∂u/∂t = ±|Du|. To explain this connection,
we begin with a bounded convex set B that contains the origin, and we define
the gauge ‖ · ‖B on RN associated with B by ‖x‖B = supy∈B(x · y). If B is a
ball centered at the origin with radius one, then ‖ · ‖B is the usual Euclidean
norm, which we write simply as | · |.
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Figure 13.5: Erosion and dilation of a natural image. First row: a sea bird
image and its level lines for all levels multiple of 12. Second row: an erosion
with radius 4 has been applied. On the right, the resulting level lines where the
circular shape of the structuring element (a disk with radius 4) appears around
each local minimum of the original image. Erosion removes local maxima (in
particular, all small white spots) but expands minima. Thus, all dark spots,
like the eye of the bird, are expanded. Third row: the effect of a dilation with
radius 4 and the resulting level lines. We see how local minima are removed (for
example, the eye of the bird) and how white spots on the tail expand. Here, in
turn, circular level lines appear around all local maxima of the original image.

Proposition 13.6. [Hopf–Lax formula [110, 206]]. Assume that B is a bounded
convex set in RN that contains the origin. Given u0 : RN → R, define u :
R+ × RN → R by u(t,x) = Dtu0(x). Then u satisfies the equation

∂u

∂t
= ‖Du‖−B

at each point (t,x) where u has continuous derivatives in t and x. One has an
analogue result with Et and the equation ∂u/∂t = −‖Du‖−B.
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Figure 13.6: Openings and closings of a natural image. First row: the original
image and its level lines for all levels multiple of 12. Second row: an opening
with radius 4 has been applied. Third row: a closing with radius 4 has been
applied. We can recognize the circular shape of the structuring element in the
level lines displayed on the right.

Proof. We begin by proving the result for Dt at t = 0. Thus assume that u0

is C1 at x. Then

u0(x− y)− u0(x) = −Du0(x) · y + o(|y|),
and we have by applying Dh,

u(h,x)− u(0,x) = sup
y∈hB

(−Du0(x) · y + o(|y|)).

Since B is bounded, the term o(|y|) is o(|h|) uniformly for y ∈ hB, and we get

u(h,x)− u(0,x) = h sup
z∈B

((−Du0(x) · z) + o(|h|).

We can divide both sides by h and pass to the limit as |h| → 0 to obtain

∂u

∂t
(0,x) = ‖Du0(x)‖−B ,



“JMMBookOct04”
1/5/2012
page 155

i

i

i

i

i

i

i

i

13.4. EXERCISES 155

Figure 13.7: Denoising based on openings and closings. First row: scanned
picture of the word “operator” with black dots and a black line added; a dilation
with a 2× 5 rectangle; an erosion with the same structuring element applied to
the middle image. The resulting operator is a closing. Small black structures
are removed by such a process. Second row: the word “operator” with a white
line and white dots inside the letters; erosion with a rectangle 2× 5; a dilation
with the same structuring element applied to the middle image. The resulting
operator is an opening. This time, small white structures are removed.

which is the result for t = 0. For an arbitrary t > 0, we have Dt+h = DtDh =
DhDt, and we can write

u(t + h,x)− u(t,x) = Dhu(t, ·)(x)− u(t,x).

By repeating the argument made for t = 0 with u0 replaced with u(t, ·), we
arrive at the general result. The proof for Et is similar. ¤

Exercise 13.3. Prove the above result for Et.

13.4 Exercises

Exercise 13.4. A straightforward adaptation on a grid Z×Z of the formulas u(t, x) :=
supy∈B(x,t) u0(y) for dilation and u(t, x) := infy∈B(x,t) u0(y) for erosion leads to the
zero-order schemes

un+1(i, j) = sup
(k,l)∈B((i,j),t)∩Z2

un(k, l)

and

un+1(i, j) = inf
(k,l)∈B((i,j),t)∩Z2

un(k, l), u0(i, j) = u0(i, j).

Unfortunately, the zero-order schemes are strongly grid dependent. They do not make
any difference between two balls which contain the same discrete pixels. In particular,
such schemes only permit discrete motions of the shape boundaries. Thus, they are
efficient only when t is large. Section 13.3 suggests that we can implement erosion
and dilations on a finite image grid by more clever numerical schemes. One can try to
discretize the associated PDE’s ∂u/∂t = ±|Du| by the Rouy-Tourin scheme:

un+1
ij =un

ij +∆t
(
max(0, un

i+1,j − un
ij ,u

n
i−1,j−un

ij)
2+max(0, un

i,j+1−un
ij ,u

n
i,j−1−un

ij)
2) 1

2

for dilation and

un+1
ij =un

ij−∆t
(
max(0, un

ij − un
i+1,j ,u

n
ij−un

i−1,j)
2+max(0, un

ij−un
i,j+1,u

n
ij−un

i,j−1)
2) 1

2
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Figure 13.8: Examples of denoising based on opening or closing, as in Figure
13.7. Perturbations made with both black and white lines or dots have been
added to the “operator” image. First column, top to bottom: original perturbed
image; erosion with a 1 × 3 rectangle; then dilation with the same structuring
element. (In other words, opening with this rectangle.) Then a dilation is
applied with a rectangle 3 × 1, and finally an erosion with the same rectangle.
Second column: The same process is applied, but with erosions and dilations
exchanging their roles. It does not work so well because closing expands white
perturbations and opening expands black perturbations. These operators do
not commute. See Figure ??, where an application of the median filter is more
successful.

for erosion. In both cases if t = n∆t then un(i, j) is a discrete version of u(t, (i, j)).

1) Explain why the schemes are consistent with their underlying partial differential
equation. Check that with this clever scheme local maxima of un do not go up by
dilation and local minima do not go down by erosion. Show that for example the
following scheme would be a catastrophe at extrema (you’ll have to try it anyway):

un+1
ij =un

ij+∆t
(
max(|un

i+1,j − un
ij |,|un

i−1,j−un
ij |)2+max(|un

i,j+1−un
ij |,|un

i,j−1−un
ij |)2

) 1
2 .

2) Implement the schemes and compare their performance with the discrete zero
order schemes for several shapes and images.
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3) Compute on some well-chosen images the “top hat transforms” u − Otu and
Ftu−u. The first transform aims at extracting all structures from an image which are
thinner than t and have brightness above the average. The second transform does the
same job for dark structures. These transforms can be successfully applied on aerial
images for extracting roads or rivers, and in many biological applications.

Exercise 13.5. Show that Et(u) = −Dt(−u) if B is symmetric with respect to zero.

Exercise 13.6.

(i) Let B = {x | |x| < 1}. Show that DtEtX is the union of all open balls with
radius t contained in X.

(ii) Let B be any structuring element that is symmetric with respect to zero. Write
Xc = RN \ X. Show that DtX

c = (EtX)c. Use this to show that EtDtX
c =

(DtEtX)c.

Exercise 13.7. Prove that the dilation and erosion set operators associated with B
are standard monotone if and only if B is bounded. If B is bounded and isotropic,
prove that the associated erosion and dilation function operators are local Morpho
operators.

13.5 Comments and references

Erosions and dilations. Matheron introduced dilations and erosions as use-
ful tools for set and shape analysis in his fundamental book [239]. A full account
of the properties of dilations, erosions, openings, and closings, both as set op-
erators and function operators, can be found in Serra’s books [314, 316]. We
also suggest the introductory paper by Haralick, Sternberg, and Zhuang [156]
and an earlier paper by Nakagawa and Rosenfeld [266]. An axiomatic algebraic
approach to erosions, dilations, openings, and closings has been developed by
Heijmans and Ronse [161, 296]. We did not develop this algebraic point of view
here. The obvious relations between the dilations and erosions of a set and the
distance function have been exploited numerically in [166], [196], and [320]. The
skeleton of a shape can be defined as the set of points where the distance func-
tion to the shape is singular. A numerical procedure for computing the skeleton
this way is proposed in [197].

The PDEs. The connection between the PDEs ∂u/∂t = ±|Du| and multiscale
dilations and erosions comes from the work of Lax, where it is used to give stable
and efficient numerical schemes for solving the equations [206]. Rouy and Tourin
[297] have shown that the distance function to a shape is a viscosity solution
of 1 − |Du| = 0 with the null boundary condition (Dirichlet condition) on the
boundary of the shape. To define efficient numerical schemes for computing the
distance function, they actually implement the evolution equation ∂u/∂t = 1−
|Du| starting from zero and with the null boundary condition on the boundary of
the shape. The fact that the multiscale dilations and erosions can be computed
using the PDEs ∂u/∂t = ±|Du| has been rediscovered or revived, thirty years
after Lax’s work, by several authors: Alvarez et. al. [12], van den Boomgaard
and Smeulders [340], Maragos [227, 228]. See also [339] for a numerical review.
For an implementation using curve evolution, see [306]. Curiously, the link
between erosions, dilations, and their PDEs seems to have remained unknown
or unexploited until 1992. The erosion and dilation PDEs can be used for shape
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thinning, which is a popular way to compute the skeleton. Pasquignon developed
an erosion PDE with adaptive stopping time that allows one to compute directly
a skeleton that does not look like barbed wire [280].
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Chapter 14

Median Filters and
Mathematical Morphology

This entire chapter is devoted to median filters. They are among the most
characteristic and numerically efficient contrast-invariant monotone operators.
The denoising effects of median filters are illustrated in Figures 14.1 and 14.2;
the smoothing effect of a median filter is illustrated in Figure 14.4. They also
are extremely useful in 3D-image or movie denoising.

As usual, there will be two associated operators, a set operator and a function
operator. All of the median operators (or filters) will be defined in terms of a
nonnegative measurable weight function k : RN → [0, +∞) that is normalized:

∫

RN

k(y) dy = 1.

The k-measure of a measurable subset B ⊂ RN is denoted by |B|k and defined
by

|B|k =
∫

B

k(y) dy =
∫

RN

k(y)1B(y) dy.

Clearly, 0 ≤ |B|k ≤ 1. The simplest example for k is given by the function
k = c−1

N (r)1B(0,r), where B(0, r) denotes the ball of radius r centered at the
origin and cN (r) is the Lebesgue measure of B(0, r). Another classical example
to think of is the Gaussian.

14.1 Set and function medians

We first define the set operators, whose form is simpler. We define them on
M(RN ), the set of measurable subsets of RN and then apply the standard
extension to M(SN ) given in Definition 11.1.

Definition 14.1. Let X ∈M(RN ) and let k be a weight function. The median
set of X weighted by k is defined by

MedkX = {x | |X − x|k ≥ 1
2} (14.1)

159
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and its standard extension to M(SN ) by

MedkX = {x | |X − x|k ≥ 1
2} ∪ (X ∩ {∞}). (14.2)

The extension amounts to add ∞ to MedkX if ∞ belongs to X. Note that
we have already encountered the median operator in Section 5.1. Koenderink
and van Doorn defined the dynamic shape of X at scale t to be the set of x such
that Gt∗1X(x) ≥ 1/2. The dynamic shape is, in our terms, a Gaussian-weighted
median filter.

To gain some intuition about median filters, we suggest considering the
weight k defined on R2 by k = (1/πr2)1B(0,r). Then x ∈ R2 belongs to MedkX
if and only if the Lebesgue measure of X∩B(x, r) is greater than or equal to half
the measure of B(0, r). Thus, x ∈ MedkX if points of X are in the majority
around x.

Lemma 14.2. Medk is a standard monotone operator on M.

Proof. Obviously Medk(∅) = ∅ and Medk(SN ) = SN . By definition, ∞ ∈
MedkX ⇔ ∞ ∈ X. If X is bounded, it is a direct application of Lebesgue
theorem that

|X − x|k =
∫

k(y)1X−x(y)dy → 0 as x →∞.

Thus |X−x|k < 1
2 for x large enough and MedkX is therefore bounded. In the

same way, if Xc is bounded |X − x|k → 1 as x →∞ and therefore (MedX)c is
bounded. ¤

Lemma 14.3. We can represent Medk by

MedkX = {x | x + B ⊂ X, for some B ∈ B}, (14.3)

where B = {B | |B|k ≥ 1
2} or B = {B | |B|k = 1

2}.

Proof. By Lemma 14.2,Medk is standard monotone and it is obviously transla-
tion invariant. So we can apply Theorem 12.2. The canonical set of structuring
elements of Medk is

B = {B | 0 ∈MedkB} = {B | |B|k ≥ 1
2
}.

The second set B mentioned in the lemma, which we call now for convenience
B′, is a subset of B such that for every B ∈ B, there is some B′ ∈ B′ such that
B′ ⊂ B. Thus by Proposition 12.4, Medk can be defined from B′. ¤

The next lemma will help defining the function operator Medk associated
with the set operator Medk.

Lemma 14.4. The set operator Medk is translation invariant and upper semi-
continuous on M.
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Proof. The first property is straightforward. Consider a nonincreasing se-
quence (Xn)n∈N in M and let us show that

Medk

⋂

n∈N
Xn =

⋂

n∈N
MedkXn.

SinceMedk is monotone, it is always true thatMedk

⋂
n∈NXn ⊂

⋂
n∈NMedkXn.

To prove the other inclusion, assume that x ∈ ⋂
n∈NMedkXn. If x ∈ RN , by the

definition of Medk, |Xn−x| ≥ 1/2 for all n ∈ N. Since Xn−x ↓ ⋂
n∈N(Xn−x),

we deduce from Lebesgue Theorem that |Xn − x|k ↓ |
⋂

n∈N(Xn − x)|k. This
means that |⋂n∈N(Xn − x)|k ≥ 1/2, and hence that x ∈ Medk

⋂
n∈N(Xn − x).

If x = ∞, it belongs to MedkXn for all n and therefore to Xn for all n. Thus,
it belongs to

⋂
n∈NXn and therefore to Medk(

⋂
n∈NXn). ¤

Definition 14.5 (and proposition). Define the function operator Medk from
Medk as a stack filter,

Medku(x) = sup{λ | x ∈MedkXλu}.
Then Medk is standard monotone, contrast invariant and translation invariant
from F to F . Medk and Medk commute with thresholds,

XλMedku = MedkXλu. (14.4)

If k is radial, Medk therefore is Morpho.

Proof. By Lemma 14.4, Medk is upper semicontinuous and by Lemma 14.2
it is standard monotone and translation invariant. So we can apply Theorem
11.16, which yields all announced properties for Medk. ¤

We get a sup-inf formula for the median as a direct application of Theorem
12.6.

Proposition 14.6. The median operator Medk has the sup-inf representation

Medku(x) = sup
B∈B

inf
y∈x+B

u(y), (14.5)

where B = {B | B ∈M, |B|k = 1/2}.

A median value is a kind of average, but with quite different results, as is
illustrated in Exercise 14.4.

14.2 Self-dual median filters

The median operator Medk, as defined, is not invariant under “reverse contrast,”
that is, it does not satisfy −Medku = Medk(−u) for all u ∈ F . This is clear
from the example in the next exercise. Self-duality is a conservative requirement
which is true for all linear filters. It means that the white and black balance is
respected by the operator. We have seen that dilations favor whites and erosions
favor black colors: These operators are not self-dual.
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Figure 14.1: Example of denoising with a median filter. Left to right: scanned
picture of the word “operator” with perturbations and noise made with black
or white lines and dots; the image after one application of a median filter with
a circular neighborhood of radius 2; the image after a second application of the
same filter. Compare with the denoising using openings and closings (Figure
13.8).

Exercise 14.1. Consider the one-dimensional median filter with k = 1
2
1[−2,−1]∪[1,2].

Let u(x) = −1 if x ≤ −1, u(x) = 1 if x ≥ 1, u(x) = x elsewhere. Check that
Medku(0) 6= −Med(−u)(0).

As we did with erosions and dilations, one can define a dual version of the
median Med−k by

Med−k u = −Medk(−u), so that (14.6)

Med−k u(x) = inf
|B|k≥ 1

2

sup
y∈x+B

u(y). (14.7)

A quite general condition on k is sufficient to guarantee that Medk and Med−k
agree on continuous functions.

Definition 14.7. We say that k is not separable if |B|k ≥ 1/2 and |B′|k ≥ 1/2
imply that B ∩B′ 6= ∅.

Proposition 14.8.

(i) For every measurable function u, Medku ≥ Med−k u.

(ii) Assume that k is not separable. Then for every u ∈ F , Medku = Med−k u
and Medk is self-dual.

Proof. Both operators are translation invariant, so without loss of generality we
may assume that x = 0. To prove (i), let λ = Medku(0) = sup|B|k≥1/2 infy∈B u(y).
Take ε > 0 and consider the level set Xλ+εu. Then infy∈Xλ+ε

u(y) ≥ λ+ε. Thus
|Xλ+εu|k < 1/2, since infy∈B ≤ λ for any set B such that |B| ≥ 1/2. Thence
|(Xλ+εu)c|k ≥ 1/2. By the definition of level sets, supy∈(Xλ+εu)c u(y) ≤ λ + ε.
These two last relations imply that

inf
|B|k≥ 1

2

sup
y∈B

u(y) ≤ λ + ε.

Since ε > 0 was arbitrary, this proves (i).
The assumption that k is not separable implies that for all B and B′ having

k-measure greater than or equal to 1/2, we have infy∈B u(y) ≤ supy∈B′ u(y).
Since u ∈ F is continuous, infy∈B u(y) ≤ supy∈B′ u(y). Since B and B′ were
arbitrary except for the conditions |B|k ≥ 1/2 and |B′|k ≥ 1/2, the last inequal-
ity implies that

sup
|B|k≥ 1

2

inf
y∈B

u(y) ≤ inf
|B′|k≥ 1

2

sup
y∈B′

u(y).
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Figure 14.2: Denoising based on a median filter. Left: an image altered on
40% of its pixels with salt and pepper noise. Right: the same image after three
iterations of a median filter with a 3× 3 square mask.

From this last inequality and (i), we conclude that Medku = Med−k u. ¤

14.2.1 Chessboard dilemma and fattening effect

In Figure 14.2.1, the median filter has been applied iteratively to a function
u whose grid values are equal to 255 at the white pixels and to 0 at the black
pixels. The function is continuous, being (e.g.) interpolated by standard bilinear
interpolation. The iso-level set I127.5u := {x | u(x) = 127.5} consists of the
line segments separating the squares and has therefore zero measure. As we
know, the median filter tends to smooth, to round off the level lines of the
image. Yet we have with a chessboard a fundamental ambiguity : are these
iso-level lines surrounding the black squares, or are they surrounding the white
squares? In other terms, do we see in a chessboard a set of white squares on
black background, or conversely?

Since our operator is self-dual it doesn’t favor any of the considered interpre-
tations: it rounds off simultaneously the lines surrounding the black squares and
the level lines surrounding the white squares (second image of Figure 14.2.1).
This results in the “fattening” of the level lines separating white and black,
which have the mid-level 127.5. Hence the appearance in the second image of
a grey zone separating the smoothed out black and white squares. If we take a
level set XεTu of this image with ε < 0 (third image), the fattened set joins the
level set and we observe black squares on white background. Symmetrically if
ε > 0 the level set shows white squares on black background.

14.3 Discrete median filters and the ”usual” me-
dian value

We define a discrete median filter by considering, instead of a function, a uniform
discrete measure k =

∑
i=1,...,N δxi , where δxi denotes the Dirac mass at xi.
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Figure 14.3: The chessboard dilemma. Left: a chessboard image. The next
image is obtained by a self-dual median filter. Notice the expansion of the
median grey level, 127.5, who was invisible in the original image and grows in
the second one. This effect is called “fattening effect”. The third and fourth
image show the evolution of the level sets at levels 127 and 128 respectively.
This experiment illustrates a dilemma as to whether we consider the chessboard
as black squares on white background, or conversely.

We could normalize k, but this is not necessary, as will become clear. Translates
of the points xi create the discrete neighborhood that is used to compute the
median value of a function u at a point x. We denote the set of subsets of
{1, . . . , N} by P(N) and the number of elements in P ∈ P(N) by card(P ).
Since card(P ) = |P |k, we will suppress the k-notation is favor of the more
transparent “card(P ),” but one should remember that the k-measure is still
there. An immediate generalization of the definition of the median filters to the
case where k is such a discrete measure yields

Medu(x) = sup
P∈P(N)

card(P )≥N/2

inf
i∈P

u(x− xi),

Med−u(x) = inf
P∈P(N)

card(P )≥N/2

sup
i∈P

u(x− xi).

When k was continuous, we could replace “|B|k ≥ 1/2” with “|B|k = 1/2,” but
this is not directly possible in the discrete case, since N/2 is not an integer if
N is odd. To fix this, we define the function M by M(N) = N/2 if N is even
and M(N) = (N/2) + (1/2) if N is odd. Now we have

Medu(x) = sup
P∈P(N)

card(P )=M(N)

inf
i∈P

u(x− xi),

Med−u(x) = inf
P∈P(N)

card(P )=M(N)

sup
i∈P

u(x− xi).

The fact that we can replace “card(P ) ≥ N/2” with “card(P ) = M(N)”
has been argued elsewhere for the continuous case; for the discrete case, it is a
matter of simple combinatorics. Given any x, let yi = u(x−xi). After a suitable
permutation of the i’s, we can order the yi as follows: y1 ≤, · · · ,≤ yM ≤, · · · ≤
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yN . Then for N even,

{ inf
i∈P

yi | card(P ) ≥ N/2} = { inf
i∈P

yi | card(P ) = M} = {y1, . . . , yM+1},
{sup

i∈P
yi | card(P ) ≥ N/2} = {sup

i∈P
yi | card(P ) = M} = {yM , . . . , yN},

and Medu(x) = yM+1 ≥ yM = Med−u(x). If N is odd, we have

{ inf
i∈P

yi | card(P ) ≥ N/2} = { inf
i∈P

yi | card(P ) = M} = {y1, . . . , yM},
{sup

i∈P
yi | card(P ) ≥ N/2} = {sup

i∈P
yi | card(P ) = M} = {yM , . . . , yN},

and Medu(x) = Med−u(x) = yM . This shows that Med = Med− if and only if N
is odd. What we see here is the discrete version of Proposition 14.8. When N is
odd, the measure is not separable, since two sets P and P ′ with card(P ) ≥ N/2
and card(P ′) ≥ N/2 always have a nonempty intersection. In general, a median
filter with an odd number of pixels is preferred, since Med = Med− in this case.

This discussion shows that the definition of the discrete median filter Med
corresponds to the usual statistical definition of the median of a set of data: If
the given data consists of the numbers y1 ≤ y2 ≤ · · · ≤ yN and N = 2n+1, them
by definition, the median is yn+1. In case N = 2n, the median is (yn + yn+1)/2.
In both cases, half of the terms are greater than or equal to the median and half
of the terms are less than or equal to the median. The usual median minimizes
the functional

∑N
i=1 |yi − y|. Exercise 14.9 shows how Med and Med− relate to

this functional.
Finally, we wish to show that the discrete median filter Med can be a cyclic

operator on discrete images. As a simple example, consider the chessboard
image, where u(i, j) = 255 if i + j is even and u(i, j) = 0 otherwise. When we
apply the median filter that takes the median of the four values surrounding
a pixel and the pixel value, it is clear that the filter “reverses” the chessboard
pattern. Indeed, any white pixel (value 255) is surrounded by four black pixels
(value zero), so the median filter transforms the white pixel into a black pixel.
In the same way, a black pixel is transformed into a white pixel and this can go
for ever.

14.4 Exercises

Exercise 14.2. Check that Medk as defined in Definition 14.1 is monotone and
translation invariant.

Exercise 14.3. Koenderink and van Doorn defined the dynamic shape of X at scale t
to be the set of x such that Gt ∗1X(x) ≥ 1/2. Check that this is a Gaussian-weighted
median filter.

Exercise 14.4. Consider the weighted median filter defined on S1 with k = (1/2)1[−1,1].
Compute Medku for u(x) = 1

1+x2 . Compare the result with the local average M1u(x) =
1
2

∫ 1

−1
u(x + y)dy. What happens on intervals where u is monotone?

Exercise 14.5. Saying that k is not separable is a fairly weak assumption. It cor-
responds roughly to saying that the support of k cannot be split into two disjoint
connected components each having k-measure 1/2. Show that if k is continuous and
if its support is connected, then it is not separable.
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Exercise 14.6. Prove the following inequalities for any measurable function :

sup
|B|k≥ 1

2

inf
y∈x+B

u(y) ≥ sup
|B|k> 1

2

inf
y∈x+B

u(y) ≥ inf
|B|k≥ 1

2

sup
y∈x+B

u(y),

sup
|B|k≥ 1

2

inf
y∈x+B

u(y) ≥ inf
|B|k> 1

2

sup
y∈x+B

u(y) ≥ inf
|B|k≥ 1

2

sup
y∈x+B

u(y).

Exercise 14.7. Median filter on measurable sets and functions. The aim of
the exercise is to study the properties of the median filter extended to the set M of
all measurable sets of SN and all bounded measurable functions (u ∈ L∞(SN )). The
definition of Medk on M is identical to the current definition.

1) Using the result of Exercise 11.20, show that one can define Medk from Medk as
a stack filter and that it is monotone, translation and contrast invariant. In addition,
Medk and Medk still satisfy the commutation with thresholds, XλMedku = MedkXλu.

2) Prove that Medk maps measurable sets into closed sets. Deduce that if u is a
measurable function, then Medku is upper semicontinuous and Med−k u is lower semi-
continuous.

3) Assume that k is not separable. Check that the proof of Proposition 14.8 still applies
to the more general Medk and Med−k , applied to all measurable functions. Deduce that
if k is not separable, then Medku is continuous whenever u is a measurable function.

Exercise 14.8. The discrete median filters can more generally be defined in terms of a
nonuniform measure k that places different weights ki on the points xi, so |{xi}|k = ki.
Check that Med−k u ≤ Medku. Prove that Med−k u = Medku if and only if there is no
subset of the numbers k1, . . . , kN whose sum is K/2. In particular, if the ki are integers
and K is odd, then Med−k u = Medku.

Exercise 14.9. Variational interpretations of the median and the average
values.
Let arginfmg(m) denote the value of m, if it exists, at which g attains its infimum. Con-
sider N real numbers {xi | i = 1, 2, . . . , N} and denote by Med((xi)i) and Med−((xi)i)
their usual lower and upper median values (we already know that both are equal if N
is odd but can be different if N is even).

(i) Show that

1

N

N∑
i=1

xi = arginfm

N∑
i=1

(xi −m)2.

(ii) Show that

Med−((xi)i) ≤ arginfm

N∑
i=1

|xi −m| ≤ Med((xi)i).

(iii) Let k = 1B , where B is set with Lebesgue measure equal to one. Let MedBu
denote the median value of u in B, defined by MedBu = Medku(0). Consider a
bounded measurable function u defined on B. Show that∫

B

u(x) dx = arginfm

∫

B

(u(x)−m)2 dx

and that

Med−Bu ≤ arginfm

∫

B

|u(x)−m|dx =
Med−Bu + MedBu

2
≤ MedBu.

(iv) Deduce from the above that the mean value is the best constant approximation
in the L2 norm and that the median is the best constant approximation in the
L1 norm.
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Figure 14.4: Smoothing effect of a median filter on level lines. Above, left
to right: original image; all of its level lines (boundaries of level sets) with
levels multiple of 12; level lines at level 100. Below,left to right: result of two
iterations of a median filter with a disk with radius 2; corresponding level lines
(levels multiple of 12); level lines at level 100.

14.5 Comments and references

The remarkable denoising properties and numerical efficiency of median filters
for the removal of all kinds of impulse noise in digital images, movies, and video
signals are well known and acclaimed [98, 178, 267, 284, 291]. The last reference
cited as well as the next three all propose simple and efficient implementations
of the median filter [29, 96, 167]. An introduction to weighted median filters can
be found in [55, 363], and information about some generalizations (conditional
median filters, for example) can be found in [26, 208, 326]. The min, max, and
median filters are particular instances of rank order filters; see [92] for a general
presentation of these filters. There are few studies on iterated median filters.
The use of iterated median filters as a scale space is, however, proposed in [35].
The extension of median filtering to multichannel (color) images is problematic,
although there have been some interesting attempts [75, 292].
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Chapter 15

Curves and Curvatures

This chapter contains the fundamentals of differential geometry that are used in
the book. Our main aim is to define the orientation and curvatures of a curve
or a surface as the main contrast invariant differential operators we shall deal
with in image and curve smoothing.

15.1 Tangent, normal, and curvature

We summarize in this section the concepts and results about smooth curves that
are needed in this chapter and elsewhere in the book. The curves we considered
will always be plane curves.

Definition 15.1. We call simple arc or Jordan arc the image Γ of a continuous
one-to-one function x : [0, 1] → R2, x(t) = (x(t), y(t)). We say that Γ is a
simple closed curve or Jordan curve if the mapping restricted to (0, 1) is one-
to-one and if x(0) = x(1). If x is continuously differentiable on [0, 1], we define
the arc length of the segment of the curve between x(t0) and x(t) by

L(x, t0, t) =
∫ t

t0

|x′(τ)|dτ =
∫ t

t0

√
x′(τ) · x′(τ) dτ. (15.1)

In particular, set

L(t) = L(x, 0, t) =
∫ t

0

|x′(τ)| dτ =
∫ t

0

√
x′(τ) · x′(τ) dτ.

The curves we deal with will always be smooth. Now, we want the definition
of “smoothness” to describe an intrinsic property of Γ rather than a property
of some parameterization x(s) of Γ. If a function x representing Γ is C1, then
the function L in equation (15.1) has a derivative with respect to s,

L′(t) = |x′(t)|
that is continuous. Nevertheless, the curve itself may not conform to our idea of
being smooth, which at a minimum requires a tangent at every point y ∈ Γ. For
example, the motion of a point on the boundary of a unit disk as it rolls along
the x-axis is described by x(t) = (t − sin t, 1 − cos t), which is a C∞ function.

171
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Nevertheless, the curve has cusps at all multiples of 2π. The problem is that
x′(2kπ) = 0.

Definition 15.2. We say that a curve Γ admits an arc-length parameterization
s 7→ x(s) if the function x is C1 and L′(s) = |x′(s)| = 1 for all s. In case Γ is
closed, we identify [0, l(Γ)] algebraically with the circle group by adding elements
of [0, l(Γ)] modulo l(Γ). We say that Γ is Cm, m ∈ N, m ≥ 1, if the arc-length
parameterization x is a Cm function.

Exercise 15.1. The aim of the exercise is to give a formula transforming a C1 pa-
rameterization t ∈ [0, 1] → x(t) such that |x′(t)| 6= 0 for all t into an arc-length
parameterization. Notice that L : [0, 1] → [0, L(1)] is increasing. Set, for s ∈ [0, L(1)],
x̃(s) = x(L−1(s)) and check that x̃ is an arc-length parameterization of the curve
defined by x.

An arc-length parameterization is also called a Euclidean parameterization.
If a Jordan curve has an arc-length parameterization x, then the domain of
definition of x on the real line must be an interval [a, b], where b − a is the
length of Γ, which we denote by l(Γ). In this case, we will always take [0, l(Γ)]
as the domain of definition of x.

One can easily describe all Euclidean parameterizations of a Jordan curve.

Proposition 15.3. Suppose that Γ is a C1 Jordan curve with arc-length pa-
rameterization x : [0, l(Γ)] → Γ. Then any other arc-length parameterization
y : [0, l(Γ)] → Γ is of the form y(s) = x(s + σ) or y(s) = x(−s + σ) for some
σ ∈ [0, l(Γ)].

Proof. Denote by C the interval [0, l(Γ)], defined as an additive subgroup of R
modulo l(Γ). Let x, y : C 7→ Γ be two length preserving parameterizations of
Γ. Then f = x ◦ y−1 is a length preserving bijection of C. Using the parame-
terization of C, this implies f(s) = ±s + σ for some σ ∈ [0, l(Γ)] and the proof
is easily concluded. (See exercise 15.7 for some more details.) ¤

Definition 15.4. Assume that Γ is C2 and let s 7→ x(s) be an arc-length pa-
rameterization. The tangent vector τ is defined as τ (s) = x′(s). The curvature
vector of the curve Γ is defined by κ(s) = x′′(s). The normal vector n(s) is
defined by n(s) = τ⊥, where (x, y)⊥ = (−y, x).

Proposition 15.5. Let Γ be a C2 Jordan curve, and let x and y by any two
arc-length parameterizations of Γ.

(i) If x(s) = y(t), then x′(s) = ±y′(t).

(ii) The vector κ is independent of the choice of arc-length parameterizations
and it is orthogonal to τ = x′.

Proof. By Proposition 15.3, y(s) = x(±s+σ) and (i) follows by differentiation.
This is also geometrically obvious: x′(s) and y′(t) are unit vectors tangent to Γ
at the same point. Thus, they either point in the same direction or they point
in opposite directions.
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Using any of the above representations and differentiating twice shows that
x′′ = y′′. Since x′ ·x′ = 1, differentiating this expression shows that x′′ ·x′ = 0.
Thus, x′′ and x′ are orthogonal and x′′ and x′⊥ are collinear. ¤

It will be convenient to have a flexible notation for the curvature in the
different contexts we will use it. This is the object of the next definition.

Definition 15.6 (and notation). Given a C2 curve Γ, which is parameterized
by length as s 7→ x(s) and x = x(s) a point of Γ, we denote in three equivalent
ways the curvature of Γ at x = x(s),

κ(x) = κ(x(s)) = κ(s) = x′′(s).

In the first notation, κ is the curvature of the curve Γ at a point x implicitly
supposed to belong Γ. In the second notation a particular parameterization of
Γ, x(s), is being used. In the third one, x is omitted.

The above notations create no ambiguity or contradiction, since by Propo-
sition 15.5 the curvature is independent of the Euclidean parameterization. Of
course, a smooth Jordan curve is locally a graph. More specifically:

Proposition 15.7. A C1 Jordan arc Γ can be represented around each one of
its points x0 as the graph of a C1 scalar function y = f(x) such that x0 =
(0, f(0)) = (0, 0), f ′(0) = 0 and, if the arc is C2,

κ(x0) = (0, f ′′(0)). (15.2)

Conversely, the graph of any C1 function f is a C1 Jordan arc. If f is C2

the curvature of its associated Jordan curve satisfies (15.2) at each point where
f ′(0) = 0.

Proof. Assume we are given a C1 Jordan arc Γ and an arc-length parame-
terization c in a neighborhood of x0 = c(s0) ∈ Γ. We assume, without loss
of generality, that s0 = 0. Then we can establish a local coordinate system
with origin x0 and based on the two unit vectors c′(0) and c′(0)⊥ where the
x-axis is positive in the direction of c′(0). If we write c(s) = (x(s), y(s)) in this
coordinate system, then

x(s) = c(s) · c′(0),

y(s) = c(s) · c′(0)⊥.

Since dx/ds(s) = c′(s) ·c′(0), dx/ds(0) = 1. Then the inverse function theorem
implies the existence of a C1 function g and a δ > 0 such that s = g(x) for
|x| < δ. This means that, for |x| < δ, Γ is represented locally by the graph
of the C1 function f(x) = y(g(x)) = c(g(x)) · c′(0)⊥. To be slightly more
precise, denote the graph of f for |x| < δ by Γf . Since g is one-to-one, Γf is a
homeomorphic image of the open interval (−δ, δ) and Γf ⊂ Γ. If Γ is C2, then
f is C2 and f ′′(0) = c′′(0) · c′(0)⊥. Thus, on the local coordinate system, the
coordinates of c′′(0) = κ(x0) are (0, f ′′(0)).

Conversely, given a C1 function f , we can consider the graph Γf of f in a
neighborhood of the origin. Then Γf is represented by c, where c(x) = (x, f(x)).
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We may assume that f(0) = 0 and f ′(0) = 0 (by a translation and rotation if
necessary). The arc-length along Γ is measured by

s(x) =
∫ x

0

√
1 + [f ′(t)]2 dt,

and s′(x) =
√

1 + [f ′(x)]2, so that s′(0) = 1. This time there is a C1 function
h such that h(s) = x and h′(s) = (1 + [f ′(h(s))]2)−1/2. Then Γ is represented
by c̃(s) = (h(s), f(h(s))). Short computations show that |c̃′(s)| = 1. If in ad-
dition f is C2, then Γ is C2 and it is an easy check that c̃′′(0)· c̃′(0)⊥ = f ′′(0). ¤

Exercise 15.2. Make the above “short computations” and the “easy check”.

15.2 The structure of the set of level lines

We saw in Chapter 9 how an image can be represented by its level sets. The
next step, with a view toward shape analysis, is the representation of an image
in terms of its level lines. We rely heavily on the implicit function theorem
to develop this representation. We begin with a two-dimensional version. The
statement here is just a slight variation on the implicit function theorem quoted
in section ??.

Theorem 15.8. Let u ∈ F be a C1 function such that Du(x0) 6= 0 at some
x0 = (x0, y0). Let i denote the unit vector in the direction (ux, uy), let j denote
the unit vector in the orthogonal direction (−uy, ux), and write x = x0+xi+yj.
Then there is a disk D(x0, r) and a unique C1 function ϕ, ϕ : [−r, r] → R, such
that if x ∈ D(x0, r), then

u(x, y) = u(x0) ⇐⇒ x = ϕ(y).

The following corollary is a global version of this local result.

Corollary 15.9. Assume that u ∈ F is C1 and let u−1(λ) = {x | u(x) = λ}
for λ ∈ R. If λ 6= u(∞) and Du(x) 6= 0 for all x ∈ u−1(λ), then u−1(λ) is a
finite union of disjoint Jordan curves.

Proof. From Theorem 15.8 we know that for each point x ∈ u−1(λ) there is an
open disk D(x, r(x)) such that D(x, r(x))∩u−1(λ) is a C1 Jordan arc x(s) and
we can take the endpoints of the arc on ∂D(x, r(x)). Since λ 6= u(∞), u−1(λ)
is compact. Thus there is a finite number of points xi, i = 1, . . . , m, such that
u−1(λ) ⊂ ⋃m

i=1 D(xi, r(xi)). This implies that u−1(λ) is a finite union of Jordan
arcs which we can parameterize by length. The rest of the proof is very intuitive
and is left to the reader. I consists of iteratively gluing the Jordan arcs until
they close up into one or several Jordan curves. ¤

The next theorem is one of the few results that we are going to quote rather
than prove, as we have done with the implicit function theorem.

Theorem 15.10 (Sard’s theorem). Let u ∈ F ∩ C1. Then for almost every
λ in the range of u, the set u−1(λ) is nonsingular, which means that for all
x ∈ u−1(λ), Du(x) 6= 0.
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Figure 15.1: Level lines as representatives of the shapes present in an image.
Left: noisy binary image with two apparent shapes; right: the two longest level
lines.

As a direct consequence of Sard’s Theorem and Corollary 15.9, we obtain:

Corollary 15.11. Let u ∈ F ∩C1. Then for almost every λ in the range of u,
the set u−1(λ) is the union of a finite set of disjoint simple closed C1 curves.

The sole purpose of the next proposition is to convince the reader that the
level lines of a function provide a faithful representation of the function.

Proposition 15.12. Let u ∈ F ∩ C1. Then u can be reconstructed from the
following data: the family of all of its level lines at nonsingular levels, the level
of each level line being also kept.

Proof. Let G be the closure of the union of the ranges of all level lines of u at
nonsingular levels. If x ∈ G, then there are points xn belonging to level lines of
some levels λn such that xn → x. As a consequence, λn = u(xn) → u(x). So
we get back the value of u(x).
Let now x belong to the open set Gc. Let us first prove that Du(x) = 0. Assume
by contradiction that Du(x) 6= 0. By using the first order Taylor expansion of
u around x, one sees that for all r > 0 the connected range u(B(x, r)) must
contain some interval (u(x) − α(r), u(x) + α(r)) with α(r) → 0 as r → 0. By
Sard’s theorem some of the values in this interval are nonsingular. Thus we can
find nonsingular levels λn → u(x) and points xn → x such that u(xn) = λn.
This implies that x ∈ G and yields a contradiction.
Thus Du(x) = 0 on Gc and u is therefore constant on each connected compo-
nent A of Gc. The value of u is then uniquely determined by the value of u on
the boundary of A. This value is known, since ∂A is contained in G. ¤
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Figure 15.2: Level lines as a complete representation of the shapes present in an
image. All level lines of the image of a sea bird for levels that are multiples of
12 are displayed. Notice that we do not need a previous smoothing to visualize
the shape structures in an image: It is sufficient to quantize the displayed levels.

15.3 Curvature of the level lines

The intrinsic local coordinates

We continue to work in R2. Consider a real-valued function u that is twice con-
tinuously differentiable in a neighborhood of x0 ∈ R2. To simplify the notation,
we will often write Du rather than Du(x0), and so on.

Definition 15.13. If Du = (ux, uy) 6= 0, then we establish a local coordinate
system by letting i = Du/|Du| and j = Du⊥/|Du|, where Du⊥ = (−uy, ux).
Thus, for a point x near x0, we write x = x0 +xi+yj and the local coordinates
of x are (x, y). (See Figure 15.3.) Without risk of ambiguity we shall write
u(x, y) for u(x) = u(x0 + xi + yj).

Since u is C2, we can use Taylor’s formula to express u in this coordinate
system in a neighborhood of x0.

u(x) = u(x, y) = u(x0) + px + ax2 + by2 + cxy + O(|x|3), (15.3)

where p = ux(0, 0) = |Du(x0)| > 0 and

a =
1
2

∂2u

∂x2
(0, 0) =

1
2
D2u

( Du

|Du| ,
Du

|Du|
)
(x0),

b =
1
2

∂2u

∂y2
(0, 0) =

1
2
D2u

(Du⊥

|Du| ,
Du⊥

|Du|
)
(x0),

c =
∂2u

∂x∂y
(0, 0) = D2u

(Du⊥

|Du| ,
Du

|Du|
)
(x0).

(15.4)

Exercise 15.3. Check the three above formulas.

The implicit function theorem 15.8 ensures that in a neighborhood of x0 the
set {x | u(x) = u(x0)} is a C2 graph whose equation can be written in the
local coordinates x = ϕ(y), where ϕ is a C2 function in an interval I containing
y = 0. In this interval, we have u(ϕ(y), y) = u(x0). Differentiating this shows
that uxϕ′ + uy = 0 for y ∈ I. Since |Du(x0)| = ux(0, 0) and uy(0, 0) = 0
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x= (y)ϕ
j 

Du/|Du| = i

Figure 15.3: Intrinsic coordinates. Note that ϕ′′(0) > 0, so b < 0.

in our coordinate system, we obtain ϕ′(0) = 0. A second differentiation of
ux(ϕ(y), y)ϕ′ + uy(ϕ(y), y) = 0 yields

(uxxϕ′ + uxy)ϕ′ + uxϕ′′ + uyxϕ′ + uyy = 0.

Since ϕ′(0) = 0, we obtain ϕ′′(0) = −uyy(0, 0)/ux(0, 0). Using the notation of
(15.4), one obtains

ϕ(y) = − b

p
y2 + o(y2). (15.5)

Equation (15.5) is the representation of the level line {x | u(x) = u(x0)} in
the intrinsic coordinates at x0. Let us set |2b/p| = 1/R. If the curve is a circle,
R is the radius of this circle. More generally R is called radius of the osculatory
circle to the curve. See exercise 15.11.

We are now going to do another simple computation to determine the cur-
vature vector of the Jordan arc c defined by c(y) = x0 + ϕ(y)i + yj near
y = 0. Recall that we denote the curvature of a curve c by κ(c) and the value
of this function at a point c(y) by κ(c)(y).) Since in the local coordinates
c′(y) = (ϕ′(y), 1) and c′′(y) = (ϕ′′(y), 0), at y = 0, we have c′(0) = (0, 1) and
c′′(0) = (ϕ′′(0), 0), so that c′′(0) · c′(0) = 0. Using this and the expression of
the curvature in local graph coordinates (15.2) yields

κ(c)(0) = (ϕ′′(0), 0) = ϕ′′(0)
Du

|Du| (x0).

We now use (15.5) and (15.4) to write the last expression as

κ(c)(0) = − 1
|Du|D

2u
(Du⊥

|Du| ,
Du⊥

|Du|
) Du

|Du| (x0) (15.6)

This tells us that the vectors κ(c)(0) and Du(0) are collinear. Equation (15.6)
also leads to the following definition and lemma introducing a scalar curvature.

Definition 15.14. Let u be a real-valued function that is C2 in a neighborhood
of a point x ∈ R2 and assume that Du(x) 6= 0. The curvature of u at x, denoted
by curv(u)(x), is the real number defined in the local coordinates at x by

1
|Du|3 D2u(Du⊥, Du⊥)(x) =

uxxu2
y − 2uxyuxuy + uyyu2

x

(u2
x + u2

y)3/2
(0, 0). (15.7)
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Exercise 15.4. Check the above identity.

Lemma 15.15. Assume that u : R2 → R is C2 in a neighborhood of a point
x0 and assume that Du(x0) 6= 0. Let N = N(x0) be a neighborhood of x0 in
which the iso-level set of u, {x | u(x) = u(x0)}, is a simple C2 arc, which we
still denote by x = x(s). Then at every point x of this arc,

κ(x) = −curv(u)(x)
Du

|Du| (x). (15.8)

Proof. This is an immediate consequence of (15.6) and (15.7). We need only
remark that, given the hypotheses of the lemma, there is a neighborhood N of
x0 such that Du(x) 6= 0 for x ∈ N and such that {x | u(x) = u(x0)} is a simple
C2 arc for x ∈ N . Then the argument we made to derive (15.6) holds for any
point x ∈ N ∩ {x | u(x) = u(x0)}. ¤
The next exercise proposes as a sanity check a verification that the curvature
thus defined is contrast invariant and rotation invariant.
Exercise 15.5. Use equation (15.7) to show that

curv(u) =
∂

∂x

( Du

|Du|
)

+
∂

∂y

( Du

|Du|
)

= div
( Du

|Du|
)
. (15.9)

Use this last relation to show that curv(g(u)) = curv(u) if g is any C2 function g : R→
R such that g′(x) > 0 for all x ∈ R. What happens if g′(x) < 0 for all x ∈ R? Show that
curv(U) = curv(u), where U(s, t) = u(x, y) and x = s cos θ−t sin θ, y = s sin θ+t cos θ.
Check that curv(−u) = −curv(u) and give a geometric interpretation to this relation.

Before leaving this section, we wish to emphasize geometric aspects of the
functions we have introduced. Perhaps the most important fact is that the
curvature of a C2 Jordan arc Γ is an intrinsic property of Γ; it does not depend
on the parameterization. If x is a point on Γ, then the curvature vector κ(x)
points toward the center of the osculating circle. Furthermore, 1/|κ(x)| is the
radius of this circle, so when |κ(x)| is large, the osculating circle is small, and
the curve is ”turning a sharp corner.”

If Du(x) 6= 0, then the vector Du(x) points in the direction of greatest
increase, or steepest ascent, of u at x: Following the gradient leads uphill.
The function curv(u) does not have such a clear geometric interpretation, and
it is perhaps best thought of in terms of equation (15.8): curv(u)(x) is the
coefficient of −Du(x)/|Du(x)| that yields the curvature vector κ(x) of the level
curve through the point x. We cannot over emphasize the importance of the
two operators curv and Curv for the theories that follow. In addition to (15.8),
a further relation between these operators is shown in Proposition 16.8, and it
is this result that connects function smoothing with curve smoothing.

15.4 The principal curvatures of a level surface

We saw in Exercise 15.5 that curv(u) was contrast invariant. This idea will be
generalized to RN by introducing other differential operators that are contrast
invariant. These operators will be functions of the principal curvatures of the
level surfaces of u. For z ∈ RN , z⊥ will denote the hyperplane {y | z · y = 0}
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that is orthogonal to z. (There should be no confusion with this notation and
the same notation for z ∈ R2. In R2, z⊥ is a vector orthogonal to z, and the
corresponding “hyperplane” is the line {tz⊥ | t ∈ R}.)

Proposition 15.16. Assume that u : RN → R is C2 in a neighborhood of a
point x0 and assume that Du(x0) 6= 0. Let g : R → R be a C2 contrast change
such that g′(s) > 0 for all s ∈ R. Then Dg(u(x0)) = g′(u(x0))Du(x0), and
D̃2g(u(x0)) = g′(u(x0))D̃2u(x0), where D̃2u(x0) denotes the restriction of the
quadratic form D2u(x0) to the hyperplane Du(x0)⊥. This means, in particular,
that (1/|Du(x0)|)D̃2u(x0) is invariant under such a contrast change.

Proof. To simplify the notation, we will suppress the argument x0; thus, we
write Du for Du(x0), and so on. We use the notation y⊗y, y ∈ RN , to denote
the linear mapping y ⊗ y : RN → RN defined by (y ⊗ y)(x) = (x · y)y. The
range of y⊗ y is the one-dimensional space Ry.

An application of the chain rule shows that Dg(u) = g′(u)Du. This im-
plies that Du⊥ = Dg(u)⊥. (Recall that g′(s) > 0 for all s ∈ R.) A second
differentiation shows that

D2g(u) = g′′(u)Du⊗Du + g′(u)D2u.

If y ∈ Du⊥, then (Du⊗Du)(y) = 0 and D2g(u)(y,y) = g′(u)D2u(y,y). This
means that D2g(u) = g′(u)D2u on Du⊥ = Dg(u)⊥, which proves the result. ¤

Exercise 15.6. Taking euclidian coordinates, give the matrix of y ⊗ y. Check the
above differentiations.

We are now going to define locally the level surface of a smooth function
u, and for this we quote one more version of the implicit function theorem, in
arbitrary dimension N .

Theorem 15.17 (Implicit function theorem). Assume that u : RN → R
is Cm in the neighborhood of x0 and assume that Du(x0) 6= 0. Write x =
x0 +y+ zi, where i = Du(x0)/|Du(x0)| and y ∈ Du(x0)⊥. Then there exists a
ball B(x0, ρ) and a unique real-valued Cm function ϕ defined on B(x0, ρ)∩ {x |
x = x0 + y, i · y = 0} such that for every x ∈ B(x0, ρ)

u(x) = u(x0) ⇐⇒ ϕ(y) = z.

In other words, the equation ϕ(y) = z describes the set {x | u(x) = u(x0)}
near x0 as the graph of a Cm function ϕ. Thus, locally we have a surface passing
through x0 that we call the level surface of u around x0.

We are going to use Proposition 15.16 and Theorem 15.17, first, to give a
simple intrinsic representation for the level surface of a function u around a
point x0 and, second, to relate the eigenvalues of the quadratic form introduced
in Proposition 15.16 to the curvatures of lines drawn on the level surface of u.

Proposition 15.18. Assume that u : RN → R is C2 in a neighborhood of
x0 ∈ RN and that p = Du(x0) 6= 0. Denote the eigenvalues of the restriction of
the quadratic form D2u(x0) to the hyperplane Du(x0)⊥ by µ1, . . . , µN−1. Let
iN = Du(x0)/|Du(x0)| and select i1, . . . , iN−1 so they form an orthonormal
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basis of eigenvectors of the restriction of D2u(x0) to Du(x0)⊥. Write x = x0+z,
where z = x1i1 + · · ·+ xN iN = y + xN iN . Then if |z| is sufficiently small, the
function ϕ(y) = xN that solves the equation u(y, ϕ(y)) = u(x0) can be expressed
locally as

xN =
−1
2p

N−1∑

i=1

µix
2
i + o(|y|2).

Proof. Assume, without loss of generality, that x0 = 0 and that u(0) = 0.
Using the notation of Theorem 15.17, for x ∈ B(0, ρ), u(y, xN ) = 0 if and
only if ϕ(y) = xN , and ϕ is C2 in B(0, ρ). Furthermore, by differentiating the
expression u(y, ϕ(y)) = 0, we see that uxi

+ uxN
ϕxi

= 0, i = 1, . . . , N − 1 for
|x| < ρ. In particular, uxi

(0)+uxN
(0)ϕxi

(0) = 0. In the local coordinate system
we have chosen, |Du(0)| = |uxN

(0)|, and since Du(0) 6= 0, we conclude that
uxi

(0) = 0 for i = 1, . . . , N − 1 and hence that ϕxi
(0) = 0 for i = 1, . . . , N − 1.

This means that the local expansion of ϕ has the form

ϕ(y) =
1
2
D2ϕ(0)(y,y) + o(|y|2).

Now differentiate the relation uxi + uxN
ϕxi = 0 again to obtain

uxixj + uxixN
ϕxj + (uxN xj + uxN xN

ϕxj )ϕxi + uxN
ϕxixj = 0.

Since we have just shown that ϕxi(0) = 0 for i = 1, . . . , N − 1, we see from
this last expression that D̃2u(0)+ pD̃2ϕ(0) = 0, where p = uxN

(0) and D̃2u(0),
D̃2ϕ(0) are the restrictions of the quadratic forms D2u(0) and D2ϕ(0) to the
hyperplane Du(0)⊥. Thus we have

xN =
−1
2p

D2u(0)(y,y) + o(|y|2). (15.10)

Recall that y ∈ Du(0)⊥ and that y = x1i1 + · · ·+ xN−1iN−1, where the ii are
an orthonormal basis of eigenvectors of D2(0) restricted to Du(0)⊥. Thus,

xN =
−1
2p

N−1∑

i=1

µix
2
i + o(|y|2),

which is what we wished to prove. ¤

This formula reads
x2 =

−1
2p

µ1x
2
1 + o(|x1|2)

if N = 2, which is just equation (15.5) with different notation. Thus, µ1 =
|Du|curv(u), confirming that µ1 = ∂2u/∂x2

1. We are now going to use our two-
dimensional analysis to give a further interpretation of the eigenvalues µi for
N > 2. We begin by considering the curve Γν defined by the two equations
x = x0 + tν + xN iN and ϕ(tν) = xN , where ν is a unit vector in Du(x0)⊥.
Their solution in the local coordinates is ϕ(tν) = xN , whenever t ∈ R is small.
Thus, Γν is a curve passing by x0, drawn on the level surface of u and projecting
into a straight line of Du⊥. By (15.10) its equation is

xN = ϕ(tν) =
−1

2|Du(x0)|D
2u(x0)(ν, ν)t2 + o(t2),
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and its normal at x0 is Du(x0)
|Du(x0)| . Thus the curvature vector of Γν at x0 is

κ(Γν)(x0) =
−1

|Du(x0)|D
2u(x0)(ν,ν)

Du(x0)
|Du(x0)| .

By defining κν = |Du(x0)|−1D2u(x0)(ν,ν), we have

κ(Γν)(x0) = −κν
Du(x0)
|Du(x0)| ,

which has the same form as equation (15.8). So the modulus of κν is equal
to the modulus of the curvature of Γν at x0. This leads us to call principal
curvatures of the level surface of u at x0 the numbers κν obtained by letting
ν = ij , j = 1, . . . , N − 1, where the unit vectors ij are an orthonormal system
of eigenvectors of D2u(x0) restricted to Du(x0)⊥.

Definition 15.19. Let u : R2 → R be C2 at x0, with Du(x0) 6= 0. The principal
curvatures of u at x0 are the real numbers

κj =
µj

|Du(x0)| ,

where µj are the eigenvalues of D2u(x0) restricted to Du(x0)⊥.

It follows from Proposition 15.16 that the principal curvatures are invariant
under a C2 contrast change g such that g′(s) > 0 for all s ∈ R.

Definition 15.20. The mean curvature of a C2 function u : RN → R at x0 ∈
RN is the sum of the principal curvatures at x0. It is denoted by curv(u)(x0).

Note that this definition agrees with Definition 15.2 when N = 2. The next
result provides another representation for curv(u).

Proposition 15.21. The mean curvature of u is given by

curv(u) = div
( Du

|Du|
)
.

Proof. Represent the matrix D2u in the coordinate system ij , j = 1, . . . , N−1,
and iN = Du(x0)/|Du(x0)|, where the ij , j = 1, . . . , N −1, form a complete set
of eigenvectors of the linear mapping D2u(x0) restricted to Du⊥(x0). Then in
this coordinate system, D2u(x0) has the following form (illustrated for N = 5):

D2u(x0) =




u11 0 0 0 u15

0 u22 0 0 u25

0 0 u33 0 u35

0 0 0 u44 u45

u51 u52 u53 u54 u55




,

where ujk = uxjxk
(x0), and ujj = κj is the eigenvalue associated with ij . Thus,

by definition, we see that

curv(u) =
∆u

|Du| −
1

|Du|D
2u

( Du

|Du| ,
Du

|Du|
)
.
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We also have

div
( Du

|Du|
)

=
N∑

j=1

∂

∂xj

( uxj

|Du|
)

=
1

|Du|
N∑

j=1

uxjxj −
1

|Du|3
N∑

j,k=1

uxjxk
uxj uxk

=
∆u

|Du| −
1

|Du|D
2u

( Du

|Du| ,
Du

|Du|
)
.

¤

With this representation, it is clear that the mean curvature has the same
invariance properties as the curvature of a C2 function defined on R2. (See
Exercise 15.5.)

15.5 Exercises

Exercise 15.7. Let Γ by a Jordan arc parameterized by x : [0, 1] → Γ and by
y : [0, 1] → Γ. Show that x = y ◦ f or x = y ◦ (1− f), where f is a continuous, strictly
increasing function that maps [0, 1] onto [0, 1]. Hint: x and y are one-to-one, and
since [0, 1] is compact, they are homeomorphisms. Thus, y−1(x) = f is a one-to-one
continuous mapping of [0, 1] onto itself. As an application, give a proof of Proposition
15.3.

Exercise 15.8. State and prove an adaptation of Propositions 15.3 and 15.5 to a
Jordan arc.

The curvature vector has been defined in terms of the arc length. Curves,
however, are often naturally defined in terms of other parameters. The next two
exercises develop the differential relations between an arc-length parameteriza-
tion and another parameterization.
Exercise 15.9. Assume that Γ is a C2 Jordan arc or curve. Let s 7→ x(s) be an
arc-length parameterization and let t 7→ y(t) be any other parameterization with the
property that y′(t) 6= 0. Since x and y are one-to-one, we can consider the function
y−1(x) = ϕ. Then x(s) = y(ϕ(s)), where ϕ(s) = t. The inverse function ϕ−1 is given
by

s = ϕ−1(t) =

∫ t

t0

√
y′(r) · y′(r) dr,

so we know immediately that ϕ−1 is absolutely continuous with continuous derivative
equal to

√
y′(t) · y′(t). Thus, we also know that ϕ′(s) = |y′(ϕ(s))|−1. Note that we

made a choice above by taking
√

y′(r) · y′(r) to be positive. This is equivalent to
assuming that x′(s) and y′(ϕ(s)) point in the same direction or that ϕ′(s) > 0.

(i) Show that κ(s) = x′′(s) = y′′(ϕ(s))[ϕ′(s)]2 + y′(ϕ(s))ϕ′′(s) and deduce that

ϕ′′(s) = −y′′(ϕ(s))ϕ′(s) · y′(ϕ(s))

|y′(ϕ(s))|3 = −y′′(ϕ(s)) · y′(ϕ(s))

|y′(ϕ(s))|4 .

(ii) Use the results of (i) to show that

κ(s) = x′′(s) =
1

|y′(t)|2
[
y′′(t)−

(
y′′(t) · y′(t)

|y′(t)|

)
y′(t)
|y′(t)|

]
, (15.11)
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where ϕ(s) = t. Show that we get the same expression for the right-hand side
of (15.11) with the assumption that ϕ′(s) < 0. This shows that the curvature
vector κ does not depend on the choice of parameter.

(iii) Consider the scalar function κ(y) defined by κ(y)(s) = κ(s)·x′(s)⊥. Use equation
(15.11) to show that

κ(y)(t) =
y′′(t) · [y′(t)]⊥

|y′(t)|3
Note that κ(y) is determined up to a sign that depends on the sign of ϕ′(s);
however, |κ(y)| = |κ| is uniquely determined.

Exercise 15.10. Assume that Γ is a Jordan arc or curve that is represented by a C1

function t 7→ x(t) with the property that x′(t) 6= 0. Prove that Γ is C1.

Exercise 15.11.

(i) Consider the arc-length parameterization of the circle with radius r centered at
the origin given by x(s) = (r cos(s/r), r sin(s/r)). Show that the length of the
curvature vector is 1/r.

(ii) Compute the scalar curvature of the graph of y = (a/2)x2 at x = 0.

Exercise 15.12. Complete the proof of Corollary 15.9.

Exercise 15.13. The kinds of techniques used in this exercise are important for
work in later chapters. The exercise demonstrates that it is possible to bracket a C2

function locally with two functions that are radial and either increasing or decreasing.
We say that a function f is radial and increasing if there exists an increasing function
g : R+ → R such that f(x) = g(|xc − x|2), xc ∈ R2. We say that f is radial and
decreasing if g is decreasing. Let u : R2 → R be C2 and assume that Du(x0) 6= 0.
We wish to show that for every ε > 0 there exist two C2 radial functions f−ε and f+

ε

(increasing or decreasing, depending on the situation) that satisfy the following four
conditions:

f−ε (x0) = u(x0) = f+
ε (x0), (15.12)

Df−ε (x0) = Du(x0) = Df+
ε (x0), (15.13)

curv(f−ε )(x0) +
2ε

p
= curv(u)(x0) = curvf+

ε (x0)− 2ε

p
, (15.14)

f−ε (x) + o(|x0 − x|2) ≤ u(x) ≤ f+
ε (x) + o(|x0 − x|2). (15.15)

1. Without loss of generality, take x0 = (0, 0), u(0, 0) = 0, and Du(x0) = (p, 0),
p > 0. Then we have the Taylor expansion

u(x) = px + ax2 + by2 + cxy + o(x2 + y2),

where a, b, and c are given in (15.4). Show that for every ε > 0,

px+
(
− c2

ε
+a

)
x2+(b−ε)y2+o(x2+y2) ≤ u(x, y) ≤ px+

(c2

ε
+a

)
x2+(b+ε)y2+o(x2+y2).

2. Let f be a radial function defined by f(x, y) = g((x − xc)
2 + y2), where g :

R+ → R is C2 and either increasing or decreasing. Show by expanding f at (0, 0) that

f(x, y) = g(x2
c)− 2xcg

′(x2
c)x + (2x2

cg
′′(x2

c) + g′(x2
c))x

2 + g′(x2
c)y

2 + o(x2 + y2).

3. The idea is to construct f+
ε and f−ε by matching the coefficients of the expansion

of f with the coefficients of the functions px + (±(c2/ε) + a)x2 + (b± ε)y2. There are
three cases to consider: b < 0, b = 0, and b > 0. Show that in each case it is possible to
find values of xc and functions g so the functions f+

ε and f−ε satisfy the four condition.
Note that both xc and g depend on ε. Discuss the geometry for each case.

Exercise 15.14. By computing explicitly the terms ∂g(u)/∂xi, verify that Dg(u) =
g′(u)Du. Similarly, verify that D2(g(u)) = g′′(u)Du ⊗Du + g′(u)D2u by computing
the second-order terms ∂2g(u)/∂xi∂xj .
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15.6 Comments and references

Calculus and differential geometry. The differential calculus of curves and
surfaces used in this chapter can be found in many books, and no doubt most
readers are familiar with this material. Nevertheless, a few references to specific
results may be useful. As a general reference on calculus, and as a specific
reference for the implicit function theorem, we suggest the text by Courant and
John [89]. (The implicit function theorem can be found on page 221 of volume
II.) Elementary results about classical differential geometry can be found in
[324]. A statement and proof of Sard’s theorem can be found in [204].

Topology of plane sets. All of the material presented is quite straightfor-
ward, except the Jordan curve theorem. We believe that one of the best proofs
of this result is still to be found in the book by M. H. A. Newman [?]. Newman’s
treatment is elementary, it describes the problems associated with proving this
“obvious” result, and it introduces the nonspecialist to some simple combinato-
rial topology. Another interesting approach to prove the Jordan curve theorem
can be found in [?].

Level lines. An introduction to the use of level lines in computer vision can be
found in [68]. A complete discussion of the definition of level lines for BV func-
tions can be found in [17]. One can decompose an image into into its level lines
at quantized levels and conversely reconstruct the image from this topographic
map. A fast algorithm, the Fast Level Set Transform (FLST) performing these
algorithms is described in [216]. Its principle is very simple: a) perform the
bilinear interpolation, b) rule out all singular levels where saddle point occur c)
quantize the other levels, in which the level lines are finite unions of parametric
Jordan curves. The image is then parsed into a set of parametric Jordan curves.
This set is easily ordered in a tree structure, since two Jordan level curves do
not meet. Thus either one surrounds the other one or conversely. The level lines
tree is a shape parser for the image, many level lines surrounding perceptual
shapes or parts of perceptual shapes.

Curvature. It is a well-known mathematical technique to define a set im-
plicitly as the zero set of its distance function. In case the set is a curve, one
can compute its curvature at a point x by computing the curvature curv(u)(x),
where u is a signed distance function of the curve. This yields an intrinsic for-
mula for the curvature that is not dependent on a parameterization of the curve.
The same technique has been applied in recent years as a useful numerical tool.
This started with Barles report on flame propagation [37] and was extended
by Sethian [317] and by Osher and Sethian [278] in a series of papers on the
numerical simulation of the motion of a surface by its mean curvature.
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Chapter 16

The Main Curvature
Equations

The purpose of this chapter is to introduce the curvature motion PDE’s for
Jordan curves and images. Our main task is to establish a formal link between
curve evolution and image evolution. This link will be established through the
PDE formulation. The basic differential geometry used in this chapter was
thoroughly developed in Chapter 15, which must therefore be read first.

16.1 The definition of a shape and how it is rec-
ognized

Relevant information in images has been reduced to the image level sets in
Chapter 9. By Corollary 15.9, if the image is C1, the boundary of its level sets
is a finite set Jordan curves at almost every level. Thus, shape analysis can be
led back to the study of these curves which we shall call “elementary shapes”.

Definition 16.1. We call elementary shape any C1 planar Jordan curve.

The many experiments where we display level lines of digital images make
clear enough why a smoothing is necessary to restore their structure. These
experiments also show that we can in no way assimilate these level lines with
our common notion of shape as the silhouette of a physical object in full view.
Indeed, in images of a natural environment, most observed objects are partially
hidden (occluded) by other objects and often deformed by perspective. When we
observe a level line we cannot be sure that it belongs to a single object; it may be
composed of pieces of the boundaries of several objects that are occluding each
other. Shape recognition technology has therefore focused on local methods,
that is, methods that work even if a shape is not in full view or if the visible part
is distorted. As a consequence, image analysis adopts the following principle:
Shape recognition must be based on local features of the shape’s boundary, in
this case local features of the Jordan curve, and not on its global features. If
the boundary has some degree of smoothness, then these local features are based
on the derivatives of the curve, namely the tangent vector, the curvature, and

185
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so on. Many local recognition methods involve the “salient” points of a shape,
which are the points where the curvature is zero (inflection points) and points
where the curvature has a maximum or minimum (the “corners” of the shape).

16.2 Multiscale features and scale space

Computational shape recognition methods often make the following two basic
assumptions, neither of which is true in practice for the rough shape data:

• The shape is a smooth Jordan curve.

• The boundary has a small number of inflexion points and curvature extrema.
This number can be made as small as desired by smoothing.

The fact that these conditions can be obtained by properly smoothing a C1

Jordan curve was proven in 1986-87 by Gage and Hamilton [136] and Grayson
[148]. They showed that it is possible to transform a C1 Jordan curve into a
C∞ Jordan curve by using the so-called intrinsic heat equation.

For convenience, and unless it would cause ambiguity, we will not make a
distinction between a Jordan curve Γ as a subset of the plane and a function
s 7→ x(s) such that Γ = {x(s)}. As we have already done, we will speak of the
Jordan curve x. Since we will be speaking of families of Jordan curves dependent
on a parameter t > 0, we will most often denote these families by x(t, s), where
the second variable is a parameterization of the Jordan curve. Thus, x(t, s) has
three meanings: a family of Jordan curves, a family of functions that represent
these curves, and a particular point on one of these curves. The notation s will
be usually reserved to an arc-length parameter.

Definition 16.2. Let x(t), t > 0, be a family of C2 Jordan curves. We say
that x(t) satisfies the intrinsic heat equation if

∂x
∂t

= κ(x(t)). (16.1)

Theorem 16.3 (Grayson). Let x0 be a C1 Jordan curve. By using the in-
trinsic heat equation, it is possible to evolve x0 into a family of Jordan curves
x(t, s) such that x(0, s) = x0(s) and such that for every t > 0, x(t, s) is C∞

(actually analytical) and satisfies the equation (16.1). Furthermore, for every
t > 0, x(t, s) has only a finite number of inflection points and curvature extrema,
and the number of these points does not increase with t. For every initial curve,
there is a scale t0 such that the curve x(t, s) is convex for t ≥ t0 and there is a
scale t1 such that the curve x(t, s) is a single point for t ≥ t1.

It is time to say what we mean by “curve scale space”, or “shape scale space.”
We will refer to any process that smooths a Jordan curve and that depends
on a real parameter t. Thus a shape scale space associates with an initial
Jordan curve x(0, s) = x0(s) a family of smooth curves x(t, s). For example,
the intrinsic heat equation eliminates spurious details of the initial shape and
retains simpler, more reliable versions of the shape, and these smoothed shapes
have finite codes. A scale space is causal in the terminology of vision theory if it
does not introduce new features. Grayson’s theorem therefore defines a causal
scale space.
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16.3 From image motion to curve motion

The intrinsic heat equation is only one example from a large family of non-
linear equations that move curves with a curvature-dependent speed, that is,
∂x/∂t is a function of the curvature of the curve x. There are two conditions
on the curvature dependence. The velocity vector must always point towards
the concavity of the curve. Its norm must be a nondecreasing function of the
magnitude of the curvature |κ(x)|. The first condition ensures that the equa-
tion is a smoothing which reduces asperities. The second condition intuitively
preserves the inclusion between curves. This can be appreciated by considering
two circles C and C ′ such that C ′ surround C and C ′ and C are tangent at
some point x. Then the first condition implies that both circles shrink, but the
second condition implies that the smaller circle C shrinks faster, so that the
inclusion between circles is preserved by the evolution.

Definition 16.4. We say that a C2 function u : R+ × R2 → R satisfies a cur-
vature equation if for some real-valued function g(κ, t), which is nondecreasing
in κ and satisfies g(0, t) = 0,

∂u

∂t
(t,x) = g(curv(u)(t,x), t)|Du|(t,x). (16.2)

Definition 16.5. Let x(t) be a family of C2 Jordan curves. We say that the
functions x(t) satisfy a curvature equation if for some real-valued function g(κ, t)
nondecreasing in κ with g(0, t) = 0, they satisfy

∂x
∂t

= g(|κ(x)|, t)n(t), (16.3)

where n is a unit vector in the direction of κ(x).

In the preceding definition, the equation makes sense if κ(x) = 0 since then
the second member is zero. As we shall see, these equations are the only candi-
dates to be curve or image scale spaces, and one of the objectives of this book
is to identify which forms for g are particularly relevant for image analysis. The
above definitions are quite restrictive because they require the curves or images
to be C2. A more generally applicable definition of solutions for these equations
will be given in Chapter 23 with the introduction of viscosity solutions. Our
immediate objective is to establish the link between the motion of an image and
the motion of its level lines. This will establish the relation between equations
(16.2) and (16.3).
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16.3.1 A link between image and curve evolution

Lemma 16.6. (Definition of the “normal flow”). Suppose that (t,x) 7→
u(t,x) is C2 in a neighborhood T ×U of the point (t0,x0) ∈ R×R2, and assume
that Du(t0,x0) 6= 0. Then there exists an open interval J centered at t0, an
open disk V centered at x0, and a unique C1 function x : J × V → R2 that
satisfy the following properties:

(i) u(t,x(t,y)) = u(t0,y) and x(t0,y) = y for all (t,y) ∈ J × V .

(ii) The vectors (∂x/∂t)(t,y) and Du(t,x(t,y)) are collinear.

In addition, the function x satisfies the following differential equation:

∂x
∂t

(t,y) = −
( Du

|Du|2
∂u

∂t

)
(t,x(t,y)). (16.4)

The trajectory t 7→ x(t,y) is called the normal flow starting from (t0,y).

Proof. Differentiating the relation u(t,x(t)) = 0 with respect to t yields ∂u
∂t +

Du.∂x
∂t = 0. By multiplying this equation by the vector Du we see that ∂x

∂t is
collinear to Du if and only if (16.4) holds. Now, this relation defines x(t) as the
solution of an ordinary differential equation, with initial condition x(t0) = y.
Since u is C2, the second member of (16.4) appears to be a Lipschitz function of
(t,x) provided Du(t,x) 6= 0, which is ensured for (t,x) close enough to (t0,x0).
Thus, by Cauchy-Lipschitz Theorem, there exists an open interval J such that
the O.D.E. (16.4) has a unique solution x(t,y) for all y in a neighborhood of
x0 and t ∈ J . ¤
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Proposition 16.7. Assume that the function (t,x) 7→ u(t,x) is C2 in a neigh-
borhood of (t0,x0) and that Du(t0,x0) 6= 0. Then u satisfies the curvature
motion equation

∂u

∂t
(t,x) = curv(u)(t,x)|Du|(t,x) (16.5)

in a neighborhood of (t0,x0) if and only if the normal flow x(t,y) of u in this
neighborhood satisfies the intrinsic heat equation

∂x
∂t

(t,y) = κ(x(t,y)), (16.6)

where κ(x(t,y)) denotes the curvature vector of the level line of u(t) passing by
x(t,y).

Proof. Assume first that x(t,y) satisfies (16.6). Applying (15.8) for all t in a
neighborhood of t0 to each image u(t) : x → u(t,x) yields

κ(x(t,y)) = −curv(u)
Du

|Du| (t,x(t,y)).

Substituting (16.6) in this last relation we obtain

∂x
∂t

(t,y) = −curv(u)
Du

|Du| (t,x(t,y))

and by the normal flow equation (16.4),

(
∂u

∂t

Du

|Du|2 )(t,x(t,y)) = curv(u)
Du

|Du| (t,x(t,y)).

Multiplying this equation by Du(t,x(t,y)) yields the curvature motion equation
(16.5).

The converse statement follows exactly the same lines backwards. ¤

Exercise 16.1. Write the proof of the converse statement of Proposition 16.7.

The preceding proof is immediately adaptable to all curvature equations :

Proposition 16.8. Assume that the function (t,x) 7→ u(t,x) is C2 in a neigh-
borhood of (t0,x0) and that Du(t0,x0) 6= 0. Let g : R× R+ → R be continuous
and nondecreasing with respect to κ and such that g(−κ, t) = −g(κ, t). Then u
satisfies the curvature motion equation

∂u

∂t
(t,x) = g(curv(u)(t,x), t)|Du|(t,x) (16.7)

in a neighborhood of (t0,x0) if and only if the normal flow t 7→ x(t, ·) satisfies
the curvature equation

∂x
∂t

(t,y) = g(|κ(x(t,y))|) κ(x(t,y))
|κ(x(t,y))| . (16.8)
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16.3.2 Introduction to the affine curve and function equa-
tions

There are two curvature equations that are affine invariant and are therefore
particularly well suited for use in shape recognition. In their definition, for
x ∈ R, x1/3 stands for sign(x)|x|1/3.

Definition 16.9. The image evolution equation

∂u

∂t
(t,x) = (curv(u)(t,x))1/3|Du(t,x)| (16.9)

is called affine morphological scale space (AMSS). The curve evolution equation

∂x
∂t

(t, s) = |κ(x(t, s))|1/3n(t, s)
(

=
κ(x(t, s))

|κ(x(t, s))|2/3

)
(16.10)

is called affine scale space (ASS).

It is clear that AMSS and ASS are equivalent in the sense of Proposition 16.8.
As one would expect from the names of these equations, they both have some
sort of affine invariance. This is the subject of the next definition, Exercises
16.3 and 16.4 and the next section.

Definition 16.10. We say that a curvature equation (E) (image evolution equa-
tion) is affine invariant, if for every linear map A with positive determinant,
there is a positive constant c = c(A) such that (t,x) 7→ u(t,x) is a solution of
(E) if and only if (ct, Ax) 7→ u(ct, Ax) is a solution of (E).

16.3.3 The affine scale space as an intrinsic heat equation

Suppose that for each scale t, σ 7→ x(t, σ) is a Jordan arc (or curve) parame-
terized by σ, which is not in general an arc length. As in Chapter 15, we will
denote the curvature of x by κ. We wish to demonstrate a formal equivalence
between the affine scale space,

∂x
∂t

= |κ|1/3n(x), (16.11)

and an “intrinsic heat equation”

∂x
∂t

=
∂2x
∂σ2

, (16.12)

where σ is a special parameterization called affine length. We define an affine
length parameter of a Jordan curve (or arc) to be any parameterization σ 7→ x(σ)
such that

[xσ,xσσ] = 1, (16.13)

where [x,y] = x⊥ · y. If s is an arc-length parameterization, then we have
(Definition 15.4)

τ = xs n = |κ|−1xss

(
=

κ(x)
|κ(x)|

)
. (16.14)
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We also have

xσ = xs
∂s

∂σ
and xσσ = xss

( ∂s

∂σ

)2

+ xs
∂2s

∂σ2
. (16.15)

Thus,

[xσ,xσσ] = [xs,xss]
( ∂s

∂σ

)3

,

and if (16.13) holds, then

[xs,xss]
( ∂s

∂σ

)3

= 1.

Since by (16.14) [xs,xss] = sign([xs,xss])|κ|, we conclude that

∂s

∂σ
= (sign([xs,xss])|κ|)−1/3. (16.16)

Substituting this result in the expression for xσσ shown in (16.15) and writing
xs = τ , we see that

xσσ = |κ|1/3n +
( ∂2s

∂σ2

)
τ .

This tells us that equation (16.12) is equivalent to the following equation:

∂x
∂t

= |κ|1/3n +
( ∂2s

∂σ2

)
τ . (16.17)

Now it turns out that the graphs of the functions x that you get from
one time to another do not depend on the term involving τ ; you could drop
this term and get the same graphs. More precisely, Epstein and Gage [106]
have shown that the tangential component of an equation like (16.17) does not
matter as far as the geometric evolution of the curve is concerned. In fact,
the tangential term just moves points along the curve itself, and the total curve
evolution is determined by the normal term. As a consequence, equation (16.11)
is equivalent to equation (16.12) in any neighborhood that avoids an inflection
point, that is, in any neighborhood where n(x) 6= 0. At an inflection point,
κ = 0, and the two equations give the same result.

16.4 Curvature motion in N dimensions

We consider an evolution (t,x) 7→ u(t,x), where x ∈ RN and u(0, ·) = u0 is an
initial N–dimensional image. Let κi(u)(t,x), i = 1, . . . , N − 1, denote the ith

principal curvature at the point (t,x). By definition 15.20 the mean curvature is
curv(u) =

∑N−1
i=1 κi. We will now define three curvature motion flow equations

in N dimensions.

Mean curvature motion. This equation is a direct translation of equation
(16.5) in N dimensions:

∂u

∂t
= |Du|curv(u).

This says that the motion of a level hypersurface of u in the normal direction
is proportional to its mean curvature.
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Gaussian curvature motion for convex functions. We say that a function
is convex if all of its principal curvatures have the same sign. An example of
such a function is the signed distance function to a regular convex shape. The
equation is

∂u

∂t
= |Du|

N−1∏

i=1

κi.

The motion of a level hypersurface is proportional to the product of its principal
curvatures, which is the Gaussian curvature. As we will see in Chapter 26, this
must be modified before it can be applied to a nonconvex function.

Affine-invariant curvature motion. The equation is

∂u

∂t
= |Du|

∣∣∣
N−1∏

i=1

κi

∣∣∣
1/(N+1)

H
( N−1∑

i=1

sign(κi)
)
,

where H(N − 1) = 1, H(−N + 1) = −1, and H(n) = 0 otherwise. The motion
is similar to Gaussian curvature motion, but the affine invariance requires that
the Gaussian curvature be raised to the power 1/(N + 1). There is no motion
at a point where the principal curvatures have mixed signs. This means that
only concave or convex parts of level surfaces get move by such an equation.

16.5 Exercises

Exercise 16.2. Check that all of the curvature equations (16.2) are contrast invariant.
That is, assuming that h is a real-valued C2 increasing function defined on R and u
is C2, show that the function v defined by v(t,x) = h(u(t,x)) satisfies one of these
equations if and only if u satisfies the same equation.

Exercise 16.3. Assume that (t,x) 7→ u(t,x) is a C2 function and that A is a 2 × 2
matrix with positive determinant, which we denote by |A|. Define the function v by
v(t,x) = u(ct, Ax), where c = |A|−2/3.

(i) Prove that for each point x such that Du(x) 6= 0 one has the relation

curv(v)(x)|Dv(x)|3 = |A|2curv(u)(Ax)|Du(Ax)|3.

(ii) Use (i) to deduce that the AMSS equation (16.9) is affine invariant, that is,
(t,x) 7→ u(t,x) is a solution of AMSS if and only (t,x) 7→ v(t,x) does.

Exercise 16.4. This exercise is to show that the affine scale space (equation (16.10))
is affine invariant. It relies directly on results from Exercise 15.9. Let σ 7→ c(σ) be a
C2 curve, and assume that |c′(σ)| > 0. Then we know from Exercise 15.9 that

κ(c)(σ) =
1

|c′(σ)|2
[
c′′(σ)−

(
c′′(σ) · c′(σ)

|c′(σ)|

)
c′(σ)

|c′(σ)|

]
. (16.18)

Now assume that we have a family of C2 Jordan arcs (t, σ) 7→ c(t, σ). By projecting
both sides of the intrinsic heat equation onto the unit vector c′⊥/|c′| and by using
(16.18), we have the following equation:

∂c

∂t
· c

′⊥

|c′| =
c′′ · c′⊥
|c′|3 (16.19)
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We say that c satisfies a parametric curvature equation if it satisfies equation (16.19).
In the same spirit, we say that c satisfies a parametric affine equation if for some
constant γ > 0

∂c

∂t
· c′⊥ = γ(c′′ · c′⊥)1/3. (16.20)

(i) Suppose that σ = s, an arc-length parameterization of c. Show that equation
(16.19) can be written as

∂c

∂t
= κ(c) + λτ,

where λ is a real-valued function and τ is the unit tangent vector ∂c/∂s. (See
the remark following equation (16.17).)

(ii) Let A be a 2 × 2 matrix with positive determinant, and define the curve y by
y(t, σ) = Ac(t, σ). We wish to show that if c satisfies a parametric affine motion,
then so does y. As a first step, show that Ax · (Ay)⊥ = |A|x · y and hence that
A(x⊥) · (Ax)⊥ = |A||x|2 for any x,y ∈ R2.

(iii) Show that if c satisfies equation (16.20), then y satisfies

∂y

∂t
· y′⊥ = γ|A|2/3(y′′ · y′⊥)1/3.

16.6 Comments and references

Our definition of shape. The Italian mathematician Renato Caccioppoli
proposed a theory of sets whose boundaries have finite length (finite Hausdorff
measure). From his theory, it can be deduced that the boundary of a Caccioppoli
set is composed of a countable number of Jordan curves, up to a set with zero
length. This decomposition can even be made unambiguous. In other words,
the set of Jordan curves associated with a given Caccioppoli set is unique and
gives enough information to reconstruct the set [16]. This result justifies our
focus on Jordan curves as the representatives of shapes.

The role of curvature in shape analysis. After Attneave’s founding paper
[30], let us mention the thesis by G. J. Agin [5] as being one of the first refer-
ences dealing with the use of curvature for the representation and recognition
of objects in computer vision. The now-classic paper by Asada and Brady [27]
entitled “The curvature primal sketch” introduced the notion of computing a
“multiscale curvature” as a tool for object recognition. (The title is an allusion
to David Marr’s famous “raw primal sketch,” which is a set of geometric prim-
itives extracted from and representing an image.) The Asada–Brady paper led
to a long series of increasingly sophisticated attempts to represent shape from
curvature [104, 105] and to compute curvature correctly [257]. The shape recog-
nition programme we sketched in the beginning of this chapter was anticipated
in a visionary paper by Attneave [30] and has been very recently fully developed
in the works of José Luis Lisani, Pablo Musé, Frédéric Sur, Yann Gousseau and
Frédéric Cao [261], [263], [62], [63].

Curve shortening. The mathematical study of the intrinsic heat equation
(or curvature motion in two dimensions) was done is a series of brilliant papers
in differential geometry between 1983 and 1987. We repeat a few of the titles,
which indicate the progress: There was Gage [134] and Gage [135]: “Curve
shortening makes convex curves circular.” Then there was Gage and Hamilton
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[136]: “The heat equation shrinking convex plane curves.” In this paper the
authors showed that a plane convex curve became asymptotically close to a
shrinking circle. In 1987 there was the paper by Epstein and Gage [106], and,
in the same year, Grayson removed the convexity condition and finished the job
[148]: “The heat equation shrinks embedded plane curves to round points.” As
the reviewer, U. Pinkall, wrote, “This paper contains the final solution of the
long-standing curve-shortening problem for plane curves.”

The first papers that brought curve shortening (and some variations) to
image analysis were by Kimia, Tannenbaum, and Zucker [194] and by Mack-
worth and Mokhtarian [223]. Curve shortening was introduced as a way to do
a multiscale analysis of curves, which were considered as shapes extracted from
an image. In the latter paper, curve shortening was proposed as an efficient
numerical tool for multiscale shape analysis.

Affine-invariant curve shortening. Affine-invariant geometry seems to have
been founded by W. Blaschke. His three-volume work “Vorlesungen über Dif-
ferentialgeometrie” (1921–1929) contains definitions of affine length and affine
curvature. Curves with constant affine curvature are discussed in [224]. The
term “affine shortening” and the corresponding curve evolution equation were
introduced by Sapiro and Tannenbaum in [307]. Several mathematical proper-
ties were developed by the same authors in [308] and [309]. Angenent, Sapiro,
and Tannenbaum gave the first existence and uniqueness proof of affine short-
ening in [22] and prove a theorem comparable to Grayson’s theorem : they
prove that a shape eventually becomes convex and thereafter evolves towards
an ellipse before collapsing.

Mean curvature motion. In his famous paper entitled “Shapes of worn
stones,” Firey proposed a model for the natural erosion of stones on a beach
[122]. He suggested that the rate of erosion of the surface of a stone was propor-
tional to the Gaussian curvature of the surface, so that areas with high Gaussian
curvature eroded faster than areas with lower curvature, and he conjectured that
the final shape was a sphere. The first attempt at a mathematical definition
of the mean curvature motion is found in Brakke [51]. Later in the book, we
will discuss the Sethian’s clever numerical implementation of the same equation
[319]. Almgren, Taylor, Wang proposed a more general formulation of mean
curvature motion that is applicable to crystal growth and, in general, to the
evolution of anisotropic solids [6].
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Chapter 17

Finite Difference Schemes
for Curvature Motions

We shall consider the classical discrete representation of an image u on a grid
ui,j = u(i, j), with 1 ≤ i ≤ N , 1 ≤ j ≤ N . The image is the union of the
squares centered at the points (i, j).

17.1 Case of Mean curvature motion.

We start with the “Mean curvature motion” equation (M.C.M.) given by

∂u

∂t
= |Du|curv(u) =

u2
yuxx − 2uxuyuxy + u2

xuyy

u2
x + u2

y

In order to discretize this equation by finite differences we shall introduce
an explicit scheme which uses a fixed 3 × 3 stencil to discretize the differential
operators. We denote by ∆x = ∆y the pixel width. From the PDE viewpoint
∆x is considered as an infinitesimal length with respect to the image scale. Thus
we shall write formulas containing o(∆x). Numerically ∆x is equal to 1, and the
image scale ranges from 512 to 4096 and more. By the order 1 Taylor formula
one can give the following discrete versions of the first derivatives ux and uy at
a point (i, j) of the grid:

(ux)i,j =
2(ui+1,j − ui−1,j) + ui+1,j+1 − ui−1,j+1 + ui+1,j−1 − ui−1,j−1

8∆x
+O(∆x2);

(uy)i,j =
2(ui,j+1 − ui,j−1) + ui+1,j+1 − ui+1,j−1 + ui−1,j+1 − ui−1,j−1

8∆x
+O(∆x2);

|Dui,j | = ((ux)2i,j + (uy)2i,j)
1
2 .

Definition 17.1. A discrete scheme approximating a differential operator is
said to be consistent if, when the grid mesh ∆x tends to zero, the discrete scheme
tends to the differential operator.

195
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λ4

λ1

λ3

λ2

λ4

λ3

λ1

λ2

λ0−4

Figure 17.1: A 3× 3 stencil

Clearly the above discrete versions of the partial derivatives and of the gra-
dient of u are consistent. When |Du| 6= 0, we can denote by ξ the direction
orthogonal to the gradient of u. It is easily deduced from Definition 15.14 that

|Du|curv(u) = uξξ.

Exercise 17.1. Show this formula.

Defining θ as the angle between the x direction and the gradient, we have

ξ = (− sin θ, cos θ) = (
−uy√
u2

x + u2
y

,
ux√

u2
x + u2

y

), and

uξξ = sin2(θ)uxx − 2 sin(θ) cos(θ)uxy + cos2(θ)uyy. (17.1)

We would like to write uξξ as a linear combination of the values of u on the fixed
3×3 stencil. Of course, the coefficients of the linear combination will depend on
ξ. Since the direction of ξ is defined modulo π, we must assume by symmetry
that the coefficients of points symmetrical with respect to the central point of
the stencil are equal (see Figure 17.1.)

In order to ensure consistency with the differential operator uξξ, we must
find λ0, λ1, λ2, λ3, λ4, such that

(uξξ)i,j =
1

∆x2
(−4λ0ui,j + λ1(ui+1,j + ui−1,j) + λ2(ui,j+1 + ui,j−1)

+λ3(ui−1,j−1 + ui+1,j+1) + λ4(ui−1,j+1 + ui+1,j−1)) + ε(∆x). (17.2)

We write

ui+1,j = ui,j + ∆x(ux)i,j +
∆x2

2
(uxx)i,j + o((∆x)3),

and the corresponding relations for the other points of the stencil. By substitut-
ing these relations into (17.2) and by using (17.1) one obtains four links between
the five coefficients, namely





λ1(θ) = 2λ0(θ)− cos2 θ
λ2(θ) = 2λ0(θ)− sin2 θ
λ3(θ) = −λ0(θ) + 0.5(− sin θ cos θ + 1)
λ4(θ) = −λ0(θ) + 0.5(sin θ cos θ + 1)

(17.3)
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Exercise 17.2. Prove these four relations.

Thus, one degree of freedom is left for our coefficients : we can for example
choose λ0(θ) as we wish. This choice will be driven by stability and geometric in-
variance requirements. Denoting by un

i,j an approximation of u(i∆x, j∆x, n∆t)
we can write our explicit scheme as

un+1
i,j = un

i,j + ∆t(un
ξξ)i,j (17.4)

Notice that this scheme can be rewritten as un+1
i,j =

∑1
k,l=−1 αk,lu

n
i+k,j+l where

the αk,l satisfy
∑1

k,l=−1 αk,l = 1. The following obvious lemma shows a general
condition to have L∞ stability in this kind of scheme.

Lemma 17.2. Let a finite difference scheme given by

T (u)i,j =
1∑

k,l=−1

αk,lui+k,j+l

where αk,l satisfy
∑1

k,l=−1 αk,l = 1. We say that the scheme is L∞-stable if for
all i, j,

min
i,j

u(i, j) ≤ T (u)i,j ≤ max
i,j

u(i, j).

Then the scheme is L∞ stable if and only if αk,l ≥ 0 for any k, l.

Proof. If αk,l ≥ 0 for any k, l, set min = infi,j{ui,j}, max = supi,j{ui,j} and
take a point (i, j). Then the L∞ stability follows from the inequality:

min =
1∑

k,l=−1

αk,lmin ≤
1∑

k,l=−1

αk,lui+k,j+l = (Tu)i,j ≤
1∑

k,l=−1

αk,lmax = max

On the other hand, if there exists αk0,l0 < 0 then choosing u and (i, j) such that
ui+k0,j+l0 = min and ui+k,j+l = max for any other k, l, we obtain

(Tu)i,j =
1∑

k 6=k0,l 6=l0

αk,lmax + αk0,l0min = max + αk0,l0(min−max) > max,

which means that the L∞ stability is violated.
¤

Following this lemma, in order to guarantee the L∞ stability in the scheme
(17.4) we should look for λ0 such that λ1, λ2, λ3, λ4 ≥ 0 and (1 − 4λ0

∆x2 ) ≥ 0.
Unfortunately the links between these coefficients make it impossible to obtain
these relations, except for the particular values of θ = (0, π

4 , π
2 , ...). Indeed, for

θ in [0, π
4 ],

λ1 ≥ λ2 and λ3 ≥ λ4

But

λ2(θ) ≥ 0 ⇒ λ0(θ) ≥ cos2(θ)
2

λ4(θ) ≥ 0 ⇒ λ0(θ) ≤ 1− sin(θ) cos(θ)
2
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0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

λ0(θ)

θ

Search of the optimal λ0

0.5− cos2(θ) + cos4(θ)
cos2(θ)/2

(1− sin(θ) cos(θ))/2

Figure 17.2: The middle curve represents the choice of the function λ0 of For-
mula 17.6. The upper function represents the smallest possibility for λ0(θ)
securing λ2 ≥ 0 for all angles and the lower one represents the largest values
of λ0(θ) securing λ4(θ) ≥ 0. Thus, it is not possible to satisfy simultaneously
both conditions. The intermediate curve is the simplest trigonometric function
which lies between these two bounds.

We cannot find λ0(θ) satisfying both inequalities, since

cos2(θ)
2

≥ 1− sin(θ) cos(θ)
2

If we chose λ0(θ) ≥ cos2(θ)
2 , λ4(θ) would be significantly below zero. If we took

λ0(θ) ≤ 1−sin(θ) cos(θ)
2 , λ2(θ) would be significantly below zero. Thus we shall

choose λ0 somewhere between both functions, so that λ2 and λ4 become only
slightly negative. (see Figure 17.2.)

In addition, we can try to impose on λ0 the following geometrical require-
ments

(i). Invariance by rotation of angle π
2

λ0(θ +
π

2
) = λ0(θ)

(ii). Purely one-dimensional diffusion in the case θ = 0, π
2 , ...

λ0(0) = 0.5

This condition implies that λ2(0) = λ3(0) = λ4(0) = 0
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(iii). Pure one-dimensional diffusion in the case θ = π
4 , 3π

4 , ...

λ0(
π

4
) = 0.25

This condition implies that λ1(π
4 ) = λ2(π

4 ) = λ4(π
4 ) = 0

(iv). Symmetry with respect to the axes i+j and i-j,

λ0(
π

2
− θ) = λ0(θ)

We remark that by the above conditions it is enough to define the function λ0(θ)
in the interval [0, π

4 ] because it can be extended by periodicity elsewhere.
Two choices for the function λ0(θ) using as basis the trigonometric poly-

nomials were tested. The first one corresponds to an average of the boundary
functions:

λ0(θ) =
cos2(θ) + 1− sin(θ)cos(θ)

4
(17.5)

As we shall see this choice is well-adapted to the “affine curvature motion”
equation. However, if we extend this function by periodicity, the extended
function is not smooth at π

4 . If we seek for a smooth function for λ0(θ), we must
impose λ′0(0) = λ′0(

π
4 ) = 0. The trigonometric polynomial with least degree

satisfying the above conditions and lying between both boundary functions is

λ0(θ)) = 0.5− cos2(θ) sin2(θ) (17.6)

The formulas of the other λi’s are deduced using (17.3). For instance with the
above choice of λ0(θ) we have





λ1(θ) = cos2(θ)(cos2(θ)− sin2(θ));
λ2(θ) = sin2(θ)(sin2(θ)− cos2(θ));
λ3(θ) = cos2(θ) sin2(θ) + 0.5 sin(θ) cos(θ);
λ4(θ) = cos2(θ) sin2(θ)− 0.5 sin(θ) cos(θ).

When |Du| = 0, the direction of the gradient is unknown. Therefore the
diffusion term uξξ is not defined. We chose to replace this term by half the
Laplacian. (The Laplacian is equal to the sum of the two second derivatives in
orthogonal directions, whereas the diffusion term uξξ is the second derivative
in just one). However, other possibilities will be considered in Section 17.6.
Summarizing, a consistent, almost L∞ stable finite difference scheme for the
mean curvature motion is (iterations start with u0 as initial function)

1. If |Du| ≥ Tg

un+1 = un +
∆t

∆x2
(−4λ0ui,j + λ1(ui+1,j + ui−1,j) + λ2(ui,j+1 + ui,j−1)

+λ3(ui−1,j−1 + ui+1,j+1) + λ4(ui−1,j+1 + ui+1,j−1)).
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2. Otherwise,

un+1 = un +
1
2

∆t

∆x2
(−4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

Two parameters have to be fixed in the previous algorithm:

• The iteration step scale s := ∆t
∆x2 has to be chosen as large as possible in

order to reduce the number of iterations. However, 1/2 is a natural upper bound
for s. Indeed, consider the discrete image defined by u0

i,j = 0 for all i, j, except
for i = j = 0 where u0

0,0 = 1. Then the second formula yields u1
0,0 = 1 − 2 ∗ s.

If we want L∞ stability to be ensured we must have u1(0, 0) ≥ 0, which yields
s ≤ 1/2. Imposing this condition

∆t

∆x2
≤ 1

2
(17.7)

it is an experimental observation that there is a (small with respect to 255)
ε > 0 such that for any n ∈ IN and (i, j),

−ε + inf
i,j
{u0

i,j} ≤ un
i,j ≤ sup

i,j
{u0

i,j}+ ε.

• The threshold on the spatial gradient norm : Tg has been fixed ex-
perimentally to 6 for 0 to 255 images.

Figure 17.3: Curvature motion finite difference scheme and scale calibration.
Image filtered by curvature motion at scales 1, 2, 3, 4, 5. In order to give
a sound numerical meaning to the scale, a calibration of the numerical scales
(number of iterations) is made in such a way that a disk with radius t shrinks
to a point at scale t.

17.2 FDS for AMSS

We will use the ideas developed in the above section. We rewrite the AMSS
equation as
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Figure 17.4: Curvature motion finite difference scheme applied on each level set
separately, at scales 1, 2, 3, 4, 5. The processed image is then reconstructed by
the threshold superposition principle. In contrast with the same scheme directly
applied on the image, this scheme yields a fully contrast invariant smoothing.
However, a comparison with Figure 17.3 shows that the resulting images are
very close to each other. This shows that the contrast invariance is almost
achieved when applying the finite difference scheme directly on a good quality
image. As we shall see in Figure 17.6, if the initial image is noisy, the difference
between both methods can be huge.

Figure 17.5: Iterated median filter with normalized scales 1, 2, 3, 4, 5. The scale
normalization permits to compare very different schemes on the same images.
Compare with Figure 17.4. The striking similarity of the results anticipates The-
orem 18.7, according to which the application of the median filter is equivalent
to a mean curvature motion.

∂u

∂t
= (|Du|3curv(u))

1
3 = (u2

yuxx − 2uxuyuxy + u2
xuyy)

1
3 (17.8)
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We remark that |Du|3curv(u) = |Du|2uξξ where ξ corresponds to the direction
orthogonal to the gradient. Therefore, in order to discretize this operator, it is
enough to multiply the discretization of uξξ presented in the above section by
|Du|2. We choose λ0(θ) given by (17.5) because it corresponds to a trigonometric
polynomial of degree two and then multiplying it by |Du|2 the coefficients ηi =
|Du|2λi, i = 0, 1, 2, 3, 4, are polynomials of degree two with respect to ux and
uy. Indeed, we obtain for θ ∈ [0, π

4 ]

(|Du|2uξξ)i,j =
1

∆x2
(−4η0ui,j + η1(ui+1,j + ui−1,j) + η2(ui,j+1 + ui,j−1)

+η3(ui−1,j−1 + ui+1,j+1) + η4(ui−1,j+1 + ui+1,j−1)) + O(∆x2)

where η0, η1, η2, η3, η4 are given by





η0 = 0.25(2u2
x + u2

y − uxuy)
η1 = 0.5(2u2

x − u2
y − uxuy)

η2 = 0.5(u2
y − uxuy)

η3 = 0.25(u2
y + 3uxuy)

η4 = 0.25(u2
y − uxuy)

Finally, the finite difference scheme for the A.M.S.S. equation is

un+1
i,j = un

i,j + ∆t(|Dun|2un
ξξ)

1
3
i,j (17.9)

We have tested this algorithm and we have noticed that in this case the condition
for the experimental stability (in the sense presented in the above subsection)
is

∆t

∆x2
≤ 1

10
.

Remark. The finite difference schemes presented above are consistent. Con-
trast invariance can only be obtained asymptotically by taking a very small time
step ∆t. The experimental results presented in Figures 17.3 and ?? have been
obtained by using these schemes with ∆t = 0.1 in the case of mean curvature
motion and ∆t = 0.01 in the case of affine curvature motion. Indeed, while
experimental stability is achieved with ∆t ≤ 0.1, the experimental affine inva-
riance needs ∆t < 0.05 (see Figure ??.)

17.3 IL MANQUE UNE EXPERIENCE AMSS
SUR L’INVARIANCE AFFINE!

17.4 Numerical normalization of scale.

(or Relation between scale and the number of iterations).
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The case of the curvature motion. Setting the distance between pixels
∆x to 1, the scale achieved with N iterations is simply N × ∆t. Now, the
scale t associated with the PDE is somewhat arbitrary : It has no geometric
meaning. In order to get it, we need a rescaling T → t(T ) which we will call
scale normalization.

A good way to perform this scale normalization is to define the correspon-
dence t(T ) as the time for which a circle with initial radius T vanishes under
curvature motion. Such a circle moves at a speed equal to its curvature, which
is the inverse of its radius. Thus have for a disk with radius R(t)

dR(t)
dt

= − 1
R(t)

which yields
1
2
(R2(0)−R2(t)) = t.

Exercise 17.3. Check this relation!

The disk disappears when R(t) = 0, that is, at scale T = R2(0)/2. This last
relation gives a scale normalization: In order to arrive at the normalized scale
T (at which any disk with radius less or equal to T vanishes), we have to evolve
the PDE at t = N∆t = T 2/2. This fixes the number of needed iterations as

N = T 2/2∆t.

The case of AMSS We can perform similar calculations. The radius of an
evolving disk satisfies

dR(t)
dt

= − 1
R(t)

1
3

which yields
3
4
(R

4
3 (0)−R

4
3 (t)) = t

The disappearance time is therefore t = 3
4R

4
3 . As for the curvature motion, we

define the normalized scale T as the one at which a disk with radius T vanishes.
In order to achieve this scale T , the needed number of iterations is

N =
3

4∆t
T

4
3 .

Exercise 17.4. Check the last two formulas!

17.5 Contrast invariance and the level set ex-
tension

Both schemes (M.C.M and A.M.S.S) presented above are not numerically con-
trast invariant. We have seen that a contrast operator cannot create new gray
levels (Exercise 11.22.) Now, starting with a binary image u0 and applying a
scheme defined by such a formula as

un+1 = un + ∆t(...)
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does not ensure that un+1 will be also a binary image.
A natural idea to overcome this problem is the following. Starting with a

binary image (with values 0 and 1): apply the scheme until the expected scale
is achieved, then threshold the obtained image at λ = 1

2 . This of course works
only for binary images. However, the level set extension (see Section 11.3) gives
us the key to extend this to general images.

The contrast invariance can be fully obtained by first applying the finite
difference scheme on each level set (considered as a binary image) separately.
Then by the superposition principle the evolved image is computed from the
evolved level sets. The procedure is the following :

Algorithm starting with an image u0 and evolving it to u(t,x) by
curvature motion

For each λ ∈ [0, 255], in increasing order:

• Let vλ(x) be the characteristic function of Xλu0. (This function is
equal to 1 inside the level set and to 0 outside.)

• Apply to vλ the MCM or AMSS FDS-scheme until scale t. This
yields the images wλ(t, .).

• Set u(t,x) = λ at each point (t,x) where wλ(t,x) ≥ 0.5.

17.6 Problems at extrema

For MCM and AMSS we raised the question of performing numerically the
equation when |Du| = 0. For MCM the right hand part of the equation is simply

not defined. For AMSS one can set by continuity as Du → 0, (|Dun|2un
ξξ)

1
3
i,j = 0.

Now, numerically, this would imply that isolated black or white extrema will
not evolve by the equation. We know that this is simply wrong, since small sets
collapse by curvature motion.

In short, FDS for MCM and AMSS are not consistent with the equation
at extrema. In Figure 17.6, we added to an image a strong “salt and pepper”
noise. More than one fourth of the pixels have been given a uniform random
value in [0, 255] and most of them have become local extrema. Not only these
values do not evolve but they contaminate their neighboring pixels. There are
easy ways to avoid this spurious effect :

• One can first zoom by 2 the image by duplicating pixels. This, however,
multiplies by 16 the number of computations.

• One can first remove pixels extrema with diameter k since they must
anyway disappear by the equation at normalized scale k

2 .

• One can use the level set method. This multiplies the number of compu-
tations by the initial number of gray-levels.

All of these solutions are efficient, as shown in Figure 17.6.
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Figure 17.6: Various implementations of curvature motion on a noisy image.
Top left : image with 40% pixels replaced by a uniform random value in [0, 255].
Top right: application of the finite difference scheme (FDS) at normalized scale
3. On the lines 2 to 4, we see various solutions to the disastrous diffusion of
extrema. On the left the image is processed at normalized scale 1 and on the
right at normalized scale 3. Second line: FDS applied on the image previously
zoomed by a factor 2; third line: FDS applied on the image after its extrema
have been ”killed” (the reference area is given by the area of the disk vanishing
at the desired scale). Fourth line: FDS applied separately on each level set and
application of the threshold superposition principle. The third scheme offers a
good speed-quality compromise.
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17.7 Conclusion

We have seen that standard finite difference schemes are easy to implement but
cannot handle properly the invariance properties satisfied by the equations.

1. There is no finite difference scheme that insures the monotonicity. This
leads to slightly oscilatory solutions.

2. No full contrast invariance. For instance FDS create new grey levels and
blur edges. Also, a spurious diffusion occurs around the image extrema.
However this last problem was dealt with efficiently in the previous section.
The full contrast invariance has been restored by the level set extension
of the numerical schemes.

3. The worst drawback of FDS is the lack of Euclidean or affine invariance
which can be only approximately obtained by grid local schemes. A much
more clever strategy to achieve full invariance is to evolve all level curves
of the image and the reconstruct it. This is the aim of Section 20.4, but
we have already seen in Chapter 5 how to evolve curves by curvature.

17.8 Comments and references

Difference schemes for the curvature motion and the AMSS The pre-
sented difference scheme follows mainly [150], improved in Alvarez et al. [15].
This scheme is somehow optimal among the rotationally invariant numerical
schemes for curvature motion and the AMSS. Now, this presentation is specific
of those two motions, while other many authors have analysed more general
nonlinear anisotropic diffusions in image processing, namely Acton [2], Kacur
and Mikula [185, 186]. Weickert and the Ütrecht school [269, 348, 1, 354] ad-
dress many aspects of implementation of nonlinear scale spaces, namely speed,
parallelism and robustness. Crandall and Lions [93] also proposed a finite dif-
ference scheme for mean curvature motion, valid in any dimension. Sethian’s
book [318] explains how to implement fast the motion of a curve or surface by
the so called ”level set method”, where a distance function to the curve or sur-
face is evolved. Dynamic programming allows a fast implementation (the ”fast
marching method”).
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Chapter 18

Asymptotic Behavior of
Morpho Operators,
Dimension Two

As we know by Theorem 12.15, a function operator on F is contrast and trans-
lation invariant and standard monotone if and only if it has a sup-inf, or equiv-
alently an inf-sup form

Tu(x) = inf
B∈B

sup
y∈x+B

u(y),

where B is a standard subset of L. In case we require such operators to be
isotropic and local, it is enough to take for B any set of sets invariant by rotation
and contained in some B(0,M) by Proposition 12.11.

We will see, however, that such operators fall into a few classes when we
make them more and more local. To see this, we introduce a scale parameter
0 < h ≤ 1 and define the scaled operators Th by

Thu(x) = inf
B∈B

sup
y∈x+hB

u(y).

We will prove that in the limit, as h tends to zero, the action of Th on smooth
functions is not as varied as one might expect given the possible sets of struc-
turing elements. As an example, we will show that if Th is a scaled median
operator, then

Thu(x)− u(x) = h2C|Du(x)|curv(u)(x) + o(h2),

where the constant C depends only on the function k used to define the median
operator. Thus, the operator |Du|curv(u) plays the same role for the weighted
median filters, as the Laplacian ∆u does for linear operators. In short, we shall
get contrast invariant analogues of Theorem 2.2.

18.1 Asymptotic behavior theorem in R2

A simple real function will describe the asymptotic behavior of any local contrast
invariant filter.

207
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Definition 18.1. Let T be a Morpho local operator. Consider the real function
H(s), s ∈ R,

H(s) = T [x + sy2](0), (18.1)

where T [x+ sy2] denotes “Tu with u(x, y) = x+ sy2.” H is called the structure
function of T .

Notice that u(x, y) = x + sy2 is not in F , so we use here the extension
described in the introduction. The function H(s) is well defined by the result
of Exercise 12.14.

Proposition 18.2. The structure function of a local Morpho operator is non-
decreasing, Lipschitz, and satisfies for h > 0,

Th[x + sy2](0) = hT [x + hsy2](0) = hH(hs), (18.2)

Th[x](0) = hT [x](0) = hH(0) (18.3)

Proof. Take T in the inf-sup form with B ⊂ B(0, M), 0 ≤ M < 1.
Since T is monotone, H is a nondecreasing function. Let B ∈ B be one of the

structuring elements that define T and write x + s1y
2 = x + s2y

2 + (s1 − s2)y2.
Then

sup
(x,y)∈B

(x + s1y
2) ≤ sup

(x,y)∈B

(x + s2y
2) + |s2 − s1|M2,

since B is contained in D(0, M). By taking the infimum over B ∈ B of both
sides and using the definition of H, we see that

H(s1)−H(s2) ≤ |s1 − s2|M2.

By interchanging s1 and s2 in this last inequality, we deduce the Lipschitz
relation

|H(s1)−H(s2)| ≤ |s1 − s2|M2. (18.4)

¤

Theorem 18.3. Let T be a local Morpho operator and Th, 1 ≥ h > 0 its scaled
versions. Call H its structure function. Then, for any C2 function u : R2 → R,

Thu(x)− u(x) = hH(0)|Du(x)|+ o(h2).

Proof. By Propositions 12.9, 12.11 and 12.13, we can take T in the inf-sup form
and assume, for all B in B, that B ⊂ B(0,M) and that B is invariant under
rotations. Set p = |Du(x)|. By a suitable rotation, and since T is isotropic, we
may assume that Du(x) = (|Du(x)|, 0), and the first-order Taylor expansion of
u in a neighborhood of x can be written as

u(x + y) = u(x) + px + O(x, |y|2), (18.5)

where y = (x, y) and |O(x, |y|2)| ≤ C|y|2 for y ∈ D(0,M). Hence,

u(x + hy)− u(x) ≤ phx + Ch2|y|2 and phx ≤ u(x + hy)− u(x) + Ch2|y|2
(18.6)
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Figure 18.1: The result of smoothing with an erosion is independent of the
curvature of the level lines. Left: image of a simple shape. Right: difference
of this image and its eroded image. Note that the width of the difference is
constant. By Theorem 18.3, all filters such that H(0) 6= 0 perform such an
erosion, or a dilation.

for all y ∈ D(0,M). Since hB ⊂ D(0, hM), we see from the first inequality of
(18.6) that

sup
y∈B

u(x + hy)− u(x) ≤ sup
y∈B

[phx] + sup
y∈B

Ch2|y|2 = hp sup
y∈B

[x] + CM2h2.

This implies that

Thu(x)− u(x) ≤ hp inf
B∈B

sup
y∈B

[x] + CM2h2

for 0 < h ≤ 1, and since infB∈B supy∈B [x] = T [x](0) = H(0), we see that

Thu(x)− u(x) ≤ hpH(0) + CM2h2.

The same argument applied to the second inequality of (18.6) shows that

hpH(0) ≤ Thu(x)− u(x) + CM2h2,

so |Thu(x)− u(x)− hpH(0)| ≤ CM2h2. Since p = |Du(x)|, we see that

Thu(x)− u(x) = hH(0)|Du(x)|+ O(x, h2),

which proves the result in case p 6= 0. ¤
Interpretation. Theorem 18.3 tells us that the behavior of local contrast
invariant operators Th depends, for small h, completely on the action of T on
the test function u(x, y) = x. Assume H(0) = H(0) 6= 0. When h → 0, T acts
like a dilation by a disk D(0, h) if H(0) > 0 and like an erosion with D(0, h)
if H(0) < 0 (see Proposition 13.6). Thus, if H(0) 6= 0, there is no need to
define T with a complicated set of structuring elements. Asymptotically these
operators are either dilations or erosions, and these can be defined with a single
structuring element, namely, a disk. Exercise 18.4 gives the more general PDE
obtained when T is local but not isotropic.
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18.1.1 The asymptotic behavior of Th when T [x](0) = 0

If H(0) = T [x](0) = 0, then Theorem 18.3 is true but not very interesting. On
the other hand, operators for which T [x](0) = 0 are interesting. If we consider
Tu(x) to be a kind of average of the values of u in a neighborhood of x, then
assuming that T [x](0) = 0 makes sense. This means, however, that we must
consider the next term in the expansion of Thu; to do so we need to assume that
u is C3. This is the content of the next theorem, which is the main theoretical
result of the chapter. The proof is more involved than that of Theorem 18.3,
but at the macro level, they are similar. We start with some precise Taylor
expansion of u.

Lemma 18.4. Let u(y) be C3 around some point x ∈ R2. By using adequate
Euclidean coordinates y = (x, y), we can expand u in a neighborhood of x as

u(x + hy) = u(x) + h(px + ahx2 + bhy2 + chxy) + R(x, hy), (18.7)

where |R(x, hy)| ≤ Ch3 for all x ∈ K, y ∈ D(0,M) and 0 ≤ h ≤ 1.

Proof. Set p = |Du(x)|. We define the local coordinate system by taking x as
origin and Du(x) = (p, 0). Relation (18.7) is nothing but a Taylor expansion
where R can be written as

R(x, hy) =

( ∫ 1

0

(1− t)2D3u(x + thy) dt

)
h3y(3).

The announced estimate follows because the function x 7→ ‖D3u(x)‖ is contin-
uous and thus bounded on the compact set K + D(0,M). ¤

Theorem 18.5. Let T be a local Morpho operator on F whose structure func-
tion H satisfies H(0) = 0. Then for every C3 function u on R2,

(i) On every compact set K ⊂ {x | Du(x) 6= 0},

Thu(x)− u(x) = h|Du(x)|H
(1

2
h curv(u)(x)

)
+ O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant CK that depends only on u
and K.

(ii) On every compact set K in R2,

|Thu(x)− u(x)| ≤ C ′Kh2

where the constant C ′K depends only on u and K.

Proof. We take T in the inf-sup form and B bounded by D(0,M) and isotropic.
Let us use the Taylor expansion (18.7). For 0 < h ≤ 1,

u(x + hy) = u(x) + h(px + ahx2 + bhy2 + chxy) + R(x, hy),
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and so for any B ∈ B,

sup
y∈B

u(x + hy) ≤ u(x) + h sup
y∈B

[uh(x, y)] + sup
y∈B

|R(x, hy)|.

Thus,
Thu(x) ≤ u(x) + hT [uh(x, y)](0) + inf

B∈B
sup
y∈B

|R(x, hy)|, (18.8)

where uh(x, y) = px + ahx2 + bhy2 + chxy and y = (x, y). Now let K be an
arbitrary compact set. From Lemma 18.4 we deduce that

Thu(x) ≤ u(x) + hT [uh(x, y)](0) + Ch3 (18.9)

for all x ∈ K. The same analysis shows that

u(x) ≤ Thu(x) + hT [uh(x, y)](0) + Ch3, (18.10)

and we conclude that

Thu(x)− u(x) = hT [uh(x, y)](0) + O(x, h3) (18.11)

for all x ∈ K where |O(x, h3)| ≤ CKh3. Relation (18.11) reduces the proof to
an analysis of Tuh(0).

Step 1: Estimating Tuh(0). If x ∈ K and y = (x, y) ∈ B, then |y| ≤ M and

px− h(|a|+ |b|+ |c|)M2 ≤ uh(x, y) ≤ px + h(|a|+ |b|+ |c|)M2.

We write this as

px− hM2

2
‖D2u(x)‖ ≤ uh(x, y) ≤ px +

hM2

2
‖D2u(x)‖.

By assumption T [x](0) = 0 (hence T [px](0) = 0), so after applying T to the
inequalities, we see that

|T [uh(x, y)](0)| ≤ hM2

2
‖D2u(x)‖. (18.12)

This and equation (18.11) show that

|Thu(x)− u(x)| ≤ h2M2

2
‖D2u(x)‖+ CKh3 (18.13)

for x ∈ K and 0 < h ≤ 1. This proves part (ii). Let us now prove (i). We
just recall the meaning of p and b, namely b = (1/2)curv(u)(x)|Du(x)| and
p = |Du(x)|. Those terms are the only terms appearing in the main announced
result (i). So the proof of (i) consists of getting rid of a and c in the asymptotic
expansion (Tuh)(0). This elimination is performed in Steps 2 and 3.

Step 2: First reduction. We now focus on proving (i), and for this we assume
that p = |Du(x)| 6= 0. Define C = (|a| + |b| + |c|)M2. By Step 1, for every
B ∈ B, we see that

sup
y∈B

uh(x, y) ≥ inf
B∈B

sup
y∈B

uh(x, y) = T [uh(x, y)](0) ≥ −Ch.
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If y = (x, y) ∈ B and x < −2Ch/p, then

uh(x, y) = px + ahx2 + bhy2 + chxy < −2Ch + h(|a|+ |b|+ |c|)M2 = −Ch.

Thus, if we let C ′ = 2C/p, then for any B ∈ B we have

sup
y∈B

uh(x, y) = sup
y∈B∩{(x,y)|x≥−C′h}

uh(x, y)

Step 3: Second reduction. Since T [uh(x, y)](0) ≤ Ch (Step 1), it is not nec-
essary to consider sets B for which supy∈B uh(x, y) ≥ Ch. If supy∈B uh(x, y) ≤
Ch, then for all (x, y) ∈ B

px + ahx2 + bhy2 + chxy ≤ Ch,

and hence
x ≤ 1

p
(Ch + (|a|+ |b|+ |c|)M2h) ≤ 2Ch

p
= C ′h.

This means that we can write

T [uh(x, y)](0) = inf
B∈B,B⊂{(x,y)|x≤C′h}

sup
y∈B

uh(x, y), (18.14)

and by the result of Step 2,

T [uh(x, y)](0) = inf
B∈B,B⊂{(x,y)|x≤C′h}

sup
y∈B∩{(x,y)|x≥−C′h}

uh(x, y). (18.15)

This relation is true if we replace uh(x, y) with px + bhy2 and leads directly to
the inequality

T [uh(x, y)](0) ≤ T [px + bhy2](0)
+ h inf

B∈B,B⊂{(x,y)|x≤C′h}
sup

y∈B∩{(x,y)|x≥−C′h}
|ax2 + cxy|

and, by interchanging uh(x, y) and px + bhy2, to the equation

T [uh(x, y)](0) = T [px + bhy2](0) + ε(x, y). (18.16)

The error term is
|ε(x, y)| ≤ h3|a|C ′2 + h2|c|C ′M.

Step 4: Conclusion. We now return to equation (18.11),

Thu(x)− u(x) = hT [uh(x, y)](0) + O(x, h3),

and replace T [uh(x, y)](0) with T [px + bhy2](0) + ε(x, y) to obtain

Thu(x)− u(x) = hT [px + bhy2](0) + hε(x, y) + O(x, h3).

By definition H(s) = T [x + sy2](0), so the last equation can be written as

Thu(x)− u(x) = hpH(bh/p) + hε(x, y) + O(x, h3),
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or, by replacing p and b with |Du(x)| and (1/2)curv(u)(x)|Du(x)|, as

Thu(x)− u(x) = h|Du(x)|H
(
h

1
2
curv(u)(x)

)
+ hε(x, y) + O(x, h3). (18.17)

To finish the proof, we must examine the error term ε to establish a uni-
form bound on compact sets where Du(x) 6= 0. Thus, let K be any compact
subset of R2 such that K ⊂ {x | Du(x) 6= 0}. For y ∈ D(0,M) (hence
for y ∈ B ∈ B ∈ B), we have |ε(x, y)| ≤ h3|a|C ′2 + h2|c||C ′|M . Now,
|a|C ′2 + |c||C ′|M is a continuous function of Du(x) and D2u(x) at each point
x where Du(x) 6= 0. Since u is C3, all of the functions on the right-hand side
of this relation are continuous on K. Thus there is a constant C ′K that depends
only on u and K such that |ε(x, y)| ≤ h2C ′K . By combining and renaming the
constants CK and C ′K , this completes the proof of (i). ¤

Exercise 18.1. Returning to the meaning in the preceding proof of a, b, c, p and C′

in term of derivatives of u, check that |a|C′2 + |c||C′|M is, as announced, a continuous
function at each point where Du(x) 6= 0.

18.2 Median filters and curvature motion in R2

Recall that the median filter, Medk, defined in Chapter 14 can be written by
Proposition 14.6 as

Medku(x) = sup
B∈B

inf
y∈x+B

u(y), (18.18)

where B = {B ∈ M | |B|k = 1/2}. The first example we examine is k =
1D(0,1)/π. This function is not separable in the sense of Definition 14.7. So, by
Proposition 14.8, Medku = Med−k u and the median also has the inf-sup form

Medku(x) = inf
B∈B

sup
y∈x+B

u(y). (18.19)

From Proposition 12.11 follows that the set of structuring elements B′ = {B ∈
B | B ⊂ D(0, 1)} generates the same median filter. Thus we assume in what
follows that B ⊂ D(0, 1). There is one more point that needs to be clarified,
and we relegate it to the next exercise.
Exercise 18.2. The scaled median filter (Medk)h, h < 1, is defined by

(Medk)hu(x) = inf
B∈hB

sup
y∈x+B

u(y). (18.20)

At first glance, it is not clear that this is a median filter, but, in fact, it is: Show that
(Medk)h = Medkh , where kh = 1D(0,h)/πh2.

The actions of median filters and comparisons of these filters with other sim-
ple filters are illustrated in Figures 18.1, 18.2, 18.4, 18.5, and 18.6. Everything
is now in place to investigate the asymptotic behavior of the scaled median filter
Medkh

, which is represented by

Medkh
u(x) = inf

B∈hB
sup

y∈x+B
u(y),

where hB = {B | |B|kh
= 1/2, B ⊂ D(0, h)}. The main result of this section,

Theorem 18.7, gives an infinitesimal interpretation of this filter. We know that
the median is a Morpho operator, and it is local in our case. The proof of the
next lemma is quite special, having no immediate generalization to RN .
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Lemma 18.6.
Medk[x + sy2](0) =

s

3
+ O(|s|3).

Proof. Represent Medk by Medku(x) = sup{λ | x ∈MedkXλu}. Then

Medk[x + sy2](0) = sup{λ | 0 ∈MedkXλ[x + sy2] }.

By definition, 0 ∈ MedkXλ[x + sy2] if and only if |Xλ[x + sy2]|k ≥ 1/2. This
implies that Medk[x + sy2](0) = m(s), where |Xm(s)[x + sy2]|k = 1/2, and this
is true if and only if the graph of x + sy2 = m(s) divides D(0, 1) into two sets
that have equal area. Of course, we are only considering small s, say |s| ≤ 1/2.
The geometry of this situation is illustrated in Figure 18.3. The signed area
between the y-axis and the parabola P (s) for |y| ≤ 1 is

∫ 1

−1

(m(s)− sy2) dy = 2m(s)− 2s

3
.

Thus, m(s) is the proper value if and only if

m(s)− s

3
= Area(ABE), (18.21)

where ABE denotes the curved triangle bounded by the parabola, the circle,
and the line y = −1. This area could be computed, but it is sufficient to bound
it by Area(ABCD). The length of the base AB is |m(s) − s|, and an easy
computation shows that the length of the height BC is less than (m(s) − s)2.
This and (18.21) imply that

∣∣∣∣∣m(s)− s

3

∣∣∣∣∣ ≤ |m(s)− s|3.

From this we conclude that m(s) = s/3 + O(|s|3), which proves the lemma. ¤

Theorem 18.7. If u : R2 → R is C2, then we have the following expansions:

(i) On every compact set K ⊂ {x | Du(x) 6= 0},

Medkh
u(x) = u(x) +

1
6
|Du(x)|curv(u)(x)h2 + O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant CK that depends only on u
and K.

(ii) On every compact set K in R2,

|Medkh
u(x)− u(x)| ≤ CKh2

where the constant CK depends only on u and K.

Proof. We have shown (or it is immediate) that the operator Th = Medkh

satisfies all of the hypotheses of Theorem 18.5. In particular, H(0) = Medk[x+
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Figure 18.2: Median filter and the curvature of level lines. Smoothing with
a median filter is related to the curvature of the level lines. Left: image of
a simple shape. Right: difference of this image with itself after it has been
smoothed by one iteration of the median filter. We see, in black, the points which
have changed. The width of the difference is proportional to the curvature, as
indicated by Theorem 18.7.

sy2](0) = 0 by Lemma 18.6. Also by Lemma 18.6, H(s) = s/3 + O(|s|3). This
means that we have

H
(1

2
h curv(u)(x)

)
=

1
6
h curv(u)(x) + O(h3 |curv(u)(x)|3).

The first result is now read directly from Theorem 18.5(i). Relation (ii) follows
immediately from Theorem 18.5(ii). ¤

Our second example is called the Catté–Dibos–Koepfler scheme. It involves
another application of Theorem 18.5.

Theorem 18.8. Let B be the set of all line segments of length 2 centered at the
origin of R2. Define the operators SIh and ISh by

SIhu(x) = sup
B∈hB

inf
y∈x+B

u(y) and IShu(x) = inf
B∈hB

sup
y∈x+B

u(y).

If u : R2 → R is C2 and |Du(x)| 6= 0, then

1
2
(ISh + SIh)u(x) = u(x) + h2 1

4
curv(u)(x)|Du(x)|+ O(h3).

Proof. The first step is to compute the action of the operators on u(x, y) =
x + sy2. Define H(s) = IS[x + sy2](0) and write (x, y) = (r cos θ, r sin θ). Then

H(s) = inf
−π

2≤θ≤π
2

sup
−1≤r≤1

(r cos θ + sr2 sin2 θ).

For s ≥ 0 and r ≥ 0, the function r 7→ r cos θ + sr2 sin2 θ is increasing. Hence,

H(s) = inf
−π

2≤θ≤π
2

(cos θ + s sin2 θ) = s

for sufficiently small s, say, s < 1/2. If s ≤ 0, then H(0) = 0, since

0 ≤ sup
−1≤r≤1

(r cos θ + sr2 sin2 θ) ≤ cos θ.
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P(s)

y = -1

y

m(s)

D(0,1)

0

y = 1

x

AB

C DE

Figure 18.3: When s is small, the parabola P (s) with equation x + sy2 = m
divides D(0, 1) into two components. The median value m(s) of x + sy2 on
D(0, 1) simply is the value m for which these two components have equal area.

If H−(s) = SI[x + sy2](0), then it is an easy check that H−(s) = −H(−s).
Thus we have

H(s) =

{
s, if s ≥ 0;
0, if s < 0;

and H−(s) =

{
0, if s ≥ 0;
s, if s < 0.

Thus, H(s) + H−(s) = s for all small s. Since H(0) = H−(0) = 0, the conclu-
sions of Theorem 18.5 apply. By applying Theorem 18.5(i) to ISh and SIh and
adding, we have

(ISh + SIh)u(x) = 2u(x) + h(H + H−)
(h

2
curv(u)(x)

)
+ O(h3)

= 2u(x) +
h2

2
curv(u)(x) + O(h3).

Dividing both sides by two gives the result. ¤

Exercise 18.3. Prove the relation H−(s) = −H(−s) used in the above proof.

18.3 Exercises

Exercise 18.4. Assume that T is a local translation and contrast invariant operator,
but not necessarily isotropic. Show that

Thu(x) = u(x) + hT [Du(x) · x](0) + O(h2).

Exercise 18.5. Let B be the set of all rectangles in the plane with length two, width
δ < 1, and centered at the origin. Define the operators ISh and SIh by

IShu(x) = inf
B∈hB

sup
y∈x+B

u(y) and SIhu(x) = sup
B∈hB

inf
y∈x+B

u(y).



“JMMBookOct04”
1/5/2012
page 217

i

i

i

i

i

i

i

i

18.4. COMMENTS AND REFERENCES 217

(i) Let u : R2 → R be C2. Compute the expansions of IShu(x), SIhu(x), and
(1/2)(ISh + SIh)u(x) in terms of small h > 0.

(ii) Take δ = h and compute the same expansions.

(iii) Take δ = hα and interpret the expansions for α > 0 and for α < 0.

18.4 Comments and references

Merriman, Bence, and Osher [240] discovered, and gave some heuristic argu-
ments to prove, that a convolution of a shape with a Gaussian followed by
a threshold at 1/2 simulated the mean-curvature motion given by ∂u/∂t =
|Du|curv(u). The consistency of their arguments was checked by Mascarenhas
[235]. Barles and Georgelin [39] and Evans [109] also gave consistency proofs;
in addition, they showed that iterated weighted Gaussian median filtering con-
verges to the mean curvature motion. An extension of this result to any iterated
weighted median filter was given by Ishii in [164]. An interesting attempt to gen-
eralize this result to vector median filters was made Caselles, Sapiro, and Chung
in [75]. Catté, Dibos, and Koepfler [77] related mean curvature motion to the
classic morphological filters whose structuring elements are one-dimensional sets
oriented in all directions (see [265] and [323] regarding these filters.)

The importance of the function H in the main expansion theorem raises
the following question: Given an increasing continuous function H, are there
structuring elements B such that H(s) = infB∈B sup(x,y)∈B(x + sy2)? As we
have seen is this chapter, the function H(s) = s is attained by a median filter.
Pasquignon [281] has studied this question extensively and shown that all of the
functions of the form H(s) = sα are possible using sets of simple structuring
elements.

The presentation of the main results of this chapter is mainly original and
was announced in the tutorials [153] and [154]. An early version of this work
appeared in [150].

Figure 18.4: Fixed point property of the discrete median filter, showing its grid-
dependence. Left: original image. Right: result of 46 iterations of the median
filter with a radius of 2. The resulting image turns out to be a fixed point of
this median filter. This is not in agreement with Theorem 18.7, which shows
that median filters move images by their curvature : The image on the right
clearly has nonzero curvatures! Yet, the discrete median filter that we have
applied here operating on a discrete image is grid-dependent and blind to small
curvatures.
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Figure 18.5: Comparing an iterated median filter and a median filter. Top-left:
original image. Top-middle: 16 iterations of the median filter with a radius 2,
Top-right: one iteration of the same median filter with a radius 8. Below each
image are the level-lines for grey levels equal to multiples of 16. This shows that
iterating a small size median filter provides more accuracy and less shape mixing
than applying a large size median filter. Compare this with the Koenderink–
Van Doorn shape smoothing and the Merriman–Bence–Osher iterated filter in
Chapter 5, in particular Figures 5.2, 5.1, and 5.4.
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Figure 18.6: Consistency of the median filter and of the Catté–Dibos–Koepfler
numerical scheme. Top row: the sea bird image and its level lines for all levels
equal to multiples of 12. Second row: a median filter on a disk with radius 2 has
been iterated twice. Third row: an inf-sup and then a sup-inf filter based on
segments have been applied. On the right: the corresponding level lines of the
results, which, according to the theoretical results (Theorems 18.7 and 18.8),
must have moved at a speed proportional to their curvature. The results are
very close. This yields a cross validation of two very different numerical schemes
that implement curvature-motion based smoothing.



“JMMBookOct04”
1/5/2012
page 220

i

i

i

i

i

i

i

i



“JMMBookOct04”
1/5/2012
page 221

i

i

i

i

i

i

i

i

Chapter 19

Asymptotic Behavior in
Dimension N

We are going to generalize to N dimensions the asymptotic results of Chapter
18. Our aim is to show that the action of any local Morpho operator, when
properly scaled, is a motion of the N -dimensional image that is controlled by
its principal curvatures. In particular, we will relate the median filter to the
mean curvature of the level surface.

19.1 Asymptotic behavior theorem in RN

Let u : RN → R be C3 and assume that Du(x) 6= 0. Then we denote the vector
whose terms are the N − 1 principal curvatures of the level surface {y | u(y) =
u(x)} that passes through x by κ(u)(x) = κ(u) = (κ2, . . . , κN ). The terms
κi(u)(x)|Du(x)| are then the eigenvalues of the restriction of D2u(x) to Du(x)⊥.
(See Definition 15.19.) For x ∈ RN , we write x = (x, y2, . . . , yN ) = (x,y),
y ∈ RN−1 and in the same way s = (s2, . . . , sN ).

Theorem 19.1. Let T be a local Morpho operator. Define

H(s) = T [x + s2y
2
2 + · · ·+ sNy2

N ](0). (19.1)

Then for every C3 function u : RN → R,

(i) Thu(x) = u(x) + hH(0)|Du(x)|+ O(x, h2);

(ii) If H(0) = 0, then on every compact set K contained in {x | Du(x) 6= 0}

Thu(x) = u(x) + hH

(
h

1
2
κ(u)(x)

)
|Du(x)|+ O(x, h3)

where |O(x, h3)| ≤ CKh3;

(iii) If H(0) = 0, then on every compact set K ⊂ RN ,

|Thu(x)− u(x)| ≤ CKh2,

where CK denotes some constant that depends only on u and K.

221
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Proof. The proof is the same as the proof of Theorems 18.3 and 18.5. We
simply have to relate the notation used for the N -dimensional case to that used
in the two-dimensional case. We begin by assuming that Du(x) 6= 0. We then
establish the local coordinate system at x defined by i1 = Du(x)/|Du(x) and
i2, . . . , iN , where i2, . . . , iN are the eigenvectors of the restriction of D2u(x)
to the hyperplane Du(x)⊥. Then in a neighborhood of x we can expand u as
follows:

u(x + y) = u(x) + px + ax2 + b2y
2
2 + · · ·+ bNy2

N + (c · y)x + R(x,y), (19.2)

where y = xi1 + y2i2 + · · ·+ yN iN , p = |Du(x)| > 0, and for j = 2, . . . , N ,

a =
1
2

∂2u

∂x2
(x) =

1
2
D2u(x)(i1, i1),

bj =
1
2

∂2u

∂y2
j

(x) =
1
2
D2u(x)(ij , ij),

cj =
∂2u

∂x∂yj
(x) = D2u(x)(i1, ij).

(19.3)

We can also write bj as

bj =
1
2
|Du(x)|κj(u)(x). (19.4)

For the proof of (i), we write u(x + y) = u(x) + px + O(x, |y|2) and just
follow the steps of the proof of Theorem 19.1. The proof of (ii) and (iii) fol-
lows, step by step, the proof of Theorem 18.5. We need only make the following
identifications: cxy ↔ (c ·y)x, by2 ↔ b2y

2
2 + · · ·+bNy2

N , and curv(u) ↔ κ(u). ¤

19.2 Asymptotic behavior of median filters in
RN

The action of median filtering in three dimensions is illustrated in Figures 19.1
and 19.2. The median filters we consider will be defined in terms of a continuous
weight function k : RN → [0,+∞) that is radial, k(x) = k(|x|), and that is
normalized,

∫
RN k(x) dx = 1. Recall that, by definition,

|B|k =
∫

B

k(x) dx.

We also assume that k is nonseparable, which is the case if {x | k(x) > 0}
is connected. Then by Proposition 14.8, Medku = Med−k u and the median
operator can defined by

Medku(x) = inf
|B|k=1/2

sup
y∈x+B

u(y). (19.5)

Define the scaled weight function kh, 0 < h ≤ 1, by kh(x) = h−Nk(x/h).
Then a change of variable shows that |B|k = 1/2 if and only if |hB|kh

= 1/2,
and this implies that (Medk)h = Medkh

(see Exercise 18.2). Since we consider
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Figure 19.1: Three-dimensional median filter. The original three-dimensional
image (not shown) is of 20 slices of a vertebra. Three successive slices are
displayed in the left column. The next column shows their level lines (multiples
of 20). The third column shows these three slices after one iteration of the
median filter based on the three-dimensional ball of radius two. The resulting
level lines are shown in the last column.

only one weight function at a time, there should be no confusion if we write
Medh for the scaled operator.

We analyzed the asymptotic behavior of a median filter in R2 whose weight
function was the characteristic function of the unit disk in Chapter 18. This
proof can be generalized to RN by taking k to be the normalized characteristic
function of the unit ball. We will go in a different direction by taking smooth
weight functions. Our analysis will not be as general as possible because this
would be needlessly complicated. The k we consider will be smooth (C∞) and
have compact support. This means that the considered median filters are local.
Thus, the results of Theorem 19.1 apply, provided we get an estimate near 0 of
the structure function H of the median filter.

Lemma 19.2. Let k be a nonnegative radial function belonging to the Schwartz
class S. Assume that

∫
RN k(x) dx = 1 and that the support of k is connected in

RN . Then the structure function of Medk H(hb) = Medk[x + h(b2y
2
2 + · · · +

bNy2
N )](0) can be expressed as

H(hb) = hck

( N∑

j=2

bj

)
+ O(h2),
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where

ck =

∫
RN−1 y2

2k(y) dy∫
RN−1 k(y) dy

,

y = (y2, . . . , yN ), and b = (b2, . . . , bN ).

Proof. Before beginning the proof, note that we have not assumed that k has
compact support, so the result applies to the Gaussian, for example.

We will use the abbreviation b(y,y) = b2y
2
2 + · · ·+ bNy2

N , since b is, in fact,
a diagonal matrix. Our proof is based on an analysis of the function f(λ, h) =
|Xλ(x + hb(y,y))|k. Since Xλ(x + hb(y,y)) = {(x,y) | x + hb(y,y) ≥ λ}, we
can express f as an integral,

f(λ, h) =
∫

RN−1

∫ ∞

λ−hb(y,y)

k(x,y) dxdy.

It follows from the assumption that k is in the Schwartz class that f : R2 →
R is bounded and C∞. Also, for every h ∈ R, limλ→−∞ f(λ, h) = 1 and
limλ→+∞ f(λ, h) = 0. Thus, for every h ∈ R, there is at least one λ such that
f(λ, h) = 1/2. In fact, there is only one such λ; this is a consequence of the
assumption that the k is continuous and that its support is connected, which
implies that it is nonseparable (see Exercise 14.5). To see that λ is unique,
assume that there are λ < λ′ such that f(λ, h) = 1/2 and f(λ′, h) = 1/2. Then
the two sets {(x,y) | x + hb(y,y) ≥ λ′} and {(x,y) | x + hb(y,y) ≤ λ} both
have k-measure 1/2, but their intersection is empty. This contradicts the fact
that k is nonseparable. This means that the relation f(λ, h) = 1/2 defines
implicitly a well-defined function h 7→ λ(h).

Recall that Medk was originally defined in terms of the superposition formula

Medku(x) = sup{λ | x ∈MedkXλu}.

This translates for our case into the relation

Medk[x + hb(y,y)](0) = sup{λ | 0 ∈MedkXλ[x + hb(y,y)]} = λ(h)

because 0 ∈MedkXλ[x + hb(y,y)] if and only if |Xλ[x + hb(y,y)]|k ≥ 1/2.
We are interested in the behavior of h 7→ λ(h) near the origin. The first

thing to note is that λ(0) = 0. To see this, write

f(λ(0), 0) =
∫

RN−1

∫ ∞

λ(0)

k(x,y) dxdy =
1
2
.

Since k is radial, the value λ = 0 solves the equation
∫
RN−1

∫∞
λ

k(x,y) dx dy =
1/2. We have just shown that this equation has a unique solution, so λ(0) = 0.

Now consider the first partial derivatives of f :

∂f

∂λ
(λ, h) = −

∫

RN−1
k
((

(λ− hb(y,y))2 + y · y)1/2
)

dy. (19.6)

∂f

∂h
(λ, h) =

∫

RN−1
b(y,y)k

((
(λ− hb(y,y))2 + y · y)1/2

)
dy. (19.7)
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Figure 19.2: Median filtering of a three-dimensional image. The first image is
a representation of the horizontal slices of a three-dimensional level surface of
the three-dimensional image of a vertebra. Right to left, top to bottom: 1, 2,
5, 10, 20, 30, 60, 100 iterations of a three-dimensional median filter based on a
ball with radius three. This scheme is a possible implementation of the mean
curvature motion, originally proposed as such by Merriman, Bence and Osher.

These functions are C∞ because k is in the Schwartz class; also, (∂f/∂λ)(0, 0) 6=
0. Then by the implicit function theorem, we know that the function h 7→ λ(h)
that satisfies f(λ(h), h) = 1/2 is also C∞ and that

λ′(h)
∂f

∂λ
(λ(h), h) +

∂f

∂h
(λ(h), h) = 0.

Thus, for small h,

λ′(h) = −
∂f
∂h (λ(h), h)
∂f
∂λ (λ(h), h)

,

and, using equations (19.6) and(19.7), we see that

λ′(0) =

∫
RN−1 b(y,y)k

(
(y · y)1/2

)
dy∫

RN−1 k
(
(y · y)1/2

)
dy

.

Now expand λ for small h:

λ(h) = λ(0) + λ′(0)h + O(h2).

Since
∫
RN−1 b(y,y)k

(
(y·y)1/2

)
dy =

( ∑N−1
j=2 bj

) ∫
RN−1 y2

2k
(
(y·y)1/2

)
dy, H(hb) =

λ(h), and λ(0) = 0, this proves the lemma. ¤

Theorem 19.3. Let k be a nonnegative radial function belonging to the Schwartz
class S. Assume that

∫
RN k(y) dy = 1 and that the support of k is compact and

connected. Then for every C3 function u : RN → R:
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(i) On every compact set K ⊂ {x | Du(x) 6= 0},

Medhu(x) = u(x) + h2 1
2
ck

( N∑

i=2

κi(u)(x)
)
|Du(x)|+ O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant that depends only on u and
K.

(ii) On every compact set K ⊂ RN , |Medhu(x) − u(x)| ≤ CKh2 for some
constant CK that depends only on u and K.

Proof. Theorem 19.1 is directly applicable. We know from Lemma 19.2 that
H(0) = 0, so we can read (ii) directly from Theorem 19.1(iii). By Lemma 19.2,

H(hκ(u)) = hck

( N∑

i=2

κi(u)|Du|
)

+ O(h2).

From this and Theorem 19.1(ii), we get

Medhu(x) = u(x) + h2 1
2
ck

( N∑

i=2

κi(u)(x)
)
|Du(x)|+ O(x, h3),

and we know that the estimate is uniform on any compact set K ⊂ {x | Du(x) 6=
0}. ¤

19.3 Exercises : other motions by the principal
curvatures

This section contains several applications of Theorem 19.1 in three dimensions.
A level surface of a C3 function in three dimensions has two principal curvatures,
and this provides an extra degree of freedom for constructing contrast-invariant
operators based on curvature motion. We develop the applications in three
exercises. For each case, we will assume that the principal curvatures κ1 and κ2

are ordered so that κ1 ≤ κ2. In each example, the set of structuring elements
B is constructed from a single set B in R2 by rotating B in all possible ways,
that is, B = {RB | B ∈ R2, R ∈ SO(3)}. For each example we write

SIhu(x) = sup
B∈B

inf
y∈x+hB

u(y)

and
IShu(x) = inf

B∈B
sup

y∈x+hB
u(y),

where 0 < h ≤ 1.
Exercise 19.1. Let B be a segment of length 2 centered at the origin. Our aim is to
show that

IShu = u + h2 1

2
κ+

1 (u)|Du|+ O(h3),

SIhu = u + h2 1

2
κ−2 (u)|Du|+ O(h3).
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This implies

IShu + SIhu = u + h2 1

2
(sign(κ1(u)) + sign(κ2(u)))min(|κ1(u)|, |κ2(u)|) + O(h3).

(i) The first step is to compute H(hb). One way to do this is to write x = r sin φ,
y2 = r cos φ cos θ, y3 = r cos φ cos θ, and use an argument similar to that given in
the proof of Theorem 18.8 to show that, for a fixed θ and small h, the “inf-sup”
of

r sin φ + hb2r
2 cos2 φ cos2 θ + hb3r

2 cos2 φ cos2 θ

always occurs at φ = 0. Then H(hb) = hH(b) and

H(b) = inf
B∈B

sup
y∈B

(b2y
2
2 + b3y

2
3) = inf

θ
sup

0≤r≤1
r2(b2 cos2 θ + b3 sin2 θ).

Deduce that b2 < 0 or b3 < 0 implies H(b) = 0 and that 0 ≤ b2 ≤ b3 implies
H(b) = b2.

(ii) Since H(0) = 0, deduce from Theorem 19.1 that

IShu(x) = u(x) + h2 1

2
κ+

1 (u)(x)|Du(x)|+ O(h3). (19.8)

Exercise 19.2. Let B be the union of two symmetric points (1, 0, 0) and (−1, 0, 0).
Use the techniques of Exercise 11.2 to show that

IShu = u + h2 1

2
min{κ1(u), κ2(u)}|Du|+ O(h3);

SIhu = u + h2 1

2
max{κ1(u), κ2(u)}|Du|+ O(h3);

ISh + SIhu = u + h2 1

2
(κ1(u) + κ2(u))|Du|+ O(h3).

The last formula shows that the operator ISh + SIh involves the mean curvature of u
at x.

Exercise 19.3. Let B consist of two orthogonal segments of length two centered at
the origin.

(i) Show that

IShu = u + h2 1

2

(κ1(u) + κ2(u)

2

)+

|Du|+ O(h3);

SIhu = u + h2 1

2

(κ1(u) + κ2(u)

2

)−
|Du|+ O(h3).

(ii) Show that you can get the mean curvature by simply taking B to be the four end-
points of the orthogonal segments. Check that another possibility for obtaining
the mean curvature is to alternate these operators or to add them.

19.4 Comments and references

The references for this chapter are essentially the same as those for Chapter 18.
The main theorem on the asymptotic behavior of morphological filters was first
stated and proved in [153] and [154]. The examples developed in Exercises 19.1,
19.2, and 19.3 have not been published elsewhere. The consistency of Gaussian
smoothing followed by thresholding and mean-curvature motion was proved in
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increasing mathematical sophistication and generality by Merriman, Bence, and
Osher [240], Mascarenhas [235], Barles and Georgelin [39], and Evans [109]. Our
presentation is slightly more general than the ones cited because we allow any
nonnegative weight function in the Schwartz class. The most general result was
given by Ishii in [164].
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Chapter 20

Affine-Invariant
Mathematical Morphology

In Chapter 13, we introduced a class of simple set and function operators called
erosions and dilations. These operators were defined by a single structuring set.
They are contrast invariant and translation invariant, but they are not affine
invariant. In this chapter, we introduce set operators, also called erosions and
dilations, that are affine invariant.

Our interest in affine-invariant smoothing, like our interest in contrast- and
translation-invariant smoothing, is based on practical considerations. When we
take a photograph of a plane image, say, a painting, the image is projected onto
the focal plane of the camera. If the camera is an ideal pin-hole device, then
this is a projective transformation where the center of projection is the pin hole.
In any case, it approximates a projective transformation. If we are far removed
from the plane of the painting, then the focal plane of the camera approximates
the plane at infinity, and the transformation looks like an affine transformation.
For a more common example, we note that most digital cameras, copy machines,
fax machines, and scanners introduce a slight affine distortion. Thus, we would
like the smoothing to be affine invariant so it is “blind” to any deformations
introduced by these processes. It would be nice to have a smoothing that is
invariant under the full projective group, but we will see later (Chapter 26)
that this is not possible.

20.1 Affine invariance

Isometries, by definition, preserve the distance between points, and hence, pre-
serve the angle between vectors. In a finite dimensional space RN , any isometry
can be represented by x 7→ Ax+ a, where A is an orthogonal matrix and a is a
fixed vector. These transformations include all of the rigid motions of RN plus
reflections. Classical Euclidean geometry in R2 is concerned with the objects
that are invariant under these transformations. If we loosen the requirement
that the matrix A be orthogonal and assume only that it is nonsingular, then
we have generalized Euclidean motions to affine motions, and the distance be-
tween points is no longer an invariant. However, there are affine invariants, and
the most important from our point of view is that parallel lines are mapped

229
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Figure 20.1: A rectangle seen from far enough has its sides roughly parallel and
looks like a parallelogram. Thus affine invariance is a particular instance of
projective invariance.

into parallel lines and finite points are mapped into finite points. Furthermore,
if the determinant of A is one, |A| = 1, then the transformation preserves area:
Unit squares are mapped into parallelograms whose area is one. Note, however,
that the parallelograms can be arbitrarily long.

If we jump to projective geometry and the projective plane, then parallel
lines are not necessarily preserved. Thus, affine transformations are a special
class of projective transformations. This means that affine geometry can be
considered a generalization of Euclidian geometry or a specialization of projec-
tive geometry. Incidentally, this is the view taken in classical Chinese drawing,
which tends always to display scenes as seen from a distance and to maintain
parallelism.

20.2 Affine-invariant erosions and dilations

Everything in this chapter will take place in R2 so the following definition is
given for R2. The group of all linear affine transformations A : R2 → R2 with
determinant one, |A| = 1, is called the special linear group; it is often denoted
by SL(R2).

Our goal is to define erosions and dilations that are invariant under SL(R2).
Any attempt to do so using Euclidean distance is doomed to failure, since the
distances between points are not affine invariant. It is thus necessary to base
the definition of affine-invariant erosions and dilations on some affine invariant,
and the most obvious one to use is area. This leads to the notion of the affine-
invariant distance between a point and a set. We begin with the definition of a
chord-arc set.
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Definition 20.1. Let X be a subset of R2 and let ∆ be a straight line in R2.
Any connected component of X \∆ = X ∩∆c is called a chord-arc set defined
by X and ∆.

Exercise 20.1. Chord-arc sets take their name from the case where X is a disk, in
which case a chord-arc set is called a segment. What are the chord-arc sets if (i) X is
an open disk and (ii) X is a closed disk? What is the situation when X is a closed arc
of a circle or a closed segment of a disk?

Exercise 20.2. Suppose that x ∈ (X)c ∩∆. Show that there are two, and only two,
chord-arc sets defined by (X)c = (Xc)◦ and ∆ that contain x in their boundary. (Note
that we are assuming that (X)c 6= ∅.)

We are interested first in some special chord-arc sets that will be used to
define the affine distance from a point x to a set X. From Exercise 20.2, we
know that there are only two chord-arc sets defined by (X)c and ∆ that contain
x in their boundary, if X 6= R2. In this case, we call these two sets CA1(x, ∆, X)
and CA2(x, ∆, X), and we order them so that

area(CA1(x, ∆, X)) ≤ area(CA2(x, ∆, X)).

Definition 20.2. Let X be a subset of R2 and let x be an arbitrary point in
R2. We define the affine distance from x to X to be

δ(x, X) = inf
∆

[area(CA1(x,∆, X))]1/2 if x ∈ (X)c and δ(x, X) = 0 otherwise.

(See Figure 20.2.)

The power 1/2 is taken so that δ has the “dimension” of a distance. Notice
that δ(x, X) can be infinite: Take X convex and compact and x 6∈ X. Then all
chord-arc sets defined by a straight line ∆ through x have infinite area. Notice
also that δ(x, ∅) = +∞ and δ(x,R2) = 0.

Definition 20.3. The affine a-dilation D̃a and the affine a-erosion Ẽa are set
operators defined for X ⊂ R2 by

D̃aX = {x | δ(x, X) ≤ a1/2} and ẼaX = {x | δ(x, Xc) > a1/2}.
They are extended to M(S2) by the standard extension (Definition 11.1.)

Exercise 20.3. Check that D̃aR2 = ẼaR2 = R2. Show that ẼaX = (D̃aXc)c. (Recall
Exercise 8.1(ii).) This relation shows that eroding a set and dilating its complement
yield complementary sets. This is a useful symmetry, since the same shape can appear
as an upper level set or as the complement of an upper level set, depending on whether
it is darker or lighter than the background.

The names we have used for the operators Ẽa and D̃a are not standard
nomenclature in mathematical morphology. Indeed, in mathematical morphol-
ogy, a dilation must commute with set union and an erosion is expected to
commute with set intersection. It is easy to check that Ẽa and D̃a do not satisfy
these properties.1 Nevertheless, we will use these names. There should be no
confusion, and these operators are natural generalizations of the corresponding
Euclidean erosions and dilations discussed in Chapter 13.

1We thank Michel Schmitt for pointing this out to us.
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Figure 20.2: Affine distance to a set.

Exercise 20.4. Prove the above statements, that a standard erosion commutes with
set intersection, a standard dilation commutes with set union. Give examples showing
that this commutation is no more true with affine dilation or erosion.

Proposition 20.4. Ẽa and D̃a are monotone and affine-invariant. More pre-
cisely, for every linear map A such that |A| > 0, ẼaA = AẼ|A|−1a and D̃aA =
AD̃|A|−1a. In particular, ẼaA = AẼa and D̃aA = AD̃a if |A| = 1.

Proof. If X ⊂ Y ⊂ R2, then it is easily seen from the definitions that δ(x, Y ) ≤
δ(x, X) for every x ∈ R2. It then follows from the definition of D̃a that D̃aX ⊂
D̃aY . Hence, D̃a is monotone. The monotonicity of Ẽa follows directly from the
relation ẼaX = (D̃aXc)c.

The transformation A preserves the topological properties of the configura-
tion determined by x, X, and ∆ and multiplies all areas by |A|. This implies
that δ(Ax, AX) = |A|1/2δ(x, X). It follows from the definition of D̃a that
D̃aAX = AD̃|A|−1aX. Thus D̃aA = AD̃|A|−1a. The result for Ẽa follows from
the result for D̃a and the relations AXc = (AX)c and ẼaX = (D̃aXc)c. The
extension of this relation to subsets of R2 ∪ {∞} is straightforward, since we
have set A∞ = ∞. ¤

The next proposition shows that it is equivalent to erode a set or its interior,
and to dilate a set or its closure.

Proposition 20.5. For any X ⊂ R2, ẼaX = ẼaX◦ and D̃aX = D̃aX, where
X◦ denotes the interior of X and X denotes the closure of X.

Proof. We will first prove the result about Ẽa. Since Ẽa is monotone, ẼaX◦ ⊂
ẼaX. Now, x ∈ ẼaX if and only if δ(x, Xc) > a1/2. By the definition,
δ(x, Y ) = δ(x, Y ), so x ∈ ẼaX if and only if δ(x, Xc) > a1/2. Since Xc = (X◦)c,
this means that δ(x, (X◦)c) > a1/2, which proves that x ∈ ẼaX◦. That
D̃aX = D̃aX follows from the two identities ẼaX = (D̃aXc)c and ((Xc)◦)c = X.
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Figure 20.3: An affine structuring element: All lines through 0 divide B into sev-
eral connected components. The two of them which contain 0 in their boundary
have area larger or equal to b.

¤

This result means in particular that affine erosion erases all boundary points.
It is easy to check that the affine erosion processes independently connected
components of a set. This is the object of the next exercise.
Exercise 20.5. Let X◦

i , i ∈ I, be the connected components of X◦. Then the ẼaX◦
i

are disjoint and ẼaX◦ =
⋃

i∈I ẼaX◦
i .

Lemma 20.6. Ẽa and D̃a are standard monotone.

Proof. We have to check five properties, but the three first items of Definition
11.3 are obvious. Let X ⊂ R2 be bounded. Then ẼaX ⊂ X also is bounded.
Assume now that Xc is bounded. Then X ⊃ B(0, R)c for some R ≥ 0. It is
easily checked that Ẽa(B(0, R)c) = B(0, R)c. Thus Ẽa(X) ⊃ B(0, R)c. We con-
clude that Ẽa is standard monotone. By Proposition 11.5 its dual operator D̃a

also is standard monotone. ¤

Definition 20.7. A set B is called an affine structuring element if B is open
and connected and if δ(0, Bc) > 1. We denote the set of all affine structuring
elements by Baff .

Exercise 20.6. If A is a linear transformation and B an affine structuring element,
check that δ(0, (AB)c) = δ(0, ABc) = |A|1/2δ(0, Bc). Deduce that ABaff = Baff for all
A ∈ SL(R2).

T X =
⋃

B∈B

⋂

y∈B

(X − y) = {x | x + B ⊂ X for some B ∈ B},
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where B = {X | 0 ∈ T X}. The task reduces to characterizing the set of
structuring elements B. We know that 0 ∈ ẼaX if and only if ẼaX 6= ∅ and
δ(0, Xc) > a1/2, and this, and the results stated above, lead to the following
definition.

Proposition 20.8. B1 = a
1
2Baff is a standard set of structuring elements for

Ẽa. Thus for every set X ⊂ R2,

ẼaX =
⋃

B∈Baff

⋂

y∈a1/2B

(X − y) = {x | x + a1/2B ⊂ X for some B ∈ Baff}.

Proof. Ẽa is translation invariant and standard monotone. Thus we can apply
Matheron Theorem 12.2. The canonical set of structuring elements of Ẽa is

B0 = {B | Ẽa 3 0} = {B | δ(0, Bc) > a
1
2 .}.

Then B1 = a
1
2Baff is the subset of elements in B0 which are open and connected.

By Proposition 12.4 we only need to show that every element B0 in B0 contains
some element B1 of B1. Let us choose for B1 the open connected component
of 0 in B0. For every line ∆ passing by 0, CA1(0,∆, Bc

0) is a connected open
set contained in B0 \∆. Thus it is also contained in B1 \∆. This implies that
CA1(0,∆, Bc

1) ⊇ CA1(0,∆, Bc
0) and, by taking the infimum of the areas of these

sets, that δ(0, Bc
1) ≥ δ(0, Bc

0) > a
1
2 .

¤

Remark 20.9. An alternative way to prove the above proposition is the follow-
ing. By Proposition 20.5 and the result of Exercise 20.5 we know that

ẼaB0 = ẼaB◦
0 = ∪i∈I Ẽa [(B◦

0)i] ,

where (B◦
0)i are the open connected components of B◦

0 . Now one of them (B0)i =
B1 is the open connected component containing 0. Thus ẼaB0 3 0 ⇔ ẼaB1 3 0.

Let us give a more practical characterization for the affine structuring ele-
ments, which follows immediately from Definitions 20.2 and 20.7.

Proposition 20.10. A set B is an affine structuring element if it is open,
connected, and contains the origin, and if for some b > 1 and for every straight
line ∆ through the origin, the two connected components of B \∆ that contain
the origin in their boundary each have area greater than some number b > 1.
(See Figure 20.3.)

It is easy to see that Ẽa is not upper semicontinuous on L. Ẽa sends a closed
disk on an open disk and therefore doesn’t map L into itself. As for D̃a, it is not
known whether it is upper semicontinuous or not and this is a good question!
All the same we can define a stack filter for D̃a or Ẽa by the superposition
principle. Thus we set for u ∈ F ,

D̃au(x) = sup{λ ∈ R | x ∈ D̃a(Xλu)};
Ẽau(x) = sup{λ ∈ R | x ∈ Ẽa(Xλu)}

and we call them respectively affine function dilation and affine function erosion.
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Proposition 20.11. The affine function dilation and erosion are translation
invariant, contrast invariant and standard monotone from F to F . In addition
they are affine invariant. Finally the commutation almost everywhere holds:

Xλ(D̃au) = D̃a(Xλu) and Xλ(Ẽau) = Ẽa(Xλu), (20.1)

almost everywhere for almost every λ ∈ R.

Proof. Since D̃a and Ẽa are standard monotone and translation invariant, this
is a direct application of Theorem 11.16. Since the set operators are not upper
semicontinuous, there is no chance to get a full commutation with thresholds.
However, the commutation with thresholds almost everywhere holds by Propo-
sition 12.18. ¤
Let us finally point out that the affine function erosion and dilation are dual of
each other.

Proposition 20.12. For u ∈ F , Ẽau = −D̃a(−u).

Proof. We wish to use the duality relations between Ẽa and D̃a and the super-
position principle. This leads us to deal with upper level sets of −u which are
lower level sets of u. Thus we will need the following relations,

Xλ(−u) ⊂ (X−λ+εu)c and (20.2)

(X−λ+ε(−u))c ⊂ Xλ−εu, (20.3)

for ε > 0. We then have

Xλ(−D̃a(−u))
(20.2)⊂

[
X−λ+ε(D̃a(−u))

]c a.e.=
[
D̃aX−λ+ε(−u)

]c

def.Ẽa= Ẽa (X−λ+ε(−u))c (20.3)⊂ Ẽa(Xλ−εu) a.e.= Xλ−ε(Ẽau),

where the a.e. relations are true for every λ and almost every ε > 0 by the
commutation with thresholds almost everywhere (20.1). By using the relation
Xλv = ∩ε>0Xλ−εv with v = Ẽau, we obtain Xλ(−D̃a(−u)) ⊂ Xλ(Ẽau) almost
everywhere for almost every λ. By taking ε < 0 it is easily checked that all
inclusions in the above argument reverse. Thus almost all level sets of Ẽau and
−D̃a(−u) are equal almost everywhere. By Corollary 12.17 and its consequence
in Exercise 12.7 this implies that Ẽau and −D̃a(−u) coincide almost everywhere.
Since in addition these functions belong to F and are therefore continuous, they
coincide everywhere.

¤

Exercise 20.7. Prove the relations (20.2) and (20.3) used in the proof of Proposition
20.12.

20.3 Principles for an algorithm

This section won’t give an explicit algorithm for performing affine erosions or
dilations, but rather a general principle from which algorithms can be derived.
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∆∆

x

C

Figure 20.4: Illustration for Proposition 20.13.

Since D̃a is obtained by duality from Ẽa we’ll focus on the implementation of
affine erosion. Since as we shall see a curve will be split into convex parts to
apply the erosion, we can restrict ourselves to the case where X is convex.

The intuitive idea is that ẼaX could be obtained from X by removing all
chord-arc sets C defined by X and ∆ that have area less than or equal to a,
but this is not quite true. A simple example is given by taking for X the open
disk D(0, 1). Removing all chord-arc sets with area less than or equal to a < π

2

will leave a closed disk D(0, r), whereas ẼaD(0, 1) is the open disk D(0, r). We
need only make a small modification. If C is a chord-arc set defined by X and
∆, we define C∗ by C∗ = C ∪ (C ∩∆).

Proposition 20.13. Assume that X is an open, convex and bounded subset of
R2. Then ẼaX can be obtained from X by removing all of the modified chord
arc sets C∗ with area less than or equal to a.

Proof. Let C be any chord-arc set defined by X and a line ∆ such that
area(C) ≤ a. Then we claim that x ∈ C∗ implies that δ(x, Xc) ≤ a1/2. To
see this, let ∆′ be the line parallel to ∆ that contains x. The lines ∆ and ∆′

each define two open half-planes, which we denote by R and L and R′ and L′.
Without loss of generality, we may assume that ∆′ ⊂ R, or equivalently, that
∆ ⊂ L′. (See Figure 20.4.)

Consider the sets CAi(x, ∆′, Xc), i = 1, 2. These are the connected compo-
nents of R2 \(Xc∪∆′) = (Xc)c∩(∆′)c = X◦ \∆′ that contain x in their bound-
aries. One of these sets, say, CA1(x,∆′, Xc) is in R∩R′. Now CA1(x,∆′, Xc)∩
C 6= ∅, since both sets contain x. This means that CA1(x, ∆′, Xc) ∪ C is con-
nected, and since C was a maximal connected set in X \ ∆ we conclude that
CA1(x, ∆′, Xc) ⊂ C. Thus the area of CA1(x, ∆′, Xc) is less than or equal to
a, so δ(x, Xc) ≤ a1/2, and x 6∈ ẼaX.

For the converse, we must show that if a point was eroded, then it had
to have been in a set C∗, where C is a chord-arc set with area less than or
equal to a. Our proof uses a result that we prove in the next exercise 20.10,
namely, that if δ(x,Xc) ≤ a1/2, then there is a line ∆ that contains x such that
δ(x,Xc) = [area(C)]1/2, where C is a chord-arc set defined by X and ∆. Then
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for this C, x ∈ C∗ and area(C) ≤ a. ¤

20.4 Affine Plane Curve Evolution Scheme.

Curve evolution applied to image level lines also yields an image evolution.
Osher and Sethian proposed in order to simulate the evolution of a surface
by the curvature motion by evolving its distance function by a finite difference
scheme of the curvature motion. This strategy is quite well justified in dimension
3 but less in dimension 2 where level lines are simple Jordan curves. One can
instead extract all level lines of the image and compute their evolution by the
affine shortening. Each curve will be numerically represented as a polygon. The
affine shortening is numerically defined as an alternate filter, which alternates
affine erosion and affine dilation with a small parameter a.

20.4.1 A fast algorithm

The affine erosion of a set X is not simple to compute, because it is a strongly
non local process. However, if X is convex, it has been shown in [249] that it
can be exactly computed in linear time. In practice, c will be a polygon and the
exact affine erosion of X —whose boundary is made of straight segments and
pieces of hyperbolae— is not really needed ; numerically, a good approximation
by a new polygon is enough. Now the point is that we can approximate the
alternate affine erosion and dilation of X by computing the affine erosion of
each convex or concave component of c, provided that the erosion/dilation area
is small enough.

The algorithm consists in the iteration of a four-steps process :

1. Break the curve into convex or concave parts. This operation
permits to apply the affine erosion to convex pieces of curves, which is
much faster (the complexity is linear) and can be done simply in a discrete
way. The main numerical issue is to take into account the finite precision
of the computer in order to avoid spurious (small and almost straight)
convex components.

2. Sample each component. At this stage, points are removed or added in
order to guarantee an optimal representation of the curve that is preserved
by step 3.

3. Apply discrete an affine erosion to each component.

4. Concatenate the pieces of curves obtained at step 3. This way,
we obtain a new closed curve on which the whole process can be applied
again.

The curve has to be broken at points where the sign of the determinant

di = [Pi−1Pi, PiPi+1]
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changes. Numerically, we use the formula

di = (xi − xi−1)(yi+1 − yi)− (yi − yi−1)(xi+1 − xi) (20.4)

Since we are interested in the sign of di, we must be careful because the finite
numerical precision of the computer can make this sign wrong. Let us introduce
the relative precision of the computer

ε0 = max{x > 0, (1.0⊕ x)ª 1.0 = 0.0}. (20.5)

In this definition, ⊕ (resp. ª) represent the computer addition (resp. substrac-
tion), which is not associative. When computing di using (20.4), the computer
gives a result d̃i such that |di − d̃i| ≤ ei, with

ei = ε0

(
|xi − xi−1|(|yi+1|+ |yi|) + (|xi|+ |xi−1|)|yi+1 − yi|

+ |yi − yi−1|(|xi+1|+ |xi|) + (|yi|+ |yi−1|)|xi+1 − xi|
)

.

In practice, we take ε0 a little bit larger than its theoretical value to overcome
other possible errors (in particular, errors in the computation of ei). For four-
bytes C float numbers, we use ε0 = 10−7, whereas the theoretical value (that can
be checked experimentally using (20.5)) is ε0 = 2−24 ' 5.96 10−8. For eight-
bytes C double numbers, the correct value would be ε0 = 2−53 ' 1.11 10−16

The algorithm that breaks the polygonal curve into convex components con-
sists in the iteration of the following decision rule :

1. If |d̃i| ≤ ei, then remove Pi (which means that to new polygon to be
considered from this point is P0P1...Pi−1Pi+1...Pn−1)

2. If |d̃i+1| ≤ ei+1, then remove Pi+1

3. If d̃i and d̃i+1 have opposite signs, then the middle of Pi, Pi+1 is an inflex-
ion point where the curve must be broken

4. If d̃i and d̃i+1 have the same sign, then increment i

This operation is performed until the whole curve has been visited. The
result is a chained (looping) list of convex pieces of curves.

• Sampling
At this stage, we add or remove points from each polygonal curve in order to

ensure that the Euclidean distance between two successive points lies between
ε and 2ε (ε being the absolute space precision parameter of the algorithm).

• Discrete affine erosion
This is the main step of the algorithm : compute quickly an approximation

of the affine erosion of scale σ of the whole curve.

The first step is the computation of the “area” Aj of each convex component
Cj = P j

0 P j
1 ...P j

n−1, given by

Aj =
1
2

n−2∑

i=1

[
P j

0 P j
i , P j

0 P j
i+1

]
.
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Then, the effective area used to compute the affine erosion is

σe = max
{

σ

8
,min

j
Aj

}
.

We restrict the erosion area to σe (which is less than σ in general) because
the simplified algorithm for affine erosion (based on the breaking of the initial
curve into convex components) may give a bad estimation of the continuous
affine erosion+dilation when the area of one component is less than the erosion
parameter. The term σ/8 is rather arbitrary and guarantees an upper bound
to the number of iterations required to achieve the final scale.

Once σe is computed, the discrete erosion of each component is defined as
the sequence of middle points of all segments [AB] such that

1. A and B lie on the polygonal curve

2. A or B is a vertex of the polygonal curve

3. the area enclosed by [AB] and the polygonal curve is equal to σe

These points are easily computed by keeping in memory and updating the points
A and B of the curve plus the associated chord area.

Notice that if the convex component is not closed (which is the case if the
initial curve is not convex), its endpoints are kept.

Figure 20.5: Affine scale space of a “hand” curve, performed with the alternate
affine erosion-dilation scheme. (scales 1, 20, 400). Experiment : Lionel Moisan.

• Iteration of the process
To iterate the process, we use the fact that if Eσ denotes the affine erosion

plus dilation operator of area σ, and h = (hi) is a subdivision of the interval
[0, H] with H = T/ω and ω = 1

2

(
3
2

)2/3, then as we are going to show further,

E(h1−h0)3/2 ◦ E(h2−h1)3/2 ◦ ... ◦ E(hn−hn−1)3/2

(
c0

)
−→ cT

as |h| = maxi hi+1 − hi → 0, where cT is the affine shortening of c0 up to scale
T , described by the evolution equation (16.11). We refer to Chapters 22 and 24
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for a proof of the equivalence between this affine invariant curve evolution and
the above iterated alternate affine erosion-dilation scheme.

• Comments
The algorithm takes a curve (closed or not) as input, and produces an output

curve representing the affine shortening of the input curve (it can be empty if
the curve has disappeared) . The parameters are

• T , the scale to which the input curve must be smoothed

• εr, the relative spacial precision at which the curve must be numerically
represented (between 10−5 and 10−2 when using four bytes C float num-
bers).

• n, the minimum number of iterations required to compute the affine short-
ening (it seems that n ' 5 is a good choice). From n, the erosion area σ
used in step 3 is computed with the formula

σ2/3 =
α · T 4/3

n
.

Notice that thanks to the σ/8 lower bound for σe, the effective number of
iterations cannot exceed 4n.

• R, the radius of a disk containing the input curve, used to obtain homoge-
neous results when processing simultaneously several curves. The absolute
precision ε used at step 2 is defined by ε = Rεr.

The algorithm has linear complexity in time and memory, and its stability
is ensured by the fact that each new curve is obtained as the set of the middle
points of some particular chords of the initial curve, defined themselves by an
integration process (an area computation). Hence, no derivation or curvature
computation appears in the algorithm.

20.5 Exercises

Exercise 20.8. The aim of this exercise is to prove that a one-to-one mapping Ã :
R2 → R2 that preserves parallelism must be of the form Ã(x) = Ax + b, where A is
a linear mapping and b is a fixed vector. The preservation of parallelism is defined as
follows: If any four points x1, x2, x3, and x4 satisfy x1 − x2 = λ(x3 − x4) for some
λ ∈ R, then there exists a µ ∈ R such that Ãx1 − Ãx2 = µ(Ãx3 − Ãx4).

(i) Let i and j be the usual orthonormal basis for R2 and write x = xi+ yj. Define
A by Ax = Ãx− Ã0. Show that there are two real function µi : R→ R, i = 1, 2,
such that A(xi) = µ1(x)Ai and A(yj) = µ2(y)Aj.

(ii) Notice that A preserves parallelism and that A0 = 0.

(iii) Show that Ax = µ1(x)Ai + µ2(y)Aj.

(iv) Show that µ1(λ) = µ2(λ).

(v) We wish to show that µ1(x) = x. One way to do this is to prove that µ1 : R→ R
is an isomorphism. This can be done using the fact that x1 − x2 = λ(x3 − x4)
implies that Ax1−Ax2 = µ(Ax3−Ax4). Once you have shown that µ1 : R→ R
is an isomorphism, you can quote the result that says any isomorphism of R onto
itself must be x 7→ x, or you can prove this result.
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Exercise 20.9. A justification of the main step of Moisan’s algorithm. We refer to
the ”discrete affine erosion” step of the Moisan algorithm described in Section 20.4.1.
It is said that a polygon approximating a the affine erosion of a convex set can be
obtained by finding many chord-arc sets and taking the middle points of their chords
as vertices of the eroded polygon. This follows from the fact that the chords of two
nearby chord-arc sets with same area tend to meet at their common middle point.

1. Let abcd be a quadrilateral with diagonals ac and bd. Let i be the crossing point
of ac and bd. Assume that the areas of the triangles abi and icd are equal and
that a and c are fixed points while b and d move in such a way that d → c and
b → a. Prove that the lengths |ia|, |ib|, |ic|, |id| all tend to |ac|

2
. Hint: to do so,

prove that the area of the triangle idc is equivalent to θ.|id|2
2

, where θ is the
angle of id with ic.

2. Let C be a convex Jordan curve surrounding a convex set X and let ∆ be a
straight line meeting C at a and c. Call CA one of the two chord-arc sets defined
by ∆ and C. Let b be a point close to a on C and d a point close to c chosen in
such a way that the chord-arc CA′ defined by the line ∆′ = bd and C has the
same area as CA. Apply the result of the first question with b → a.

3. Deduce from this and Proposition 20.13 that the Moisan algorithm computes
an approximation to an affine erosion of a polygon.

Exercise 20.10. Assume that X is convex, open and bounded. We refer to Figure
20.6 below for the definitions of the various objects. Thus, ∆(0) is an arbitrary line
that contains x and C(0) is the connected component of X \∆(0) on the arrow-side
of ∆(0) whose boundary contains x. C(ϕ) is the connected component of X \ ∆(ϕ)
on the arrow-side of ∆(ϕ) whose boundary contains x. Since X is open, there is an
r > 0 such that the disk D(x, r) is contained in X; since X is assumed to be bounded,
there is an R > 0 such that X ⊂ D(x, R).

ϕQc

∆(ϕ)

∆(0)



x

C(0,ϕ)

D(x,r)

Figure 20.6: Definition of C(0, ϕ). The set C(0, ϕ) is the connected component
of X \ (∆(0) ∪∆(ϕ)) that lies in the direction of the arrows.

(i) Show that C(0, ϕ) ⊂ C(0) and C(0, ϕ) ⊂ C(ϕ).

(ii) Show that area(C(0) ∩ C(0, ϕ)c) → 0 as ϕ → 0 and similarly that area(C(ϕ) ∩
C(0, ϕ)c) → 0 as ϕ → 0.

(iii) Deduce that area(C(ϕ)) → area(C(0)) as ϕ → 0.

This shows that area(C(ϕ)) is a continuous function of ϕ. Thus, the inf∆(ϕ) area(C(ϕ))
is attained, which means that for every x ∈ X there is some ϕ such that δ(x, Xc) =
[area(C(ϕ))]1/2.

Is the above result still true if X is not convex?
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20.6 Comments and references

Shape-recognition algorithms in the plane are clearly more robust if they are
affine invariant, if only because most optical devices that copy plane images
(photocopiers) or that convert plane images to digital information (scanners,
faxes) create a slight affine distortion. Also, all diffeomorphisms are locally
affine. Affine-invariant techniques for matching shapes are described in [176];
discussions of the role of affine and projective invariance for object recognition
can be found in [50], [355], and [190]. Corners and T-junctions can appear in
images with arbitrary angles, and the detection of angles between straight lines
should be affine invariant. Algorithms for affine-detection of angles are proposed
in [48], [14], [343], and [102]. See Merriman, Bence, and Osher [241] for a very
original numerical view for filtering multiple junctions. Because of the relevance
to computer vision, there has been considerable research devoted to looking for
affine-invariant definitions of classical concepts in geometric measure theory
and integral geometry. An interesting attempt to define an “affine-invariant
length” and an “affine-invariant dimension” analogous to Hausdorff lengths and
dimensions is given in [103]. The diameters of the sets of a Hausdorff covering
are simply replaced by their areas. Several attempts to define affine-invariant
analyses of discrete sets of points are described in [138] and [305]. An affine-
invariant symmetry set (skeleton) for shapes is defined in [140]; the 1/3 power
law of planar motion perception and generation is related to affine invariance in
[287]. Some of the techniques on affine erosions and dilations presented in this
chapter were announced in [217]. We have made liberal use of the Matheron
formalism for monotone set operators [239].

The fully invariant affine curve evolution geometric algorithm which we pre-
sented was found by Moisan [249]. Its implementation for all level lines of an
image was realized in Koepfler [?]. Cao and Moisan [?] have generalized this
curve evolution approach to curvature motions at arbitrary speed of the curva-
ture. They succeeded in numerically moving curves at velocities proportional
to the power 10 of curvature. Lisani et al. [217] and later Cao, Gousseau, Sur
and Musé [?] have used the affine curve evolution scheme for shape recognition
and image comparison algorithms.
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Chapter 21

Localizable Structuring
Elements and the Local
Maximum Principle

Given a set of structuring elements B, the scaled operators ISh defined by

IShu(x) = inf
B∈B

sup
y∈x+hB

u(y)

are immediately translation invariant and contrast invariant. Furthermore, if
the elements of B are uniformly bounded, then the operators satisfy an impor-
tant local property that we have not yet emphasized: If two functions u and v
are such that u(y) ≤ v(y) for all y in some disk D(x, r), then for sufficiently
small h, hB ∈ D(0, r), and IShu(x) ≤ IShv(x). This is a special case of the
local maximum principle, which for bounded structuring elements goes almost
un-noticed. It might seem at first glance that we would not have a local max-
imum principle if the structuring elements were not bounded. It turns out,
however, that for a large class of unbounded structuring elements, the opera-
tors ISh behave as if they were local operators—in the sense that they satisfy a
local maximum principle. For example, if the operators ISh are affine invariant,
then the affine-invariant structuring elements B cannot be bounded. Indeed,
affine invariance allows an element B ∈ B to be stretched arbitrarily far in any
direction: The matrix A =

(
ε 0
0 1/ε

)
, where ε is small, followed by a rotation,

does the job. Nevertheless, there are affine-invariant operators that satisfy a
local maximum principle. In particular, we will show that this is the case for
B = Baff . In general, the application of operators that satisfy this property
involves an error term:

IShu(x) ≤ IShv(x) + o(hβ).

We are going to define a property of structuring elements B called local-
izability, and even though B may contain arbitrarily large elements, or even
unbounded elements, if it is localizable, then the inf-sup operators defined by B
will satisfy a local maximum principle. The importance of the local maximum
principle for our program will become clear in the chapter on viscosity solu-
tions. Since our focus is on affine-invariant operators, we will apply the concept

243
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of localizability only to families of affine-invariant structuring elements, but the
reader should keep in mind that concept is applicable to other situations. For
example, the structuring elements associated with a median filter defined by a
k that does not have compact support, are unbounded, but they may be local-
izable. A case in point is the Gaussian: It does not have compact support, but
it can be shown that the structuring elements are localizable.

21.1 Localizable sets of structuring elements

Recall that the Euclidean distance d between a point x and a set Y is defined
by

d(x, Y ) = inf
y∈Y

|x− y|.

It will be convenient to use the following notation: D(0, ρ) will denote the open
disk (or ball) {x | |x| < ρ}, and Da will denote the dilation operator defined by

Da(X) = {x | d(x, X) < a}.

In the notation of Chapter 13, this means that Da = Da, where the structuring
element for Da is D(0, 1). Note that if X is open and connected, then Da(X)
is open and connected. We will write ∂X to denote the boundary of X. These
definitions and notation are used to define the concept of a set of structuring
elements being localizable.

For convenience, we introduce two set operators:

• C0[X] = the connected component of X that contains the origin.

• C∂
0 [X] = the connected component of X that contains the origin in its boundary.

The set X will always be open and either contain the origin or contain the origin
in its boundary. Note that these operators commute with scaling: For example,
C0[hX] = hC0[X]. Note also that these operators are monotone.

Definition 21.1. Let α > 0 be a positive constant. Assume that B is a set of
structuring elements whose members are open and contain the origin. B is said
to be α-localizable if there are two constants c > 0 and R > 0, where c and R
depend on B, such that for every ρ > R the following conditions holds: For each
B ∈ B, there is a B′ ∈ B such that

(i) B′ ⊂ D(0, ρ);

(ii) B′ ⊂ Dc/ρα(C0[Bρ]), where Bρ = B ∩D(0, ρ).

The constant α is called the exponent of localizability.

We wish to emphasize that our definition of localizable includes the as-
sumption that the elements of B are open and contain the origin. Note also
that a localizable set B contains bounded members. Also, it may happen that
C0[Dc/ρα(C0[Bρ]) ∩ D(0, ρ)] is itself a member of B for all B ∈ B; indeed, the
proof of Proposition 13.4 shows that this is the case if B = Baff . The next result
shows how the concept of localizability scales.
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Proposition 21.2. Let h, 0 < h ≤ 1, be a scaling factor and assume the
notation of Definition 13.1. A set of structuring elements B is α-localizable if
and only if there are constants c > 0 and R > 0 such that for all r > 0 and all
h < r/R the following conditions holds: For each B ∈ hB, there is a B′ ∈ hB
such that

(i′) B′ ⊂ D(0, r);

(ii′) B′ ⊂ Dchα+1/rα(C0[Br]), where Br = B ∩D(0, r).

Proof. Assume the conditions of the proposition. Then r/R > 1 for all r > R.
Since h can be any number in the range 0 < h < r/R, the conditions of the
proposition are true for h = 1. By letting ρ = r, we have the conditions of
Definition 13.1.

To prove that the conditions of Definition 13.1 imply the conditions of the
proposition, let ρ = r/h. Then the statement “all ρ > R” is equivalent to the
statement “all r > 0 and all h < r/R.” Next, we need to see how Dc/ρα(X)
scales:

hDc/ρα(X) = {hx | d(x, X) < c/ρα}
= {hx | d(hx, hX) < ch/ρα}
= {y | d(y, hX) < ch/ρα}
= Dch/ρα(hX).

If X = C0[Bρ], then hDc/ρα(C0[Bρ]) = Dchα+1/rα(C0[hBρ]), where hBρ = Br. In
other words, B′ ∈ Dc/ρα(C0[Bρ]) implies that hB′ ∈ Dchα+1/rα(C0[Br]), which
shows that (ii) implies (ii′). ¤

We will use Definition 13.1 and its scaled version, Proposition 13.1, to prove
two results: The first is that if B is localizable, then the ISh satisfy the local
maximum principle; the second is that Baff is 1-localizable.

21.2 The local maximum principle

While the notion of α-localizability has an important role in mathematical mor-
phology, we are concerned in this book only with the 1-localizabable families of
structuring elements. Thus, from this point, we assume that α = 1 and leave
the general cases as exercises.

Lemma 21.3 (local maximum principle). Let B be a 1-localizable set of
structuring elements with the associated constants c > 0 and R > 0. Assume
that the functions u and v satisfy a Lipschitz condition on a disk D(x, r) with
Lipschitz constant L. If u(y) ≤ v(y) for y ∈ D(x, r) and if h < r/R, then

IShu(x) ≤ IShv(x) + Lc
h2

r
and SIhu(x) ≤ SIhv(x) + Lc

h2

r
.

Proof. For notational convenience, we take x = 0. Then

IShv(0) = inf
B∈hB

sup
y∈B

v(y) ≥ inf
B∈hB

sup
y∈B∩D(0,r)

v(y) ≥ inf
B∈hB

sup
y∈B∩D(0,r)

u(y).

(21.1)
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By Proposition 13.2, for all B ∈ hB, there exists B′ ∈ hB such that B′ ⊂ D(0, r)
and B′ ⊂ Dch2/r(C0[B ∩ D(0, r)]). Thus, since u is Lipschitz with constant L
and since for every point b′ ∈ B′ there is a point b ∈ B ∩ D(0, r) such that
|b′ − b| < ch2/r, we have

sup
y∈B∩D(0,r)

u(y) ≥ sup
y∈B′

u(y)− Lc
h2

r
. (21.2)

These last two inequalities imply that

IShv(0) + Lc
h2

r
≥ inf

B∈hB
sup
y∈B′

u(y),

where B′ is any set such that B′ ∈ hB, B′ ⊂ D(0, r), and B′ ⊂ Dch2/r(C0[B ∩
D(0, r)]). If we denote the family of all such sets B′ associated with B by
B′ = B′(B), then a more precise statement is that

IShv(0) + Lc
h2

r
≥ inf

B∈hB

(
sup

B′∈B′
sup
y∈B′

u(y)
)
.

Let infB∈hB
(

supB′∈B′ supy∈B′ u(y)
)

= λ. Then we claim that infB∈hB supy∈B u(y) ≤
λ. To see this, let ε > 0 be arbitrary. By the definition of λ, there is some set
B ∈ hB such that supy∈B u(y) ≤ λ + ε. Thus, infB∈hB supy∈B u(y) ≤ λ + ε,
which, since ε is arbitrary, implies that infB∈hB supy∈B u(y) ≤ λ. This yields
the result:

IShu(x) = inf
B∈hB

sup
y∈x+B

u(y) ≤ IShv(x) + Lc
h2

r
.

The result for SIh follows from the relation −ISh(−u) = SIh(u). ¤

Note that the proof for ISh does not use the fact that v is locally Lipschitz.
In fact, the proof works for any v. The problem with this is that we would not
have the result for SIh if we did not assume that v is locally Lipschitz. Also,
taking x = 0 in the proof is indeed only a notational convenience; knowing that
the assumptions hold at x does not imply they hold elsewhere. Thus, as stated,
the result of Lemma 13.3 is strictly local.

Lemma 13.3 and the next lemma provide the links between the localizability
of structuring elements and the local properties of the associated operators. As
such, they lie near the heart of our program. Their use is the key to demon-
strating the asymptotic behavior of inf-sup operators defined by 1-localizable
families of affine-invariant structuring elements. The local maximum principle
is also used in the proof of the Barles–Souganidis theorem, Proposition 15.13,
which is essential for relating the inf-sup operators to their associated PDEs via
viscosity solutions of the PDEs.
Exercise 21.1. Prove the general form of Lemma 13.3: Replace the hypothesis that
B is 1-localizable with the hypothesis that it is α-localizable and conclude that

IShu(x) ≤ IShv(x) + Lc
hα+1

rα
.

Lemma 13.3 compares the action of ISh on two functions u and v. In the
next lemma, we consider an operator ISr

h that approximates ISh and examine
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its action on a single function u. The approximate operator ISr
h is defined by

truncating the structuring elements B: We replace the family B with the family
Br = {Br | Br = B ∩D(0, r), B ∈ B}. Thus,

ISr
hu(x) = inf

Br∈hBr

sup
y∈x+Br

u(y) = inf
B∈hB

sup
y∈(x+B)∩D(x,r)

u(y).

The local properties of ISr
h have been imposed by definition. Later, when we

apply this result, we will take r = h1/2, so the error term will be Lch3/2.

Lemma 21.4 (localization lemma). Let B be a 1-localizable set of structuring
elements with constants c > 0 and R > 0 and assume that h < r/R. If u satisfies
a Lipschitz condition in D(x, r) with constant L, then

(i) ISr
hu(x) ≤ IShu(x) ≤ ISr

hu(x) + Lch2/r;

(ii) |ISr
hu(x)− IShu(x)| ≤ Lch2/r;

(iii) |SIr
hu(x)− SIhu(x)| ≤ Lch2/r.

(iv) |SIr
hISr

hu(x)− SIhIShu(x)| ≤ 2Lch2/r, if u is L-Lipschitz on RN

Proof. By taking u = v in inequality (21.1), we see that IShu(x) ≥ ISr
hu(x).

This half of (i) does not depend on u being Lipschitz on D(x, r), but the other
half of (i) does depend on u being Lipschitz on D(x, r). To prove the other half
of (i), we are going to follow the proof of Lemma 13.3, including the notational
convenience that x = 0. In particular, we use the 1-localizability of B to establish
the inequality

sup
y∈B∩D(0,r)

u(y) ≥ sup
y∈B′

u(y) + Lc
h2

r
,

which is (21.2). The remainder of the proof shows that

ISr
hu(x) + Lc

h2

r
≥ IShu(x),

and this proves the other half of (i).
Inequality (ii) is just a restatement of (i). Inequality (iii) is deduced from

(ii) by using the relation ISh(−u) = −SIhu. To prove (iv), first recall from
Lemma 6.5 that if u is Lipschitz with constant L, then IShu and ISr

hu are
Lipschitz with constants no greater than L. By (ii) and (iii) we have

ISr
hu(x) ≤ IShu(x) ≤ ISr

hu(x) + Lch2/r; (21.3)

SIr
hu(x) ≤ SIhu(x) ≤ SIr

hu(x) + Lch2/r. (21.4)

Replacing u with IShu in (21.4) and applying SIr
h to (21.3) shows that

SIr
hISr

hu(x) ≤ SIhIShu(x) ≤ SIr
hISr

hu(x) + 2Lch2/r,

which proves (iv). ¤

The statements and proofs of Lemmas 13.3 and 13.4 are strictly local. There
are, however, immediate global generalizations, and since these more general
results are important for later applications, we give them a precise statement
for future reference.
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Lemma 21.5. Let K be an arbitrary set and assume that the function u and v
in Lemmas 13.3, 13.4(i), 13.4(ii), and 13.4(iii) are L-Lipschitz in D(x, r) for
every x ∈ K. Then the results of these lemmas are true uniformly for x ∈ K.

These uniform results need no special proofs. One merely rereads the proofs
of the local lemmas and notes that, if the same hypotheses hold at each point
x ∈ K, then the results are true for each x with exactly the same error term.
When we apply Lemma 13.5, K will be compact, but clearly this is not a
necessary condition for the lemma.

The next result is a direct consequence of Lemma 13.3. It allows us to fix
an optimal relation between the localization scale r and the operator scale h.
Again, it is a local result that can easily be made uniform.

Lemma 21.6. Let B be a 1-localizable set of structuring elements with constants
c > 0 and R > 0. Let u and v be two continuous functions that satisfy Lipschitz
conditions with the same constant L on a disk D(0, r). If

|u(x)− v(x)| ≤ C|x|3

for x ∈ D(0, r), and if h ≤ r2 and h < 1/R2, then

|IShu(0)− IShv(0)| ≤ (C + Lc)h3/2.

Proof. The relation v(x)−Cr3 ≤ u(x) ≤ v(x)+Cr3 is true for all x ∈ D(0, r),
so we can apply Lemma 13.3 and conclude that

IShv(0)− Cr3 − Lc
h2

r
≤ IShu(0) ≤ IShv(0) + Cr3 + Lc

h2

r

for h < r/R. This argument is also true for 0 < s ≤ r, if we have h < s/R. So,
in particular, if we take s = h1/2 ≤ r and h < s/R, that is, h < 1/R2, we have

IShv(0)− Ch3/2 − Lch3/2 ≤ IShu(0) ≤ IShv(0) + Ch3/2 + Lch3/2,

which proves the result. ¤

Here, we have taken the point of view that r is given, and we ask that h = r2.
In other situation, we may take the opposite view and ask that r be determined
by h. This is the case, for example, if we are able to choose the size of r for the
localized operator ISr

h.
The main application of Lemma 13.4 is to reduce the asymptotic analysis

of the operator ISh as h → 0 to the case where it is applied to quadratic
polynomials. (We have seen in Chapters 10 and 11 how this kind of analysis
works in the case of structuring elements that are bounded and isotropic.)

21.3 Baff is 1-localizable

We are going to prove that Baff is 1-localizable, but to make things as transparent
as possible, we first do some geometry. Thus, consider Figure 21.1.

We are interested in the area of Dc/ρ([0, z]) ∩D(0, ρ) ∩∆c. This is the area
of the figure ABCD. In what follows, c > 0 is a constant. For the figure to
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α
ρ

c/ρ

0
A

B C

D

∆

β

L(t)

z

Figure 21.1: Dilation of [0, z].

make sense, we must assume that ρ2 ≥ c. We want a lower bound for the area
of the set ABCD that will hold for any β ∈ [0, π/2]. (In the limit case β = π/2,
and z ∈ ∆.) We also wish to compare this area with that of another set, and
the way we do this limits us to using the set A0zD. (The reason for this will
become clear.) Denote the area of A0zD by A = A(α, β). Thus, assuming
ρ2 ≥ c, we have

A(α, β) =
c

2

(
β sin α +

α

sin α
+ cos α

)
.

This is written in terms of α and β because it is easy to see what happens as α
ranges from zero to π/2. This is equivalent to ρ going from +∞ to

√
c, which

is just the range of interest. The smallest value of the function

f(α, β) = β sin α +
α

sin α
+ cos α

for 0 ≤ α ≤ π/2, 0 ≤ β ≤ π/2 occurs at α = π/2, β = 0, and A(π/2, 0) = (π/4)c
for these values.

To avoid repeating it, we assume that the set D(0, ρ) ∩ ∆c always denotes
the same open half-disk, and all of the sets we consider are understood to lie on
the same side of ∆ as D(0, ρ) ∩∆c.

Parameterize the segment [0, z] so the points are represented by tz, t ∈ [0, 1].
Let L(t) denote the line orthogonal to [0, z] at tz. Let yt be any point on L(t)
such that yt ∈ D(0, ρ)∩∆c, and consider the set D(yt, c/ρ)∩D(0, ρ)∩∆c. Then
the open segment L(t) ∩D(yt, c/ρ) ∩D(0, ρ) ∩∆c is always at least as long as
the segment on the same line defined by D(tz, c/ρ)∩L(t)∩ (A0zD). Note that
this is true for all t ∈ [0, 1], even for those t close to one.

Lemma 21.7. Assume the geometry and notation of Figure 21.1. Let Γ be
any Jordan arc connecting the origin and z and lying completely in the set
D(0, ρ) ∩∆c, except for the end points. Then

area
(
Dc/ρ(Γ) ∩D(0, ρ) ∩∆c

) ≥ area(A0zD) ≥ π

4
c
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whenever ρ2 ≥ c.

Proof. Let f denote the characteristic function of Dc/ρ(Γ)∩D(0, ρ)∩∆c = G.
Then

area(G) =
∫

R2
f(x, y) dxdy.

By Fubini’s theorem,

area(G) =
∫

R

(∫

R
f(x, y) dy

)
dx,

and

area(G) ≥ c

2
β sin α +

∫ 1

0

(∫

R
f(tz, y) dy

)
dt.

For fixed t, ∫

R
f(tz, y) dy =

∫

l(t)

f(tz, y) dy,

where l(t) = G ∩ L(t). We know that l(t) contains a line segment at least as
long as (A0zD) ∩ L(t), so

area(G) ≥ c

2
β sinα + area(0zDE) = area(A0zD).

Note that in adding the term (c/2)β sin α to the area of G, we use the fact that
the origin is a point of Γ. ¤

Ostensibly, this lemma has little to do with Baff . The lemma only compares
the area of Dc/ρ(Γ) ∩D(0, ρ) ∩∆c, where Γ is a Jordan arc that connects the
origin to z ∈ ∂D(0, ρ), with the area of Dc/ρ([0, z]) ∩ D(0, ρ) ∩ ∆c. This is a
purely geometric result, however, the application to Baff is direct.

Before stating and proving the theorem, we note that all of the connected
sets involved in the proof are open and thus arcwise connected. As usual, ∆
denotes a straight line through the origin, and ∆c always denotes the same open
half-plane. If A is an open set that contains the origin, then the set A∩∆c will
contain a half-neighborhood D(0, ε) ∩∆c for some ε > 0.

Proposition 21.8. Baff is 1-localizable.

Proof. We must exhibit a c > and an R > 0 such that the conditions of
Definition 13.1 hold. Taking a clue from Lemma 13.6, we wish to have c > 4/π,
so we take c = 2 and R =

√
2. These are not the “best” constants; we only

claim that they work.
Let B be any element of Baff . Then B is open and connected, B contains the

origin, and δ(0, Bc) > 1, or equivalently, given any ∆ through the origin, the
two connected components of B∩∆c that contain the origin in their boundaries
always have areas greater than or equal to b = δ(0, Bc).
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Three open connected sets enter the proof:

B′ = C0[Dc/ρ(C0[B ∩D(0, ρ)]) ∩D(0, ρ)].

C ′ = C∂
0 [B′ ∩∆c].

C = C∂
0 [B ∩∆c].

By our convention regarding the use of ∆c, the sets C and C ′ lie on the same
side of ∆.

The plan is to show that B′ is in Baff . Since B′ is open and connected, it
remains to exhibit a c′ > 1 that does not depend on ∆ such that area(C ′) ≥
c′ > 1.

There are two cases: C ⊂ D(0, ρ) and C 6⊂ D(0, ρ). If C ⊂ D(0, ρ), then, by
the definition of Baff , area(C) ≥ b. (This is the only place where the definition
of Baff is used.) In this case, C ⊂ C ′, and area(C ′) ≥ b > 1. Thus, c′ = b works
for this case, and we are done. (The proof that C ⊂ C ′ is left as an exercise.)

If C 6⊂ D(0, ρ), then there is a point a ∈ C such that |a| > ρ. There is a
Jordan arc γ ∈ C that connects the origin to a. (In fact, we may assume that
this Jordan arc is piecewise linear.) Let t : [0, 1] → γ be a parameterization such
that γ(0) = 0 and γ(1) = a. Then there is a smallest t = t0 such that γ(t0) ∈
∂D(0, ρ). Call this point z and let Γ denote the part of γ defined by 0 ≤ t ≤ t0.
The arc Γ lies in C ∩D(0, ρ) ∩∆c, and in particular, Γ ⊂ B ∩D(0, ρ) ∩∆c. It
follows that Dc/ρ(Γ) ∩D(0, ρ) ∩∆c ⊂ C ′.

By Lemma 13.6, area(Dc/ρ(Γ) ∩D(0, ρ) ∩∆c) ≥ (π/4)c, so area(C ′) > π/2,
by the definition of c. Thus, by taking c′ = min{π/2, b}, it is always true that
area(C ′) ≥ c′ > 1, and c′ does not depend on ∆. It follows from Definition 13.1
that Baff is 1-localizable. ¤

Exercise 21.2. We skipped over two points in the proof that the reader should check.
The first was when we stated that C ⊂ C′ (the case C ⊂ D(0, ρ)), and the second was
when we claimed that Dc/ρ(Γ)∩D(0, ρ)∩∆c ⊂ C′ (the case C 6⊂ D(0, ρ)). (Hint: All
of the sets in sight are open and connected, so they are arcwise connected.)

The next two exercises show that there are other affine-invariant families of
structuring elements that are 1-localizable.

Exercise 21.3. Let B be an affine-invariant family of open convex sets, each of which
contains the origin and has area less than one. The goal is to show that B is 1-
localizable. Here is one way to do this. Suppose ρ > R, where R > 0 is a constant
to be determined, and that B is an element of B. If B ⊂ D(0, ρ), take B′ = B, and
we are done. If not, let x be a vector such that |x| = ξ = supy∈B |y|. Establish the

coordinate system based on i = x/|x| and j = i⊥. Consider the affine transformation

defined by A =
(

ρ/ξ 0
0 ξ/ρ

)
, and show that if ρ is greater than some constant, then

AB ⊂ D(ρ, 0). Let B′ = AB, which belongs to B by assumption. (Hint: Let η be
the longest perpendicular distance from the x-axis to Bc. Relate the product ηξ to
the area of B and determine a value for R that works.) Having found an R such that
B′ ⊂ D(0, ρ) for ρ > R, look for a c > 0 such that B′ ⊂ Dc/ρ(B).

Exercise 21.4. Let B be a bounded, open, and connected set that contains the origin.
Define the affine-invariant family B by B = {AB | A ∈ SL(R2)}. Use the methods of
Exercise 3.2 to show that B is 1-localizable.
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21.4 Comments and references

We were vague about the domains of the various functions that appear in section
13.2. In fact, the results are true in RN even though we spoke of “disks” rather
than “balls.” The results in section 13.3 are, however, strictly limited to R2.

The mathematical techniques for localizing a set of structuring elements
developed in this chapter were first explained in [154], [153], and [150]. The
version presented here is much simpler. The doctoral dissertations by Frédéric
Cao and Denis Pasquignon contain related techniques [60, 61, 281].
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Chapter 22

Asymptotic Behavior of
Affine-Invariant Filters

We are going to analyze the asymptotic behavior of affine-invariant operators
in much the same way we analyzed contrast-invariant isometric operators in
Chapters 10 and 11. The analysis in this chapter will be in R2. Recall that
when we say an operator T is affine invariant, we mean that T commutes with
all elements of the special linear group SL(R2). Thus, for A ∈ SL(R2), we
have ATu = TAu for all functions u in the domain of T , where Au is defined by
Au(x) = u(Ax), x ∈ R2. At this point, there are two possible scenarios: Assume
we are given an affine-invariant operator T that is also contrast and translation
invariant and then use Theorem 7.3 to conclude that T can be represented as

Tu(x) = inf
B∈B

sup
y∈x+B

u(y), (22.1)

where the set of structuring elements B may be taken to be {X | 0 ∈ T X},
T X = X1T1X , and where (14.1) holds almost everywhere for u in the domain
of T . The other approach, which is the one we take, is to assume the set of
structuring elements B is given and to define T by (14.1). This places the
focus on B. With this approach, we know immediately that T is contrast and
translation invariant and that it is defined on all u : R2 → R. We are, however,
left with the task of proving that T is affine invariant if and only if B is affine
invariant. (This is the content of Exercise 14.1.). Again, it is understood that, in
our context, “affine invariant” always means “invariant with respect to SL(R2).”

We assume that B is a set of affine-invariant structuring elements, and we
define for every u : R2 → R,

SIhu(x) = sup
B∈B

inf
y∈x+hB

u(y);

IShu(x) = inf
B∈B

sup
y∈x+hB

u(y).
(22.2)

SIhu is considered to be an affine erosion of u, and IShu is considered to be
an affine dilation of u. (Note that this nomenclature is consistent with the
definitions of Ẽa and D̃a in Chapter 12.) Since we have the relation SIhu =
−ISh(−u), it suffices to study just one of these operators, and we choose to
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investigate ISh. Our main concern is the behavior of IShu(x) as h → 0 for
u ∈ C3(R2). We will prove that, if B is affine invariant and 1-localizable, then

lim
h→0

IShu(x)− u(x)
h4/3

= cB|Du(x)|
(1

2
curv(u)(x)+

)1/3

,

where cB is a suitable constant. (As before, r1/3 means (r/|r|)|r|1/3.)
Exercise 22.1. Show that T is affine invariant if and only if B is affine invariant.

22.1 The analysis of ISh

The analysis of affine-invariant operators ISh will follow the general plan out-
lined in section 10.1.1 and exemplified by Theorem 10.2, with the important
difference that the structuring elements B are not bounded. They are, however,
isometric, since the group of isometries is a subgroup of the SL(R2). This means
that given a C3 function u, we can expand it in the form

u(x + y) = u(x) + px + ax2 + by2 + cxy + R(x,y),

where y = (x, y) and the linear term is px. (We use the notation and conventions
of section 4.5.) If we assume that this expansion holds for y ∈ D(0, r), then the
analysis of the error term R given in the proof of Theorem 10.2 implies that

|u(x + y)− u(x)− (px + ax2 + by2 + cxy)| ≤ sup
|y|≤r

‖D3(x + y)‖|y|3.

Define v for y ∈ D(0, r) by v(y) = u(x) + px + ax2 + by2 + cxy. If B is
1-localizable, and if h ≤ r2 and h < 1/R2, then we know from Lemma 13.6 that

|IShu(x)− IShv(x)| ≤ (C + Kc)h3/2.

(Here and elsewhere we use the fact that, if u is locally C3, then it is locally
Lipschitz. Also, refer to sections 13.1 and 13.2 for the meaning of the constants.)
This implies that the analysis of ISh can be reduced to analyzing the action of
ISh on polynomials of degree two. This analysis will be done in Theorem 14.4,
but before we get there, we need to consider the action of ISh on two specific
polynomials. Because the cases a = c = 0 and b = 1 or b = −1 play key roles,
we introduce special notation:

c+
B = inf

B∈B
sup
y∈B

(x + y2) and c−B = inf
B∈B

sup
y∈B

(x− y2),

where “ISh(px+ax2+by2+cxy)” always means “ISh(px+ax2+by2+cxy)(0).”
Since our main results use these constants, it is worth examining some examples.

Lemma 22.1. (i) Let B be an affine-invariant family of open convex sets that
have area one and that are symmetric with respect to the origin. Then c+

B > 0
and c−B = 0. (ii) If B = Baff , then c+

B > 0 and c−B = 0. (iii) If a set of
structuring elements B is affine invariant and contains one bounded element
that is open and contains the origin, then c−B = 0. In particular, this is the case
if B is affine invariant and 1-localizable.
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Proof. We prove (i) first. Let B be an element of B, and let l(α) denote the
line segment defined in polar coordinates by (α, ρ), 0 ≤ ρ < +∞. Both B
and l(α) are convex, so their intersection B ∩ l(α) is convex. Since B is open,
this set has the form [0, d(α)), where d(α) is the distance from the origin to
the boundary of B in the direction α. The function α 7→ d(α) is continuous
(Exercise 14.2). Since B has area one, this function can be a constant only if
d(α) = 1/

√
π. In all other cases, d(α) takes values greater than 1/

√
π and less

than 1/
√

π, and since it is continuous, it must take the value 1/
√

π. In fact,
since B is symmetric, d must assume the value 1/

√
π four times. In any case,

there is a point (x, y) ∈ ∂B such that x > 0 and x2 + y2 = 1/π.
Now consider the disk D = D(0, 1/

√
π). We have just seen that there is a

point (x, y) ∈ ∂B ∩ ∂D such that x > 0. If (x, y) ∈ D and x > 0, then x > x2,
and we have the following inequalities:

sup
(x,y)∈B

(x + y2) ≥ sup
(x,y)∈B∩D,x>0

(x + y2) ≥ sup
(x,y)∈B∩D,x>0

(x2 + y2) =
1
π

.

The right-hand term does not depend on B, so we have c+
B ≥ 1/π. The value

1/π is not significant for our purposes; we just wish to show that c+
B > 0.

To prove that c−B = 0, first note that since B is open and contains the origin,
there are points (x, y) ∈ B with x > 0 and y = 0. Thus, c−B ≥ 0. Fix B ∈ B
and consider the sets obtained by “squeezing” B onto the line x = 0:

Bε = {(x′, y′) | x′ = εx, y′ = y/ε, (x, y) ∈ B}.

Then Bε is an affine transform of B, so Bε ∈ B. Therefore,

c−B ≤ sup
(x,y)∈Bε

(x− y2) ≤ sup
(x,y)∈Bε

(x) ≤ Cε.

Thus, c−B = 0.
We turn now to the proof of (ii). Assume that B is in Baff . Then by

definition, B is open, connected, and contains the origin, and the connected
components of B ∩ ∆c that contain the origin in their boundaries have areas
greater than or equal to b = δ(0, Bc) > 1. If we let ∆ be the y-axis and
H be the open half-plane defined by x > 0, then the definition implies that
area(B ∩H) > 1. This implies that

(
sup

(x,y)∈B∩H

(x)
)(

sup
(x,y)∈B∩H

(|y|)
)
≥ 1

2
. (22.3)

We wish to find a lower bound for sup(x,y)∈B(x+y2), so we may assume that B

is bounded, and define µ = sup(x,y)∈B∩H(x) and ν = sup(x,y)∈B∩H(y2). Then

sup
(x,y)∈B

(x + y2) ≥ sup
(x,y)∈B∩H

(x + y2) ≥ inf{µ, ν}.

Thus, c+
Baff

≥ inf{µ, ν}. Using the constraint (22.3), we conclude that

c+
Baff

≥ inf
µ≥0

{
µ,

1
4µ2

}
= 2−2/3 > 0.
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Finally, we must show that c−Baff
= 0. If B ∈ Baff and if B is bounded, then, as

in the proof of (i),

c−Baff
≤ sup

(x,y)∈Bε

(x− y2) ≤ sup
(x,y)∈Bε

(x) ≤ Cε,

and c−Baff
= 0. The proof of (iii) is exactly the same as showing that c−Baff

= 0. ¤

Exercise 22.2. The purpose of this exercise is to show that the function α 7→ d(α)
in Lemma 14.1 is continuous. (Hint: The assumption that d is not continuous leads
to a contradiction of the fact that the line segment l(α) intersects ∂B in one and only
one point.)

Exercise 22.3. This exercise is to show that it is possible to have c−B < 0 for a simple
set of structuring elements. Let B = {AC | A ∈ SL(R2)}, where C is a square with
one side missing defined as follows: C = {(x, y) | x = −2,−2 ≤ y ≤ 2; y = +2,−2 ≤
x ≤ 2; y = −2,−2 ≤ x ≤ 2}. Show that c+

B > 0 and c−B < 0.

As one can imagine, the polynomial px + by2, with p > 0, is particularly
important in the affine-invariant theory. Fortunately, an invariance argument
allows us to compute explicitly the action of ISh on px + by2.

Lemma 22.2. Let B be an affine-invariant set of structuring elements and
assume that at least one B ∈ B is bounded. Let ISh be the associate inf-sup
operator and assume that p > 0. Then

ISh(px + by2) = c+
B
( b

p

)1/3

ph4/3 if b > 0;

ISh(px + by2) = c−B
(−b

p

)1/3

ph4/3 if b ≤ 0.

Proof. The existence of a bounded structuring element ensures that sup(x,y)∈B(px+
by2) is not always infinite. If b 6= 0, then

B ∈ B ⇐⇒ h

(
h1/3|b|1/3 0

0 h−1/3|b|−1/3

)
B ∈ hB.

Thus,

inf
B∈hB

sup
(x,y)∈B

(x + by2) = inf
B∈B

sup
(x,y)∈B

(|b|1/3h4/3x + b(|b|−2/3h4/3y2))

= |b|1/3h4/3 inf
B∈B

sup
(x,y)∈B

(x + (b/|b|)y2).

Then we have

ISh(x + by2) =

{
c+
B b1/3h4/3 if b > 0;

c−B (−b)1/3h4/3 if b < 0.

Since p > 0, ISh(px + by2) = pISh(x + (b/p)y2), and we deduce that

ISh(px + by2) =

{
c+
B (b/p)1/3ph4/3 if b > 0;

c−B (−b/p)1/3ph4/3 if b < 0.
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Finally, we must deal with the case b = 0. Let B be a bounded element
of B and assume it is contained in the square [−R,R] × [−R,R]. Then the
element h

(
hε 0
0 h−1ε−1

)
B belongs to hB and is contained in the rectangle R =

[−Rεh2, Rεh2]× [−R/ε, R/ε]. Hence,

0 ≤ ISh(px) ≤ sup
(x,y)∈R

(px) ≤ pRh2ε.

Since we can take ε > 0 arbitrarily small, ISh(px) = 0. ¤

When we studied the asymptotic behavior of an operator T applied to a
smooth function u in Chapters 10 and 11, we usually assumed that Du(x) 6= 0;
Du(x) = 0 was a special case. This is also true for affine-invariant inf-sup
operators, and the next lemma deals with this case.

Lemma 22.3. Let B be an affine-invariant set of structuring elements, one of
which is bounded and all of which contain the origin, and let K be a compact
subset of R2. Then for x ∈ K the following inequality holds for every C3

function u :

|IShu(x)− u(x)| ≤ C(‖D2u(x)‖+ |Du(x)|)h4/3 + CKh2,

where 0 < h ≤ 1, C > 0 is a constant that depends only on B, and the constant
CK depends only on B, u, and K. If Du(x) = 0, then

|IShu(x)− u(x)| ≤ C ′‖D2u(x)‖h2 + C ′Kh3,

where C ′ depends only on B and C ′K depends only on B, u, and K.

Proof. We use the notation of sections 4.5 and 10.1. Let B be an arbitrary
element of B. Since B contains the origin, supy∈x+hB u(y) ≥ u(x), which
implies that IShu(x) ≥ u(x).

Now expand u in the familiar local coordinate system in a neighborhood of
x:

u(x + hy) = u(x) + phx + ah2x2 + bh2y2 + ch2xy + R(x, hy),

where y = (x, y). Then for any B ∈ B,

sup
y∈B

u(x + hy) ≤ u(x) + h sup
y∈B

(px + ahx2 + bhy2 + chxy) + sup
y∈B

|R(x, hy)|.

Now assume that B∗ is bounded. Then all of the suprema are finite, and
supy∈B∗ u(x + hy) is a finite upper bound for infB∈B supy∈B u(x + hy) =
IShu(x). Thus we have

0 ≤ IShu(x)−u(x) ≤ h sup
y∈B∗

(px+ahx2+bhy2+chxy)+ sup
y∈B∗

|R(x, hy)|, (22.4)

which is true for any bounded set B∗ ∈ B. We are now going to use the affine
invariance of B to manipulate B∗ and thereby obtain a good estimate for the
terms on the right-hand side of (22.4). Since B∗ is bounded, it is contained in
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the square [−S, S]× [−S, S], where S = supy∈B∗ |y|. By the affine invariance of

B, the set B′ =
(

h1/3 0
0 h−1/3

)
B∗ belongs to B and is contained in the rectangle

R = [−Sh1/3, Sh1/3]× [−Sh−1/3, Sh−1/3].

We replace B∗ with B′ in (22.4) and proceed to estimate the terms on the
right-hand side.

sup
y∈B′

(px + ahx2 + bhy2 + chxy) ≤ sup
y∈R

(px + ahx2 + bhy2 + chxy)

≤ pSh1/3 + |a|S2h5/3 + |b|S2h1/3 + |c|S2h ≤ pSh1/3 + (|a|+ |b|+ |c|)S2h1/3

= |Du(x)|Sh1/3 + (1/2)‖D2u(x)‖S2h1/3 ≤ C(‖D2u(x)‖+ |Du(x)|)h1/3,

where C = max{S, S2/2}. Note that C depends only on B; in particular, it
does not depend on x. Note also that this holds for all h, 0 < h ≤ 1. We now
turn to the other term:

sup
y∈B′

|R(x, hy)| ≤ sup
y∈R

|R(x, hy)| ≤ sup
y∈R

‖D3u(x + hy)‖h3|y|3

≤ sup
y∈R

‖D3u(x + hy)‖h3(S2h2/3 + S2h−2/3)3/2

≤ sup
y∈R

‖D3u(x + hy)‖23/2S3h2.

If K is an arbitrary compact set, then supx∈K supy∈R ‖D3u(x+ hy)‖23/2S3 ≤
CK for some constant that depends only on K, u, and B. This proves that

|IShu(x)− u(x)| ≤ C(|Du(x)|+ ‖D2u(x)‖)h4/3 + CKh2.

If Du(x) = 0, we do the same computation, but we treat both axes the same:
R is replaced with the square [−Sh, Sh]× [−Sh, Sh], and

sup
y∈R

(ax2 + by2 + cxy) + sup
y∈R

|R(x, hy)| ≤ C ′‖D2u(x)‖h2 + C ′Kh3.

¤

Since SIhu = −ISh(−u), it is clear that the lemma is true for SIh. Every-
thing is now in place to state and prove the first major result of this chapter.

Theorem 22.4. Let B be a 1-localizable affine-invariant family of structuring
elements. Assume that u : R2 → R is a Lipschitz function that is C3 in a
neighborhood of x. Then

IShu(x)− u(x) = h4/3cB|Du(x)|
(1

2
curv(u)(x)+

)1/3

+ o(x, h4/3),

where cB = c+
B . If u is C3 in a neighborhood of a compact set K and Du(x) 6= 0

on K, then the result holds for all x ∈ K and o(x, h4/3)/h4/3 → 0 as h → 0
uniformly for x ∈ K.
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Proof. The proof is rather involved, and it is difficult to motivate the various
steps. The overall object is to “eliminate” the x2-term and the xy-term and
then to apply Lemma 14.2. This is done using the fact that ISh is contrast
invariant.

Since ISh is invariant under translation, we assume that x = 0, and since
ISh commutes with the addition of constants, we assume that u(0) = 0. Since
B is isometric, we can represent u in the disk D(0, 1) as

u(y) = px + ax2 + by2 + cxy + R(y), (22.5)

where |R(y)| ≤ CRr3 for y = (x, y) ∈ D(0, r), 0 ≤ r ≤ 1. Then

px + ax2 + by2 + cxy − CRr3 ≤ u(y) ≤ px + ax2 + by2 + cxy + CR(r3).

The operators ISr
h satisfy the local maximum principle in the sense that v(y) ≤

w(y) for y ∈ D(0, r) implies that ISr
hv(0) ≤ ISr

hw(0) for 0 < h ≤ 1. This
implies that for all h, 0 < h ≤ 1,

ISr
hu(0) = ISr

h[px + ax2 + by2 + cxy](0) + O(r3), (22.6)

where |O(r3)| ≤ CRr3. The proof now branches into two cases, the first being
simple and the second being more complicated.

Case (1): p = |Du(0)| = 0.

From Lemma 14.3, IShu(0) = O(h2). Hence, IShu(0)/h4/3 = O(h2/3),
which proves the assertion.

Case (2): p = |Du(0)| 6= 0.

Eliminating the xy-term. For any ε > 0,

−|c|εy2 − |c|
ε

x2 ≤ cxy ≤ |c|εy2 +
|c|
ε

x2.

Then using (22.6) and the fact that the ISr
h are localized, we deduce the

following inequalities:

ISr
hu(0) ≤ ISr

h

[
px + (a + |c|ε−1)x2 + (b + |c|ε)y2

]
(0) + CRr3; (22.7)

ISr
hu(0) ≥ ISr

h

[
px + (a− |c|ε−1)x2 + (b− |c|ε)y2

]
(0) + CRr3. (22.8)

These inequalities hold for all ε > 0, 0 < h ≤ 1, and 0 < r ≤ 1. This leads us
to study the expressions

ISr
h

[
px + (a± |c|ε−1)x2 + (b± |c|ε)y2

]
(0),

which do not contain xy-terms. To keep the notation simple, we will write
A = a± |c|ε−1 and B = b± |c|ε. The important point for making the estimates
is that A = O(ε−1) and B = O(1). For typographical reasons, we will write
ISh[P (y)] for ISh[P (y)](0) for polynomials P . We will also assume that b 6= 0;
the case b = 0 leads to similar computations and the same conclusion.

Eliminating the x2-term. We are going to use the fact that the operators
are contrast invariant, and the contrast change that we choose is defined by
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gε(s) = s− (A/p2)s2. For |s| sufficiently small, gε is increasing, and we wish to
say that

ISr
h[px+Ax2+By2] = g−1

ε

(
ISr

h

[
px+By2−A

p2

(
(Ax2+By2)2+2px(Ax2+By2)

)])
,

but to do so, we must be sure that the argument of g−1
ε is in a neighborhood of

zero where gε is increasing. If we let t denote the argument of g−1
ε , this means

that |t| must be less than Cε for some constant C > 0. (Note that there are a
couple of cases involving the values of a and |c| that must be investigated, but
the controlling condition is that |t| is less than Cε for some constant C > 0.)

The next step is then to estimate the term (A/p2)
(
(Ax2+By2)2+2px(Ax2+

By2)
)
. Using the fact that A = O(ε−1) and B = O(1), a straightforward

computation shows that

A

p2

(
(Ax2 + By2)2 + 2px(Ax2 + By2)

)
= O(ε−2r3)

for (x, y) ∈ D(0, r). At this point, it is necessary to relate the three parameters
ε, r, and h. Our point of view is that ε and r are functions of h, and we let
r = h1/2 and ε = hθ, where θ > 0 is a small number that must meet several
conditions. The first of these is that |ISr

h[px + By2 −O(ε−2r3)]| < Cε = Chθ.
We know from Lemma 14.2 that ISh[px + By2] = O(h4/3) + O(ε1/3h4/3) =

O(h4/3), so we know from Lemma 13.4(i) that

ISr
h[px + By2] = ISh[px + By2] + O(h3/2) = O(h4/3).

This implies that ISr
h[px + By2 − O(ε−2r3)] = O(h4/3) + O(h(3/2)−2θ), which

means that we must choose θ such that O(h4/3) + O(h(3/2)−2θ) < Chθ to be
certain that

ISr
h[px + By2 −O(ε−2r3)]

is in the domain of g−1
ε . Clearly, any value of θ less than 1/2 will work.

Now that we have ISr
h[px + By2 − O(ε−2r3)] in the domain of g−1

ε , we use
that fact that g−1

ε (t) = t + O(ε−1t2) to deduce that

ISr
h[px + Ax2 + By2] = g−1

ε

(
ISr

h[px + By2 −O(ε−2r3)]
)

= ISr
h[px + By2 −O(ε−2r3)] + O(ε−1h8/3)

= ISr
h[px + By2] + O(ε−2h3/2) + O(ε−1h8/3)

= ISr
h[px + By2] + O(ε−2h3/2),

where for these estimates we must have θ ≤ 1/12, which is the second condition
on θ.

Final estimates. Use Lemma 13.4(i) to replace ISr
h[px+By2] with ISh[px+

By2]:
ISr

h[px + Ax2 + By2] = ISh[px + By2] + O(ε−2h3/2).

Using inequalities (22.7) and (22.8) and another call on Lemma 13.4(i) shows
that

ISh[px+(b−|c|ε)y2]−O(ε−2h3/2) ≤ IShu(0) ≤ ISh[px+(b+|c|ε)y2]+O(ε−2h3/2).
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We now apply Lemma 14.2 to the terms ISh

(
px + (b ± |c|ε)y2

)
in this last

expression and use the inequalities (α + β)1/3 ≤ α1/3 + β1/3 and α1/3 − β1/3 ≤
(α− β)1/3, for α, β ≥ 0, to deduce that

IShu(0) = c+
B
( b

p

)1/3

ph4/3 + O(h(3/2)−2θ) + O(h(4+θ)/3) if b > 0.

This essentially concludes the pointwise part of the proof. We simply replace
b with (1/2)|Du(0)|curv(u)(0) and p with |Du(0)| in these last equations and,
once again, choose a suitable θ. If we choose θ so that (3/2) − 2θ = (4 + θ)/3,
that is θ = 1/14, then it satisfies the two conditions on already encountered
and gives an error term O(h19/14). Recall that when we apply Lemma 13.4(i),
there is the restriction that h < r/R. Since r = h1/2, this means that we
must have h < 1/R2. To avoid repeating this restriction, we write the error
term as o(h4/3) rather than as O(h19/14) with the caveat “for small h.” This is
completely consistent with the fact that we are only interested in the behavior
of (IShu(x)− u(x))/h4/3 as h → 0.

Uniform convergence. It remains to argue that everything we have done
is “uniform on compact sets on which Du(x) 6= 0.” Based on previous work,
particularly in the proof of Theorem 10.2, this should be familiar territory:
Given a compact set K on which Du(x) 6= 0, the functions a, b and c are
bounded on K, p is bounded away from zero, and the various estimates can
be made to hold uniformly on K. The new element in the current proof is the
family of functions gε: It must be shown that ISr

h[px+By2−O(ε−2r3)] is in the
domain of gε uniformly for (x, y) ∈ K. The problem is not to have the estimate
ISr

h[px + By2 − O(ε−2r3)] ≤ Chθ uniform, but rather the issue is to establish
a uniform domain for the functions g−1

ε . Thus, it is necessary to show that the
domain of g−1

ε is {t | |t| < Chθ}, where the constant C > 0 does not depend on
the point (x, y) ∈ K. Once stated, this is easy to demonstrate.

Write gε(s) = s(1 − ks), where k = (a ± |c|ε−1)/p2. Since a and c are
continuous on K and since p is bounded away from zero on K, there is a constant
C > 0 such that

|k| ≤ C
(
1 +

1
ε

)

uniformly on K. The domain of g−1
ε is the set {t | |t| < 1/4|k|}, so the set

{t | |t| < (8C)−1ε} forms a “uniform” domain for g−1
ε , that is, ISr

h[px + By2 −
O(ε−2r3)] ≤ (8C)−1hθ implies that ISr

h[px + By2 −O(ε−2r3)] is in the domain
of g−1

ε . ¤

Exercise 22.4. Lemma 13.4(i) was used twice in the proof. Check to be sure the
functions involved were locally Lipschitz.

22.2 Alternate schemes

One of the main difficulties in mathematical morphology is that erosions and
dilations do not commute, and this means that openings and closings do not
commute. Here is the reason this is a problem: If we perform an opening of a
shape in R2 using a disk of radius h, then the external peaks are removed and
their radii of curvature become greater than h. A closing with a disk of radius h
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removes the peaks pointing inward making their radii of curvature greater than
h. Thus, the aim of opening and closing is to smooth the peaks in exactly the
same way, and it would be quite desirable to do both operations simultaneously.
In other words, it would be nice if openings and closings commuted so we could
speak of a “curvature thresholding” operator. This kind of commutation is
roughly attained asymptotically by alternating openings and closings [314]. The
idea is to choose a small scale h and to alternate the openings O and the closings
F as follows:

OhFhOh/2Fh/2 · · ·Oh/2nFh/2n

Since Oh and Fh are idempotent, the growth in scale is necessary to perform
a progressive smoothing up to scale h. In the same way, affine erosions and
dilations do not commute and should be used alternately. Since these operators
are not idempotent, the situation is simpler. We need only choose a scale small
enough and alternate Ẽh and D̃h, that is, compute (ẼhD̃h)n. In Chapter 16,
we will prove that the iterated filter (ẼhD̃h)n converges to the affine shortening
equations when h → 0 and n →∞ appropriately.

We are now going to extend the results of section 14.1, particularly Theorem
14.4, to alternate schemes, that is, to products like IShSIh. The alternate
schemes are easier to implement and numerically more efficient if we want to
have the property T (−u) = −Tu. It was precisely because this property is
not satisfied by erosions and dilations that it has been proposed, with some
experimental success, to build alternating operators like T = IShSIh. In this
case, it is not true that T (−u) = −Tu. We will show, however, that (IShSIh)n

tends to an operator that does satisfy this condition if n → ∞ and h → 0
appropriately.

It is not possible to obtain an asymptotic result for IShSIh by applying
Theorem 14.4 twice. Indeed, there is no guarantee (and it is generally false)
that IShu is C3 if u is C3. The next lemma shows, however, how it is possible to
extend to alternate operators convergence results like the ones given in Theorem
14.4.

Here and in the next chapter, we will be dealing with real-valued functions
of several variables F : (A, p,x) 7→ F (A, p,x), where A is a symmetric matrix,
p is a vector, and x ∈ RN . We will say more about these functions in the next
chapter, but, in general, they will be continuous with respect to all arguments,
except where p = 0.

Lemma 22.5. Let Sh and Th be scaled versions of two inf-sup operators S and
T . Let Fi : (A, p,x) 7→ Fi(A, p,x), i = 1, 2, be two functions that are continuous
on every compact set on which p 6= 0. Assume that for some exponent α the
operators Sh and Th are such that

Shu(x)− u(x) = hαF1(D2u,Du,x) + o1(x, hα),

Thu(x)− u(x) = hαF2(D2u,Du,x) + o2(x, hα),
(22.9)

for any u that is C3 in a neighborhood of x. Assume that Sh is localizable in
the sense that there is an exponent γ such that

|Shu(x)− Shγ

h u(x)| ≤ o3(x, hα) (22.10)

if u is a Lipschitz function. These relations are assumed to hold uniformly on
any compact set K on which Du(x) 6= 0, that is, oj(x, hα)/hα → 0, j ∈ {1, 2, 3},
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uniformly for x ∈ K. Then the alternate operator ShTh satisfies

ShThu(x)− u(x) = hα
(
F1(D2u,Du,x) + F2(D2u,Du,x)

)
+ o(x, hα).

for any u : R2 → R that is C3 in a neighborhood of x and is Lipschitz on R2. If,
in addition, u is C3 in a neighborhood of a compact set K on which Du(x) 6=
0, then this relation is true uniformly for x ∈ K, that is, o(x, hα)/hα → 0
uniformly for x ∈ K.

Lemma 22.6. ATTENTION, LE LEMME NE TRAITE PAS LE CAS Du = 0.
VOIR APPLICATION AUX SNAKES.

Proof. Assume that u is C3 in a neighborhood of a compact set K on which
Du(x) 6= 0. (K may be a single point.) Let Kr = Dr(K) be the closure of the
r-dilation of K, where r is chosen so that |Du(x)| is bounded away from zero
for x ∈ Kr. For x ∈ K, define

f+(x, r) = sup
y∈D(x,r)

F2(D2u,Du,y)

f−(x, r) = inf
y∈D(x,r)

F2(D2u,Du,y),

and define o2(x, r, hα) = supy∈D(x,r) |o2(y, hα)|. Then we have

u(y) + hαf−(x, r)− o2(x, r, hα) ≤ Thu(y) ≤ u(y) + hαf+(x, r) + o2(x, r, hα)

for y ∈ D(x, r). Applying Shγ

h to this relation with hγ = r and using the fact
that Shγ

h is monotone and commutes with constants, and more significantly,
that Shγ

h satisfies the local maximum principle with zero error, we have

Shγ

h u(x)+hαf−(x, r)−o2(x, r, hα) ≤ Shγ

h Thu(x) ≤ Shγ

h u(x)+hαf+(x, r)+o2(x, r, hα).

By Lemma 6.5, the function Thu is Lipschitz. Thus, we can use (22.10) to
replace Shγ

h Thu(x) with ShThu(x) and Shγ

h u(x) with Shu(x) to obtain

Shu(x)− o′3(x, hα) + hαf−(x, r)− o2(x, r, hα) ≤ ShThu(x)

≤ Shu(x) + o′3(x, hα) + hαf+(x, r) + o2(x, r, hα),

where o′3(x, hα) is a nonnegative error term that incorporates all of the errors
accumulated in making these replacements. Written slightly differently, we have

Shu(x)− ShThu(x) ≤ o′3(x, hα)− hαf−(x, r) + o2(x, r, hα),

ShThu(x)− Shu(x) ≤ o′3(x, hα) + hαf+(x, r) + o2(x, r, hα).

Now use (22.9) to replace Shu(x) with u(x) + hαF1(D2u,Du,x) + o1(x, hα).
This shows that

u(x)− ShThu(x) ≤ −hαF1(D2u, Du,x)− hαf−(x, r) + o−(x, r, hα),

ShThu(x)− u(x) ≤ hαF1(D2u,Du,x) + hαf+(x, r) + o+(x, r, hα),

where o±(x, r, hα) = ± o1(x, hα)+o2(x, r, hα)+o′3(x, hα). As a last step, we re-
place f−(x, r) with F2(D2u, Du,y)+o−4 (x, r) and f+(x, r) with F2(D2u,Du,y)+
o+
4 (x, r), where o±4 (x, r) → 0 as r → 0 because F2 is continuous on Kr. Thus,

ShThu(x)− u(x) = hα
(
F1(D2u, Du,x) + F2(D2u,Du,x)

)
+ E(x, r, h, α, γ),
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and it remains to show that the error term is o(x, hα) and that this error is
uniform on K. Having followed all of the individual error terms, we have the
estimate

|E(x, r, h, α, γ)| ≤ |o1(x, hα)|+ o2(x, r, hα) + o′3(x, hα) + hα|o±4 (x, r)|

The first term, |o1(x, hα)|, satisfies the conditions by hypothesis. By definition,

o2(x, r, hα) = sup
y∈D(x,r)

|o2(y, hα)| ≤ sup
y∈Kr

|o2(y, hα)|,

and, again, supy∈Kr
|o2(y, hα)|/hα → 0 as h → 0 by hypothesis. Similarly, the

third term is uniform. The last term hα|o±4 (x, r)| = hα|o±4 (x, hγ)| requires a
slightly different argument: |o±4 (x, hγ)| → 0 uniformly on K, for γ > 0, be-
cause F1 is uniformly continuous on Kr. Thus, E(x, r, h, α, γ) = o(x, hα) and
o(x, hα)/hα → 0 uniformly on K. ¤

We were very careful in this proof to show in detail how the various assump-
tions were used to establish the properties of the final error term. In contrast,
we only mention that the proof of the next result uses the same techniques. In
fact, it is slightly simpler.

Lemma 22.7. Assume all of the hypotheses of Lemma 14.5, except for these
changes: The functions Gi, i = 1, 2, satisfy the same conditions as the Fi.
Equations (22.9) are replaced with the following inequalities:

0 ≥ Shu(x)− u(x) ≥ hαG1(D2u,Du,x) + o(x, hα),

0 ≤ Thu(x)− u(x) ≤ hαG2(D2u,Du,x) + o(x, hα).
(22.11)

Then the alternate operators ShTh satisfy

hαG1(D2u,Du,x)+o(x, hα) ≤ ShThu(x)−u(x) ≤ hαG2(D2u,Du,x)+o(x, hα)

for any Lipschitz function u that is C3 in a neighborhood of x. If u is C3

in the neighborhood of a compact set K on which Du does not vanish, then
o(x, hα)/hα → 0 uniformly on K as h → 0.

We are now in position to state and prove an asymptotic behavior theo-
rem for the main affine-invariant alternate filter, namely, the filter obtained by
alternating the affine erosions and dilations generated with Baff .

Theorem 22.8. Let B = Baff , and let SIh and ISh be the affine erosions and
affine dilations defined by equations (22.2). Then for every Lipschitz function
u that is C3 in a neighborhood of x and Du(x) 6= 0,

lim
h→0

Thu(x)− u(x)
h4/3

= cB|Du(x)|g(curv(u)(x)), (22.12)

where

g(r) =





(r+/2)1/3 if Th = ISh,

(r−/2)1/3 if Th = SIh,

(r/2)1/3 if Th = SIhISh.
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If u is C3 in the neighborhood of a compact set K on which Du(x) 6= 0, then
the convergence is uniform on K. Also, there are continuous functions G± such
that G±(0, 0,x) = 0 and

h4/3G−(D2u,Du,x)+o(x, h4/3) ≤ Thu(x)−u(x) ≤ h4/3G+(D2u,Du,x)+o(x, h4/3).
(22.13)

Furthermore, o(x, h4/3)/h4/3 → 0 uniformly on every compact set K.

Proof. We know from Theorem 14.4 that (22.12) is true for Th = ISh and
Th = SIh, since Baff satisfies the hypothesis, namely, Baff is 1-localizable. We
know from Lemma 14.1 that c+

Baff
> 0 and c−Baff

= 0, so cB = c+
Baff

in (22.12). We
obtain (22.12) for the alternate operator by applying Lemma 14.5 with γ = 1/2
and α = 4/3.

The two inequalities (22.13) are read directly from Lemma 14.3 for Th = ISh

and Th = SIh. This is possible since the elements of Baff are open, contain the
origin, and there is a B ∈ Baff that is bounded. Once we have the inequalities
for these two operators, we appeal to Lemma 14.6 to have the result for the
alternate operators. This is possible since both ISh and SIh are localizable by
Lemma 13.4 with γ = 1/2. ¤

As a general rule, affine-invariant families of structuring whose members are
open, connected, contain the origin, and some of which are bounded with areas
bounded above, are localizable. In these cases, it is possible to define alternate
schemes that have the properties that we have described in this chapter.
Exercise 22.5. Check that the last proof and the results apply to the affine-invariant,
localizable families considered in Exercises 13.3 and 13.4.

22.3 Comments and references

Early versions of the results and proofs contained in this chapter were given
in [154, 153, 150]. The version presented here is shorter and simpler. Serra
provides a good introduction to alternate sequential filters in [315]. A general
axiomatic theory of self-dual morphological operators is given by Heijmans in
[160]. Applications of alternate sequential filters are discussed in [283].
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Chapter 23

Viscosity Solutions

This book is about image analysis and PDEs, and one of the main ideas we
wish to convey is that the operators we have studied are closely associated with
certain differential equations. What is more, we wish to show that whole groups
of operators can be associated with essentially the same equation. For example,
in Theorem 2.3 we proved that there were many linear operators that converged
asymptotically to the heat equation, and in section 13.2 we showed how dila-
tions and erosions are associated with the equations ∂u/∂t = ±|Du|. There is,
however, a gap to fill. As Figures 23.1 and 23.1 illustrate, applying dilations
and erosions to smooth functions can produce functions that are no longer C1

and, hence, cannot satisfy ∂u/∂t = ±|Du| in the usual, or classical, sense. The
notion of viscosity solution, which is a late twentieth-century development, pro-
vides a way to close this gap. In this chapter, we introduce viscosity solutions,
show that classical solutions are viscosity solutions, and quote a uniqueness the-
orem. We close the gap in the next chapter by showing that the approximate
solutions generated by the iterated filters we have studied do indeed converge
to viscosity solutions of their associated PDEs.

23.1 Definition and main properties

The functions u(t,x) defined on [0,∞)× RN will always be continuous. If u is
C2, then Du and D2u denote the first and second derivatives of u with respect
to x ∈ RN ; Du is an N -dimensional vector and D2u is an N × N matrix.
The operators D̃ and D̃2 are the first and second derivatives of u involving
both variables t and x. If x ∈ RN is represented in an orthonormal basis by
x = (x1, x2, . . . , xN ), then the elements of D2u are uij = ∂2u/∂xi∂xj , and D2u
is symmetric. Symmetric matrices and their associated quadratic forms play
a central role in this chapter because they can be ordered. A real symmetric
matrix A = (aij)1≤i,j≤N is said to be nonnegative if its associated quadratic
form is nonnegative, that is, if

A(z, z) =
N∑

i,j=1

aijzizj ≥ 0

for all z ∈ RN . This is equivalent to saying that all of the eigenvalues of A are
greater than or equal to zero. We say that A ≥ B if A−B ≥ 0. The parabolic

269
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Figure 23.1: Erosions and dilations can create singularities. Top-left: original
C∞ image. Below: representation of the intensity along the horizontal axis.
Middle: dilation with a circle of 30 pixels. Below: at the central point, the
image is no longer C∞ or even C1. Right: erosion with the same circle. Below:
some loss of regularity; the solution is no longer C2.

PDEs that we consider are of the form

∂u/∂t = F (D2u, Du,x, t),

where (A, p,x, t) 7→ F (A, p,x, t) is real-valued and continuous on its domain
of definition. We also assume that F is nondecreasing with respect to its first
argument. What we mean by this is that, for all A, B, p, x, and t in the domain
of definition,

A ≥ B =⇒ F (A, p,x, t) ≥ F (B, p,x, t). (23.1)

The functions F we consider fall into two classes that are characterized by
the domains of definition. In one case, F is defined for all real-valued N × N
symmetric matrices A, all p ∈ RN , all x ∈ R, and all t ∈ [0,∞). We denote this
domain by DN . If we denote the N(N − 1)/2-dimensional space of symmetric
N ×N matrices by SN , then

DN = SN × RN × R× [0,∞).

In the other case, F is defined on

D̃N = SN × (RN \ {0})× R× [0,∞),

where RN \ {0} is RN with the origin removed. It is important to deal with
functions F that are defined on D̃N rather than DN because this is the case for
one of the most relevant equations in the book, namely, the curvature equation
∂u/∂t = |Du|curv(u). (Note that we have shifted the notation: In this chapter,
p = Du rather than p = |Du| as before.) It is this dichotomy of domains that
motivates the following definition.

Definition 23.1. We say that a function F is admissible if it is defined and
continuous on DN or D̃N , if it satisfies (23.1), and if it satisfies the following
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conditions: There exists two continuous functions G+ and G− defined on DN

such that

G+(0, 0,x, t) = G−(0, 0,x, t) = 0,

G+(A, 0,x, t) ≥ 0 and G−(−A, 0,x, t) ≤ 0 for all A ≥ 0,

G−(A, p,x, t) ≤ F (A, p,x, t) ≤ G+(A, p,x, t),

(23.2)

for all (A, p,x, t) in the domain of F .

If F is defined and continuous on DN , if F satisfies (23.1), and if F (0, 0,x, t) =
0, then F is admissible: Just let G± = F . Conversely, if F is admissible and
defined on DN , then F is continuous at (0, 0,x, t) by definition, and the last line
of (23.2) implies that F (0, 0,x, t) = 0.

We are going to illustrate this definition by describing the functions F that
are associated with the PDEs that we have studied and that are of particular
interest for image processing. This list will also serve as a reference for this and
the next chapter.

• F (A, p) = |p| or F (A, p) = −|p|. These functions are related to dilations and
erosions and are associated with the equations ∂u/∂t = |Du| and ∂u/∂t =
−|Du|. They are clearly admissible.

• F (A, p) = trace(A) = Tr(A). This is associated with the heat equation
∂u/∂t = ∆u. F is defined and continuous on DN . Since Tr(A + B) =
Tr(A) + Tr(B) and Tr(A) ≥ 0 for A ≥ 0, it follows that F satisfies (23.1). It
satisfies (23.2) by taking G± = F .

• F (A, p) = A(p⊥/|p|, p⊥/|p|), which in two dimensions is

F (A, p) =
p2
1a22 − 2p1p2a12 + p2

2a11

|p|2 .

This function is linked to the curvature equation ∂u/∂t = |Du|curv(u). It
is defined and continuous on D̃N . It clearly satisfies (23.1). To see that it
satisfies (23.2), take for G+(A) the largest eigenvalue of A and for G−(A) the
smallest eigenvalue of A.

• F (A, p) = (A(p⊥, p⊥))1/3. This function is related to affine-invariant smooth-
ing and is associated with the equation

∂u

∂t
= |Du|(curv(u))1/3. (23.3)

This function is defined and continuous on DN and clearly satisfies (23.1). It
satisfies (23.2) by taking G± = F .

• F (A, p) = ((A(p⊥, p⊥))+)1/3 is associated with ∂u/∂t = |Du|(curv(u)+)1/3.
Once we note that the operation f 7→ f+ preserves continuity and order, the
argument in the last item shows that F is admissible.

• F (A, p) = Tr(A)−A(p/|p|, p/|p|) is associated with

∂u

∂t
= |Du|

( N−1∑

i=1

κi(u)
)
,
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Figure 23.2: Erosion and dilation can generate singularities within the level lines.
Left: original image where the only level-line, corresponding to the boundary of
the black shape, is C1. Right: erosion with a circle of radius 10; the resulting
level lines have sharp angles.

where the κi(u) are the principal curvatures of u (see Proposition 15.21).
In other words, this is the equation for mean curvature motion. F is de-
fined and continuous on D̃N , and it is easy to see that F (A, p) ≥ 0 for
A ≥ 0. It follows from this that F satisfies (23.1). To satisfy (23.2),
we can take G+(A) = (N − 1)(maximum eigenvalue ofA) and G−(A) =
(N − 1)(minimum eigenvalue of A).

• F (A, p) = minp A(p⊥/|p|, p⊥/|p|) is associated with ∂u/∂t = |Du|min{κ1, κ2}
in three dimensions.

These functions F and their corresponding PDE’s and filters are summarized
in the tables of Section 23.7.

Exercise 23.1. Let A be a symmetric matrix (in SN ). Show that its maximal
eigenvalue is equal to λ1(A) = maxx,|x|=1 A(x,x) and its minimal eigenvalue to
λN = minx,|x|=1 A(x,x). Deduce that λ1(A) and λN (A) are continuous and monotone
functions of A.

Exercise 23.2. Prove that F (A, p) = Tr(A)−A(p/|p|, p/|p|) is monotone with respect
to A. (Since this function is linear in A it is enough to prove that A ≥ 0 ⇒ F (A, p) ≥
0.)

Solutions to the considered PDE’s are not classical solutions
We are going to define viscosity solutions for these and other PDEs, but before
doing so it is useful to say a few words about solutions in general. It would be
convenient to define solutions to the equations listed above by saying that any
u that is C2 on RN and C1 on [0,∞) and satisfies ∂u/∂t = F (D2u,Du,x, t) at
all points (t,x) is a solution. Indeed, we call such a u a classical solution. This
definition works well, for example, for the heat equation, where we have shown
the existence of classical solutions (Chapter 1.)

There are, however, among the equations listed above, those for which a C2

solution, or even a C1 solution, cannot be expected. Here is an example where
an ostensibly classical solution is not the correct one and violates the comparison
principle, which says that v0 ≥ u0 implies that v ≥ u. Let u0(x) = −|x| be the
initial condition. Then one is tempted to take as a solution for the equation
∂u/∂t = |Du| the function ũ(t,x) = t − |x|. Indeed, for all t ≥ 0 and all
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x 6= 0, ∂ũ/∂t = 1 = |Dũ|. However, this “solution” violates the comparison
principle. This can be checked by comparing it with the C∞ solution of the
same equation with initial condition v0(x) ≡ 0, which is clearly v(t,x) ≡ 0. The
correct comparison-preserving solution is u(t,x) = min{0, t− |x|}.

Another way in which we can point out this difficulty is to invoke the contrast
invariance: Let g : R → R be a nondecreasing continuous function that is not
C1, and let u0(x), x ∈ RN , be the initial data. Assume that we have been
able to define a classical solution u for a curvature equation like (23.3) (or,
in RN , a mean curvature motion equation) that satisfies the initial condition
u(0,x) = u0(x). Then it is reasonable to expect that g(u) will be a solution of
the same equation with initial condition g(u0). Since g is not C1, we cannot
expect this solution to be C1. The most we can expect is that it is continuous.

In order to define an irregular function u as a solution of a PDE, the clever
idea is to involve the local comparison principle, as was hinted in the example
above. The correct irregular solution will be defined and singled out thanks
to its comparison with local classical solutions of the PDE. This idea is made
precise in the next definition.

Definition 23.2 (viscosity solution). F is assumed to be an admissible func-
tion, and u : [0,∞)×RN → R is assumed to be continuous. We say that u is a
viscosity subsolution of the equation

∂u

∂t
(t,x)− F (D2u(t,x), Du(t,x),x, t) = 0 (23.4)

at the point x0 and scale t0 if, for all ϕ ∈ C∞([0,∞) × RN ) for which (t0,x0)
is a strict local maximum of u− ϕ, the following conditions are true:

If Dϕ(t0,x0) 6= 0, then

∂ϕ

∂t
(t0,x0)− F (D2ϕ(t0,x0), Dϕ(t0,x0),x0, t0) ≤ 0. (23.5)

If Dϕ(t0,x0) = 0 and D2ϕ(t0,x0) = 0, then

∂ϕ

∂t
(t0,x0) ≤ 0. (23.6)

Similarly, u is a viscosity supersolution at (t0,x0) if, for all ϕ ∈ C∞([0,∞)×
RN ) for which (t0,x0) is a strict local minimum of u−ϕ, the following conditions
are true:

If Dϕ(t0,x0) 6= 0, then

∂ϕ

∂t
(t0,x0)− F (D2ϕ(t0,x0), Dϕ(t0,x0),x0, t0) ≥ 0. (23.7)

If Dϕ(t0,x0) = 0 and D2ϕ(t0,x0) = 0, then

∂ϕ

∂t
(t0,x0) ≥ 0. (23.8)

The function u is said to be a viscosity solution at the point x0 and scale t0
if it is both a viscosity subsolution and supersolution. If u is a viscosity solution
of (23.4) at every point of [0,∞)×RN and if u(0,x) = u0(x), we say that u is
a viscosity solution of (23.4) with initial condition u0.
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One of the first things we must do is to show that a classical solution of
(23.4) is a viscosity solution. This will be done in Proposition 23.6, but before
tackling this issue, we present several lemmas that significantly simplify the task
of showing that a function is a viscosity solution. We will prove these lemmas
for subsolutions; all of the statements and proofs regarding subsolutions are true
for supersolutions with the obvious modifications. The first step is to drop the
requirement that the extrema be strict.

Lemma 23.3. A continuous function u : [0,∞)×RN → R is a viscosity subso-
lution of (23.4) at (t0,x0) if and only if the following condition is true. If ϕ is
in C∞([0,∞)×RN ) and u− ϕ has a local maximum (not necessarily strict) at
(t0,x0), then (23.5) and (23.6) hold. A similar statement is true for viscosity
supersolutions.

Proof. Assume that u is a viscosity subsolution and that u−ϕ has a local max-
imum at (t0,x0). Replace ϕ with ψ, where ψ(t,x) = ϕ(t,x)+(t−t0)4+|x−x0|4.
Then u − ψ has a strict local maximum at (t0,x0), and ψ satisfies (23.5) and
(23.6) by definition. Since the first and second derivatives of ϕ and ψ agree at
(t0,x0), ϕ satisfies (23.5) and (23.6). The implication in the other direction is
just a matter of noting that “local maximum” includes “strict local maximum.”
¤

The relations (23.5)-(23.8) do not ask for a bound of ∂ϕ/∂t in case Dϕ = 0
and D2ϕ 6= 0. This is due to the possibility that F is defined on D̃N and cannot
be continued continuously at p = 0. The next lemma provides an equivalent
and useful definition of a viscosity solution.

Lemma 23.4. Assume that F is admissible and that G+ and G− are any two
continuous functions that satisfy the conditions of (23.2). A continuous function
u is a viscosity subsolution of (23.4) at a point (t0,x0) if and only if, for all
ϕ ∈ C∞([0,∞) × RN ) for which (t0,x0) is a strict local maximum of u − ϕ, ϕ
satisfies (23.5) if Dϕ(t0,x0) 6= 0 and

∂ϕ

∂t
(t0,x0)−G+(D2ϕ(t0,x0), Dϕ(t0,x0),x0, t0) ≤ 0. (23.9)

Similarly, u is a viscosity supersolution of (23.4) at a point (t0,x0) if and only
if, for all ϕ for which (t0,x0) is a strict local minimum of u − ϕ, ϕ satisfies
(23.7) if Dϕ(t0,x0) 6= 0 and

∂ϕ

∂t
(t0,x0)−G−(D2ϕ(t0,x0), Dϕ(t0,x0),x0, t0) ≥ 0. (23.10)

Thus when F is continuous (23.5) and (23.7) are true even if Dϕ(t0,x0) = 0.

Proof. The last statement is an immediate consequence of the other parts of
the lemma. We will prove only the “subsolution” half of the lemma. In one
direction, we assume (23.5) and (23.9). Then to show that the lemma implies
the definition, we need only show that (23.6) holds. But this follows immediately
from (23.9) and the fact that G+(0, 0,x, t) = 0.

To prove the converse, assume that u is a viscosity subsolution in the sense
of Definition 23.2, that is, it satisfies (23.5) and (23.6), and assume that ϕ is a
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C∞ function such that u− ϕ has a strict maximum at (t0,x0). We must prove
that (23.9) is true for any continuous G+ that satisfies conditions (23.2). We
assume that Dϕ(t0,x0) = 0 and D2ϕ(t0,x0) 6= 0, since the other cases follow
immediately.

Consider the function ψε defined by

ψε(t,x,y) = u(t,x)− ϕ(t,y)− |x− y|4
ε

, ε > 0.

Since u − ϕ has a strict maximum at (t0,x0), it is possible to show that, for
every sufficiently small ε, there is a (tε,xε,yε) where the function ψε has a local
maximum (Exercise 23.5). Furthermore, (tε,xε,yε) → (t0,x0,x0) as ε → 0.
(The points (tε,xε,yε) may not be unique, so assume that we have selected one
for each sufficiently small ε.)

If we fix x = xε, then the function ψε,xε
: (t,xε,y) 7→ ψε(t,xε,y) is C∞

with respect to y and has a local maximum at the point (tε,yε).
This implies that Dψε,xε

(tε,xε,yε) = 0 and that D2ψε,xε
(tε,xε,yε) ≤ 0.

By computing Dψε,xε and D2ψε,xε and using these relations, we see that

Dϕ(tε,yε) =
4(xε − yε)|xε − yε|2

ε

and
D2ϕ(tε,yε) ≥ −1

ε
(4|xε − yε|2I + 8A), (23.11)

where I is the identity matrix and A = (xε − yε) ⊗ (xε − yε). (If we write
A = (aij), then aij = (xεi − yεi)(xεj − yεj).) We now consider two cases.

Case (1): Dϕ(tε,yε) = 0.

This means that xε = yε, which in turn implies that D2ϕ(tε,yε) ≥ 0. Thus,
for any G+ that satisfies (23.2), G+(D2ϕ(tε,yε), 0,yε, tε) ≥ 0.

We now take another point of view: Fix y = yε and consider the function

ψε,yε
(t,x,yε) = u(t,x)− ϕ(t,yε)−

|x− yε|4
ε

= u(t,x)− ϕε(t,x).

This function has a local maximum at (tε,xε). Furthermore, Dϕε(tε,xε) =
Dϕ(tε,xε) = 0, and D2ϕε(tε,xε) = 0. Thus, Lemma 23.3 applies, and (23.6)
holds:

∂ϕ

∂t
(tε,xε) ≤ 0.

Since xε = yε and G+(D2ϕ(tε,yε), 0,yε, tε) ≥ 0, it follows that

∂ϕ

∂t
(tε,yε) ≤ G+(D2ϕ(tε,yε), 0,yε, tε).

Both ∂ϕ/∂t and G+ are continuous in all of their variables, so by letting ε tend
to zero we arrive at the inequality (23.9).

Case (2): Dϕ(tε,yε) 6= 0.

Note that the function

(t,x) 7→ u(t,x)− ϕ(t,x− (xε − yε))−
|x− yε|4

ε
= u(t,x)− ϑε(t,x)
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has a local maximum at (tε,xε). This means that Lemma 23.3 applies to ϑε.
Since Dϕε(tε,yε) = Dϑε(tε,yε) 6= 0 and D2ϕ(tε,yε) = D2ϑε(tε,yε), we have

∂ϕ

∂t
(tε,yε) ≤ F (D2ϕ(tε,yε), Dϕ(tε,yε),yε, tε)

≤ G+(D2ϕ(tε,yε), Dϕ(tε,yε),yε, tε),

using (23.5) and (23.2). Again, letting ε tend to zero gives (23.9). ¤

Exercise 23.3. Prove the inequality (23.11).

The next lemma provides another very useful simplification for verifying that
a function u is a viscosity solution of (23.4).

Lemma 23.5. To show that u is a viscosity subsolution (or supersolution),
it suffices to use test functions ϕ ∈ C∞([0,∞) × RN ) of the form ϕ(t,x) =
f(x) + g(t).

Proof. This is the assumption: If a function of the form ϕ(t,x) = f(x)+g(t) is
such that u−ϕ attains a local maximum at (t0,x0), then (23.5) and (23.9) follow.
From this assumption, we must prove: If ϕ is any function in C∞([0,∞)×RN )
such that u − ϕ attains a local maximum, then (23.5) and (23.9) follow. The
technique for doing this is to develop ϕ as a Taylor series and separate the
variables. To keep the notation manageable, we will assume without loss of
generality that (t0,x0) = (0, 0) = 0. With this assumption, the Taylor expansion
of ϕ is

ϕ(t,x) = a + bt + 〈p,x〉+ ct2 + 〈Qx,x〉+ t〈q,x〉+ o(|x|2 + t2),

where a = ϕ(0), b = ∂ϕ/∂t(0), c = (1/2)∂2ϕ/∂t2(0), Q = (1/2)D2ϕ(0), and

q =
( ∂2ϕ

∂x1∂t
(0), . . . ,

∂2ϕ

∂xN∂t
(0)

)
.

For ε > 0, we define

f(x) = a + 〈p,x〉+ 〈Qx,x〉+ ε|x|2 + ε|q||x|2

and

g(t) = bt +
|q|
ε

t2 + εt2 + ct2.

This means that

ϕ(t,x) = f(x) + g(t)−
(
ε|q||x|2 +

|q|
ε

t2 − t〈q,x〉+ ε(|x|2 + t2)
)

+ o(|x|2 + t2).

Since, by the Cauchy–Schwartz inequality, ε|q||x|2 + (|q|/ε)t2 − t〈q,x〉 ≥ 0,
we have ϕ(t,x) ≤ f(x) + g(t) for all sufficiently small (t,x). Thus, in some
neighborhood of (0, 0), u(t,x)−ϕ(t,x) ≥ u(t,x)−f(x)−g(t) and this inequality
is an equality for (t,x) = (0, 0). The assumption is that u − ϕ has a local
maximum at (0, 0). Hence this last inequality implies that u− f − g has a local
maximum at (0, 0). Thus, by assumption, (23.5) and (23.9) hold for f +g. More
precisely, we have the following two cases.
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Case (1): D(f + g)(0) 6= 0.

From (23.5),

∂(f + g)
∂t

(0) ≤ F (D2(f + g)(0), D(f + g)(0), 0, 0).

It is easy to see that

Dϕ(0) = D(f + g)(0) 6= 0 and (∂ϕ/∂t)(0) = (∂(f + g)/∂t)(0),

and a short computation shows that D2(f + g)(0) = D2ϕ(0) + 2ε(1 + |q|)I).
Substituting these values in the expression above shows that

∂ϕ

∂t
(0) ≤ F (D2ϕ(0) + 2ε(1 + |q|)I, Dϕ(0), 0, 0).

We let ε → 0 and use the continuity of F to see that (23.5) holds for ϕ.

Case (2): D(f + g)(0) = 0.

In this case, (23.9) is true for f + g:

∂(f + g)
∂t

(0) ≤ G+(D2(f + g)(0), D(f + g)(0), 0, 0).

Letting ε → 0 and using the continuity of G+ yields (23.9) for ϕ. ¤

We are now in position to see how classical and viscosity solutions are related.
The next two propositions show that the notion of viscosity solution is indeed
a generalization of that of classical solution.

Proposition 23.6. Let F be an admissible function that is continuous every-
where, and assume u : [0,∞) × RN → R is C2 with respect to x and C1 with
respect to t. If u is a classical solution of

∂u

∂t
(t,x) = F (D2u,Du,x, t)

at (t0,x0), then u is a viscosity solution at (t0,x0).

Proof. We prove this for the case Du(t0,x0) 6= 0. (The other cases follow im-
mediately.) Thus, let ϕ ∈ C∞([0,∞)×RN ) be such that u−ϕ has a local max-
imum at (t0,x0). This implies that (∂u/∂t, Du)(t0,x0) = (∂ϕ/∂t,Dϕ)(t0,x0)
and that D2(u− ϕ)(t0,x0) ≤ 0, so

D2u(t0,x0) ≤ D2ϕ(t0,x0).

Hence,

∂ϕ

∂t
(t0,x0) =

∂u

∂t
(t0,x0) = F (D2u(t0,x0), Du(t0,x0),x0, t0)

≤ F (D2ϕ(t0,x0), Dϕ(t0,x0),x0, t0).

This proves that u is a viscosity supersolution. A similar argument shows that
it is a viscosity subsolution. ¤
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Proposition 23.7. Assume that F is admissible and continuous everywhere.
Let u be a C2(R+ × RN ) viscosity solution of ∂u/∂t = F (D2u,Du,x, t). Then
u is a classical solution of the same equation.

Proof. Assume that u is a viscosity solution at the point (t0,x0). We write the
second-order Taylor expansion of u in the N + 1 variables near (t0,x0) as

u(t,x) = u(t0,x0) + 〈D̃u(t0,x0), (t− t0,x− x0)〉
+ 〈D̃2u(t0,x0)(t− t0,x− x0), (t− t0,x− x0)〉+ o(|t− t0|2 + |x− x0|2),

where the operators D̃ and D̃2 involve all N + 1 variables. For ε > 0, define ϕε

by

ϕε(t,x) = u(t0,x0) + 〈D̃u(t0,x0), (t− t0,x− x0)〉
+ 〈(D̃2u(t0,x0) + εI)(t− t0,x− x0), (t− t0,x− x0)〉.

Thus,

u(t,x)− ϕε(t,x) = −ε(|t− t0|2 + |x− x0|2) + o(|t− t0|2 + |x− x0|2)
and the point (t0,x0) is a local maximum of u − ϕε for all ε > 0. Similarly,
(t0,x0) is a local minimum of u−ϕ−ε. The test functions ϕε and ϕ−ε are C∞,
so we can apply Definition 15.2 directly. Thus,

∂u

∂t
(t0,x0) =

∂ϕε

∂t
(t0,x0) ≤ F (D2ϕε(t0,x0), Dϕε(t0,x0),x0, t0)

= F ((D2u + εI)(t0,x0), Du(t0,x0),x0, t0),

and

∂u

∂t
(t0,x0) =

∂ϕ−ε

∂t
(t0,x0) ≥ F (D2ϕ−ε(t0,x0), Dϕε(t0,x0),x0, t0)

= F ((D2u− εI)(t0,x0), Du(t0,x0),x0, t0).

Letting ε → 0 and using the continuity of F shows that

∂u

∂t
(t0,x0) = F (D2u(t0,x0), Du(t0,x0),x0, t0).

¤

Before discussing several examples, we need a useful further restriction on
the test functions ϕ.

Lemma 23.8. To show that u is a viscosity subsolution (or supersolution), it
suffices to use test functions ϕ ∈ C∞([0,∞) × RN ) that satisfy x → ϕ(t,x) ∈
F(RN ) for all t ≥ 0 and are globally Lipschitz on RN .

Proof. In fact the properties we deal with are all local around a point (t0,x0).
Thus we can replace ϕ by another C∞ function ψ which coincides with ϕ on a
ball B(0, (t0,x0), belongs to F for all t, and is globally Lipschitz on RN . ¤

Exercise 23.4. Give a detailed construction of ψ from ϕ.
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23.2 Application to mathematical morphology

In Proposition 13.6, we showed that u(t,x) = Dtu0(x) is a solution of ∂u/∂t =
|Du| at each point (t0,x0) where u is C1. We are now going to prove that u is
a viscosity solution of this equation at all points.

Theorem 23.9. Assume that u0 ∈ F(RN ). Let D(0, 1) be the unit ball in RN

and let u be defined by

u(t,x) = Dtu0(x) = sup
y∈tD(0,1)

u0(x + y).

Then u is a viscosity solution of

∂u

∂t
= |Du|, u(0,x) = u0(x). (23.12)

Proof. We will use the fact that the dilation Dt is recursive, that is, Ds+t =
DsDt (see Proposition 13.5). In particular, for t > 0, Dt = DhDt−h, so

u(t,x) = sup
|y|<h

u(t− h,x + y). (23.13)

Let ϕ be a C∞ test function and assume that u − ϕ has a local maximum
at (t0,x0). To prove that u is a viscosity subsolution of (23.12), we must show
that

∂ϕ

∂t
(t0,x0)− |Dϕ(t0,x0)| ≤ 0.

Since u − ϕ has a local maximum at (t0,x0), we have for sufficiently small h
and |y|,

u(t0 − h,x0 + y)− ϕ(t0 − h,x0 + y) ≤ u(t0,x0)− ϕ(t0,x0)

It follows that

sup
|y|<h

u(t0 − h,x0 + y) ≤ u(t0,x0)− ϕ(t0,x0) + sup
|y|<h

ϕ(t0 − h,x0 + y),

and using (23.13) shows that

u(t0,x0) ≤ u(t0,x0)− ϕ(t0,x0) + sup
|y|<h

ϕ(t0 − h,x0 + y).

Thus,
ϕ(t0,x0) ≤ sup

|y|<h

ϕ(t0 − h,x0 + y).

Subtracting ϕ(t0 − h,x0) from both sides yields

ϕ(t0,x0)− ϕ(t0 − h,x0) ≤ sup
|y|<h

(
ϕ(t0 − h,x0 + y)− ϕ(t0 − h,x0)

)
.

By writing ϕ(t0 − h,x0 + y)− ϕ(t0 − h,x0) = 〈D̃ϕ(t0,x0), (0,y)〉+ o(h + |y|),
we see that

ϕ(t0,x0)− ϕ(t0 − h,x0) ≤ |Dϕ(t0,x0)|h + o(h).



“JMMBookOct04”
1/5/2012
page 280

i

i

i

i

i

i

i

i

280 CHAPTER 23. VISCOSITY SOLUTIONS

Dividing both sides by h and letting h tend to zero leads to

∂ϕ

∂t
(t0,x0)− |Dϕ(t0,x0)| ≤ 0.

We have proven this under the assumption that t0 > 0 and h > 0 is sufficiently
small. But by continuity, the last inequality is true for t0 = 0. This proves that
u is a subsolution of (23.12); the proof that it is a supersolution is similar. The
fact that u(0,x) = u0(x) is a direct consequence of the assumption that u0 is
continuous. ¤

23.3 Approximation theory of viscosity solutions

For simplicity, we consider slightly less general PDEs, namely, those of the form

∂u

∂t
(t,x)− F (D2u(t,x), Du(t,x),x) = 0, (23.14)

where (A, p,x) 7→ F (A, p,x) is admissible, but independent of t. This is the case
for the functions listed at the beginning of the chapter. For these equations, it is
reasonable to expect that the operator St : u0 7→ u(t, ·) could be approximated
by iterations of an operator Th, by which we mean that (Th)n → St in some
sense as h → 0, n →∞. We have seen this in Theorem 2.3, where it was shown
that a large class of iterated linear operators converge asymptotically to the heat
equation. We have promised to show that whole classes of nonlinear operators
converge asymptotically to other PDEs. We are mainly interested in operators
that have been shown to be useful for image analysis and that have been studied
in previous chapters. To include all of these operators in the theory, we shall
first state three abstract properties which were proven under various forms for
scaled morphological operators Th.

Definition 23.10. We say that a family of operators Th, h > 0 is uniformly
consistent with Equation (23.14) if for every C3, Lipschitz function u we can
assert that

if Du(x) 6= 0, (Thu)(x)− u(x) = hF (D2u, Du,x) + ox(h), (23.15)

where the convergence of ox(h) is uniform for x in every compact set contained
in the set {x, Du(x) 6= 0} and

if Du(x) = 0, |(Thu)(x)− u(x)| ≤ hG(D2u, 0,x) + ox(h) (23.16)

for a continuous functions G, with G(0, 0,x) = 0, and where the convergence of
ox(h) is uniform for x in every compact set.

Definition 23.11. We say that a family of operators Th, h > 0 satisfies a
uniform local comparison principle if for every L and all L-Lipschitz functions
u and v such that u(y) ≥ v(y) on a disk D(x, r),

(Thu)(x) ≥ (Thv)(x)− o(h), (23.17)

where the function o(h) only depends upon the Lipschitz constant L and r.
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Notice that if T is a local morphological operator like the median on a ball
and Th its rescaled version, then (23.17) is trivially satisfied, with o(h) = 0 for
h small enough.

Definition 23.12. Let Th, h > 0, be a family of operators: F → F which is
uniformly consistent with Equation (23.14). We call approximate solutions
of (23.14) with initial condition u0(x) the functions uh(t,x) defined for every
h > 0 by

∀n ∈ IN, uh(nh,x) = (Tn
h u0)(x).

The functions uh are only defined on (hN) × RN . All the same, we are
interested in their limit on R+ × RN = [0, +∞)× RN .

Definition 23.13. We say that approximate solutions uh converge uniformly
on compacts sets to a function u defined on R+×RN if for every compact subset
K of R+×RN and every ε > 0, there is h0 such that |u(t,x)− uh(t,x)| < ε for
all h ≤ h0 and all (t,x) ∈ K ∩ (hN)× RN .

Proposition 23.14 (Barles-Souganidis). Let (Th)h≥0 be a family of transla-
tion invariant operators uniformly consistent with (23.14), satisfying a uniform
comparison principle and commuting with the addition of constants. Let u0 ∈ F
be Lipschitz. Assume that a sequence of approximate solutions uhk

converges
uniformly on every compact set to a function u, with hk → 0. Then u is a
viscosity solution of (23.14).

Before starting with the proof, let us state two obvious but useful lemmas.

Lemma 23.15. Consider uh converging to u uniformly on compact sets, as in
Definition 23.13. Assume that u is continuous on a ball Br = B((t,x), r) and
that it attains its strict maximum on Br at (t,x). Then if (th,xh) is a maximum
point of uh on Br, one has (th,xh) → (t,x).

Proof. For every ε > 0, there is η > 0 such that supBr\Bε
u < supBr

u − η.
Take h small enough so that supBr

|u−uh| < η
2 . Then supBr

|uh| > supBr
u− η

2 .
On the other hand, supBr\Bε

|uh| < supBr
u − η + η

2 , which proves that the
maximum of uh is attained on Bε only.

¤

Lemma 23.16. Assume that u0 is L-Lipschitz. Then for every n, uh(nh,x) is
L-Lipschitz in x.

Proof. This is a straightforward consequence of the definition of uh and Lemma
11.11. ¤
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Proof of Proposition 23.14. Without risk of ambiguity, we shall write uh

instead of uhk
. Let B = B((x, t), r) be a closed ball and ϕ(s,y) a C∞ and

Lipschitz function such that (u − ϕ)(s,y) attains its strict maximum on B at
(t,x). Without loss of generality, we can assume by Lemma 23.5 that ϕ(t,y) =
f(y) + g(t). Notice that the functions x → un(nh,x) are in F and therefore
continuous. The maximum of uh − ϕ on B ∩ (hN) × RN is attained, because
this function is discrete in time and continuous in x. Since uh − ϕ → u − ϕ
uniformly on B∩(hN)×RN , we know by Lemma 23.15 that a sequence (nhh,xh)
of maxima of uh − ϕ on B converges to (t,x). By the maximum property of
(nhh,xh), we have

uh((nh − 1)h,y)− ϕ((nh − 1)h,y) ≤ uh(nhh,xh)− ϕ(nhh,xh).

for every y such that ((nh − 1)h,y) ∈ B and therefore

uh((nh − 1)h,y) ≤ uh(nhh,xh)− ϕ(nhh,xh) + ϕ((nh − 1)h,y)

for h small enough (i.e. k large enough) and every y ∈ B(x, r
2 ). Applying on

both sides Th and using the local comparison principle and the commutation of
Th with the addition of constants,

Th(uh((nh−1)h, .))(xh) ≤ uh(nhh,xh)−ϕ(nhh,xh)+(Thϕ((nh−1)h), .)(xh)+o(h).

Since ϕ(t,y) = f(y) + g(t) and Th(u((nh − 1)h), .)(x) = uh(nhh,x), we get

0 ≤ −f(xh)− g(nhh) + Thf(xh) + g((nh − 1)h) + o(h),

where we have used again the commutation of Th with the addition of constants.
Let us first assume that Df(x) 6= 0. By the uniform consistency assumption

(23.15), since for h small enough Df(xh) 6= 0,

(Thf)(xh) = f(xh) + hF (D2f(xh), Df(xh),xh) + oxh
(h).

Thus

g(nhh)− g((nh − 1)h) ≤ hF (D2f(xh), Df(xh),xh) + oxh
(h).

Dividing by h, letting h → 0 so that (xh, nhh) → (x, t) and using the continuity
of F , we get

∂g

∂t
(t) ≤ F (D2f(x), Df(x),x),

that is to say
∂ϕ

∂t
(t) ≤ F (D2ϕ(x), Dϕ(x),x).

We treat now the case where Df(x) = 0 and D2f(x) = 0. The uniform
consistency yields

| (Thf)(xh)− f(xh)
h

| ≤ G(D2f(xh), Df(xh),xh) + o(1).

The right term, by continuity of G, tends to zero, when h tends to 0. Thus

∂ϕ

∂t
(t) ≤ 0
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Thus u is a subsolution of Equation (23.14) and we prove in exactly the same
way that it is a supersolution and therefore a viscosity solution. ¤

At this point it should be clear that the last important step in our program
is to show that the approximate solutions converge uniformly on compact sets.
It should also be clear that Definitions 15.9 and 15.10 were fashioned to abstract
from previous results about inf-sup operators, conditions that are sufficient to
prove the Barles–Souganidis theorem. We will see in the next chapter that these
conditions are also sufficient to prove that the approximate solutions converge.
This then will close the gap and show that the iterated operators converge to
viscosity solutions of their associated equations.

23.4 A uniqueness result for viscosity solutions

Proving uniqueness is technically quite difficult, and we are going to fudge by
quoting a uniqueness result without proof. Our statement has been simplified
to cover only those admissible functions F that are associated with image op-
erators. References where one can find this and more general results are given
in the next section.

Theorem 23.17 (Uniqueness). Assume that (A, p) 7→ F (A, p) is admissible.
Let u(t,x) and v(t,x) be two continuous functions for (t,x) ∈ R+ × SN , such
that for all t ∈ R+, x → u(t,x) and x → v(t,x) belong to F . If u and v are
continuous viscosity solutions of

∂ϕ

∂t
= F (D2u,Du) (23.18)

then

sup
t∈R+,x∈RN

(u(t,x)− v(t,x)) ≤ sup
x∈RN

(u(0,x)− v(0,x)). (23.19)

As a consequence, if u(0,x) = v(0,x) for all x, then u(t,x) = v(t,x) for all x
and t.

23.5 Exercises

Exercise 23.5. The exercise refers to the proof of Lemma 23.4. Consider u − ϕ,
continuous and having a strict maximum at (t0,x0). Set

ψε(t,x,y) = u(t,x)− ϕ(t,y)− |x− y|4
ε

, ε > 0.

Prove the existence of the points (tε,xε,yε) where ψε has local maxima and that tend
to (t0,x0,y0) as ε → 0. Hints: Since u − ϕ has a local maximum at (t0,x0), we
can choose an r such that u(t,x) − ϕ(t,x) ≤ u(t0,x0) − ϕ(t0,x0) = λ for (t,x) ∈
D((t0,x0), r) = D. For any (t,x), (t,y) ∈ D we have

u(t,x)− ϕ(t,y)− |x− y|4
ε

≤ sup
(t,x),(t,y)∈D

(
u(t,x)− ϕ(t,y)− |x− y|4

ε

)
.
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Let x = y = x0 on the left-hand side, so

λ ≤ sup
(t,x),(t,y)∈D

(
u(t,x)− ϕ(t,y)− |x− y|4

ε

)
.

For each ε > 0, there is some point (tε,xε,yε) where the supremum is attained. Now
argue that these points must tend to (t0,x0,y0) as ε → 0. (This is where the fact that
(t0,x0,y0) is “strict” is used.) Hence, for small enough ε the points (tε,xε,yε) must
all be in the interior of D and are therefore local maximum points.

Exercise 23.6. We have seen in Lemma 23.5 that the test functions in Definition
23.2 can be replaced with functions of the form ϕ(t,x) = f(x) + g(t). Prove that the
requirement can be weakened further by only requiring that f belongs to any class
C of C2 functions that has the following property: For any x ∈ RN , any a ∈ R, any
p ∈ RN , and any symmetric N ×N matrix A, there exists f ∈ C such that

f(x− y) = a + 〈p,x− y〉+
1

2
〈A(x− y), (x− y)〉+ o(|x− y|2).

Hint: use the techniques used to prove Lemma 23.5.

23.6 Comments and references

The simple definition of viscosity solution given in this chapter was originally
proposed by Michael G. Crandall and Pierre-Louis Lions [?] for first-order PDEs
associated with control theory. It was then shown to be applicable to second-
order equations, in particular the so-called geometric equations like mean cur-
vature motion. The first complete treatise is User’s guide to viscosity solutions
of second order partial differential equations by Crandall, Ishii, and Lions [94].
First-order equations are treated extensively in Barles [36]. An elementary
account for first-order equations is given in the textbook by Evans [110]. Cran-
dall’s later presentation of the theory for both first- and second-order equations,
published in [?], is a masterpiece of simplicity and brevity. This book contains a
rather complete overview of the techniques, results, and applications, although
it does not include applications to image analysis.

The approximation theory for viscosity solutions presented here is based on
the seminal paper by Barles and Souganidis [40].

Proving uniqueness for viscosity solutions of second-order parabolic or ellip-
tic equations is the technically difficult part of the theory. The key step that
leads to the uniqueness results was made by Robert Jensen in his 1988 paper
[182]. See also [218] and [367] for general uniqueness proofs in the parabolic
case. Some alternative (or related) existence and uniqueness theories, namely,
the nonlinear semigroup theory and De Giorgi’s theory of barriers, are discussed
in [107] and [44].
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23.7 Tables of multiscale differential operators
and equations

• All equations have a unique viscosity solution starting from a Lipschitz
initial image u0;

• all iterated radial convolutions converge to the heat equation;
• iterated monotone contrast invariant isotropic filters converge to a curva-

ture motion or an erosion or a dilation;
• iterated contrast invariant affine invariant self-dual filters converge to an

affine curvature motion;
• iterated medians converge to a mean curvature or curvature (dim. 2)

motion.

operator ∂u
∂t = F (A, p)

Laplacian ∆u trace(A)
gradient |Du| |p|
curvature |Du|curv(u) A(p⊥

|p| ,
p⊥

|p| )
affine curvature |Du|curv(u)

1
3 A(p⊥, p⊥)

1
3

snake g.|Du|curv(u) + (Dg.Du) gA(p⊥

|p| ,
p⊥

|p| ) + Dg.p

mean curvature |Du|(κ1(u) + κ2(u)) Tr(A)−A(p/|p|, p/|p|)
affine curvature sgn(κ1)t1/2|Du||G(u)+|1/4

acceleration |Du|curv(u)
1−q
3 (sgn(curv(u))accel(u)q)+

operator finite difference scheme structuring elements B
Laplacian uxx + uyy gaussian convolution
gradient (u2

x + u2
y)

1
2 ball

curvature uxxu2
y−2uxyuxuy+uyyu2

x

u2
x+u2

y
median

affine curv. (uxxu2
y − 2uxyuxuy + uyyu2

x)
1
3 affine inv.

snake g.
uxxu2

y−2uxyuxuy+uyyu2
x

u2
x+u2

y
+(gxux+gyuy) x-dependent median, dilation

mean curv. div
(

Du
|Du|

)
median (BMO)

affine curv. sgn(κ1)t1/2|Du||G(u)+|1/4 affine inv.
acceleration |Du|curv(u)

1−q
3 (sgn(curv(u))accel(u)q)+ galilean invariant

• ki(A, p) = µi

|p| where µi is the i-th eigenvalue of QpAQp of A to p⊥, with
Qp = p ⊗ p. In other terms µi is the i-th eigenvalue of the restriction of
A to p⊥, the hyperplane orthogonal to p.

• ki(u) = ki(D2u,Du).
• g(x) = 1

1+|Du0(x)| is small on edges of u0 and large otherwise;
• affine invariant structuring elements (dim. 2) computed by Moisan scheme;
• curvature motion implemented by BMO (iterated median) or finite differ-

ence scheme;
• alternatively mean curvature and mean curvature motion computed by

diffusion (heat equation) on the hyperplane orthogonal to the gradient;
• accel(u) is a bit long to write but the galilean invariant set of structuring

elements leads to an easy inf sup computation; q ∈]0, 1[.
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Chapter 24

Curvature Equations and
Iterated Contrast-Invariant
Operators

In this chapter, we apply the viscosity solution theory to the main curvature
equations. A first important consistency result is that the viscosity solutions are
invariant under contrast changes (Proposition 24.2): If u is a viscosity solution
of a curvature equation, then, for any continuous contrast change g, g(u) is also
a viscosity solution of the same equation. Our second main focus is to illustrate
the general principle that “iterated contrast invariant filters are asymptotically
equivalent to a curvature equation.” We shall not prove this principle in whole
generality. We shall limit ourselves to two cases which were proven of great
interest in image analysis. The first example is the iterated median filter, which
will be showed to converge to a curvature equation. The second example is the
iteration of alternate affine filters, which converges to the AMSS equation.

24.1 The main curvature equations used for image
processing

The curvature equation of most interest to image processing have the general
form

∂u

∂t
= |Du|β(curv(u)) (24.1)

in two dimensions and the form

∂u

∂t
= |Du|β(κ1(u), κ2(u), . . . , κN−1(u)) (24.2)

in N dimensions. The real-valued function β is continuous and nondecreasing
with respect to each of its variables. The κi(u) denote the principal curvatures
of the level surface of u, defined as the eigenvalues of the restriction of D2u

|Du| to
the hyperplane orthogonal to Du (see Definition 15.19.)

287
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288 CHAPTER 24. CURVATURE EQUATIONS

Here are some specific examples. In two dimensions, we have shown that
the equations

∂u

∂t
= |Du|curv(u) (24.3)

and
∂u

∂t
= |Du|(curv(u))1/3, (24.4)

as well as variants like

∂u

∂t
= |Du|(curv(u)+)1/3, (24.5)

are relevant for image processing. In three dimensions, we will be concerned
with

∂u

∂t
= |Du|(κ1(u) + κ2(u)). (24.6)

This is the classical mean curvature motion that is important because it appears
as a limit of iterated median filters. Our assumptions also cover variants like

∂u

∂t
= |Du|min(κ1(u), κ2(u)). (24.7)

This filter provides a less destructive smoothing of three-dimensional images
than the mean curvature motion. Finally, let us mention affine-invariant curva-
ture motion, which is a particularly important equation in three dimensions:

∂u

∂t
= sgn(κ1)t1/2|Du||G(u)+|1/4. (24.8)

The admissible functions F for these equations were listed in Section 23.1 and
in the synoptic tables of Section 23.7.

24.2 Contrast invariance and viscosity solutions

We are going to show that the concepts of contrast invariance and viscosity
solution are compatible. Proposition 24.2 will show that f u is a viscosity solution
of (24.1) or (24.2), then for all continuous nondecreasing functions g, g(u) is
also a viscosity solution of the same equation.

Lemma 24.1. Assume that (A, p) 7→ F (A, p) is an admissible function of the
form F (D2(u), D(u)) = |D(u)|β(κ1(u), κ2(u), . . . , κN−1(u)) and that g : R→ R
is C2 with g′(s) > 0 for all s ∈ R.

If Du 6= 0, then

F (D2(g(u)), D(g(u))) = g′(u)F (D2u,Du) (24.9)

for any C2 function u : RN → R.

If D2u = 0 and Du = 0, then

F (D2(g(u)), D(g(u))) = F (0, 0) = 0. (24.10)
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Proof. If D(u) 6= 0, then we know from Proposition 15.16 that curv(g(u)) =
curv(u) in two dimensions and that κi(g(u)) = κi(u) in the N -dimensional case.
Thus,

F (D2(g(u)), D(g(u))) =|D(g(u))|β(κ1(g(u)), κ2(g(u)), . . . , κN−1(g(u)))
=g′(u)|D(u)|β(κ1(u), κ2(u), . . . , κN−1(u))

=g′(u)F (D2u,Du),

as announced. In general, D(g(u)) = g′(u)Du and

D2(g(u)) = g′(u)D2u + g′′(u)Du⊗Du.

Thus, if D2u = 0 and Du = 0, then D2(g(u)) = 0 and D(g(u)) = 0, and

F (D2(g(u)), D(g(u))) = F (0, 0) = 0.

¤
Exercise 24.1. Check the formula D2(g(u)) = g′(u)D2u + g′′(u)Du⊗Du.

The proof of the next result, the main one of this section, is slightly more
involved because we drop the assumption that g′(s) > 0.

Proposition 24.2. Assume that u is a viscosity solution of the equation

∂u

∂t
= F (D2(u), D(u)),

where F satisfies the conditions of Lemma 24.1. If g : R→ R is continuous and
nondecreasing, then g(u) is also a viscosity solution of this equation.

Proof. We begin by assuming that g is C∞ and that g′(s) > 0, and we write
f = g−1 for convenience. Let (t,x) be a strict local maximum of g(u) − ϕ.
Without loss of generality, we can assume that g(u(t,x)) − ϕ(t,x) = 0: Just
replace ϕ with ϕ − g(u(t,x)). Then (t,x) is also a strict local maximum of
u− f(ϕ). To see this, note that

g(u(s,y))− ϕ(s,y) < g(u(t,x))− ϕ(t,x) = 0

for (s,y) sufficiently close to (but not equal to) (t,x). Thus,

u(s,y) < f(ϕ(s,y))

and
u(s,y)− f(ϕ(s,y)) < 0 = u(t,x)− f(ϕ(t,x)),

again, for (s,y) sufficiently close to (but not equal to) (t,x).
Since f(ϕ) is C∞ and u is a viscosity solution, it follows from the definition

of viscosity solution that, for D(f(ϕ)(t,x) 6= 0,

∂(f(ϕ))
∂t

(t,x) ≤ F (D2(f(ϕ))(t,x), D(f(ϕ))(t,x)).

This implies by Lemma 24.1 that

f ′(ϕ)
∂ϕ

∂t
(t,x) ≤ f ′(ϕ)F (D2(ϕ)(t,x), D(ϕ)(t,x));
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since f ′(s) > 0,
∂ϕ

∂t
(t,x) ≤ F (D2(ϕ)(t,x), D(ϕ)(t,x)).

If D(f(ϕ)) = 0 and D2(f(ϕ)) = 0, then, by Definition 23.2, (∂f(ϕ)/∂t)(t,x) ≤
0, and so (∂ϕ/∂t)(t,x) ≤ 0. This proves that g(u) is a viscosity subsolution when
g ∈ C∞ and g′(s) > 0.

Now assume that g is simply continuous and nondecreasing. We replace g
with gε, ε > 0, a C∞ function such that g′ε(s) ≥ ε and gε → g uniformly on
compact subsets of R as ε → 0. (See Exercise 24.5.)

We know from Lemma 23.15 that there is a sequence of points (tε(k),xε(k)),
k ∈ N, with the following properties: ε(k) → 0 as k →∞, (tε(k),xε(k)) → (t,x)
as k →∞, and gε(k)(u)−ϕ has a local maximum at (tε(k),xε(k)). (Having fixed
this sequence, we will now simplify the notation by writing ε(k) = ε.)

If Dϕ(t,x) 6= 0, then Dϕ(tε,xε) 6= 0 for all sufficiently small ε, that is, all
sufficiently large k. Since we have shown in the first part of the proof that gε(u)
is a viscosity solution of

∂u

∂t
= F (D2(u), D(u)),

it follows from Lemma 23.3 that
∂ϕ

∂t
(tε,xε) ≤ F (D2ϕ(tε,xε), Dϕ(tε,xε))

for all sufficiently small ε. Since both sides of this inequality are continuous, we
can pass to the limit as ε → 0 and conclude that

∂ϕ

∂t
(t,x) ≤ F (D2ϕ(t,x), Dϕ(t,x)).

In case D2ϕ(t,x) = 0 and Dϕ(t,x) = 0, we call on Lemma 23.4 and write

∂ϕ

∂t
(tε,xε) ≤ G+(D2ϕ(tε,xε), Dϕ(tε,xε)),

where G+ satisfies the conditions of Definition 23.1. By passing to the limit and
using the fact that G+(0, 0) = 0, we see that

∂ϕ

∂t
(t,x) ≤ 0.

This proves that g(u) is a viscosity subsolution of ∂ϕ/∂t = F (D2u,Du); the
same proof adapts to prove that it is a viscosity supersolution. ¤

24.3 Uniform continuity of approximate solu-
tions

Lemma 24.3. Consider scaled monotone translation invariant operators Th

defined on the set of Lipschitz functions on RN . Assume that they commute
with the addition of constants and that there exists a continuous real function,
ε(t) satisfying ε(0) = 0 and such that for nh ≤ t, ((Th)n(L|x|))(0) ≤ Lε(t) and
((Th)n(−L|x|))(0) ≥ −Lε(t). Then for every L-Lipschitz function u0, one has
−Lε(t) ≤ ((Th)nu0)(x)− u0(x) ≤ Lε(t).
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Proof. Since the operators Th commute with translations, we can prove the
statements in the case of x = 0 without loss of generality. Since u0 is L-
Lipschitz, we have

−L|x| ≤ u0(x)− u0(0) ≤ L|x|
Applying (Th)n, using its monotonicity and its commutation with the addition
of constants and taking the value at 0,

((Th)n(−Lx))(0) ≤ ((Th)nu0)(0)− u0(0) ≤ ((Th)n(Lx))(0),

that is, by assumption if nh ≤ t,

−Lε(t) ≤ ((Th)nu0)(0)− u0(0) ≤ Lε(t).

¤

Lemma 24.4. Let u0(x) be a Lipschitz function on RN . Let Th be a family of
operators satisfying the assumptions of Lemma 24.3. Assume in addition that
the associated function ε(h) is concave near 0. Then the approximate solutions
uh(t,x) associated with Th are uniformly equicontinuous when we restrict t to
the set hIN . More precisely, for all n,m ∈ IN and all x,y in RN ,

|uh(nh,x)− uh(mh,y)| ≤ L|x− y|+ ε(|n−m|h). (24.11)

We can extend uh into functions ũh on R+×RN which are uniformly equicon-
tinuous. As a consequence, there are sequences uhn , with hn → 0, which con-
verge uniformly on every compact subset of R+ × RN .

Proof. Since by definition uh(nh,x) = ((Th)nu0)(x), the result is a direct con-
sequence of Lemmas 11.11 and 24.3 : By the first mentioned lemma,

|uh(nh,x)− uh(nh,y)| ≤ L|x− y|

and by the second one applied with (Th)n−m,

|uh(nh,x)− uh(mh,x)| = |((Th)n−muh(mh, .))(x)− uh(mh,x)| ≤ ε(|n−m|h).

Thus, we obtain (24.11) by remarking that

|uh(nh,x)−uh(mh,y)|≤|uh(nh,x)−uh(nh,y)|+|uh(nh,y)−uh(mh,y)|. (24.12)

Consider the linear interpolation of uh,

ũh(t,x) =
t− nh

h
uh((n + 1)h,x) +

(n + 1)h− t

h
uh(nh,x).

Since ε is concave, the function ε(h)
h is nonincreasing. It follows that

|ũh(t,y)− ũh(s,y)| ≤ ε(h)
h
|t− s| ≤ ε(|t− s|) ≤ for |t− s| ≤ h (24.13)

and
|ũ(t,y)− ũ(s,y)| ≤ 3ε(|t− s|) for |t− s| ≥ h. (24.14)
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(See Exercise 24.2.) By using again (24.12) we conclude that the family of
functions ũh is uniformly equicontinuous on all of [0, +∞[×RN . Notice that
ũh(0,x) = u0(x) is fixed. Thus, we can apply Ascoli-Arzela Theorem which
asserts that under such conditions, the family of functions ũh(t,x) has a subse-
quence converging uniformly on every compact set of [0, +∞] × RN towards a
uniformly continuous function u(t,x). The same conclusion holds for uh(t,x). ¤

Exercise 24.2. Proof of (24.13), (24.14).
a) Assume first that t, s belong to some [nh, (n + 1)h[ and prove (24.13) in that case.
b) Assume that |t− s| ≤ h and t ≤ nh ≤ s. By using |u(t)− u(s)| ≤ |u(t)− u(nh)|+
|u(nh)− u(s)| prove again (24.13).
c) If |t − s| > h there are m, n such that (n − 1)h ≤ t < nh ≤ mh ≤ s < (m + 1)h.
By using again the triangular inequality and the fact that |(m − n)h| ≤ |t − s| and
h < |t− s|, prove (24.14).

Exercise 24.3. Consider the assumptions of Lemmas and 24.3 and see whether the re-
sults of these lemmas can be extended to the case where u0 is assumed to be uniformly
continuous instead of Lipschitz. More precisely, assume that there exists a continuous
increasing function ε : R+ → R+ such that ε(0) = 0 and |u0(x)−u0(y)| ≤ ε(||x−y||).
Hint: use Corollary 11.12.

24.4 Convergence of iterated median filters to
the mean curvature motion

We shall prove in Theorem 24.6 one of the main practical and theoretical re-
sults of this book : the iterated median filters converge to the mean curvature
motion equation. The action of iterated median filters and the action of the
corresponding PDE are illustrated and compared in Figures 24.1 and 24.2 and
show how true this theorem is.

Figure 24.1: Scale-space based on iterations of the median filter. From left to
right and top to bottom: original shape, size of the disk used for the median
filter, and the results of applying the iterated median filter for an increasing
number of iterations.
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Figure 24.2: Comparing an iterated median filter with a curvature motion.
Numerically, the iterated median filter and the curvature motion must be very
close, at least when the curvatures of the level lines are not too small. Indeed,
the iterated median filter converges towards the curvature motion. Left: the
initial shape of Figure 24.1 has been smoothed by a finite difference scheme of
the curvature motion; middle: smoothing with a median filter at the same scale;
right: difference between left and middle images. The difference is no greater
than the width of one pixel. To have a rigorous comparison, scales have been
calibrated by ensuring that for both schemes and all r a circle with radius r
vanishes at scale r

Lemma 24.5. (median filter) Let k be a radial, nonnegative, non separable,
compactly supported function and kh(y) = 1

hN h(xh ) the associated scaled func-
tion. Assume, without loss of generality, that the support of kh is B(0, h) and
consider the weighted median filter associated with kh, Thu(x) = Medkh

u(x).
Set v0(x) = v0(|x|) = v0(r) = Lr. Then, if nh2 ≤ t,

(Tn
h v)(0) ≤ L

√
2t and Tn

h (−v)(0) ≥ −L
√

2t

Proof. Let us first estimate Thv(r) when v(x) = v(|x|) = v(r) is any radial
nondecreasing function. To this aim, let x be such that |x| = r. By the
triangular inequality, the sphere with center 0 and radius

√
r2 + h2 divides the

ball B = B(x, h) into two parts such that

measkh
({y, |y| ≥

√
r2 + h2} ∩B − x) ≤ measkh

({y, |y| ≤
√

r2 + h2} ∩B − x).
(24.15)

As a consequence, v being nondecreasing, we have

medkh
v(x) ≤ v(

√
r2 + h2). (24.16)

Let us set for brevity fh(r) =
√

r2 + h2 and rn+1(r) = fh(rn), r0 = r. Then we
obviously have from (24.16) and the monotonicity of Th

(Tn
h v)(r) ≤ v(rn(r)). (24.17)

In addition, since
√

r2 + h2 ≤ r + 1
2rh2 and rn is an increasing sequence, we

obtain rn+1 ≤ rn + h2

2rn
≤ rn + h2

2r0
and therefore

rn ≤ r +
nh2

2r
. (24.18)
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0

B(x,h)

h

xr

Figure 24.3: Illustrating the inequality (24.15).

Let us assume that nh2 ≤ t. Taking into account that v is a nondecreasing
function, (24.17-24.18) yield

(Tn
h v)(r) ≤ v(r +

t

2r
). (24.19)

Since (Tn
h v)(r) is a nondecreasing function of r, we deduce that (Tn

h v)(r) ≤
v(
√

2t) if r ≤
√

t
2 . Thus, if v(r) = Lr, we have for nh2 ≤ t

(Tn
h v)(0) ≤ L

√
2t.

The kernel kh being non separable, the second announced inequality comes
from the self-duality of the median, namely Th(−v) = −Th(v). Applying this
iteratively we deduce that (Tn

h (−v))(0) = −Tn
h v(0) ≥ −L(

√
2t).

¤

Exercise 24.4. Fill in the details of the arguments leading to Equations (24.16) and
(24.17).

Theorem 24.6. Convergence of iterated weighted median filter. Let kh be
either a C∞ compactly supported non separable radial function (in any dimen-
sion), or the uniform distribution on the unit disk in R2. and (Thu) = Medkh

u.
Let u0 ∈ F . Then the approximate solutions uh associated with u0 and Medkh

converge to a viscosity solution u of

∂u

∂t
=

1
2
ck|Du|curv(u), (24.20)

where ck = 1
3 if k is the uniform measure on unit disk in R2 and ck is the con-

stant specified in Lemma 19.2 otherwise. Incidentally, this proves the existence
of a (unique) viscosity solution to the curvature equation.

Proof. We know by Theorems 18.7 and 19.3 that the weighted median is uni-
formly consistent with (24.20). Bounds for the result of the iterated filter (Th)n
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applied to +L|x| and −L|x| have been computed in Lemma 24.5, so that the as-
sumption of Lemma 24.3 is true. In addition, we know that Medkh

is monotone,
satisfies the local comparison principle (23.17), commutes with translations and
the addition of constants. Thus, we can apply Lemma 24.3 which asserts that
a subsequence of the approximate solutions uh converges uniformly on compact
sets of R+ × RN to a function u. In addition, by Proposition 23.14, u is a
viscosity solution of (24.20). Since by Theorem 23.17, this solution is unique,
we deduce that the whole sequence uh converges to u. We have thus proved
both existence of a viscosity solution for the mean curvature motion and the
convergence of the iterated median filters. ¤

24.5 Convergence of iterated affine-invariant op-
erators to affine-invariant curvature motion

In this section we consider any affine invariant contrast invariant filter associated
with an affine invariant, 1-localizable structuring set B. Let

IShu(x) = inf
B∈h

3
2 B

sup
y∈x+B

u(y) and SIhu(x) = sup
B∈h

3
2 B

inf
y∈x+B

u(y),

and let Th denote one to the operators ISh, SIh, or SIhISh. We recall that
we have defined uh, the approximate solutions generated by Th with an initial
function u0 ∈ F , by

uh(x, (n + 1)h) = Thuh(x, nh), uh(x, 0) = u0(x).

Theorem 24.7. Let B an affine invariant, 1-localizable structuring set such that
c+
B > 0 and that every B ∈ B contains 0. Then the sequence {uh} converges,

when h → 0, uniformly on compact sets of R+ × R2 to the unique viscosity
solution u of

∂u

∂t
= cB|Du|g(curv(u)),

where

g(r) =





(r+/2)1/3 if Th = ISh,

(r−/2)1/3 if Th = SIh,

(r/2)1/3 if Th = SIhISh,

(24.21)

and cB = c+
B .

By Barles-Souganidis principle, Theorem 24.7 essentially is a consequence of
Lemma ?? and Theorem ??, which state a consistency result for the schemes
SIh, ISh, SIhISh. In order to achieve the proof of Theorem 24.7, we need to
check that the assumptions of Lemma 24.3 are satisfied.

Lemma 24.8. Consider any radial nondecreasing function v(x) = v(|x|) =
v(r) ≥ 0. Then for nh ≤ t,

0 ≤ ((ISh)nv)(0) ≤ v(at + 2a
√

t).
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x

r
1/2ah

ah

Figure 24.4: Illustration of the proof of the inequality (??).

Proof. (SIh)nv is easily shown to be radial and nondecreasing, like v. Since B
is localizable, it can be assumed to contain, by Lemma ??, a square with area
a2. Set x = (r, 0). Since B is affine invariant, Bh = h

3
2B contains a rectangle

Rh with sides parallel to the axes, the side parallel to the x-axis having length
ah and the other one a2h

1
2 . Then

IShv(x) ≤ sup
x+Rh

v(y).

Thus
IShv(x) ≤ v((r +

ah

2
)2 + a2h)

1
2 ) (24.22)

We set for conciseness fh(r) = ((r + ah
2 )2 + a2h)

1
2 and rn+1(r) = fh(rn),

r0 = r. Since IShv is a radial nondecreasing function, we can replace v by IShv
in (24.22). By the monotonicity of ISh, we obtain

(Tn
h v)(r) ≤ v(rn(r)) (24.23)

In addition, since (r2 + ε)
1
2 ≤ r + 1

2r ε for all r, ε > 0, we have for h ≤ 1

fh(r) ≤ (r2 +ahr +a2h+
1
4
a2h2)

1
2 ≤ (r2 +2a2h+ ahr)

1
2 ≤ r +

1
2r

(2a2h+ ahr),

which yields

fh(r) ≤ r + ah +
a2h

r
. (24.24)

Thus rn+1 = fh(rn) ≤ rn +ah+ a2h
rn

≤ rn +ah+ a2h
r , because rn is an increasing

sequence. Finally, rn ≤ r + n(ah + a2h
r ) and, by (24.23),

(SIn
h v)(r) ≤ v(r + n(ah +

a2h

r
)).
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Let us assume that nh ≤ t. Then

(SIn
h v)(r) ≤ v(r + (a +

a2

r
)t).

Considering that the minimum value of r → r+(a+ a2

r )t is attained at r = a
√

t
and that r → (ISh)nv(r) is nondecreasing, we obtain for nh ≤ t,

0 ≤ (ISn
hv)(0) ≤ v(2a

√
t + at).

¤

Corollary 24.9. The operators Th = ISh, SIh, IShSIh all satisfy

−v(at + 2a
√

t) ≤ (Tn
h v)(0) ≤ v(at + 2a

√
t)

for every continuous radial nonincreasing function v ≥ 0.

Proof. We claim that SIhv = v. By Lemma ??, for every ε, Bh contains a
rectangle whose side parallel to the x axis has length ε. Thus

SIhv(x) ≥ inf
y∈x+Rh

v(y) = v(r − ε

2
) → v(x) as ε → 0.

Since every B ∈ B contains 0, we also have SIhv(x) ≤ v(x), which proves the
claim.

Since IShv is a radial nondecreasing continuous function like v, we also have
SIh(IShv) = IShv and by iterating and using Lemma 24.8,

((SIhISh)nv)(0) = ((ISh)n)v(0) ≤ v(at + 2a
√

t).

We also have by the same lemma,

((SIhISh)n(−v))(0) = −((IShSIh)nv)(0) = −((ISh)nv)(0) ≥ −v(at + 2a
√

t.

Finally, (SIh)nv = −(ISh)n(−v), which yields the same inequalities for (SIh)nv(0)
as for (ISh)nv(0). ¤

Figures 24.5 and 24.6 illustrate numerical results showing that affine-invariant
filters really are affine invariant. A finite difference scheme is used to compute
the action of the PDE in Figure 24.5. Figure 24.6 illustrates the same invariance
using an iterated. inf-sup operator.

of Theorem 24.7. By Lemma ??, Theorem ?? and Theorem ?? the oper-
ators Th are consistent with their corresponding partial differential equations
∂u
∂t = cB|Du|g(curv(u)), and satisfy a uniform local maximum principle. Be-
ing contrast invariant, they commute with the addition of constants. Thus, by
Proposition 23.14, if a sequence of approximate uniformly continuous solutions
uhn converges uniformly on every compact set to a function u, then u is a vis-
cosity solution of (23.14).
By Lemmas 24.3 and 24.8, the approximate solutions uh are equicontinuous on
every compact set of R+×RN and therefore have subsequences which converge
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A

T

A

T
-1

Figure 24.5: Affine invariance of (AMSS). We check the affine invariance of
the affine and morphological scale space (AMSS). A simple shape (top-left) is
smoothed using a finite differences discretization of (AMSS) followed by thresh-
olding (bottom-left). We apply an affine transform, with determinant equal to 1,
on the same shape (top-right), then the same smoothing process (middle-right),
and finally the inverse of the affine transform (down-right). The final results of
both processes are experimentally equal.

Figure 24.6: Checking the invariance of an affine-invariant inf-sup operator. The
images are the final outcomes of the same comparison process shown in Figure
24.5, with T replaced with an affine-invariant inf-sup operator. The structuring
set B is an approximately affine-invariant set of 49 ellipses, all with same area.
The inf-sup computation is costly and proves to be less affine invariant than the
one obtained by a finite difference scheme. This is due to grid effects.

uniformly to a function u on every compact subset of R+ × RN . Thus, u is a
viscosity solution. In addition, we know that a viscosity solution of (24.21) is
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unique (Theorem 23.17). Thus the limit u does not depend on the particular
considered subsequence and the whole sequence uh converges to u. So we have
proven both the existence of a viscosity solution for the affine invariant equa-
tions and the convergence of uh to this solution. ¤

24.6 Exercises

Exercise 24.5. Let g : R→ R be continuous and nondecreasing and set

gε(s) =

∫

R
ψε(s− t)(g(t) + εt) dt,

where the support of ψε is in [−ε, ε], ψε is C∞, ψε(s) ≥ 0, and
∫
R ψε(t) dt = 1. Show

that gε is C∞, that g′ε(s) ≥ ε, and that gε → g uniformly on compact subsets of R as
ε → 0.

24.7 Comments and references

The existence and uniqueness theory for the viscosity solutions of mean cur-
vature motion and the relations of these solutions with other kinds of solu-
tions (classical, variational) was developed independently by Evans and Spruck
[111, 112, 113, 114] and by Chen, Gigo, and Goto [81, 82]. We do not follow
their existence proofs, but rather the elegant numerical approximation schemes
invented by Merriman, Bence, and Osher [240] and the subsequent convergence
proof to the viscosity solution by Barles and Georgelin [39]. Other proofs of
the convergence of the iterated Gaussian median filter toward the mean curva-
ture equation are given in [109] using semigroups and by Ishii [164]. Finally,
we note the importance of iterated median filters for denoising applications [25]
and [178].
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Chapter 25

Scale Spaces and Partial
Differential Equations

This chapter and the next one are devoted to an axiomatic development of image
smoothing. Our approach is based on the notion of a scale space:

Definition 25.1. A scale space is a family of image (function) operators {Tt},
t ∈ R+, defined on F .

Although this concept is completely abstract, it is clearly based on work
presented in previous chapters. One can think of an operator Tt belonging to
a scale space as the asymptotic limit of iterated filters, and in fact, the main
purpose for developing this abstract theory is to classify and model the possi-
ble asymptotic behaviors of iterated filters. The program proceeds as follows:
We first introduce several properties that smoothing operators are reasonably
expected to have. These properties will be recognized as abstractions of results
about iterated filters that we have already encountered; in particular, the func-
tion F that has played such an important role in relating iterated operators
to differential equations appears in Definition 25.6. At this stage, we will have
formally identified scale spaces with the operator mapping u0 to u(t), where
u(t,x) is a solution of a parabolic partial differential equation

∂u

∂t
= F (D2u,Du, u,x, t).

The next step is to define the now-familiar invariants for scale spaces, one at
a time, and then deduce properties that F must have based on the assumed
invariants of {Tt}. This will lead, for example, to a complete characterization
of the function F for a linear scale space as the Laplacian.

The chapter contains seven figures that illustrate some of the concepts. Fig-
ures 25.4, 25.5, 25.6, and 25.7 are placed at the end of the chapter. Figure
25.4 illustrates numerically that linear smoothing is not contrast invariant. On
the other hand, Figure 25.5 shows experimentally that the scale space AMSS
is contrast invariant. The significance of contrast invariance for smoothing T-
junctions is illustrated in Figure 25.6. Figure 25.7 illustrates one of the most
important twentieth century discoveries about human vision and compares it
with computer vision.

303
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25.1 Basic assumptions about scale spaces

In our context, the operators Tt are smoothing operators and the functions u
are images. Thus, given an image u0, Ttu0 = u(t, ·) is the image u0 smoothed
at scale t. It is natural to abstract the idea that an image smoothed at scale t
can be obtained from the image smoothed at scale s, s < t, without having to
“go back” to the original image u0. This concept is illustrated in Figure 25.1
and formulated in the next definition.

Definition 25.2. A scale space {Tt} is said to be pyramidal if there is another
family of operators {Tt+h,t} : F → F , h ≥ 0, called transition operators, such
that

Tt+h = Tt+h,tTt and T0 = I,

where I denotes the identity operator.

We will sometimes denote the transition operators by {Ts,t}, 0 ≤ t ≤ s.
Then Ts = Ts,tTt, h = s− t, and Tt,t = I. Most, but not all, results are about
pyramidal scale spaces. An important exception is Lemma 25.21, which is a key
result in our program.

A strong version of “pyramidal” is the semigroup property. Recall that we
have already encountered this idea in Chapter 13 in connection with a dilation
or an erosion generated by a convex set.

Definition 25.3. A scale space {Tt} is said to be recursive if T0 = I and

TsTt = Ts+t for all s, t ∈ R.

Note that if {Tt} is recursive, then Tt can be obtained by iterating Tt/n n
times. Another intuitive concept is that of “locality.” The thought that the
action of a smoothing operator on a function u at x would be sensitive to what
the function did far from x just does not make sense. This means that we want
the action of the transition operators to depend essentially on the values of u(y)
for y near x. Furthermore, we have had ample opportunity in earlier chapters to
see the technical importance of locality. The related property of being monotonic
is also intuitively and technically important. We combine these notions is the
next definition.

Definition 25.4. A scale space {Tt} satisfies a local comparison principle if
the following implications are true: For all u and v in the domain of definition,
u(y) ≤ v(y) for y in some neighborhood of x implies that

Tt+h,tu(x) ≤ Tt+h,tv(x) + o(h) for all sufficiently small h.

If u(y) ≤ v(y) for all y ∈ RN , then

Tt+h,tu(x) ≤ Tt+h,tv(x) for all x ∈ RN and all h > 0.

Our goal is to establish a classification of scale spaces. To do this, we need an
assumption stating that a smooth image evolves smoothly with the scale space.
From what we have seen in previous chapters, it should not be surprising that
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it is sufficient to assume this kind of property for quadratic functions. Now,
quadratic functions are not allowed to us, as they do not belong to F . Now,
there are functions in F which coincide locally with every quadratic functions
and this is enough for our scopes.

Definition 25.5. We say that u is a “quadratic function around x” if it belongs
to F and if for all y in some B(x, r), r > 0, one has

u(y) =
1
2
〈A(y− x),y− x〉+ 〈p,y− x〉+ c,

where A = D2u(x) is an N × N matrix, p = Du(x) is a vector in RN , and
c = u(x) is a constant.

From the semigroup point of view, the next assumption implies the existence
of an infinitesimal generator for the semigroup Tt.

The scale-space visual pyramid

t

space

light

s
t

sensor

image
analysed at
scale s

brightness u(t,x)

u(0,x) local

u(s,x)

0 s

x

T

T

Ts,0

t,0

t,s

Figure 25.1: The visual pyramid of scale space. Perception is thought of as
a flow of images passing through transition operators Tt,s. These operators
receive an image previously analyzed at scale s and deliver an image analyzed
at a larger scale t. The scale t = 0 corresponds to the original percept. In this
simple model, the perception process is irreversible: There is no feedback from
coarse scales to fine scales.

Definition 25.6. A scale space {Tt} is said to be regular if there exists a
function

F : (A, p,x, c, t) 7→ F (A, p,x, c, t)
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that is continuous with respect to A and such that for every quadratic function
u around x,

Tt+h,tu(x)− u(x)
h

→ F (D2u(x), Du(x),x, u(x), t) as h → 0. (25.1)

It is useful to write (25.1) as Tt+h,tu(x) − u(x) = hF (A, p,x, c, t) + o(h).
Then, replacing t with t− h shows that

Tt,t−hu(x)− u(x) = hF (A, p,x, c, t− h) + o(h). (25.2)

Then, if F is continuous in t,

Tt,t−hu(x)− u(x)
h

→ F (A, p,x, c, t) as h → 0. (25.3)

We encountered the notion of causality in section ??. The idea was quite
simple, if not precise: As scale increases, no new features should be introduced
by the smoothing operators. The image at scale t′ > t should be simpler than
the image at scale t. Since we will constantly be considering scale spaces that
are pyramidal and regular, and that satisfy the local comparison principal, it
will be convenient to give these scale spaces a name. The causality entails a
further property for F :

Definition 25.7. A scale space {Tt} is said to be causal if it is pyramidal and
regular, and if it satisfies the local comparison principle.

Lemma 25.8. If the scale space {Tt} is causal, then the function F is nonde-
creasing with respect to its first argument, that is, if A ≤ B, where A and B are
symmetric matrices, then

F (A, p, c,x, t) ≤ F (B, p, c,x, t). (25.4)

Proof. Let A and B be any N × N symmetric matrices with A ≤ B, and let
p be any N -dimensional vector. Consider the quadratic functions QA and QB

around x defined by

QA(y) = c + 〈p,y− x〉+
1
2
〈A(y− x),y− x〉;

QB(y) = c + 〈p,y− x〉+
1
2
〈B(y− x),y− x〉.

Then for fixed x and all y in a neighborhood of x, QA(y) ≤ QB(y). Using
the local comparison principle, we conclude that Tt+h,tQA(x) ≤ Tt+h,tQB(x).
Noting that QA(x) = QB(x) = c and using the regularity of {Tt}t∈R+ , we see
that

lim
h→0

Tt+h,tQA(x)−QA(x)
h

≤ lim
h→0

Tt+h,tQB(x)−QB(x)
h

,

which is the inequality F (A, p, c,x, t) ≤ F (B, p, c,x, t). ¤

We will see in the next section that the causality assumption implies that
the scale space is governed by a PDE.
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25.2 Causal scale spaces are governed by PDEs

The next result, Theorem 25.9, should be no surprise. It just says that for causal
scale spaces, the regularity condition, which is defined in terms of quadratic
forms, transfers directly to functions u that are C2. This is a fundamental,
although easily established, step in our program. Once we have established
Theorem 17.8, we are ready to introduce invariants: Postulate that the scale
space has certain invariance properties and conclude that F must have certain
properties. This will tell us that causal scale spaces with certain invariances will
be governed by a general class of PDEs.

Theorem 25.9. Assume that the scale space {Tt} is causal and that u is C2 at
x. Then there exists a function F such that for all x ∈ RN ,

Tt+h,tu(x)− u(x)
h

→ F (D2u(x), Du(x), u(x),x, t) as h → 0. (25.5)

Proof. Since we have assumed that u is C2 at x, we can expand u near x as

u(y) = u(x) + 〈Du(x),y− x〉+
1
2
〈D2u(x)(y− x),y− x〉+ o(|x− y|2).

For ε > 0, define the quadratic functions Q+ and Q− around x by

Q+(y) = u(x) + 〈Du(x),y− x〉+
1
2
〈D2u(x)(y− x),y− x〉+

1
2
ε〈y− x),y− x〉;

Q−(y) = u(x) + 〈Du(x),y− x〉+
1
2
〈D2u(x)(y− x),y− x〉 − 1

2
ε〈y− x),y− x〉.

For sufficiently small |y− x|,
Q−(y) ≤ u(y) ≤ Q+(y).

Use the facts that the scale space {Tt} is pyramidal (so the transition operators
exist) and that it satisfies the local comparison principle to deduce that

Tt+h,tQ
−(x)− o(h) ≤ Tt+h,tu(x) ≤ Tt+h,tQ

+(x) + o(h).

Since Q−(x) = u(x) = Q+(x), we have

Tt+h,tQ
−(x)−Q−(x)−o(h) ≤ Tt+h,tu(x)−u(x) ≤ Tt+h,tQ

+(x)−Q+(x)+o(h).

Now divide by h and let it tend to zero. Since {Tt} is regular we have the
following limits:

lim
h→0

Tt+h,tQ
−(x)−Q−(x)

h
≤ lim inf

h→0

Tt+h,tu(x)− u(x)
h

≤ lim sup
h→0

Tt+h,tu(x)− u(x)
h

≤ lim
h→0

Tt+h,tQ
+(x)−Q+(x)

h
.

Thus,

F (D2u(x)− εI, Du(x), u(x),x, t) ≤ lim inf
h→0

Tt+h,tu(x)− u(x)
h

≤ lim sup
h→0

Tt+h,tu(x)− u(x)
h

≤F (D2u(x) + εI,Du(x), u(x),x, t).
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Part of the regularity assumption is that F is continuous in its first argument,
so letting ε tend to zero shows that

lim
h→0

Tt+h,tu(x)− u(x)
h

= F (D2u(x), Du(x), u(x),x, t).

¤

This is about all we can conclude concerning the function F ; to deduce
more about F , we must assume more about the scale space. Most, but not
all, of these assumptions will be that the scale space is invariant under some
group of operations. Some of these invariants, like affine invariance, are rather
special. The first one we consider is, however, an invariance we naturally expect
all smoothing operators to have: Smoothing should not alter constants and
smoothing should commute with the addition of constants.

Definition 25.10. A pyramidal scale space {Tt} is said to be invariant under
grey level translations (or commutes with the addition of constants) if

Tt+h,t[0](x) = 0 and Tt+h,t(u + C)(x) = Tt+h,tu(x) + C (25.6)

for all u, all constants C, and all x ∈ RN .

If Tt+h,t is a linear filter defined by Tt+h,tu = ϕ ∗ u, then this axiom is
equivalent to the condition

∫
ϕ(x) dx = 1.

Proposition 25.11. Let {Tt} be a causal scale space that is invariant un-
der grey level translations. Then its associated function F : (A, p, c,x, t) 7→
F (A, p, c,x, t) does not depend on c. Furthermore, F (0, 0, c,x, t) = 0.

Proof. Consider a quadratic function around x, u(y) = (1/2)〈A(y − x),y −
x〉 + 〈p,y − x〉 + c, and let C be an arbitrary real number. By the regularity
assumption

Tt+h,t(u + C)(x)− (u + C)(x)
h

→ F (A, p, c + C,x, t) as h → 0.

Using the grey level translation invariance and regularity again,

Tt+h,t(u + C)(x)− (u + C)(x)
h

=
Tt+h,tu(x) + C − u(x)− C

h
→ F (A, p, c,x, t)

as h → 0. These last two limits imply that F (A, p, c + C,x, t) = F (A, p, c,x, t),
so F does not depend on c. If A = 0 and p = 0, then Tt+h,t(u)(x) − (u)(x) =
c− c = 0 and F (0, 0, c,x, t) = 0. ¤

From now on, we assume that the scale space is causal and invariant under
grey level translations. We will thus suppress c and write F (A, p, c,x, t) =
F (A, p,x, t).
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25.3 Scale spaces yield viscosity solutions

We are going to prove a result that connects a causal scale space {Tt} with a
viscosity solution of the PDE associated with {Tt}. In fact, we will prove that
Ttu0 is a viscosity solution of the equation

∂u

∂t
(t,x) = F (D2u(x), Du(x),x, t), (25.7)

where F is the function associated with {Tt} by regularity (Definition 25.6).

Theorem 25.12. Assume that a scale space {Tt} is causal and commutes with
grey level translations; assume also that F is continuous in t. Then the function
u defined by u(t,x) = Ttu0(x) is a viscosity solution of (25.7).

Proof. We will show that u is a viscosity subsolution; the proof that it is also a
viscosity supersolution is a similar argument with the inequalities going in the
opposite direction.

Assume that ϕ is C∞ and that (t,x) ∈ (0, +∞) × RN is a point at which
the function u− ϕ has a strict local maximum. The point (t,x) is fixed, so we
will denote the variable by (s,y). We need to show that

∂ϕ

∂t
(t,x)− F (D2ϕ(t,x), Dϕ(t,x),x, t) ≤ 0. (25.8)

(Note that we would usually consider two cases: (1) Dϕ(t,x) 6= 0; (2) Dϕ(t,x) =
0 and D2ϕ(t,x) = 0. Since F (0, 0,x, t) = 0 by Proposition 25.11, it is sufficient
to prove (25.8).)

On the basis of Lemma 23.5, we assume that ϕ is of the form ϕ(s,y) =
f(y) + g(s). Since the operators commute with the addition of constants, we
may also assume that u(t,x) = ϕ(t,x) = f(x) + g(t). Of course, both f and
g are C∞. Thus, for (s,y) in some neighborhood of (t,x), we have u(s,y) ≤
ϕ(s,y) = f(y) + g(s). In particular, we have

u(t− h,y) ≤ f(y) + g(t− h)

for all sufficiently small h > 0. Since the operators Tt,t−h satisfy the local
comparison principle and commute with the addition of constants, we have

Tt,t−hu(t− h, ·)(x) ≤ Tt,t−hf(x) + g(t− h).

By definition of the transition operators, Tt,t−hu(t− h, ·)(x) = u(t,x) = f(x) +
g(t). Thus, we see that

g(t)− g(t− h) ≤ Tt,t−hf(x)− f(x),

which by (25.2) we can write as

g(t)− g(t− h) ≤ hF (D2f(x), Df(x),x, t− h) + o(h).

Divide by h, use the fact the F is continuous in t, let h tend to zero, and
conclude that

g′(t) ≤ F (D2f(x), Df(x),x, t).

Since ∂ϕ/∂t = g′, D2ϕ = D2f , and Dϕ = Df , this proves the result. ¤
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25.4 Scale space invariants and implications for
F

We have already seen the implication for F of assuming that a scale space {Tt}
is invariant under the addition of constants (Proposition 25.11). This section is
devoted to continuing this program: Assume an invariant for {Tt} and deduce
its implication for F .

25.4.1 Translation, rotation, and reflection

These invariants concern the underlying space RN , and they are easily defined.
Translation invariance for operators was defined in Definition 11.10 using the
translation operator τz: τzu(x) = u(x− z) for all x, z ∈ RN .

Definition 25.13. A pyramidal scale space {Tt} is said to be translation in-
variant if

Tt+h,tτz = τzTt+h,t for all z ∈ RN , t ≥ 0, and h ≥ 0. (25.9)

Proposition 25.14. Assume that {Tt} is a causal, translation invariant scale
space. Then its associated function F does not depend on x.

Proof. Consider two quadratic functions around 0 and x respectively defined
by

u(y) =
1
2
〈Ay,y〉+ 〈p,y〉+c and τxu(y) =

1
2
〈A(y−x),y−x〉+ 〈p,y−x〉+c

By the regularity assumption,

Tt+h,tu(0)− u(0) = hF (A, p, 0, c, t) + o(h); (25.10)
Tt+h,tτxu(x)− τxu(x) = hF (A, p,x, c, t) + o(h). (25.11)

By translation invariance,

Tt+h,tτxu(x)− τxu(x) = τxTt+h,tu(x)− τxu(x) = Tt+h,tu(0)− u(0).

Thus we see from (25.10) and (25.11) that hF (A, p, 0, c, t) = hF (A, p,x, c, t) +
o(h). Divide both sides by h and let h → 0 to see that

F (A, p,x, c, t) = F (A, p, 0, c, t).

¤

This takes care of translations; rotations and reflections are combined in the
group of linear isometries. If P is a linear isometry of RN , then the function
Pu is defined by Pu(x) = u(Px).

Definition 25.15. A pyramidal scale space {Tt} is said to be Euclidean invari-
ant (or isotropic) if

PTt+h,t = Tt+h,tP (25.12)

for all linear isometries P of RN , all t ≥ 0, and all h ≥ 0.
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We denote the group of linear isometries of RN by ON = O(RN ). Any
transform P ∈ ON can be represented uniquely by an N ×N orthogonal matrix
P , assuming an orthonormal basis. We do not make a distinction between
the operator P and the matrix P . If P ∈ ON , then recall that its transpose
P ′ ∈ ON , and PP ′ = I. Recall also that given a symmetric matrix A there is
always a P ∈ ON such that PAP ′ is diagonal. Euclidean invariance is illustrated
in Figure 25.2.

Lemma 25.16. If a translation invariant causal scale space {Tt} is isotropic,
then for every R ∈ ON ,

F (RAR′, Rp, t) = F (A, p, t), (25.13)

where F is the function associated with {Tt} by regularity.

Proof. Consider a quadratic function around 0, u(y) = (1/2)〈Ay,y〉 + 〈p,y〉
and let F be the function associated with {Tt}. We know that the value of F
is determined by the action of Tt+h,t on u at t, that is,

Tt+h,tu(x)− u(x) = hF (A, p, t) + o(h).

In particular,

lim
h→0

Tt+h,tu(0)− u(0)
h

= F (A, p, t). (25.14)

Let R be any element of ON . Then

u(Ry) =
1
2
〈ARy, Ry〉+ 〈p,Ry〉 =

1
2
〈R′ARy,y〉+ 〈R′p,y〉.

Thus we know immediately that

Tt+h,t(u ◦R)(x)− u(Rx) = hF (R′AR, R′p, t) + o(h),

where u ◦R denotes the function defined by u ◦R(y) = u(Ry). The assumption
that {Tt} is isotropic means that Tt+h,t(u ◦R)(x) = Tt+h,tu(Rx), so

Tt+h,t(u ◦R)(x)− u(Rx) = Tt+h,tu(Rx)− u(Rx).

From this we conclude that

lim
h→0

Tt+h,t(u ◦R)(x)− u(x)
h

= lim
h→0

Tt+h,tu(Rx)− u(Rx)
h

= F (R′AR, R′p, t).

By letting x = 0 in these limits, we conclude from (25.14) that

F (A, p, t) = F (R′AR,R′p, t).

Replacing R with R′ completes the proof. ¤



“JMMBookOct04”
1/5/2012
page 312

i

i

i

i

i

i

i

i
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Figure 25.2: An isotropic filter and a nonisotropic filter. The left frame contains
simple shapes that can be deduced from each other by rotations. The center
image is the closing of the left image by a horizontal rectangle of size 6 × 2
pixels. This nonisotropic filter produces different results, depending on the
shapes orientations. The right image is the closing of the left image by a circle
of radius 4 pixels, which has the same area, up to the pixel precision, as the
rectangle used in the center image. This filter is isotropic; thus, as one can see,
the resulting shapes can be deduced from each other by rotations.

25.4.2 Contrast invariance

Definition 25.17. A pyramidal scale space {Tt} is said to be contrast invariant
if

g ◦ Tt+h,t = Tt+h,t ◦ g

for any nondecreasing continuous function g : R→ R.

An immediate consequence of this definition is that a contrast invariant scale
space commutes with the addition of constants, that is, it satisfies Definition
25.10. To see this, just take g(s) = 0 and g(s) = s + C. Thus, in the next
lemma, the function F does not depend on c.

Lemma 25.18. If a translation invariant causal scale space {Tt} is contrast
invariant, then its associated function F satisfies the following condition:

F (µA + λp⊗ p, µp, t) = µF (A, p, t), (25.15)

where A is any symmetric N ×N matrix, p is any N -dimensional vector, λ is
any real number, and µ is any real number greater than or equal to zero.

Proof. Recall that p ⊗ p denotes the N × N matrix whose entries are pipj ,
i, j ∈ {1, 2, . . . , N}. Given C2 functions u and g, we have these two applications
of the chain rule:

D(g(u)) = g′(u)Du, and D2(g(u)) = g′(u)D2u + g′′(u)Du⊗Du. (25.16)

Choose any quadratic function around 0 of the form

u(y) = (1/2)〈Ay,y〉+ 〈p,y〉.
We know from the assumptions and equations (25.16), plus the relations u(0) =
0, Du(0) = p, and D2u(0) = A, that

Tt+h,tg(u)(0)− g(0) = hF (g′(0)A + g′′(0)p⊗ p, g′(0)p, t) + o(h).
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Since {Tt} is contrast invariant, Tt+h,tg(u)(0) = g(Tt+h,tu(0)), so

g(Tt+h,tu(0))− g(0) = hF (g′(0)A + g′′(0)p⊗ p, g′(0)p, t) + o(h).

From regularity, we have

Tt+h,tu(0)− u(0) = hF (A, p, t) + o(h),

so we can write g(Tt+h,tu(0)) = g(hF (A, p, t) + o(h)). Thus for small enough h,

g(Tt+h,tu(0)) = g(0) + g′(0)(hF (A, p, t) + o(h)) + o(h)

and

g′(0)hF (A, p, t) + g′(0)o(h)) + o(h) = hF (g′(0)A + g′′(0)p⊗ p, g′(0)p, t) + o(h).

Dividing this by h and letting h → 0 shows that

g′(0)F (A, p, t) = F (g′(0)A + g′′(0)p⊗ p, g′(0)p, t),

or, since we can choose a C2 contrast change g with arbitrary values for g′(0) ≥ 0
and g′′(0) ∈ R,

µF (A, p, t) = F (µA + λp⊗ p, µp, t).

¤

25.4.3 Scale and affine invariance

The main purpose of this section is to establish a normalized link between scale
(t) and space (x). If Tt is a causal scale space and h : R+ → R+ is a C2

increasing function, it is easily seen that St = Th(t) also is a causal scale space
(see Exercise 25.1.) So there is no special link on the scale, unless we give
a further specification. This specification will be given by a scale invariance
axiom.

Scale invariance means intuitively that the result of applying a scale space
{Tt} must be independent of the size of the analyzed features. This is very
important for analyzing natural images, since the same object can be captured
at very different distances and therefore at very different scales (see Figure 25.3).

Scale invariance is the object of Definitions ?? and 25.10. The main re-
sult is Lemma 25.21 which gives a standard normalization: Scale can be taken
proportional to space.

This result can be somewhat secluded from the rest of the invariance analysis,
as we will prove it for arbitrary families of function operators {Tt}, t ≥ 0, not
even pyramidal. We shall just assume that the mapping t : [0,∞) 7→ Tt is
one-to-one.

The changes of scale on an image can be made by a zoom, in which case
the zooming factor λ gives a scale parameter. In the case of an affine transform
A, the square root of the determinant of A also will play the role of a scale
parameter. By zoom we mean a map x 7→ λx, λ > 0, generating an image
transform Hλu(x) = u(λx).
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Definition 25.19. A family of operators {Tt} is said to be scale invariant if
there exists a rescaling function t′ : (t, λ) 7→ t′(t, λ), defined for all λ > 0 and
t ≥ 0, such that

HλTt′ = TtHλ. (25.17)

It {Tt} is pyramidal, then

HλTt′,s′ = Tt,sHλ, (25.18)

where t′ = t′(t, λ) and s′ = t′(s, λ). In addition, the function t′ is assumed to
be differentiable with respect to t and λ, and the function φ defined by φ(t) =
(∂t′/∂λ)(t, 1) is assumed to be continuous and positive for t > 0.

This definition implies, in particular, that t′ is continuous in t and λ. Con-
dition (25.18) implies (25.17). It will have the advantage of making our classi-
fication of scale-invariant scale spaces easier. Of course, we could not impose
the condition t′ = t, since the scale of smoothing and the scale of the image are
covariant, as can be appreciated by considering the heat equation.

The assumption that (∂t′/∂λ)(t, 1) > 0 can be interpreted by considering the
relation HλTt′ = TtHλ when the scale λ increases before the analysis by Tt, that
is, when the size of the image is reduced before analysis. Then the corresponding
scale before reduction is increased. Informally, we can say that the scale t of
analysis increases with the size of the picture. It is easy to determine the
function t′ for several classical scale spaces (Exercise 25.5) and to check that it
satisfies the previous requirements.

The next definition (axiom) introduces the scale space invariance under any
orthographic projection of a planar shape. We write as usual Au(x) = u(Ax).

Definition 25.20. A family of operators {Tt} is said to be affine invariant if it
is scale invariant and if the following conditions hold: The associated function
t′ can be extended to a function t′ : (t, A) 7→ t′(t, A), where t ≥ 0 and A is any
linear mapping A : RN → RN with det(A) 6= 0, such that t′(t, λ) = t′(t, λI) and
such that

AT ′t = TtA. (25.19)

If {Tt} is pyramidal, the transition operators Tt,s satisfy the commutation rela-
tion

ATt′,s′ = Tt,sA (25.20)

for all 0 ≤ s ≤ t, where t′ = t′(t, A) and s′ = t′(s,A).

This property means that the result of applying the scale space {Tt} to a
image is covariant with the distance and orientation in space of the analyzed
planar image (see the introduction of Chapter ??.) The fact that the function
t′ can be different for each scale space may seem mysterious. We will “fix”
this in the next lemma by showing that we can, “up to a rescaling” assume
that scale-invariant scale spaces have all the same scale-space function, namely
t′ = λt.

Lemma 25.21. [Scale normalization]Assume that the mapping t 7→ Tt, t ∈
[0,∞), is one-to-one and that T0 = I.
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Figure 25.3: A multiscale world. This series of images is an experiment to show
the relative perception of objects seen at different distances. Each photograph,
after the first one, was taken by stepping forward to produce a snapshot from
a distance closer than the one before. The rectangle in each image outlines
the part of the object that appears in the next image. Clearly, as one gets
closer to the subject, the visual aspect changes and new structures appear.
Thus, computing primitives in an image is always a scale-dependent task, and
it depends on the distance to objects. When we look at an object from a certain
distance, we do not perceive the very fine structure: For instance, leaves cannot
be seen in the two first photographs because we are too far from the trees. Nor
do we see them in the last two, since we are now too close. Multiscale smoothing
of a digital image tries to emulate and actually improve this and phenomenon,
due to an optical blur, by defining a smoothing at different scales. The role of
this multiscale smoothing is to eliminate the finer structures at a scale t, but
minimally modify the image at scales above t.

(i) If the family of operators {Tt} is scale invariant, then there exists an
increasing differentiable function σ : [0,∞) → [0,∞) such that t′(t, λ) =
σ−1(σ(t)λ). If the operators St are defined by St = Tσ−1(t), then

t′(t, λ) = tλ (25.21)

for the rescaled analysis {St}.
(ii) If the family {Tt} is affine invariant, then the function t′; (t, B) 7→ t′(t, B)

depends only on t and |detB|, in particular, t′(t, B) = t′(t, |detB|1/N ),
and t′ is increasing with respect to t. In addition, there exists an increas-
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ing differentiable function σ from [0,∞) to [0,∞) such that t′(t, B) =
σ−1(σ(t)|detB|1/N ). If we set St = Tσ−1(t), then

t′(t, B) = t|detB|1/N (25.22)

for the rescaled analysis {St}.

Proof. We will prove (ii) and then show how this proof can be reduced to a
proof of (i).

Step 1: We prove that

t′(t, AB) = t′(t′(t, A), B) (25.23)

for any linear transforms A and B with nonzero determinants. To see this, write

ABTt′(t,AB) = TtAB = ATt′(t,A)B = ABTt′(t′(t,A),B).

Since the determinant of AB does not vanish, we have Tt′(t,AB) = Tt′(t′(t,A),B),
and since t 7→ Tt is one-to-one, we have (25.23).

Step 2: The function t′ is increasing with respect to t.
We begin by proving that t 7→ t′(t, A) is one-to-one for any A with detA 6= 0. If
this were not the case, then there would be some A, detA 6= 0, and some s and
t, s 6= t, such that t′(s,A) = t′(t, A). This implies that

TsA = ATt′(s,A) = ATt′(t,A) = TtA.

Since detA 6= 0, this means that Ts = Tt, and since t 7→ Tt is one-to-one, we
have s = t. Thus t′ is one-to-one. By hypothesis, T0 = I, and since ATt′(0,A) =
T0A = A, we see that t′(0, A) = 0 for all A. By definition, t′ is continuous
and nonnegative. Since t′ 7→ t′(t, A) is one-to-one and since t′(0, A) = 0, it is
a homeomorphism of [0,∞) onto [0,∞) for every A with nonzero determinant.
Thus t′ is increasing in t.

Step 3: For every orthogonal matrix R,

t′(t, R) = t. (25.24)

To prove that, define t1 = t′(t, R) and tn+1 = t′(tn, R). From (25.23), tn =
t′(t, Rn). There are two cases to reject: (1) t1 < t; (2) t1 > t. In case (1),
the fact that t′ is strictly increasing in t implies that the sequence tn is strictly
decreasing. Similarly, in case (2), the sequence tn is strictly increasing. Since
the set of orthogonal matrices is compact, there is a subsequence nk and an
orthogonal matrix P such that Rnk → P as k →∞. Let mk = nk+1−nk. Then
Rmk → I as k → ∞. Since t′ is continuous, limk→∞ t′(t, Rmk) → t′(t, I) = t.
In case (1), we have t = limk→∞ t′(t, Rmk) < t, a contradiction. In case (2) we
have t = limk→∞ t′(t, Rmk) > t, a contradiction again.

Step 4: For all transforms B that have nonzero determinants,

t′(t, B) = t′(t, |detB|1/N ). (25.25)

This part of the proof is pure matrix theory. Let B be any N ×N nonsingular
matrix (linear transform of RN ). The B can be written as B = R1DR2, where
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R1 and R2 are orthogonal and D is diagonal. Furthermore, dii = λi > 0 and
the λi are, up to a sign, the eigenvalues of B. As a consequence, using (25.23)
and (25.24), we see that

t′(t, B) = t′(t,D).

The matrix D can be represented as D = A(λ1)R2A(λ2)R−1
2 · · ·RNA(λN )R−1

N ,
where the mapping A(λi) is defined by (x1, x2, . . . , xN ) 7→ (λix1, x2, . . . , xN )
and Rj is the orthogonal mapping that interchanges x1 and xj . Repeated use of
(25.23) and (25.24) and the fact that A(λ1)A(λ2) · · ·A(λN ) = A(λ1λ2 · · ·λN )
shows that

t′(t,D) = t′(t, A(λ1λ2 · · ·λN )).

Now write (λ1λ2 · · ·λN )1/N = λ and consider the matrix λI. As we have done
above, we can write λI = A(λ)R2A(λ)R−1

2 · · ·RNA(λ)R−1
N . Then using (25.23)

and (25.24) again, we see that

t′(t, λI) = t′(t, A(λN )) = t′(t, A(λ1λ2 · · ·λN )),

and we conclude that

t′(t, B) = t′(t,D) = t′(t, A(λ1λ2 · · ·λN )) = t′(t, λI).

By definition, t′(t, λI) = t′(t, λ), where we have used the same notation for the
function t′ : (t, λ) 7→ t′(t, λ) and its extension t′ : (t, λI) 7→ t′(t, λI). So we
obtain (25.25).

Step 5: There is an increasing differentiable function σ that satisfies the equa-
tion t′(t, λ) = σ−1(σ(t)λ), or equivalently, σ(t′(t, λ)) = σ(t)λ.
Differentiating the last equation with respect to λ and then setting λ = 1, shows
that

φσ′ = σ, (25.26)

so it is reasonable to define σ by

σ(t) = exp

(∫ t

1

ds

φ(s)

)
.

Since by assumption φ is continuous and φ(s) > 0 for s > 0, σ is clearly
increasing and differentiable. It remains to show that t′(t, λ) = σ−1(σ(t)λ).

From equations (25.23) and (25.24), we know that t′(t, µν) = t′(t′(t, µ), ν)
and t′(t, 1) = t for all positive µ and ν. Differentiating both sides of the first
equation with respect to µ and then setting µ = 1 and ν = λ shows that

λ
∂t′

∂λ
(t, λ) =

∂t′

∂t
(t, λ)

∂t′

∂λ
(t, 1). (25.27)

By Definition 17.18, the function φ given by φ(t) = (∂t′/∂λ)(t, 1) is continuous
and positive for t > 0. We have shown that t′ is strictly increasing, thus the
right-hand side of (25.27) is nonnegative. This implies that

∂t′

∂λ
(t, λ) ≥ 0. (25.28)

If t′(t, λ) = σ−1(σ(t)λ) is going to be true, then it is also true if we replace
λ with λ/σ(t), which is the equation t′(t, λ/σ(t)) = σ−1(λ). This prompts us to
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examine the function g defined by g(t, λ) = t′(t, λ/σ(t)). When we differentiate
g with respect to t, we will see that this derivative is zero:

∂g

∂t
(t, λ) =

∂t′

∂t
(t, λ/σ(t))− λ

σ′(t)
σ2(t)

∂t′

∂λ
(t, λ/σ(t))

=
∂t′

∂t
(t, λ/σ(t))− σ′(t)

σ(t)
∂t′

∂t
(t, λ/σ(t))φ(t) (using (25.27))

= 0 (using σ′φ = σ).

Thus, g does not depend on t, and we know from (25.28) that g in nondecreas-
ing. Since g is also differentiable, we conclude that g(t, λ) = β(λ), where β is
differentiable and nondecreasing. By replacing λ with λσ(t), we have

t′(t, λ) = β(λσ(t)). (25.29)

By differentiating both sides of this equation with respect to λ and then letting
λ = 1, we see that φ(t) = σ(t)β′(σ(t)) = φ(t)σ′(t)β′(σ(t)). Dividing both sides
by φ(t) shows that

∂β(σ(t))
∂t

(t) = 1.

Integrating this relation from zero to t yields the equation β(σ(t)) = t+β(σ(0)).
Since t′(0, λ) = 0, β(σ(0)) = 0 by (25.29), and we conclude that β = σ−1.

Step 6: To complete the proof of (ii), we must show that the operators St

by St = Tσ−1(t) are affine invariant with t′(t, λ) = λt. Thus let B be any
nonsingular linear mapping and let λ = |detB|1/N . Then

StB = Tσ−1(t)B = BTt′(σ−1(t),λ) = BTσ−1(λσ(σ−1(t))) = BTσ−1(λt) = BSλt.

The proof of (i) is just the “image” of the proof of (ii) under the obvious
mappings B 7→ |detB|1/N and λI 7→ Hλ, which entail t′(t, B) 7→ t′(t, |detB|1/N ),
and so on. ¤

Lemma 25.22. If a translation invariant causal scale space {Tt} is affine in-
variant, then, after the appropriate renormalization, its associated function sat-
isfies the following condition:

F (BAB′, Bp, t) = |detB|1/NF (A, p, |detB|1/N t) (25.30)

for any nonsingular linear map B. If a translation invariant causal scale space
{Tt} is scale invariant, then, after the appropriate renormalization, its associ-
ated function satisfies for any µ > 0

F (µ2A,µp, t) = µF (A, p, µt). (25.31)

Proof. Recall that we have made the blanket assumption that causal spaces
are invariant under the addition of constants. Thus, we assume that F does
not depend on c or x. Assume that B is a linear map and that λ = |detB|1/N .
We also assume that the scale space {Tt} is normalized so that Tt+h,tB =
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BTλ(t+h),λt. Let u be a quadratic function around 0, u(y) = (1/2)〈Ay,y〉 +
〈p,y〉. Then

Tt+h,t[u(By)](0) = Tλ(t+h),λtu(B0) = Tλ(t+h),λtu(0).

Since u(B′y) = (1/2)〈BAB′y,y〉 + 〈Bp,y〉 around 0 and by the regularity of
{Tt},

Tt+h,t[u(B′y)](0) = hF (BAB′, Bp, t) + o(h).

Also by regularity

Tλ(t+h),λtu(0) = λhF (A, p, λt) + o(λh).

Thus we have hF (BAB′, Bp, t) + o(h) = λhF (A, p, λt) + o(λh). Dividing by h
and letting h → 0 proves the first part of the lemma. To prove the second part,
just replace B with µI in the proof of the first part. ¤

25.5 Axiomatic approach to linear scale space

We are going to use previous results from this chapter, in particularly Theo-
rem 25.9, to characterize the heat equation ∂u/∂t = ∆u as the unique scale
space that is both linear and isotropic. A consequence for image processing is
that linear smoothing and contrast-invariance are incompatible. (Recall that we
showed in Section 4.1.1 that the heat equation was not contrast invariant. This
is illustrated numerically in Figure 25.4.) At some level, this explains the coex-
istence of at least two different schools of image processing: contrast-invariant
mathematical morphology on the one hand, and classical linear scale space on
the other, which is essentially convolution with the Gaussian (Theorem 2.3).

Theorem 25.23. Let {Tt} be a translation-invariant, causal, isotropic and
linear scale space on F . Then F (D2u, Du, t) = c(t)∆u, where c(t) ≥ 0. If,
in addition, F is assumed to be continuous in t, then up to a rescaling t′ = h(t),
the function u(t,x) = Ttu0(x) is a viscosity solution of the heat equation

∂u

∂t
(t,x) = ∆u(t,x), (t,x) ∈ [0,∞)× RN . (25.32)

Proof. Since the scale space is translation invariant, F does not depend on x
(Proposition 25.14), and since the scale space commutes with the addition of
constants, F does not depend on c (Proposition 25.11). Thus, F (A, p,x, c, t) =
F (A, p, t). We know from Theorem 25.9 that Tt+h,tu(x)−u(x) = hF (D2u(x), Du(x), t)+
o(h) for any u ∈ C2(RN ). Since Tt+h,t is linear, we have Tt+h,t(ru + sv) =
rTt+h,tu+ sTt+h,tv for any u, v ∈ C2(RN ) and r, s ∈ R. This and Theorem 17.8
imply that

F (D2(ru + sv), D(ru + sv), t) = rF (D2u,Du, t) + sF (D2v, Dv, t),

which means that F is linear in the argument u. (In what follows, we keep
t fixed, and for convenience we write F (A, p) rather than F (A, p, t).) We can
choose any values for D2u,D2v, Du, and Dv. Thus we have

F (rA + sA′, rp + sp′) = rF (A, p) + sF (A′, p′)



“JMMBookOct04”
1/5/2012
page 320

i

i

i

i

i

i

i

i

320 CHAPTER 25. SCALE SPACES AND PDE’S

where A and A′ are arbitrary symmetric matrices and p and p′ are arbitrary
vectors. From this, we see that F (A, p) = F (A, 0) + F (0, p). Now define F1

and F2 by F1(p) = F (0, p) and F2(A) = F (A, 0); F1 and F2 are clearly linear.
Using the assumption that the operators are isotropic Tt,s, we see from Lemma
?? that

F1(p) + F2(A) = F1(Rp) + F2(RAR′),

where R is any linear isometry of RN . Taking A = 0, this implies that F1(Rp) =
F1(p) for any linear isometry R. Since F1 is linear, this implies that F1 is a
constant. Since by Proposition 25.11 F (0, 0, t) = 0, we conclude that F1(p) = 0.
This proves that F (A) = F (RAR′), where A is an arbitrary N ×N symmetric
matrix and R is an arbitrary linear isometry.

Given any symmetric matrix A, there is a linear isometry R such that RAR′

is diagonal whenever the coordinate system is orthogonal. Furthermore, any two
diagonalizations differ only in the arrangement of the diagonal entries, which are
the N eigenvalues of A, and any arrangement of these entries can be achieved by
some linear isometry. This means that the value of F (A) depends only on some
symmetric function f of the eigenvalues λ1, λ2, . . . λN of A. That means that
F (A) = F (f(λ1, λ2, . . . λN )), where f is a symmetric function of its arguments.
Since F is also linear, we have

F (f(rλ1, rλ2, . . . rλN )) = rF (f(λ1, λ2, . . . λN )).

Since the only linear symmetric function of N variables is, up to a multiplicative
constant, the linear function, we see that

F (A) = c trace(A)

for some constant c. Since F is nondecreasing in A (Lemma 25.8), c is nonneg-
ative. We conclude that F (D2u,Du) = c∆u. Remember that this argument
has been made with a fixed t that was not written. Thus, our real conclusion is
that F (D2u,Du, t) = c(t)∆u, where c is a nonnegative function of t.

If we assume that F is continuous in t, then t 7→ c(t) is continuous. Then
by Theorem 25.12, u(t,x) = Ttu0(x) is a viscosity solution of

∂u

∂t
(t,x) = c(t)∆u(t,x).

Finally, if we rescale using the function t 7→ t′ defined by ∂t′∂t(t) = c(t), we
have the heat equation ∂u/∂t′ = ∆u. ¤

25.6 Exercises

Exercise 25.1. Let Tt be a causal scale space (Definition 25.7) and h : R+ → R+ a
C2 increasing function. Prove that that St = Th(t) also is a causal scale space. Assume
that Tt is scale invariant and let t′(t, λ) its rescaling function. Compute t′ for the new
scale space St.

Exercise 25.2. Consider the extrema killer Tt defined in section 11.4, where t denotes
the area threshold. Show that the family {Tt} is pyramidal and satisfies the global
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comparison principle, but that it does not satisfy the local comparison principle. Show
that the family is, however, regular at t = 0 and, more precisely, that

F (A, p, 0) = 0 if p 6= 0.

Check the other invariance properties of the extrema killer : prove in particular that
it is affine invariant and compute t′(t, λ) (Definition ??).

Exercise 25.3. Let g be an integrable continuous function and for u ∈ F , Tu = g ∗u.
Prove that T is translation invariant and isotropic.

Exercise 25.4. Define {Tt} by Ttu0 = gt∗u0, where gt(x) = 1
t2

g(x
t
). Prove that {Tt}

is scale invariant (Definition ??) and compute the function t′(t, λ). Same questions if
we set gt(x) = 1

t
g( x

t
1
2

).

Exercise 25.5. Check that Definition ?? is valid for the classical scale spaces we al-
ready know: For the morphological operators, dilation and erosion, show that t′(t, λ) =
λt, no matter what the structuring element B is. Prove that these operators are
not affine invariant. For the heat equation and mean curvature motion, check that
t′(t, λ) = λ2t.

25.7 Comments and references

The presentation in this chapter and the next one follows essentially the work
of L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel in [12], [10], and
[11]. Their stated objective was to “... describe all multiscale causal, local,
stable and shape preserving smoothing operators. This classification contains
the classical ‘morphological’ operators, and some new ones.” This axiomatic
approach is presented in several survey papers, with increasingly simple sets of
axioms: Lions [215]; Alvarez and Morel [15]; Guichard, Lopez, and Morel [151];
and Guichard’s doctoral thesis [150], which was an early version of this book.

Linear scale space. Scale space theory was founded (in the linear frame-
work) by Witkin [359], Marr [232], and Koenderink. An earlier development
of linear scale space has been traced to Japan in [352, 353]. Many works by
Florack, ter Haar Romeny, Koenderink, and Viergever focus on the compu-
tation of partial derivatives of any order of an image and their use in image
analysis [125, 126, 127, 129]. The concept of causality, used by all of these
authors is crucial; it has been reinterpreted in this chapter as the combination
of two requirements: a pyramidal structure and a comparison principle. De
Giorgi founded his mathematical theory of barriers for geometric motions on
similar principles [141]. There are many axiomatic characterizations of linear
scale space in terms of causality, invariants, and conservation properties. We
mention particularly the early work by Babaud, Witkin, Baudin, and Duda
[31] and Hummel [172]. A slight relaxation of the initial axioms led Pauwels
and others to discover other possible linear scale spaces, which, however, are
less local [282]. There have also been several attempts to define nonlinear scale
spaces, which are understood as nonlinear invariant families of smoothing op-
erators. In mathematical morphology, we mention work by Chen [79], Toet
[333, 334], and Jackway [180]; Jackway emphasized the scale space properties
of multiscale erosions and dilations. After the publication of [12] by Alvarez,
Guichard, Lions, and Morel, several different axiomatic approaches have been
proposed for nonlinear scale spaces. Weickert insists on grey level conservation,
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which excludes all of the mathematical morphology operators, and proposes a
line of conservative parabolic nonlinear PDEs [349, 350]. The axiomatic presen-
tation of Olver, Sapiro, and Tannenbaum [274] deduces the various scale spaces
as invariant heat flows. See also [270]; the book [330] contains miscellaneous
contributions to geometric diffusion.

Extensions. Caselles, Coll, and Morel have questioned the very soundness
of applying any of the proposed scale spaces to natural images [69]. They
argue following the Kanisza psychophysical theory that occlusions generate T-
junctions in images and that these T-junctions should be detected before any
smoothing is applied (see Figure 25.6.) In [70], the same authors propose the
set of level lines of the image, the so-called topographical map, as an alternative
multiscale structure for describing images. In another direction, Geraets and
others proposed a generalization of scale space to discrete point sets [138].

Contrast invariance. The Wertheimer principle, which states that human
visual perception is independent of changes in illumination, was enunciated
in 1923 [357]. Contrast invariance appears in mathematical morphology in
the work of Serra [316]. Koenderink and van Doorn emphasized this require-
ment and introduced photometric invariants [200]. Florack and others studied
contrast-invariant differential operators in [128]. Romeny and others construct
third-order contrast-invariant operators to detect T-junctions [332]. See also
[290]. The significance of contrast invariance for smoothing T-junctions is illus-
trated in Figure 25.6.

Rotation and scale invariance. One of the first discussions of rotation-
invariant image operators was given by Beaudet in [43]. See also Lenz [210]
for work on rotation-invariant operators. Scale-invariant shape representation
is discussed by Baldwin, Geiger, and Hummel in [32]. Alvarez, Gousseau, and
Morel use numerical experiments on natural images to confirm their scale inva-
riance [8].

Affine invariance. Affine invariants are viewed as approximate projective
invariants by Chang in [84]. The importance of affine invariance for three-
dimensional object recognition is discussed in [32] and [210]. Work by Forsyth,
Munday, and Zisserman has been fundamental and has launched wide-ranging
discussion of this theme [131, 258, 259]. Further contributions to the use and
computation of affine and projective differential invariants in image processing
can be found in [48], [302], [342], and [355].
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Figure 25.4: The heat equation is not contrast invariant. First row: original
image. Second row: Two different contrast changes have been applied to this
image. Third row: A convolution by a Gaussian is applied to both images of the
second row. Fourth row: The inverse contrast change is applied to the images
of the third row. If the linear scale space were contrast invariant, these images
should be equal. This is not the case, since the difference (displayed in the fifth
row) is not null.
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Figure 25.5: Contrast invariance of the affine morphological scale space (AMSS).
First row: original image. Second row: two contrast changes applied to the
original. Third row : AMSS applied to both images of the second row, by a
finite difference scheme. Fourth row: inverse contrast change applied to the
filtered images. A visual check shows that they are almost identical. Bottom
image: numerical check by taking the difference of the images in the fourth row.
Compare this with the same experiment performed with the linear scale space,
Figure 25.4.
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Figure 25.6: Same geometric figures, different evolutions under smoothing. 1st
row: The four figures have T-junctions that differ in the way grey levels are
distributed among the three regions. In the first two figures, the grey levels
are monotone in, say, the clockwise direction. This means that they differ
by a monotone contrast change. The same is true for the second two figures.
However, the first and third figures differ by a nonmonotone contrast change.
2nd row: result of a smoothing by the AMSS model. We see that two different
evolutions are possible: If the regions of the image keep the same order of grey
levels, then the geometric evolution is identical. If, instead, a nonmonotone
contrast change has been applied, the evolutions are geometrically different.
3rd row: result of a smoothing by the linear scale space. All four T-junctions
give different evolutions. The evolution depends on the gray-level values of the
three level sets, rather than depending only on their order.
4rd row: quantization of the 3rd row to display the shapes of some level lines.
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Figure 25.7: Hyperdiscrimination of textures by nonlinear scale space. Accord-
ing to the Julesz theory of textons, human perception can discriminate different
textures if their average behavior in terms of “texton” density is different. As
shown in its mathematical formalization, proposed by C. Lopez, some of the
texton densities can be interpreted as densities of the positive and negative
parts of the image curvature at different scales. In this remarkable experiment,
C. Lopez proved that one of the simplest contrast-invariant scale spaces beats
by far the human discrimination performance. From left to right and top to
bottom: 1-an original texture pair that is preattentively undiscriminable. The
central square of the image consists of rotated “10’s” and the rest of the image
of rotated “S’s.” These patterns are different, but have the same number of
bars, angles, and so forth. 2-curvature motion applied to the original up to
some scale 3-negative part of the curvature at the same scale 4-positive part of
the curvature at the same scale 5-multichannel segmentation of the multi-image
made of the curvatures 6-negative part of the curvature at scale 0. As seen in
2, 3, 4 and 5, this nonlinear scale space easily discriminates between the two
textures.
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Chapter 26

The Contrast-Invariant and
Affine-Invariant Scale
Spaces

This chapter is a direct continuation of Chapter 25. We are going to characterize,
up to a multiplicative constant, all of the contrast-invariant scale spaces as
curvature evolution equations. In the interest of simplicity and clarity, we will
first prove the result in two dimensions. The computations are more intuitive
in this case, and they are easily displayed in detail. Then we shall obtain the
(AMSS) equation as the unique contrast invariant, affine invariant self-dual scale
space. This result is then generalized to any dimension in section ??, where we
find again a unique contrast and affine invariant self-dual scale space. This result
also yields an impossibility : no further invariance requirement is possible. In
particular, a causal, contrast and projective invariant scale-space is impossible.

26.1 The two-dimensional case

We will show that if a scale space {Tt} is causal, isometric, and contrast invari-
ant, then the associated PDE is of the form

∂u

∂t
= |Du|G(curv(u), t). (26.1)

This does not tell us much about G, so the question is, What additional assump-
tions must be made to have a more specific characterization of G? One answer
is this: If we assume that {Tt} is affine invariant and that Tt(−u) = −Ttu
(which we call reverse contrast invariance or self-duality), then there is only
one equation that satisfies all of these conditions, namely, the so-called affine
morphological scale space (AMSS),

∂u

∂t
= |Du|(curv(u))1/3.

We are led by Theorem 25.9 to study scale spaces defined by PDEs of the
form

∂u

∂t
= F (D2u,Du, u,x, t), u(0) = u0,

329
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where u0 is the original image, u(t, ·) is the image smoothed at scale t, and
F (A, p, c,x, t) is the function associated with {Tt}. In the two-dimensional case,
A is a 2× 2 symmetric matrix, p is a two-dimensional vector, c is a constant, x
is a point in the plane, and t ∈ R+ is the scale. We will be using the following
results from Chapter 25:

• If {Tt} is translation invariant, then F does not depend on x (Proposition
25.14).

• It {Tt} commutes with the addition of constants, then F does not depend on
c (Proposition 25.11).

• If {Tt} is isotropic, then F (RAR′, Rp, t) = F (A, p, t) for every R ∈ O2

(Lemma ??).

• It {Tt} is contrast invariant, then F (µA + λ(p ⊗ p), µp, t) = µF (A, p, t), for
any real numbers λ and µ, µ > 0, any 2 × 2 symmetric matrix A, and any
two-dimensional vector p (Lemma 25.18). Recall that the tensor product p⊗p
is just the symmetric matrix {pipj}, i, j ∈ {1, 2}:

p⊗ p =
[

p2
1 p1p2

p1p2 p2
2

]
.

Relations F (RAR′, Rp, t) = F (A, p, t) and F (µA + λ(p⊗ p), µp, t) = µF (A, p, t)
will be used to show that F depends on two real functions ã12 and ã22 of A and
p. These functions are defined by considering the rotation represented by the
matrix

Rp =
1
|p|

[
p1 p2

−p2 p1

]
.

Rp has been chosen to map the unit vector p/|p| onto the unit vector e1 = (1, 0):

Rpp = |p|e1. (26.2)

The functions ãij , i, j ∈ {1, 2}, are defined by

1
|p|RpAR′p =

[
ã11 ã12

ã12 ã22

]
. (26.3)

A straightforward computation shows that

ã12 =
1
|p|3 ((p2

1 − p2
2)a12 + p1p2(a22 − a11)) =

A(p, p⊥)
|p|3 , (26.4)

ã22 =
1
|p|3 (a11p

2
2 − 2a12p1p2 + a22p

2
1) =

A(p⊥, p⊥)
|p|3 . (26.5)

We should keep in mind that A represents D2u and p represents Du so these
results and the calculations that follow, while purely algebraic, have interpreta-
tions in differential geometry. In particular,

ã22(D2u, Du) = div
( Du

|Du|
)

= curv(u),

ã12(D2u, Du) = div
(Du⊥

|Du|
)

= anticurv(u).
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Both differential operators are contrast invariant (see Exercise 26.2, while ã11

is not: We know that it is related to the Haralick edge detector. This gives the
meaning of the next lemma.

Lemma 26.1. If F satisfies the relations

F (RAR′, Rp, t) = F (A, p, t), (26.6)
F (µA + λ(p⊗ p), µp, t) = µF (A, p, t), (26.7)

then there is a function G of three real variables such that, for p 6= 0,

F (A, p, t) = |p|G(ã12, ã22, t). (26.8)

Proof. We first use (26.7) with µ = 1/|p|. Thus,

F (A, p, t) = |p|F
( A

|p| + λ(p⊗ p),
p

|p| , t
)
,

where λ is any real number. Next, we apply (26.6) with R = Rp:

F (A, p, t) = |p|F
(
Rp

( A

|p| + λ(p⊗ p)
)
R′p, Rp

p

|p| , t
)

= |p|F
(
Rp

( A

|p|
)
R′p + λRp(p⊗ p)R′p, e1, t

)
.

It is easily checked that

Rp(p⊗ p)R′p =
[|p|2 0

0 0

]
.

Thus, by (26.3),

F (A, p, t) = |p|F
( [

ã11 + λ|p|2 ã12

ã12 ã22

]
, e1, t

)
.

Since λ is arbitrary and since p 6= 0, F depends only on ã12 and ã22. To finish,
we can define G by

G(ã12, ã22, t) = F

( [
0 ã12

ã12 ã22

]
, e1, t

)
.

¤

Lemma 26.2. The function G depends only on ã22 and t.

Proof. We will use the fact established in Lemma 25.8 that F is nondecreasing
with respect to its first argument and the assumption in Definition 25.6 that F
is continuous in this argument. We will also use the result of Lemma 26.1. The
intuitive argument here is that ã22(A, p) is nondecreasing function of A, while
ã12(A, p) is not (see Exercise 26.2.)
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Consider two symmetric matrices A and B such that A ≥ B. In analogy
with (26.3), we write

1
|p|RP BR′p =

[
b̃11 b̃12

b̃12 b̃22

]
. (26.9)

Then
1
|p|Rp(A−B)R′p =

[
ã11 − b̃11 ã12 − b̃12

ã12 − b̃12 ã22 − b̃22

]
. (26.10)

By assumption, the symmetric matrix A − B is such that A − B ≥ 0. This
property is invariant under rotation, in particular, under the mapping A−B 7→
Rp(A−B)R′p. Hence, A−B ≥ 0 if and only if Rp(A−B)R′p ≥ 0. This means
that A ≥ B if and only if

(ã11 − b̃11)x2 + 2(ã12 − b̃12)xy + (ã22 − b̃22)y2 ≥ 0 (26.11)

for all real numbers x and y, and this is true if and only if

(ã11 − b̃11)(ã22 − b̃22) ≥ (ã12 − b̃12)2. (26.12)

Fix A and choose an arbitrary b̃12, b̃12 6= ã12. Choose any real number b̃22 such
that ã22− b̃22 = ε > 0. Now select b̃11 = b̃11(ε) so that (26.12) is satisfied. Then
we have

F

( [
ã11 ã12

ã12 ã22

]
, e1, t

)
≥ F

( [
b̃11(ε) b̃12

b̃12 ã22 − ε

]
, e1, t

)
= F

( [
0 b̃12

b̃12 ã22 − ε

]
, e1, t

)
.

Indeed, the value on the right-hand side of the inequality is independent of
b̃11(ε) (Lemma 26.1). Now let ε tend to zero. By the continuity of F in its first
argument, we conclude that

F

([
ã11 ã12

ã12 ã22

]
, e1, t

)
≥ F

( [
0 b̃12

b̃12 ã22

]
, e1, t

)
.

This shows that
G(ã12, ã22, t) ≥ G(b̃12, ã22, t).

A similar argument shows that

G(b̃12, ã22, t) ≥ G(ã12, ã22, t).

We conclude that G(ã12, ã22, t) does not depend on ã12, and hence that G is a
function of only ã22 and t. ¤

We summarize these last results in the following theorem.

Theorem 26.3. If the two-dimensional scale space {Tt} is causal, isometric,
and contrast invariant, then its associated PDE has the form

∂u

∂t
= |Du|G(curv(u), t), (26.13)

where G is continuous and nondecreasing in its first variable.
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We are now going to introduce scale and affine invariance. We are still
working in two dimensions.

Theorem 26.4. Assume that the scale space {Tt} is causal, isometric, and
contrast invariant. In addition, assume that it is scale invariant and that it is
normalized according to Lemma 25.21. Then its associated PDE has the form

∂u

∂t
= |Du|β(tcurv(u)), (26.14)

where β is continuous and nondecreasing.
If the scale space {Tt} is affine invariant and normalized according to Lemma

25.21, then the associated PDE has the form

∂u

∂t
= |Du|β(tcurv(u)), (26.15)

where β(s) = Cs1/3 if s > 0 and β(s) = −D|s|1/3 if s < 0, for two nonnegative
constants C and D. Conversely, this equation defines an affine-invariant scale
space.

Proof. By Lemma ??, if a causal scale space is affine invariant, then, after
appropriate renormalization (Lemma 25.21), its associated function satisfies

F (BAB′, Bp, t) = |detB|1/2F (A, p, |detB|1/2t) (26.16)

for any linear map B. If we let B = cI, c > 0, then F (c2A, cp, t) = cF (A, p, ct).
Since F (A, p, t) = |p|G(ã22(A, p), t), this implies that

c|p|G(ã22(c2A, cp), t) = c|p|G(ã22(A, p), ct),

and since

ã22(c2A, cp) =
c2A(cp⊥, cp⊥)

|cp|3 = cã22(A, p),

we see that
G(ã22(A, p), ct) = G(cã22(A, p), t).

Since this equation is true for all A, p 6= 0, c > 0, and t > 0, G(cs, t) = G(s, ct)
for any s and any positive c and t. This implies that

G(s, t) = G(st, 1) = β(st),

where β is continuous and nondecreasing. This proves the first part of the
theorem.

We now assume that the scale space is affine invariant. To identify the power
1/3, we need to exploit the affine invariance. We shall do it by “stretching
and shrinking” along the x and y axes, that is, by using the transformation
represented by

B(λ) =
[
λ 0
0 λ−1

]
.

First note that

BAB′ =
[
λ2a11 a12

a12 λ−2a22

]
and Bp = (λp1, p2/λ).
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Then we see from (26.5) that

ã22(BAB′, Bp) =
a11p

2
2 − 2a12p1p2 + a22p

2
1

(λ2p2
1 + λ−2p2

2)3/2
. (26.17)

We know that F (A, p, t) = |p|β(tã22(A, p, t)). This and the affine-invariance
relation (26.16) show that

|Bp|β(tã22(BAB′, Bp)) = |p|β(tã22(A, p)). (26.18)

If we let p1 = 1, p2 = 0, and a22 = 1, then from (26.17) and (26.18) it follows
that

|λ|β(s/λ3) = β(s).

The first thing to notice is that β(0) = 0, which is consistent with (and a
consequence of) the fact that F (0, 0, t) = 0. On the other hand, nothing we
have assumed precludes β(s) = 0 for all s ≥ 0. However, in case β(a) > 0 for
some a > 0, we can select λ > 0 so λ3 = s/a, and we have

β(s) = a−1/3β(a)s1/3 = Cs
1
3 .

A similar argument shows that either β(s) = 0 for all s ≤ 0, or

β(s) = |b|−1/3β(b)|s|1/3 = −D|s| 13 .

¤

In general, β(1) 6= −β(−1), that is, C 6= D. For example, if D = 0 and
C > 0, then we have a pure affine erosion (shapes shrink); if C = 0, then we
have a pure affine dilation (shapes expand).

Corollary 26.5. If, in addition to the assumptions of Theorem 26.4, the scale
space is reverse contrast invariant, which means that Tt+h,t ◦ g = g ◦ Tt+h,t

for continuous nonincreasing g, or that it is self-dual, T (u) = −T (−u), then
D = C.

Proof. The reverse contrast invariance is equivalent to T (u) = −T (u) plus
the contrast invariance. The proof is an obvious adaptation of the proof of
Lemma 25.18. If the scale space {Tt} is reverse contrast invariant, then equation
(17.16) is true for negative (as well as positive) µ, and we have F (−A,−p, t) =
−F (A, p, t). This then implies that β(−1) = −β(1). ¤

26.2 Contrast-invariant scale space equations in
N dimensions

We are going to extend the results of Theorem 26.4 to N dimensions, so we shall
make the same assumptions about the scale space {Tt}: It is causal, it commutes
with the addition of constants, and it is translation invariant. Our immediate
aim is to deduce the general form of F in N dimensions from the assumption
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that {Tt} is contrast invariant and isotropic. In the interest of notation, we will
suppress t in the following discussion.

We know from Lemma 25.18 that the function F associated with a contrast-
invariant scale space {Tt} satisfies the relation

F (µA + λ(p⊗ p), µp) = µF (A, p) (26.19)

for all λ ∈ R, all µ ≥ 0, any N ×N symmetric matrix A ∈ SN , and any vector
p ∈ RN . By taking λ = 0, this shows that F is positively homogeneous in (A, p):

F (µA, µp) = µF (A, p). (26.20)

In particular, F (0, 0) = 0, which we also know from Proposition 25.11.
If we take µ = 1, then (26.19) becomes F (A + λ(p ⊗ p), p) = F (A, p). If

N = 1, this means that F depends only on p ∈ R, and we conclude that

F (A, p) =

{
F (1)p if p ≥ 0,

−F (−1)p if p ≤ 0.
(26.21)

A more interesting situation occurs if N ≥ 2, as we have already seen in case
N = 2. From now on we assume that N ≥ 2.

We need to introduce some notation. For p ∈ RN , p 6= 0, consider the
linear operator defined by the matrix Qp = IN − (1/|p|2)(p ⊗ p). It is easy to
verify that Qp is the projection of RN onto the hyperplane p⊥ (also denoted by
(Rp)⊥). Let A be an N×N symmetric matrix and consider the matrix QpAQp.
Since Qp is symmetric, it is clear that QpAQp is also symmetric. It is also
clear that q ∈ (Rp)⊥ implies that QpAQpq ∈ (Rp)⊥ and that q ∈ Rp implies
that QpAQpq = 0. Since QpAQp is symmetric, it has N real eigenvalues, one
of which we have just seen to be zero. Let µ1, µ2 . . . , µN−1 denote the N − 1
other eigenvalues. These are the eigenvalues of QpAQp restricted to (Rp)⊥. If
A = D2u and p = Du, and if we define κi = µi/|p|, 1 ≤ i ≤ N − 1, then the κi

are the principal curvatures of the level hypersurface of u (Definition 15.19). If
N = 2, then by Definition 15.14, κ1 = (1/|p|)trace(QpAQp) = curv(u).

Theorem 26.6 (Giga, Goto []). Let {Tt} be a contrast-invariant scale space
and assume that N ≥ 2. Then the associated function F satisfies the following
relation: For all A ∈ SN and all p ∈ RN , p 6= 0,

F (A, p, t) = F (QpAQp, p, t). (26.22)

Proof. We begin by fixing p ∈ RN , p 6= 0 and selecting an orthogonal co-
ordinate system such that p = |p|(0, . . . , 0, 1). Then p ⊗ p = |p|2(δNiδNj),
1 ≤ i, j ≤ N . If we write B = A + λ(p ⊗ p), then bij = aij + λ|p|2(δNiδNj).
This means that bij = aij except for i = N and j = N , in which case
bNN = aNN +λ|p|2. Since F (A+λ(p⊗p), p) = F (A, p), this means that F (A, p)
does not depend on aNN . We use this fact, combined with the assumption that
F is nondecreasing in its first variable, to complete the proof.

Note that, with the coordinate system we have chosen, QpAQp is just the
matrix A with the last column and last row replaced with zeros: If C = QpAQp,
then cij = aij for 1 ≤ i, j ≤ N − 1 and cij = 0 if i = N or if j = N .
Now let M = a2

N,1 + · · · + a2
N,N−1 and consider Iε = εI + (M/ε − ε)(δNiδNj),
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1 ≤ i, j ≤ N . Thus, Iε is an N × N diagonal matrix D, where dii = ε for
1 ≤ i ≤ N − 1 and dNN = M/ε. One can easily verify that QpAQp ≤ A + Iε

and that A ≤ QpAQp + Iε for small ε > 0. Then we have

F (A, p) ≤ F (QpAQp + Iε, p) ≤ F (A + 2Iε, p).

As we let ε → 0, the entries in the matrix A + 2Iε tend to aij except the entry
aNN + 2M/ε, which tends to +∞. But F is independent of the value of its
(N,N)-entry, and F is continuous in its first variable. Thus,

F (A + 2Iε, p) → F (A, p) and F (QpAQp + Iε, p) → F (QpAQp, p).

¤

Corollary 26.7. Let {Tt} be a contrast-invariant scale space and assume that
N ≥ 2. If {Tt} is also isometric, then

F (A, p, t) = |p|G(κ1, . . . , κN−1, t) (26.23)

for all A ∈ SN , p ∈ R, p 6= 0, where G is a continuous function on RN−1 that is
symmetric in the N−1 variables κ1, . . . , κN−1 and is nondecreasing with respect
to each κi, 1 ≤ i ≤ N − 1.

Proof. By Lemma ??, the function F associated with the scale space satisfies

F (RAR′, Rp) = F (A, p) (26.24)

for all A ∈ SN , p ∈ RN , p 6= 0, and R ∈ ON . (Recall that ON denotes the
group of linear isometries of RN (section 17.4.1).)

Fix p 6= 0 and let R be any element of the subgroup Op
N of ON that leaves

p fixed, that is, Rp = p. Since QpAQp ∈ SN , we know from (26.24) that

F (RQpAQpR
′, Rp) = F (RQpAQpR

′, p) = F (QpAQp, p).

By Theorem 18.5, F (QpAQp, p) = F (A, p). These two relations tell us that

F (RQpAQpR
′, p) = F (A, p)

for all R ∈ Op
N . This means that the value of F (A, p) depends only on p and the

eigenvalues of QpAQp. Indeed, using the same coordinate system used in the
proof of Theorem 18.5 based on p = |p|(0, . . . , 1), there is always an R ∈ Op

N so
that RQpAQpR

′ is diagonal with entries µ1, µ2, . . . , µN−1, 0, where the µi are
the eigenvalues of QpAQp restricted to (Rp)⊥. Furthermore, we can choose R
so that the µi appear in any order. Thus, there is a function G1 such that

F (A, p) = G1(µ1, µ2, . . . , µN−1, p);

G1 is continuous and symmetric in the µi, and G1 is nondecreasing in each µi.
(These last statements follow from the fact that F is continuous and nonde-
creasing in its first variable.)

Now take R ∈ ON and let q = Rp (p is still fixed). Then |p| = |q|. Fur-
thermore, given any q ∈ RN such that |p| = |q|, there is an R ∈ ON such that
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Rp = q. It is easy to verify that R(p⊗p) = q⊗p, and since (q⊗p)′ = p⊗q, that
(p⊗ p)R′ = p⊗ q. Thus, R(p⊗ p)R′ = q ⊗ q, which implies that RQp = QqR.
Consequently,

QqRAR′Qq = RQpAQpR
′,

and this means that QqRAR′Qq and QpAQp have the same eigenvalues. Using
(26.24) again, we see that F (RQpAQpR

′, Rp) = F (QpAQp, p), and since Rp =
q,

F (RQpAQpR
′, q) = F (QpAQp, p).

Since QqRAR′Qq and QpAQp have the same eigenvalues, this implies that

F (A, p) = G1(µ1, µ2, . . . , µN−1, p) = G1(µ1, µ2, . . . , µN−1, q)

whenever |p| = |q|. This means that F depends only on the modulus of p,
and therefore we can write F (A, p) = G1(µ1, µ2, . . . , µN−1, |p|). Since F is
homogeneous,

G1(µµ1, µµ2, . . . , µµN−1, µ|p|) = µG1(µ1, µ2, . . . , µN−1, |p|)
for µ ≥ 0. If we take µ = |p|−1, then

F (A, p) = |p|G1(µ1/|p|, µ2/|p|, . . . , µN−1/|p|, 1).

Defining G by G(κ1, κ2, . . . , κN−1) = G1(µ1/|p|, µ2/|p|, . . . , µN−1/|p|, 1), where
κi = µi/|p|, completes the proof. ¤

26.3 Affine-invariant scale spaces for N ≥ 2

There is a function HN in the following theorem that is defined on the set of N
integers {−N +1+2k | 0 ≤ k ≤ N −1}. We will see in the proof of the theorem
that HN is nondecreasing and that it vanishes except at the points −(N − 1)
and N − 1. It will also be shown that HN (N − 1) ≥ 0. There is not enough
information to determine the value of HN (N − 1); however, to avoid the trivial
case F ≡ 0, we assume that HN (N − 1) > 0.

Theorem 26.8. Assume that the scale space {Tt} is contrast invariant and
affine invariant. Assume also that Tt(−u) = −Tt(u) and that {Tt} has been
normalized in accordance with Lemma 25.21. Then the PDE associated with
{Tt} is

∂u

∂t
= |Du|tN−1

N+1

N−1∏

i=1

|κi|
1

N+1 HN

( N−1∑

i=1

sgn(κi)
)
, (26.25)

where the κi are the principal curvatures of the level hypersurface of u, sgn(κi)
denotes the sign of κi, and HN is such that HN (N − 1) > 0, HN (N − 1) =
−HN (−(N − 1)), and H(n) = 0 for all −(N − 1) < n < N − 1. In other words,
HN is equal to zero if all the κi do not have the same sign.

Proof. We begin with the result of Corollary 18.6: Since {Tt} is contrast in-
variant and isometric, its associated function F is of the form

F (A, p, t) = |p|G(κ1, κ2, . . . , κN−1, t),
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and G is symmetric with respect to the κi. If p 6= 0, then κi = µi/|p|, where
the µi, 1 ≤ i ≤ N − 1 are the eigenvalues of A restricted to the hyperplane p⊥

orthogonal to p. To simplify the proof, we prefer to use the more general form
of F that appeared in the proof of Corollary 18.6, namely,

F (A, p, t) = G1(µ1, µ2, . . . , µN−1, |p|, t). (26.26)

Since the restriction of A to the hyperplane p⊥ is represented by a symmetric
matrix, we can choose orthonormal vectors e1, . . . , eN−1 such that µi = A(ei, ei),
1 ≤ i ≤ N − 1. Each vector ei is orthogonal to p, so we obtain an orthonormal
basis for RN by including the vector eN = p/|p|. We now define some special
linear affine transformations of RN : Let Bi, for 1 ≤ i ≤ N − 1, be the linear
transform defined by

Bi(e1, . . . , ei, . . . , eN ) = (e1, . . . , βei, . . . , β
−1eN ),

where β ∈ R, β 6= 0. Clearly, |Bi| = 1. We are now going to apply the result of
Lemma ?? with B = B1. This says that F (A, p, t) = F (B1AB′

1, B1p, t), and in
view of the representation (26.26), this means that

F (A, p, t) = G1(β2µ1, µ2, . . . , µN−1, β
−1|p|, t).

Assume for the moment that µ1 6= 0 and take β = |µ1|−1/2. Then

F (A, p, t) = G1(sgn(µ1), µ2, . . . , µN−1, |µ1|1/2|p|, t).

Repeat this argument with B = Bi for i = 2 to i = N − 1. The result is that

F (A, p, t) = G1

(
sgn(µ1), . . . , sgn(µN−1), |p|

N−1∏

i=1

|µi|1/2, t
)
, (26.27)

assuming that µi 6= 0, 1 ≤ i ≤ N − 1. We return again to Lemma 17.21, which
is based on the results of Lemma 17.20, and note that

F (µ2A,µp, t) = µF (A, p, µt)

for µ ≥ 0 implies that

G1

(
sgn(µ1), . . . , sgn(µN−1),µ|p|µN−1

N−1∏

i=1

|µi|1/2, t
)

= µG1

(
sgn(µ1), . . . , sgn(µN−1), |p|

N−1∏

i=1

|µi|1/2, µt
)
.

We deduce that

µ−1G1

(
sgn(µ1), . . . , sgn(µN−1),µN |p|

N−1∏

i=1

|µi|1/2, µ−1t
)

= G1

(
sgn(µ1), . . . , sgn(µN−1), |p|

N−1∏

i=1

|µi|1/2, t
)
.
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By taking µ = t, we see that

F (A, p, t) = t−1G1

(
sgn(µ1), . . . , sgn(µN−1), tN |p|

N−1∏

i=1

|µi|1/2, 1
)
,

and we write

F (A, p, t) = t−1G2

(
tN |p|

N−1∏

i=1

|µi|1/2, sgn(µ1), . . . , sgn(µN−1)
)
.

At this point we use the fact that {Tt} is contrast invariant, and so we have

F (α−1A,α−1p, t) = α−1F (A, p, t)

for all α > 0. Thus,

tF (A, p, t) = αG2

(
α−1tN |p|

N−1∏

i=1

|α−1µi|1/2, sgn(µ1), . . . , sgn(µN−1)
)
.

By taking α = (tN |p|∏N−1
i=1 |µi|1/2)2/(N−1), the function F is reduced to the

following form:

F (A, p, t) = t
N−1
N+1 |p| 2

N+1

N−1∏

i=1

|µi|
1

N+1 G2(1, sgn(µ1), . . . , sgn(µN−1)

= t
N−1
N+1 |p| 2

N+1

N−1∏

i=1

|µi|
1

N+1 H1(sgn(µ1), . . . , sgn(µN−1).

Since κi = µi/|p|, we finally have

F (A, p, t) = |p|tN−1
N+1

N−1∏

i=1

|κi|
1

N+1 H1(sgn(κ1), . . . , sgn(κN−1). (26.28)

The derivation of this representation of F was based on the assumption that
none of the eigenvalues µi were zero. If there were µi = 0, we could have
perturbed A by replacing these eigenvalues with ε > 0, done the derivation with
positive eigenvalues, and then let ε tend to zero in (26.28).

We must now deal with the function H1, or more precisely, the functions
H1, for there is a different function for each value of N ≥ 2. First note that
H1 must be symmetric in its N − 1 variables: F is invariant under any rotation
that leaves p fixed, and we can always find an element of Op

N that produces any
given permutation of the µi, and thus of the κi. If some κi happens to be zero,
we can set H1(sgn(κ1), . . . , sgn(κN−1)) = 0. Another way to do this is to define
sgn(0) = 0 and say that H1(sgn(κ1), . . . , sgn(κN−1)) = 0 if any of its N − 1
variables is zero. Thus the only interesting situation is in case all of the κi are
nonzero. Then by the invariance of H1 under elements of Op

N , it is clear that
H1 depends only on the number of variables equal to one and the number of
variables equal to minus one. In other words, H1 is a function of

∑N−1
i=1 sgn(κi):

H1(sgn(κ1), . . . , sgn(κN−1)) = HN

( N−1∑

i=1

sgn(κi)
)
,
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where we have written HN to stress the fact that the functions depend on the
dimension N . HN is defined on the N integers {−N + 1 + 2k | 0 ≤ k ≤
N − 1}, but we no information about its range. We do, however, have one last
invariant to call on, and that is the assumption that Ti(u) = −Ti(−u). This
translates into the relation F (−A,−p, t) = −F (A, p, t), which in turn implies
that HN (n) = −HN (−n). Finally, we know that HN must be nondecreasing
based on the fact that F is nondecreasing in its first variable, A. In summary,

F (A, p, t) = |p|tN−1
N+1

N−1∏

i=1

|κi|
1

N+1 HN

( N−1∑

i=1

sgn(κi)
)
, (26.29)

where HN is a nondecreasing function defined on the set {−N + 1 + 2k | 0 ≤
k ≤ N −1} and HN (n) = −HN (−n). We are now going to consider three cases.

The case N= 2.
Here we have N − 1 = 1, and (26.29) reads

F (A, p, t) = t1/3|p||κ1|1/3 H2(sgn(κ1)).

The value of H2(1) is not determined, although it must be positive to avoid
the trivial case F ≡ 0 and to ensure that H2(−1) = −H2(1) and that H2 is
nondecreasing. Thus, up to a positive (multiplicative) constant F (A, p, t) =
t1/3|p|sgn(κ1)|κ1|1/3, which we have been writing as F (A, p, t) = t1/3|p|(κ1)1/3,
with the convention that r1/3 = (r/|r|)|r|1/3. This can also be written as

F (A, p, t) = t1/3|p|
(

1
|p|A

(
p⊥

|p| ,
p⊥

|p|

))1/3

= t1/3
(
A

(
p⊥, p⊥

))1/3

If A = D2u and p = Du, then the associated scale space equation if

∂u

∂t
= t1/3|Du|(curv(u))1/3.

The case N= 3.
The PDE we obtain in this case is

∂u

∂t
= t1/2|Du||κ1κ2|1/4H3(sgn(κ1) + sgn(κ2)),

where κ1 and κ2 are the principal curvatures of the level surface of u. Their
product is the Gaussian curvature of the level surface of u, and to highlight this
we write the equation as

∂u

∂t
= t1/2|Du||G(u)|1/4H3(sgn(κ1) + sgn(κ2)). (26.30)

Since sgn(κ1) + sgn(κ2) takes only the values −2, 0, 2, and since H3(−2) =
−H3(−2), we are concerned with only two parameters: H3(2) = b and H3(0) =
a. We know that H3(−2) ≤ H3(0) ≤ H3(2), or −b ≤ a ≤ b. Hence, b ≥ 0
and |a| ≤ b. We are now going to show that a = 0 by using the fact that F
is increasing with respect to its first variable. We do this by choosing special
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values for the pair (κ1,κ2). For example, take (−1, α) and (α, α), α > 0. The
value of F for the first pair is less than or equal to the value of F for the second:

αH3(0) ≤ α2H3(2).

Letting α tend to zero shows that H3(0) ≤ 0. Making a similar argument with
the pairs (−α, α) and (α, α), shows that H3(0) ≥ 0. Thus H3(0) = 0, which
means that the left-hand side of (26.30) is zero if the two principal curvatures
have opposite signs. Consequently, up to a positive multiplicative constant,
equation (26.30) is

∂u

∂t
= sgn(κ1)t1/2|Du||G(u)+|1/4, (26.31)

where x+ stands for sup{0, x}. This equation describes the unique multiscale
analysis in three dimensions that is both affine invariant and contrast invariant
and satisfies the condition Tt(u) = −Tt(−u).

The case N> 3.
The only remaining task is to prove that HN has the properties stated in

the theorem. This is done by using arguments similar to those use for the three-
dimensional case: By taking particular values for the κi and by using the fact
that F is nondecreasing, one shows that HN (N − 3) = 0. Then since HN is
nondecreasing and since HN (n) = −HN (−n), it follows that HN (n) = 0 except
for n = N − 1 and n = −(N − 1). The details are left as an exercise. ¤

Exercise 26.1. Fill in the details for the last part of the proof.

26.4 Exercises

Exercise 26.2. The aim of the exercise is to give a geometric interpretation of
anticurv(u) and to help interpreting the proofs of Lemmas 26.1 and lemma 26.2. We
refer to the definitions of ãij , i = 1, 2 given in Formulas (26.4)-(26.5).

1) Show that anticurv(u)(x) = ã12(D
2u(x), Du(x)) is the curvature of the gradient

line of u through the point x. The gradient lines are the curves that are tangent to
the gradient of u at every point. They form a system of curves that are orthogonal to
the level lines of u.

2) Show that ã12(D
2u, Du) and ã22(D

2u, Du) are contrast invariant differential
operators. More precisely, show that if u is C2 and g a C2 contrast change with
g′ > 0, then these operators are invariant when we replace u by g(u). Prove that ã11

is not contrast invariant.

3) Question 2) explains why ã11 is ruled out by the contrast invariant requirement,
but not why ã12 must also be ruled out for a causal scale space. Prove that ã22(A, p)
is a nondecreasing function of A, while ã12(A, p) is not.

26.5 Comments and references

Axiomatics. In this chapter, we have followed an axiomatic presentation of
scale spaces developed in [12], which is a simplified version of the original given
in [150]. Other axioms for affine scale space have been proposed by Olver,
Sapiro, and Tannenbaum [275, 276].
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Curvature motion. The first complete mathematical study on the motion of
a surface by its mean curvature is the book by Brakke [51]. The main question in
this field is, How regular is a surface that has been smoothed by mean curvature?
Huisken proved that a convex surface smoothed by mean curvature was trans-
formed into a sphere before vanishing to a point [169]. This result generalizes to
higher dimensions a result by Gage about curve evolution [135]. The question
of whether or not a surface smoothed by curvature motion ended in a sphere
was first introduced by Firey for Gaussian curvature motion [122]. Osher and
Sethian developed the first numerical codes for mean curvature motion, where
topological changes of the surface could be dealt with efficiently [278]. Yuille
observed that the Koenderink–van Doorn dynamic shape algorithm could create
singularities is a dumb-bell shaped surface [364]: The “handle” part ultimately
evolved into a thin filament that broke, creating singularities. (See the figures
in Chapter 2, particularly Figure 2.9.) This behavior contradicts causality, one
of the main axioms of scales space: Smoothing a shape should not create new
features. Koenderink comments on this creation of singularities in [199]. The
corresponding mathematical study of this phenomenon is due to Grayson [149].
Bounds on the gradient for the mean curvature equation are given by Barles
in [38]. A general survey of singularity formation by mean curvature motion is
given by Angenent in [21]. Altschuler, Angenent, and Giga prove the smooth-
ness of the evolution of rotationally symmetric hypersurfaces and estimate the
number of singular points [7]. More about regularity and singularities related
to mean curvature flow can be found in [108, 23, 170, 177]. Ishii and Sougani-
dis developed a theory of viscosity solutions for general curvature equations,
including any power function of the curvature or the Gaussian curvature [179].
Particular mention must be made about the work by Caselles and Sbert on the
properties of scale spaces in three dimensions [76]. They prove that the dumb-
bell is not “pinched off” by the affine scale space, but they exhibit examples
of other surfaces where singularities may appear. Chow proved that in RN , a
motion by the N -th root of the Gauss curvature deforms strictly convex surfaces
into spheres [85, 86]. This result is analogue to the result by Huisken for mean
curvature motion mentioned above.

Extensions of affine scale space in two dimensions. Several authors have
attempted to extend the affine scale space in two dimensions to a projective-
invariant scale space. The results of this chapter have clearly shown that a mul-
tiscale analysis that is both local and causal cannot be projective invariant. An
affine-invariant scale space must have the form given in equation (26.25), which
is completely determined up to a multiplicative constant. Thus, by requiring
affine invariance, we have exhausted all degrees of freedom in the choice of the
PDE. The way around this is to relax one or more of the other requirements,
but not one of the invariants in the projective group. Faugeras and Keriven
[118, 119, 120, 117] and Bruckstein and Shaked [56] give up the maximum
principle. They then derive higher order PDEs that can hardly be considered
smoothing operators. Establishing existence proofs and numerical simulations
of this projective curve scale space are open problems. (See also Olver, Sapiro,
and Tannenbaum [273].) Dibos does not give up locality or causality, and she is
able to simulate her scale space numerically. This scale space no longer depends
on a single scale parameter, but rather on two parameters. Geraets and others
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propose affine-invariant scale spaces for discrete sets with applications to object
recognition [138, 139]. One of the first attempts to use the AMSS model for
affine-invariant shape recognition was given by Cohignac, Lopez and Morel [87].
A more complete and sophisticated attempt, which performs image comparison
by applying the affine scale space to all level lines of each image, is found in
[217]. Alvarez and Morales used the affine scale space for corner and T-junction
detection in digital images [14].
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Chapter 27

Monotone image operators:
“nonflat” morphology

27.1 General form of monotone operator.

Theorem 27.1. Let T be a monotone function operator defined of F , invariant by
translation and commuting with the addition of constant. There exists a family IF of
functions of F such that

Tu(x) = sup
f∈F

inf
y∈IR

u(y)− f(x− y)

Proof We choose IF = {f ∈ F , T f(0) ≥ 0} Then,

Tu(x) ≥ λ ⇔ ∀ε > 0, Tu(x) ≥ λ− ε

⇔ ∀ε > 0, τ−x(T (u− λ + ε))(0) ≥ 0

⇔ ∀ε > 0, T (τ−x(u− λ + ε))(0) ≥ 0

⇔ ∀ε > 0, τ−x(u− λ + ε) ∈ IF

⇔ ∀ε > 0,∃v ∈ IF , inf
y

u(y)− λ + ε− v(y− x) ≥ 0

(⇒ is true by simply choosing v = u − λ + ε. The converse implication is true
due to the monotony of the operator T and definition of IF which imply that if
u ≥ v and v ∈ IF then u ∈ IF .)

⇔ ∀ε > 0, sup
v∈IF

inf
y

u(y)− λ + ε− v(y− x) ≥ 0

⇔ sup
v∈IF

inf
y

u(y)− v(y− x) ≥ λ

¤

345
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27.2 Asymptotic behavior of monotone opera-
tors

The aim of this section is to study the asymptotic behavior of a monotone
operator. More precisely we assume to have a base of functions IF and an
operator T defined by

T (u)(x) = inf
f∈IF

sup
y∈IRN

u(y + x)− f(y).

We want first to define a local version of it Th and then to estimate Th(u) − u
when h tends to 0.

27.2.1 The rescaling issue

As we have seen until now, the scale is related to the space by the following
consideration: assume that u and v are two functions such that v(x) = u(2x).
(u corresponds somehow to a zoom of v). If we want to smooth the two images
similarly we have to change the scale of the filter. For contrast invariant filter,
this is quite straightforward, the scale is directly and uniquely linked to the size
of the structuring elements. E.g. if the filter is the median filter on a disk. The
size of the disk (the scale) has to be chosen two times bigger for u than for
v. For such filters, the down-scaling corresponds to a spatial shrinkage of the
structuring elements.

For linear filter, (think the mean value to be simpler) the scaling was also
straightforward. Indeed, the mean value on u has to performed on a neighbor-
hood two times larger than for v. But in that case, this does not only mean a
spatial shrinkage ! Indeed the kernel of the mean value on a disk of radius h
centered in 0 is given by

gh(x) = 1
πh2 for |x| ≤ h

= 0 otherwise

That is that the structuring element is scaled also in amplitude. Here the
amplitude-scaling factor h−2 is so that

∫
IR

gh = 1 which was a assumption made
for a linear smoothing.

As for the linear filter, at this point we can guess that an amplitude-scaling
factor might be needed for a general monotone filter. So that the structuring
elements, that is the functions of IF will be scaled as f(x) → hβf(x), where β is
a real number which will be discussed later. (To be noted that is all that follow
hβ could be replace by a function of β).

We therefore define the scaled operator Th associated to T by

Th(u)(x) = inf
f∈IF

sup
y∈IRN

u(x + y)− hβf(y/h). (27.1)

27.2.2 Legendre Fenchel transform

Definition 27.2. Let f be a function from IRN into ĪR, we denote the Legendre
conjugate of f by f∗ : IRN → ĪR defined by

f∗(p) = sup
x∈IR

(p.x− f(x))
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Let us note that if f is convex then the legendre transform is finite for every
p.

27.2.3 Asymptotic theorem, first order case

Lemma 27.3. Let f be a function satisfying the following conditions:

∃C > 0 and α > max(β, 1) such that lim inf
|x|→∞

f(x)

|x|α ≥ C and f(0) ≤ 0 (27.2)

Then, for any C1 and bounded function u, if β < 2:

sup
y∈IRN

(u(x + y)− hβf(y/h))− u(x) = hβf∗(h1−βDu(x)) + O(h2(1− β−1
α−1 ))

A interesting particular case is when β = 1:

sup
y∈IRN

(u(x + y)− hf(y/h))− u(x) = hf∗(Du(x)) + O(h2)

Proof Without loss of generality we can choose x = 0 and u(x) = 0 so that
we are looking for an estimate of

sup
z∈IRN

(u(z)− hβf(z/h))

when h tends to 0. Setting y = z/h, we have,

sup
z∈IRN

(u(z)− hβf(z/h)) = sup
y∈IRN

(u(hy)− hβf(y))

Let us first prove that we can discard from the preceding sup the y that goes
too fast toward ∞ as h tends to 0. We consider the subset Sh of IRN of the y
such that

u(hy)− hβf(y) ≥ u(0)− hβf(0) ≥ 0.

We obviously have

sup
y∈IRN

(u(hy)− hβf(y)) = sup
y∈Sh

(u(hy)− hβf(y)).

Since u is bounded, we have ∀y ∈ Sh, f(y) ≤ C1h
−β for some constant C1

depending only on ||u||∞. Assume that there exists yh ∈ Sh tending to ∞ as
h tends to zero. For h small enough, condition (27.2) gives f(yh) ≥ C|yh|α,
which combined with the preceding inequality yields |yh| ≤ C2h

−β/α. Such a
bound holds if yh ∈ Sh is bounded, so that we have

∀y ∈ Sh, |y| ≤ C2h
−β/α

As consequence, ∀y ∈ Sh we have |hy| = o(1) and we can do an expansion
of u around 0, so that

sup
y∈IRN

(u(hy)− hβf(y)) = sup
y∈Sh

(hDu(0).y− hβf(y) + O(h2|y|2))

We can now find finer bound for the set Sh repeating the same argument.
∀y ∈ Sh we have,

hp.y− hβf(y) + O(h2y2) ≥ 0
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which yields
|p| ≥ hβ−1f(y)/|y|+ O(h|y|)

Assume that yh ∈ Sh, satisfying the preceding inequation, tends to ∞ when h

tends to 0, then by (27.2), we obtain |yh| = O(h−
β−1
α−1 ). Once again, if yh is

bounded this estimate holds. So we have

sup
y∈IRN

(u(hy)− hβf(y)) = hβ( sup
y∈Sh

(h1−βp.y− f(y) + O(h2(1− β−1
α−1 )−β)))

= hβ( sup
y∈IRN

(h1−βp.y− f(y)) + O(h2(1− β−1
α−1 ))) = hβ(f∗(h1−βp)) + O(h2(1− β−1

α−1 ))

It is easily checked that O(h2(1− β−1
α−1 )) = o(hβ) for all β < 2. ¤

Theorem 27.4. Let IF be a family of functions, all satisfying the condition (27.2)
with a constant C non dependant on the choice of a function within the family. Let Th

be the rescaled operator associated with the family IF and with a rescaling parameter
β equal to 1. Then for all C1 and bounded function u we have:

(Th(u)− u)(x)

h
= H1(Du(x)) + o(1)

where

H1(p) = inf
f∈IF

f∗(p)

27.2.4 Second order case - some heuristics.

Theorem 27.4 gives the first order possible behavior of a non-flat monotone
operator. Question occurs on what happens if this first order term is 0, that is
if H1(p) = 0 for all p. In that case, it is necessary to push the expansion to the
second order:

We have with p = Du(0) and A = D2u(0)/2,

sup
y∈IRN

u(hy)− hβf(y) = sup
y∈IRN

hp.y + h2Ay.y− hβf(y) + O(|hy|3)

Since this last expression is increasing with respect to A it is then expected
that the left side of the equality converges when h tends to 0, to some function
F (A, p) where F is non decreasing with respect to A. As consequence, among
second order operator only elliptic operator can be obtained as the asymptotical
limit of a general monotone operator.

27.3 Application to image enhancement: Kramer’s
operators and the Rudin-Osher shock filter

In [203], Kramer defines a filter for sharpening blurred images. The filter re-
places the gray level value at a point by either the minimum or the maximum
of the gray level values in a neighborhood. This choice depending on which is
the closiest to the current value.
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In [?], Rudin and Osher proposes to shapen blurred images by applying the
following equation:

∂u

∂t
= sgn(∆u)|Du|

As, we will see in the following section, this two filters are asymptotically
the same in 1D, but differs in 2D. The first one yields to the Canny differential
operator for edge detection (sign of Du(Du, Du)), while the second explicitely
uses the sign of the laplacian.

27.3.1 The Kramer operator.

This filter can be seen as a conditional erosion or dilation and an easy link can
be made with the “shock filters” [?]. A finer version of it, is proposed in [?] and
proceed as follow: Let q(x) = x2/2, and IF+ = {q}. Set T+

h the rescaled, (with
β = 1), non-flat operator associated with the structuring elements set IF+ and
T−h its dual operator. We have

(T+
h u)(x) = sup

y∈IRN

u(y)− hq((x− y)/h) = sup
y∈IRN

u(y)− (x− y)2

2h

(T−h u)(x) = inf
y∈IRN

u(y)− hq((x− y)/h) = inf
y∈IRN

u(y) +
(x− y)2

2h

The Shock filter Th is then defined by

(Thu)(x) =





(T+
h u)(x) if (T+

h u)(x)− u(x) < u(x)− (T−h u)(x)

(T−h u)(x) if (T+
h u)(x)− u(x) > u(x)− (T−h u)(x)

u(x) otherwise

(27.3)

The figure ?? illustrates the action of such an operator. In order to un-
derstand mathematically the action of Th, let us examine its asymptotical be-
haviour. The following exercise proposes to apply Theorem 27.4 to get the
asymptotic of T+

h and T−h . It will however not permit to conclude for Th, this
is done in the next proposition.
Exercise 27.1. 1. Check that ∀u and ∀x:

T−h u(x) ≤ u(x) ≤ T+
h u(x)

2. Using Lemma 27.3 Show that q∗(p) = q(p) and that ∀x where u is C2:

(T+
h u)(x)− u(x) = h|Du(x)|2/2 + O(h2) and

(T−h u)(x)− u(x) = −h|Du(x)|2/2 + O(h2)

So that

lim
h→0

(Thu)(x)− u(x)

h
= ±|Du(x)|2/2

At this step, we remark that the differences (T+
h u)(x)−u(x) and u(x)− (T−h u) are

equal at the first order, and therefore the choice will be made based on second order
estimates on u.

Proposition 27.5. Let Th be the “Kramer” operator (given by 27.3), one has for any
function u ∈ C3,

lim
h→0

(Thu)− u

h
=

1

2
sgn(D2u(Du, Du)) |Du(x)|2
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Figure 27.1: Shock Filter implemented by using non flat morphogical filters.
Top, left :original image, right: blurred image using Heat Equation, Middle-left:
two iterations of the kramer filter, Middle-right: two iterations of the Rudin-
Osher filter. The scale parameter is chosen such that the parabola passes the
range of the image at a distance of 6 pixels. Down: zoom version of a detail,
left: original image, middle: kramer filter, right: Rudin-Osher filter. We see a
tendancy of this last to smooth shapes toward circles.
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Proof According to Exercise 27.1, one has to push the asymptotic of T+
h and

T−h to the second order. We have

T+
h (u)(x) = sup

y∈IRN

u(y)− (x− y)2

2h
and T−h (u)(x) = inf

y∈IRN
u(y) +

(x− y)2

2h

Since T+
h and T−h are translation invariant, we can limit our study at x = 0.

Moreover, since u is bounded, we can limit the sup to the y ∈ B(0, h). If u is
C3 at point 0, we can set u(y) = u(0) + p.y + A(y,y) + o(y)2 So that,

T+
h (u)(0)−u(0) = sup

y∈B(0,h)

u(y)−|y|
2

2h
−u(0) = sup

y∈B(0,h)

(p.y+A(y,y)−|y|
2

2h
+o(h)2

Set Qh(y) = 2hp.y + (2hA− Id)(y,y), so that we have

Th = sup
y∈B(0,h)

(Qh(y)/(2h)) + o(h)2

For h small enough Bh = Id − 2hA is positive and inversible. Therefore, the
sup of Qh over the y exists, and is achieved for yh such that

2hp + 2Byh = 0 ⇒ yh = −hB−1(p)

Thus,

T+
h (u)(0)− u(0) =

h

2
(Id− 2hA)−1(p,p) + o(h2) =

h

2
(Id + 2hA)(p,p) + o(h2)

We conclude that

T+
h (u)(0)− u(0) =

h

2
|p|2 + h2A(p,p) + o(h2) (27.4)

Similarly,

T−h (u)(0)− u(0) =
h

2
|p|2 − h2A(p,p) + o(h2) (27.5)

From these two last equalities we deduce that

((T+
h u)(x)− u(x))− (u(x)− (T−h u)(x)) = h2(D2u(x))(Du(x), Du(x)) + o(h2)

(27.6)
We therefore have

Th(u)(x)− u(x) = |Du(x)|2 sgn( D2u(x) (Du(x), Du(x)) ) + o(h)

¤

Let us remark that if u is a 1D function, then sgn(Du(Du, Du)) coincides
with the sign of the laplacian. That is that the Kramer operator corresponds,
in 1D, asymptoticaly the Rudin Osher shock filter.
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27.3.2 The Rudin Osher Shock Filter.

Let us simply define a scheme that yields asymptoticaly the Rudin Osher shock
filter equation.

Let Bh be a disk of radius h centered at 0. Let Mean be the mean value on
the disk Bh. We define the operator Th by:

Thu(x) = miny∈Bh
u(x + y) if Mean(u)(x) > u(x)

= maxy∈Bh
u(x + y) if Mean(u)(x) < u(x)

= u(x) otherwise

Exercise 27.2. Prove that

lim
h→0

Thu− u = sgn(∆u)|Du|

27.4 Can we approximate a parabolic PDE by
the iterations of a monotone image opera-
tor ?

27.4.1 Approximation of first order equation.

Let us address the converse of theorem 27.4: being given the function G is
it possible to construct a scaled familly of structuring elements such that the
associated scale space Th satisfies

Thu− u = hG(Du) + O(h2)?

As we shall see, the main difficulty stands in the localization of the struc-
turing elements when the scale tends to 0. In all the following, we work with
the scaling parameter β equal to 1.

Theorem 27.6. Let G be a convex function, such that G∗ satisfies condition 27.2,
then choosing IF h = {hG∗(x/h)} one has for the operator Th associated to IF h and
for any function u ∈ C3, (Thu− u)(x) = hG(Du(x)) + O(h2)

Proof This is a imediat consequence of Lemma 27.3 and of the fact that if
a function G is convex then G∗∗ = G. An example of such function G is
G(x) = |x|2. ¤

When G is non convex, then exhibiting a function M such that M∗ = G is
non straighforward. It is better to consider G as the infimum of a familly of
convex functions {gq}q.

Theorem 27.7. Let G be a function being the infimum of a familly of convex
functions {gq}q, such that for all q, g∗q satisfies the condition 27.2, then choosing
IF h = {hg∗q (x/h)} one has for the operator Th associated to IF h and for any function
u ∈ C3, (Thu− u)(x) = hG(Du(x)) + O(h2)

Note also that for negative function G, the same result work by switching
the sup and the inf in the definition of the operator Th.
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Proof The proof of Theorem 27.7 is a straighforward consequence of Theorem
27.4. ¤

Examples of functions G that fit the hypothesis of the theorem 27.7 are the
positive and Lipschitz functions. Indeed, if G is K-Lipschitz then setting for
q ∈ IRN ,

gq(x) = G(q) + K|x− q|
We obviously have G(x) = infq∈IRN gq(x). And,

g∗q (p) =
{

pq −G(q) if |p| ≤ K
+∞ otherwise

So that g∗q (p) satisfies the condition 27.2.

Remark 27.1. However, the hypotheses of Theorem 27.7 do not permit to
construct any function G. The main issue is in fact the condition 27.2, which
localizes the filter when h > 0 tends to 0, in the theorem 27.4.

Frédéric Cao proposes in [61] a way to avoid such an issue for any positive
l.s.c function G. His idea is to define a two scales family of structuring elements.
He first set

gq(p) =
{

G(q) ifp = q
+∞ otherwise

It is then obvious that G(p) = infq∈IRN gq(p). He then set fq(x) = (g∗q )(x) =
−G(q) + qx and IFh = {fq,h, q ∈ IRN} where, for a α ∈]1/2, 1[,

fq,h(x) =
{ −hG(q) + qx if x ∈ B(0, hα)

+∞ elsewhere

The familly IFh is not a rescaling of the familly IF 1. There is indeed, two
scales: the explicit one h, and an implicit one, hα since the functions of IFh are
truncated outside a ball of radius hα. This truncature localizes the corresponding
operator Th and makes the result of theorem 27.4 true, even if the functions of
IFh do not satisfy the condition 27.2.

27.4.2 Approximation of some second order equation.

Let us start with a simple remark. Set fq(x) = qx, ∀x in B(0, h) and fq(x) =
+∞ otherwise. By an imediat consequence of the Taylor expansion we have

q = Du(0) ⇔ sup
x∈IRN

u(x)− fq(x) = O(h2)

q 6= Du(0) ⇔ sup
x∈IRN

u(x)− fq(x) > C(q, u)h

This indicates that a way to get second order operator is to choose the familly
of functions IF so that ∀f ∈ IF and ∀q ∈ IRN one has f + qx ∈ IF .

The Heat Equation as the asymptotic of a non-flat morphological
operator.
Lemma 27.8. Let A be in SM(IRN ) (set of the N ×N symmetric matrices). Then,

Tr(A) = N inf
Q∈SM(IRN ),Tr(Q)=0

sup
x,|x|=1

(A−Q)(x,x) (27.7)
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Proof We know that, since A and Q are symmetric, supx,|x|=1(A−Q)(x,x) is
the largest eigenvalue of A−Q. As consequence ∀Q ∈ SM(IRN ), Nsupx,|x|=1(A−
Q)(x,x) ≥ Tr(A−Q) = Tr(A). Thus

N inf
Q∈SM(IR2),Tr(Q)=0

sup
x,|x|=1

(A−Q)(x,x) ≥ Tr(A).

Choosing Q diagonalizable in the same base that diagonalizes A, and denoting
by λ1 ≤ ... ≤ λN (resp. q1, ..., qN ) the eigenvalues of A, (resp. of Q), we have

sup
x,|x|=1

(A−Q)(x,x) = max{λ1 + q1, ..., λN + qN}

So that
inf

Q∈SM(IR2),Tr(Q)=0
sup

x,|x|=1

(A−Q)(x,x)

≤ inf
{q1,...,qN},q1+...+qN=0

max{λ1 + q1, ..., λN + qN} = (λ1 + ... + λN )/N

¤

Lemma 27.9. We set for p ∈ IRN , Q ∈ SM(IRN ), and h > 0,

fp,Q,h(x) = px + Q(x,x) if x ∈ B(0, h)
= −∞ otherwise

We then set IF h = {fp,Q,h; with Q ∈ SM(IRN ); Tr(Q) = 0 and p ∈ IRN} which is to
say that IF h is made of the truncature around zero of all quadratic forms whose trace
is zero. With Th(u)(x) = inff∈IF h supy∈IRN u(x + y)− f(y), one has for any u ∈ C3,

Th(u)(x)− u(x) =
1

2N
h2∆u(x) + o(h2)

Proof We make the proof at point x = 0, we set A = 1
2D2u(0). We have

Th(u)(0)− u(0) = inf
p∈IRN ,Q∈SM(IRN );Tr(Q)=0

sup
y∈B(0,h)

u(y)− u(0)− py−Q(y,y)

= inf
p,Q

sup
y∈B(0,1)

u(hy)− u(0)− hpy− h2Q(y,y)

= inf
p,Q

sup
y∈B(0,1)

h(Du(0)− p)y− h2(A−Q)(y,y) + o(h2)

= h2 inf
Q∈SM(IRN );Tr(Q)=0

sup
y∈B(0,1)

(A−Q)(y,y) =
1
N

h2Tr(A)

¤
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Chapter 28

Movie Scale-spaces.

This chapter is concerned with the axiomatic characterization of the multiscale
analyses {Tt}t≥0 of movies. We shall formalize a movie as a bounded function
u0(x, y, θ) defined on IR3, where x and y are the spatial variables and θ the time
variable. We note x = (x, y, θ).

As in the preceding chapters, we assume that Tt is causal (Definition ??),
Translation invariant (Definition ??) and invariant by grey level transla-
tion (Definition ??). Therefore, as shown in Chapter ??, there exists Tt,s such
that Tt = Tt,sTs, for all t ≥ s ≥ 0. And,

((Tt+h,tu− u)/h)(x) → F (D2u(x), Du(x), t)

as h tends to 0+ for all u and x where u is C2. The properties of F are the
same as in chapter ??, that is, F (A,p, t) is nondecreasing with respect to its
first argument, F (A,p, t) is continuous at all points where p 6= 0. But, now F
has ten scalar arguments.

Finally, we assume that the equation

∂u

∂t
= F (D2u, Du, t)

a unique viscosity solution u(x, y, θ, t), (this will of course be checked a posteriori
for the models we derive).

28.1 Geometrical axioms for the movie scale-
space.

Let us first define the geometrical axioms for the multiscale analysis of movies.
All axioms considered in chapter ?? make sense, but we need to specify them
in order to take into account the special role of time (θ). (For example, we shall
not consider invariance by spatio-temporal rotations as an essential property...)
This will change a little the assumptions on geometrical invariance. As usual we
will denote for any affine operator C of IR3, by Cu the function Cu(x) = u(Cx).

The first property states that the analysis be invariant under all linear trans-
forms of the spatial plane IR2 ∗ {0}. That is, when we apply the same affine
transform on each image of the movie.
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Definition 28.1. We shall say that a movie scale-space Tt is affine invariant if, for
any linear map B of the form 


a b 0
c d 0
0 0 1




there exists t′(t, B) such that B(Tt′(t,B)u) = Tt(Bu), and B(Tt′(t,B),t′(s,B)u) = Tt,s(Bu).

We also state a weaker property than the affine invariance, by restricting the
invariance to the rotations of the two first coordinates, and the homotheties.

Definition 28.2. We shall say that a movie scale-space Tt is euclidean invariant if
for any linear map

A =




a cos(b) −a sin(b) 0
a sin(b) a cos(b) 0

0 0 1




there exists a scale t′(t, A) such that A(Tt′(t,A)u) = Tt(Au) and A(Tt′(t,A),t′(s,A)u) =
Tt,s(Au)

Note that the t′ is the same for the two definitions 28.1 and 28.2. It establishs
the link between the space dimension and the scale. Since in the following either
the affine or the Euclidean invariance will be considered, we shall always have
this link. We now establish the link between time and scale, by considering the
homotheties with respect to time θ. ( We accelerate or decelerate uniformly the
movie.)

Definition 28.3. For any e in IR+ we define by Se the linear map Se(x, y, θ) =
(x, y, eθ) We shall say that a movie scale-space Tt is time scale invariant if there
exists t′′(t, e) such that

Se(Tt′′(t,e)u) = Tt(Seu) and Se(Tt′′(t,e),t′′(s,e)u) = Tt,s(Seu)

Of course, the function t′′ can be different from the function t′ of definitions 28.1 and
28.2.

Now, we want to state the scale invariance, as done in chapter ??. We begin
by noticing that the combination of the affine (or Euclidean) invariance and
the time scale invariance implies invariance with respect to homotheties of IR3.
That is, setting Hλ = λId, we have for some function τ(t, λ) :

Hλ(Tτ(t,λ)u) = Tt(Hλu)

So, for scale invariance we could impose that the function τ is differentiable
with respect to λ and that ∂τ/∂λ(t, 1) is continuous and positive. Now, we
prefer to obtain the scale-invariance assumption by using the affine and time
scale invariances.

Lemma ?? implies that t′ is a function only of t and of the determinant of B.
Then, setting λ = det(B), we assume that t′(t, λ) is differentiable with respect
to λ at λ = 1, and that the function g(t) = ∂t′

∂λ (t, 1) is continuous for t > 0. We
assume the same thing for the time: We assume that t′′(t, e) is differentiable
with respect to e at e = 1, and that h(t) = ∂t′′

∂e (t, 1) is continuous. For the
scale normalization we must impose in addition that at least one of g(t) or h(t)
is positive for t > 0. If we assume g(t) > 0, then the scale normalization is
established with respect to spatial variables. And, by an easy adaptation of
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Lemma ??, we deduce that we can normalize the relation between t, B and t′

so that
t′ = (det(B))

1
2 t (28.1)

Thus the affine invariance is reduced to the property :

F (BAtB, Bp, t) = |det(B)| 12 F (A, p, t|det(B)| 12 ) (28.2)

If now we assume h(t) > 0, then the scale normalization is established with
respect to time. And then time scale invariance is reduced to

F (SeASe, Sep, t) = eF (A, p, et) (28.3)

Of course, since these assumptions imply a re-normalisation, we can not assume
both. In the following, we shall assume that at least one of the two conditions
is achieved. We then state the regular scale invariance axiom :
Definition 28.4. We shall say that a scale-space Tt satisfying the Affine or Euclidean
invariance and the time-scale invariance is scale-invariant if

(i) t′(t, λ) is differentiable with respect to λ at λ = 1, and g(t) = ∂t′
∂λ

(t, 1) is
continuous for t > 0

(ii) t′′(t, e) is differentiable with respect to e at e = 1, and h(t) = ∂t′′
∂e

(t, 1) is
continuous for t > 0.

(iii) One of the function g or h is positive, and the other one is continuous at t = 0.
(iv) t → Tt is injective.
(where t′ and t′′ are these defined in 28.1 or 28.2 and 28.3).

For the last “geometrical axiom” we assume that the analysis is invariant
under “travelling” : a motion of a whole single picture with constant velocity v
does not alter the analysis. We denote by Bv the galilean translation operator,

Bv=(vx,vy)u(x, y, θ) = u(x− vxθ, y − vyθ, θ)

In fact Bv is an affine operator,

Bv=(vx,vy) =




1 0 −vx

0 1 −vy

0 0 1




Definition 28.5. We shall say that a movie scale-space is Galilean invariant if for
any v and t, there exists t∗(t, Bv) such that

Bv(Tt∗u) = Tt(Bvu), and Bv(Tt∗(t,v),t∗(s,v)u) = Tt,s(Bvu)

t∗(t, B−v) = t∗(t, Bv), and t∗ is nondecreasing with respect to t.

The second part means that reversing time should not alter the analysis.
Let us simplify the definition. By using Lemma ??(i), we have

t∗(t∗(t, Bv), Bv) = t∗(t∗(t, Bv), B−v) = t∗(t, BvB−v) = t∗(t, Id) = t.

Repeating the argument of the step (ii) of the proof of the Lemma ??, we deduce
from this relation that t∗(t, B(v)) = t. Thus the Galilean invariance reduces to
the simpler relation (to which we give the same name)

Bv(Ttu) = Tt(Bvu) ⇔ F (tBvABv,t Bvp, t) = F (A,p, t) ∀A in S3,p ∈ IR3

(28.4)
Finally, we state the morphological property, (as in definition ??):
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Definition 28.6. We shall say that a movie scale-space is contrast invariant if for
any monotone and continuous function h from IR into IR, Tth(u) = h(Ttu)

We have seen in lemma ?? that this implies

F (µA + λp⊗ p, µp, t) = µF (A,p, t), (28.5)

for every real values λ, µ, every symmetric matrix A and every three-dimensional
vector p.

28.2 Optical flow and properties for a movie scale-
space.

The aim of this section is not to do a exhaustive list of the techniques for optical
flow estimation, but from general considerations we will remark that lot of
methods involve a step of smoothing, which could be modelized by a scale-space.
In parallel, we will notice that the contrast and the Galilean invariances are not
only compatible but somehow justified by the aim of estimating an optical flow.
This will make more clear what motivated the choice of the properties stated in
the preceding section.

The notion of optical flow has been introduced in the studies of human
preattentive perception of motion. The optical flow associates with each point
of the movie, a vector representing the optical velocity of this point. We shall
denote by v the optical flow vector ( v = (vx, vy) is in IR2 ), and by v the vector
(vx, vy, 1). So that if ∆θ is the time interval between two frames, x + v(x)∆θ
denotes the point x shifted by v(x) in the next frame.

The classical definition involves a conservation assumption, which generally
is that the points move with a constant gray level (u : the gray level value).
From a discrete point of view, we are looking for v(x) such that ([?, ?, ?, ?, ?],...)

u(x + v(x)∆θ) = u(x) + o(∆θ) (28.6)

⇔ Du.v = 0 (28.7)

This leads us to compare the gray level value from one frame to the next and to
associate the points which have the same intensity. Considering that the single
value u(x) is not a reliable information because of the many perturbation in
capturing the image, the images are often smoothed before doing this matching.
Of course, it would be possible to use an image scale-space, that is to smooth
each frame independently. But, we might probably do better by smoothing the
whole movie, with interactions between the different frames. Following the idea
of Marr, Hildreth, Koenderink, and Witkin many authors proposed to use the
convolution by the 3D Gaussian function Gt (the 3D heat equation). And, then
they check :

(Gt ∗ u)(x + v(x)∆θ) = (Gt ∗ u)(x) (28.8)

where ∗ denotes the convolution operator. The main problem of this formulation
is that it is not equivalent for two movies u and ũ representing the same object
with different constant velocity. For example, consider that the movie ũ is an
accelerated version of u, ũ(x, y, θ) = u(x, y, 2θ) = u(Ax). Set v1 (resp. v2) the
velocity at the point x in the movie u (resp. at the point Ax in the movie ũ).
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We have v2 = 2v1. Now, after the smoothing, using the formula (28.8), v2 must
satisfy

(Gt ∗ u(A.))(x + v2∆θ) = (Gt ∗ u(A.))(x) (28.9)

And, we easily see that since in general (Gt ∗u(A.)) 6= (Gt ∗u)(A.), after a such
smoothing we shall not always obtain with formula (28.8), v2 = 2v1. Indeed, in
the two cases, the smoothing is not done in the same way : because this linear
smoothing is not Galilean invariant. Therefore a such smoothing implies some
perturbation into the estimation of the velocities.

Adelson and Bergen [3], and Heeger [?] propose in order to avoid such prob-
lem, to design “oriented smoothing”. Such an approach yields more Galilean
invariance, even if, of course, we cannot exactly recover all the directions. (It
would involve an infinite number of filters !)

Let us note also that the equation (28.6) is contrast invariant. Indeed one
can apply a change of contrast for the entire movie : change u into ũ = g(u),
where g is strictly monotonous function from IR into IR, then the equation (28.6)
with ũ is strictly equivalent to the equation with u :

u(x + v(x)∆θ) = u(x) ⇔ (g(u))(x + v(x)∆θ) = (g(u))(x)

for any strictly monotonous change of contrast g.
It is important that this property be conserved after a smoothing of the movie

u. Once more if we apply the linear smoothing defined by the convolution by
the 3D Gaussian kernel, we lost this property. Indeed

(Gt ∗ u)(x + v(x)∆θ) = (Gt ∗ u)(x) is not equivalent to

(Gt ∗ (g(u)))(x + v(x)∆θ) = (Gt ∗ (g(u)))(x)

except for some specific change of contrast, or kind of motion. In order to keep
the equivalence after smoothing it is necessary that the scale-space be contrast
invariant as it has been defined in the preceding section.

As well known, the conservation law (28.7) only gives the component of
the optical flow in the direction of the spatial gradient. The other component
remains indeterminated. The usual approach to determine the optical flow then
involves balance between the conservation law and some smoothing constraint
on the flow. Since it is not our subject here, we refer to the papers of Barron
and al [?], Snyder [?], Nagel [?], Nagel and Enkelmann [?]...

First, we can remark that most of the approaches involve derivatives of the
intensity of the movie, that by itself can justify the fact to smooth the movie
before.

Secondly, the question occurs to know whether of not it is possible to smooth
the movie so that resulting trajectories (this needs to be defined, but at least
say the level surfaces, since due to conservation law trajectories are embedded
within them) will be smoothed as well.

In conclusion, optical flow approaches often lead back to the problem of the
definition of a smoothing. And we do not know a priori how much we have
to smooth : the degree of smoothing is a free scale parameter. This indicates
that a multi-scale analysis must be applied. In addition we have seen that
the conservation law justifies the contrast and the Galilean invariances for the
scale-space.
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28.3 The axioms lead to an equation.

We are now going to introduce some useful notation.

1. We denote by ∇u = (∂u
∂x , ∂u

∂y , 0) the spatial gradient of the movie u(x, y, θ).
When ∇u 6= 0, we associate with Du = (∂u

∂x , ∂u
∂y , ∂u

∂θ ) the two normal
vectors e⊥ and e± defined by

e⊥ =
1

|∇u| (−
∂u

∂y
,
∂u

∂x
, 0) e± =

1
|∇u||Du| (

∂u

∂x

∂u

∂θ
,
∂u

∂y

∂u

∂θ
,−((

∂u

∂x
)2+(

∂u

∂x
)2))

When ∇u is not equal to zero, {Du, e⊥, e±} is an orthonormal basis of
IR3. To be noted that e⊥ is spatial, that is it does not have a temporal
component.

2. Again when ∇u 6= 0, we then define

Γ1 = (D2u)(e⊥, e⊥), Γ2 = (D2u)(e⊥, e±), Γ3 = (D2u)(e±, e±).

Then Γ1 is the second derivative of u in the direction Du⊥, Γ3 in the
direction of Du±, and Γ2 the cross derivative in both directions.

3. Then, the spatial curvature curv(u) is given by

curv(u) =
Γ1

|∇u| .

4. The gaussian curvature G(u) is given by

G(u) =
Γ1Γ3 − Γ2

2

|Du|2

At last, we introduce the “apparent acceleration”, as a normalized ratius
between the gaussian curvature and the spatial curvature : given by

accel(u) =
G(u)

curv(u)
|Du|4
|∇u|4 = (

|Du|
|∇u| )

2(Γ3 − Γ2
2

Γ1
)/|∇u|

Theorem 28.7. Let a multiscale analysis Tt be causal (as defined in theorem ??),
translation, Euclidean, Galilean, and constrast invariant. Then, there exists a function
F such that Tt is governed by the equation

∂u

∂t
= |∇u| F (curv(u), accel(u), t) (28.10)

(for the exact meaning of “governed by”, we refer to the theorem ??.)
If in addition, Tt is affine, time-scale and time invariant then the only possible

scale-space equations are

(AMG)
∂u

∂t
= |∇u| curv(u)

1−q
3 (sgn(curv(u))accel(u)q)+ (28.11)

for some q ∈]0, 1[, or

(q = 0)
∂u

∂t
= |∇u|curv(u)

1
3 (28.12)
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(q = 0)
∂u

∂t
= |∇u|curv(u)

1
3 (sgn(accel(u)curv(u))+ (28.13)

(q = 1)
∂u

∂t
= |∇u|sgn(curv(u))(sgn(curv(u))accel(u))+ (28.14)

In the above formulae, we use the convention that the power preserves the
sign, that is aq = |a|qsgn(a). And we set x+ = sup(0, x).

Remark. Before begining with the proof of the theorem, let us notice that
the terms appearing in equation (28.11) are not defined everywhere. Indeed, we
can write curv(u) only when |∇u| 6= 0, and accel(u) only when ∇u 6= 0 and
Γ1 6= 0 (then curv(u) 6= 0). So, we must specify what happens when one of
these conditions does not hold. Equation (28.11) is equivalent to

∂u

∂t
= |∇u| 2−8q

3 Γ
1−4q

3
1 (Γ1Γ3 − Γ2

2)
q+|Du|2q

By continuity, when Γ1 tends to zero, we set ∂u
∂t = 0.

The case ∇u = 0 is more problematic. We distinguish three cases :

• If q < 1/4, the right hand side ot the equation is continuous and we obtain,
when ∇u tends to zero, ∂u

∂t = 0.

• In the case q = 1/4, which is a limit case, ∇u does not appear in the
equation. Now, the definitions of Γ1, Γ2,... depend on the direction of
∇u. We have in this case

∂u

∂t
= |Du| 12 (Γ1Γ3 − Γ2

2)
1
4+

where, (Γ1Γ3−Γ2
2) is the determinant of D2u restricted to the orthogonal

plan to Du. If |Du| 6= 0, this determinant is defined independently of
the Γi, and the formulation makes sense. Now, if |Du| tends to 0, by
continuity we have ∂u

∂t = 0.

• At last, if q > 1/4, Equation (28.11) has singularities since the right hand
side of this equation may tend to infinity when ∇u tends to zero.

Let us now set the obtained relation between space, time and scale.
Corollary 28.8. Let A be an affine transform of the coordinates




a b 0
c d 0
0 0 e


 for any a, b, c, d, e ∈ IR

and let p =
√

ad− bc. Then, the multiscale analysis defined by equation (28.11) satifies
A(Tτu) = Tt(Au) with

τ(A, t) = (p4( 1−q
3 )e2q)t (28.15)

We see in relation (28.15), that q is a parameter which represents the re-
spective weights between space variables and time variables in the equation. For
example, by taking q = 0, we remove the time dependance in the equation and
we obtain the purely spatial affine and constrast invariant scale-space (or a slight
variant). On the other side by taking q = 1, we remove the space dependance of
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the scale : we obtain the equation (28.14). At last, by taking q = 1
4 , we impose

an homogeneous dependance in time and space. τ = pe
1
2 t = (det(A)

1
2 ) t In

that case, by formulating the equation with G(u) the gaussian curvature of u,
we obtain

∂u

∂t
= |Du|(G(u)+)

1
4 (28.16)

which is the unique contrast and 3D affine invariant scale-space as described in
chapter ??.

Let us before begining the proof of the theorem give a hint on the kind of
smoothing the equation (28.11) should do on a movie. Let us decompose this
equation into two parts

∂u

∂t
= |∇u| curv(u)power... (sgn(curv(u))accel(u)power...)+

The first term curv(u)power... is roughly a term of spatial diffusion, and then
tends to remove objects when t → ∞. It’s quite close from the diffusion term
of affine and contrast invariant scale-space of static images.

The second term accel(u)... can be seen as the speed of this spatial diffusion.
The bigger is accel, faster the spatial diffusion is executed. As we shall see in
the following the differential operator accel can be interpreted as some kind of
acceleration of objects in the movie. So, we can conclude that the equation
will smooth (and then remove ) faster the object with big acceleration, than
object with low acceleration. Therefore we can expect that this will produce a
discrimination between trajectories (smooth and unsmooth).

Proof of Theorem 28.7 The proof is essentially based on algebraic calcu-
lations. Its main ingredient is that the terms |∇u|3curv(u) and |Du|4G(u) =
|∇u|4curv(u)accel(u) are affine covariant of degree 2,2,0 and 2,2,2, with respect
to the coordinates (x, y, θ).

Since the proof is quite long and technical, we refer to [12]. ¤
.

28.4 Optical flow and apparent acceleration.

In this section, we shall give to accel(u) a cinematic interpretation as an “ap-
parent acceleration”. As pointed before, the conservation law related to the
optical flow fixes only the component of the flow in the direction of the spatial
gradient.

First, we shall see that the model (28.11) and the definition of accel(u)
can be associated with a special choice for the other component the apparent
velocity. This choice corresponds to the a priori assumption that only objects
in translation are observed. In other terms, accel(u) gives the correct estimate
of the acceleration of objects when they are in translation motion. Secondly,
we will establish a formula that provides an estimation of accel without any
calculating of the apparent velocity.

In all this section, we work only at points where ∇u 6= 0.
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What are the possible velocities ? We define the optical flow ~v(x, y, θ) as
a function from IR3 into IR2 representing the velocity of the point (x, y) at time
θ. As before, we add a third component to the flow, which will always be equal
to 1 : v(x, y, θ) = (~v(x, y, θ), 1). We denote by W the set of “possible” velocity
vectors

W = { v = (~v, 1) for all ~v in IR2 } (28.17)

Assuming the conservation law, the optical flow is a vector of W which is
orthogonal to Du, therefore when Du 6= 0, it belongs to the set V :

V = { vµ =
|Du|
|∇u| (µe⊥ − e±), for all µ ∈ IR } (28.18)

All vµ have their component in the direction of ∇u fixed to − uθ

|∇u| . We have one
free parameter µ left. It corresponds to the component of the velocity vector in
the spatial direction orthogonal to ∇u, that is by definition : e⊥. In the next
paragraph, we define µ so that accel(u) is an apparent acceleration.

Definition 28.9. Definition of the “velocity vector”. When ∇u and curv(u) 6= 0,
we define the “velocity vector”: Vby

V =
|Du|
|∇u| (

Γ2

Γ1
e⊥ − e±) (28.19)

Then, if we set v1 = (V.∇u)/|∇u| (resp. v2 = (V.e⊥)/|e⊥|), the component
of V in the direction (resp. orthogonal direction) of the spatial gradient ∇u, we
have:

v1 = − uθ

|∇u| v2 =
|Du|
|∇u|

Γ2

Γ1
(28.20)

Proposition 28.10. Let ~i,~j be an orthonormal basis of the image plane. Con-
sider a picture in translation motion with velocity ~v = (vx, vy) : u(x, y, θ) = w(x −∫ θ

0
vx(θ)dθ, y− ∫ θ

0
vy(θ)dθ). Then, at every points such that ∇u 6= 0 and curv(u) 6= 0,

~v satisfies the explicit formula

(~v, 1) = V

In other terms, the definition (28.9) of the flow V is exact for any translation
motion.

The definition of the optical flow that fixes one component of the flow cor-
responds to say that points move on their space-time level surface (gray-level
does not change). Fixing the other component as we do with the definition 28.9
is to make the choice of a travelling direction on the space-time level surface.
With the definition 28.9, we choose the direction which does not change the
orientation of the spatial gradient.

Of course, in general, the velocity vector V is not equal to the real velocity
for others motions than the translations, but we shall consider it, for any type
of movement. In others words we make for a point a choice of trajectory along
the the iso-surface it belongs.

We shall now look for simpler expressions and interpretation of accel(u). The
next proposition shows that first, accel can be seen as an apparent acceleration
and second as a curvature in space-time of our choice of trajectories along iso-
surface.
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after

V ?

level line an unit of time

level line

?
?

?

same direction of the
spatial gradient.

V

V

Figure 28.1: According to the optical flow definition, all above drawn velocity
vectors are possible, since they allow the moving point to remain on the same
level surface. One possibility to get rid of this ambiguity is choose as velocity
the direction which does not change the orientation of the spatial gradient.

Proposition 28.11. 1. accel as an apparent acceleration. For all points such that
∇u 6= 0 and curv(u) 6= 0, let V = (vx, vy, 1) be the velocity vector defined as above
(28.9), and v1 its component in the direction of the spatial gradient.

accel(u) = − Dv1

Dθ
= −(vx ∂v1

∂x
+ vy ∂v1

∂y
+

∂v1

∂θ
)

= −((Dv1).V) = −(D(V.∇u).V) (28.21)

This formula1 shows that accel(u) is the acceleration in the direction of −∇u.
As v1 the component of the velocity in the spatial gradient direction is called the
“apparent” velocity, accel(u) can be called the “apparent acceleration”.

2. Let V be the “velocity vector” defined in Definition 28.19, then

accel(u) =
(D2u)(V,V)

|∇u| (28.22)

Proof of proposition 28.11 The proof is just some simple calculations. ¤

Discretization of the apparent acceleration. We shall prove some equali-
ties allowing a robust computation of the term accel(u). As we have seen before,
the “possible velocity” vectors are in W. They also must be orthogonal to the
gradient of the movie Du, and therefore lie in V We will first obtain a formula
for accel(u) that involves a minization over the vectors of V, and secondly we
will extend this minimization over the vectors of W.

Lemma 28.12. Whenever the spatial gradient ∇u and the spatial curvature curv(u)
are not equal to zero,

|∇u|(sgn(curv(u)) accel(u))+ = minv∈V |(D2u)(v,v)| (28.23)

1We denote by Df

Dθ
the variation of f along the trajectory of the considered point ( =

((Df).V) where V is the velocity of the point). This is generally different from ∂f
∂θ

which is
the partial variation of f with respect to θ.
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Proof Let us recall that the set V is the set of the vectors

vµ =
|Du|
∇u

(µe⊥ − e±)

We have

((D2u)vµ.vµ) =
|Du|2
|∇u|2 (Γ1µ

2 − 2Γ2µ + Γ3) = P (µ),

where P (µ) is a polynomial of degree 2 in µ. When |∇u| and curv(u), (and
therefore Γ1) are not equal to zero the extremum of P (µ) is reached when µ =
Γ2/Γ1, that is when vµ = V. Thus the extremum value of P (µ) is |∇u|accel(u),
by proposition 28.11. We obtain

extv∈V(D2u)(v,v) = |∇u|accel(u),

where by extv∈V we denote the finite extremal value in V.
Assume first that curv(u) and accel(u) have the same sign. This implies

that the second order coefficient and the extremum of the polynomial have the
same sign. Thus the expression (D2u)(v,v) has the same sign for all v ∈ V.
This yields |∇u|(sgn(curv(u)) accel(u)) = minv∈V |(D2u)(v,v)|.

If now, curv(u) and accel(u) have opposite signs then |∇u|(sgn(curv(u)) accel(u))+ =
0. And P (µ) is equal to zero for at least one vector v of V. Thus, for this vector,
|(D2u)(v,v)| = 0, and minv∈V |(D2u)(v,v)| = 0. So (??) is still satisfied. ¤

From a numerical viewpoint, the minimization on the set of vectors V is not
easy. Indeed, first, the direction of the gradient of the movie is quite unstable
because ∆θ, the time interval between two images, can be large.

We will restrict W to the vectors that stand in a ball B(0, R) for an arbitrary
R that can be chosen large enough. In others words, we will only consider
bounded possible velocities, which is not a real restriction in pratice.
Lemma 28.13. Let ∇u and curv(u) be not equal to zero, and u be C2, then the
expression

minv∈W(
1

∆θ2
(|u(x− v∆θ)− u(x)|+ |u(x + v∆θ)− u(x)|)) (28.24)

converges towards |∇u|(sgn(curv(u)) accel(u))+ when ∆θ tends to zero.

Proof Due to the fact that v ∈ W are assumed to be bounded, we have that
v∆θ tends to 0 as ∆θ tends to 0. As consequence, we can restrict the proof to
the case where u is a quadratic form without loss of generality.

So, let u be a quadratic form : u(x) = 1
2A(x,x) + p.x + c, and define

F (v, h) = (|u(x− vh)− u(x)|+ |u(x + vh)− u(x)|)/h2

We have
F (v, h) = | − p.v

h
+

1
2
A(v,v)|+ |p.v

h
+

1
2
A(v,v)| (28.25)

Let w ∈ V be a vector which minimizes the min in (28.23), w ∈ V then w.p = 0),
thus (28.25) becomes

F (w, h) = |A(w,w)|
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Therefore

lim
h→0

(minv∈WF (v, h)) ≤ F (w, h) = |∇u|(sgn(curv(u)) accel(u))+ (28.26)

Moreover minv∈WF (v, h) exists for every h and is bounded. We denote by vh

a vector of W such that F (vh, h) = minv∈WF (v, h). Since F (vh, h) is bounded
and F (vh, h) ≥ 2|(p.vh)/h|, we necessarly have

|(p.vh)| = O(h) (28.27)

Let decompose vh into two vectors : vh = v⊥h +hv±h such that v⊥h is orthogonal
to p, and (28.27) leads that |v±h | is bounded when h tends to zero. As before,
we have

F (vh, h) ≥ |A(vh,vh)| ≥ |A((v⊥h + v±h ), (v⊥h + v±h ))| ≥

|A(v⊥h ,v⊥h ) + 2hA(v⊥h ,v±h ) + h2A(v±h , av±h )|
Since |v±h | is bounded, we get limh→0 F (vh, h) ≥ |A(v⊥h ,v⊥h )| Now, v⊥h is in V
then |A(v⊥h ,v⊥h )| ≥ minv∈V |A(v,v)|, so

lim
h→0

(minv∈WF (v, h)) = lim
h→0

F (vh, h)

≥ minv∈V |A(v,v)| = |∇u|(sgn(curv(u)) accel(u))+ (28.28)

(28.26) and (28.28) conclude the proof of the proposition. ¤

In addition to a quantization problem, if we wish to recover an “acceleration”
interpretation of the term “accel” we need somehow to make appearing in the
formulation of accel the velocities before and after the considered point.
Lemma 28.14. Let u be C2, ∇u and curv(u) not zero, then

minv∈W(|u(x− v∆θ)− u(x)|+ |u(x + v∆θ)− u(x)|) = (28.29)

minvb,va∈W(|u(x−vb∆θ)−u(x)|+ |u(x+va∆θ)−u(x)|+∆θ|∇u.(vb−va)|)+o(∆θ2)

Proof First, we remark by taking vb = va that the first part is larger than
the second part of the expression.

(|u(x− vbh)− u(x)|+ |u(x + vah)− u(x)|+ h|∇u.(vb − va)|)

= | − h(Du.vb) +
h2

2
(D2u)(vb,vb)|+ |h(Du.va) +

h2

2
(D2u)(va,va)|

+h|Du.(vb − va)|) + o(h2)

≥ h2

2
(|(D2u)(vb,vb)|+ |(D2u)(va,va)|) + o(h2)

≥ minv∈W(|(D2u)(v,v)|) + o(h2)

= minv∈W(|u(x− vh)− u(x)|+ |u(x + vh)− u(x)|) + o(h2)

by Proposition 28.13. ¤
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Interpretation. We deduce from all of these propositions an explicit formula
for the apparent acceleration

|∇u|(sgn(curv(u)) accel(u))+ = (28.30)

minvb,va∈W
1

∆θ2
(|u(x−vb∆θ)−u(x)|+|u(x+va∆θ)−u(x)|+∆θ|∇u.(vb−va)|)+o(1)

Of course for numerical experiments, we shall not compute the minimum for
all vectors in W, but only for the vectors on the grid. We have two differents
parts in the second term : The first part is the variations of the grey level value
of the point x, for candidate velocity vectors : vb between θ−∆θ and θ (velocity
before θ), and va between θ and θ+∆θ (velocity after θ). These variations must
be as small as possible, because a point is not supposed to change its grey level
value during its motion. The second part is nothing but the “acceleration”, or
the difference between vb and va in the direction of the spatial gradient |∇u|.

28.5 Destruction of the non-smooth trajectories.

Since trajectories are included into the spatio-temporal gray-level surfaces (level
surfaces), it is interesting to look at the evolution of such surfaces. According
to the equation, the surfaces move (in scale) at each point with a speed in
the direction of ∇u given by curv(u)

1−q
3 (sgn(curv(u))accel(u)q)+. (We do not

consider the case where q = 0 that corresponds to a pure spatial smoothing).
Therefore any level surfaces that corresponds to an uniform motion does not

move in scale (it is a steady state for the equation AMG). Such surfaces are
straight in one direction of the space-time.

We see also that parts of the surfaces where the curvature and the operator
accel have opposite signs do not move as well. Then if we take example of a
uniform circle under acceleration, the level surface corresponding to the circle
moves only in one of its side.

More geometrically the smoothing can only occur at points where the level
surface is strictly convex or strictly concave. We can give an intuitive hint of why
the smoothing is stopped on saddle points. This property of the model AMG,
comes directly from the contrast invariance and the causality. They imply a
independent and continuous motion of level surfaces that makes that two level
surfaces can not cross them-selves. Now as shown in the picture 28.5, we can
bound non-convex and non-concave part of surfaces by straight surfaces that
have no evolution, and then easily see why such parts does not move.

As a consequence, we can not expect from a such modelization to obtain a
smoothing of the trajectories. Non-smooth trajectories are not really smoothed
by the model but are simply destroyed. Let us take an example. In figure 28.5,
we display a oscillatory trajectory (in gray). The limit of a smoothing of this
trajectory should be a straight trajectory. Now using the same argument as in
the preceding paragraph the gray surface can not cross the white surface which
has no evolution. Therefore the gray surface can not become straight, because
it should have to cross the white one. A such trajectory is shrunk by the AMG
model and disappears at a finite scale of smoothing (see figure 28.5).

We conclude that the assumptions we made for our model are incompatible
with the notion of smoothing trajectories. Indeed non-straight trajectories are
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accel and curv have opposit
signs : no smoothing

accel and curv have same 
signs : smoothing

Acceleration direction.

On this line, accel = 0
because the spacial gradient is
orthogonal to the acceleration.

Direction of the
spatial gradient.

curv < 0

accel>0 accel<0

Figure 28.2: The AMG model erodes a circle in acceleration only on one side.
Indeed, when the curvature and the acceleration have opposite signs, the evo-
lution in scale is zero. (see the AMG equation).

x

y

θ

x

y

θ

The smoothing at point x0 can not
deplace the level surface, in -x
direction.

The smoothing can not also deplace
the level surface, in x direction.

Figure 28.3: Saddle points of level surfaces remain steady by the AMG model.
Indeed, our scale-space can be seen as a motion in scale of gray level-surfaces
(isophotes). The level-surfaces that are straight in time correspond to a uniform
translation and are not changed by the smoothing. Therefore, the two thin
cylindric level-surfaces drawn left and right in the figures above do not move
in scale. Now, by the inclusion principle, two level surfaces can never cross
during the evolution in scale. Since, as displayed in the picture, it is possible to
squeeze any surface saddle point between two such steady cylinders, it follows
that saddle points do not move in scale as well. This property is readable in the
scale space equation : at saddle points, the positive part of the product of the
curvature and of the acceleration is zero.
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y

x

θ

Figure 28.4: The level-surface in gray cannot become straight : it would have to
cross the white level-surface which is invariant by the scale space. Now, during
the smoothing process, the level-surface in gray will be eroded on its convex
part, and will eventually disappear at a fixed scale : it cannot converge to any
steady surface since all of them are straight in time. Thus, trajectories that are
contained in the grey level surface end being removed from the movie.

not more and more smoothed, but are more and more removed. And by conse-
quence a small perturbation in a straight trajectory might imply a destruction
of this trajectory although it would have been kept without the perturbation.

28.6 Conclusion.

We have seen that there exists an unique affine, contrast and Galilean invariant
scale-space for movies, the AMG. This model does a spatial smoothing with a
speed depending on the spatial curvature and an apparent acceleration. The
larger is the acceleration the larger is the speed of smoothing. Therefore, as
shown on the experiments it has a strong denoising property since the noise
does not generally generate regular trajectories.

Now we have seen that the properties asked to the scale-space are compatible
with the definition of the optical flow. In the sense that the definition of the
optical flow satisfies as well the contrast, the affine, and the Galilean invariance.
But, the contrast invariance added to the causality (that defines the scale-space)
is incompatible with the notion of smoothing trajectories. In others terms, non-
smooth level-surfaces (on which are contained the trajectories by definition of
the optical flow) are more shrunk than smoothed. In fact the AMG model as
to be seen as a riddle that progressively remove non-smooth trajectories.

References.

The Optical Flow: The problem of estimating dense velocities field from
image sequence is a entire research topic by itself. Since it is not the main point
of this book we refer to some articles dealing with that subject: [?, ?, ?, 3,
?, ?, ?, 18, ?, ?]... The aperture problem of the optical flow - that is its non
uniqueness- has appeared very early and has been often adressed by e.g. some
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Figure 28.5: The affine, morphological, galilean (AMG) model used for image
sequence restoration (extraction of coherent trajectories). Above : three succes-
sive images extracted from a synthetic sequence, made of salt and pepper noise,
plus some squares placed at random locations. In addition, a little black square
in uniform motion has been added in the whole sequence. Bottom : resulting
images at calibrated scale 500p (scale at which a spatio-temporal sphere of 500
pixels disapears by AMG). Only the little black square remains, as it has a
coherent motion.

smoothness constraint on the flow it self, see e.g. [?, ?, ?, ?] or in some cases
by an implicit smoothing of image sequences see e.g. [3]...
Smoothing images sequences: Explicit smoothing of image sequences, for
the purpose of estimating the optical flow or for other purposes has first appeared
as a direct extension of the 2D smoothing to the 3D. That is no specific rule
was given to the time. In that sense most all 2D filters can be adapted to
N-dimensional data, and in particular the images sequences.

In [3], it is implicitely proposed to tune the sequence filtering to few different
orientations in space-time. All designed filters give different answers, answers
that were used as basis of the optical flow estimates. Even if it was impossible
to use a filter for all spatio-temporal directions, the idea to orient the filtering
in the direction of the (unknown) motion was there.

In [12] the basic principles explained in this chapter were proposed. In par-
ticular the ”Galilean Invariance”. Surprisingly, these formal principles yield an
anisotropic diffusion oriented, for each point, in the direction of the (unknown)
optical flow [12, ?]... Several other works have introduced other smoothings
depending on its aim and where the time plays a specific rule. In [?] the author
formalizes a smoothing compatible with the aim of estimating depth from an
image sequence. In [?] and one could find adaptations of the 2D linear smooth-
ing theory to an anisotropic diffusion in the direction of an estimated optical
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Figure 28.6: AMG model (Affine, Morphological, Galilean) used for image se-
quence “denoising”. Above : three successive images extracted from a sequence.
Second row : resulting images at calibrated scale 100 pixels (scale at which a
spatiotemporal sphere of 100 pixels disapears). Third row : Some noise has
been added to the original sequence (25% of the pixels are corrupted). Bottom
: resulting images at scale 100.
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flow.



“JMMBookOct04”
1/5/2012
page 373

i

i

i

i

i

i

i

i

Chapter 29

A snake from A to Z...

29.1 An active contour model

Boundaries of objects perceived against a different background induce some dis-
continuities in the gray level, resulting in high gradient. Let us call contour
a closed Jordan curve located mostly at high gradient points. The aim of the
active contour methods is to find such contours, starting from an initial curve,
usually sketched by hand. The curve moves numerically from its original lo-
cation until it reaches a position where it maximizes the image contrast. We
do not call as usual the image u0 because our main focus is not on the “ana-
lyzed” image but on the “analyzing image” describing the snake motion. This
last image will be called u(t,x) and the analyzed image will be called I(x). The
boundary detection problem can be formulated as an optimization problem. We
shall treat it in 2D but the 3D case has exactly the same formalism. Of course,
then, “curve” has to be replaced by “surface”. Let us choose a function g from
IR2 into IR representing for each point x a penalty for the curve to pass by the
point x. Ideally, g has to be chosen small when the magnitude of the image
gradient is large. We shall set for example

g(x) = σ2/(σ2 + |DI(x)|2) (29.1)

on the image domain, where σ2 is the estimated variance of the noise and texture
around the object. For convenience we shall extend I and g outside this domain
to R2, but assume that g(x) is zero for x ≥ R large enough. Thus, given an
image I, and an initial curve C0 = (x0(s)), s ∈ [0, L(C0)], we want to find a
curve C = (x(s)), s ∈ [0, L(C)] that minimizes the energy

E(C) =
∫ L

0

g(x(s))ds (29.2)

around x0, where s is an arc length parameter and L = L(C) the length of the
curve C.

In the following, we will assume g to be twice differentiable with respect to
x. In order to achieve this in practice, I is previously smoothed by the heat
equation and DI is therefore replaced in (29.1) by G ∗DI = D(G ∗ I) where G
is a gaussian with small variance. In that way g becomes C∞ (see Proposition
1.5.)

373
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Let us refresh some differential notation on curves. We denote by x(z) a
parameterization of a curve C on a fixed interval [0, 1]. Recall that τ (z) = x′(z)

|x′(z)|
is the tangent unit vector to the curve and n(z) = τ (z)⊥ the unit normal. Notice
that if v is a vector, then we can decompose it on the mobile frame (τ (z),n(z))
as

v = (v.τ )τ + (v.n)n. (29.3)

Calling s(z) a length parameter on the curve, defined up to a constant by
s′(z) = |x′(z)|, one has τ (s) = x′(z)

|x′(z)| and

∂τ

∂s
= κ(x(z)), (29.4)

which is the curvature vector. Thus, differentiating the tangent vector with
respect to z yields

(
x′(z)
|x′(z)|

)′
=

∂τ

∂z
=

∂τ

∂s

∂s

∂z
= κ(x(z))|x′(z)|. (29.5)

Proposition 29.1. Let C(t) = x(t, s) be a curve resulting from the gradient
descent of the energy (29.2), starting from C(0). Assume that C(t) is C2. Then
C(t) satisfies the following equation

∂x
∂t

= −(Dg(x).n)n) + g(x)κ(x) (29.6)

and x(0, s) = x0(s) that is (C(0) = C0)

Proof. We shall first change the parameterization of the curve C so that its
length is no longer a parameter of the energy. We parameterize the curve with
z ∈ [0, 1]. We have ds = |x′(z)|dz, where ′ denotes the derivative with respect
to z. Thus

E(C) =
∫ 1

0

g(x(z))|x′(z)|dz

Consider any C2 perturbation of the curve x(z), which we call dC and denote
its parameterization by dx(z). By |dC| we mean the C2 sup-norm of dx(z) on
[0, 1]. By an easy differentiation,

E(C + dC)− E(C) =
∫ 1

0

Dg(x(z)).dx(z)|x′(z)|dz

+
∫ 1

0

g(x(z))
x′(z)
|x′(z)| .dx

′(z)dz + o(|dC|).

Integrating by parts the last integral, we therefore have by (29.5),

E(C + dC)− E(C) =
∫ 1

0

Dg(x(z)).dx(z)|x′(z)|dz

−
∫ 1

0

(Dg(x(z)).x′(z))
x′(z)
|x′(z)| .dx(z)dz

−
∫ 1

0

g(x(z))κ(x(z)).dx(z)|x′(z)|dz + o(|dC|).
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Using (29.3) with v = Dg(x(z)), the two first integrals can be merged and we
obtain

E(C + dC)− E(C) =
∫ 1

0

(Dg(x(z)).n)n.dx(z)|x′(z)|dz−
∫ 1

0

g(x(z))κ(x(z)).dx(z)|x′(z)|dz + o(|dC|).
Let us denote the intrinsic scalar product between two vectorial functions f and
h defined on the curve x(z) by

〈f.g〉 =
∫ 1

0

f(x(z))g(x(z))|x′(z)|dz

Thus,

E(C + dC)− E(C) = 〈dC, ((Dg(x(z)).n)n− g(x(z))κx(z)))〉+ o(|dC|)
We therefore have

∇E(C) = (Dg(x(z)).n)n− g(x(z))κ(x(z)).

As a consequence the gradient descent for a curve C = (x(z)) following the
steepest gradient descent can be described by the equation ∂C

∂t = −∇E(C),
that is

∂x(t, z)
∂t

= −(Dg(x(t, z)).n)n + g(x(z))κ(x(z)).

From this equation we can deduce the normal motion

∂x(t, z)
∂t

= −(Dg(x(t, z)).n)n + g(x(z))(κ(x(z)).n)n.

This last evolution is obtained from the former one by projecting ∂x(t,z)
∂t on the

normal line Rn(t, z). Indeed, in order to describe the geometric evolution of a
curve we only need to give the motion of each one of its points in the direction
normal to its tangent. A last simplification is now obtained when for each t, we
choose to reparametrize the curve by an arc-length parameter s. In such a case
κ(x(t, s)) = ∂2x

∂s2 (t, s) is normal to the curve. Thus we can simply write

∂x(t, s)
∂t

= −(Dg(x(t, s)).n(t, s))n(t, s) + g(x(t, s))κ(x(t, s)) =

−(Dg(x(t, s)).n(t, s))n(t, s) + g(x(t, s))
∂2x
∂s2

(t, s),

or, if we omit the variables:

∂x
∂t

= −(Dg(x).n)n + g(x)κ(x) = −(Dg(x).n)n + g(x)
∂2x
∂s2

¤

Unfortunately, we cannot be sure that such an evolution yields a regular
curve for all t. In fact, it is in general false, since topological changes for the
curve can occur, which imply the appearance of infinite curvatures (see Figure
29.4.)

By a straightforward adaptation of the proof of Proposition 16.7 one im-
mediately obtains a formal link between the snake curve motion and an image
motion.
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Proposition 29.2. Assume that a function (t,x) 7→ u(t,x) is C2 in a neigh-
borhood of (t0,x0) and that Du(t0,x0) 6= 0. Then u satisfies the snake equation

∂u

∂t
(t,x) = g(x)curv(u)(t,x)|Du|(t,x) + Dg(x).Du(t,x) (29.7)

in a neighborhood of (t0,x0) if and only if the normal flow (Definition 16.6)
of the level lines of u passing in this neighborhood satisfies the intrinsic snake
equation,

∂x
∂t

(t,y) = g(y)κ(t,y)− (Dg(y).n(t,y))n(t,y)), (29.8)

where κ(t,x(t,y)) denotes the curvature vector of the level line of u(t) passing
by x(t,y) and n(t,y) one of its unit normals.

Exercise 29.1. By imitating the proof of Corollary 16.7, prove Proposition 29.2.

29.2 Study of the snake equation

We study in this section the equation (29.7), which we can abbreviate as

∂u

∂t
= g|Du|curv(u) + Dg.Du (29.9)

and shall call the snake equation.

Admissibility of the equation and uniqueness of solutions. Let us set

F (A, p,x) = g(x)A(p⊥, p⊥) + Dg(x).p

Equation (29.9) can be obviously written as

∂u

∂t
= F (D2u, Du,x)

It is easy checked that F is admissible (see Definition 23.1). As a consequence
Theorem 23.17 ensures uniqueness of viscosity solutions of the equation (29.9)
for any Lipschitz initial condition u0.
Exercise 29.2. Check that F (A, p,x) is admissible.

Existence of solutions by approximation. Let us now construct an ap-
proximation scheme to the solution of Equation (29.9). It is possible to construct
a family of structuring elements having as asymptotic behavior the right hand
term of the equation (29.9). However, this term being a sum of two simple oper-
ators, it is simpler to associate with each one of these operators a simple family
of structuring elements and to alternate their corresponding filters. Note that,
due to the presence of g(x) and Dg(x), the equation is not invariant by trans-
lation. As a consequence, the families of structuring elements will depend on x.
This situation is new. We will need conditions ensuring that inf-sup operators
with space-varying sets of structuring elements preserve Lipschitz constants.
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Lemma 29.3. Let B ⊂ B(0, 1) and B(x) = g(x)B be a space varying struc-
turing element such that g(x) is M -Lipschitz. Consider the associated space-
varying dilation Tu(x) = supz∈B(x) u(x + z). Then if u(x) is a L-Lipschitz
function, Tu is a LM -Lipschitz function. The same result works with an inf
instead of a sup.

Proof. For every z ∈ B, x and y one has

u(x + g(x)z) ≤ u(x + g(y)z) + L|(g(x)− g(y))z| ≤ u(x + g(y)z) + LM |x− y|.
Taking the sup on B on both sides,

Tu(x) = sup
z∈B

u(x + g(x)z) ≤ Tu(y) + LM |x− y|.

Using this and the analogous inequality interchanging x and y one gets the an-
nounced result. ¤

Corollary 29.4. Let IB be a family of structuring elements B such that B ⊂
B(0, 1) and g(x) a M -Lipschitz function. Let

Tu(x) = inf
B∈IB

sup
y∈g(x)B

u(x + y).

Then if u is L-Lipschitz, Tu is LM-Lipschitz. The same result is true with a
sup inf instead of an inf sup.

Proof. This follows from Lemma 29.3 and the fact that an arbitrary infimum
of L-Lipschitz functions also is Lipschitz with the same constant (see exercise
29.3.) ¤

Exercise 29.3. Prove that if (ui)i∈I is a family of L-Lipschitz functions such that
|ui(0)| ≤ C is bounded independently of i, then then u(x) = infi∈I ui(x) and v(x) =
supi∈I v(x) also are L-Lipschitz.

Let us now define the space-varying structuring elements naturally associ-
ated with the snake equation.

Approximation of −DgDu. We consider the family made of a single
element:

IBh(x) = {{hDg(x)}}
By Taylor formula we then have, for each point where u is C2:

(Shu)(x) = inf
B∈IBh(x)

sup
y∈B

u(x + y) = u(x + hDg)

= u(x) + hDg(x).Du(x) + O(x, h2),

where O(x, h2) converges uniformly on every compact set K where u is C2. We
can rewrite the last relation

(Shu)(x)− u(x) = hDg(x).Du(x) + O(x, h2). (29.10)
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Approximation of g|Du|curv(u). We consider the structuring elements
of the median filter (See Chapter 14):

IB′
h(x) = {B | B ⊂ B(0,

√
6g(x)h) and meas(B) ≥ 3πg(x)h)}.

Set
(S′hu)(x) = sup

B∈IB′h(x)

inf
y∈B

u(x + y).

Thanks to Theorem 18.7, we have for any u : R2 → R which is C2:

(i) On every compact set K ⊂ {x | Du(x) 6= 0},

S′hu(x) = u(x) + hg(x)|Du(x)|curv(u)(x) + O(x, h
3
2 ), (29.11)

where |O(x, h
3
2 )| ≤ CKh

3
2 for some constant CK that depends only on u

and K.

(ii) On every compact set K in R2,

|S′hu(x)− u(x)| ≤ CKh (29.12)

where the constant CK depends only on u and K.

Alternating the two filters. We now consider Th = ShS′h, the alternate
filter whose iteration should mimic the snake equation. Using (29.10), (29.11)
and (29.12), Lemma 22.5 ensures that for any compact set K where |Du(x)| 6= 0,

(Thu)(x)− u(x) = h(g(x)Du(x)curv(u)(x) + Dg(x)Du(x)) + O(x, h
3
2 )

and for x in any compact set K:

(Thu)(x)− u(x) = O(x, h),

where in both cases the convergence of O(x, h) is uniform on K. As a conse-
quence the filter Th is uniformly consistent (see Definition 23.15) with the PDE
(29.9).
Exercise 29.4. Check carefully that in the above argument, Lemma 22.5 applies.

Construction of the approximate solutions. We consider a L-Lipschitz
initial function u0. We then define uh(t,x) for every h > 0 by

∀n ∈ IN, uh(nh,x) = (Tn
h u0)(x).

From now on we shall assume that

Dg(x) and
√

6g(x) are 1-Lipschitz and bounded by 1. (29.13)

By Corollary 29.4, the 1-Lipschitz assumptions on g and
√

6g(x) ensure that
(Th)nu0 is L-Lipschitz for every n. All of these bounds can be achieved by
simple scaling, namely multiplying g by a small enough constant.
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Uniform continuity in t of the approximate solutions.

Lemma 29.5. The approximate solutions of the snake equation uh(nh,x) =
(Tn

h u0)(x) are uniformly continuous in t. More precisely:

∀t, ∀n | nh ≤ t, −(L
√

2t + Lt) ≤ Tn
h u− u ≤ +(L

√
2t + Lt).

Proof. Let us bound the operator Th by two isotropic and translation invariant
operators. For every L-Lipschitz function u, one has

u(x)− Lh|Dg| ≤ (Shu)(x) = u(x + hDg) ≤ u(x) + Lh|Dg|

u(x)− Lh ≤ (Shu)(x) ≤ u(x) + Lh

Then due to the fact that S′h(u+c) = S′h(u)+c for any constant c, we also have

(S′hu)− Lh ≤ Thu = S′hShu ≤ (S′hu) + Lh (29.14)

Let us consider v(y) = L|x − y|. The family IB′√
6g(x)h

of structuring ele-

ments of the filter S′h is made of the subsets of the disk of center 0 and radius√
6g(x)h ≤

√
h. It is easy to check that for any B ∈ IB′√

6g(x)h
satisfying

|B| ≥ 3πg(x)h, there exists B′ ∈ IB′√
h

satisfying |B| ≥ πh
2 , such that

inf
y∈B

v(x− y) = inf
y∈B′

v(x− y).

Thus,

(S′hv)(x) = sup
B∈IB′√

6g(x)h

inf
y∈B

v(x− y) ≤ sup
B∈IB′√

h

inf
y∈B′

v(x− y).

This yields

∀x, (S′hv)(x) ≤ (Mhv)(x) (29.15)

where Mh denotes the median filter on the ball B(0,
√

h), as defined in Chapter
14. Similarly, for w(y) = −L|x− y|, we have

∀x, (Mhw)(x) ≤ (S′hw)(x) (29.16)

We deduce from (29.15), (29.16) and (29.14) the inequalities

(Thv)(x) ≤ (M6hv)(x) + Lh (M6hw)(x)− Lh ≤ (Thw)(x) (29.17)

By monotonicity of Th and of the median operator, we thus have for all n ∈ IN ,
and for all x ∈ IR2,

(Tn
h v)(x) ≤ (Mn

h v)(x) + nLh (Mn
h w)(x)− nLh ≤ (Tn

h w)(x) (29.18)

Now, since u0 is L-Lipschitz, one has

u(x)− L|x− y| ≤ u(y) ≤ u(x)− L|x− y|.
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Thus
u(x) + (Tn

h w)(x) ≤ (Tn
h u)(x) ≤ u(x) + (Tn

h v)(x)

Using (29.18), we obtain

(Mn
h w)(x)− nLh ≤ (Tn

h u)(x)− u(x) ≤ (Mn
h v)(x) + nLh

Lemma 24.5 tells us that for h small enough and for nh ≤ t, one has

(Mn
h v)(x) ≤ L

√
2t.

An analogous inequality obviously holds for w, so that for h small enough

∀t,∀n;nh ≤ t − (L
√

2t + Lt) ≤ Tn
h u− u ≤ +(L

√
2t + Lt)

¤

Exercise 29.5. Give all details for the proof of the property used in the above proof:
For any B ∈ IB′√

6g(x)h
satisfying |B| ≥ 3πg(x)h, there exists B′ ∈ IB′√

h
satisfying

|B| ≥ πh
2

, such that infy∈B v(x− y) = infy∈B′ v(x− y).

Convergence of the approximate solutions

Theorem 29.6. Let g be a C2 function which is zero outside a ball B(0, R) and
satisfies the bounds (29.13). Then for every Lipschitz function u0 ∈ F , there
exists a unique viscosity solution u(t,x) of the snake equation

∂u

∂t
= F (D2u,Du,x) = g|Du|curv(u) + Dg.Du u(0,x) = u0(x).

In addition, u(t,x) is Lipschitz in x and holderian in t and when h tends to 0
and nh → t, (Tn

h u0)(x) converges towards u(t,x) uniformly on compact sets of
R+ × R2.

Proof. The operator Th is monotone and local (and therefore satisfies the uni-
form local comparison principle.) It is uniformly consistent with the PDE (29.9)
and commutes with the addition of constants. By Corollary 29.4 and Lemma
29.5, its associated approximate solutions h → uh(t,x) are L-Lipschitz in x
and uniformly Holderian in t for any initial Lipschitz function u0. Thus, using
Ascoli-Arzela theorem, there is a sub-sequence of the sequence h → uh which
is uniformly converging on every compact set towards a function u(t,x). By
Proposition (23.14), this implies that u is a viscosity solution of (29.9). In other
words, we get the existence of a viscosity solution for any initial Lipschitz func-
tion u0. Since this solution is unique, all subsequences of uh converge to the
same function u and therefore the whole sequence uh converges to u. ¤

29.3 Back to shape evolution

We now consider the operator Tt which associates to any Lipschitz function
u0 in F the unique viscosity solution u(t, .) of (29.9) with initial condition u0.
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Tt is clearly a monotone operator as limit of monotone operators. According
to Proposition 24.2, Tt is also contrast invariant. Let us check that it also is
standard monotone. We have assumed that g is zero outside a ball B(0, R).
It is a straightforward deduction that Tn

h u0(x) = u0(x) for every x with norm
larger than R. Since Tn

h u0 converges uniformly to Ttu0 on compact sets as
nh → t and n →∞, we still have Ttu0(x) = u0(x) outside B(0, R) and therefore
Ttu0(∞) = u0(∞). Thus Ttu0 belongs to F and Tt is standard monotone.
Exercise 29.6. Check in detail the above two statements, that Tt is monotone and
contrast invariant. The second statement can be proven as indicated by using Propo-
sition 24.2, but also directly by using the contrast invariance of the iterated operators
T n

h which converge to Tt as nh → t.

Proposition 29.7. By direct application of the level set extension theorem
11.19, the monotone and contrast invariant image operator Tt, defined for any
initial Lipschitz function u0 in F , defines a unique set operator Tt on defined on
the set L of the compact sets of SN . Then Tt is monotone, Tt and Tt satisfy the
commutation with thresholds Tt(Xλu) = Xλ(Ttu) for all λ ∈ R, Tt is the stack
filter associated with Tt and Tt is upper semicontinuous on L. In addition, since
Tt is standard, so is Tt.

Exercise 29.7. Theorem 11.19 applies to an operator T defined on F . Now, we have
defined Tt on the Lipschitz functions of F only. In order to show that this is not a
problem, prove first that any function u0 in F can be approximated uniformly by a
sequence of functions un which are C1 and Lipschitz. Then show that that Ttun is a
Cauchy sequence for the uniform convergence and conclude that Tt can be extended
into a contrast invariant standard monotone operator on all of F .

The snake algorithm
Let us now see how we can the above results to define a curve evolution.

Consider a closed curve C = x(s) surrounding a compact set K of IR2. We
define the generalized “curve” evolution of C by the following algorithm:

Step 1 Construct a Lipschitz function u0 so that:

• X0u0 = K

• u0 is Lipschitz.

Such a function u can be obtained by considering the signed distance
function to the set K defined by u(x) = dist(x,Kc) if x ∈ K and u(x) =
max(−dist(x,K),−1) if x ∈ Kc.

Step 2 Compute the viscosity solution u(t,x) of equation (29.9) with initial
condition u0. We know one way to do it, by computing uh(nh,x) =
(Tn

h u0)(x).

Step 3 Set K(t) = X0u(t, .) and C(t) = K(t) ∩ ¯K(t)c. (C(t) is the topological
boundary of K(t).)

According to all preceding considerations, this algorithm defines for any curve
C and for any t ≥ 0 a unique set of points C(t). The evolution of C(t) is
independent from the choice of the initial function u0 and corresponds to a
generalization of the curve evolution PDE(29.6). The preceding algorithm sat-
isfies the shape inclusion principle: If initially C1 and C2 are two curves such
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that C1 surrounds C2, which means K2 ⊂ K1 then C1(t) surrounds C2(t) :
K2(t) ⊂ K1(t).

However, C(t) is not necessarily a curve of IR2. It simply is the boundary of
a set K(t). It is therefore difficult to check if the initial geodesic snake energy
estimated on C(t) is decreasing. This problem is open! We have defined a very
robust and weak evolution of curves and the initial C needs not be even a curve.
Any set of curves or more generally any closed set can be taken as initial datum.
The very good point of this generalized curve evolution is that it allows C(t) to
break into pieces surrounding separated shapes, as illustrated in Figure 29.4.

29.4 Implementation by finite difference scheme

As usual, the approximation of the process by iterated inf sup filter is not quite
satisfactory, because these filters fail to be consistent with the equation at small
scales, as pointed out for the median filter. Before proposing another way to
simulate the snake equation, some heuristic comments of the snake equation
behavior will be useful.

∂u

∂t
= g|Du|curv(u) + Dg.Du

The first term is the well known mean curvature motion. As we have seen,
it tends to shrink the level lines towards points. The speed of this motion is
related to the amplitude of g. On an edge, g is small, but not zero. Thus, the
motion is slowed down, but does not stop.

The second term is the erosion term. It tends to move the level lines of
u downwards for g, that is, towards the edges of I (see figure 29.1), creating
therefore shocks for u around edges since level lines of u converge to them on
both sides. Contrarily to the first term, this term is not active on flat regions
for g. Even worse, due to noise, little gradients for I will induce a non negligible
variation of amplitude of g, resulting in non negligible Dg term with random
direction. In others words, on flat regions, one can expect to observe random
perturbations of the shape of the evolving contour.

g(x)

x

Dg
u(x)

x

Figure 29.1: Convection term of the active contour equation. The convection
term of the active contour equation tends to create around minima of g. Indeed,
the level lines of u are moved in the direction opposite to the gradient of g.

More precisely, we have:
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0

1

2

Figure 29.2: A difficulty : the local minima of the active contour energy. Left
image: assume that g is null on the shape (drawn in bold) and that the initial
contour is the line #0. From the initial line to the contour of the shape, the in-
termediate state #1 consisting of the convex hull of the polygon shows a smaller
energy than the intermediate state #2 (drawn on the right). This illustrates
the difficulties arising with the snake equation when we wish to land the active
contour onto concave parts of the desired contour.

• near an edge: There is a risk that the curvature term pushes the level
line over the edge, since it tends to shrink the curve. The second term
instead moves the level line towards the edge. Thus the effects of both
terms can be opposed. Modifications should be made in the equation to
ensure that the second term always wins.

• far from an edge: The first term moves the level line fast, since g(x)
is high. The second term attracts the level line towards tiny edges of the
image, thus creating little shocks. Here again, modifications should be
made in the equation to let the second term win.

Even if the equation does not show any parameter weighting the two terms,
a weight between them is in fact hidden in the choice of the function g. Finding
a function g that makes the correct equilibrium both near an edge and far from
an edge is somehow complex and case sensitive.

Assuming such an equilibrium could be found, relying on the single (weighted)
mean curvature motion to shrink the level line is not a good idea. Indeed, a
weighted mean curvature motion will never help transforming a convex level
line into a general non-convex one. If we start with a circle, it is impossible to
recover (e.g.) a star, as illustrated in Figure 29.2.

To cope with this problem, we shall add an extra term to the equation. This
term is a classical erosion with the same weight as the curvature motion. In the
experiments we therefore considered the modified snake equation

∂u

∂t
= g|Du|(curv(u)− 1) + Dg.Du. (29.19)

This new term is added under the assumption that the initial contour C(0)
has been drawn on the outside of the shape and that the initial function u0

is positive inside the contour. Then the term −1 tends to erode the contour.
If instead the initial contour was drawn inside the shape, then the new term
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should be +1. By an obvious adaptation of the proof of proposition ?? one sees
that the associated curve evolution is

∂x
∂t

(t, s) = g(x(t, s))κ(x(t, s))− (Dg(x(t, s)).n(x(t, s))).n(x(t, s))). (29.20)

Returning to the snake equation, our finite difference scheme will the follow-
ing:

un+1(x) = un(x) + dt(g(x)(E1(un)(x) + M√
6(u

n)(x)− 2un(x)))
+dt(un(x + Dg(x))− un(x)),

where E1u(x) = infy∈B(0,1) u(x+y) denotes the erosion by the unit ball B(0, 1)
and M√

6 is the median filter on the ball B(0,
√

6. The scheme is not con-
trast invariant, but is maximum decreasing and minimum increasing, provided
|2g(x) + 1| ≤ 1.
Exercise 29.8. Prove the last statement, that the above scheme is maximum de-
creasing and minimum increasing, provided |2g(x) + 1| ≤ 1. Prove that the scheme is
consistent, in the sense that if the pixel size h tends to zero then the second member
of the equation tends to the second member of the modified snake equation 29.19.

Figure 29.3 illustrates the extraction of the bird shape on a textured back-
ground. This experiment illustrates well the complexity of the figure-background
problem: the shape of the bird body has a quickly changing color from the white
head to its dark tail. The background being uniform grey, there is no unique
level line surrounding the whole shape. In fact, the gradient of the contour
of the bird vanishes at many points. The fact that we “see” this contour is a
classical illusion, called subjective contour. To uncover the illusion, the reader
should scan small parts of the shape contour by using a white sheet with a
small hole. Then he or she will realize that the contour seen globally has no
complete numerical local evidence. This observation implies that no classical
edge detection device would give out the whole contour. This can be checked
by applying a Canny edge detector to the shape. To some extent, the snake
method manages instead to surround the body shape. All the same, there is
a risk that, because of the erosion term, the active contour goes through the
subjective contour. If instead the curvature term is too strong, it can stop the
contour before it reaches a concave corner of the shape. These facts explain the
obvious inaccuracy and irregularity of the found contour.

29.5 Exercises

Exercise 29.9. In the whole exercise u(t,x) and x(t) are supposed as smooth as
needed to make the computations. Our aim is to interpret the equation

∂u

∂t
= Dg.Du (29.21)

as a motion of the level lines of u towards the minima of g. Let us consider a point
x(t) on a level line of u(t,x) with level λ and denote by x′(t) the motion vector of x(t)
in the direction normal to the level line. We know that x(t) obeys the normal flow
equation (16.4). Deduce from this equation and (29.21) that x(t) moves downwards
in the landscape given by g, that is g(x(t)) is a non-increasing function of t.
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Figure 29.3: Silhouette of a bird by active contour. Left: original image, middle:
initial contour, right: final contour (steady state of the snake equation). The
contours of the bird body are partly subjective. The snake evolution manages
to some extent to find them, but tends to indent the subjective contours and to
round to the concave corners of the shape.

Figure 29.4: Active contour with topological change. Top, left: original image,
middle: initial contour, right: intermediate state. Down, left and middle: suc-
cessive intermediate states, down-right: final contour (steady state). This ex-
periment shows that the level lines of u which bound the evolving contour cannot
be classical solutions of the modified curve evolution equation (29.20). Indeed,
the motion generates singularities when the contour splits. The generalized
evolution provided by the viscosity solution of the snake equation yields more
flexibility and allows an evolving curve to split. Original image is ”Vue d’esprit
3”, by courtesy of e-on software.
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386 CHAPTER 29. A SNAKE FROM A TO Z...

Exercise 29.10. Construction of another inf-sup scheme converging towards the vis-
cosity solution of the equation (29.9). Consider the family of structuring elements

IBh(x) = {B | B ⊂ B(x + hDg(x),
√

6g(x)h) and meas(B) ≥ 3πg(x)h}.

and the operator
Thu(x) = inf

B∈IBh

sup
y∈B

u(x + y)

1. Interpret the operator Th as a shifted median filter.

2. Show that Th is uniformly consistent with equation (29.9).

3. Show that the iteration of Th converges towards a viscosity solution of (29.9).
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fied framework for detecting groups and application to shape recognition,
Rapport interne, 1746, pp. 1166–8687.

[63] F. Cao, Y. Gousseau, P. Muse, F. Sur, and J. Morel, Accurate
estimates of false alarm number in shape recognition, tech. rep., Technical
report, Cachan, France (http://www. cmla. enscachan. fr/Cmla/), 2004.
4, 5.

[64] F. Cao, J. Lisani, J. Morel, P. Muse, and F. Sur, A Theory of
Shape Identification, Springer Verlag, 2008.

[65] L. J.-L. M. J.-M. M. P. S. F. Cao, F., A Theory of Shape Identification,
Springer Verlag, 2008.

[66] R. A. Carmona and S. F. Zhong, Adaptive smoothing respecting fea-
ture directions, IEEE Trans. Image Process., 7 (1998), pp. 353–358.
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[264] P. Musé, F. Sur, F. Cao, J. Lisani, and J. Morel, Three-
Dimensional Computer Vision: A Geometric Viewpoint, Mit Press, 2007.

[265] M. Nagao and T. Matsuyama, Edge preserving smoothing, Computer
Graphics Image Processing, 9 (1979), pp. 394–407.

[266] Y. Nakagawa and A. Rosenfeld, A note on the use of local min and
max operations in digital image processing, IEEE Trans. Systems, Man
and Cybernetics, 8 (1978), pp. 632–635.

[267] P. M. Narendra, Noise reduction by median filtering, in IEEE Conf.
Pattern Recogn. Image Processing, 1978.

[268] A. Negre, H. Tran, N. Gourier, D. Hall, A. Lux, and J. Crow-
ley, Comparative study of People Detection in Surveillance Scenes, Struc-
tural, Syntactic and Statistical Pattern Recognition, Proceedings Lecture
Notes in Computer Science, 4109 (2006), pp. 100–108.

[269] W. Niessen, B. ter Haar Romeny, and M. Viergever, Numeri-
cal Analysis of Geometry-Driven Diffusion Equations, Geometry Driven
Diffusion in Computer Vision, pp. 393–410.

[270] W. J. Niessen, B. M. ter Haar Romeny, L. M. J. Florack, and
M. A. Viergever, A general framework for geometry-driven evolution
equations, International Journal of Computer Vision, 21 (1997), pp. 187–
205.

[271] D. Nister and H. Stewenius, Scalable recognition with a vocabulary
tree, Proc. CVPR, (2006), pp. 2161–2168.

[272] E. Ochoa, J. P. Allebach, and D. W. Sweeney, Optical median
filtering by threshold decomposition, Appl. Opt., 26 (1987), pp. 252–260.

[273] P. J. Olver, G. Sapiro, and A. Tannenbaum, Classification and
uniqueness of invariant geometric flows, C. R. Acad. Sci. Paris Sér. I, 319
(1994), pp. 339–344.



“JMMBookOct04”
1/5/2012
page 405

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 405

[274] P. J. Olver, G. Sapiro, and A. Tannenbaum, Differential invariant
signatures and flows in computer vision: A symmetry group approach, in
Geometry Driven Diffusion in Computer Vision, Kluwer, 1994.

[275] P. J. Olver, G. Sapiro, and A. Tannenbaum, Affine invariant gra-
dient flows, in 12th international conference on analysis and optimization
of Systems:Images, Wavelets and PDE’s, Springer-Verlag, 1996.

[276] P. J. Olver, G. Sapiro, and A. Tannenbaum, Invariant geometric
evolutions of surfaces and volumetric smoothing, SIAM J. Appl. Math.,
57 (1997), pp. 176–194.

[277] S. Osher and L. I. Rudin, Feature-oriented image enhancement using
shock filters, SIAM J. Numer. Anal., 27 (1990), pp. 919–940.

[278] S. Osher and J. Sethian, Fronts propagating with curvature-dependent
speed: Algorithms based on the Hamilton–Jacobi formulation, J. Comput.
Phys., 79 (1988), pp. 12–49.

[279] H. C. Park and R. T. Chin, Decomposition of arbitrarily-shaped mor-
phological structuring elements, IEEE Trans. Patt. Anal. Mach. Intell., 17
(1995), pp. 2–15.

[280] D. Pasquignon, Computation of skeleton by PDE, in International Con-
ference in Image Processing, IEEE, ed., 1995.

[281] D. Pasquignon, Approximation of viscosity solution by morphological
filters, in ESAIM COCV, vol. 4, 1999.

[282] E. J. Pauwels, L. J. VanGool, P. Fiddelaers, and T. Moons, An
extended class of scale-invariant and recursive scale space filters, IEEE
Trans. Patt. Anal. Mach. Intell., 17 (1995), pp. 691–701.

[283] S. C. Pei, C. L. Lai, and F. Y. Shih, An efficient class of alternating
sequential filters in morphology, Graphical Models and Image Processing,
59 (1997), pp. 109–116.

[284] S. S. Perlman, S. Eisenhandler, P. W. Lyons, and M. J. Shumila,
Adaptive median filtering for impulse noise elimination in real-time TV
signals, IEEE Trans. Communications, 35 (1987), pp. 646–652.

[285] P. Perona and J. Malik, Scale space and edge detection using
anisotropic diffusion, in Proc. Workshop on Computer Vision, Represen-
tation and Control, IEEE Computer Society, IEEE Press, Piscataway, NJ,
1987, pp. 16–22.

[286] P. Perona and J. Malik, Scale space and edge detection using
anisotropic diffusion, IEEE Trans. Patt. Anal. Mach. Intell., 12 (1990),
pp. 629–639.

[287] F. Pollick and G. Sapiro, Constant affine velocity predicts the 1/3
power law of planar motion perception and generation, Vision Research,
37 (1997), pp. 347–353.



“JMMBookOct04”
1/5/2012
page 406

i

i

i

i

i

i

i

i

406 BIBLIOGRAPHY

[288] D. Pritchard and W. Heidrich, Cloth Motion Capture, Computer
Graphics Forum, 22 (2003), pp. 263–271.

[289] J. Rabin, Y. Gousseau, and J. Delon, A contrario matching of lo-
cal descriptors, Tech. Rep. hal-00168285, Ecole Nationale Supérieure des
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