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Introduction

This book addresses the problem of low-level image analysis and, as such, is
a contribution to image processing and imaging science. While the material
touches on several aspects of image analysis—and peripherally on other parts
of image processing—the main subject is image smoothing using partial differ-
ential equations (PDEs). The rational for a book devoted to smoothing is the
assumption that a digital image must be smoothed before reliable features can
be extracted.

The purpose of this introduction is to establish some of the language, conven-
tions, and assumptions that are used throughout the book, to review part of the
history of PDEs in image processing, and to introduce notation and background
material.

I.1 Images

Since the objects of our study are ultimately digital images, we begin by defining
what we mean by “digital image” and by describing some of the ways these
images are obtained and some current assumptions about the “original images”
from which the digital images are derived.

Most of the images dealt with will be natural images, that is, images from
nature (people, landscapes, cityscapes, etc.). We include medical images and
astronomical images, and we do not exclude drawings, paintings, and other man-
made images. All of the images we consider will be grayscale images. Thus,
mathematically, an image is a real-valued function u defined on some subset Ω
of the plane R2. The value u(x), x = (x, y) ∈ Ω, represents the gray level of the
image at the point x. If u is a digital image, then its domain of definition is a
finite grid with evenly spaced points. It is often square with 2n×2n points. The
gray levels u(x) are typically coded with the integers 0–255, where 0 represents
black and 255 represents white. If h is the distance between grid lines, then
the squares with sides of length h centered at the points u(x) are called pixels,
where “pix” is slang for “picture” and “el” stands for “element.”

The mathematical development in this book proceeds along two parallel
lines. The first is theoretical and deals with images u that belong to function
spaces, generally spaces of continuous functions that are defined on domains of
R2. The second line concerns numerical algorithms, and for this the images are
digital images. To understand the relations between the digital and continuous
images, it is useful to consider some examples of how images are obtained and
some of the assumptions we make about the processes and the images. Perhaps
the simplest example is that of taking a picture of a natural scene with a dig-
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ital camera. The scene—call it S—is focused at the focal plane of the camera
forming a representation of S that we denote by uf . When we take the picture,
the image uf is sampled, or captured, by an array of charged coupled devices
(CCDs) producing the digital image ud. This image, ud, is the only representa-
tion of S that is directly available to us; the image uf is not directly available
to us. Even more elusive is the completely hypothetical image that we call uS .
This is the representation of S that would be formed at the focal plane of an
ideal camera having perfect optics. A variation on this example is to capture
uf on film as the image up. Then up can be sampled (scanned) to produce a
digital image ud. For example, before the advent of CCDs, astronomical images
were captured on Schmidt plates. Many of these plates have been scanned re-
cently, and the digital images have been made available to astronomers via the
Internet.

Aspects of the photographic example could be recast for medical imaging.
Although photography plays an important role in medicine, images for diagnos-
tic use are often obtained using other kinds of radiation. X-rays are perhaps
closest to our photographic example. In this case, there is an image correspond-
ing to up that can be scanned to produce a digital image ud. Other medical
imaging processes, such as scintigraphy and nuclear magnetic resonance, are
more complicated, but these processes yield digital images. The images ex-
amined by the experts are often “negatives” produced from an original digital
images. Irrespective of the process, digital images captured by some technology
all have one characteristic in common: They are all noisy.

One way to relate the different representations of S, is to write

ud = TuS + n,

where T is a hypothetical operator representing some technology and n is noise.
In the case of photography, we might write this in two steps,

{

uf = P ∗ uS + n1,

ud = Ruf + n2,

where P represents the optics and R represents the sampling. This is a use-
ful model in optical astronomy, since astronomers have considerable knowledge
about the operators P and R and about the noises n1 and n2. Similarly, experts
in other technologies know a great deal about the processes and noise sources.
Noise and pixels are illustrated in Figure I.1

In the photographic example, the image uf is a smoothed version of uS .
Furthermore, Ruf(x) is not exactly uf(x) but rather an average of values of uf

in a small neighborhood of x, which is to say that the operator R does some
smoothing. Thus, in this example, ud is sampled from a smoothed version of S.
We are going to assume that this is the case for the digital images considered
in the book, except for digital images that are artificially generated. This is
realistic, since all of the processes T that we can imagine for capturing images,
smooth the original photon flux. In fact, this is more of an observation about
technology than it is an assumption. We are also going to assume that, for any
technology considered, the sampling rate used to produce ud is high enough
so that ud is a “good” representation of the smoothed version of S, call it uf ,
from which it was derived. Here, “good” means that the parallel development
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in the book mentioned above make sense; it means that, from a practical point
of view, the theoretical development that uses smooth functions to model the
images uf is indeed related to the algorithmic development that uses the digital
images ud. We will say more about smoothing and sampling in section I.2.

Figure I.1: A noisy image magnified to show the pixels.

It is widely assumed that the underlying “real image” uS is either a mea-
sure or, for more optimistic authors, a function that has strong discontinuities.
Rudin in 1987 [214] and De Giorgi and Ambrosio in 1988 [92] proposed inde-
pendently the space BV (R2) of functions with bounded variation as the correct
function space for modeling the images uS. A function f is in BV (R2) if its
partial derivatives ∂f/∂x and ∂f/∂y, taken as distributions, are Radon mea-
sures with finite total mass. BV (R2) looked at first well adapted to modeling
digital images because it contains functions having step discontinuities. In fact,
the characteristic functions of smooth domains in R2 belong to BV (R2). How-
ever, in 1999, Alvarez, Gousseau, and Morel used a statistical device on digital
images ud to estimate how the corresponding images uS oscillate [6]. They de-
duced by geometric-measure arguments, that the uS have, in fact, unbounded
variation. We may therefore accept the idea that these high-resolution images
contain very strong oscillations. Although the images uf are smoothed versions
of the uS, and hence the oscillations have been averaged, common sense tells us
that they also have large derivatives at transitions between different observed
objects, that is, on the apparent contours of physical objects. Furthermore, we
expect that these large derivatives (along with noise) are passed to the digital
images ud.

I.2 Image processing

For the convenience of exposition, we divide image processing into separate
disciplines. These are distinguished not so much by their techniques, which
often overlap, as they are by their goals. We will briefly describe two of these
areas: compression and restoration. The third area, image analysis, is the main
subject of the book and will be discussed in more detail.
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Image compression

Compression is based on the discrete nature of digital images, and it is motivated
by economic necessity: Each form of storage and transmission has an associated
cost, and hence one wishes to represent an image with the least number of bits
that is compatible with end usage. There are two kinds of compression: lossless
compression and lossy compression. Lossless compression algorithms are used
to compress digital files where the decompressed file must agree bit-by-bit with
the original file. Perhaps the best known example of lossless compression is
the zip format. Lossless algorithms can be used on any digital file, including
digital images. These algorithms take advantage of the structure of the file it-
self and have nothing to do with what the file represents. On the other hand,
lossy compression algorithms take advantage of redundancies in natural images
and subtleties of the human visual system. Done correctly, one can throw away
information contained in an image without impairing its usefulness. The goal
is to develop algorithms that provide high compression factors without objec-
tionable visible alterations. Naturally, what is visually objectionable depends
on how the decompressed image is used. This is nicely illustrated with our
photographic example. Suppose that we capture the image uf at our camera’s
highest resolution. If we are going to send ud over the Internet to a publisher
to be printed in a high-quality publication, then we want no loss of information
and will probably send the entire file in the zip format. If, however, we just want
the publisher to have a quick look at the image, then we would probably send ud

compressed as a .jpg file, using the Joint Photographic Expert Group (JPEG)
standard for still image compression. This kind of compression is illustrated in
Figure I.2.

Figure I.2: Compression. Left to right: the original image and its increasingly
compressed versions. The compression factors are roughly 7, 10, and 25. Up
too a 10 factor, alterations are hardly visible.

Image restoration

A second area is restoration or denoising. Restoring digital images is much like
restoring dirty or damaged paintings or photographs. Beginning with a digital
image that contains blurs or other perturbations (all of which may be considered
as noise), one wishes to produce a better version of the image; one wishes to
enhance aspects of the image that have been attenuated or degraded. Image
restoration plays an important role in law enforcement and legal proceedings.
For example, surveillance cameras generally produce rather poor images that
must often be denoised and enhanced as needed. Image restoration is also
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important in science. When the Hubble Space Telescope was first launched in
1990, and until it was repaired in 1993, the images it returned were all blurred
due to a spherical aberration in the telescope’s primary mirror. Elaborate (and
costly) algorithms were developed to restore these poor images, and indeed
useful images were obtained during this period. Restoration is illustrated in
Figure I.3 with an artificial example. The image on the left has been ostensibly
destroyed by introducing random-valued pixels amounting to 75% of the total
pixel count. Nevertheless, the image can be significantly restored, and a restored
version is shown on the right, by using a Vincent and Serra operator which we
will study in Chapter ??, the “area opening”.

Figure I.3: Denoising. Left: an image with up to 75% of its pixels contaminated
by simulated noise. Right: a denoised version by the Vincent-Serra algorithm
(area opening).

Image analysis

A third area of image processing is low-level image analysis, and since this is the
main topic of the book, it is important to explain what we mean by “low-level”
and “analysis.” “Analysis” is widely used in mathematics, with various shades
of meaning. Our use of “analyze,” and thus of “analysis,” is very close to its
common meaning, which is to decompose a whole into its constituent parts, to
study the parts, and to study their relation to the whole. For our purposes, the
constituent parts are, for the most part, the “edges” and “shapes” in an image.
These objects, which are often called features, are things that we could, for a
given image, point to and outline, although for a complex natural image this
would be a tedious process. The goal of image analysis is to create algorithms
that do this automatically.

The term “low-level” comes from the study of human vision and means ex-
tracting reliable, local geometric information from an image. At the same time,
we would like the information to be minimal but rich enough to characterize
the image. The goal here is not compression, although some of the techniques
may provide a compressed representation of the image. Our goal is rather to
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answer questions like, Does a feature extracted from image A exist in image
B? We are also interested in comparing features extracted from an image with
features stored in a database. As an example, consider the level set at the left
of Figure I.4. It consists of major features (roughly, the seven appendages) and
noise. The noise, which is highly variable, prevents us from comparing the image
directly with other images having similar shapes. Thus we ask for a sketchy ver-
sion, where, however, all essential features are kept. The images on the right
are such a sketchy versions, where most of the spurious details (or noise) have
disappeared, but the main structures are maintained. These sketchy versions
may lead to concise invariant encoding of the shape. Notice how the number of
inflexion points of the shape has decreased in the simplification process. This
is an example of what we mean by image analysis. The aim is not denoising or
compression. The aim is to construct an invariant code that puts in evidence
the “main parts” of an image (in this case, the appendages) and that facilitates
fast recognition in a large database of shapes.

Figure I.4: Analysis of a shape. The original scanned shape is on the left.
Simplified versions are to the right.

Edge detection and scale space

Since the earliest work in the 1960s, one of the goals of image analysis has
been to locate the strong discontinuities in an image. This search is called edge
detection, and it derives from early research that involved working with images
of cubes. This seemingly simple goal turned out to be exceedingly difficult.
Here is what David Marr wrote about the problem in the early 1980s ([163], p.
16):

The first great revelation was that the problems are difficult. Of
course, these days this fact is a commonplace. But in the 1960s
almost no one realized that machine vision was difficult. The field
had to go through the same experience as the machine translation
field did in its fiascoes of the 1950s before it was at last realized
that here were some problems that had to be taken seriously. The
reason for this misconception is that we humans are ourselves so
good at vision. The notion of a feature detector was well established
by Barlow and by Hubel and Wiesel, and the idea that extracting
edges and lines from images might be at all difficult simply did not
occur to those who had not tried to do it. It turned out to be an
elusive problem: Edges that are of critical importance from a three-
dimensional point of view often cannot be found at all by looking
at the intensity changes in an image. Any kind of textured image
gives a multitude of noisy edge segments; variations in reflectance
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and illumination cause no end of trouble; and even if an edge has a
clear existence at one point, it is as likely as not to fade out quite
soon, appearing only in patches along its length in the image. The
common and almost despairing feeling of the early investigators like
B.K.P. Horn and T.O. Binford was that practically anything could
happen in an image and furthermore that practically everything did.

The point we wish to emphasize is that textures and noise (which are often
lumped together in image analysis) produce unwanted edges. The challenge was
to separate the “true edges” from the noise. For example, one did not want to
extract all of the small edges in a textured wall paper; one wanted the outline
of the wall. The response was to blur out the textures and noise in a way that
left the “true edges” intact, and then to extract these features. More formally,
image analysis was reformulated as two processes: smoothing followed by edge
detection. At the same time, a new doctrine, the scale space, was proposed.
Scale space means that instead of speaking of features of an image at a given
location, we speak of them at a given location and at a given scale, where
the scale quantifies the amount of smoothing performed on the image before
computing the features. We will see in experiments that “edges at scale 4” and
“edges at scale 7” are different outputs of an edge detector.

Three requirements for image smoothing operators

We have advertised that this book is about image analysis, which we have just
defined to be smoothing followed by edge detection, or feature extraction. In
fact, the text focuses on smoothing and particularly on discussing and answer-
ing the question, What kind of smoothing should be used? To approach this
problem, we need to introduce three concepts associated with image analysis op-
erators. These concepts will be used to narrow the field of smoothing operators.
We introduce them informally at first; more precise meanings will follow.

Localization

The first notion is localization. Roughly speaking, to say that an operator T
is localized means it essentially uses information from a small neighborhood of
x to compute the output Tu(x). Recall that the sampling operator R in the
photographic example was well localized. As another example, consider the
classic Gaussian smoothing operators Gt defined by

Gtu(x) = Gt ∗ u(x) =

∫

R2

Gt(y)u(x − y) dy,

where Gt(x) = (1/4πt)e−|x|2/4t. If t > 0 is small, then the Gaussian Gt is
well localized around zero and Gtu(x) is essentially an average of the values of
u(x) in a small neighborhood of x. The importance of localization is related
to the occlusion problem: Most optical images consist of a superposition of
different objects that partially obscure one another. It is clear that we must
avoid confusing them in the analysis, as would, for example, Gt if t is large. It
is for reasons like this that we want the analysis to be as local as possible.
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We will prove in Chapter 1 under rather general conditions that u(t,x) =
Gt ∗ u0(x) is the unique solution of the heat equation

∂u

∂t
= ∆u

with initial value u0. Thus, we can say that smoothing u0 with the Gaussian
Gt is equivalent to applying the heat equation to u0. We will see that the heat
equation is possibly the worst candidate in our search for the ideal smoothing
operator, since, except for small t, it is poorly localized and produces a very
blurred image.

Iteration

One might conjecture that a way around this problem with the heat equation
would be to replace Gt with a more suitable positive kernel. This is not the
case, but it does serve to introduce the second concept, which is iteration. We
will show in Chapter 2 that under reasonable assumptions and appropriate
rescalings, iterating a convolution with a positive kernel leads to the Gaussian,
and thus directly back to the heat equation. There is, however, a different
point of view that leads to useful smoothing operators: Instead of looking for
a different kernel, look for other PDEs that provide smoothing. This program
leads to a class of nonlinear PDEs, where the Laplacian in the heat equation is
replaced by various nonlinear operators. We will see that for these operators it
is generally better, from the localization point of view, to iterate a well localized
operator than to apply it directly at a large scale. This, of course, is just not
true for the heat equation; if you iterate n times the convolution Gt ∗ u you
get exactly Gnt ∗ u. This is a good place to point out that if we are dealing
with smoothing, localization, and iteration, then we are talking about parabolic
PDEs. This announcement is heuristic, and the object of the book is to formalize
and to make precise the necessity and the role of several PDEs in image analysis.

Invariance

Our last concept is invariance. Invariance requirements play a central role in
image analysis because the objects to be recognized must be recognized un-
der varying conditions of illumination (contrast invariance) and from different
points of view (projective invariance). Contrast invariance is one of the central
requirements of the theory of image analysis called mathematical morphology
(see, for example, Matheron [169] or Serra [228]). This theory involves a num-
ber of contrast-invariant image analysis operators, including dilations, erosions,
median filters, openings, and closings. We are going to use this theory by at-
tempting to localize as much as possible these morphomath operators to exploit
their behavior at small scales. We will then iterate these operators. This will
lead to the proof that several geometric PDEs, namely, the curvature motions,
are asymptotically related to certain morphomath operators in much the same
way that linear smoothing is related to the heat equation. Thus, through these
PDEs, one is able to combine the scale space doctrine and mathematical mor-
phology. In particular, affine-invariant morphomath operators, which seemed at
first to be computationally impractical, turn out to yield in their local iterated
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Figure I.5: Shannon theory and sampling. Left to right: original image;
smoothed image; sampled version of the original image; sampled version of
the smoothed image. This illustrates the famous Shannon-Nyquist law that an
image must be smoothed before sampling in order to avoid the aliasing arti-
facts.

version a very affordable PDE, the so called affine morphological scale space
(AMSS) equation.

Shannon’s sampling theory

We mentioned in section I.1 that most of the digital images ud that come to
us in practice have been sampled from a smoothed version, call it uf , of the
“real image” uS . This was basically a comment about the technology. Another
comment (or assumption) was that the sampling rate was high enough to capture
all of the information in uf that is needed in practice. What we mean by this
is that the representations of uf that we reconstruct from ud show no signs
that uf was undersampled. This is an empirical statement; we will comment on
the theory in a moment, but first we wish to illustrate in Figure I.5 what can
happen if an image is undersampled.

We call the original image on the left Victor. Notice that Victor’s sweater
contains a striped pattern, which has a spatial frequency that is high relative
to other aspects of the picture. If we attempt to reduce the size of Victor
by simply sampling, for example, by taking one pixel in sixteen in a square
pattern, we obtain a new image (the third panel) in which the sampling has
created new and unstable patterns. Notice how new stripes have been created
with a frequency and direction that has nothing to do with the original. This
is called aliasing, and it is caused by high spatial frequencies being projected
onto lower frequencies, which creates new patterns. If this had been a video
instead of being a still photo, these newly created patterns would move and
flicker in a totally uncontrolled way. This kind of moving pattern often appears
in recent commercial DVDs. They have simply not been sampled at a high
enough rate. The second panel in Figure I.5 is a version of Victor that has been
smoothed enough so that we no longer see the stripes in the sweater. This image
is sampled the same way—every fourth pixel horizontally and vertically—and
appears in panel four. It is not a good image, but there are no longer the kinds
of artifacts that appear in the third image. To compare the images we have
magnified the sampled versions by a factor of four. This example also shows
that simply subsampling an image is a poor way to compress it.

This pragmatic discussion and the experiment have their theoretical counter-
part, namely, Shannon’s theory of sampling. Briefly, Shannon’s theorem, in the
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two-dimensional case, states that for an image to be accurately reconstructed
from samples, the image must be bandlimited, which means that it contains no
spatial frequencies greater than some bound λ, and the sampling rate must be
higher than a factor of λ. Some implications of these statements are that the
image umust be infinitely differentiable, that its domain of definition is all of R2,
and that there must be an infinite number of samples to accurately reconstruct
u. Furthermore, in Shannon’s theory, the image u is reconstructed as an infinite
series of trigonometric functions. Note that this is very different from what was
done in Figure I.5. So what does this have to do with the problems addressed in
this book? What does this have to do with, say, a hypothesized uS in BV (R2)
that is definitely not bandlimited? Our answer, which may smack of smoke and
mirrors, is that we always are working in two parallel worlds, the theoretical
one and the practical one based on numerical computations, and that these two
worlds live together in harmony at a certain scale. Here is an example of what
we mean: Suppose that u is not a bandlimited image. To sample it properly we
would first have to smooth it with a bandlimited kernel. Suppose that instead
we smooth it with the Gaussian Gt, which is not bandlimited. Theoretically
this is wrong, but practically, the spectrum of Gt, which is Gt itself, decays
exponentially. If |x|2/4t is sufficiently large, then Gt(x) appears as zero in com-
putations, and thus it is “essentially” bandlimited. Arguments like this could
be made for other situations, but the important point for the reader to keep in
mind is that the parallel developments, theory and practice, make sense in the
limit.

In the next section, we present a survey of most of the PDEs that have
been proposed for image analysis. This provides an informal account of the
mathematics that will be developed in detail in the following chapters.

We wish to end this section with a mild disclaimer, and for this we take
a page from Theory of Games and Economic Behavior by John von Neumann
and Oskar Morgenstern where they comment on their theory of a zero-sum
two-person game [254] p. 147:

We are trying to find a satisfactory theory,—at this stage for
the zero-sum two-person game. Consequently we are not arguing
deductively from the firm basis of an existing theory—which has
already stood all reasonable tests—but we are searching for such a
theory.. . . This consists in imagining that we have a satisfactory the-
ory of a certain desired type, trying to picture the consequences of
this imaginary intellectual situation, and then drawing conclusions
from this as to what the hypothetical theory must be like in detail.
If this process is applied successfully, it may narrow the possibilities
for the hypothetical theory of the type in question to such an extent
that only one possibility is left,—i.e. that the theory is determined,
discovered by this device. Of course, it can happen that the applica-
tion is even more “successful,” and that it narrows the possibilities
down to nothing—i.e. that it demonstrates that a consistent theory
of the kind desired is inconceivable.

We take much the same philosophical position, and here is our variation on
the von Neumann–Morgenstern statement: We do not suggest that what will
be developed here is a necessary future for image analysis. However, if image
analysis requires a smoothing theory, then here is how it should be done, and
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here is the proof that there is no other way to do it. This statement does not
exclude the possibility of other theories, based on different principles, or even
the impossibility of making any theory.

I.3 PDEs and image processing

We have argued that smoothing—suppressing high spatial frequencies—is a nec-
essary part of image processing in at least two situations: An image needs to
be smoothed before features can be extracted, and images must be smoothed
before they are sampled. We have also mentioned that, while smoothing with
the Gaussian is not a good candidate for the first situation (we will see that it
is not contrast invariant, and it is not well localized except for small t), it is not
unreasonable to use it numerically in the second situation, since it does a good
job of suppressing high frequencies. These smoothing requirements and the fact
that the Gaussian is the fundamental solution of the heat equation mean that
the heat equation appears completely naturally in image processing, and indeed
it is the first PDE to enter the picture in Chapters 1 and 2. Smoothing with
the heat equation is illustrated in Figure I.6.

Figure I.6: Heat equation and smoothing. The original image is on the left; the
heat equation has been applied at some scale, and the resulting blurred image
is on the right.

There is another path hinted at in section I.1 that leads to the Gaussian
and thus to the heat equation. Suppose that k is any positive kernel such
that k(x) = k(|x|) and such that k is localized in the sense that k(x) → 0
sufficiently rapidly as |x| → ∞. If k is normalized properly and if we write
kh(x) = (1/h)k(x/h1/2), then

kh ∗ u0(x) − u0(x)

h
→ ∆u0(x)

as h→ 0 whenever the image u0 is sufficiently smooth. We write this as

kh ∗ u0(x) − u0(x) = h∆u0(x) + o(h). (I.1)

Now let u(t,x) denote the solution of the heat equation

∂u

∂t
= ∆u, u(0,x) = u0(x).

If u0 is sufficiently smooth, then we can write

u(t,x) − u(0,x) = t∆u0(x) + o(t). (I.2)
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The reverse heat equation

Equations (I.1) and (I.2) suggest that blurring u0 with a kernel kh for small h
is equivalent to applying the heat equation to u0 at some small scale t. This is
true, and it will be made precise in Chapter 2. These equations also lead to an-
other idea: We read in the paper [147] by Lindenbaum, Fischer, and Bruckstein
that Kovasznay and Joseph [136] introduced in 1955 the notion that a slightly
blurred image could be deblurred by subtracting a small amount of its Lapla-
cian. Numerically, this amounts to subtracting a fraction λ of the Laplacian of
the observed image from itself:

urestored = uobserved − λ∆uobserved.

Dennis Gabor, who received the Nobel prize in 1971 for his invention of
optical holography, studied this process and determined that the best value of λ
was the one that doubled the steepest slope in the image [147]. Empirically, one
can start with a small value of λ and repeat the process until a good image is
obtained; with further repetitions the process blows up. Indeed, this process is
just applying the reverse heat equation to the observed image, and the reverse
heat equation is notoriously ill-posed. On the other hand, the Kovasznay–
Joseph–Gabor method is efficient for sufficiently small λ and can be successfully
applied to most images obtained from optical devices. This process is illustrated
in Figure I.7. A few iterations can enhance the image (second panel), but the
inverse heat equation finally blows up (third panel).

Figure I.7: Kovasznay–Joseph–Gabor deblurring. Left to right: original image;
three iterations of the algorithm; ten iterations of the algorithm.

Figure I.8 shows that same experiment applied to an image of Victor that
has been numerically blurred. Again, the process blows up, but it yields a
significant improvement at some scales.

We have now seen the heat equation used in two senses, each with a different
objective. In both cases, we have noted drawbacks. In the first instance, the
heat equation (or Gaussian) was used to smooth an image, but as we have
mentioned, this operator is not contrast invariant, and thus is not appropriate
for any theory of image analysis that requires contrast-invariant operators. This
does not mean that the Gaussian should be dismissed; it only means that it is
not appropriate for our version of image analysis. To meet our objectives, we
will replace the Laplacian, which is a linear isotropic operator, with nonlinear,
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Figure I.8: Kovasznay–Joseph–Gabor deblurring. This is the same deblurring
experiment as in Figure I.7, but it is applied to a much more blurred image.

nonisotropic smoothing operators. This will bring us to the central theme of
the book: appropriate smoothing for a possible theory of image analysis.

In the second instance, the heat equation is run backward (the inverse heat
equation) with the objective of restoring a blurred image. As we have seen,
this is successful to some extent, but the drawback is that it is an unstable
process. The practical problem is more complex than the fact that the inverse
heat equation is not well posed. In the absence of noise, the best way to deblurr
a slightly blurred image is to use the inverse heat equation. However, in the
presence of noise, this isotropic operator acts equally in all direction, and while
it enhances the definition of edges, the edges become jagged due to the noise.
This observation led Gabor to try to improve matters by using more directional
operators in place of the Laplacian. Gabor was concerned with image restora-
tion, but his ideas will appear later in our story in connection with smoothing.
(For an account of Gabor’s work see [147].)

Shock filters

The objective for running the heat equation backward is image restoration,
and although restoration is not the main subject of the book, we are going to
pause here to describe two ways to improve the stability of the inverse heat
equation. Image restoration is an extremely important area of image process-
ing, and the techniques we describe illustrate another use of PDEs in image
processing. There are indeed stable ways to “reverse” the heat equation. More
precisely, there are “inverse diffusions” that deblurr an image and reach a steady
state. The first example, due to Rudin in 1987 [214] and Osher and Rudin in
1990 [198] is a pseudoinverse for the heat equation, where the propagation term
|Du| = |(ux, uy)| is controlled by the sign of the Laplacian:

∂u

∂t
= −sign(∆u)|Du|. (I.3)

This equation is called a shock filter. We will see later that this operator prop-
agates the level lines of an image with a constant speed and in the same direc-
tion as the reverse heat equation would propagate these lines; hence it acts as
a pseudoinverse for the heat equation. This motion enhances the definition of
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the contours and thus sharpens the image. Equation (I.3) is similar to a classic
nonlinear filter introduced by Kramer in the seventies [137]. Kramer’s filter can
be interpreted in terms of a PDE using the same kinds of heuristic arguments
that have been used to derive the heat equation. This equation is

∂u

∂t
= −sign(D2u(Du,Du))|Du|, (I.4)

where the Laplacian has been replaced by

D2u(Du,Du) = uxx(ux)2 + 2uxyuxuy + uyy(uy)2. (I.5)

We will see in Chapter 2 thatD2u(Du,Du)/|Du|2 is the second derivative of u in
the direction of its gradient Du, and we will interpret the differential operator
(I.5) as Haralick’s edge detector. Kramer’s equation yields a slightly better
version of a shock filter. The actions of these filters are illustrated in Figure I.9.
The image on the left is a blurred image of Victor. The next image has been
deblurred using the Rudin–Osher shock filter. This is a pseudoinverse of the
heat equation that attains a steady state. The third image has been deblurred
using Kramer’s improved shock filter, which also attains steady state. The
fourth image was deblurred using the Rudin–Osher–Fatemi restoration scheme,
which is described below [215].

Figure I.9: Deblurring with shock filters and a variational method. Left to
right: blurred image; Rudin–Osher shock filter; Kramer’s improved shock filter;
Rudin–Osher–Fatemi restoration method.

The deblurring algorithms (I.3) and (I.4) work to the extent that, experimen-
tally, they attain steady states and do not blow up. However, a third deblurring
method, the Rudin–Osher–Fatemi algorithm, is definitely better. It poses the
deblurring problem as an inverse problem. It is very efficient when the observed
image u0 is of the form k ∗ u+ n, where k is known and where the statistics of
the noise n are also known. Given the observed image u0, one tries to find a
restored version u such that k ∗ u is as close as possible to u0 and such that the
oscillation of u is nonetheless bounded. This is done by finding u that minimizes
the functional ∫

(
|Du(x)| + λ(k ∗ u(x) − u0(x))2

)
dx. (I.6)

The parameter λ controls the oscillation in the restored version u. If λ is large,
the restored version will closely satisfy the equation k ∗ u = u0, but it may be
very oscillatory. If instead λ is small, the solution is smooth but inaccurate.
This parameter can be computed in principle as a Lagrange multiplier. The
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obtained restoration can be remarkable. The best result we can obtain with
the blurred Victor is shown in the fourth panel of Figure I.9. This scheme was
selected by the French Space Agency (CNES) after a benchmark for satellite
image deblurring, and it is currently being used by the CNES for satellite image
restoration. This total variation restoration method also has fast wavelet packets
versions.

From the heat equation to wavelets

The observation by Kovasznay, Joseph, and Gabor (and undoubtedly others)
that the difference between a smoothed image and the original image is related
to the Laplacian of the original image is also the departure of one of the paths
that lead to wavelet theory. Here, very briefly, is the idea: If we convolve an
image with an appropriate smoothing kernel and then take the difference, we
obtain a new image related to the Laplacian of the original image (see equation
(I.1)). This new “Laplacian image” turns out to be faded with respect to the
original, and if one retains only the values greater than some threshold, the
image is often sparse. This is illustrated in Figure I.10. The last panel on the
right shows in black the values of this Laplacian image of Victor that differ
significantly from zero. Here, and in most natural images, this representation
is sparse and thus useful for compression. This experiment simulates the first
step of a well-known algorithm due to Burt and Adelson.

In 1983, Burt and Adelson developed a compression algorithm called the
Laplacian pyramid based on this idea [36]. Their algorithm consists of iterating
two operations: a convolution followed by subsampling. After each convolution,
one keeps only the difference kn ∗ un − un, where n is used here to indicate that
each step takes place at a different scale due to the subsampling. The image
is then coded by the (finite) sequence of these differences. These differences
resemble the Laplacian of un, hence the name “Laplacian pyramid.” An impor-
tant aspect of this algorithm is that the discrete kernels kn, which are low-pass
filters, are all the same kernel k; the index n merely indicates that k is adjusted
for the scale of the space where the subsampled image un lives. Ironically, the
smoothing function cannot be the Gaussian, since the requirements for recon-
structing the image from its coded version rule out the Gaussian. Burt and
Adelson’s algorithm turned out to be one of the key steps that led to multireso-
lution analyses and wavelets. Burt and Adelson were interested in compression,
and, indeed, the differences kn ∗ un − un tend to be sparse for natural images.
On the other hand, we are interested in image analysis, and for us, the Burt
and Adelson algorithm has the drawback that it is not translation invariant or
isotropic because of the multiscale subsampling.

Back to edge detection

Early research in computer vision focused on edge detection as a main tool for
image representation and analysis. It was assumed that the apparent contours of
objects, and also the boundaries of the facets of objects, produce step disconti-
nuities, while inside these boundaries, the image oscillates mildly. The apparent
contour points, or edges points, were to be computed as points where the gra-
dient is in some sense largest. Two ways were proposed to do this: Marr and
Hildreth proposed computing the points where ∆u crosses zero, the now-famous
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Figure I.10: The Laplacian pyramid of Burt and Adelson. Left to right: the orig-
inal image; the image blurred by Gaussian convolution; the difference between
the original image and the blurred version, which approximates the Laplacian
of the original image; the points where this Laplacian image is large.

zero-crossings [165]. A significant improvement was made by Harakick who de-
fined the boundaries, or edges, of an image as those points where |Du| attains
a local maximum along the gradient lines [101]. Two years later, Canny imple-
mented Haralick’s detector in an algorithm that consists of Gaussian smoothing
followed by computing the (edge) points where D2u(Du,Du) = 0 and |Du| is
above some threshold [38]. We refer to this algorithm as the Haralick–Canny
edge detector. The fourth panel in Figure I.11 displays what happens when
we smooth the image with the Gaussian (the heat equation) and then compute
the points where D2u(Du,Du) = 0 and |Du| is above some threshold. If this
computation is done on the raw image (first panel), then ”edges” show up every-
where (second panel) because the raw image is a highly oscillatory function and
contains a very dense set of inflexion points. After applying the heat equation
and letting it evolve to some scale (third panel), we see that the Haralick–Canny
edge detector is able to extract some meaningful structure.

Figure I.11: Heat equation and Haralick’s edge detector. Left to right: original
image; edge points found in the original image using Haralick’s detector; blurred
image; edges found in the blurred image using the Haralick–Canny detector.
The image “edges” are singled out after the image has been smoothed. This
smoothing eliminates tiny oscillations and maintains the big ones.

The Perona-Malik equation

Given certain natural requirements such as isotropy, localization, and scale in-
variance, the heat equation is the only good linear smoothing operator. There
are, however, many nonlinear ways to smooth an image. The first one was pro-
posed by Perona and Malik in 1987 [203, 204]. Roughly, the idea is to smooth
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what needs to be smoothed, namely, the irrelevant homogeneous regions, and
to enhance the boundaries. With this in mind, the diffusion should look like
the heat equation when |Du| is small, but it should act like the inverse heat
equation when |Du| is large. Here is an example of a Perona–Malik equation in
divergence form:

∂u

∂t
= div(g(|Du|)Du), (I.7)

where g(s) = 1/(1+λ2s2). It is easily checked that we have a diffusion equation
when λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. To see this,
consider the second derivative of u in the direction of Du,

uξξ = D2u

(
Du

|Du| ,
Du

|Du|

)

,

and the second derivative of u in the orthogonal direction,

uηη = D2u

(
Du⊥

|Du| ,
Du⊥

|Du|

)

,

where Du = (ux, uy) and Du⊥ = (−uy, ux). The Laplacian can be rewritten in
the intrinsic coordinates (ξ, η) as ∆u = uξξ + uηη. The Perona–Malik equation
then becomes

∂u

∂t
=

1

1 + λ2|Du|2uηη +
1 − λ2|Du|2

(1 + λ2|Du|2)2 uξξ.

The first term in this representation always appears as a one-dimensional diffu-
sion in the direction orthogonal to the gradient, tuned by the size of the gradient.
The nature of the second term depends on the value of the gradient; it can be ei-
ther diffusion in the direction Du or inverse diffusion in the same direction. This
model indeed mixes the heat equation and the reverse heat equation. Figure
I.12 is used to compare the Perona–Malik equation with the classical heat equa-
tion (illustrated in Figure I.11) in terms of accuracy of the boundaries obtained
by the Haralick–Canny edge detector (see Chapter 6). At a comparable scale of
smoothing, we clearly gain some accuracy in the boundaries and remove more
“spurious” boundaries using this Perona–Malik equation. The representation is
both more sparse and more accurate.

Figure I.12: A Perona–Malik equation and edge detection. This is the same
experiment as in Figure I.11, but here the Perona–Malik equation is used in
place of the heat equation. Notice that the edge map looks slightly better in
this case.
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The ambitious Perona–Malik model attempts to build into a single operator
the ability to perform two very different tasks, namely, restoration and analysis.
This has its cost: The model contains a “contrast threshold” λ−1 that must
be set manually, and although experimental results have been impressive, the
mathematical existence and uniqueness of solutions are not guaranteed, despite
some partial results by Kichenassamy [127] and Weickert and Benhamouda [257].
There are three parameters involved in the overall smoothing and edge-detecting
scheme: the gradient threshold λ−1 in the equation (6.2), the smoothing scale(s)
t (or the time that equation (6.2) evolves), and the gradient threshold in the
Haralick–Canny detector. We can use the same gradient threshold in both the
Haralick–Canny detector and the Perona–Malik equation, but this still leaves
us with a two-parameter algorithm. Can these parameters be dealt with auto-
matically for an image analysis scheme? This question seems to have no general
answer at present. An interesting attempt based on statistical arguments had
been made, however, by Black et al. [29].

A proliferation of PDE’s

If one believes that some nonlinear diffusion might be a good image analysis
model, why not try them all? This is exactly what has happened during the last
ten years. We can claim with some certainty that almost all possible nonlinear
parabolic equations have been proposed. A few of the proposed models are
even systems of PDEs. The common theme in this proliferation of models is
this: Each attempt fixes one intrinsic diffusion direction and tunes the diffusion
using the size of the gradient or the value of an estimate of the gradient. To keep
the size of this introduction reasonable, we will focus on a few of the simplest
models.

We begin with the Rudin–Osher–Fatemi model [215]. In this model the
BV norm of u,

∫
|Du(x)| dx, is one of the terms in the expression (I.6) that

is minimized to obtain a restored image. It is this term that provides the
smoothing. The gradient descent for

∫
|Du(x)| dx translates into the equation

∂u

∂t
= div

(
Du

|Du|

)

=
1

|Du|uηη.

Written this way, the method appears as a diffusion in the direction orthogonal
to the gradient, tuned by the size of the gradient. Andreu et al. proved that
this equation is well posed in the space BV of functions of bounded variation
[12, 13]. A variant of this model was proposed independently by Alvarez, Lions,
and Morel [8]. In this case, the relevant equation is

∂u

∂t
=

1

|k ∗Du| |Du| div

(
Du

|Du|

)

=
1

|k ∗Du|uηη,

and again the diffusion is in the direction Du⊥ orthogonal to the gradient. Note
that the rate of diffusion depends on the average value k ∗Du of the gradient
in a neighborhood of x, whereas the direction of diffusion, Du⊥(x)/|Du(x)|,
depends on the value of Du(x) at x. The kernel k is usually the Gaussian.
Kimia, Tannenbaum, and Zucker, working in a more general shape-analysis
framework, proposed the simplest equation of our list [131]:

∂u

∂t
= |Du| div

(
Du

|Du|

)

= D2u

(
Du⊥

|Du| ,
Du⊥

|Du|

)

= uηη. (I.8)
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This equation had been proposed earlier in another context by Sethian as a tool
for front-propagation algorithms [233]. This equation is a “pure” diffusion in
the direction orthogonal to the gradient. We call this equation the curvature
equation; this is to distinguish it from other equations that depend on the cur-
vature of u in some other way. These latter will be called curvature equations.
When we refer to the action of the equations, we often write curvature motions
or curvature-dependent motions. (See Chapters 17 and 18.)

The Weickert equation can be viewed as a variant of the curvature equation
[256]. It uses a nonlocal estimate of the direction orthogonal to the gradient
for the diffusion direction. This direction is computed as the direction v of the
eigenvector corresponding to the smallest eigenvalue of k ∗ (Du ⊗ Du), where
(y ⊗ y)(x) = (x · y)y. Note that if the convolution kernel is removed, then this
eigenvector is simply Du⊥. So the equation writes

∂u

∂t
= uηη, (I.9)

where η denotes the coordinate in the direction v. The three models just de-
scribed can be interpreted as diffusions in a direction orthogonal to the gradient
(or an estimate of this direction), tuned by the size of the gradient. They are
illustrated in Figure I.13. (The original image is in the first panel of Figure
I.14.)

Carmona and Zhong proposed a diffusion in the direction of the eigenvector
w corresponding to the smallest eigenvalue of D2u [43]. So the equation is
again 3.18, but this time η denotes the coordinate in the direction of w. This is
illustrated in panel three of Figure I.14. Sochen, Kimmel, and Malladi propose
instead a nondegenerate diffusion associated with a minimal surface variational
formulation [236]. Their idea was to make a gradient descent for the area,
∫ √

1 + |Du(x)|2 dx, of the graph of u. This leads to the diffusion equation

∂u

∂t
= div

(
Du

√

1 + |Du|2

)

.

At points where Du is large this equation behaves like ∂u
∂t = div

(

Du
|Du|

)

,

where we retrieve the Rudin-Osher-Fatemi model of Section I.3. At points where
Du is small we have ∂u

∂t = div(Du) which is the heat equation. This equation
is illustrated in panel four of Figure I.14. Other diffusions have also been con-
sidered. For purposes of interpolation, Caselles, Morel, and Sbert proposed a
diffusion that may be interpreted as the strongest possible image smoothing
[49],

∂u

∂t
= D2u(Du,Du) = |Du|2uξξ.

This equation is not used for preprocessing the image as the others are; rather,
it is a way to interpolate between the level lines of an image with sparse level
lines (Figure I.15). Among the models mentioned, only the curvature motion
proposed by Kimia, Tannenbaum, and Zucker was specifically introduced as a
shape analysis tool. We are going to explain this, but to do so we must say
more about image analysis.
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Figure I.13: Diffusion models I. Left to right: Osher, Sethian 1988: the curva-
ture equation; Rudin, Osher, Fatemi 1992: minimization of the image’s total
variation; Alvarez, Lions, Morel 1992: nonlocal variant of the preceding; We-
ickert 1994: nonlocal variant of the curvature equation. All of these models
diffuse only in the direction orthogonal to the gradient, using a more or less
local estimate of this direction. This explains why the results of the filters are
so similar. However, the Weickert model captures better the texture direction.

Principles of image analysis

There are probably as many ways to approach image analysis as there are uses
of digital images, and today the range of applications covers much of human
activity. Most scientific and technical activities, including particularly medicine,
and even sound analysis (visual sonograms), involve the perceptual analysis of
images. Our goal is to look for fundamental principles that underlie most of
these applications and to develop algorithms that are widely applicable. From
a less lofty point of view, we wish to examine the collection of existing and
potential image operators to determine which among them fit our vision of
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Figure I.14: Diffusion models II. Left to right: original image; Perona–Malik
equation 1987, creating blurry parts separated by sharp edges; Carmona, Zhong
1998 which actually blurs the whole image: diffusion along the least eigenvector
of D2u; Sochen, Kimmel, Malladi 1998: minimization of the image graph area.
This last equation has effects similar to the Perona-Malik model.

Figure I.15: Diffusion models III. Left to right: original image; quantized image
(only 10 levels are kept - 3.32 bits/pixel); the quantized image reinterpolated us-
ing the Caselles–Sbert algorithm 1998. They apply a diffusion on the quantized
image with values on the remaining level lines taken as boundary conditions.

image analysis. Instead of examining an endless list of partial and specific
requirements, we rely on a mathematical shortcut, well known in mechanics,
that consists of stating a short list of invariance requirements. These invariance
requirements will lead to a classification of models and point out the ones that
are the most suitable as image analysis tools. The first invariance requirement
is the Wertheimer principle according to which visual perception (and therefore,
we add, image analysis) should be independent of the image contrast [260]. We
formalize this as follows:

Contrast-invariant classes. Two images u and v are said to be (per-
ceptually) equivalent if there is a continuous increasing function g such that
v = g(u). In this case, u and v are said to belong to the same contrast-invariant
class. (“Increasing” always means “strictly increasing.”)

Contrast invariance requirement. An image analysis operator T must
act directly on the equivalence class. As a consequence, we ask that T (g(u)) =
g(Tu), which means that the image analysis operator commutes with contrast
changes.

The contrast invariance requirement rules out the heat equation and all of the
models described above except the curvature motion (I.8). Contrast invariance
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led Matheron in 1975 to formulate image analysis as set analysis, namely, the
analysis of the level sets of an image. The upper level set of an image u at level
λ is the set

Xλu = {x | u(x) ≥ λ}.
We define in exactly the same way the lower level sets by changing “≥” into
“≤.” The main point to retain here is the global invariance of level sets under
contrast changes. if g is a continuous increasing contrast change, then

Xg(λ)g(u) = Xλu.

According to mathematical morphology, the image analysis doctrine founded
by Matheron and Serra, the essential image shape information is contained in
its level sets. It can be proved (Chapter 11) that an image can be reconstructed,
up to a contrast change, from its set of level sets [169]. Figure I.16 shows an
image and one of its level sets.

Figure I.16: An image and one of its level sets. On the right is level set 140
of the left image. This experiment illustrates Matheron’s thesis that the main
shape information is contained in the level sets of an image. Level sets are
contrast invariant.

The contrast invariance requirement leads to powerful and simple denoising
operators like the so-called extrema killer, or area opening, (Chapter 13) defined
by Vincent in 1993 [253]. This image operator simply removes all connected
components of upper and lower level sets with areas smaller than some fixed
value. This operator is not a PDE; actually it’s much simpler. Its effect is
amazingly good for impulse noise, which includes the local destruction of the
image and spots. The action of the extrema killer is illustrated in Figure I.17.
The original image is in the first panel. In the third panel, the image has been
degraded by adding “salt and pepper” noise to 75% of the pixels. The next
panel shows its restoration using the extrema killer set to remove upper and
lower level sets with areas smaller than 80 pixels. The second panel shows the
result of the same operator applied to the original.

Level lines as a complete contrast invariant representation

In 1996, Caselles, Coll, and Morel further localized the contrast invariance re-
quirement in image analysis. They proposed as the main objects of analysis the
level lines of an image, that is, the boundaries of its level sets [46]. For this
program—and the previous one involving level sets—to make sense, the levels
sets and level lines must have certain topological and analytic properties. Level
sets and isolevel sets {x | u(x) = λ}, which we would like to be the “level lines,”
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Figure I.17: The extrema killer filter. Left to right: original image; extrema
killer applied with area threshold equal 80 pixels; 75% salt and pepper noise
added to the original image; the same filter applied.

can be defined for any image (or function) u, but they will not necessarily be
useful for image analysis. In particular, we cannot directly define useful level
sets and level lines for a digital image ud. What is needed is a representation
of ud for which these concepts make sense. But this is not a problem. By the
assumptions of section I.1, a digital representation ud of a natural image S has
been obtained by suitably sampling a smooth version of S, call it uf , and a
smooth approximation of uf is available to us by interpolation. There are, of
course, different interpolation methods to produce smooth representations of
ud. One can also obtain a useful discontinuous representation by considering
the extension of ud that is constant on each pixel. For an interpolation method
to be useful, the level lines should have certain minimal properties: They should
be composed of a finite number of rectifiable Jordan curves, and they should be
nested. This means that they do not cross, and thus that they form a tree by
inclusion (Section 17.2.)

A study by Kronrod in 1950 shows that if the function u is continuous, then
the isolevels sets {x | u(x) = λ} are nested and thus form a tree when ordered
by inclusion [139]. These isolevel sets are not necessarily curves; they are curves,
however, if u has continuous first derivatives. Monasse proved Kronrod’s result
for lower semicontinuous and upper semicontinuous functions in 2000 [180] (see
also [21]). His result implies that the extension of ud that is constant on each
pixel yields a nested set of Jordan curves bounding the pixels. Thus we have at
least two ways to associate a set of nested Jordan curves with a digital image
ud, depending on how ud is interpolated. Given an interpolation method, we
call this set of nested curves a topographic map of the image.1 By introducing
the topographic map, the search for image smoothing, which had already been
reduced to set smoothing, is further reduced to curve smoothing. Of course, we
require that this smoothing preserves curve inclusion. Level lines of an image
at a fixed level are shown in Figure I.18.

1The use of level lines is also consistent with the “BV assumption” mentioned in section
I.1, according to which the correct function space for modeling images is the space BV of
functions of bounded variation. In this case, the coarea formula can be used to associate a
set of Jordan curves with an image (see [11]) It is, however, in general false for BV functions
that the boundaries of lower and upper level sets form a nested set of curves; these curves
may cross (see again [180].)
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Figure I.18: Level lines of an image. Level lines, defined as the boundaries of
level sets, can be defined to be a nested set of Jordan curves. They provide a
contrast-invariant representation of the image. On the right are the level lines
at level 183 of the left image.

Contrast invariant PDE’s

Chen, Giga, and Goto [53, 54] and Alvarez et al. [7] proved that if one adds
contrast invariance to the usual isotropic invariance requirement for image pro-
cessing, then all multiscale image analyses should have a curvature-dependent
motion of the form

∂u

∂t
= F (curv(u), t)|Du|, (I.10)

where F is increasing with respect to its first argument (see chapters ?? and
??). This equation can be interpreted as follows: Consider a point x on a given
level curve C of u at time t. Let n(x) denote the unit vector normal to C at x
and let curv(x) denote its curvature. Then the preceding equation is associated
with the curve motion equation

∂x

∂t
= F (|κ|(x), t)n(x)

that describes how the point x moves in the direction of the normal. The formula
defining curv(u) at a point x is (Chapter 17)

curv(u)(x) =
1

|Du|3D
2u(Du⊥, Du⊥)(x) =

uxxu
2
y − 2uxyuxuy + uyyu

2
x

(u2
x + u2

y)
3/2

(x).

The curvature vector at a point of a C2 curve is the second derivative for a
curve x(s) parameterized by length : κ = d2x/ds2. We refer to Chapter 17
for the detailed definitions and the links between the curvature vector of a level
line of u and curv(u). Not much more can be said at this level of generality
about F . Two specific cases play prominent roles in this subject. The first case
is F (curv(u), t) = curv(u), the curvature equation (I.8). The second case is
F (curv(u), t) = (curv(u))1/3.
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This particular one-third power form for the curvature dependence provides
an important additional invariance, namely, affine invariance. We would like
to have complete projective invariance, but a theorem proved by Alvarez et
al. shows that this is impossible [7] (Chapter ??). The best we can have is
invariance with respect to the so-called Chinese perspective, which preserves
parallelism. Most of these equations, particularly when F is a power of the
curvature, have a viscosity solution in the sense of Crandall and Lions [62].
This was shown in 1995 by Ishii and Souganidis [118]. We refer to Chapters ??
and ?? for all details.

As we have mentioned, contrast-invariant processing can be reduced to level
set processing and, finally, to level curve processing. The equations mentioned
above are indeed equivalent to curve evolution models if existence and regularity
have been established. These results exist for the most important cases, namely,
for F (curv(u), t) = curv(u), called curve shortening, and for F (curv(u), t) =
(curv(u))1/3, known as affine shortening. Grayson proved existence, uniqueness,
and analyticity for the curve shortening equation [98],

∂x

∂t
= curv(x)n(x), (I.11)

NE PAS LAISSER COMMME C’EST : curv n’est pas la meme notation
qu’apres et n’est pas meme defini!

and Angenent, Sapiro, and Tannenbaum proved the same results for the
affine shortening equation [14],

∂x

∂t
= (curv(x))

1
3n(x). (I.12)

These results are very important for image analysis because they ensure that
the shortening processes do indeed reduce a curve to a more and more sketchy
version of itself.

Affine invariance

An experimental verification of affine invariance for affine shortening is illus-
trated in Figure I.19. The numerical tests were made using a very fast numerical
scheme for the affine shortening designed by Lionel Moisan [178]. The principle
of this algorithm is explained in Chapter ??. Unlike many numerical schemes,
this one is itself affine invariant. Each of the three panels in Figure I.19 contains
three shapes. The first panel shows the action of an affine transformation A:
Call the first shape in the first panel X ; then the second shape is A(X) and
the third shape is A−1A(X) = X . The second panel shows that affine short-
ening, S, commutes with A: The shapes are, from left to right, S(X), SA(X),
and A−1SA(X). Since this third shape is the same as the first, we see that
A−1SA(X) = S(X), or that SA(X) = AS(X). The third panel shows the same
experiment with affine shortening replaced with curve shortening. Since the
first and third shapes are different, this illustrates that A does not commute
with curve shortening, and hence that curve shortening is not affine invariant.

Evans and Spruck [74] (also [75, 76, 77]) and Chen, Giga, and Goto [53,
54] proved in 1991 that a continuous function moves by the curvature motion
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Figure I.19: Experimental verification of the affine invariance of the affine short-
ening (AMSS). The first panel contains three shapes, X , A(X), and A−1A(X).
The second panel contains S(X), SA(X), and A−1SA(X). The congruence of
the first and third shapes implies that S and A commute. In the third panel,
the same procedure has been applied using equation (I.11). Here the first and
third shapes are not congruent, which shows that the curve shortening is not
affine invariant, as expected.

(equation (I.10) with F (curv(u), t) = curv(u)) if and only if almost all of its
level curves move by curve shortening (equation (I.11)). The same result is true
for the affine invariant curve evolution (equation (I.10) with F (curv(u), t) =
(curv(u))1/3) and affine shortening (equation (I.12)).

In the case of the curvature motion, this result provides a mathematical
justification for the now-classic Osher–Sethian numerical method for moving
fronts [199]: They associate with some curve or surface C its signed distance
function u(x) = ±d(x, C), and the curve or surface is handled indirectly as the
zero isolevel set of u. Then u is evolved by, say, the curvature motion with a
classic numerical difference scheme. Thus, the evolution of the curve C is dealt
with efficiently and accurately as a by-product of the evolution of u. The point
of view that we adopt is slightly different from that of Osher and Sethian. We
view the image as a generalized distance function to each of its level sets, since
we are interested in all of them.

We show in Figure I.20 how the level lines are simplified by evolving the
image numerically using affine invariant curvature motion. For clarity, we dis-
play only sixteen levels of level curves. Notice that the aim here is not subsam-
pling; we keep the same resolution. Nor is the aim restoration; the processed
image is clearly worse than the original. The aim is invariant simplification
leading to shape recognition.

Figures I.21 and I.22 illustrate the effect of affine curvature motion on the
values of the curvature of an image. In Figure I.21 the sea bird image has been
smoothed by affine curvature motion at calibrated scale 1. In Figure I.22 the
smoothing is stronger at calibrated scale 4. (A calibrated scale t means that at
this scale a disk with radius t disappears.) The absolute values of the curvature
of the smoothed images are shown in the upper-right panels of both figures, with
the convention that the darkest points have the largest curvature. For clarity,
the curvature is shown only at points where the gradient of the image was larger
than 6 in a scale ranging from 0 to 255. Note how the density of points having
large curvature is reduced in the second figure where the smoothing is stronger.
On the other hand, the regions with large curvature are more concentrated with
stronger smoothing. Each degree of smoothing produces a different curvature
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Figure I.20: The affine and morphological scale space (AMSS model). Left to
right: original image; level lines of this image (16 levels only); original image
smoothed using the AMSS equation; level lines of the third image.

map of the original image, and thus curvature motions can be used as a nonlinear
means to compute a ”multiscale” curvature of the original image. The bottom
two panels of the figures show, from left to right, the positive curvature and the
negative curvature.

The snake method

Before proceeding to shape recognition, we mention that a variant of the cur-
vature equation can be used for shape detection. This is a well-known method
of contour detection, initially proposed by Kass, Witkin, and Terzopoulos [125].
Their method was very unstable. A better method is a variant of curvature
motion proposed by Caselles, Catté, Coll, and Dibos [44] and improved simulta-
neously by Caselles, Kimmel, and Sapiro [47] and Malladi, Sethian, and Vemuri
[156]. Here is how it works. The user draws roughly the desired contour in



i

i

28 Introduction

Figure I.21: Curvature scale space I. Top, left to right: original sea bird image
smoothed by affine curvature motion at calibrated scale 1; the absolute value
of the curvature. Bottom, left to right: the positive part of the curvature; the
negative part. Compare with Figure I.22, where the calibrated smoothing scale
is 4.

Figure I.22: Curvature scale space II. Top, left to right: original sea bird image
smoothed by affine curvature motion at calibrated scale 4; the absolute value
of the curvature. Bottom, left to right: the positive part of the curvature; the
negative part. Compare with Figure I.21, where the calibrated smoothing scale
is 1.

the image, and the algorithm then finds the best possible contour in terms of
some variational criterion. This method is very useful in medical imaging. The
motion of the contour is a tuned curvature motion that tends to minimize an
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energy function E. Given an original image u0 containing some closed contour
that we wish to approximate, we start with an edge map

g(x) =
1

1 + |Du0(x)|2 ,

that is, a function that vanishes on the edges of the image. The user then
designates the contour of interest by drawing a polygon γ0 roughly following the
desired contour. The geodesic snake algorithm then builds a distance function
v0 to this initial contour, so that γ0 is the zero level set of v0. The energy to be
minimized is

E(γ) =

∫

γ

g(x(s)) ds,

where g is the edge map associated with the original image u0 and s denotes the
parameter measuring the length along γ. The motion of the “analyzing image”
v is governed by

∂v

∂t
(x, t) = g(x)|Dv(x)|curv(v)(x) −Dv(x) ·Dg(x).

This algorithm is illustrated with a medical example in Figure I.23.

Figure I.23: Active contour, or “snake.” Left to right: original image; initial
contour; evolved distance function; final contour.

Shape retrieval

It seems to us that the most obvious application of invariant PDEs is shape
retrieval in large databases. There are thousands of different definitions of
shapes and a multitude of shape recognition algorithms. The real bottleneck
has always been the ability to extract the relevant shapes. The discussion above
points to a brute force strategy: All contrast-invariant local elements, or the
level lines of the image, are candidates to be “shape elements.” Of course,
this notion of shape element suggests the contours of some object, but there
is no way to give a simple geometric definition of objects. We must give up
the hope of jumping from the geometry to the common sense world. We may
instead simply ask the question, Given two images, can we retrieve all the level
lines that are similar in both images? This would give a factual, a posteriori,
definition of shapes. They would be defined as pieces of level lines common to
two different images, irrespective of their relationships to real physical objects.

Of course, this brute force strategy would be impossible without the initial
invariant filtering (AMSS). It is doable only if the level lines have been sig-
nificantly simplified. This simplification entails the possibility of compressed
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invariant encoding. In Figure I.24, we present an experiment due to Lisani et
al. [149]. Two images of a desk and the backs of chairs, viewed from different
angles, are shown in the first two panels. All of the pieces of level lines in the two
images that found a match in the other image are shown in the last two panels.
Notice that several of these matches are doubled. Indeed, there are two similar
chairs in each image. This brings to mind a Gestalt law that states that human
perception tends to group similar shapes. We now see the numerical necessity
of this perceptual grouping: A preliminary self-matching of each image, with
grouping of similar shapes, must be performed before we can compare it with
other images.

This concludes our overview of the use of PDEs in image analysis. The rest
of the book is devoted to filling in the mathematical details that support most
of the results mentioned in this introduction. We have tried to prove all of the
mathematical statements, assuming only two or three years of mathematical
training at the university level. Thus, for most of the PDEs addressed, and
for all of the relevant ones, we prove the existence and uniqueness of solutions.
We also develop invariant, monotone approximation schemes. This has been
technically possible by combining tools from the recent, and remarkably sim-
ple, theory of viscosity solutions with the Matheron formalism for monotone
set and function operators. Thus, the really necessary mathematical knowledge
amounts to elementary differential calculus, linear algebra, and some results
from the theory of Lebesgue integration, which are used in the chapters on the
heat equation. Mathematical statements are not introduced as art for art’s
sake; all of the results are directed at proving the correctness of a model, of
its properties, or of the associated numerical schemes. Numerical experiments,
with detailed comments, are described throughout the text. They provide an
independent development that is parallel to the central theoretical development.
Most image processing algorithms mentioned in the text are accessible in the
public software MegaWave. MegaWave was developed jointly by several uni-
versity research groups in France, Spain and America, and it is available at
http://www.cmla.ens-cachan.fr.
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Figure I.24: A shape parser based on level lines. The two left images are of a
desk and the backs of chairs viewed from different angles. In the far left panel,
one level line has been selected (in white). In the second panel we show, also
in white, all matching pieces of level lines. The match is ambiguous, as must
be expected when the same object is repeated in the scene. In the two panels
on the right, we display all the matching pairs of pieces of level lines (in white).
The non matching parts of the same level lines are shown in black. Usually,
recognized shape elements are pieces of level lines, seldom whole level lines. See
[]
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Chapter 1

Notation and background
material

RN denotes the real N -dimensional Euclidian space. If x ∈ RN and N > 2,
we write x = (x1, x2, . . . , xN ); if N = 2, we usually write x = (x, y). For
x, y ∈ RN , we denote their scalar product by x · y = x1y1 + x2y2 + · · ·+ xNyN

and write
|x| = (x · x)1/2 = (x2

1 + x2
2 + · · · + x2

N )1/2.

Let Ω be an open set in RN , and let n ∈ N be a fixed integer. Cn(Ω)
denotes the set of real-valued functions f : Ω → R that have bounded continuous
derivatives of all orders up to and including n. f ∈ C∞(Ω) means that f has
continuous derivatives of all orders and that they are all bounded; f ∈ C(Ω) =
C0(Ω) means that f is continuous and bounded on Ω. We will often write “f
is Cn” as shorthand for f ∈ Cn(Ω), and we often omit the domain Ω if there is
no chance of confusion.

We use multi-indices of the form α = (α1, α2, . . . , αN ) ∈ NN as shorthand
in several cases. For x ∈ RN , we write xα and |x|α for xα1

1 xα2
2 · · ·xαN

N and
|x1|α1 |x2|α2 · · · |xN |αN , respectively. For f ∈ Cn(Ω), we abbreviate the partial
derivatives of f by writing

∂αf =
∂|α|f

∂xα1
1 ∂xα2

2 · · · ∂xαN

N

,

where |α| = α1 + α2 + · · · + αN and |α| ≤ n.
We also write the partial derivatives of f(x) = f(x1, x2, . . . , xN ) as fi =

∂f/∂xi, fij = ∂2f/∂xi∂xj , and so on. In the two-dimensional case f(x) =
f(x, y), we usually write ∂f/∂x = fx, ∂f/∂y = fy, ∂2f/∂x∂y = fxy, and so on.

The gradient of f is denoted by Df . Thus, if f(x) = f(x1, x2, . . . , xN ),

Df = (f1, f2, . . . , fN),

and
Df = (fx, fy)

in case N = 2. The Laplacian of f is denoted by ∆f . Thus ∆f = f11 + f22 +
· · · + fNN in general, and ∆f = fxx + fyy if N = 2.

33
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We will often use the symbols O, o, and ε. They are defined as follows. We
assume that h is a real variable that tends to a limit h0 that can be finite or
infinite. We assume that g is a positive function of h and that f is any other
function of h. Then f = O(g) means that there is a constant C > 0 such
that |f(h)| < Cg(h) for all values of h. The expression f = o(g) means that
f(h)/g(h) → 0 as h → h0. We occasionally will use ε to denote a function of h
that tends to zero as h → 0. Thus, f(h) = o(h) can be written equivalently as
f(h) = hε(h).

Taylor’s formula

AnN -dimensional form of Taylor’s formula is used several times in the book.
We will first state it and then explain the notation. Assume that f ∈ Cn(Ω)
for some open set Ω ∈ R

N , that x,y ∈ Ω, and that the segment joining x and
x + y is also in Ω. Then

f(x+y) = f(x)+
1

1!
Df(x)y(1) +

1

2!
D2f(x)y(2) + · · ·+ 1

n!
Dnf(x)y(n) +o(|y|n).

This has been written compactly to resemble the one-dimensional case, but
the price to be paid is to explain the meaning of Dpf(x)y(p). We have already
seen special cases of this expression in section I.3, for example, D2u(Du,Du)
in equation (I.4). The expression Dpf(x)y(p) is

Dpf(x)y(p) = Dpf(x)(y,y, . . . ,y
︸ ︷︷ ︸

p terms

) =
∑

(i1,i2,...,ip)

∂pf

∂xi1∂xi2 · · ·∂xip

(x)yi1yi2 · · · yip ,

where the sum is taken over allNp different vectors (i1, i2, . . . , ip), ij = 1, 2, . . . , N .

Notice that Df(x)y(1) is just
∑N

j=1 fjyj = Df(x) · y, which is how we usually
write it.

The so-called Lagrange variant of Taylor’s formula will be equally useful,

f(x + y) = f(x) + · · ·+ 1

(n− 1)!
Dn−1f(x)y(n−1) +

1

n!
Dnf(x + θy)y(n), (I.1)

where θ = θ(y) ranges in [0, 1].

The implicit function theorem

Consider a real-valued C1 function f defined on an open set Ω in R
N . For

ease of notation we write z = (x, y), where x = (x1, . . . , xN−1) and y = xN .
Assume that f(z0) = 0 for a point z0 ∈ Ω and that fy(x0) 6= 0. Then there is a
neighborhood M = M(x0) and a neighborhood N = N(y0) such that for every
x ∈M there is exactly one y ∈ N such that f(x, y) = 0. The function y = ϕ(x)
is C1 on M and y0 = ϕ(x0). Furthermore, if f ∈ Cn(Ω), then ϕ ∈ Cn(M).

Lebesgue integration

The Lebesgue integral, which first appeared in 1901 and is thus over a hun-
dred years old, has become the workhorse of analysis. It plays a role in chapters
1 and 2 and appears briefly in other parts of the book. One does not need a
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profound understanding of abstract measure theory and integration to follow
the arguments. One should, however, be familiar with a few key results and be
comfortable with the basic manipulations of the integral. With this in mind,
we restate some of these fundamentals.

The functions and sets in this book are always measurable. Thus we dispense
in general with phrases like “let f be a measurable function.” We denote by M
the set of Lebesgue measurable subsets of RN . Since we shall sometimes need
to complete RN by a point at infinity, ∞, we still denote by M the measurable
sets of SN = R

N ∪ {∞} and take measure({∞}) = 0. A function f defined on
a subset A of RN is integrable, if

∫

A

|f(x)| dx < +∞.

The Banach space of all integrable function defined on A is denoted as usual
by L1(A); we write ‖f‖L1(A) =

∫

A
|f(x)| dx to denote the norm of f in L1(A).

The most important applications in the book are the two cases A = RN and
A = [−1, 1]N . Here are two results that we use in chapters 1 and 2. We state
them not in the most general form, but rather in the simplest form suitable for
our work.

A density theorem for L
1(RN )

If f is in L1(RN ), then there exists a sequence of continuous functions {gn},
each of which has compact support, such that gn → f in L1(RN ), that is,
∫
|gn(x) − f(x)|dx → 0 as n → +∞. This result is true for L1([−1, 1]N), in

which case the gn are continuous on [−1, 1]N .

Fubini’s theorem

Suppose that f is a measurable function defined on A × B ∈ RN × RN .
Fubini’s theorem states that

∫

A×B

|f(z)| dz =

∫

A

∫

B

|f(x,y)| dxdy =

∫

B

∫

A

|f(x,y)| dy dx,

where we have written z = (x,y). It further states, that if any one of the
integrals is finite, then

∫

A×B

f(z) dz =

∫

B

∫

A

f(x,y) dxdy =

∫

A

∫

B

f(x,y) dydx.

Lebesgue’s dominated convergence theorem

If a sequence of functions {fn} is such that fn(x) → f(x) for almost every
x ∈ RN as n→ +∞, and if there is an integrable function g such that |fn(x)| ≤
g(x) almost everywhere, then

∫

RN

fn(x) dx →
∫

RN

f(x) dx.

We often use the following direct consequence: if An is a decreasing sequence
of measurable sets with bounded measure then measure(An) 7→ measure(A). To
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prove this, apply Lebesgue’s theorem to the characteristic functions of An and
A, 1An and 1A.

We also use the following result, which is a direct consequence of the domi-
nated convergence theorem.

Interchanging differentiation and integration

Suppose that a function f defined on (t0, t1) × RN , where (t0, t1) is any
interval of R, is such that t 7→ f(t,x) is continuously differentiable (for almost
every x ∈ RN ) on some interval [a, b] ⊂ (t0, t1). If there exists an integrable
function g such that for all t ∈ [a, b]

∣
∣
∣
∣

∂f

∂t
(t,x)

∣
∣
∣
∣
≤ g(x) almost everywhere,

then the integral I(t) =
∫

RN f(t,x) dx is differentiable for t ∈ (a, b) and

dI

dt
(t) =

∫

RN

∂f

∂t
(t,x) dx.

A brief but comprehensive discussion of the Lebesgue integral can be found in
the classic textbook by Walter Rudin [216].

I.0.1 A framework for sets and images

We start by fixing a simple and handy functional framework for images and
sets, which will be maintained throughout the book. Until now, we have been
vague about the domain of definition of an image. On one hand, a real digital
image is defined on a finite grid. On the other hand, standard interpolation
methods give a continuous representation defined on a finite domain of RN ,
usually a rectangle. Now, it is convenient to have images defined on all of RN ,
but it is not convenient to extend them by making them zero outside their
original domains of definition because that would make them discontinuous. So
an usual way is to extend them into a continuous function tending to a constant
at infinity. One way to do that is illustrated in Figure I.1. First, an extension
to a wider domain is performed by reflection across the domain’s boundary and
periodization. Then, it is easy to let the function fade at infinity or to make
it compactly supported. This also means that we fix a value at infinity for u,
which we denote by u(∞). We denote the topological completion of RN by this

infinity point by SN = RN ∪{∞}, which can also be denoted RN . Let us justify
the notation.

Proposition 1.1. Consider the sphere SN = {z ∈ RN+1, ||z|| = 1}. Then the
mapping T : RN ∪ {∞} → SN defined by

T (x) =

(
2x

1 + x2
,

x2 − 1

x2 + 1

)

is a homeomorphism (that is, a continuous bijection with continuous inverse.)

This is easily checked (Exercise 2.6).
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Figure I.1: Image extension by symmetry, followed by periodization. Then the
image can be extended continuously to the rest of the plane into a function which
is constant for x large. The purpose of these successive extensions of u to all of
RN is to facilitate the definition of certain operations on u, such as convolution
with smoothing kernels, and, at the same time, to preserve the continuity of
u. This method of extending a function is widely used in image processing;
in particular, it is used in most compression and transmission standards. For
instance, the discrete cosine transform (DCT) applied to the initial data u,
restricted to [0, 1]N , is easily interpreted as an application of the FFT to the
symmetric extension of u.

Definition 1.2. We denote by F the set of continuous functions on SN , which
can be identified with the set of continuous functions on R

N tending to some
constant at infinity. The natural norm of F is

‖u‖F = sup
x∈RN

|u(x)|. (I.2)

We say that an image u in F is C1, if the function u is C1 at each point x ∈ RN .
We define in the same way the C2,... C∞ functions of F .

Definition 1.3. We say that a function u defined on RN is uniformly contin-
uous if for every x, y,

|u(x + y) − u(x)| ≤ ε(|y|),
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for some function ε called modulus of continuity of u, satisfying lims→0 ε(s) = 0.

Continuous functions on a compact set are uniformly continuous, so func-
tions of F are uniformly continuous. We shall often consider the level sets of
functions in F , which simply are compact sets of SN .

Definition 1.4. We denote by L the set of all compact sets of SN .

These sets are easy to characterize:

Proposition 1.5. The elements of L are of three kinds:

• compact subsets of RN

• F ∪ {∞}, where F is a compact set of RN .

• F ∪ {∞}, where F is an unbounded closed subset of RN

Proof. Indeed, B ∩RN is a closed set of RN and is therefore either a bounded
compact set or an unbounded closed set of RN . In the latter case, B must
contain ∞. �
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Chapter 2

The Heat Equation

The heat equation is the prototype of all the PDEs used in image analysis.
There are strong reasons for that and it is the aim of this chapter to explain
some of them. Some more will be given in Chapter ??. Our first section is ded-
icated to a simple example of linear smoothing illustrating the relation between
linear smoothing and the Laplacian. In the next section, we prove the existence
and uniqueness of its solutions, which incidentally establishes the equivalence
between the convolution with a Gaussian and the heat equation.

2.1 Linear smoothing and the Laplacian

Consider a continuous and bounded function u0 defined on R2. If we wish to
smooth u0, then the simplest way to do so without favoring a particular direction
is to replace u0(x) with the average of the values of u0 in a disk D(x, h) of radius
h centered at x. This means that we replace u0(x) with

Mhu0(x) =
1

πh2

∫

D(x,h)

u0(y) dy =
1

πh2

∫

D(0,h)

u0(x + y) dy. (2.1)

Although the operator Mh is quite simple, it exhibits important charac-
teristics of a general linear isotropic smoothing operator. For example, it is
localizable: As h becomes small, Mh becomes more localized, that is, Mhu0(x)
depends only on the values of u0(x) in a small neighborhood of x. Smoothing
an image by averaging over a small symmetric area is illustrated in Figure 2.1.

Our objective is to point out the relation between the action of Mh and the
action of the Laplacian, or the heat equation. To do so, we assume enough
regularity for u0, namely that it is C2. We shall actually prove in Theorem 3.2
that under that condition

Mhu0(x) = u0(x) +
h2

8
∆u0(x) + h2ε(x, h), (2.2)

where ε(x, h) tends to 0 when h→ 0. As we have seen in the introduction, (2.2)
provides the theoretical basis for deblurring an image by subtracting a small
amount of its Laplacian. It also suggests that Mh acts as one step forward in
the heat equation starting with initial condition u0,

∂u

∂t
(t,x) =

1

8
∆u(t,x), u(0,x) = u0(x). (2.3)

41
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Figure 2.1: Local averaging algorithm. Left to right: original image; result of
replacing the grey level at each pixel by the average of the grey levels over the
neighboring pixels. The shape of the neighborhood is shown by the black spot
displayed in the upper right-hand corner.

Figure 2.2: The Gaussian in two dimensions.

This statement is made more precise in Exercise 2.5. Equation (2.2) actually
suggests that if we let n → +∞ and at the same time require that nh2 → t,
then

(Mn
h u0)(x) → u(t,x) (2.4)

where u(t, x) is a solution of (2.3).

This heuristics justifies the need for a thorough analysis of the heat equation.
The next chapter will prove that (2.4) is true under fairly general conditions.
In the next section, we shall prove that the heat equation has a unique solution
for a given continuous initial condition u0, and that this solution at time t is
equal to the convolution Gt ∗ u0, where Gt is the Gaussian (Figure 2.2). The
effect on level lines of smoothing with the Gaussian is shown in Figure 2.4.
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2.2 Existence and uniqueness of solutions of the
heat equation

Definition 2.1. We say that a function g defined on RN is rapidly decreasing,
or has fast decay, if for each multi-index β there is a constant C such that

|x|β |g(x)| ≤ C.

We say that g belongs to the Schwartz class S if g ∈ C∞(RN ) and if ∂αg has
fast decay for each multi-index α.

Proposition 2.2. If g ∈ S, then g ∈ L1(RN ), that is,
∫

RN |g(x)|dx < +∞. For

each pair of multi-indices α, β, the function xβ∂αg also belongs to S, and ∂αg
is uniformly continuous on RN .

Proof. The second statement follows from the Leibnitz rule for differentiating
a product. By the definition of S, there is a constant C such that |x|N+2|g(x)| ≤
C. Thus there is another C such that |g(x)| ≤ C/(1 + |x|N+2); since C/(1 + |x|N+2) ∈
L1(RN ), g ∈ L1(RN ). Finally, note that |∂αg(x)| → 0 as |x| → ∞. But any
continuous function on RN that tends to zero at infinity is uniformly continuous.
�

Proposition 2.3 (The Gaussian and the heat equation). For all t > 0,

the function x 7→ Gt(x) = (1/(4πt)N/2)e−|x|2/4t belongs to S and satisfies the
heat equation

∂Gt

∂t
− ∆Gt = 0.

Proof. It is sufficient to prove the first statement for the function g(x) = e−|x|2 .

An induction argument shows that ∂αg(x) = Pα(x)e−|x|2 , where Pα(x) is a
polynomial of degree |α| in the variables x1, x2, . . . , xN . The fact that, for every

k ∈ N, xke−x2 → 0 as |x| → +∞ finishes the proof. Differentiation shows that
Gt satisfies the heat equation. �

Exercise 2.1. Check that Gt is solution of the heat equation.

Linear image filtering is mainly done by convolving an image u with a positive
integrable kernel g. This means that the smoothed image is given by the function
g ∗ u defined as

g ∗ u(x) =

∫

RN

g(x− y)u(y) dy =

∫

RN

g(y)u(x − y) dy.

Exercise 2.2. Prove that the convolution, when it makes sense, is translation invari-
ant. This means that g ∗ u(x − z) = gz ∗ u(x), where gz(x) = g(x− z).

Exercise 2.3. Check that Gt ∗Gs = Gt+s.

Linear filtering with the Gaussian at several scales is illustrated in Figure
2.3. The next result establishes properties of the convolution that we need for
our treatment of the heat equation.
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Figure 2.3: Convolution with Gaussian kernels (heat equation). Displayed from
top-left to bottom-right are the original image and the results of convolutions
with Gaussians of increasing variance. A grey level representation of the convo-
lution kernel is put on the right of each convolved image to give an idea of the
size of the involved neighborhood.

Proposition 2.4. Assume that u ∈ F and that g ∈ L1(RN ). Then the function
g ∗ u belongs to F and satisfies the inequality

‖g ∗ u‖F ≤ ‖g‖L1(RN )‖u‖F . (2.5)

Proof.

|g ∗ u(x)| ≤
∫

RN

|g(x−y)||u(y)| dy ≤ ‖u‖F
∫

RN

|g(x−y)| dy = ‖u‖F‖g‖L1(RN ).

�

Exercise 2.4. Verify that g ∗ u indeed is continuous and tends to u(∞) at infinity :
this a direct application of Lebesgue Theorem.

We are now going to focus on kernels that, like the Gaussian, belong to S.

Proposition 2.5. If u ∈ F and g ∈ S, then g ∗ u ∈ C∞(RN ) ∩ F and

∂α(g ∗ u) = (∂αg) ∗ u (2.6)

for every multi-index α.

Proof. Since g ∈ S, g is in L1(RN ), and so is ∂αg for any multi-index α
(Proposition 2.2). Thus by Proposition 2.4, (∂αg) ∗ u belongs to F . To prove
(2.6), it is sufficient to prove it for α = (1, 0, . . . , 0). Indeed, we know that ∂αg
is in S if g is in S, so the general case follows from the case α = (1, 0, . . . , 0) by
induction. Letting e1 = (1, 0, . . . , 0) and using Taylor’s formula with Lagrange’s
form for the remainder, we can write
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g ∗ u(x + he1) − g ∗ u(x) =

∫

RN

(g(x + he1 − y) − g(x − y))u(y) dy

=

∫

RN

(g(y + he1) − g(y))u(x − y) dy

= h

∫

RN

∂g

∂x1
(y)u(x − y) dy

+
h2

2

∫

RN

∂2g

∂x2
1

(y + θ(y)he1)u(x − y) dy,

(2.7)

where 0 ≤ θ(y) ≤ 1. To complete the proof, we wish to have a bound on the
last integral that is independent of x ∈ C. This last integral is of the form f ∗u,
where f is defined by f(y) = (∂2g/∂x2

1)(y+θ(y)he1). Since g ∈ S, ∂2g/∂x2
1 ∈ S,

and from this it is a simple computation to show that f is bounded and decays
fast at infinity. Having done this, Proposition 2.4 applies, and we deduce that
g ∗ u is differentiable in x1 and that ∂(g ∗ u)/∂x1 = (∂g/∂x1) ∗ u. �

Proposition 2.6. Assume that g decreases rapidly at infinity, that g(x) ≥ 0 for
all x ∈ RN , and that

∫

RN g(x) dx = 1 and set, for t > 0, gt(x) = (1/tN)g(x/t).
Then: If u0 ∈ F , gt ∗ u0 converges to u0 uniformly as t → 0. In addition, we
have a maximum principle :

inf
x∈C

u0(x) ≤ gt ∗ u0(x) ≤ sup
x∈C

u0(x). (2.8)

Proof. Note first that gt is normalized so that
∫

RN

gt(y) dy = 1. (2.9)

A change of variable x → tx and an application of Lebesgue’s theorem shows
that, for any η > 0, ∫

|y|≥η

gt(y) dy → 0 as t→ 0. (2.10)

Using (2.9), we have

gt ∗ u0(x) − u0(x) =

∫

RN

gt(y)(u0(x − y) − u0(x)) dy. (2.11)

As already mentioned, u0 ∈ F is uniformly continuous. Thus, for any ε > 0,
there is an η = η(ε) > 0 such that |u0(x− y) − u0(x)| ≤ ε when |y| ≤ η. Using
this inequality, we have

|gt ∗ u0(x) − u0(x)| ≤
∫

|y|<η

gt(y)|u0(x − y) − u0(x)| dy

+

∫

|y|≥η

gt(y)|u0(x − y) − u0(x)| dy

≤ε
∫

|y|<η

gt(y) dy + 2‖u‖L∞(C)

∫

|y|≥η

gt(y) dy.
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By (2.9) and (2.10), we conclude that gt ∗u tends to u0 uniformly in x as t→ 0.
Relation (2.8) is an immediate consequence of the assumption that gt(x) ≥ 0
and equation (2.9). �

Lemma 2.7. Let u0 ∈ F and u(t,x) = (Gt ∗ u0)(x). Then for every t0 > 0,
u(t,x) → u0(∞) uniformly for t ≤ t0 as x → ∞.

Proof. By assumption,

∀ε > 0, ∃R, |x| ≥ R ⇒ |u0(x) − u0(∞)| < ε. (2.12)

Because of the fast decay of the gaussian at infinity (or using Lebesgue’s theo-
rem, as in the former proof), we have

∀ε > 0, ∃r(ε), r ≥ r(ε) ⇒
∫

|y|≥r

Gt0(y)dy < ε. (2.13)

By using
∫
Gt(y)dy = 1, we deduce that

|u(t,x)−u(∞)| ≤
∫

|y|≤r

Gt(y)|u0(x−y)−u0(∞)|dy+

∫

|y|≥r

Gt(y)|u0(x−y)−u0(∞)|dy.

(2.14)
Using (2.13), the second term in (2.14) is bound from above for r ≥ r(ε) and
t ≤ t0 by

(2 sup |u0|)
∫

|y|≥r

Gt0(y) ≤ (2 sup |u0|)ε.

Fix therefore r ≥ r(ε). Then using
∫
Gt = 1, the first term in (2.14) is bound

by ε by (2.12) for |x| ≥ R+ r.
�

Lemma 2.8. Let u0 ∈ F and Gt the gaussian. Then

(∂Gt/∂t) ∗ u0 = ∂(Gt ∗ u0)/∂t.

Proof. Proposition 2.5 does not apply directly, since it applies to the spatial
partial derivatives of Gt but not to the derivative with respect to t. Observe,
however, that a slight modification of the proof of this proposition does the job:
Replace g with Gt and x1 with t. Then the crux of the matter is to notice that,
given an interval 0 < t0 < t1, there is a rapidly decreasing function f such that
|(∂2Gt/∂t

2)(t + θ(t)h,y)| ≤ f(y) uniformly for t ∈ [t0, t1], where f depends on
t0 and t1 but not on h. Then Proposition 2.4 applies, and the last integral in
equation (2.7) is uniformly bounded. �

All of the tools are in place to state and prove the main theorem of this
chapter.

Theorem 2.9 (Existence and uniqueness of solutions of the heat equa-
tion). Assume that u0 ∈ F and define for t > 0 and x ∈ RN , u(t,x) =
(Gt ∗ u0)(x), u(t,∞) = u0(∞) and u(0,x) = u0(x). Then
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(i) u is C∞ and bounded on (0,+∞) × R
N ;

(ii) x → u(t,x) belongs to F for every t ≥ 0;

(iii) for any t0 ≥ 0, u(t,x) tends uniformly for t ≤ t0 to u(∞) as x → ∞;

(iv) u(t,x) tends uniformly to u0(x) as t→ 0;

(v) u(t,x) satisfies the heat equation with initial value u0;

∂u

∂t
= ∆u and u(0,x) = u0(x); (2.15)

(vi) More specifically,
sup

x∈RN , t≥0

|u(t,x)| ≤ ‖u0‖F . (2.16)

Conversely, given u0 ∈ F , u(t,x) = (Gt ∗ u0)(x) is the only C2 bounded
solution u of (2.15) that satisfies properties (ii)-(v).

Proof. Let us prove properties (i)-(vi). For each t > 0, Gt ∈ S, so by Proposi-
tion 2.5 and Lemma 2.8,

∂u

∂t
− ∆u = u ∗

(
∂Gt

∂t
− ∆Gt

)

. (2.17)

Proposition 2.5 also tells us that u(t, ·) ∈ C∞(RN ) ∩ F for each t > 0. The
right-hand side of (2.17) is zero by Proposition 2.3, and the fact that |u(t,x)−
u0(x)| → 0 uniformly as t → 0 follows from Proposition 2.6. The inequal-
ity (2.16) is a direct application of Proposition 2.4. Relation (iii) comes from
Lemma 2.7.

Uniqueness proof. If both v and w are solutions of the heat equation with the
same initial condition u0 ∈ F , then u = v − w is in F and satisfies (2.15) with
the initial condition u0(x) = 0 for all x ∈ RN . Also, by the assumptions of (ii),
u is bounded on [0,+∞) × RN and is C2 on (0,+∞) × RN . We wish to show
that u(t,x) = 0 for all t > 0 and all x ∈ RN . Assume that this is not the case.
Then there is some point (t,x) where u(t,x) 6= 0. Assume that u(t,x) > 0, by
changing u to −u if necessary.

We now consider the function uε defined by uε(t,x) = e−εtu(t,x). This
function tends to zero uniformly in x as t → 0 and as t → +∞. It also tends
uniformly to zero for each t ≤ t0 when x → ∞. These conditions imply that uε

attains its supremum at some point (t0,x0) ∈ (0,+∞) × RN , and this means
that ∆uε(t0,x0) = e−εt∆u(t0,x0) ≤ 0 and (∂uε/∂t)(t0,x0) = 0. Here is the
payoff: Using the fact that u is a solution of the heat equation, we have the
following relations:

0 =
∂uε

∂t
(t0,x0) = −εuε(t0,x0) + e−εt ∂u

∂t
(t0,x0)

= −εuε(t0,x0) + e−εt∆u(t0,x0) ≤ −εuε(t0,x0) < 0.

This contradiction completes the uniqueness proof. �
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Figure 2.4: Level lines and the heat equation. Top, left to right: original
410×270 grey level image; level lines of original image for levels at multiples
of 12. Bottom, left to right: original image smoothed by the heat equation
(convolution with the Gaussian). The standard deviation of the Gaussian is 4,
which means that its spatial range is comparable to a disk of radius 4. The
image gets blurred by the convolution, which averages grey level values and
removes all sharp edges. This can be appreciated on the right, where we have
displayed all level lines for levels at multiples of 12. Note how some level lines
on the boundaries of the image have split into parallel level lines that have
drifted away from each other. The image has become smooth, but it is losing
its structure.

2.3 Exercises

Exercise 2.5. The aim of this exercise is to prove relation (2.2) and its consequence:
A local average is equivalent to one step forward of the heat equation. Theorem 3.2
yields actually a more general statement.

1) Expanding u0 around the point x using Taylor’s formula, write

u0(x + y) = u0(x) +Du0(x) · y +
1

2
D2u0(x)(y,y) + o(|y|2). (2.18)

Expand the various terms using the coordinates (x, y) of x.

2) Apply Mh to both sides of this expansion and deduce relation (2.2).

3) Assume u0 ∈ F and consider the solution u(t,x) of the heat equation (2.3) Then,
for fixed t0 > 0 and x, apply Mh to the function ut0 : x → u(t0,x) and write equation
(2.2) for ut0 . Using that u(t,x) is a solution of the heat equation and its Taylor
expansion between t0 and t0 + h, deduce that

Mhu(t0,x) = u(t0 + h2,x) + h2ε(t0,x, h). (2.19)
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Exercise 2.6. Consider the sphere SN = {z ∈ R
N+1, ||z|| = 1}. Prove that the

mapping T : R
N ∪ {∞} → SN defined in Proposition 1.1 by

T (x) =

(
2x

1 + x2
,

x2 − 1

x2 + 1

)

, T (∞) = (0, 1).

is a homeomorphism.

Exercise 2.7. Let u0 be a continuous function defined on R
N having the property

that there exist a constant C > 0 and an integer k such that

|u0(x)| ≤ C(1 + |x|k)

for all x ∈ R
N . Show that the function u defined by u(t,x) = Gt ∗u0(x) is well defined

and C∞ on (0,∞)×R
N and that it is a classical solution of the heat equation. Hints:

Everything follows from the fact that the Gaussian and all of its derivatives decay
exponentially at infinity.

Exercise 2.8. We want to prove the general principle that any linear, translation
invariant and continuous operator T is a convolution, that is Tu = g∗u for some kernel
g. This is one of the fundamental principles of both mechanics and signal processing,
and it has many generalizations that depend on the domain, range, and continuity
properties of T . For instance, assume that T is translation invariant (commutes with
translations) and is continuous from L2(RN ) into L∞(RN) ∩ C0(RN). Show that
Tu = g ∗ u, where the convolution kernel g is in L2(RN ). This is a direct consequence
of Riesz theorem, which states that every bounded linear functional on L2(RN) has
the form f 7→

∫

RN f(x)g(x) dx for some g ∈ L2(RN ). Show that if u ≥ 0 (u(x) ≥ 0
for all x) implies Tu ≥ 0, then g ≥ 0.

2.4 Comments and references

The heat equation. One should not conclude from Theorem 2.9 that the
solutions of the heat equation are always unique. The assumption in (ii) that
the solution was bounded is crucial. In fact, without this assumption, there
are solutions u that grow so fast that gu is not in L1(RN ) for g ∈ S (see, for
example, [242, page 217]). The existence and uniqueness proof of Theorem 2.9
is classic and can be found in most textbooks on partial differential equations,
such as Evans [73], Taylor [242], or Brezis [33].

Convolution. The heat equation—its solutions and their uniqueness—has
been the main topic in this chapter, but to approach this, we have studied
several aspects of the convolution, such as the continuity property (2.5). We
also noted that the convolution commutes with translation. Conversely, as a
general principle, any linear, translation invariant and continuous operator T
is a convolution, that is, Tu = g ∗ u for some kernel g. This is a direct con-
sequence of a result discovered independently by F. Riesz and M. Fréchet in
1907 (see [210, page 61] and exercise 2.8). Since we want smoothing to be
translation invariant and continuous in some topology, this means that linear
smoothing operators—which are called filters in the context of signal and image
processing—are described by their convolution kernels. The Gaussian serves as
a model for linear filters because it is the only one whose shape is stable under
iteration. Other positive filters change their shape when iterated. This fact will
be made precise in the next chapter where we show that a large class of iterated
linear filters behaves asymptotically as a convolution with the Gaussian.
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Smoothing and the Laplacian. One of the first tools proposed in the early
days of image processing in the 1960s came, not surprisingly, directly from signal
processing. The idea was to restore an image by averaging the gray levels locally
(see, for example, [93] and [107]). The observation that the difference between
an image and its local average is proportional to the Laplacian of the image
has proved to be one of the most fruitful contributions to image processing. As
noted in the Introduction, this method for deblurring an image was introduced
by Kovasznay and Joseph in 1955 [136], and it was studied and optimized by
Gabor in 1965 [87] (information taken from [147]). (See also [114] and [115].)
Burt and Adelson based their Laplacian pyramid algorithm on this idea, and
this was one of the results that led to multiresolution analysis and wavelets [36].
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Chapter 3

Iterated Linear Filters and
the Heat Equation

The title of this chapter is self-explanatory. The next section fixes fairly general
conditions so that the difference of a smoothed image and the original be pro-
portional to the Laplacian. The second section proves the main result, namely
the convergence of iterated linear filters to the heat equation. So the choice
of a smoothing convolution kernel is somewhat forced : Iterating the convolu-
tion with a smoothing kernel is asymptotically equivalent to the convolution
with a Gauss function. This result is known in Probability as the central limit
theorem, where it has a quite different interpretation. In image processing, it
justifies the prominent role of Gaussian filtering. A last section is devoted to
linear directional filters and their associated differential operators.

3.1 Smoothing and the Laplacian

There are minimal requirements on the smoothing kernels g which we state in
the next definition.

Definition 3.1. We say that a real-valued kernel g ∈ L1(RN ) is Laplacian
consistent if it satisfies the following moment conditions:

(i)
∫

RN g(x) dx = 1.

( ii) For i = 1, 2, . . . , N ,
∫

RN xig(x) dx = 0.

( iii) For each pair i, j = 1, 2, . . . , N , i 6= j,
∫

RN xixjg(x) dx = 0.

( iv) For i = 1, 2, . . . , N ,
∫

RN x2
i g(x) dx = σ, where σ > 0.

(v)
∫

RN |x|3|g(x)| dx < +∞.

Note that we do not assume that g ≥ 0; in fact, many important filters used
in signal and image processing are not positive. However, condition (i) implies
that g is “on average” positive. A discussion of the necessity of the requirements
(i) − (v) is performed in Exercise 3.4.

51
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Figure 3.1: The rescalings gt(x) = (1/t2)g(x/t) of a kernel for t=4, 3, and 2.

We say that a function g is radial if g(x) = g(|x|), x ∈ R
N . This is equivalent

to saying that g is invariant under all rotations around the origin in RN . As
pointed out in Exercise 3.3, any radial function g ∈ L1(RN ) can be rescaled to
be Laplacian consistent if it decays fast enough at infinity and if

∫

RN x2
i g(x) dx

and
∫

RN g(x) dx have the same sign.
We consider rescalings of a kernel g defined by

gh(x) =
1

hN/2
g
( x

h1/2

)

(3.1)

for h > 0 (see Figure 3.1). Notice that this rescaling differs slightly from the
one used in Section 1.2. We have used the factor h1/2 here because it agrees
with the factor t1/2 in the Gaussian. We denote the convolution of g with itself
n times by gn∗. The main result of this section concerns the behavior of gn∗

h as
n→ +∞ and h→ 0.

Exercise 3.1. Prove the following two statements:

(i) gh is Laplacian consistent if and only if g is Laplacian consistent.

(ii) If g ∈ L1(RN ), then (gh)n∗ = (gn∗)h.

Theorem 3.2. If g is Laplacian consistent, then for every u ∈ F ∩ C3(IRN ),

gh ∗ u(x) − u(x) = h
σ

2
∆u(x) + ε(h,x) (3.2)

where |ε(h,x)| ≤ Ch3/2.

Proof. We use condition (i), the definition of gh, and rescaling y = h1/2z inside
the integral to see that

gh ∗ u(x) − u(x) =

∫

RN

1

hN/2
g
( y

h1/2

)(
u(x − y) − u(x)

)
dy

=

∫

RN

g(z)
(
u(x − h1/2z) − u(x)

)
dz.

Using Taylor’s formula with the Lagrange remainder (I.1), we have

u(x − h1/2z) − u(x) = −h1/2Du(x) · z +
h

2
D2u(x)(z, z)

−1

6
h3/2D3u(x− h1/2θz)(z, z, z),
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where θ = θ(x, z, h) ∈ [0, 1]. By condition (ii),
∫

RN g(z)Du(x) · zdz = 0; by
conditions (iii) and (iv),

∫

RN g(z)D2u(x)(z, z) dz = σ∆u(x). Thus,

gh ∗ u(x) − u(x) = h
σ

2
∆u(x) − 1

6
h3/2

∫

RN

g(z)D3u(x − h1/2θz)(z, z, z) dz.

We denote the error term by ε(h,x). Then we have the following estimate:

|ε(h,x)| ≤1

6
h3/2

∫

RN

|g(z)D3u(x − h1/2θz)(z, z, z)| dz

≤1

6
h3/2N3 sup

α,x
|∂αu(x)|

∫

RN

|z|3|g(z)| dz,

where the supremum is taken over all vectors α = (α1, α2, · · · , αN ), αj ∈
{1, 2, 3}, such that |α| = 3 and over all x ∈ RN . �

The preceding theorem shows a direct relation between smoothing with a
Laplacian-consistent kernel and the heat equation. It also shows why we require
σ to be positive: If it is not positive, the kernel is associated with the inverse
heat equation (see Exercise 3.4.)

3.2 The convergence theorem

The result of the next theorem is illustrated in Figure 3.2.

Theorem 3.3. Let g be a nonnegative Laplacian-consistent kernel with σ = 2
and define gh by (3.1). Write Thu0 = gh∗u0 for u0 ∈ F , and let u(t, ·) = Gt ∗u0

be the solution of the heat equation (2.15). Then, for each t > 0,

(T n
h u0)(x) → u(t,x) uniformly in x as n→ +∞ and nh→ t. (3.3)

Proof. Let us start with some preliminaries. We have (gh ∗ u0)(∞) = u0(∞)
and therefore T n

h u0(∞) = u0(∞). The norm in F is ||u||F = supx∈SN
|u(x)| =

supx∈RN |u(x)|. The first order of business is to say precisely what is meant
by the asymptotic limit (3.3): Given t > 0 and given ε > 0, there exists an
n0 = n0(t, ε) and a δ = δ(t, ε) such that ‖T n

h u0 − u(t, ·)‖F ≤ ε if n > n0 and
|nh − t| ≤ δ. This is what we must prove. We will first prove the result when
h = t/n. We will then show that the result is true when h is suitably close to
t/n.

We begin with comments about the notation. By Exercise 3.1, (Th)n =
(T n)h, so there is no ambiguity in writing T n

h . We will be applying T n
h to the

solution u of the heat equation, which is C∞ on (0,+∞)×RN . In this situation,
t is considered to be a parameter, and we write T n

h u(t,x) as shorthand for
T n

h u(t, ·)(x). Throughout the proof, we will be dealing with error terms that we
write as O(hr). These terms invariably depend on h, t, and x. However, in all
cases, given a closed interval [t1, t2] ⊂ (0,+∞), there will be a constant C such
that |O(hr)| ≤ Chr uniformly for t ∈ [t1, t2] and x ∈ RN . Finally, keep in mind
that all functions of x tend to u0(∞) as x → ∞.

We wish to fix an interval [t1, t2], but since this depends on the point t in
(3.3) and on ε, we must first choose these numbers. Thus, choose τ > 0 and
keep it fixed. This will be the “t” in (3.3). Next, choose ε > 0. Here are the
conditions we wish t1 and t2 to satisfy:



i

i

54CHAPTER 3. ITERATED LINEAR FILTERS AND THE HEAT EQUATION

Figure 3.2: Iterated linear smoothing converges to the heat equation. In this
experiment with one-dimensional functions, it can be appreciated how fast an
iterated convolution of a positive kernel converges to a Gaussian. On the left
are displayed nine iterations of the convolution of the characteristic function
of an interval with itself, with appropriate rescalings. On the right, the same
experiment is repeated with a much more irregular kernel. The convergence is
almost as fast as the first case.

(1) t1 is small enough so ‖u(t1, ·) − u0‖F < ε. (This is possible by Theorem
2.9.)

(2) t1 is small enough so ‖u(t1 + τ, ·)− u(τ, ·)‖F < ε. (Again, by Theorem 2.9.)

(3) t2 is large enough so t1 + τ < t2.

There is no problem meeting these conditions, so we fix the interval [t1, t2] ⊂
(0,+∞).

Step 1, main argument : proof that

lim
n→+∞

nh=τ

T n
h u(t1,x) = u(t1 + τ,x), (3.4)

where the convergence is uniform for x ∈ R
N .

We can use Theorem 3.2 to write

Thu(t,x) − u(t,x) = h∆u(t,x) +O(h3/2), (3.5)

where t ∈ [t1, t2]. That the error function is bounded uniformly by Ch3/2 on
[t1, t2] × RN follows from the fact that supα,t,x |∂αu(t,x)| is finite for (t,x) ∈
[t1, t2] × RN (see the proof of Theorem 3.2). Since u is a solution of the heat
equation, we also have by Taylor-Lagrange formula (I.1),

u(t+h,x)−u(t,x) = h
∂u

∂t
(t,x)+

h2

2

∂2

∂t2
u(t+θh,x) = h∆u(t,x)+O(h2). (3.6)

This time the error term is bounded uniformly by Ch2 on [t1, t2]×R
N because

∂2u
∂t2 (t,x) is bounded on [t1, t1]×RN . By subtracting (3.6) from (3.5) we see that

Thu(t,x) = u(t+ h,x) +O(h3/2). (3.7)

This shows that applying Th to a solution of the heat equation at time t advances
the solution to time t+ h, plus an error term.
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So far we have not used the assumption that g is nonnegative. Thus, (3.7)
is true for any Laplacian-consistent kernel g with σ = 2. However, we now wish
to apply the linear operator Th to both sides of equation (3.7), and in doing so
we do not want the error term to increase. Since g ≥ 0, this is not a problem:

|ThO(h3/2)| ≤
∫

RN

|O(h3/2)|gh(x − y) dy ≤
∫

RN

Ch3/2gh(x − y) dy = Ch3/2.

With this in hand, we can apply Th to both sides of (3.7) and obtain

T 2
hu(t,x) = Thu(t+ h,x) +O(h3/2). (3.8)

If we write equation (3.7) with t+ h in place of t and substitute the expression
for Thu(t+ h,x) in equation (3.8), we have

T 2
hu(t,x) = u(t+ 2h,x) + 2O(h3/2). (3.9)

We can iterate this process and get

T n
h u(t,x) = u(t+ nh,x) + nO(h3/2) (3.10)

with the same constant C in the estimate |O(h3/2)| ≤ Ch3/2 as long as t+nh ∈
[t1, t2]. To ensure that this happens, we take t = t1 and h = τ/n. Then

T n
h u(t1,x) = u(t1 + τ,x) +O

(( τ

n

)1/2)

(3.11)

and we obtain (3.4). If we could take t1 = 0, this would end the proof. This
is not possible because all of the O terms were based on a fixed interval [t1, t2].
However, we have taken t1 small enough to finish the proof .

Step 2 : getting rid of t1.
Since

∫

RN g(x) dx = 1, ‖gh‖L1(RN ) = 1, and thus

‖gn∗
h ∗ v‖F ≤ ‖v‖F .

If we take v = u(t1, ·) − u0, then this inequality and condition (1) imply that

‖T n
h u(t1, ·) − T n

h u0‖F < ε. (3.12)

Relations (3.12) and (3.11) imply that

‖T n
h u0 − u(t1 + τ, ·)‖F < 2ε. (3.13)

This inequality and condition (2) show that

‖T n
h u0 − u(τ, ·)‖F < 3ε (3.14)

for n > n0 and h = τ/n. This proves the theorem in the case h = τ/n.

Conclusion. It is a simple matter to obtain the more general result. Again,
by Theorem 1.10, there is a δ = δ(τ, ε) such that |nh − τ | < δ implies that
‖u(nh, ·) − u(τ, ·)‖F < ε and that nh ∈ [t1, t2] (by condition (3)). Combining
this with (3.14) shows that

‖T n
h u0 − u(nh, ·)‖F < 4ε

if n > n0 and |nh− τ | < δ, and this completes the proof. �
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3.3 Directional averages and directional heat equa-
tions

In this section, we list easy extensions of Theorem 3.2. They analyze local
averaging processes which take averages at each point in a singular neighbor-
hood made of a segment. In that way, we will make appear several nonlinear
generalizations of the Laplacian which will accompany us throughout the book.
Consider a C2 function from RN into R and a vector z ∈ RN with |z| = 1. We
wish to compute the mean value of u along a segment of the line through x
parallel to the vector z. To do this, we define the operator Tz

h , h ∈ [−1, 1], by

Tz
h u(x) =

1

2h

∫ h

−h

u(x + sz) ds.

This operator is the directional counterpart of the isotropic operator Mh defined
by equation (1.1).

Proposition 3.4.

Tz
h u(x) = u(x) +

h2

6
D2u(x)(z, z) + o(h2).

Proposition 3.4 is deduced from Theorem 3.2, and it suggests that iterations
of the operator Tz

h are associated with the directional heat equation

∂u

∂t
(t,x) =

1

6
D2u(t,x)(z, z) (3.15)

in the same way that the iterations of the operator Th in Theorem 3.3 are
associated with the ordinary heat equation. If z is fixed, then the operator Tz

h

and equation (3.15) act on u along each line in RN parallel to z separately;
there is no “cross talk” between lines. Exercise 3.5 formalizes and clarifies these
comments when z is fixed. However, Proposition 3.4 remains true when z is a
function of x. This means that we are able to approximate the directional second
derivative by taking directional averages where z varies from point to point.
The main choices considered in the book are z = Du/|Du| and z = Du⊥/|Du|,
where Du = (ux, uy) and Du⊥ = (−uy, ux). Then by Proposition 3.4 we have
the following limiting relations:

• Average in the direction of the gradient. By choosing z = Du/|Du|,
1

|Du|2D
2u(Du,Du) = 6 lim

h→0

T
Du/|Du|
h u− u

h2
.

We will interpret this differential operator as Haralick’s edge detector in sec-
tion 6.1.

• Average in the direction orthogonal to the gradient. By choosing z = Du/|Du⊥|,

1

|Du|2D
2u(Du⊥, Du⊥) = 6 lim

h→0

T
Du⊥/|Du|
h u− u

h2
.

This differential operator appears as the second term of the curvature equa-
tion. (See Chapter 18.)

Although we have not written them as such, the limits are pointwise in both
cases.
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3.4 Exercises

Exercise 3.2. We will denote the characteristic function of a set A ⊂ R
N by 1A. Thus,

1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. Consider the kernel g = (1/π)1D(0,1),
where D(0, 1) is the disk of radius one centered at zero. In this case, g is a radial
function and it is clearly Laplacian consistent. For N = 2, let A = [−1/2, 1/2] ×
[−1/2, 1/2]. Then g = 1A is not radial. Show that it is, however, Laplacian consistent.
If we take B = [−1, 1]×[−1/2, 1/2], then g = (1/2)1B is no longer Laplacian consistent
because it does not satisfy condition (iv). Show that this kernel does, however, satisfy
a relation similar to (3.2).

Exercise 3.3. The aim of the exercise is to prove roughly that radial functions with
fast decay are Laplacian consistent. Assume g ∈ L1(RN) is radial with finite first
second moments,

∫

RN |x|k|g(x)|dx < +∞, k = 0, 1, 2, 3 and such that
∫

RN x2
i g(x) dx >

0. Show that g satisfies conditions (ii) and (iii) of Definition 3.1 and that, for suitably
chosen a, b ∈ R, the rescaled function x 7→ ag(x/b) satisfies conditions (i) and (iv),
where σ can be taken to be an arbitrary positive number.

Exercise 3.4. The aim of the exercise is to illustrate by simple examples what happens
to the iterated filter gn∗, n ∈ N when g does not satisfy some of the requirements of
the Laplacian consistency (Definition 3.1). We recall the notation (3.1), gh(x) =

1

hN/2 g
(

x
h1/2

)

.

1) Take on R, g(x) = 1 on [−1, 1], g(x) = 0 otherwise. Which one of the assumptions
(i) − (v) is not satisfied in Definition 3.1 ? Compute gn∗

1
n

∗ u, where u = 1 on R.

Conclude : the iterated filter blows up.

2) Take on R, g(x) = 1 on [0, 1], g(x) = 0 otherwise. Which one of the assumptions
(i) − (v) is not satisfied in Definition 3.1 Compute gn∗ ∗ u, where u(x) = x on R.
Conclude : the iterated filter “drifts”.

3) Assume that the assumptions (i) − (v) hold, except (iii). By a simple adaptation
of its proof, draw a more general form of Theorem 3.2.

4) Perform the same analysis as in 3) when all assumptions hold but (iv).

5) Take the case of dimension N = 1 and assume that (i) hold but (ii) does not hold.

Set gh(x) = 1
h
g
(
x
h

)

and give a version of Theorem 3.2 in that case (make an order 1

Taylor expansion of u).

Exercise 3.5. Let z be a fixed vector in R
N with |z| = 1 and let u0 be in F . Define

a one-dimensional kernel g by g(s) = 1
2
1[−1,1](s).

(i) Show that g is Laplacian consistent. Compute the variance σ of g.

(ii) Show that

u(t,x) =

∫

R

u0(x + sz)Gt(s) ds

is a solution of the directional heat equation

∂u

∂t
(t,x) = D2u(t,x)(z, z), u(0,x) = u0(x). (3.16)

Give an example to show that u(t, ·) is not necessarily C2. This being the case,
how does one interpret the right-hand side of (3.16)?

(iii) Let gh(s) = (6h)−1/2g(s/(6h)−1/2) and Thu(x) =
∫

R
u(x + sz)gh(s) ds. By ap-

plying Theorem 3.3 for N = 1, show that, for each t > 0,

Tn
h u0 → u(t, ·) in F as n→ +∞ and nh→ t. (3.17)
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Exercise 3.6. The Weickert equation can be viewed as a variant of the curvature equa-
tion [256]. It uses a nonlocal estimate of the direction orthogonal to the gradient for
the diffusion direction. This direction is computed as the direction v of the eigenvector
corresponding to the smallest eigenvalue of k ∗ (Du⊗Du), where (y⊗y)(x) = (x ·y)y
and k is a smooth kernel, typically a gaussian. Prove that if the convolution kernel is
removed, then this eigenvector is simply Du⊥. So the equation writes

∂u

∂t
= uηη, (3.18)

where η denotes the coordinate in the direction v.

Exercise 3.7. Suppose that u ∈ C2(R). Assuming that u′(x) 6= 0, show that

u′′(x) = lim
h→0

1

h2

(

max
s∈[−h,h]

u(x+ s) + min
s∈[−h,h]

u(x+ s) − 2u(x)
)

. (3.19)

What is the value of the right-hand side of (3.19) if u′(x) = 0?
Now consider u ∈ C2(R2). We wish to establish an algorithm similar to (3.19) to

compute the second derivative of u in the direction of the gradient Du = (ux, uy). For
this to make sense, we must assume that Du(x) 6= 0. With these assumptions, we
know from (3.19) that

uξξ(x) =
∂2v

∂ξ2
(x, 0) = lim

h→0

1

h2

(

max
s∈[−h,h]

u(x+ sz)+ min
s∈[−h,h]

u(x+ sz)− 2u(x)
)

, (3.20)

where v(x, ξ) = u(x + ξz) and z = Du/|Du|. The second part of the exercise is to
prove that, in fact,

uξξ(x) = lim
h→0

1

h2

(

max
y∈D(0,h)

u(x + y) + min
y∈D(0,h)

u(x + y) − 2u(x)
)

, (3.21)

where D(0, h) is the disk of radius h centered at the origin. Intuitively, (3.21) follows
from (3.20) because the gradient indicates the direction of maximal change in u(x), so
in the limit as h→ 0, taking max and min in the direction of the gradient is equivalent
to taking max and min in the disk. The point of the exercise is to formalize this.

3.5 Comments and references

Asymptotics. Our proof that iterated and rescaled convolutions of a Laplacian-
consistent kernel tend asymptotically to the Gaussian is a version of the De
Moivre–Laplace formula, or the central limit theorem, adapted to image pro-
cessing [32]. This result is particularly relevant to image analysis, since it implies
that iterated linear smoothing leads inevitably to convolution with the Gaus-
sian, or equivalently, to the application of the heat equation. We do not wish to
imply, however, that the Gaussian is the only important kernel for image pro-
cessing. The Gaussian plays a significant role in our form of image analysis, but
there are other kernels that, because of their spectral and algebraic properties,
have equally important roles in other aspects of signal and image processing.
This is particularly true for wavelet theory which combines recursive filtering
and sub-sampling.

Directional diffusion. Directional diffusion has a long history that began
when Hubel and Wiesel showed the existence of direction-sensitive cells in the
visual areas of the neocortex [112]. There has been an explosion of publication
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on directional linear filters, beginning, for example, with influential papers such
as that by Daugman [65]. We note again that Gabor’s contribution to directional
filtering is described in [147].
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Chapter 4

From continuous to digital
images, and back

Consider a continuous and bounded image u(x) defined for every x = (x, y) ∈
R2. All continuous image operators including the sampling will be written in
capital letters A, B and their composition as a mere juxtaposition AB. For
any affine map A of the plane consider the affine transform of a continuous
image u defined by Au(x) =: u(Ax). For instance Hλu(x) =: u(λx) denotes an
expansion of u by a factor λ−1. In the same way if R is a rotation, Ru =: u ◦R
is the image rotation by R−1.

Sampling and interpolation

Digital images, only defined for (n1, n2) ∈ IZ2, will be denoted by u(n1, n2).
The δ-sampled image u = Sδu is defined on IZ2 by

u(n1, n2) = (Sδ)u(n1, n2) =: u(n1δ, n2δ); (4.1)

Conversely, the Shannon interpolate of a digital image u is defined as follows
[91]. Let u be a digital image, defined on IZ2 and such that

∑

n∈IZ2 |u(n)|2 <∞
and

∑

n∈IZ2 |u(n)| <∞. (Of course, these conditions are automatically satisfied
if the digital has a finite number of non-zero samples, which is the case here.)
We call Shannon interpolate Iu of u the only L2(R2) function u having u as
samples and with spectrum support contained in (−π, π)2. u = Iu is defined
by the Shannon-Whittaker formula

Iu(x, y) =:
∑

(n1,n2)∈IZ2

u(n1, n2)sinc(x− n1)sinc(y − n2),

where sinc x =: sin πx
πx . The Shannon interpolation has the fundamental property

S1Iu = u. Conversely, if u is L2 continuous image, band-limited in (−π, π)2,
then

IS1u = u. (4.2)

In that case we simply say that u is band-limited. We shall also say that a digital
image u = S1u is well-sampled if it was obtained from a band-limited image u.
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4.0.1 The practical Shannon interpolation: zero-padding

Of course, the Shannon interpolate is unpractical in that it assumes the knowl-
edge of infinitely many samples. In practice image samples and image interpo-
lation will be performed on rectangle. For a sake of simplicity we describe here
what happens on a square. Let a > 0 and consider a function u from [0, a]2 to
IR such that u(x + a, y + a) = u(x, y). Fix an integer N , and consider the N2

samples of u, uk,l = (Su)
(

ka
N , la

N

)
on [0, a]2.

Definition 4.1. The discrete Fourier transform (DFT) of the N2 samples
u = (uk,l)k,l=0,1,...,N−1 is the double sequence of discrete Fourier coefficients
for m,n ∈ {−N

2 , ...,
N
2 − 1} defined by

DFT (u)m,n = ũm,n =
1

N2

N−1∑

k=0

N−1∑

l=0

uk,lω
−mk
N ω−nl

N , (4.3)

where ωN =: e
2iπ
N is the first N -root of 1.

Proposition 4.2. Consider the trigonometric polynomial

Iu(x, y) =

N
2 −1
∑

m,n=−N
2

ũm,n exp(
2iπmx

a
) exp(

2iπny

a
). (4.4)

Then its coefficients ũm,n are the only complex numbers such that for every
k, l ∈ {0, ..., N−1}, Iu

(
ka
N , la

N

)
= u

(
ka
N , la

N

)
. In consequence, the discrete inverse

transform of the DFT u → ũ is nothing but the calculation of the value of the
polynomial at the samples (ka

N , la
N ), 0 ≤ k, l ≤ N−1. In other terms, setting

ũ = DFT (u), the inverse transform DFT−1 is given by

u(k, l) =

N
2 −1
∑

−N
2

N
2 −1
∑

−N
2

ũm,nω
km+ln
N ,

for every k, l = 0, 1, . . .N − 1.

Exercise 4.1. Recall that ωN = exp
(

2iπ
N

)
, N-th root of 1. Show that

∑N−1
k=0 ω

k
N = 0,

and that
∑N−1

k=0 ω
kl
N = 0 for l 6= 0 moduloN and finally that for every k0,

∑k0+N−1
k=k0

ωkl
N =

0 for all l 6= 0 modulo N . Using these relation show the above proposition, namely
that DFT (DFT−1) = Id.

In conclusion, the interpolation and sampling operators we shall consider
both in theory and practice are the usual sampling S, implicitly restricted to a
square. The inverse interpolation operator I is defined by (4.4), and Proposition
4.2 tells us that SIu = u. The next statement gives the converse statement.

Proposition 4.3. If u(x, y) is a a-periodic band-limited function, then it is a
trigonometric polynomial. If its highest degree is N

2 − 1, with N even, then its

coefficients ũm,n are obtained by DFT from the samples u(k, l) = u(ka
N , la

N ). In
consequence for such functions we have ISu = u.

Exercise 4.2. Give a detailed proof of Proposition 4.3. It is a direct consequence of
Proposition 4.2.

In the rest of this chapter and of the book, we shall always take the functional
setting of Proposition 4.3.
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Zoom in by zero-padding

Let (uk,l) be a digital image and define its zoomed version (vi,j)i,j=0, ..., 2N−1 as
the inverse discrete Fourier transform of ṽi,j defined for i, j = −N, ..., N−1 by

ṽm,n = ũm,n if − N

2
≤ m,n ≤ N

2
− 1, ṽm,n = 0 otherwise. (4.5)

Proposition 4.4. The image v whose Discrete Fourier Transform is given by
(4.5) satisfies v2k,2l = uk,l, for k, l = 0, ..., N−1.

Proof. Here is the proof in dimension 1:

v2k =

N−1∑

−N

ṽnω
2nk
2N =

N
2 −1
∑

−N
2

ũnω
nk
N = uk.

Indeed, ω2nk
2N = ωnk

N . �

Exercise 4.3. Prove Proposition (4.4) in two dimensions.

4.1 The Gaussian semigroup

For a sake of simple notation, Gσ denotes the convolution operator on R
2

with the gauss kernel Gσ(x1, x2) = 1
2π(σ)2 e

−x2
1+x2

2
2(σ)2 , namely Gσu(x, y) =: (Gσ ∗

u)(x, y). Notice that the paramaterization of the gaussian is not the same as the
parameterization used for the heat equation. To make a difference in notation,
we use Greek letters for the new parameter. It is easily checked that Gσ satisfies
the semigroup property

GσGβ = G√
σ2+β2 . (4.6)

Exercise 4.4. Prove (9.1).

The proof of the next formula is a mere change of variables in the integral
defining the convolution.

GσHγu = HγGσγu. (4.7)

Exercise 4.5. Prove (9.2).

Discrete Gaussians

Many algorithms in computer vision and image processing assume that all blurs
can be assumed gaussian. Thus, it will be crucial to prove that gaussian blur
gives in practice well-sampled images. Thus, in all that follows, we are deal-
ing with initial digital images obtained by sampling a continuous image with
gaussian blur, u = S1Gcu0;

Another question we need to deal with is how to perform a gaussian con-
volution on a discrete (digital) image. This is valid if and only if a discrete
convolution can give an account of the underlying continuous one.
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Definition 4.5. The discrete gaussian convolution applied to a digital
image u is defined as a digital operator by

Gδu =: S1GδIu. (4.8)

Proposition 4.6. This definition maintains the gaussian semi-group property,

GδGβ = G√
δ2+β2 . (4.9)

Proof Indeed, using twice (4.8) and once (9.1) and (4.2),

GδGβu = S1GδIS1GβIu = S1GδGβIu = S1G√δ2+β2Iu = G√
δ2+β2u.

�

The SIFT method that we will study in detail uses repeatedly the semi-
group formula and a 2-sub-sampling of images with a gaussian blur larger than
1.6. These SIFT sampling manoeuvres are valid if and only if the empirical
proposition below is true.

Proposition 4.7. For every σ larger than 0.8 and every continuous and bounded
image u0, the gaussian blurred image Gσu0 is well sampled, namely IS1Gσu0 =
Gσu0.

This proposition is not a mathematical statement, but it will be checked
experimentally in the next section, where we shall see that a 0.6 blur is enough
to ensure good sampling in practice.

4.2 The right gaussian blur for well-sampling

Images need to be blurred before they are sampled. In principle gaussian blur
cannot lead to a good sampling because it is not stricto sensu band limited.
Therefore the Shannon-Whittaker formula does not apply. However, in practice
it does. The aim in this section is to define a procedure that checks that a
gaussian blur works and to fix the minimal variance of the blur ensuring well-
sampling (up to a minor mean square and visual error).

One must distinguish two types of blur: The absolute blur with standard
deviation ca is the one that must be applied to an ideal infinite resolution (blur
free) image to create an approximately band-limited image before 1-sampling.
The relative blur σ = cr(t) is the one that must be applied to a well-sampled
image before a sub-sampling by a t factor. In the case of gaussian blur, because
of the semi-group formula (9.1), the relation between the absolute and relative
blur is

t2c2
a = c2

r(t) + c2
a,

which yields

cr(t) = ca

√

t2 − 1. (4.10)

In consequence, if t≫ 1, then cr(t) ≈ cat.
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Figure 4.1: Top left: u. Top right: MSE(u1,u2) vs cr(4). Middle (from left
to right): u1 and u2 with cr(4) = 1.2. MSE(u1,u2)=17.5. Bottom (from left
to right): u1 and u2 with cr(4) = 2.4. MSE(u1,u2)=0.33. Digital images are
always displayed by coloring each square pixel with its central sample value.
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Two experiments have been designed to calculate the anti-aliasing absolute
gaussian blur ca ensuring that an image is approximately well-sampled. The
first experiment compares for several values of cr(t) the digital images

u1 =: G
cr(t)u = S1Gcr(t)Iu and

u2 =: (S1/tI)StGcr(t)Iu = (S1/tI)StGcr(t)Iu,

where u is an initial digital image that is (intuitively) well-sampled, St is a t sub-
sampling operator, S 1

t
a t over-sampling operator, and I a Shannon-Whitakker

interpolation operator. The discrete convolution by a gaussian is defined in
(4.8). Since t is an integer, the t sub-sampling is trivial.

If the anti-aliasing filter size cr(t) is too small, u1 and u2 can be very
different. The right value of cr(t) should be the smallest value permitting
u1 ≈ u2. Fig. 4.1 shows u1 and u2 with t = 4 and plots their mean square
error MSE(u1,u2). An anti-aliasing filter with cr(4) = 1.2 is clearly not broad
enough: u2 presents strong ringing artifacts. The ringing artifact is instead
hardly noticeable with cr(4) = 2.4. The value cr(4) ≃ 2.4 is a good visual
candidate, and this choice is confirmed by the curve showing that MSE(u1,u2)
decays rapidly until cr(4) gets close to 2.4, and is stable and small thereafter.
By (4.10), this value of cr yields ca = 0.62. This value has been confirmed by
experiments on ten digital images. A doubt can be cast on this experiment,
however: Its result slightly depends on the assumption that the initial blur on
u is equal to ca.

In a second experiment, ca has been evaluated directly by using a binary
image u0 that does not contain any blur. As illustrated in Fig. 4.2, u0 is
obtained by binarizing the digital test image Lena (Fig. 4.1), the threshold
being the median value of Lena. Since u0 is now blur-free, we can compare for
several values of ca and for t = 4, which is large enough, the digital images

u1 =: GtcaIu = S1GtcaIu and u2 =: (S1/tI)StGtcaIu = (S1/tI)StGtcaIu,

As shown in Fig. 4.2, ca = 0.6 is the smallest value ensuring no visual ringing in
u2. Under this value, for example for ca = 0.3, clear ringing artifacts are present
in u2. That ca = 0.6 is the correct value is confirmed by the MSE(u1,u2) curve
showing that the mean square error decays rapidly until ca goes down to 0.6,
and is stable and small thereafter. The result, confirmed in ten experiments
with different initial images, is consistent with the value obtained in the first
experimental setting.

4.2.1 Discrete sampling

If u is digital and therefore only defined on IZ2 and if δ is an integer, then
one can define any sub- or over-sampling operations on u. But this requires
interpolating u first.

Definition 4.8. Thus we define a digital re-sampling operator by

Sδu =: SδIu. (4.11)

Sδ is a discrete filter. If δ < 1 Sδ is an over-sampling, and it is invertible. If
δ > 1 it is an sub-sampling, and may be not invertible.
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Figure 4.2: Top left: u. Top right: MSE(u1,u2) vs ca. Middle (from left to
right): u1 and u2 with ca = 0.3. MSE(u1,u2)=7.46. Bottom (from left to
right): u1 and u2 with ca = 0.6. MSE(u1,u2)=0.09.
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Exercise 4.6. Show that if δ < 1, then Sδ−1Sδ = Id. What can happen if δ > 1?

Over-sampling can be interpreted as a zoom in. A zoom in is not the same as
a blow up. Blow up is a photographic term involving the use of a system of lenses
increasing the image resolution : it permits to see more details of the observed
object. Zoom in is instead is a digital term. Being just an interpolation, it adds
no detail to the image. The next proposition confirms that it is just an image
enlargement.

Proposition 4.9. For every γ ≤ 1,

ISγu = HγIu. (4.12)

Proof. Iu is well sampled, with spectrum in [0, 2π]2. Thus since γ < 1, ISγu
is over-sampled: it has spectrum in [0, 2πγ]2. Thus ISγu is band limited, as
HγIu. Since

ISγu(n1, n2) = Sγu(n1, n2) = Iu(n1γ, n2γ) and HγIu(n1, n2) = Iu(n1γ, n2γ),

both functions have the same IZ2 samples and therefore coincide. �

Corollary 4.10. If γ ≤ 1, then

SβSγ = Sβγ . (4.13)

Proof. using once (4.12) and twice (4.11),

SβSγu = SβISγu = SβHγIu = SβγIu = Sβγu.

�

Proposition 4.11. A discrete commutation formula : Assume u is a digital
image. Then for γ < 1,

GβSγu = SγGβγu. (4.14)

Proof.

GβSγu
(4.8)
= S1(GβISγu)

(4.12)
= S1(GβHγIu)

(9.2)
= S1(Hγ(GβγIu))

(4.1)
= Sγ(GβγIu)

(4.2)
= SγIS1(GβγIu)

(4.8,4.11)
= SγGβγu.

Notice that we use IS1u = u with u = GβγIu. Indeed, this last function is well
sampled, because Iu is. �
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Chapter 5

The SIFT Method

This chapter is devoted to Lowe’s Scale-Invariant Feature Transform (SIFT
[151]), a very efficient image comparison method. The initial goal of the SIFT
method is to compare two images (or two image parts) that can be deduced from
each other (or from a common one) by a rotation, a translation, and a zoom.
The method turned out to be also robust to large enough changes in view point
angle, which explains its success. This method uses as fundamental tool the heat
equation or, in other terms, the linear scale space. The heat equation is used
to simulate all zooms out of both images that have to be compared. Indeed,
these images may contain similar objects taken at different distances. But at
least two of the simulated zoomed in images should contain these objects at the
same apparent distance. This is the principal ingredient of the SIFT method,
but other invariance requirements must be addressed as well.

Sect. 5.2 gives a detailed description of the SIFT shape encoding method.
Sect. 5.4 proves mathematically that the SIFT method indeed computes trans-
lation, rotation and scale invariants. This proof is correct under the main as-
sumption that image blur can be assumed to be gaussian, and that images with
a gaussian blur larger than 0.6 (SIFT takes 0.8) are approximately (but accu-
rately) well-sampled and can therefore be interpolated. Chapter. 4.2 checked
the validity of this crucial gaussian blur assumption.

5.1 Introduction

Image comparison is a fundamental step in many computer vision and image
processing applications. A typical image matching method first detects points
of interest, then selects a region around each point, and finally associates with
each region a descriptor. Correspondences between two images may then be
established by matching the descriptors of both images.

In the SIFT method, stable points of interest are supposed to lie at extrema
of the Laplacian of the image in the image scale-space representation. The
scale-space representation introduces a smoothing parameter σ. Images u0 are
smoothed at several scales to obtain w(σ, x, y) =: (Gσ ∗ u0)(x, y), where we use
the parameterization of the gaussian by its standard deviation σ,

Gσ(x, y) = G(σ, x, y) =
1

2πσ2
e−(x2+y2)/2σ2

.
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Figure 5.1: A result of the SIFT method, using an outliers elimination method
[206]. Pairs of matching points are connected by segments.

Taking apart all sampling issues and several thresholds whose aim it is to
eliminate unreliable features, the whole method can be summarized in one single
sentence:

One sentence description The SIFT method computes scale-space extrema
(σi, xi, yi) of the space Laplacian of w(σ, x, y), and then samples for each one of
these extrema a square image patch whose origin is (xi, yi), whose x-direction
is one of the dominant gradients around (xi, yi), and whose sampling rate is
√

σ2
i + c2.

The constant c ≃ 0.8 is the tentative standard deviation of the image blur.
The resulting samples of the digital patch at scale σi are encoded by their
gradient direction, which is invariant under nondecreasing contrast changes.
This accounts for the robustness of the method to illumination changes. In
addition, only local histograms of the direction of the gradient are kept, which
accounts for the robustness of the final descriptor to changes of view angle (see
Fig. 5.5).

Figs 5.1 and 5.6 show striking examples of the method scale invariance. Lowe
claims that 1) his descriptors are invariant with respect to translation, scale and
rotation, and that 2) they provide a robust matching across a substantial range
of affine distortions, change in 3D viewpoint, addition of noise, and change in
illumination. In addition, being local, they are robust to occlusion. Thus they
match all requirements for shape recognition algorithms except one: they are
not really affine invariant but only robust to moderate affine distortions.

5.2 A Short Guide to SIFT Encoding

The SIFT encoding algorithm consists of four steps: detection of scale-space
extrema (Sect. 5.2.1), accurate localization of key points (Sect. 5.2.2), and de-
scriptor construction (Sect. 5.2.3).
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Figure 5.2: Gaussian pyramid for key points extraction (from [151])

5.2.1 Scale-Space Extrema

Following a classical paradigm, stable points of interest are supposed to lie
at extrema of the Laplacian of the image in the image scale-space represen-
tation. We recall that the scale-space representation introduces a smoothing
parameter σ, the scale, and convolves the image with Gaussian functions of
increasing standard deviation σ. By a classical approximation inspired from
psychophysics [164], the Laplacian of the Gaussian is replaced by a Difference of
Gaussians at different scales (DOG). Extrema of the Laplacian are then replaced
by extrema of DOG functions: D(σ, x, y) = w(kσ, x, y) − w(σ, x, y), where k is
a constant multiplicative factor. Indeed, it is easy to show that D(σ, x, y) is an
approximation of the Laplacian:

D(σ, x, y) ≈ (k − 1)σ2(∆Gσ ∗ u0)(x, y).

In the terms of David Lowe:

The factor (k− 1) in the equation is constant over all scales and
therefore does not influence extrema location. The approximation
error will go to zero as k goes to 1, but in practice we have found that
the approximation has almost no impact on the stability of extrema
detection or localization for even significant differences in scale, such
as k =

√
2.

To be more specific, quoting Lowe again:

D(σ, x, y) =: (G(kσ, x, y)−G(σ, x, y))∗u0(x, y) = w(kσ, x, y)−w(σ, x, y)

The relationship between D and σ2∆G can be understood from
the heat diffusion equation (parameterized in terms of σ rather than
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Figure 5.3: Neighborhood for the location of key points (from [151]). Local ex-
trema are detected by comparing each sample point in D with its eight neighbors
at scale σ and its nine neighbors in the scales above and below.

the more usual t = σ2):

∂G

∂σ
= σ∆G.

From this, we see that ∆G can be computed from the finite differ-
ence approximation to ∂G/∂σ, using the difference of nearby scales
at kσ and σ:

σ∆G =
∂G

∂σ
≈ G(kσ, x, y) −G(σ, x, y)

kσ − σ

and therefore,

G(kσ, x, y) −G(σ, x, y) ≈ (k − 1)σ2∆G.

This shows that when the difference-of-Gaussian function has
scales differing by a constant factor it already incorporates the σ2

scale normalization required for the scale-invariant Laplacian.

This leads to an efficient computation of local extrema of D by exploring neigh-
borhoods through a Gaussian pyramid ; see Figs. 5.2 and 5.3.

Exercise 5.1. Show that the gaussian Gσ parameterized by its standard deviation σ
satisfies as stated by Lowe the time-dependent heat equation ∂G

∂σ
= σ∆G.

5.2.2 Accurate Key Point Detection

In order to achieve sub-pixel accuracy, the interest point position is slightly
corrected thanks to a quadratic interpolation. Let us call x0 =: (σ0, x0, y0)
the current detected point in scale space, which is known up to the (rough)
sampling accuracy in space and scale. Notice that all points x = (σ, x, y) here
are scale-space coordinates. Let us call x1 = x0 + y the real extremum of the
DOG function. The Taylor expansion of D yields

D(x0 + y) = D(x0) + (DD) (x0) · y +
1

2

(
D2

D
)
(x0)(y,y) + o(‖y‖2),

where D and its derivatives are evaluated at an interest point and y denotes
an offset from this point. Since interest points are extrema of D in scale space,
setting the derivative to zero gives:

y = −
(
D2

D(x0)
)−1

(DD(x0)) , (5.1)
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which is the sub-pixel correction for a more accurate position of the key point
of interest.

Exercise 5.2. Check that (5.1) is a point where the gradient of D vanishes.

Since points with low contrast are sensitive to noise, and since points that are
poorly localized along an edge are not reliable, a filtering step is called for. Low
contrast points are handled through a simple thresholding step. Edge points are
swept out following the Harris and Stephen’s interest points paradigm. Let H
be the following Hessian matrix:

H =

(
Dxx Dxy

Dxy Dyy

)

.

The reliability test is simply to assess whether the ratio between the larger
eigenvalue and the smaller one is below a threshold r. This amounts to check:

Tr(H)2

Det(H)
<

(r + 1)2

r
. (5.2)

This rules out standard edge points and puts points of interest at locations
which are strong enough extrema, or saddle points.

Exercise 5.3. Explain why (5.2) is equivalent imposing that the ratio between the
smaller eigenvalue and the larger eigenvalue of H is smaller than r. These eigenvalues
are assumed to have the same sign. Why?

5.2.3 Construction of the SIFT descriptor

In order to extract rotation-invariant patches, an orientation must be assigned
to each key point. Lowe proposes to estimate a semi-local average orientation for
each key point. From each sample image Lσ, gradient magnitude and orientation
is pre-computed using a 2 × 2 scheme. An orientation histogram is assigned
to each key point by accumulating gradient orientations weighted by 1) the
corresponding gradient magnitude and by 2) a Gaussian factor depending on
the distance to the considered key point and on the scale. The precision of this
histogram is 10 degrees. Peaks simply correspond to dominant directions of
local gradients. Key points are created for each peak with similar magnitude,
and the assigned orientation is refined by local quadratic interpolation of the
histogram values.

Once a scale and an orientation are assigned to each key point, each key-
point is associated a square image patch whose size is proportional to the scale
and whose side direction is given by the assigned direction. The next step is to
extract from this patch robust information. Gradient samples are accumulated
into orientation histograms summarizing the contents over 4 × 4 subregions
surrounding the key point of interest. Each of the 16 subregions corresponds to
a 8-orientations bins histogram, leading to a 128 element feature for each key
point (see Fig. 5.5). Two modifications are made in order to reduce the effects
of illumination changes: histogram values are thresholded to reduce importance
of large gradients (in order to deal with a strong illumination change such as
camera saturation), and feature vectors are normalized to unit length (making
them invariant to affine changes in illumination).
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Figure 5.4: SIFT key points. The arrow starting point, length and the orienta-
tion signify respectively the key point position, scale, and dominant orientation.
These features are covariant to any image similarity.

5.2.4 Final matching

The outcome is for each image, a few hundreds or thousands SIFT descrip-
tors associated with as many key points. The descriptors of any image can be
compared to the descriptors of any other image, or belonging to a database
of descriptors built up from many images. The only remaining question is to
decide when two descriptors match, or not. In the terms of Lowe again:

The best candidate match for each keypoint is found by identi-
fying its nearest neighbor in the database of keypoints from training
images. The nearest neighbor is defined as the keypoint with min-
imum Euclidean distance for the invariant descriptor vector. How-
ever, many features from an image will not have any correct match
in the training database because they arise from background clutter
or were not detected in the training images. Therefore, it would be
useful to have a way to discard features that do not have any good
match to the database. A global threshold on distance to the closest
feature does not perform well, as some descriptors are much more
discriminative than others. A more effective measure is obtained by
comparing the distance of the closest neighbor to that of the second-
closest neighbor. (...) This measure performs well because correct
matches need to have the closest neighbor significantly closer than
the closest incorrect match to achieve reliable matching. For false
matches, there will likely be a number of other false matches within
similar distances due to the high dimensionality of the feature space.
We can think of the second-closest match as providing an estimate of
the density of false matches within this portion of the feature space
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Figure 5.5: Example of a 2×2 descriptor array of orientation histograms (right)
computed from an 8 × 8 set of samples (left). The orientation histograms are
quantized into 8 directions and the length of each arrow corresponds to the
magnitude of the histogram entry. (From [151])

and at the same time identifying specific instances of feature am-
biguity. (...) For our object recognition implementation, we reject
all matches in which the distance ratio is greater than 0.8, which
eliminates 90% of the false matches while discarding less than 5% of
the correct matches.

5.3 Image acquisition model underlying SIFT

5.3.1 The camera model

We always work on the camera CCD plane, whose mesh unit is taken to be
1. We shall always assume that the camera pixels are indexed by IZ2. The
image sampling operator is therefore always S1. Our second assumption is
that the digital initial image is well-sampled and obtained by a gaussian kernel.
Thus, the digital image is u = S1GδAu0, where δ ≥ c, c ≃ 0.6 ensures well-
sampling (see Chapter 4.2), and A is a similarity with positive determinant. (In
fact Lowe’s original paper assumes c ≃ 0.5, which amounts to assume a slight
under-sampling of the original image).

Definition 5.1. We model all digital frontal images obtained from a given ideal
planar object whose frontal infinite resolution image is u0 as

u0 =: S1GδAu0 (5.3)

where δ ≥ c and A is a A = RHλT is the composition of a translation and of a
similarity.

So the possibility of aliasing (under-sampling, δ < c is discarded). Taking
into account the way the digital image is blurred and sampled in the SIFT
method, we can now list the SIFT assumptions and formalize the method itself.
The description is by far simpler if we do it without mixing in sampling issues.
We need not mix them in, since the fact that images are well-sampled at all
stages permits equivalently to describe all operations with the continuous images
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directly, and to deduce afterwards the discrete operators on samples. We refer
to section 4.2.1 for this passage from continuous to discrete operations in the
well-sampled world.

5.3.2 Condensed description of the SIFT method

1. There is an underlying infinite resolution bounded planar image u0;

2. The initial digital image is S1GδAu0 where δ ≥ c, and A = RHλT is the
composition of a rotation, a zoom, and a translation;

3. the SIFT method computes a sufficient scale-space sampling of u(σ,x) =
(GσGδAu0)(x), and deduces by the Newton method the accurate loca-
tion or key points defined as extrema in scale-space of the spatial image
Laplacian, ∆u(σ;x);

4. The blurred u(σ, ·) image is then re-sampled around each characteristic
point with sampling mesh

√
σ2 + c2;

5. the directions of the sampling axes are fixed by a dominant direction of the
gradient of u(σ, ·) in a neighborhood, with size proportional to

√
σ2 + c2

around the characteristic point;

6. the rest of the operations in the SIFT method is a contrast invariant
encoding of the samples around each characteristic point. It is not needed
for the discussion to follow.

5.4 Scale and SIFT: consistency of the method

In this section, in conformity with the SIFT model of Sect. 5.3.2, the digital
image is a frontal view of an infinite resolution ideal image u0. In that case,
A = HT R is the composition of a homothety H , a translation T and a rotation
R. Thus the digital image is u = S1GδHT Ru0, for some H , T , R as above.
Assuming that the image is not aliased boils down, by the experimental results
of Sect. 4.2, to assuming δ ≥ 0.8.

Consider T an arbitrary image translation, R an arbitrary image rotation,
Hλ an arbitrary image homothety, G an arbitrary gaussian convolution, D the
gradient and ∆ the Laplacian, all applied to continuous images. We say that
there is strong commutation of two of these operators if we can exchange the
order of their application to any image. We say that there is weak commutation
between two of these operators if we can exchange their order by changing one
of the parameters of one of the operators. For example we have RT = T ′R,
meaning that given R and T there is T ′ such that the former relation occurs.
The next lemma is straightforward.

Lemma 5.2. All of the aforementioned operators weakly commute, with the fol-
lowing exceptions: R and G commute strongly, DHλ = λHλD, ∆Hλ = λ2Hλ∆,
and D and ∆ do not commute.

Exercise 5.4. Check all of the mentioned commutations and give their exact for-
mula. There are six kinds of operators: translations, rotations, homotheties, gaussian
convolutions, gradients, and Laplacians. Thus, there are 15 verifications to make.
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Lemma 5.3. For any rotation R and any translation T , the SIFT descriptors
of S1GδHT Ru0 are identical to those of S1GδHu0.

Proof. By the weak commutation of translations and rotations with all other
operators (Lemma 5.2), the SIFT descriptors of a rotated or translated image
are identical to those of the original. Indeed, the set of scale space Laplacian
extrema is covariant to space translations and rotations. The normalization
process for each SIFT descriptor situates the origin at each extremum in turn,
thus canceling the translation. The local sampling grid defining the SIFT patch
has axes given by peaks in its gradient direction histogram. Such peaks are
translation invariant and rotation covariant. Thus, the normalization of the
direction also cancels the rotation. �

Lemma 5.4. Let u and v be two digital images that are frontal snapshots of the
same continuous flat image u0, u = S1GβHλu0 and v =: S1GδHµu0, taken at
different distances, with different gaussian blurs and possibly different sampling
rates. Let w(σ,x) = (Gσu0)(x) denote the scale space of u0. Then the scale
spaces of u = GβHλu0 and v = GδHµu0 are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds
to a key point of u at the scale σ1 such that λ

√

σ2
1 + β2 = s0, whose SIFT

descriptor is sampled with mesh
√
σ1 + c2. In the same way (s0,x0) corresponds

to a key point of v at scale σ2 such that s0 = µ
√

σ2
2 + δ2, whose SIFT descriptor

is sampled with mesh
√

σ2
2 + c2.

Proof. The interpolated initial images are by (4.2)

u =: IS1GβHλu0 = GβHλu0 and v =: IS1GδHµu0 = GδHµu0.

Computing the scale-space of these images amounts to convolve these images
for every σ > 0 with Gσ, which yields, using the commutation relation (9.2)
and the semigroup property (9.1):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HµGµ
√

σ2+δ2u0.

Set w(s,x) =: Gsu0. Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

Let us consider an extremal point (s0,x0) of the Laplacian of the scale space
function w. If s0 ≥ max(λβ, µδ), an extremal point occurs at scales σ1 for the
Laplacian of u(σ,x) and at scale σ2 for the Laplacian of v(σ,x) satisfying

s0 = λ
√

σ2
1 + β2 = µ

√

σ2
2 + δ2. (5.4)

�
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Theorem 5.5. Let u and v be two digital images that are frontal snapshots of
the same continuous flat image u0, u = S1GβHλT Ru0 and v =: S1GδHµu0,
taken from arbitrary distances, with possibly different camera gaussian blurs,
with an arbitrary camera translation parallel to its focal plane, and an arbitrary
rotation around its optical axe. Without loss of generality, assume λ ≤ µ. Then
if the camera blurs are standard (β = δ = c), each SIFT descriptor of u = Iu
is identical to some SIFT descriptor of v = Iv. If β 6= δ (or β = δ 6= c), the
SIFT descriptors of u become (quickly) similar to SIFT descriptors of v when
their scales grow, namely as soon as σ1

max(c,β) ≫ 1 and σ2

max(c,δ) ≫ 1.

Proof. By the result of Lemma 5.3, we can neglect the effect of translations
and rotations. Therefore assume w.l.o.g. that the images under comparison are
as in Lemma 5.4. Assume a key point (s0,x0) of w has scale s0 ≥ max(λβ, µδ).
This key point has a sampling rate proportional to s0. There is a corresponding
key point (σ1,

x0

λ ) for u with sampling rate
√

σ2
2 + c2 and a corresponding key

point (σ2,
x0

µ ) with sampling rate
√

σ2
2 + c2 for v. To have a common reference

for these sampling rates, it is convenient to refer to the corresponding sampling
rates for w(s0,x), which are λ

√

σ2
1 + c2 for the SIFT descriptors of u at scale σ1,

and µ
√

σ2
2 + c2 for the descriptors of v at scale σ2. Thus the SIFT descriptors

of u and v for x0 will be identical if and only if λ
√

σ2
1 + c2 = µ

√

σ2
2 + c2. Now,

we have λ
√

σ2
1 + β2 = µ

√

σ2
2 + δ2, which implies λ

√

σ2
1 + c2 = µ

√

σ2
2 + c2 if

and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2. (5.5)

Since λ and µ are proportional to camera distances to the observed object u0,
they are arbitrary and generally different. Thus, the only way to ensure (5.5)
is to have β = δ = c, which means that the blurs of both images (or of both
cameras) are ideal and gaussian. In any case, β = δ = c does imply that the
SIFT descriptors of both images are identical.

The second statement is straightforward: If σ1 and σ2 are large enough
with respect to β, δ and c, the relation λ

√

σ2
1 + β2 = µ

√

σ2
2 + δ2, implies

λ
√

σ2
1 + c2 ≃ µ

√

σ2
2 + c2. �

The almost perfect scale invariance of SIFT stated in Theorem 5.5 is illus-
trated by the striking example of Fig. 5.6. The 28 SIFT key points of a very
small digital image u are compared to the 86 key points obtained by zooming
in u by a 32 factor: The resulting digital image is the digital image v = S 1

32
Iu,

again obtained by zero-padding. For better observability, both images are dis-
played with the same size by enlarging the pixels of u. Almost each key point
(22 out of 28) of u finds its counterpart in v. 22 matches are detected between
the descriptors as shown on the right. If we trust Theorem 5.5, all descriptors of
u should have been retrieved in v. This does not fully happen for two reasons.
First, the SIFT method thresholds (not taken into account in the theorem) elim-
inate many potential key points. Second, the zero-padding interpolation giving
v is imperfect near the image boundaries.
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Figure 5.6: Scale invariance of SIFT, an illustration of Theorem 5.5. Left: a very
small digital image u with its 28 key points. For the conventions to represent
key points and matches, see the comments in Fig. 5.4. Middle: this image is
over sampled by a 32 factor to v = S 1

32
Iu. It has 86 key points. Right: 22

matches found between u and S 1
32
Iu.

5.5 Exercises

Exercise 5.5. The aim of the exercise is to explain why the experiment of Fig. 5.6
works, and to illustrate Theorem 5.5. The digital zoom in by a factor λ is nothing
but the discrete over-sampling operator S 1

λ
with sampling step 1

λ
, defined in (4.11).

Here, λ = 32. In the experiment an original digital image u = S1Gδu is zoomed into
v = S 1

λ
u.

1) Using the definition of the discrete zoom and the right commutation relations given
in this chapter and in the former one (give their numbers), show that

v = S 1
λ
GδIu = S1GλδH 1

λ
Iu.

2) Is v well-sampled if u was?

3) By applying carefully Theorem 5.5, assuming that δ ≃ c, discuss why SIFT manages
to match SIFT descriptors of u and v.

5.6 Comments and references

Many variations exist on the computation of interest points, following the pi-
oneering work of Harris and Stephens [105]. The Harris-Laplace and Hessian-
Laplace region detectors [172, 175] are invariant to rotation and scale changes.
Some moment-based region detectors [146, 25] including Harris-Affine and Hessian-
Affine region detectors [173, 175], an edge-based region detector [245], an intensity-
based region detector [245], an entropy-based region detector [124], and two
independently developed level line-based region detectors MSER (“maximally
stable extremal region”) [168] and LLD (“level line descriptor”) [187, 189, 191]
are designed to be invariant to affine transformations. These two methods stem
from the Monasse image registration method [179] that used well contrasted
extremal regions to register images. MSER is the most efficient one and has
shown better performance than other affine invariant detectors [177]. However,
as pointed out in [151], no known detector is actually fully affine invariant: All
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of them start with initial feature scales and locations selected in a non-affine
invariant manner. The difficulty comes from the scale change from an image to
another: This change of scale is actually an under-sampling, which means that
the images differ by a blur.

In his milestone paper [151], Lowe has addressed this central problem and
has proposed the so called scale-invariant feature transform (SIFT) descriptor,
that is invariant to image translations and rotations, to scale changes (blur), and
robust to illumination changes. It is also surprisingly robust to large enough ori-
entation changes of the viewpoint (up to 60 degrees). Based on the scale-space
theory [145], the SIFT procedure simulates all gaussian blurs and normalizes lo-
cal patches around scale covariant image key points that are Laplacian extrema.
A number of SIFT variants and extensions, including PCA-SIFT [126] and gra-
dient location-orientation histogram (GLOH) [176], that claim to have better ro-
bustness and distinctiveness with scaled-down complexity have been developed
ever since [85, 143]. Demonstrated to be superior to other descriptors [174, 176],
SIFT has been popularly applied for scene recognition [79, 182, 217, 251, 96, 226]
and detection [86, 194], robot localization [28, 196, 120], image registration [264],
image retrieval [104], motion tracking [247, 128], 3D modeling and reconstruc-
tion [211, 252], building panoramas [3, 34], or photo management [263, 141, 51].

As pointed out by several benchmarks, the robustness and repeatability of
the SIFT descriptors outperforms other methods. However, such benchmarks
mix three very different criteria that, in our opinion, should have been discussed
separately. The first one is the formal real invariance of each method when all
thresholds have been eliminated. This real invariance has been proved here for
SIFT. The second criterion is the practical validity of the sampling method used
in SIFT, that has been again checked in Chapter 4.2. The last criterion is the
clever fixing of several thresholds in the SIFT method ensuring robustness, re-
peatability, and a low false alarm rate. This one has been extensively tested and
confirmed in previous benchmark papers (see also the very recent and complete
report [80]). We think, however, that the success of SIFT in these benchmarks
is primarily due to its full scale invariance.
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Chapter 6

Linear Scale Space and
Edge Detection

The general analysis framework in which an image is associated with smoothed
versions of itself at several scales is called scale space. Following the results
of Chapter 3, a linear scale space must be performed by applying the heat
equation to the image. The main aim of this smoothing is to find out edges in
the image. We shall first explain this doctrine. In the second section, we discuss
experiments and several serious objections to such an image representation.

6.1 The edge detection doctrine

One of the uses of linear theory in two dimensions is edge detection. The as-
sumption of the edge detection doctrine is that relevant information is contained
in the traces produced in an image by the apparent contours of physical objects.
If a black object is photographed against a white background, then one expects
the silhouette of the object in the image to be bounded by a closed curve across
which the light intensity u0 varies strongly. We call this curve an edge. At
first glance, it would seem that this edge could be detected by computing the
gradient Du0, since at a point x on the edge, |Du0(x)| should be large and
Du(x) should point in a direction normal to the boundary of the silhouette. It
would therefore appear that finding edges amounts to computing the gradient
of u0 and determining the points where the gradient is large. This conclusion is
unrealistic for two reasons:

(a) There may be many points where the gradient is large due to small oscilla-
tions in the image that are not related to real objects. Recall that digital
images are always noisy, and thus there is no reason to assume the existence
or computability of a gradient.

(b) The points where the gradient exceeds a given threshold are likely to form
regions and not curves.

As we emphasized in the Introduction, objection (a) is dealt with by smooth-
ing the image. We associate with the image u0 smoothed versions u(t, ·), where
the scale parameter t indicates the amount of smoothing. In the classical linear
theory, this smoothing is done by convolving u0 with the Gaussian Gt.

81
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One way that objection (b) has been approached is by redefining edge points.
Instead of just saying an edge point is a point x where |Du0(x)| exceeds a
threshold, one requires the gradient to satisfy a maximal property. We illustrate
this in one dimension. Suppose that u ∈ C2(R) and consider the points where
|u′(x)| attains a local maximum. At some of these points, the second derivative
u′′ changes sign, that is, sign(u′′(x− h)) 6= sign(u′′(x+ h)) for sufficiently small
h. These are the points where u′′ crosses zero, and they are taken to be the edge
points. Note that this criterion avoids classifying a point x as an edge point if
the gradient is constant in an interval around x. Marr and Hildreth generalized
this idea to two dimensions by replacing u′′ with the Laplacian ∆u, which is
the only isotropic linear differential operator of order two that generalizes u′′

[165]. Haralick’s edge detector is different but in the same spirit [101]. Haralick
gives up linearity and defines edge points as those points where the gradient
has a local maximum in the direction of the gradient. In other words, an edge
point x satisfies g′(0) = 0, where g(t) = |Du(x+ tDu(x)|/|Du(x)|. This implies
that D2u(x)(Du(x), Du(x)) = 0 (see Exercise 6.2). We are now going to state
these two algorithms formally. They are illustrated in Figures 6.2 and 6.3,
respectively.

Algorithm 6.1 (Edge detection: Marr–Hildreth zero-crossings).

(1) Create the multiscale images u(t, ·) = Gt ∗ u0 for increasing values of t.

(2) At each scale t, compute all the points where Du 6= 0 and ∆u changes
sign. These points are called zero-crossings of the Laplacian, or simply
zero-crossings.

(3) (Optional) Eliminate the zero-crossings where the gradient is below some
prefixed threshold.

(4) track back from large scales to fine scales the “main edges” detected at large
scales.

Algorithm 6.2 (Edge detection: The Haralick–Canny edge detector).

(1) As before, create the multiscale images u(t, ·) = Gt ∗u0 for increasing values
of t.

(2) At each scale t, find all points x where Du(x) 6= 0 and D2u(x)(z, z) crosses
zero, z = Du/|Du|. At such points, the function s 7→ u(x + sz) changes
from concave to convex, or conversely, as s passes through zero.

(3) At each scale t, fix a threshold θ(t) and retain as edge points at scale t only
those points found above that satisfy |Du(x)| > θ(t). The backtracking step
across scales is the same as for Marr–Hildreth.

In practice, edges are computed for a finite number of dyadic scales, t = 2n,
n ∈ Z.

6.1.1 Discussion and critique

The Haralick–Canny edge detector is generally preferred for its accuracy to the
Marr–Hildreth algorithm. Their use and characteristics are, however, essentially
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Figure 6.1: A three-dimensional representation of the Laplacian of the Gaussian.
This convolution kernel, which is a wavelet, is used to estimate the Laplacian
of an image at different scales of linear smoothing.

the same. There are also many variations—attempted improvements—of the
algorithms we have described, and the following discussion adapts easily to these
related edge detection schemes. The first thing to notice is that, by Proposition
2.5, u(t, ·) = Gt ∗ u0 is a C∞ function for each t > 0 if u0 ∈ F . Thus we can
indeed compute second order differential operators applied to u(t, ·) = Gt ∗ u0,
t > 0. In the case of linear operators like the Laplacian or the gradient, the task
is facilitated by the formula proved in the mentioned proposition. For example,
we have ∆u(t,x) = ∆(Gt ∗ u0)(x) = (∆Gt) ∗ u0(x), where in dimension two
(Figure 6.1),

∆Gt(x) =
|x|2 − 4t

16πt3
e−|x|2/4t.

In the same way, Haralick’s edge detector makes sense, because u is C∞, at
all points where Du(x) 6= 0. If Du(x) = 0, then x cannot be an edge point, since
u is “flat” there. Thus, thanks to the filtering, there is no theoretical problem
with computing edge points. There are, however, practical objections to these
methods, which we will now discuss.

Linear scale space

The first serious problems are associated with the addition of an extra dimen-
sion: Having many images u(t, ·) at different scales t confounds our understand-
ing of the image and adds to the cost of computation. We no longer have an
absolute definition of an edge. We can only speak of edges at a certain scale.
Conceivably, a way around this problem would be to track edges across scales.
In fact, it has been observed in experiments that the “main edges” persist under
convolution as t increases, but they lose much of their spatial accuracy. On the
other hand, filtering with a sharp low-pass filter, that is, with t small, keeps
these edges in their proper positions, but eventually, as t becomes very small,
even these main edges can be lost in the crowd of spurious edge signals due to
noise and texture. The scale space theory of Witkin proposes to identify the
main edges at some scale t and then to track them backward as t decreases [262].
In theory, it would seem that this method could give an accurate location of the
main edges. In practice, any implementation of these ideas is computationally
costly due to the problems involved with multiple thresholdings and following
edges across scales. In fact, tracking edges across scales is incompatible with
having thresholds for the gradients, since such thresholds may remove edges at
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Figure 6.2: Zero-crossings of the Laplacian at different scales. This figure il-
lustrates the original scale space theory as developed by David Marr [163]. To
extract more global structure, the image is convolved with Gaussians whose
variances are powers of two. One computes the Laplacian of the smoothed
image and displays the lines along which this Laplacian changes sign: the zero-
crossings of the Laplacian. According to Marr, these zero-crossings represent
the “raw primal sketch” of the image, or the essential information on which
further vision algorithms should be based. Above, left to right: the results of
smoothing and the associated Gaussian kernels at scales 1, 2, and 4. Below,
left to right: the zero-crossings of the Laplacian and the corresponding kernels,
which are the Laplacians of the Gaussians used above.

certain scales and not at others. The conclusion is that one should trace all
zero-crossings across scales without considering whether they are true edges or
not. This makes matching edges across scales very difficult. For example, ex-
periments show that zero-crossings of sharp edges that are sparse at small scales
are no longer sparse at large scales. (Figure 6.4 shows how zero-crossings can
be created by linear smoothing.) The Haralick–Canny detector suffers from the
same problems, as is well demonstrated by experiments.

Other problems with linear scale space are illustrated in Figures 6.5 and
6.6. Figure 6.5 illustrates how linear smoothing can create new gray levels and
new extrema. Figure 6.6 shows that linear scale space does not maintain the
inclusion between objects. The shape inclusion principal will be discussed in
Chapter 21.

We must conclude that the work on linear edge detection has been an at-
tempt to build a theory that has not succeeded. After more than thirty years
of activity, it has become clear that no robust technology can be based on these
ideas. Since edge detection algorithms depend on multiple thresholds on the
gradient, followed by “filling-the-holes” algorithms, there can be no scientific
agreement on the identification of edge points in a given image. In short, the
problems associated with linear smoothing followed by edge detection have not
been resolved by the idea of chasing edges across scales.
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Figure 6.3: Canny’s edge detector. These images illustrate the Canny edge
detector. Left column: result of the Canny filter without the threshold on the
gradient. Middle column: result with a visually “optimal” scale and an image-
dependent threshold (from top to bottom: 15, 0.5, 0.6). Right column: result
with a fixed gradient threshold equal to 0.7. Note that such an edge detection
theory depends on no fewer than two parameters that must be fixed by the user:
smoothing scale and gradient threshold .

Figure 6.4: Zero-crossings of the Laplacian of a synthetic image. Left to right:
the original image; the image linearly smoothed by convolution with a Gaussian;
the sign of the Laplacian of the filtered image (the gray color corresponds to
values close to 0, black to clear-cut negative values, white to clear-cut positive
values); the zero-crossings of the Laplacian. This experiment clearly shows a
drawback of the Laplacian as edge detector.

Contrast invariance

The use of contrast-invariant operators can solve some of the technical problems
associated with linear smoothing and other linear image operators. An (image)
operator u 7→ Tu is contrast invariant if T commutes with all nondecreasing
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(a) (b) (c)

Figure 6.5: The heat equation creates structure. This experiment shows that
linear scale space can create new structures and thus increase the complexity of
an image. Left to right: The original synthetic image (a) contains three gray
levels. The black disk is a regional and absolute minimum. The “white” ring
around the black disk is a regional and absolute maximum. The outer gray ring
has a gray value between the other two and is a regional minimum. The second
image (b) shows what happens when (a) is smoothed with the heat equation:
New local extrema have appeared. Image (c) illustrates the action on (a) of a
contrast-invariant local filter, the iterated median filter, which is introduced in
Chapter 16.

functions g, that is, if

g(Tu) = T (g(u)). (6.1)

If image analysis is to be robust, it must be invariant under changes in lighting
that produce contrast changes. It must also be invariant under the nonlinear
response of the sensors used to capture an image. These, and perhaps other,
contrast changes are modeled by g. If g is strictly increasing, then relation (6.1)
ensures that the filtered image Tu = g−1(T (g(u))) does not depend on g. A
problem with linear theory is that linear smoothing, that is, convolution, is not
generally contrast invariant:

g(k ∗ u) 6= k ∗ (g(u)).

In the same way, the operator Tt that maps u0 into the solution of the heat
equation, u(t, ·) is not generally contrast invariant. In fact, if g is C2, then

∂(g(u))

∂t
= g′(u)

∂u

∂t

and

∆(g(u)) = g′(u)∆u + g′′(u)|Du|2.

Exercise 6.1. Prove this last relation. Prove that if g(s) = as+ b then g(u) satisfies
the heat equation if u does.
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Figure 6.6: Violation of the inclusion by the linear scale space. Top, left: an
image that contains a black disk enclosed by a white disk. Top, right: At
a certain scale, the black and white circles mix together. Bottom, left: The
boundaries of the two circles. Bottom, right: After smoothing with a certain
value of t, the inclusion that existed for very small t in no longer preserved. We
display the level lines of the image at levels multiples of 16.

6.2 Exercises

Exercise 6.2. Define an edge point x in a smooth image u as a point x at which g(t)
attains a maximum, where

g(t) = |Du
(

x + t
Du(x)

|Du(x)|

)

|.

Prove by differentiating g(t) that edge points satisfy D2u(x)(Du(x),Du(x)) = 0

Exercise 6.3. Construct simple functions u, g, and k such that g(k ∗ u) 6= k ∗ (g(u)).

Exercise 6.4. Consider the Perona–Malik equation in divergence form:

∂u

∂t
= div(g(|Du|)Du), (6.2)

where g(s) = 1/(1+λ2s2). It is easily checked that we have a diffusion equation when
λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. To see this, consider
the second derivative of u in the direction of Du,

uξξ = D2u

(
Du

|Du| ,
Du

|Du|

)

,
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and the second derivative of u in the orthogonal direction,

uηη = D2u

(
Du⊥

|Du| ,
Du⊥

|Du|

)

,

where Du = (ux, uy) and Du⊥ = (−uy, ux). The Laplacian can be rewritten in the
intrinsic coordinates (ξ, η) as ∆u = uξξ + uηη. Prove that the Perona–Malik equation
then becomes

∂u

∂t
=

1

1 + λ2|Du|2 uηη +
1 − λ2|Du|2

(1 + λ2|Du|2)2 uξξ .

Interpret the local behavior of the equation as a heat equation or a reverse heat
equation according to the size of |Du| compared to λ−1.

6.3 Comments and references

Scale space. The term “scale space” was introduced by Witkin in 1983. He
suggested tracking the zero-crossings of the Laplacian of the smoothed image
across scales [262]. Yuille and Poggio proved that these zero-crossings can be
tracked for one-dimensional signals [268]. Hummel and Moniot [113, 116] and
Yuille and Poggio [269] analyzed the conjectures of Marr and Witkin according
to which an image is completely recoverable from its zero-crossings at different
scales. Mallat formulated Marr’s conjecture as an algorithm in the context of
wavelet analysis. He replaced the Gaussian with a two-dimensional cubic spline,
and he used both the zero-crossings of the smoothed images and the nonzero
values of the gradients at these points to reconstruct the image. This algorithm
works well in practice, and the conjecture was that these zero-crossings and
the values of the gradients determined the image. A counterexample given by
Meyer shows that this is not the case. Perfect reconstruction is possible in the
one-dimensional case for signals with compact support if the smoothing kernel is
the Tukey window, k(x) = 1+ cosx for |x| ≤ π and zero elsewhere. An account
of the Mallat conjecture and these examples can be found in [119]. Koenderink
presents a general and insightful theory of image scale space in [134].

Gaussian smoothing and edge detection. The use of Gaussian filtering
in image analysis is so pervasive that it is impossible to point to a “first paper.”
It is, however, safe to say that David Marr’s famous book, Vision [163], and the
original paper by Hildreth and Marr [165] have had an immeasurable impact
on edge detection and image processing in general. The term “edge detection”
appeared as early as 1959 in connection with television transmission [121]. The
idea that the computation of derivatives of an image necessitates a previous
smoothing has been extensively developed by the Dutch school of image analysis
[30, 84]. See also the books by Florack [83], Lindeberg [144], and Romeny [243],
and the paper [78]. Haralick’s edge detector [101], as implemented by Canny
[38], is probably the best known image analysis operator. A year after Canny’s
1986 paper, Deriche published a recursive implementation of Canny’s criteria
for edge detection [69].
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Chapter 7

Four Algorithms to Smooth
a Shape

In this short but important chapter, we discuss algorithms whose aim it is
to smooth shapes. Shape must be understood as a rough data which can be
extracted from an image, either a subset of the plane, or the curve surrounding it.
Shape smoothing is directed at the elimination of spurious, often noisy, details.
The smoothed shape can then be reduced to a compact and robust code for
recognition. The choice of the right smoothing will make us busy throughout
the book. A good part of the solution stems from the four algorithms we describe
and their progress towards more robustness, more invariance and more locality.
What we mean by such qualities will be progressively formalized. We will discuss
two algorithms which directly smooth sets, and two which smooth Jordan curves.
One of the aims of the book is actually to prove that both approaches, different
though they are, eventually yield the very same process, namely a curvature
motion.

7.1 Dynamic shape

In 1986, Koenderink and van Doorn defined a shape in RN to be a closed subset
X of RN [135]. They then proposed to smooth the shape by applying the heat
equation ∂u/∂t− ∆u = 0 directly to 1X , the characteristic function of X . Of
course, the solution Gt∗1X is not a characteristic function. The authors defined
the evolved shape at scale t to be

Xt = {x | u(t,x) ≥ 1/2}.

The value 1/2 is chosen so the following simple requirement is satisfied: Suppose
that X is the half-plane X = {(x, y) | (x, y) ∈ R2, x ≥ 0}. The requirement is
that this half plane doesn’t move,

X = Xt = {(x, y) | Gt ∗ 1X(x, y) ≥ λ},

and this is true only if λ = 1/2. There are at least two problems with dynamic
shape evolution for image analysis. The first concerns nonlocal interactions, as
illustrated in Figure 7.1. Here we have two disks that are near one another.
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Figure 7.1: Nonlocal interactions in the dynamic shape method. Left to right:
Two close disks interact as the scale increases. This creates a new, qualitatively
different, shape. The change of topology, at the scale where the two disks
merge into one shape, also entails the appearance of a singularity (a cusp) on
the shape(s) boundaries.

The evolution of the union of both disks, considered as a single shape, is quite
different from the evolution of the disks separately. A related problem, also
illustrated in Figure 7.1, is the creation of singularities. Note how a singularity
in orientation and the curvature of the boundary of the shape develops at the
point where the two disks touch. Figure 7.2 further illustrates the problems
associated with the dynamic shape method.

7.2 Curve evolution using the heat equation

We consider shapes in R2 whose boundaries can be represented by a finite num-
ber of simple closed rectifiable Jordan curves. Thus, each curve we consider can
be represented by a continuous mapping f : [0, 1] → R2 such that f is one-to-one
on (0, 1) and f(0) = f(1), and each curve has a finite length. We also assume
that these curves do not intersect each other. We will focus on smoothing one
of these Jordan curves, which we call C0. We assume that C0 is parameterized
by s ∈ [0, L], where L is the length of the curve. Thus, C0 is represented as
x0(s) = (x(s), y(s)), where s is the length of the curve between x0(0) and x0(s).

At first glance, it might seem reasonable to smooth C0 by smoothing the
coordinate functions x and y separately. If this is done linearly, we have seen
from Theorem 2.3 that the process is asymptotic to smoothing with the heat
equation. Thus, one is led naturally to consider the vector heat equation

∂x

∂t
(t, s) =

∂2x

∂s2
(t, s) (7.1)

with initial condition x(0, s) = x0(s). If x(t, s) = (x(t, s), y(t, s)) is the solution
of (7.1), then we know from Proposition 1.9 that

inf
s∈[0,L]

x0(s) ≤ x(t, s) ≤ sup
s∈[0,L]

x0(s),

inf
s∈[0,L]

y0(s) ≤ y(t, s) ≤ sup
s∈[0,L]

y0(s),

for s ∈ [0, L] and t ∈ [0,+∞). Thus, the evolved curves Ct remain in the
rectangle that held C0. Also, we know from Proposition 2.5 that the coordinate
functions x(t, ·) and y(t, ·) are C∞ for t > 0. There are, however, at least two
reasons that argue against smoothing curves this way:
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Figure 7.2: Nonlocal behavior of shapes with the dynamic shape method. This
image displays the smoothing of two irregular shapes by the dynamic shape
method (Koenderink–van Doorn). Top left: initial image, made of two irregular
shapes. From left to right, top to bottom: dynamic shape smoothing with
increasing Gaussian variance. Notice how the shapes merge more and more.
We do not have a separate analysis of each shape but rather a “joint analysis”
of the two shapes. The way the shapes merge is of course sensitive to the initial
distance between the shapes. Compare with Figure 7.4.

(1) When t > 0, s is no longer a length parameter for the evolved curve Ct.

(2) Although x(t, ·) and y(t, ·) are C∞ for t > 0, this does not imply that the
curves Ct have similar smoothness properties. In fact, it can be seen from
Figure 7.3 that it is possible for an evolved curve to cross itself and it is
possible for it to develop singularities.

How is this last mentioned phenomenon possible ? It turns out that one can
parameterize a curve with corners or cusps with a very smooth parameterization:
see Exercise 7.1.

In image processing, we say that a process that introduces new features,
such as described in item (2) above, is not causal. 1

7.3 Restoring locality and causality

Our main objective is to redefine the smoothing processes so they are local and
do not create new singularities. This can be done by alternating a small-scale
linear convolution with a natural renormalization process.

1This informal definition should not be confused with the use of “causality,” as it is used,
for example, when speaking about filters: A filter F is said to be causal, or realizable, if the
equality of two signals s0 and s1 up to time t0 implies that Fs0(t) = Fs1(t) for the same
period.
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"A"
 "B"


"C"
 "D"


Figure 7.3: Curve evolution by the heat equation. The coordinates of the curves
are parameterized by the arc length and then smoothed as real functions of the
length using the heat equation. From A to D: the coordinates are smoothed
with an increasing scale. Each coordinate function therefore is C∞; the evolving
curve can, however, develop self-crossings (as in C) or singularities (as in D).

7.3.1 Localizing the dynamic shape method

In the case of dynamic shape analysis, we define an alternate dynamic shape
algorithm as follows:

Algorithm 7.1 (The Merriman–Bence–Osher algorithm).

(1) Convolve the characteristic function of the initial shape X0 with Gh, where
h is small.

(2) Define X1 = {x | Gh ∗ 1X0 ≥ 1/2}.
(3) Set X0 = X1 and go back to (1).

This is an iterated dynamic shape algorithm. The dynamic shape method
itself is an example of a median filter, which will be defined in Chapter 16. The
Merriman–Bence–Osher algorithm is thus an iterated median filter (see Figure
7.4). We will see in Chapters ?? and ?? that median filters have asymptotic
properties that are similar to those expressed in Theorem 3.3. In the case of
median filters, the associated partial differential equation will be a curvature
motion equation (defined in Chapter 18).

7.3.2 Renormalized heat equation for curves

In 1992, Mackworth and Mokhtarian noticed the loss of causality when the heat
equation was applied to curves [154]. Their method to restore causality looks,
at least formally, like the remedy given for the nonlocalization of the dynamic
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Figure 7.4: The Merriman–Bence–Osher shape smoothing method is a localized
and iterated version of the dynamic shape method. A convolution of the binary
image with small-sized Gaussians is alternated with mid-level thresholding. It
uses the same initial data (top, left) as in Figure 7.2. From left to right, top
to bottom: smoothing with increasing scales. Notice that the shapes remain
separate. In fact, their is no interaction between the evolving shapes. Each one
evolves as if the other did not exist.

shape method. Instead of applying the heat equation for relatively long times
(or, equivalently, convolving the curve x with the Gaussian Gt for large t), they
use the following algorithm:

Algorithm 7.2 (Renormalized heat equation for curves).

(1) Convolve the initial curve x0, parameterized by its length parameter s0 ∈
[0, L0], with the Gaussian Gh, where h is small.

(2) Let Ln denote the length of the curve xn obtained after n iterations and let
sn denote its length parameter. For n ≥ 1, write x̃n+1(sn) = Gh ∗ xn(sn).
Then reparameterize x̃n+1 by its length parameter sn+1 ∈ [0, Ln+1], and
denote it by xn+1.

(3) Iterate.

This algorithm is illustrated in Figure 7.5. It should be compared with
Figure 7.3.

Theorem 7.1. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L]. Then for small h,

Gh ∗ x(s) − x(s) = h
∂2x

∂s2
+ o(h). (7.2)
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"A"
 "B"


"C"
 "D"


Figure 7.5: Curve evolution by the renormalized heat equation (Mackworth–
Mokhtarian). After each smoothing step, the coordinates of the curve are repa-
rameterized by the arc length of the smoothed curve. From A to D: the curve is
smoothed with an increasing scale. Note that, in contrast with the linear heat
equation (Figure 7.3), the evolving curve shows no singularities and does not
cross itself.

This theorem is easily checked, see Exercise 7.2

In view of (7.2) and what we have seen regarding asymptotic limits in The-
orem 3.3 and Exercise 3.5, it is reasonable to conjecture that, in the asymptotic
limit, Algorithm 7.2 will yield the solution of following evolution equation:

∂x

∂t
=
∂2x

∂s2
, (7.3)

where x0 = x(0, ·). It is important to note that (7.3) is not the heat equa-
tion (7.1). Indeed, from Algorithm 7.2 we see that s must denote the length
parameter of the evolved curve x(t, ·) at time t. In fact ∂2x/∂s2 has a geo-
metric interpretation as a curvature vector. We will study this nonlinear curve
evolution equation in Chapter 18.

7.4 Exercises

Exercise 7.1. Construct a C∞ mapping f : [0, 1] → R
2 such that the image of [0, 1]

is a square. This shows that a curve can have a C∞ parameterization without being
smooth.

Exercise 7.2. Prove Theorem 7.1. If x is a C3 function of s, then the result follows
directly from Theorem 3.2. The result holds, however, for a C2 curve.
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7.5 Comments and references

Dynamic shape, curve evolution, and restoring causality. Our account
of the dynamic shape method is based on the well-known paper by Koenderink
and van Doorn in which they introduced this notion [135]. The curve evolution
by the heat equation is from the first 1986 version of curve analysis proposed
by Mackworth and Mokhtarian [153]. See also the paper by Horn and Weldon
[109]. There were model errors in the 1986 paper [153] that were corrected
by the authors in their 1992 paper [154]. There, they also proposed the correct
intrinsic equation. However, this 1992 paper contains several inexact statements
about the properties of the intrinsic equation. The correct theorems and proofs
can be found in a paper by Grayson written in 1987 [98]. The algorithm that
restores causality and locality to the dynamic shape method was discovered by
Merriman, Bence, and Osher, who devised this algorithm for a totally different
reason: They were looking for a clever numerical implementation of the mean
curvature equation [170].

Topological change under smoothing. We have included several figures
that illustrate how essential topological properties of an image change when the
image is smoothed with the Gaussian. Damon has made a complete analysis of
the topological behavior of critical points of an image under Gaussian smoothing
[63]. This analysis had been sketched in [267].
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Chapter 8

Affine Invariant Image
Comparison

If a physical object has a smooth or piecewise smooth boundary, its images ob-
tained by cameras in varying positions undergo smooth apparent deformations.
These deformations are locally well approximated by affine transforms of the
image plane.

In consequence the solid object recognition problem has often been led back
to the computation of affine invariant image local features. Such invariant fea-
tures could be obtained by normalization methods, but no fully affine normaliza-
tion method exists for the time being. As a matter of fact, the scale invariance,
which actually means invariance to blur, is only dealt with by methods inspired
from the scale space theory, like the SIFT method. By simulating zooms out,
this method normalizes the four translation, rotation and scale (blur) param-
eters, out of the six parameters of an affine transform. Affine normalization
methods like MSER or Hessian Affine normalize with respect to all six param-
eters of the affine transform, but this normalization is imperfect, not dealing
rigorously with blur for MSER, or not starting with affine invariant scale space
extrema for Hessian Affine.

The method proposed in this chapter, affine SIFT (A-SIFT), simulates all
image views obtainable by varying the two camera parameters left over by the
SIFT method. Then it normalizes the other four parameters by simply using the
SIFT method itself. The two additional parameters are the angles (a longitude
and a latitude) defining the camera axis orientation. Mathematical arguments
will be given in Chapter 9 to prove that the resulting method is fully affine
invariant, up to an arbitrary precision.

Against any prognosis, simulating all views depending on the two camera
orientation parameters is feasible with no dramatic computational load. The
method permits to reliably identify features that have undergone tilts of large
magnitude, up to 30 and more, while state-of-the-art methods do not exceed
tilts of 2.5 (SIFT) or 4.5 (MSER). This chapter puts in evidence the role of high
transition tilts: while a tilt from a frontal to an oblique view exceeding 6 is rare,
higher transition tilts are common as soon as two oblique views of an object are
compared (see Fig. 8.1). Thus, a fully affine invariance is required for 3D scene
analysis. This fact is substantiated by many experiments.
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Figure 8.1: High transition tilts

Section 8.1 gives the main decomposition formula of affine maps used through-
out the paper and its geometric interpretation in terms of cameras at infinity.
Section 10.1 describes and discusses a method that attempts affine invariance
by normalization: MSER. Section 8.2 describes the A-SIFT algorithm and dis-
cusses precursors. Section 8.4 addresses the critical sampling issues for the
new-simulated parameters in A-SIFT (tilt and longitude). It then provides a
complexity analysis and a fast version of the method. Section 8.3 presents and
experiments the crucial notion of transition tilt.

8.1 The affine camera model

The general (solid) shape recognition problem starts with several photographs of
a physical object, possibly taken with different cameras and view points. These
digital images are the query images. Given other digital images, the search
images, the question is whether some of them contain, or not, a view of the
object taken in the query image. A solid object’s view can deform from an image
to another for two obvious reasons: First, because it underwent some physical
deformation, and second, because the change of camera position induced an
apparent deformation.

Image distortions arising from viewpoint changes can be locally modeled by
affine planar transforms, provided the object’s boundaries are piecewise smooth.
In other terms, a perspective effect can be modeled by a combination of several
different affine transforms in different image regions (see Fig. 8.3). Indeed, by
first order Taylor formula, any planar smooth deformation (x, y) → (X,Y ) =
(F1(x, y), F2(x, y)) can be locally approximated around each point (x0, y0) →
(X0, Y0) by the affine map

(
X−X0

Y−Y0

)

=

[
∂F1

∂x (x0, y0)
∂F1

∂y (x0, y0)
∂F2

∂x (x0, y0)
∂F2

∂y (x0, y0)

](
x−x0

y−y0

)

+O

(
(x−x0)

2 + (y−y0)2
(x−x0)

2 + (y−y0)2
)

.

(8.1)



i

i

8.1. THE AFFINE CAMERA MODEL 99

Figure 8.2: Geometric interpretation of the Taylor formula (8.1): Although
the global deformation of each wall is strongly projective (a rectangle becomes
a trapezoid), the it local deformation is affine: each tile on the pavement is
almost a parallelogram. Indeed, projective maps are C1 and therefore locally
affine. The painting, due to Uccello, is one of the first Renaissance paintings with
a correct geometric perspectives following the rules invented by Brunelleschi.

Figure 8.3: Another way to understand why the local object apparent defor-
mations are affine. Local planar homographies are equivalent to multiple local
cameras at infinity. Cameras at infinity generate affine deformations of planar
objects. This is true even if the object under observation is curved, because it
is then locally planar. Thus, the overall apparent deformation of the object is
C1, and Formula (8.1) applies.
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Thus, all object deformations and all camera motions are locally approx-
imated by affine transforms. For example, in the case of a flat object, the
deformation induced by a camera motion is a planar homographic transform,
which is smooth and therefore locally tangent to affine transforms.

The converse statement is true: any affine transform with positive determi-
nant can be interpreted as the apparent deformation induced on a planar object
by a camera motion, the camera being assumed far away from the object. Thus,
under the local smoothness assumption of the object’s boundary, the (local) de-
formation model of an image u(x, y) under a deformation of the object or under
a camera motion is

u(x, y) → u(ax+ by + e, cx+ dy + f),

where the mapping

(
x
y

)

→
[
a b
c d

](
x
y

)

+

(
e
f

)

is any affine transform of the plane with positive determinant. The above state-
ments rely on the next crucial following decomposition formula.

Theorem 8.1. Any linear planar map whose matrix A has strictly positive
determinant, and which is not a similarity, has a unique decomposition

A=HλR1(ψ)TtR2(φ)=λ

[
cosψ − sinψ
sinψ cosψ

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]

(8.2)

where λ > 0, λt is the determinant of A, Ri are rotations, φ ∈ [0, π[, and Tt is
a tilt, namely a diagonal matrix with a first eigenvalue equal to t ≥ 1 and the
second one equal to 1.

Proof. Consider the real symmetric positive semi-definite matrix AtA, where
At denotes the transposed matrix of A. By classic spectral theory there is an
orthogonal transform O such that AtA = ODOt where D a diagonal matrix
with ordered eigenvalues λ1 ≥ λ2. Set O1 = AOD− 1

2 . Then

O1O
t
1 = AOD− 1

2D− 1
2OtAt = AOD−1OtAt = A(AtA)−1At = I.

Thus, there are orthogonal matrices O1 and O such that

A = O1D
1
2Ot. (8.3)

Since the determinant of A is positive, the product of the determinants of O and
O1 is positive. If both determinants are positive, then O and O1 are rotations
and we can write A = R(ψ)DR(φ). If φ is not in [0, π[, changing φ into φ−π and
ψ into ψ + π ensures that φ ∈ [0, π[. If the determinants of O and O1 are both

negative, replacing O and O1 respectively by

(
−1 0
0 1

)

O and

(
−1 0
0 1

)

O1

makes them into rotations without altering (8.3), and we can as above ensure
φ ∈ [0, π[ by adapting φ and ψ. The final decomposition is obtained by taking

for λ the smaller eigenvalue of D
1
2 . �
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Exercise 8.1. The aim of the exercise is to show the uniqueness of the decomposition

(8.2). Assume there are two decompositions λR1

[
t 0
0 1

]

R2 = λ′R′
1

[
t′ 0
0 1

]

R′
2. Using

the uniqueness of the eigenvalues of a matrix show first that λ = λ′, t = t′. You
will obtain a relation of the form R1DR2 = D where D is diagonal and R1 and R2

are rotations. Deduce from this relation that R1D
2Rt

1 = D2. Deduce from this last
relation the form of R1, conclude carefully.

Figure 8.4: Geometric interpretation of the decomposition formula (8.2).

Exercise 8.2. Consider two cameras looking at a flat square piece of landscape which
is assimilated to an infinite resolution image u0(x, y) (See Fig. 8.4). The first camera
is very far above the landscape and looking down perpendicularly to the landscape.

(i) Assuming the first camera is pin-hole, show that the generated image is a square

image u0(µR(ψ)(x, y)). Consider the coordinate system (O,~i,~j,~k) such that (~i,~j)
are the coordinate vectors in the square image u0, parallel to the image sides,
and O is the image center.

(ii) Assume a second pinhole camera has its optical axis pointing down to O. Assume
its optical axis is supported by the unit vector with coordinates
(sin θ cosφ, sin θ sinφ, cos θ). Assume again that this camera is very far from
the square piece of landscape, so the light rays coming from the landscape to
the camera are almost parallel. Thus the image formation on this second cam-
era is assimilated to an orthogonal projection of the landscape u0 onto a plane
passing by the camera center C and orthogonal to the optical axis. Taking ad-
equate coordinates on this coordinate plane, show that the generated image is

u0

(

R(ψ1)Tt1R(φ1)

(
x
y

))

for some values of ψ1, φ1, t, that you will relate to

φ, ψ, and θ.

Fig. 8.4 shows a camera motion interpretation of this affine decomposition:
φ and θ = arccos 1/t are the viewpoint angles and ψ parameterizes the camera
spin. Thus, this figure illustrates the four main parameters in the affine image
deformation caused by a camera motion, starting from a frontal view u. The
camera is assumed to stay far away from the image. The camera can first
move parallel to the object’s plane: this motion induces a translation T that is
not represented here. The camera can rotate around its optical axis (rotation
parameter ψ). Its optical axis can take a θ angle with respect to the normal to
the image plane u. This parameter is called latitude. The plane containing the
normal and the new position of the optical axis makes an angle φ with a fixed
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vertical plane. This angle is called longitude. Last but not least, the camera
can move forward or backward. This is the zoom parameter λ. The motion of
a frontal view λ = 1, t = 1, φ = ψ = 0 to a slanted view corresponds to the
image deformation u(x, y) → u(A(x, y)) given by (8.2).

8.2 A-SIFT : combining simulation and normal-
ization

The idea of combining simulation and normalization is the main successful ingre-
dient of the SIFT method. This method normalizes rotations and translations,
but simulates all zooms out of the query and of the search images. Because of
the feature, it is the only fully scale invariant method.

A-SIFT simulates with enough accuracy all distortions caused by a variation
of the direction of the optical axis of a camera (two parameters). Then it
normalizes the other four by the SIFT method, or any other method that is
rotation, translation, and scale invariant. More specifically, the method proceeds
by the following steps. (See Fig. 8.5.)

A-SIFT algorithm

1. Each image is transformed by simulating all possible affine distortions
caused by the change of orientation of the camera axis of camera from
a frontal position. These distortions depend upon two parameters: the
longitude φ and the latitude θ. The images undergo φ-rotations followed
by tilts with parameter t = | 1

cos θ | (a tilt by t in the direction of x is the
operation u(x, y) → u(tx, y)). For digital images, the tilt is performed
as t-subsampling, and therefore requires the previous application of an
antialiasing filter in the direction of x, namely the convolution by a gaus-
sian with standard deviation c

√
t2 − 1. For good antialiasing, c ≃ 0.8, see

Chapter 4.2.

2. These rotations and tilts are performed for a finite and small number of
latitudes and longitudes, the sampling steps of these parameters ensuring
that the simulated images keep close to any other possible view generated
by other values of φ and θ.

3. All simulated images are compared by SIFT.

4. To be more specific, the latitudes θ are such that the associated tilts follow
a geometric series 1, a, a2, , . . . , an, with a > 1. The choice a =

√
2 is

a good compromise between accuracy and sparsity. The value n can go
up to 6 or more, if the tilts are simulated on the query and the searched
image, and up to 10 and more if the tilts are simulated on one image only.
That way, transition tilts going up to 64 and more can be explored.

5. The longitudes φ are for each tilt an arithmetic series 0, b/t, . . . , kb/t,
where b ≃ 72◦ seems again a good compromise, and k is the last integer
such that kb/t < 180◦.
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Figure 8.5: Overview of the A-SIFT algorithm. The square images A and B
represent the compared images u and v. A-SIFT simulates arbitrary camera
changes of direction by applying rotations followed by a tilts to both images.
The simulated images, represented by the parallelograms, are then compared
with an image matching algorithm like SIFT, that is invariant to similarity
transformations, i.e., invariant to scale change, rotation and translation.

8.3 High transition tilts

Equation (8.2) and its geometric interpretation in Fig. 8.4 are crucial to the
scopes of this study. This last figure associates any linear map A with positive
singular eigenvalues with the planar deformation u(A(x, y)) of a frontal view
u(x, y), when the camera changes position. The parameter λ corresponds to
a change of scale. The non critical translation parameter has been eliminated
by assuming that the camera axis meets the image plane at a fixed point. Let
us now consider the case where two camera positions, not necessarily frontal
are at stake, corresponding to two different linear maps A and B. (Again, the
translation parameter is left out of the discussion by fixing the intersection of the
camera axis with image plane.) This physical situation is the generic one; when
taking several snapshots of a scene, there is no particular reason why objects
would be taken frontally. The resulting images are u1(x, y) = u(A(x, y)) and
u2(x, y) = u(B(x, y)). Let us now take one of these images as reference image,
and the other one as search image.

Definition 8.2. Given two views of a planar image, u1(x, y) = u(A(x, y)) and
u2(x, y) = u(B(x, y)), we call transition tilt τ(u1, u2) and transition rotation
φ(u1, u2) the unique parameters such that

BA−1 = HλR1(ψ)TτR2(φ), (8.4)

with the notation of Formula (8.2).

It is an easy check that the transition tilt is symmetric, namely τ(u1, u2) =
τ(u2, u1). Fig. 8.6 illustrates the affine transition between two images taken
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Figure 8.6: Illustration of the difference between absolute tilt and transition
tilt.

from different viewpoints, and in particular the difference between absolute tilt
and transition tilt. The camera is first put in two positions corresponding to
absolute tilts t and t′, but with φ = φ′. The transition tilt between the resulting
images v and v′ is τ = t′/t, assuming t′ = max(t′, t). On the second illustration
of Fig. 8.6, the tilts are made in two orthogonal directions: φ = φ′ + π/2. Then
an easy calculation shows that the transition tilt between v and v′ is the product
τ(v, v′) = tt′. Thus, two moderate absolute tilts can lead to a large transition tilt!
In the first case considered in the figure, the transition tilt is

√
3 and therefore

smaller than the absolute tilts. In the second case, the tilt is tt′ = 8. Since in
realistic cases the tilt can go up to 6 or even 8, is easily understood that the
transition tilt can go up to 36, 84, and more.

Exercise 8.3. The aim of the exercise is to prove that, given two views u = Au0 and
v = Bu0 of a same image, with absolute tilts s and t satisfying t ≥ s, the transition
tilt τ = τ (BA−1) between u and v satisfies t

s
≤ τ ≤ st.

(i) SetA = HλQ1TsQ2 andB = HµR1TsR2, whereQ1, Q2, R1, R2 are rotations, Hλ

and Hµ homotheties and Ts and Tt tilts with t ≥ s. Show first that τ (BA−1) =
τ (TtR2Q

−1
2 T−1

s ).

(ii) Deduce that if Q2 = R2, then τ (BA−1) = t
s
.

(iii) Deduce also that if R2Q
−1
2 = R(π

2
) then τ (BA−1) = st.

(iv) Set R(φ) = R2Q
−1
2 . Thus τ (BA−1) = τ (C), with C =: TtR(φ)Ts−1 Compute

the matrix CtC. Check that its determinant is det(CtC) = t2s2 and that its
trace is tr(CtC) = (s2 − 1)(t2 − 1) cos2 ϕ+ s2 + t2.

(v) Show that the eigenvalues λ1 ≥ λ2 of CtC satisfy t2

s2 ≤ λ1
λ2

≤ t2s2.

(vi) Conclude.

Each recognition method can be characterized by its transition tilt, namely
the variation in relative observation angle compatible with recognition. Fig.
8.13 shows the regions of the observation half sphere that can be attained for
a given transition tilt, from a fixed viewpoint with various tilts. This figure
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shows perspective and zenith views of the observation half sphere. The central
point of the bright region on the observation sphere is the original viewpoint
from which an image has been taken. The rest of the bright region depicts the
attainable observation region, namely the subset of the observation half sphere
for which recognition succeeds for the given transition tilt. The latitude angle of
the first image is respectively θ = 45, 60, 70, 80◦ that correspond respectively
to the absolute tilts t =

√
2, 2, 2.9, 5.8. The three columns show the attainable

regions on the half sphere for transition tilts t < 2.5, 5, , and 40. From the
strong 80◦, latitude, it needs a τ = 40 transition tilt to attain the rest of the
sphere! SIFT and MSER only attain small regions.

Fig. 8.7 shows the A-SIFT results for a pair of images under orthogonal
viewpoints (transition rotation φ = 90◦) that leads to an extreme transition tilt
t ≈ 37. This is not at all an exceptional situation. It just so happens that the
object’s planar surface is observed at the same latitude by both views with a tilt
t ≃ t′ ≃ 6. This figure shows two snapshots of a magazine lying on a table, not
even really flat, and with a non lambertian surface plagued with reflections. The
difference of longitudes being about 90 degrees, the transition tilt between both
images is surprisingly high: τ = tt′ ≃ 37. Thus, it is many times larger than
the transition tilt attainable with SIFT or MSER. A-SIFT finds 120 matches
out of which only 4 are wrong.

Figure 8.7: Top: Image pair with transition tilt t ≈ 37. (SIFT, Harris-Affine,
Hessian-Affine and MSER fail completely.) Bottom: A-SIFT finds 120 matches
out which 4 are false. See comments in text.

The relevance of the notion of transition tilt is corroborated by the fact that
the highest transition tilt τmax permitting to match two images with absolute
tilts t and t′ is fairly independent from t and t′. It has been experimentally
checked that for SIFT τmax ≃ 2.5 and for MSER τmax ≃ 4.

To demonstrate this for SIFT, the transition tilts attainable by SIFT have
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been explored by systematic tilt simulations and tests. The experiments have
been performed in the most favorable conditions for SIFT. The seed image u0 is
a high quality frontal view of the Graffiti series. Tilted views from this frontal
view were simulated by subsampling the image in one direction by a factor

√
t,

and oversampling the image in the orthogonal direction by the same factor. That
way, the absolute tilt is t, but the image area is not decreased. A set of tilted-
rotated images u1 = u0(t1, 0) and u2 = u(t2, φ) was generated by this method

from u with absolute tilts t1 = (
√

2)k, k = 1, 2, . . . , 5, t2 = (2
1
4 )l, l = 1, 2, . . . ,

14, and φ2 in a dense subset of [0, 90◦]. The table shows for each pair t1, t2 the
maximal longitude φmax ensuring that u1(t1, 0

◦) and u2(t2, φmax) match. On
the right of φmax, the table displays in each box the corresponding transition
tilt τ(t1, 0, t2, ϕmax). Conspicuously enough, τmax is most of the time close to
2.5. This experiment, and other similar ones, substantiate the empirical law
that SIFT works for comparing images with transition tilts smaller than 2.5.
In all of these tests, success with SIFT means that at least 20 correct SIFT
descriptors, or SIFs, have been found.

Figure 8.8: Top and bottom: SIFT detects respectively 234 and 28 matches
between a frontal image and two images with tilts t ≈ 2 and t ≈ 2.3. This latter
value is close to the limiting tilt for SIFT to work.
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t1 =
√

2 t1 = 2 t1 = 2
√

2 t1 = 4 t1 = 4
√

2

t2 = 21/4 90◦/1.7 60◦/2.2 0◦/2.4

t2 = 21/2 90◦/2.0 56◦/2.4 11◦/2.1

t2 = 23/4 90◦/2.4 50◦/2.6 20◦/2.1 0◦/2.4
t2 = 2 63◦/2.6 36◦/2.4 20◦/2.1 9◦/2.2

t2 = 2 × 21/4 37◦/2.4 30◦/2.3 23◦/2.3 9◦/1.9

t2 = 2 × 21/2 18◦/2.6 22◦/2.2 24◦/2.6 12◦/2.0 0◦/1.4

t2 = 2 × 23/4 6◦/2.4 16◦/2.2 21◦2.6 16◦/2.5 5◦/1.4
t2 = 4 0◦/2.8 9◦/2.2 18◦/2.6 14◦/2.4 9◦/1.8

t2 = 4 × 21/4 4◦/2.4 11◦/2.2 12◦/2.3 8◦/2.0

t2 = 4 × 21/2 6◦/2.2 7◦/1.9 8◦/2.3

t2 = 4 × 23/4 0◦/2.4 5◦/2.0 8◦/2.5
t2 = 8 0◦/2.0 7◦/2.5

t2 = 8 × 21/4 4◦/2.6

t2 = 8 × 21/2 3◦/2.9

Table 8.1: m/n in each entry means: maximal longitude angle φ giving at least
20 matches by SIFT / corresponding transition tilt τ(t1, t2, φ). This table shows
that SIFT covers a transition tilt τ ≈ 2.5.

8.4 Parameter sampling and complexity

8.4.1 Sampling ranges

The camera motion depicted in Fig. 8.4 shows that φ should naturally cover all
the directions from 0 to 2π. But, by Theorem 8.1, it is enough to simulate φ
from 0 to π to cover all possible linear transforms.

The sampling range of the tilt parameter t determines the degree of the tilt
invariance the algorithm can achieve. Image recognition under a remarkable
viewpoint change in practice requires that the scene is planar and Lambertian
and its structures are not squashed when observed from an oblique viewpoint.
Due to these physical limitations, affine image recognition is impractical under
too big a tilt t. The physical upper bound tmax can be obtained experimentally
using some images taken from indoor and outdoor scenes, each image pair being
composed of a frontal view and an oblique view.

The images used in the experiments satisfy as much as possible the physical
conditions mentioned above. The indoor scene is a magazine placed on a table
with the artificial illumination coming from the ceiling as shown in Fig. 8.9. The
outdoor scene is a building façade with some graffiti as illustrated in Fig. 8.10.
For each pair of images, the true tilt parameter t between them is obtained by
manual measurement. A-SIFT is applied with very large parameter sampling
ranges and small sampling steps, so that the simulated views cover accurately
the true affine distortion. The A-SIFT matching results depicted in Figs. 8.9
and 8.10 show that the limit is tmax ≈ 5.6 that corresponds to a view angle
θmax = arccos 1/tmax ≈ 80◦. A-SIFT finds a large number of matches when the
tilt between the frontal image and the oblique image is smaller than about 5.6.
Therefore we set the tilt simulation range tmax = 4

√
2.

Let us emphasize that when the two images under comparison are taken from
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orthogonal longitude angles (see Fig. 8.7 as an example), i.e., φ = φ′ + π/2, the
maximum tilt invariance A-SIFT with tmax = 4

√
2 can achieve in theory is

about t2max = 32.
However, these experiments only fix reasonable bounds for all purpose algo-

rithms. For high resolution images, for very flat lambertian surfaces, larger tilts
might be recognizable.

Figure 8.9: A-SIFT on an indoor scene. From top to bottom: tilt distortion t
between the two images are respectively t ≈ 3, 5.2, 8.5; the number of matches
are respectively 107 (3 false), 25 (7 false), and 7 (all false).

8.4.2 Sampling steps

In order to have A-SIFT invariant to any affine transform, one needs to sample
the tilt t and angle φ with a high enough precision. The sampling steps △t and
△φ must be fixed experimentally by testing several natural images.

The camera motion model illustrated in Fig. 8.4 indicates that the sampling
precision of the latitude angle θ = arccos 1/t should increase with θ. A geometric
sampling for t satisfies this requirement. Naturally, the sampling ratio △t =
tk+1/tk should be independent of the angle φ. In the sequel, the tilt sampling
step is experimentally fixed to △t =

√
2.

As can be observed from the camera motion model in Fig. 8.4, one needs
a finer φ sampling when θ = arccos 1/t increases: the image distortion caused
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Figure 8.10: A-SIFT on an outdoor scene. From top to bottom: tilt distortion
t between the two images are respectively t ≈ 3.8, 5.6, 8; the number of matches
are respectively 71 (4 false), 33 (4 false), 10 (all false).
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by a fixed longitude angle displacement △φ, is much more drastic when the
latitude angle θ increases. The longitude sampling step in the sequel will be
△φ = 2 × 36◦

t = 72◦

t .
Fig. 8.11 illustrates the sampling of the parameters θ = arccos 1/t and φ. At

bigger θ the sampling of θ as well as the sampling of φ are denser.

Figure 8.11: Sampling of the parameters θ = arccos 1/t and φ. Black dots
represent the sampling. Left: perspective illustration (only t = 2, 2

√
2, 4 are

shown). Right: zenith view of the observation half sphere. The values of θ are
indicated on the figure.

8.4.3 Acceleration with multi-resolution

The multi-resolution procedure accelerates A-SIFT by selecting the transforms
that yield SIFT matches on low-resolution (LR) versions of the compared im-
ages. In case of success only, the procedure simulates the identified affine trans-
forms on the query, and applies SIFT to compare them to the targets.

The multi-resolutions A-SIFT is summarized as follows.

1. Down-sample all compared digital images u and v by a K × K factor:
u′ = SKGKu and v′ = SKGKv, where GK is an anti-aliasing gaussian
discrete filter.

2. Low-resolution (LR) A-SIFT: perform A-SIFT between u′ and v′.

3. Identify the M affine transforms yielding the biggest numbers of matches
between u′ and v′. They are retained only if the matches are meaningful.
In practice, it is enough to put a threshold on the number k of matches,
and k = 15 seems to be a good choice.

4. High-resolution (HR) A-SIFT: apply A-SIFT between u and v by simu-
lating only the affine transforms previously identified.

Fig. 8.12 shows an example. The low-resolution A-SIFT that is applied on
the 3× 3 sub-sampled images finds 12 correspondences and identifies the 5 best
affine transforms. The high-resolution A-SIFT finds 133 matches.



i

i

8.4. PARAMETER SAMPLING AND COMPLEXITY 111

Figure 8.12: “77 Mass Ave”. Left: low-resolution A-SIFT, 12 matches, three of
which are wrong. Right: high-resolution A-SIFT, 133 matches. Due to the lack
of details in these images, the number of matches at low resolution is critically
low.

8.4.4 A-SIFT Complexity

The complexity of the A-SIFT algorithm will be estimated under the recom-
mended baseline configuration: The tilt and angle ranges are [tmin, tmax] =
[1, 4

√
2] and [φmin, φmax] = [0◦, 180◦], and the sampling steps are △t =

√
2,

△φ = 36◦ × t
2 . Each t tilt is simulated by image sub-sampling in one direc-

tion by a t factor. All images are sub-sampled by a K ×K = 3 × 3 factor for
the low-resolution A-SIFT. Finally, the high-resolution A-SIFT simulates the
M = 5 best affine transformations that are identified, but only in case they
contain enough matches. When matching an image to a large database, the
most common event is failure. Thus, the final high-resolution step is only to be
taken into account when comparing images of the same scene.

The complexity of the descriptor computation is proportional to the input
image area. This area is proportional to the number of simulated tilts t. Indeed,
the number of φ simulations is proportional to t for each t, but the t sub-sampling
for each tilt simulation divides the area by t. More precisely, the image area
input to low-resolution A-SIFT is

1 + (|Γt| − 1) 180◦

2×36◦

K2
=

1 + 5 × 2.5

9
= 1.5

times as large as that of the original images, where |Γt| is the number of tilt
simulations. Thus, the complexity of the low-resolution A-SIFT is 1.5 times as
much as that of a single SIFT routine, and generates 1.5 as many SIFs. Here
we must distinguish two cases:

1. If the comparisons involve a large database (where most comparisons will
be failures), the complexity is propositional to the number of SIFs in the
queries multiplied by the number of SIFs in the targets. Since A-SIFT
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introduces a a 1.5 area factor, the final complexity is simply 1.52 = 2.25
times the SIFT complexity.

2. If the comparisons involve a set of images with high match likeliness, then
the high resolution step is no more negligible. Then, it can only be asserted
that the complexity will be less than 6.5 + 2.5 = 9 times a SIFT routine
on the same images. However, in that case, A-SIFT ensures many more
detections than SIFT, because it explores many more viewpoint angles.
Thus, the complexity rate per detected SIF might be much closer to, or
even smaller than the per detection complexity in a SIFT routine.

For the high-resolution A-SIFT, this factor is M = 5. Therefore the total
complexity of the A-SIFT is 6.5 times a SIFT routine.

The SIFT subroutines can be implemented in parallel in A-SIFT (for both
the low-resolution and the high-resolution A-SIFT). Recently many authors have
investigated SIFT accelerations [126, 85, 143]. A realtime SIFT implementation
has been proposed in [238]. Obviously, all of these accelerations directly apply
to A-SIFT.
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Figure 8.13: Each recognition method can be characterized by its transition
tilt, namely the variation in relative observation angle compatible with recogni-
tion. This figure shows perspective and zenith views of the observation sphere.
The central point of the bright region on the observation sphere is the original
viewpoint from which an image has been taken. The rest of the bright region
depicts, for several positions of this original point and several transition tilts,
the attainable observation region, namely all other view angles in the observa-
tion sphere for which recognition succeeds for the given transition tilt. From
top to bottom: latitude angle of the first image θ = 45, 60, 70, 80◦ that corre-
spond respectively to the absolute tilts t =

√
2, 2, 2.9, 5.8. From left to right:

transition tilt < 2.5, 5, 40.
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Chapter 9

The mathematical
justification

This chapter gives the mathematical formalism and a mathematical proof that
A-SIFT is fully affine invariant, up to sampling errors. The next chapter 10.3 is
devoted to many comparative experiments where all mentioned state-of-the art
algorithms are compared for their scale and tilt invariance.

In this chapter, to lighten the notation of the gaussian, Gσ will denote the

convolution operator on R2 with the gauss kernel Gσ(x, y) = 1
2π(cσ)2 e

−x2+y2

2(cσ)2 ,

namely Gu(x, y) =: (G ∗ u)(x, y). The constant c ≥ 0.8 is large enough to
ensure that all considered images can be sampled with sampling mesh 1 af-
ter convolution with G1. The one dimensional gaussians will be denoted by

Gx
σ(x, y) = 1√

2πcσ
e
− x2

2(cσ)2 and Gy
σ(x, y) = 1√

2πcσ
e
− y2

2(cσ)2 . Gσ still satisfies the

semigroup property
GσGβ = G√

σ2+β2 . (9.1)

The proof of the next formula is a mere change of variables in the integral
defining the convolution.

GσHγu = HγGσγu. (9.2)

Exercise 9.1. Prove (9.2).

Using the above notation, the next paragraph formalizes the SIFT method.

9.0.5 The image formation model

As developed in Section 8.1, the whole image comparison process, based on
local features, can proceed as though images where (locally) obtained by using
digital cameras that stand far away, at infinity. The geometric deformations
induced by the motion of such cameras are affine maps. A model is also needed
for the two main camera parameters not deducible from its position, namely
sampling and blur. The digital image is defined on the camera CCD plane.
The pixel width can be taken as length unit, and the origin and axes chosen
so that the camera pixels are indexed by IZ2. The associated image sampling
operator will be denoted by S1. The digital initial image is always assumed
well-sampled and obtained by a gaussian blur with standard deviation 0.6. (See

115
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[184] for a detailed analysis of why this model is sufficient and coherent for most
digital images, and compatible with the SIFT method.) In all that follows, u0

denotes the (theoretical) infinite resolution image that would be obtained by
a frontal snapshot of a plane object with infinitely many pixels. The digital
image obtained by any camera at infinity is u = S1G1AT u0, where A is any
linear map with positive singular values and T any plane translation. Thus we
can summarize the general image formation model with cameras at infinity as
follows.

Figure 9.1: The projective camera model u = S1G1Au0. A is a planar projective
transform (a homography). G1 is an anti-aliasing gaussian filtering. S1 is the
CCD sampling.

Definition 9.1. Image formation model. Digital images of a planar object
whose frontal infinite resolution image is u0, obtained by a digital camera far
away from the object, satisfy

u =: S1G1AT u0 (9.3)

where A is any linear map and T any plane translation. G1 denotes a gaussian
kernel broad enough to ensure no aliasing by 1-sampling, namely IS1G1AT u0 =
G1AT u0.

The formal description of A-SIFT will be by far simpler if sampling issues do
not interfere. All operations and all reasoning will be made with continuous well
sampled images. It is easy to deduce afterwards the discrete operators acting
on samples. T denotes an arbitrary translation, R an arbitrary rotation, Hλ

an arbitrary homothety, and G an arbitrary gaussian convolution, all applied
to continuous images. In the particular case in the digital image formation
model (9.3) where A is a frontal view of u0, A = HRT is the composition of
a translation T , a homothety H , and a rotation R. Thus the digital image is
u = S1G1HT Ru0.

9.0.6 Inverting tilts

We shall denote by ∗y the 1-D convolution convolution operator in the y-
direction. When we write G∗y, we mean that G is a one-dimensional gaussian,
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depending on y, and the 1-D convolution means

G ∗y u(x, y) =:

∫

Gy(z)u(x, y − z)dz.

There are three different notions of tilt, that we must carefully distinguish.

Definition 9.2. Given t > 1, the tilt factor, define

• the absolute tilt : T x
t u0(x, y) =: u0(tx, y). In case this tilt is made in the

y direction. It will be denoted by T y
t u0(x, y) =: u0(x, ty);

• the continuous tilt (taking into account camera blur): T
x
t v =: T x

t Gx√
t2−1

∗x

v. In case the simulated tilt is done in the x direction, it is denoted
T

y
t v =: T y

t Gy√
t2−1

∗y v.

• the digital tilt (transforming a digital image u into a digital image) : u →
S1T

x
t Iu. This is the one that is used in the algorithm. It is correct because,

as we shall see, the simulated tilt yields a blur permitting S1-sampling.

If u0 is an infinite resolution image observed with a t camera tilt in the
x direction, the observed image is G1T

x
t u0. Our main problem is to reverse

such tilts. This operation is in principle impossible, because absolute tilts do
not commute with blur. However, the next lemma shows that T

y
t is actually a

pseudo inverse to T x
t .

Lemma 9.3. One has

T
y
t = HtG

y√
t2−1

∗y (T x
t )−1.

Proof Since (T x
t )−1u(x, y) = u(x

t , y),

(

Gy√
t2−1

∗y (T x
t )−1u

)

(x, y) =

∫

G√
t2−1(z)u(

x

t
, y − z)dz.

Thus

Ht

(

Gy√
t2−1

∗y (T x
t )−1u

)

(x, y) =

∫

G√
t2−1(z)u(x, ty − z)dz =

(

Gy√
t2−1

∗y u
)

(x, ty) =
(

T y
t Gy√

t2−1
∗y u

)

(x, y).

�

The meaning of the next result is that a tilted image G1T
x
t u can be tilted

back by tilting in the orthogonal direction. The price to pay is a t zoom out.
The second relation in the theorem means that the application of the simulated
tilt to an image that can be well sampled by S1 yields an image that keeps that
well sampling property.

Theorem 9.4. Let t ≥ 1. Then

T
y
t (G1T

x
t ) = G1Ht; (9.4)

T
y
t G1 = G1T

y
t . (9.5)
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Proof By Lemma 9.3, we recall that

T
y
t = HtG

y√
t2−1

∗y (T x
t )−1.

Thus,

T
y
t (G1T

x
t ) = HtG

y√
t2−1

∗y ((T x
t )−1G1T

x
t ). (9.6)

By a variable change in the integral defining the convolution, it is an easy check
that

(T x
t )−1G1T

x
t u =

(
1

t
G1(

x

t
, y)

)

∗ u, (9.7)

and by the separability of the 2D gaussian in two 1D gaussians,

1

t
G1(

x

t
, y) = Gt(x)G1(y). (9.8)

From (9.7) and (9.8) one obtains

(T x)−1G1T
x
t u = ((Gx

t (x)Gy
1(y)) ∗ u = Gx

t (x) ∗x Gy
1(y) ∗y u,

which implies

Gy√
t2−1

∗y (T x)−1G1T
x
t u = Gy√

t2−1
∗y (Gx

t (x) ∗x Gy
1(y) ∗y u) = Gtu.

Indeed, the 1D convolutions in x and y commute and Gy
t ∗ Gy√

t2−1
= Gy

t by

the Gaussian semigroup property (9.1). Substituting the last proven relation in
(9.6) yields

T
y
t G1T

x
t u = HtGtu = G1Htu.

The second relation (9.5) follows immediately by noting that Ht = T y
t T

x
t . �

Exercise 9.2. Prove (9.7).

9.0.7 Proof that A-SIFT works

The meaning of Theorem 9.4 is that we can design an exact algorithm that
simulates all inverse tilts for comparing two images. After interpolation, A-SIFT
handles two images u = G1AT1u0 and v = G1BT2u0 that are two snapshots
from different view points of a flat object whose front infinite resolution image
is denoted by u0. For a sake of simplicity, we break the symmetry, and set
ũ0 =: AT1u0, so that u = G1ũ0 and v = G1BT2T −1

1 A−1ũ0 = G1BA
−1T ũ0 for

a translation T that depends on T1, T2, and A. Let us use the decomposition
given by (8.2),

BA−1 = R1T
x
t HλR2,

where R1, R2 are rotations, Hλ a zoom, and T x
t (x, y) = (tx, y) is the transition

tilt from u to v. In summary A-SIFT has to compare the interpolated images

v = G1R1T
x
t HλR2T ũ0 and u = G1ũ0.
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The A-SIFT formal algorithm

The following algorithm, where image sampling issues are eliminated by inter-
polation, is actually a proof that A-SIFT manages to compare u and v obtained
from u0 by arbitrary camera positions at infinity. In this ideal algorithm, a
“‘dense enough” set of rotations and tilts is applied to v, so that each one of
the simulated rotation-tilts is “close enough” to any other rotation-tilt. In the
mathematical setting, this approximation must be infinitesimal. In the practical
empirical setting, we’ll have to explore how dense the sets of rotations and tilts
must be (see Section 8.4).

A-SIFT Algorithm (formal)

1. Apply a dense set of all possible rotations (and therefore also a rotation
close to R−1

1 ) to v. Thus, some of the simulated images will be arbitrary
close to v → R−1

1 G1R1HλT
x
t R2T ũ0 = G1T

x
t HλR2T ũ0;

2. apply in continuation a dense set of simulated tilts T
y
t , and therefore

also one arbitrary close to the right one T
y
t = T y

t Gy√
t2−1

∗y, to R−1
1 v =

G1T
x
t HλR2T ũ0. By Theorem 9.4 we have the commutation T y

t G1 =
G1T

y
t , which yields

T
y
tR

−1
1 v = G1HtHλR2T ũ0 = G1HtλR2T ũ0;

3. perform a SIFT comparison of G1HtλR2T ũ0, which is a frontal view of
ũ0, with u = G1ũ0 which also is a frontal view of ũ0.

The above algorithm description is also a proof of the following consistency
theorem, since the SIFT method finds all SIFs common to two frontal views
(Theorem 5.5).

Theorem 9.5. Let u = G1AT1u0 and v = BT2u0 be two images obtained from
an infinite resolution image u0 by cameras at infinity with arbitrary position
and focal lengths. Then A-SIFT, applied with a dense set of tilts and longitudes,
simulates two views of u and v that are obtained from each other by a translation,
a rotation, and a camera zoom. As a consequence, these images match by the
SIFT algorithm.

Remark 9.6. Even if the above proof, and the statement of Lemma ??, deal
with asymptotic statements when the sampling steps tend to infinity or when the
SIFT scales tend to infinity, the approximation rate is very quick, a fact that
can only be checked experimentally. This fact is actually extensively verified by
the huge amount of experimental evidence on SIFT, that shows first that the
recognition of scale invariant features (SIFs) is robust to a substantial variation
of latitude and longitude, and second that the scale invariance is quite robust to
moderate errors on scale. Section 8.4 has evaluated the adequate sampling rates
and ranges for tilts and longitudes.

Simulating midway tilts

The algorithm of Section 9.0.7 can be implemented in several ways. In the above
description, the transition tilt T x

t is directly inverted on one of the images. This
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strategy is consistent, but not optimal. As we have seen, the transition tilt can
be very large. It is preferable to simulate moderate tilts on two images that
large tilts on one of them. To this aim a midway image can be reached from
both images by applying a

√
t tilt to one of them and a

√
t tilt to the other

one. The only change to the formal algorithm will be that rotations and tilts
are applied to both images, not just to one of them.

Midway A-SIFT (formal)

1. Apply a dense set of all possible rotations to both images, and therefore
R2 to u and R−1

1 to v;

2. apply in continuation a dense set of simulated tilts T
x
t in a fixed [0, tmax]

range;

3. perform a SIFT comparison of all pairs of resulting images.

Let us now prove that this algorithm works, namely that two of the simulated
images are deduced from each other by a similarity. The query and target
images are u = G1AT1u0 and v = G1BT2u0. By the usual decomposition of a
linear map (8.2),

BA−1 = R1T
x
t R2Hλ = (R1T√t

x)(T x√
t
R2Hλ).

Notice that by the relation

T
x
tR(−π

2
) = R(

π

2
)Ty

t , (9.9)

the algorithm also simulates tilts in the y direction, up to R(π
2 ) rotation. In

particular, the above algorithm applies:

1. Tx√
t
R2 to G1AT1u0, which by (9.5) yields ũ = G1T

x√
t
R2AT1u0 =: G1ÃT1u0;

2. R(π
2 )Ty√

t
R−1

1 to G1BT2u0, which by (9.5) yields G1R(π
2 )T y√

t
R−1

1 BT2u0 =:

G1B̃T2u0.

Let us show that Ã and B̃ only differ by a similarity. Indeed,

B̃−1R(
π

2
)H√

tÃ = B−1R1T
y√

t
−1T

x√
t
H√

tR2A =

B−1R1T
y√

t
−1T

x√
t
H√

tR2A = B−1R1T
x
t R(

π

2
)R2A = B−1(BA−1)A = I,

where I is the identity. It follows that B̃ = R(π
2 )H√

tÃ. Thus,

ũ = G1ÃT1u0 and ṽ = G1R(
π

2
)H√

tÃT2u0,

that are two of the simulated images, are deduced from each other by a rotation
and a

√
t zoom. It follows that their SIFs are identical as soon as the scale of

the SIF exceeds
√
t.

�

Exercise 9.3. There is a (non crucial) error in the above proof. Read this proof
carefully, find the error, and adjust the proof.
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9.0.8 Conclusion on the algorithms

The above descriptions have neglected the sampling issues, but care was taken
that input images and output images be always written in the G1u form. For
the digital input images, that always have the form u = S1G1u0, the Shannon
interpolation algorithm is I is first applied, to give back IS1G1u0 = G1u0. For
the output images, that always have the form G1v, the sampling S1 gives back
a digital image.

Thus, the descriptions of the formal algorithm A-SIFT and of its “midway”
version are changed into a digital algorithm by:

• replacing everywhere the inputs G1u by their digital version S1G1u;

• by applying digital rotations to digital images : u → Ru =: S1RIu;

• by applying digital tilts as defined in Def. 9.2, namely u → S1T x
t Iu.

That way, the formal algorithms are transformed into digital algorithms. The
proofs need not be repeated, since by Shannon interpolation and sampling, it is
equivalent to talk about S1G1u0 or about G1u0.

Clearly the midway algorithm is better, because it only needs simulating tilts
that are square roots of the real transition tilts. Thus, all of the forthcoming
discussion will focus on the midway version, that we’ll simply call A-SIFT.
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Chapter 10

Experiments on affine
invariant methods

10.1 Affine normalization methods: are they fully
affine invariant?

Since the affine transform depends upon six parameters, it is out of the question
to just simulate all of them and compare the original image to all deformed
images by all possible affine deformations. However, simulation can be a solution
for a few parameters: the SIFT method actually simulates zooms out.

The other way that has been tried by many authors is normalization. Nor-
malization is a magic method that, given a patch that has undergone an un-
known affine transform, transforms the patch into a standardized one, where the
effect of the affine transform has been eliminated (see Fig. 10.1). Normalization
by translation is easily achieved: A patch around (x0, y0) is translated back to
a patch around (0, 0). A rotational normalization requires a circular patch. In
this patch, a principal direction is found, and the patch is rotated so that this
principal direction coincides with a fixed direction. Thus, of the six parameters
in an affine transform, at least three are easily eliminated by normalization.

Figure 10.1: Normalization methods can eliminate the effect of a a class of affine
transforms by associating the same standard patch to all transformed patches.

However, when it comes to the other three parameters, things get difficult
and controversial. Two methods have been recently proposed to perform a level
lines based full affine normalization: MSER [168] and LLD [189]. Both of them
apply to image level lines, or to image pieces of level lines, an affine normalization

123
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in the spirit of the translation and rotation normalization explained above. We
shall focus on MSER, but the discussion applies to LLD as well.

10.2 Global Normalization and Encoding

10.2.1 Global Affine Normalization

Classical shape normalization methods are based on the inertia matrix normal-
ization. We shall use Cohignac’s presentation of this method, given in [41].
Denote by 1F the indicator function of a shape domain F . The shape is usually
associated a weight function defined on the shape domain, u(x, y) = ϕ(x, y)1F .
Classically, ϕ(x, y) is the restriction of an image to the shape extracted from it,
or the restriction to the shape of the image gradient, or the restriction to the
shape of the image gradient direction, etc. Thus when we talk about “the shape
F”, we actually talk about u(x, y). Of course, when ϕ(x, y) = 1, the whole anal-
ysis of this section boils down to the analysis of the proper shape u = 1F . In all
that follows, a convenient abbreviation is F for u(x, y). If A is linear or affine
map, AF denotes the function Au defined as usual by Au(x, y) = u(A(x, y)).
In order to achieve translation invariance of the normalized representation, it
may be assumed that F has been previously translated so that its barycenter
weighted by u(x, y) is at the origin of the image plane.

Exercise 10.1. Show that this last assumption amounts to assume that

µ1,0(F) =:

∫

IR2

xu(x, y)dxdy = 0 and µ0,1(F) =:

∫

IR2

yu(x, y)dxdy = 0.

More precisely, give a formula for the weighted barycenter b(F) of F and show that the
barycenter is covariant by any affine transform, namely b(AF) = Ab(F) for every linear
transform A. Show that the weighted area of F defined by µ0,0(F) =:

∫

IR2 u(x, y)dxdy
satisfies µ0,0(AF) = |det(A)|µ0,0(F).

The moment of order (p, q) (p and q natural integers) of the shape F
(weighted by u) is defined by

µp,q(F) =

∫

IR2

xpyqu(x, y)dxdy.

Let SF be the following 2 × 2 positive-definite, symmetric matrix

SF =
1

µ0,0

(
µ2,0 µ1,1

µ1,1 µ0,2

)

,

where µi,j = µi,j(F). By the uniqueness of Cholesky factorization [94], SF may
be uniquely decomposed as SF = BFBt

F where BF is a lower-triangular real
matrix with positive diagonal entries.

Definition 10.1. The pre-normalized shape associated to F is the shape F ′ =
B−1

F (F).

The aim is to prove that the pre-normalized solid shape is invariant to affine
transformations, up to a rotation.

Lemma 10.2. Let A be a non-singular 2 × 2 matrix. Then SAF = ASFAt.
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Proof. Let a, b, c and d be real numbers such that:

A =

(
a b
c d

)

.

The moment of order (2, 0) associated to the solid shape AF is

µ2,0(AF) = det(A)

∫

IR2

(ax+ by)2u(x, y)dxdy

= det(A)(a2µ2,0 + 2abµ1,1 + b2µ0,2).

The same computation for moments of order (0, 2) and (1, 1) yields

µ0,2(AF) = det(A)(c2µ2,0 + 2cdµ1,1 + d2µ0,2),

µ1,1(AF) = det(A)(acµ2,0 + bdµ0,2 + (ad+ bc)µ1,1).

Since µ0,0(AF) = det(A)µ0,0, one can easily check that SAF = ASFAt. �

Exercise 10.2. Make the calculation proving that SAF = ASFA
t.

Lemma 10.3. Let X0 be a 2× 2 invertible matrix. Then, for any 2× 2 matrix
X: XXt = X0X0

t if and only if there exists an orthogonal matrix Q such that
X = X0Q.

Proof. Since X0 is invertible, XXt = X0X0
t iff X−1

0 X(X−1
0 X)

t
= Id2. Let-

ting Q = X−1
0 X yields the result. �

Proposition 10.4. The pre-normalized solid shape is invariant to any invert-
ible, planar, linear transformation (x, y)

t 7→ A(x, y)
t
, up to an orthogonal

transformation. Moreover, if det(A) > 0, the invariance holds up to a rotation.

Proof. Since A is a 2 × 2 non singular matrix, following Lemma 10.2, SAF =
ASFAt. By letting BF be the lower-triangular matrix of Cholesky’s decom-
position of BF , it follows that SAF = ABF(ABF )

t
. Now, since SAF is a

2 × 2 positive-definite, symmetric matrix, Cholesky factorization yields SAF =
BAFBAF

t, where BAF is a 2 × 2 non-singular, lower-triangular real matrix.
Then, by Lemma 10.3, BAF = ABFQ, where Q is a 2 × 2 orthogonal ma-
trix. Hence, B−1

AFAF = (ABFQ)−1AF = Q−1B−1
F A−1AF = Q−1B−1

F F , which
proves the invariance of F ′ = B−1

F F to planar isomorphisms, up to an orthog-
onal transformation. Finally, notice that if det(A) > 0, then det(Q) > 0. �

Exercise 10.3. Prove that a closed form for B−1
F in terms of the moments of F can

be computed by taking the inverse of BF , the lower-triangular matrix given by the
Cholesky decomposition of SF ,

B−1
F =

√
µ0,0






1√
µ2,0

0

− µ1,1

µ2,0

√

µ0,2−
µ2
1,1

µ2,0

1
√

µ0,2−
µ2
1,1

µ2,0




 .
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The pre-normalized solid shape F ′ = B−1
F F is then an affine invariant rep-

resentation of F modulo a rotation. In order to obtain a full affine invariant
representation, only a reference angle is needed. This can be achieved, for in-
stance, by computing in polar coordinates

ϕ = Arg

(∫ 2π

0

∫ +∞

0

(B−1
F u)(r, θ)eiθrdrdθ

)

,

then rotating F ′ by −ϕ.

Putting all the steps together, the support of the affine invariant normaliza-
tion of F is the set of points (xN , yN) given by

(
xN

yN

)

=

(
cosϕ sinϕ
− sinϕ cosϕ

)

B−1
F

(
x− µ1,0

y − µ0,1

)

,

for all (x, y) ∈ F .

10.2.2 Maximally Stable Extremal Regions (MSER)

The MSER method introduced by Matas et al. [168] attempts to achieve affine
invariance by selecting the most robust connected components of upper and
lower level sets as image features.

Extremal regions is the name given by the authors to the connected com-
ponents of upper or lower level sets. Maximally stable extremal regions, or
MSERs, are defined as maximally contrasted regions in the following way. let
Q1, ..., Qi−1, Qi, ... be a sequence of nested extremal regions, i.e. Qi ⊂ Qi+1

where Qi is defined by a threshold at level i or, in other terms, Qi is an upper
(resp. lower) level set at level i. An extremal region in the list Qi0 is said
to be maximally stable if the area variation q(i) =: |Qi+1 \ Qi−1|/|Qi| has a
local minimum at i0, where |Q| denotes the area of a region |Q|. Clearly the
above measure is a measure of contrast along the boundary ∂Qi of Qi. Indeed,
assuming that u is C1 and that the grey level increment between i and i+ 1 is
infinitesimal, the area |Qi+1 \Qi−1| varies least when

∫

∂Qi
|∇u| is maximal. The

MSER extraction is a first step of image matching. Once MSERs are computed,
the affine normalization of Section 10.2.1 is performed on the MSERs before they
can be compared. The fact that the method is not fully scale invariant is easily
explained with the experiment of Fig. 10.2. In MSER the scale normalization is
based on the size (area) of the detected extremal regions. However, scale change
is not just a homothety: it involves a blur followed by sub-sampling. The blur
changes drastically the size of the regions. As pointed out in [42] this entails
a strong lack of scale invariance. It could only be compensated by simulating
actual blur on the images, as made by the SIFT method.

10.3 Experiments

A-SIFT image matching performance will be compared with the state-of-the-art
approaches with the detectors DoG [151], Hessian-Affine, Harris-Affine [172, 175]
and MSER [168] all coded by the most popular SIFT descriptor [151]. The
MSER detector followed by the correlation descriptor as proposed in the original
work [168] is also included in the comparison, whose performance will be shown
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Figure 10.2: Shapes change with distance: The level lines not stable by
down-sampling. This is the main problem with level lines methods
(MSER).

slightly worse than that of the MSER detector followed by the SIFT descriptor.
For simplicity, in the text the methods will be named respectively SIFT, Harris-
Affine, Hessian-Affine and MSER for short. (The MSER detector followed by
the SIFT and the correlation descriptors are sometimes denoted as MSER+SIFT
and MSER+Corr. By MSER alone, we mean the MSER detector followed by
either of the two descriptors.)

The Lowe [150] reference software was used for DoG with SIFT. For all the
other methods we used the Hessian-Affine, Harris-Affine and MSER descriptor
code provided by the authors and combined them with the SIFT descriptor
implemented by Mikolajczyk, all downloadable from [171].

Applications of A-SIFT and comparisons with the other methods will also
be performed for video object tracing and symmetry detection.

The experiments will show images taken from different viewpoints with vary-
ing tilts, zooms, and transition tilts. Correspondences will be connected by
white segments. Note that the parallelism or coherent directions of the con-
necting lines usually indicates that most correspondences are correct.

All images under comparison have a low resolution 600 × 450. As reported
under each figure, A-SIFT applied an image sub-sampling of factor K×K with
K = 3 for most images. A very few cases where objects of interest are too small
will be shown. In those cases A-SIFT only works with a more conservative
subsampling K = 2, and in one case only with K = 1.

10.3.1 Exploring tilts and zooms

Fig. 10.3 illustrates the two settings that we have adopted to make systematic
comparisons respectively for evaluating the maximum absolute tilt and tran-
sition tilt attained by each algorithm. A magazine and a painting shown in
Fig. 10.4 were photographed for the experiments. Unlike SIFT and A-SIFT,
the Hessian-Affine, Harris-Affine and MSER detectors are not robust to scale
change as shown in Fig. 10.6. Therefore the pairs of images under comparison
were chosen free of scale change so that the evaluation is focused on the tilt
invariance.
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a b

Figure 10.3: The settings adopted to systematic comparison. Left: absolute tilt
test. An object is photographed with a latitude angle θ (between the camera
axis and the normal to the object) that varies from 0 degree (frontal view) to 80
degrees, from distances varying between 1 and 10, which is the maximum focal
distance change. Right: transition tilt test. An object is photographed with a
longitude angle φ (between the camera axis projected on the object plane and
a fixed direction thereon) that varies from 0 degree to 90 degrees, from a fixed
distance.

Figure 10.4: The magazine cover and the painting are photographed in the
experiments.
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10.3.2 Absolute Tilt Tests

The painting illustrated in Fig. 10.4 is photographed with a reflex camera, with
distances varying between ×1 and ×10, which is the maximum focal distance
change, and with viewpoint angles between the camera axis and the normal to
the poster that varies from 0 degree (frontal view) to 80 degrees. It is clear that
beyond 80 degrees, to establish a correspondence between the frontal image and
the extreme viewpoint becomes absolutely haphazard. Even when the photo
acquisition conditions and the image resolution are excellent, with such a big
view angle change the observed surface becomes in general reflective, and the
image in the resulting photo is totally different from the frontal view. Never-
theless, A-SIFT works until 80 degrees, and it would be unrealistic to insist on
bigger angles.

Table 10.1 summarizes performance of each algorithm in terms of number of
correct matches. Some matching results are illustrated in Figs. 10.7 to 10.10.

One remarks first that MSER, which uses maximally stable level lines as
features, obtains for most time much less correspondences than other methods
whose features are based on local maxima in the scale-space. This has been
confirmed by LLD, a novel image matching approach independently developed at
ENS Cachan that applies also level lines as features [191, 189]. Let us recall that
robust image matching requires a sufficiently big number of correspondences.

For images taken at short distance as illustrated in Figs. 10.7 and 10.8, tilt
varies on the same flat object because of the perspective effect, as illustrated
in Fig. 10.5. The number of SIFT correspondences drops dramatically when
the angle is bigger than 65 degrees (that corresponds to a tilt t ≈ 2.3) and it
fails completely when the angle exceeds 75 degrees (tilt t ≈ 3.8). At 65 and 75
degrees, as shown in Fig. 10.8, most matches are located on the side closer to
the camera where the actual tilt is smaller. The performance of Harris-Affine
and Hessian-Affine degrades considerably when the angle goes over 75 degrees
(tilt t ≈ 3.8). The MSER correspondences remain at a small number with a
noticeable decline over 65 degrees (tilt t ≈ 2.4). A-SIFT works perfectly until
80 degrees (tilt t ≈ 5.8).

Images taken at a camera-object distance multiplied by 10, as shown in
Figs. 10.9 and 10.10, exhibits less perspective effects but contains less meaning-
ful pixels at big angles. For these images the SIFT performance drops consid-
erably: recognition is possible only with angles smaller than 45 degrees. The
performance of Harris-Affine and Hessian-Affine declines clear when the angle
goes from 45 to 65 degrees and beyond 65 degrees they fail completely. MSER
struggles at the angle of 45 degrees and fails at 65 degrees. A-SIFT again
functions perfectly until 80 degrees.

Rich in highly contrasted regions, the magazine shown in Fig. 10.4 is more
favorable to MSER. Table 10.2 shows the result of a similar experiment per-
formed with the magazine, with the latitude angles from 50 to 80 degrees on
one side and with the camera focus distance ×4. Fig. 10.11 shows the result
with 80-degree angle. The performance of SIFT, Harris-Affine and Hessian-
Affine drops dramatically with the angle going from 50 to 60 degrees (tilt t
from 1.6 to 2). Beyond 60 degrees (tilt t = 2) they all fail completely. MSER
finds many correspondences until 70 degrees (tilt t ≈ 2.9). The number drops
considerably when the angle exceeds 70 degrees and becomes too small at 80
degrees (tilt t ≈ 5.8) for robust recognition. A-SIFT works perfectly until 80



i

i

130 CHAPTER 10. EXPERIMENTS ON AFFINE INVARIANT METHODS

Figure 10.5: When the camera view angle is large, the absolute tilt of a plane
object can vary considerably in the same image.

Figure 10.6: Robustness to scale change. A-SIFT (shown), SIFT (shown),
Harris-Affine (shown), Hessian-Affine, MSER+Corr and MSER+SIFT find re-
spectively 221, 86, 4, 3, 3 and 4 correct matches. Harris-Affine, Hessian-Affine
and MSER are not robust to scale change. A-SIFT is implemented with K = 2,
which means that K = 3 doesn’t work.
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Figure 10.7: Correspondences between the painting images taken from short
distance (zoom ×1) at frontal view and at −45◦ angle. The absolute tilt varies:
t = 2 (middle), t < 2 (left part), t > 2 (right part). A-SIFT (shown), SIFT
(shown), Harris-Affine (shown), Hessian-Affine, MSER+Corr and MSER+SIFT
find respectively 624, 236, 28, 15, 7 and 11 correct matches. A-SIFT is imple-
mented with K = 3.

Figure 10.8: Correspondences between the painting images taken from short dis-
tance (zoom ×1) at frontal view and at 75◦ angle. The local absolute tilt varies:
t = 4 (middle), t < 4 (right part), t > 4 (left part). A-SIFT (K = 3, shown),
SIFT (shown), Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT
(shown) find respectively 202, 15, 3, 1, 5 and 5 correct matches.



i

i

132 CHAPTER 10. EXPERIMENTS ON AFFINE INVARIANT METHODS

Figure 10.9: Correspondences between long distance snapshots (zoom ×10) at
frontal and 65◦ angle, absolute tilt t = 2.4. A-SIFT (K = 3, shown), SIFT
(shown), Harris-Affine (shown), Hessian-Affine, MSER+Corr and MSER+SIFT
find respectively 341, 5, 3, 0, 3 and 4 correct matches.

Figure 10.10: Correspondences between long distance views (zoom ×10), frontal
view and 80◦ angle, absolute tilt t = 5.8. A-SIFT (K = 3, shown), SIFT,
Harris-Affine, Hessian-Affine, MSER+Corr (shown) and MSER+SIFT (shown)
find respectively 75, 1, 1, 0, 2 and 2 correct matches.
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Z × 1 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
−80◦/5.8 1 16 1 3 4 110
−75◦/3.9 24 36 7 4 3 281
−65◦/2.3 117 43 36 6 5 483
−45◦/1.4 245 83 51 9 13 559
45◦/1.4 195 86 26 10 12 428
65◦/2.3 92 58 32 10 11 444
75◦/3.9 15 12 7 7 7 203
80◦/5.8 2 6 6 5 5 204

Z × 10 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
−80◦/5.8 1 3 0 4 4 116
−75◦/3.9 0 3 0 6 6 265
−65◦/2.3 10 22 16 7 10 542
−45◦/1.4 182 68 45 18 19 722
45◦/1.4 171 54 26 14 15 707
65◦/2.3 5 12 5 5 6 468
75◦/3.9 2 1 0 4 4 152
80◦/5.8 3 0 0 4 2 110

Table 10.1: Absolute tilt invariance comparison. Summary of the results of the
experiments that compare A-SIFT with SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), MSER coded by the correlation descriptor (MSER+Corr) and
by the SIFT descriptor (MSER+SIFT) for viewpoint angles between 45 and 80
degrees. Top: images taken with zoom ×1. Bottom: images taken with zoom
×10. (The camera-object distance is 10 times bigger.) The latitude angles and
the absolute tilts are listed in the left column. With zoom ×1, the actual tilt
varies on the same object varies around the marked value due to the perspective
effect.

degrees.
The above experiments lead us to the following conclusion of the maximum

absolute tilts of the approaches under comparison. SIFT exceeds hardly an ab-
solute of 2 and the limit is about 2.5 for Harris-Affine and Hessian-Affine. The
performance of MSER depends heavily on the types of image. For images with
highly contrasted regions, MSER reaches an absolute tilt about 5. However if
the images do not contain highly contrasted regions, the performance of MSER
is very limited even under small tilts. For A-SIFT, an absolute tilt of 5.8 that
corresponds to an extreme viewpoint angle of 80 degrees does not pose any dif-
ficulty to achieve robust recognition.

10.3.3 Transition Tilt Tests

The magazine shown in Fig. 10.4 is place face-up and photographed by a reflex
camera and makes two sets of images. As illustrated in Fig. 10.3-b, for each
image set, the camera with a fixed latitude angle θ, i.e., a fixed absolute tilt t
of respectively 2 and 4, circles around with the longitude angle φ going from 0
to 90 degrees. The camera focus distance is ×4. In each set the images have
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SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
50◦/1.6 267 131 144 129 150 1692
60◦/2.0 20 29 39 88 117 1012
70◦/2.9 1 2 2 48 69 754
80◦/5.8 0 0 0 10 17 267

Table 10.2: Absolute tilt invariance comparison. Summary of the results of the
experiments that compare A-SIFT with SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), MSER coded by the correlation descriptor (MSER+Corr) and
by the SIFT descriptor (MSER+SIFT) for viewpoint angles between 50 and 80
degrees. The latitude angles and the absolute tilts are listed in the left column.

the same absolute tilt t while the transition tilt τ (with respect to the image
taken at φ = 0 degree) goes from 1 to t2 when φ goes from 0 to 90 degrees. To
evaluate the maximum transition tilt, the images taken at φ 6= 0 are matched
against the one taken at φ = 0.

Table 10.3 compares the performance of the algorithms. The number of
matches under the absolute tilt t = 2 shows clearly that performance of SIFT
drops dramatically when the transition tilt goes from 1.3 to 1.7. With a tran-
sition tilt over 2.1, SIFT fails completely. Similarly a considerable performance
decline is observed for Harris-Affine and Hessian-Affine when the transition tilt
goes from 1.3 to 2.1. Hessian-Affine slightly outperform Harris-Affine but both
methods fail completely when the transition tilt goes above 3. MSER and A-
SIFT works stably until the transition tilt goes to 4. A-SIFT distinguishes itself
by finding more than 10 times as many as those of MSER that cover a much
larger area, as illustrated in Fig. 10.12.

Under an absolute tilt t = 4, SIFT, Harris-Affine and Hessian-Affine struggle
at a transition tilt of 1.9 having comparable number of matches. They fail
completely when the transition tilt goes bigger. MSER works stably until a
transition tilt of 7.7. Over this value, the number of correspondences is too
small for reliable recognition. A-SIFT works perfectly.

The transition tilt is a crucial notion that evaluates the degree of affine
invariance of the image comparison algorithms. With the ordinary viewpoint
changes the transition tilt goes easily to a big value (above 16 for example). The
experiments above show that the maximum transition tilt, about 2 for SIFT and
2.5 for Harris-Affine and Hessian-Affine, is by far not enough. MSER enables re-
liable recognition until a transition tilt of about 10, under the condition that the
images under comparison are free of scale change and contain highly contrasted
regions. The limit of A-SIFT goes beyond 16 largely. Images that have under-
gone transition tilts up to 30 and more can be reliably recognized by A-SIFT,
an example being illustrated in Fig. 8.7.

10.3.4 Comparative experiments

Fig. 10.18 compares the A-SIFT image matching with SIFT, Harris-Affine,
Hessian-Affine and MSER. Table 10.4 summarizes the results. Fig. 10.13 shows
images of a building facade taken from very different viewpoints. The transfor-
mation of the rectangle facade on the left to a trapezia on the right indicates
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Figure 10.11: Correspondences between images taken with zoom ×4, frontal
view and 80◦ angle, absolute tilt t = 5.8. A-SIFT (shown, K = 3), SIFT,
Harris-Affine, Hessian-Affine, MSER+Corr (shown) and MSER+SIFT (shown)
find respectively 349, 0, 0, 0, 10 and 17 correct matches.

Figure 10.12: Correspondences with absolute tilts t1 = t2 = 2 and longitude
angles φ1 = 0◦ and φ2 = 50◦, transition tilt τ = 3. A-SIFT (K = 3, shown),
SIFT, Harris-Affine, Hessian-Affine, MSER+Corr (shown) and MSER+SIFT
(shown) find respectively 881, 2, 0, 2, 70 and 87 correct matches.



i

i

136 CHAPTER 10. EXPERIMENTS ON AFFINE INVARIANT METHODS

φ2/τ t = 2 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
10◦/1.3 408 233 176 110 124 1213
20◦/1.7 49 75 84 96 122 1173
30◦/2.1 5 24 32 85 103 1048
40◦/2.5 3 13 29 71 88 809
50◦/3.0 3 1 3 70 87 745
60◦/3.4 2 0 1 50 62 744
70◦/3.7 0 0 0 34 51 557
80◦/3.9 0 0 0 40 51 589
90◦/4.0 0 0 1 41 56 615

φ2/τt = 4 SIFT Haraff Hesaff MSER+Corr MSER+SIFT A-SIFT
10◦/1.9 22 32 14 38 49 1054
20◦/3.3 4 5 1 32 39 842
30◦/5.3 3 2 1 24 32 564
40◦/7.7 0 0 0 22 28 351
50◦/10.2 0 0 0 15 19 293
60◦/12.4 1 0 0 12 17 145
70◦/14.3 0 0 0 6 13 90
80◦/15.6 0 0 0 6 12 106
90◦/16.0 0 0 0 5 9 88

Table 10.3: Transition tilt invariance comparison. Summary of the results of the
experiments that compare A-SIFT with SIFT, Harris-Affine (HarAff), Hessian-
Affine (HesAff), MSER coded by the correlation descriptor (MSER+Corr) and
by the SIFT descriptor (MSER+SIFT). The affine parameters of the two images
are φ1 = 0◦, t1 = t2 = 2 (above), t1 = t2 = 4 (below). φ2 and the transition
tilts τ are in the left column.

that the transformation is not affine, but strongly perspective. Nevertheless,
since a projective transformation can be locally modeled by affine transforms, a
large number of correspondences is established by A-SIFT. All the other meth-
ods fail. Fig. 10.14 shows the results of the standard test pair Graffiti 1 and
Graffiti 6 proposed by Mikolajczyk [171]. A-SIFT finds 724 correspondences,
out of which 3 are false. SIFT, Harris-Affine and Hessian-Affine find respectively
0, 3 and 1 correct correspondences: the τ = 3.2 transition tilt is just a bit too
large. MSER+Corr and MSER+SIFT find respectively 50 and 70 correct corre-
spondences. Proposed by Matas et al. in their online demo [167] as a standard
image to test MSER [168], the images in Fig. 10.15 show a number of containers
placed on a desktop 1. A-SIFT finds 194 correct correspondences. SIFT, Harris-
Affine, Hessian-AFfine, MSER+Corr and MSER+SIFT find respectively 10, 23,
11, 16 and 22 correct correspondences. Let us note that images in Figs. 10.14
and 10.15 provide optimal conditions for MSER: the camera-object distances
are similar and well contrasted shapes are present. But let us recall that MSER
fails under large scale changes or when well contrasted shapes are not present.
Fig. 10.16 contains two orthogonal road signs taken under a view change that
makes a transition tilt τ ≈ 2.6. A-SIFT successfully matches the two signs

1We thank Michal Perdoch for having kindly provided us with the images.
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finding 50 correspondences while all the other methods totally fail. The mon-
ument shown in Fig. 10.17 has undergone a viewpoint change of latitude angle
65 degrees (tilt t=2.4). A-SIFT works perfectly and finds 101 correct corre-
spondences. SIFT struggles by establishing 13 correspondences. Harris-Affine,
Hessian-Affine, MSER+Corr and MSER+SIFT fail finding only 2, 2, 5 and 4
matches. In Fig. 10.18 is the stump taking from different viewpoints which
makes a transition tilt τ ≈ 2.6. A-SIFT achieved success finding 168 correct
correspondences while all the other methods fail.

Fig. 10.19 illustrates a complex scene in a coffee room in which divers objects
are presented. A-SIFT recognizes the scene by finding 125 correspondences over
six non-coplanar objects. SIFT finds 11 correspondence on the wall and 2 on the
box over the fridge. Other methods fail finding at most a few correspondences
on the wall. Fig. 10.20 shows a coffee can that has been rotated for about
120 degrees. Over the cylinder transition tilt varies continuously and reaches
big values. A-SIFT identifies 287 correspondences that cover almost all visible
common areas. SIFT fails completely due to the too large viewpoint change.
Harris-Affine and Hessian Affine fail by finding 3 and 6 correspondences. MSER
finds a small number of correspondences that cover only part of letters that
provide highly contrasted regions but it does not catch anything on the image
part on the lower half of the can. The Palace of Versaille in Fig. 10.19 undertakes
a viewpoint change of about 50 degrees. A-SIFT detect 67 matches uniformly
distributed on the facade that can be viewed in the two images. SIFT finds
26 correspondences, mostly located in the closer end where the transition tilt
is smaller due to the perspective effect. The other methods fail completely by
finding zero or sporadic correspondences.

Fig./τ SIFT Haraff Hesaff MSER1 MSER2 A-SIFT
Fig. A/3.0 0 0 1 3 3 58

Fig. 10.13/3.8 0 0 1 0 2 68
Fig. 10.14/3.2 0 3 1 50 50 721

Fig. 10.15/[1.6,3.0] 10 23 11 16 22 254
Fig. 10.16/2.6 0 0 0 0 1 50
Fig. B/15.0 0 0 0 0 0 78

Fig. 10.17/2.4 13 2 2 5 4 101
Fig. 10.18/2.6 1 2 1 6 6 168
Fig. C/[1.6, ∞] 26 7 2 3 4 143

Fig. 10.19/[1.5, 3.3] 13 0 3 5 2 125
Fig. 10.20/[2.3, ∞] 0 6 3 12 22 287

Fig. D/[2, ∞] 19 5 7 7 13 123
Fig. 10.21/1.8 67 26 2 1 0 4

Table 10.4: Summary of the results of the experiments that compare A-
SIFT with SIFT, Harris-Affine (HarAff), Hessian-Affine (HesAff), MSER coded
by the correlation descriptor (MSER+Corr) and by the SIFT descriptor
(MSER+SIFT). The transition tilts or their ranges are listed in the left col-
umn. The figures with Latin numbers are not shown in the text.
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Figure 10.13: Image matching: Facade. Absolute (and transition) tilt t =
3.8 (θ = 75◦). A-SIFT, SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and
MSER+SIFT find respectively 68, 0, 1, 1, 0 and 2 correct matches. A-SIFT is
implemented with K = 2, which means that K = 3 doesn’t work Results shown:
A-SIFT and MSER+SIFT

Figure 10.14: Image matching between Graffiti 1 and Graffiti 6. Transition
tilt: τ ≈ 3.2. From top to bottom, left to right: A-SIFT, SIFT, Harris-Affine,
Hessian-Affine, MSER+Corr and MSER+SIFT find respectively 721, 0, 3, 1, 50
and 70 correct matches. A-SIFT is implemented with K = 3. Results shown:
A-SIFT and MSER+SIFT

Figure 10.15: Image matching (images proposed by Matas et al [167]). Transi-
tion tilt: τ ∈ [1.6, 3.0]. From top to bottom, left to right: A-SIFT (shown), SIFT
(shown), Harris-Affine, Hessian-Affine (shown), MSER+Corr and MSER+SIFT
(shown) find respectively 254, 10, 23, 11, 16 and 22 correct matches. A-SIFT is
implemented with K = 3.
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Figure 10.16: Image matching: road signs. Transition tilt τ ≈ 2.6. A-SIFT
(shown), SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT
(shown) find respectively 50, 0, 0, 0, 0 and 1 correct matches. A-SIFT is imple-
mented with K = 3.

Figure 10.17: Image matching: Ecole Polytechnique. Absolute (and transition)
tilt t ≈ 2.4 (θ = 65◦). A-SIFT (shown), SIFT, Harris-Affine, Hessian-Affine,
MSER+Corr and MSER+SIFT (shown) find respectively 101, 13, 2, 2, 5 and 4
correct matches. A-SIFT is implemented with K = 3.
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Figure 10.18: Image matching: stump. Transition tilt τ ≈ 2.6. A-SIFT (shown),
SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT (shown)
find respectively 168, 1, 2, 1, 6 and 6 correct matches. A-SIFT is implemented
with K = 3.

Figure 10.19: Image matching: coffee room. Transition tilt τ ∈ [1.5, 3.3].
A-SIFT (shown), SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and
MSER+SIFT (shown) find respectively 125, 13, 0, 3, 5 and 2 correct matches.
A-SIFT is implemented with K = 1, which gives one of the very few examples
where details in one of the images are so small that K = 2 and K = 3 do not
work.
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Figure 10.20: Image matching: can. Transition tilt τ ∈ [2.3,∞]. A-SIFT
(shown), SIFT, Harris-Affine, Hessian-Affine, MSER+Corr and MSER+SIFT
(shown) find respectively 287, 0, 6, 3, 12 and 22 correct matches. A-SIFT is
implemented with K = 2, which means that K = 3 doesn’t work

Figure 10.21: Image matching: Palace of Versailles. Transition tilt τ = 1.8. A-
SIFT (shown), SIFT (shown), Harris-Affine, Hessian-Affine, MSER+Corr and
MSER+SIFT (shown) find respectively 67, 26, 2, 1, 0 and 4 correct matches.
A-SIFT is implemented with K = 3.
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10.3.5 Symmetry detection in perspective

Symmetry detection has drawn considerable attention in computer vision and
has been used for numerous applications such as image indexing, completion
of occluded shapes, object detection, facial image analysis and visual attention
(see, for example, [56] for a survey). The image projection is usually approxi-
mated by plane affine transforms for symmetry detection in perspective [185].
Some recent works apply SIFT, MSER and other affine-invariant detectors and
descriptors to detect bilateral symmetry [152, 56]. Conversely, symmetry has
been used to extract affine-invariant image features [15].

The image matching algorithm can be used to detect bilateral symmetry
in an image u, by simply looking for correspondences between u(x, y) and its
flipped version u(−x, y). After being flipped, symmetric structures become
either identical if taken in frontal view, or identical up to an oblique view other-
wise. A correspondence between u(x, y) and u(−x, y) therefore connects a pair
of bilateral symmetrical points in u(x, y). Fig. 10.22 shows some examples of
bilateral symmetry detection obtained by A-SIFT, SIFT, Harris-Affine, Hessian-
Affine, MSER+Corr and MSER+SIFT. A-SIFT that has the best performance
on affine invariant image matching, results in the best symmetry detection in
perspective.

Figure 10.22: Symmetry detection in perspective. From left to right: detection
results by A-SIFT, SIFT, Hessian-Affine, MSER+SIFT.

10.4 Comments and references

David Pritchard’s master thesis was a first step toward A-SIFT. Quoting [205]
in his 2003 master thesis on cloth parameters and motion capture:

Cloth strongly resists stretching, but permits substantial bend-
ing; folds and wrinkles are a distinctive characteristic of cloth. This
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behaviour means that sections of the cloth are often seen at oblique
angles, leading to large affine distortions of features in certain re-
gions of the cloth. Unfortunately, SIFT features are not invariant
to large affine distortions.(...) To compensate for this, we use an ex-
panded set of reference features. We generate a new reference image
by using a 2 x 2 transformation matrix T to scale the reference image
by half horizontally. We repeat three more times, scaling vertically
and along axes at 45 degrees, as shown in Figure 5.3. This simu-
lates different oblique views of the reference image. For each of these
scaled oblique views, we collect a set of SIFT features. Finally, these
new SIFT features are merged into the reference feature set. When
performing this merge, we must adjust feature positions, scales and
orientations by using T-1. This approach is compatible with the
recommendations made by Lowe for correcting SIFT’s sensitivity to
affine change.

In recent years local image detectors have bloomed. They can be classified
by their incremental invariance properties. All of them are translation invariant.
The Harris point detector [105] is also rotation invariant. The Harris-Laplace,
Hessian-Laplace and the DoG (Difference-of-Gaussian) region detectors [172,
175, 151, 80] are invariant to rotations and changes of scale. Some moment-
based region detectors [146, 25] including the Harris-Affine and Hessian-Affine
region detectors [173, 175], an edge-based region detector [246, 245], an intensity-
based region detector [244, 245], an entropy-based region detector [124], and
two level line-based region detectors MSER (“maximally stable extremal re-
gion”) [168] and LLD (“level line descriptor”) [187, 189, 191] are designed to
be invariant to affine transformations. MSER, in particular, has been demon-
strated to have often better performance than other affine invariant detectors,
followed by Hessian-Affine and Harris-Affine [177].

The mentioned methods have a varying complexity. Measured in terms
of their processing times, the fastest is MSER, followed by Harris-Affine and
Hessian-Affine. SIFT is ten times slower, but a recent acceleration has been
proposed in [97], that equals it to the other detectors.

However, the mentioned affine invariant detectors aren’t fully affine invari-
ant. As pointed out in [151], they start with initial feature scales and locations
selected in a non-affine invariant manner. As shown in [191], MSER and LLD
are not fully scale invariant, because they do not take into account the drastic
changes of level lines due to blur. This is also the case for other image local
descriptors, such as the distribution-based shape context [27], the geometric his-
togram [18] descriptors, the derivative-based complex filters [25, 224], and the
moment invariants [250].

There is, however, at least one method dealing with scale (and therefore
with blur) in a fully satisfactory way. In his milestone paper [151], Lowe has
proposed a scale-invariant feature transform (SIFT) descriptor that is invari-
ant to image scaling and rotation and partially invariant to illumination and
viewpoint changes. Although SIFT is a priori less invariant to affine trans-
forms than other descriptors such as Hessian-Affine and Harris-Affine [172, 175],
its performance turns out to be comparable, as we shall see in many experi-
ments. Furthermore, SIFT is really scale invariant (a mathematical proof of
this fact is given in [184]). A number of SIFT variants and extensions, in-



i

i

144 CHAPTER 10. EXPERIMENTS ON AFFINE INVARIANT METHODS

cluding PCA-SIFT [126], GLOH (gradient location-orientation histogram) [176]
and SURF (speeded up robust features) [26], that claim to have improved
robustness and distinctiveness with scaled-down complexity have been devel-
oped ever since [85, 143]. Demonstrated to be superior to many other descrip-
tors [174, 176], SIFT and its variants have been popularly applied for scene
recognition [79, 182, 217, 251, 96, 226, 265, 183] and detection [86, 194], robot
localization [28, 227, 196, 120], image registration [264], image retrieval [104],
motion tracking [247, 128], 3D modeling and reconstruction [211, 252], building
panoramas [3, 34], photo management [263, 141, 235, 51], as well as symmetry
detection [152].
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Chapter 11

Contrast-Invariant Classes
of Functions and Their
Level Sets

This chapter is about one of the major technological contributions of mathe-
matical morphology, namely the representation of images by their upper level
sets. As we shall see in this chapter, this leads to a handy contrast invariant
representation of images.

Definition 11.1. Let u ∈ F . The level set of u at level 0 ≤ λ ≤ 1 is denoted
by Xλu and defined by

Xλu = {x | u(x) ≥ λ}.

Strictly speaking, we have called level sets what should more properly be
called upper level sets. Several level sets of a digital image are shown in Figure
11.1 and all of the level sets of a synthetic image are illustrated in Figure 11.2.
The reconstruction of an image from its level sets is illustrated in Figure 11.3.
Two important properties of the level sets of a function follow directly from the
definition. The first is that the level sets provide a complete description of the
function. Indeed, we can reconstruct u from its level sets Xλu by the formula

u(x) = sup{λ | x ∈ Xλu}.

This formula is called superposition principle as u is being reconstructed by
“superposing” its level sets.

Exercise 11.1. Prove the superposition principle.

The second important property is that level sets of a function are globally
invariant under contrast changes. We say that two functions u and v have the
same level sets globally if for every λ there is µ such that Xµv = Xλu, and
conversely. Now suppose that a contrast change g : R → R is continuous and
increasing. Then it is not difficult to show that v = g(u) and u have the same
level sets globally.

Exercise 11.2. Check this last statement for any function u and any continuous
increasing contrast change g.

147
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Figure 11.1: Level sets of a digital image. Left to right, top to bottom: We first
show an image with range of gray levels from 0 to 255. Then we show eight level
sets in decreasing order from λ = 225 to λ = 50, where the grayscale step is 25.
Notice how essential features of the shapes are contained in the boundaries of
level sets, the level lines. Each level set (which appears as white) is contained
in the next one, as guaranteed by Proposition 11.2.

Conversely, we shall prove that if the level sets of a function v ∈ F are level
sets of u, then there is a continuous contrast change g such that v = g(u). This
justifies the attention we will dedicate to level sets, as they turn out to contain
all of the contrast invariant information about u.

11.1 From an image to its level sets and back

In the next proposition, for a sake of generality, we consider bounded measurable
functions on SN , not just functions in F .
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Figure 11.2: A simple synthetic image and all of its level sets (in white) with
decreasing levels, from left to right and from top to bottom.

Proposition 11.2. Let Xλ denote the level sets Xλu of a bounded measurable
function u : SN → R. Then the sets Xλ satisfy the following two structural
properties:

(i) If λ > µ, then Xλ ⊂ Xµ. In addition, there are two real numbers λmax ≥
λmin so that Xλ = SN for λ < λmin, Xλ = ∅ for λ > λmax.

(ii) Xλ =
⋂

µ<λ Xµ for every λ ∈ R.

Conversely, if (Xλ)λ∈R is a family of sets of M that satisfies (i) and (ii), then
the level sets of the function u defined by superposition principle,

u(x) = sup{λ | x ∈ Xλ} (11.1)

satisfy Xλu = Xλ for all λ ∈ R and λmin ≤ u ≤ λmax.

Proof. The first part of Relation (i) follows directly from the definition of upper
level sets. The second part of (i) works with λmin = inf u and λmax = supu.
The relation (ii) follows from the equivalence u(x) ≥ λ ⇔ u(x) ≥ µ for every
µ < λ.

Conversely, take a family of subsets (Xλ)λ∈R satisfying (i) and (ii) and define
u by the superposition principle. Let us show thatXλ = Xλu. Take first x ∈ Xλ.
Then it follows from the definition of u that u(x) ≥ λ, and hence x ∈ Xλu. Thus,
Xλ ⊂ Xλu. Conversely, let x ∈ Xλu. Then u(x) = sup{ν | x ∈ Xν} ≥ λ. Con-
sider any µ < λ. Then there exists a µ′ such that µ < µ′ ≤ sup{ν | x ∈ Xν}
and x ∈ Xµ′ . It follows from (i) that x ∈ Xµ. Since µ was any number less
that λ, we conclude by using (ii) that x ∈ ⋂µ<λXµ = Xλ. It is easily checked
that λmin ≤ u ≤ λmax. �

Exercise 11.3. Check the last statement of the preceding proof, that λmin ≤ u ≤
λmax.
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Figure 11.3: Reconstruction of an image from its level sets: an illustration of
Proposition 3.2. We use four different subsets of the image’s level sets to give
four reconstructions. Top, left: all level sets; top, right: all level sets whose gray
level is a multiple of 8; bottom, left: multiples of 16; bottom, right: multiples of
32. Notice the relative stability of the image shape content under these drastic
quantizations of the gray levels.

11.2 Contrast changes and level sets

Practical aspects of contrast changes are illustrated in Figures 11.4, 11.5, 11.6,
and 11.7, which illustrate how insensitive our perception of images is to contrast
changes, even when they are flat on some interval. When this happens, some
information on the image is even lost, as several grey levels melt together.

Definition 11.3. Any nondecreasing continuous surjection g : R → R will be
called a contrast change.

Exercise 11.4. Remark that g(s) → ±∞ as s → ±∞. Check that if u ∈ F and g is
a contrast change, then g(u) ∈ F .

In case g is increasing, g has an inverse contrast change g−1. In case g is flat
on some interval, we shall be happy with a pseudo-inverse for g.

Definition 11.4. The pseudo-inverse of any contrast change g : R → R is
defined by

g(−1)(λ) = inf{r ∈ R | g(r) ≥ λ}.

Exercise 11.5. Check that g−1 is finite on R and tends to ±∞ as s→ ±∞. Give an
example of g such that g−1 is not continuous.

Exercise 11.6. Compute and draw g(−1) for the function g(s) = max(0, s). Notice
that such a function is ruled out by our conditions at infinity for contrast changes.



i

i

11.2. CONTRAST CHANGES AND LEVEL SETS 151

Figure 11.4: The histogram of the image Bird. For each i ∈ {0, 1, . . . , 255}, we
display (above, right) the function h(i) = Card {x | u(x) = i}. The function
below is the cumulative histogram, namely the primitive of h defined byHu(i) =
Card {x | u(x) ≤ i}. The shape of h provides an indication about the overall
contrast of the image and about the contrast change imposed by the sensors.
See Chap. 12 for manipulations of the cumulative histogram.

Lemma 11.5. Let g : R → R be a contrast change. Then for every λ ∈ R,
g(g(−1))(λ) = λ and

g(s) ≥ λ if and only if s ≥ g(−1)(λ). (11.2)

Proof. The first relation follows immediately from the continuity of g. If
g(s) ≥ λ, then s ≥ g(−1)(λ) by the definition of g(−1)(λ). Conversely, if
s ≥ g(−1)(λ), then g(s) ≥ g(g(−1)(λ)) = λ and thus g(s) ≥ λ. �

Theorem 11.6. Let u ∈ F and g be a contrast change. Then any level set of
g(u) is a level set of u. More precisely, for λ ∈ R,

Xλg(u) = Xg(−1)(λ)u. (11.3)

Proof. The proof is read directly from Lemma 11.5 by taking s = u. �

The next result is a converse statement to Theorem 11.6.
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Figure 11.5: Contrast changes and an equivalence class of images. The three
images have exactly the same level sets and level lines, but their level sets are
mapped onto three different gray-level scales. The graphs on the right are the
graphs of the contrast changes u 7→ g(u) that have been applied to the initial
gray levels. The first one is concave; it enhances the darker parts of the image.
The second one is the identity; it leaves the image unaltered. The third one
is convex; it enhances the brighter parts of the image. Software allows one to
manipulate the contrast of an image to obtain the best visualization. From the
image analysis viewpoint, image data should be considered as an equivalence
class under all possible contrast changes.

Theorem 11.7. Let u and v ∈ F such that every level set of v is a level set of
u. Then v = g(u) for some contrast change g.

Proof. One can actually give an explicit formula for g, namely, for every µ ∈
u(SN ),

g(µ) = sup{λ ∈ v(SN ) | Xµu ⊂ Xλv}. (11.4)

For µ /∈ u(SN ), we can easily extend g into an nondecreasing function such that
g(±∞) = ±∞). (Take (e.g.) g piecewise affine). Note that ν > µ implies that
g(ν) ≥ g(µ). Let us first show that inf v ≤ g(µ) ≤ sup v. Set

Λ := {λ | Xµu ⊂ Xλv}.
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Figure 11.6: The two images (left) have the same set of level sets. The contrast
change that maps the upper image onto the lower image is displayed on the
right. It corresponds to one of the possible g functions whose existence is stated
in Corollary 3.14. The function g may be locally constant on intervals where
the histogram of the upper image is zero (see top, middle graph). Indeed, on
such intervals, the level sets are invariant.

Λ is not empty because Xinf v = SN and therefore inf v ∈ Λ. Thus g(µ) =
sup Λ ≥ inf v. On the other hand Xsup v+εv = ∅ for every ε > 0. Since µ ∈ u(SN),
Xµu 6= ∅ and therefore g(µ) = supΛ ≤ sup v.

Step 1: Proof that v(x) ≥ g(u(x)). By Proposition 11.2(i) Λ has the form
(−∞, sup Λ) or (−∞, sup Λ]. But by Proposition 11.2(ii), Xsup Λv =

⋂

λ<sup Λ Xλv,
and this implies by the definition of Λ that g(µ) = supΛ ∈ Λ. Thus,

Xµu ⊂ Xg(µ)v. (11.5)

Given x ∈ SN , let µ = u(x) in (11.5). Then,

Xu(x)u ⊂ Xg(u(x))v.

Since x ∈ Xu(x)u, we conclude that x ∈ Xg(u(x))v = {y | v(y) ≥ g(u(x))}.
Step 2: Proof that v(x) ≤ g(u(x)). Given x ∈ SN , we translate the
assumption with λ = v(x) as follows: There exists a µ(x) ∈ R such that

Xv(x)v = {y | u(y) ≥ µ(x)} = Xµ(x)u. (11.6)

Since x ∈ Xv(x)v, we know that x ∈ Xµ(x)u. Thus, u(x) ≥ µ(x), and Xu(x)u ⊂
Xµ(x)u = Xv(x)v. This last relation implies by the definition of g that v(x) ≤
g(u(x)).

Step 3: Proof that g is continuous. Recall that the image of a con-
nected set by a continuous function is connected. Thus u(SN) is an interval of
R and so is v(SN ). Since g(u) = v, g(u(SN)) = v(SN ) is an interval. Now, a
nondecreasing function is continuous on an interval if and only if its range is
connected. Thus g is continuous on u(SN ) and so is its extension to R. �
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Figure 11.7: The original image (top, left) has a strictly positive histogram
(all gray levels between 0 and 255 are represented). Therefore, if any contrast
change g that is not strictly increasing is applied, then some data will be lost.
Every level set of the transformed image g(u) is a level set of the original image;
however, the original image has more level sets than the transformed image.

Exercise 11.7. Prove the last statement in the theorem, namely that “a nondecreas-
ing function is continuous on an interval if and only if its range is connected”.

Exercise 11.8. By reading carefully the steps 1 and 2 of the proof of Theorem 11.7,
check that this theorem applies with u and v just bounded and measurable on SN .
Then one has still has v = g(u) with g defined in the same way. Of course g is still
nondecreasing but not necessarily continuous. Find a simple example of functions u
and v such that g is not continuous.

11.3 Exercises

Exercise 11.9. This exercise gives a way to compute the function g such that v = g(u)
defined in the proof of Theorem 11.7 in terms of the repartition functions of u and
v. Let G be a Gauss function defined on R

N such that
∫

RN G(x)dx = 1. For every

measurable subset of R
N , set |A|G :=

∫

A
G(x)dx. Let u be a bounded continuous

function on R
N . We can associate with u its repartition function hu(λ) := |Xλu|G.

Show that hu : λ ∈ [inf u, supu] → hu(λ) is strictly decreasing. Show that it can
have jumps but is left-continuous, that is hu(λ) = limµ↑λ hu(µ). Define for every non
increasing function h a pseudo inverse by h((−1))(µ) := sup{λ | h(λ) ≥ µ}. Show that
h((−1)) is non increasing and that h((−1)) ◦ h(µ) ≥ µ, and that if h is left-continuous,

h ◦ h((−1))(µ) ≥ µ. Using (11.4) prove that g = h
((−1))
v ◦ hu.

Hint: prove that g(µ) = sup{λ | |Xµu|G ≤ |Xλv|G}.
Exercise 11.10. Let u be a real-valued function. If (µn)n∈N is an increasing sequence
that tends to λ, prove that

Xλu =
⋂

n∈N

Xµnu (11.7)

{x | u(x) > λ} =
⋃

µ>λ

Xµu. (11.8)
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11.4 Comments and references

Contrast invariance and level sets. It was Wertheimer who noticed that
the actual local values of the gray levels in an image could not be relevant in-
formation for the human visual system [260]. Contrast invariance is one of the
fundamental model assumptions in mathematical morphology. The two basic
books on this subject are Matheron [169] and Serra [228, 230]. See also the
fundamental paper by Serra [229]. Ballester et al. defined an “image intersec-
tion” whose principle is to keep all pieces of bilevel sets common to two images
[22]. (A bilevel set is of the form {x | λ ≤ u(x) ≤ µ}.) Monasse and Guichard
developed a fast level set transform (FLST) to associate with every image the
inclusion tree of connected components of level sets [181]. They show that the
inclusion trees of connected upper and lower level sets can be fused into a sin-
gle inclusion tree; among other applications, this tree can be used for image
registration. See Monasse [180].

Contrast changes. The ability to vary the contrast (to apply a contrast
change) of a digital image is a very useful tool for improving image visualization.
Professional image processing software has this capability, and it is also found
in popular software for manipulating digital images. For more about contrast
changes that preserve level sets, see [48]. Many reference on contrast-invariant
operators are given at the end of Chapter 13.



i

i



i

i

Chapter 12

Specifying the contrast of
images

Midway image equalization means any method giving to a pair of images a
similar histogram, while maintaining as much as possible their previous grey
level dynamics. The comparison of two images is one of the main goals of
computer vision. The pair can be a stereo pair, two images of the same object
(a painting for example), multi-channel images of the same region, images of a
movie, etc. Image comparison is perceptually greatly improved if both images
have the same grey level dynamics (which means, the same grey level histogram).
Many image comparison algorithms are based on grey level and take as basic
assumption that intensities of corresponding points in both images are equal.
However, this assumption is generally false for stereo pairs, and deviations from
this assumption cannot even be modeled by affine transforms [58]. Consequently,
if we want to compare visually and numerically two images, it is useful to give
them first the same dynamic range and luminance.

In all of this applicative chapter the images u(x) and v(x) are defined on a
domain which is the union of M pixels. The area of each pixel is equal to 1. The
images are discrete in space and values: they attain values in a finite set L and
they are constant on each pixel of the domain. We shall call such images discrete
images. The piecewise constant interpolation is a very bad image interpolation.
It is only used here for a fast handling of image histograms. For other scopes,
better interpolation methods are of course necessary.

Definition 12.1. Let u be a discrete image. We call cumulative histogram of
u the function Hu : L → M := [0,M ] ∩ N defined by

Hu(l) =: meas({x | u(x) ≤ l}).

This cumulative histogram is a primitive of the histogram of the image h(l) =
meas({x | u(x) = l}). Figures 11.4, 11.6 and the first line of Figure 12.1. show
the histograms of some images and their cumulative histograms. In fact Figure
11.7 shows first the histogram and then the modified histogram after a contrast
change has been applied. These experiments illustrate the robustness of image
relevant information to contrast changes and even to the removal of some level
sets, when the contrast change is flat on an interval. Such experiments suggest
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that one can specify the histogram of a given image by applying the adequate
contrast change. Before proceeding, we have to define the pseudo-inverses of a
discrete function.

Proposition 12.2. Let ϕ : L → M be a nondecreasing function from a finite
set of values into another. Define two pseudo-inverse functions for ϕ :

ϕ(−1)(l) := inf{s | ϕ(s) ≥ l} and ϕ((−1))(l) := sup{s | ϕ(s) ≤ l.}

Then one has the following equivalences:

ϕ(s) ≥ l ⇔ s ≥ ϕ(−1)(l), ϕ(s) ≤ l ⇔ s ≤ ϕ((−1))(l) (12.1)

and the identity
(ϕ(−1))((−1)) = ϕ. (12.2)

Proof. The implication ϕ(s) ≥ l ⇒ s ≥ ϕ(−1)(l) is just the definition of ϕ(−1).
The converse implication is due to the fact that the infimum on a a finite set
is attained. Thus ϕ(ϕ(−1)(l)) ≥ l and therefore s ≥ ϕ(−1)(l) ⇒ ϕ(s) ≥ l. The
identity (12.2) is a direct consequence of the equivalences (12.1). Indeed,

s ≤ (ϕ(−1))((−1))(l) ⇔ ϕ(−1)(s) ≤ l ⇔ s ≤ ϕ(l).

�

Exercise 12.1. Prove that if ϕ is increasing, ϕ(−1) ◦ ϕ(l) = l and ϕ((−1)) ◦ ϕ(l) = l.
If ϕ is surjective, ϕ ◦ ϕ(−1) = l and ϕ ◦ ϕ((−1))(l) = l.

Proposition 12.3. Let ϕ be a discrete contrast change and u a digital image.
Then

Hϕ(u) = Hu ◦ ϕ((−1)).

Proof. By (12.1), ϕ(u) ≤ l ⇔ u ≤ ϕ((−1))(l). Thus by the definitions of Hu

and Hϕ(u),

Hϕ(u)(l) = meas({x | ϕ(u) ≤ l}) = meas({x | u(x) ≤ ϕ((−1))(l)}) = Hu◦ϕ((−1))(l).

�

Let G : L → M := [0, 1, . . . ,M ] be any discrete nondecreasing function. Can
we find a contrast change ϕ : L → L such that the cumulative histogram of
ϕ(u), Hϕ(u) becomes equal to G? Not quite: if for instance u is constant its
cumulative histogram is a one step function and Proposition 12.3 implies that
Hϕ(u) will also be a one step function. More generally if u attains k values,
then ϕ(u) attains k values or less. Hence its cumulative histogram is a step
function with k + 1 steps. Yet, at least formally, the functional equation given
by Proposition 12.3, Hu ◦ ϕ−1 = G, leads to ϕ = G−1 ◦Hu. We know that we
cannot get true inverses but we can involve pseudo-inverses. Thus, we are led
to the following definition:
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Definition 12.4. Let G : L → M be a nondecreasing function. We call specifi-
cation of u on the cumulative histogram G the image

ũ := G((−1)) ◦Hu(u).

Exercise 12.2. Prove that if G and Hu are one to one, then the cumulative histogram
of ũ is G. Is it enough to assume that Hu is one to one?

Definition 12.5. Let, for l ∈ [0, L] ∩ IN , G(l) = ⌊M
L l⌋, where ⌊r⌋ denotes

the largest integer smaller than r. Then ũ := G((−1)) ◦ Hu(u) is called the
uniform equalization of u. If v is another discrete image and one takes G = Hv,

ũ := H
((−1))
v ◦Hu(u) is called the specification of u on v.

When Hu is one to one, one can reach by applying a contrast change to u
any specified cumulative histogram G. Otherwise, the above definitions do the
best that can be expected and are actually quite efficient. For instance in the
“marshland experiment” (Figure 12.1) the equalized histogram and its cumu-
lative histogram are displayed on the second row. The cumulative histogram
is very close to its goal, the linear function. The equalized histogram does not
look flat but a sliding average of it would look almost flat.

Yet it is quite dangerous to specify the histogram of an image with an arbi-
trary histogram specification. This fact is illustrated in Figures 12.1 and 12.2
where a uniform equalization erases existing textures by making them too flat
(Figure 12.1) but also enhances the quantization noise in low contrasted regions
and produces artificial edges or textures (see Figure 12.2).

12.1 Midway equalization

We have seen that if one specifies u on v, then u inherits roughly the histogram
of v. It is sometimes more adequate to bring the cumulative histograms of u
and v towards a cumulative histogram which would be “midway” between both.
Indeed, if we want to compare visually and numerically two images, it is useful
to give them first the same dynamic range and luminance. Thus we wish:

• From two images u and v, construct by contrast changes two images ũ
and ṽ, which have a similar cumulative histogram.

• This common cumulative histogram h should stand “midway” between
the previous cumulative histograms of u and v, and be as close as possible
to each of them. This treatment must avoid to favor one cumulative
histogram rather than the other.

Definition 12.6. Let u and v be two discrete images. Set

Φ :=
1

2

(

H(−1)
u +H(−1)

v

)

.

We call midway cumulative histogram of u and v the function

G := Φ((−1)) =

(
1

2
(H(−1)

u +H(−1)
v )

)((−1))

(12.3)

and “midway specifications” of u and v the functions ũ := Φ ◦Hu(u) and ṽ :=
Φ ◦Hv(v).
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Figure 12.1: First row: Image u, the corresponding grey level histogram hu, and
the cumulative histogram Hu. Second row: Equalized image Hu(u), its histogram
and its cumulative histogram. In the discrete case, histogram equalization flat-
tens the histogram as much as possible. We see on this example that image
equalization can be visually harmful. In this marshland image, after equaliza-
tion, the water is no more distinguishable from the vegetation. The third row
shows a zoom on the rectangular zone, before and after equalization.

Exercise 12.3. Let u and v be two constant images, whose values are a and b. Prove
that their “midway” function is the right one, namely a function w which is constant
and equal to a+b

2
.

Exercise 12.4. Prove that if we take as a definition of the midway histogram

G :=

(
1

2
(H((−1))

u +H((−1))
v )

)(−1)

,

then for two constant images u = a and v = b the midway image is constant and equal
to [1/2(a + b) − 1]. This proves that Definition 12.6 is better.

Exercise 12.5. Prove that if u is a discrete image and f and g two nondecreasing
functions, then the midway image of f(u) and g(u) is f(u)+g(u)

2
.

Exercise 12.6. If we want the “midway” cumulative histogram H to be a compromise
between Hu and Hv, the most elementary function that we could imagine is their
average, which amounts to average their histograms as well. However, the following
example proves that this idea is not judicious at all.

Consider two images whose histograms are “crenel” functions on two disjoint in-
tervals, for instance u(x) := ax, v(x) = bx + c. Compute a, b, c in such a way that
hu and hv have disjoint supports. Then compute the specifications of u and v on the
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Figure 12.2: Effect of histogram equalization on the quantization noise. On the
left, the original image. On the right, the same image after histogram equaliza-
tion. The effect of this equalization on the dark areas (the piano, the left part
of the wall), which are low contrasted, is perceptually dramatic. We see many
more details but the quantization noise has been exceedingly amplified.

mean cumulative histogram G := Hu+Hv
2

. Compare with their specifications on the
midway cumulative histogram.

12.2 Midway equalization on image pairs

Results on a stereo pair

The top of Figure 12.3 shows a pair of aerial images in the region of Toulouse.
Although the angle variation between both views is small, and the photographs
are taken at nearly the same time, we see that the lightning conditions vary
significantly (the radiometric differences can also come from a change in camera
settings). The second line shows the result of the specification of the histogram
of each image on the other one. The third line shows both images after equal-
ization.

If we scan some image details, as illustrated on Figure 12.4, the damages
caused by a direct specification become obvious. Let us specify the darker
image on the brightest one. Then the information loss, due to the reduction
of dynamic range, can be detected in the brightest areas. Look at the roof of
the bright building in the top left corner of the image (first line of Figure 12.4):
the chimneys project horizontal shadows on the roof. In the specified image,
these shadows have almost completely vanished, and we cannot even discern
the presence of a chimney anymore. In the same image after equalization, the
shadows are still entirely recognizable, and their size reduction remains minimal.
The second line of Figure 12.4 illustrates the same phenomenon, observed in
the bottom center of the image. The structure present at the bottom of the
image has completely disappeared after specification and remains visible after
midway equalization. These examples show how visual information can be lost
by specification and how midway algorithms reduce significantly this loss.
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Figure 12.3: Stereo pair: two pieces of aerial images of a region of Toulouse.
Same images after specification of their histograms on each other (left: the
histogram of the first image has been specified on the second, and right: the
histogram of the second image has been specified on the first). Stereo pair after
midway equalization.
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Figure 12.4: Extracts from the stereo pair shown on Figure 12.3. From left to
right: in the original image, in the specified one, in the original image after
midway equalization. Notice that no detail is lost in the midway image, in
contrast with the middle image.

Figure 12.5: First line: two images of Toulouse (blue and infrared channel).
Second line: same images after midway equalization.

Multi-Channel images

The top of Figure 12.5 shows two pieces of multi-channel images of Toulouse.
The first one is extracted from the blue channel, and the other one from the
infrared channel. The second and third line of the same figure show the same
images after midway equalization. The multichannel images have the peculiarity
to present contrast inversions : for instance, the trees appear to be darker than
the church in the blue channel, and are naturally brighter than the church
in the infrared channel. The midway equalization being limited to increasing
contrast changes, it obviously cannot handle these contrast inversions. In spite
of these contrast inversions, the results remain visually good, which underlines
the robustness of the method gives globally a good equalization.
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Photographs of the same painting

The top of Figure 12.6 shows two different snapshots of the same painting, Le
Radeau de la Méduse1, by Théodore Géricault (small web public versions). The
second one is brighter and seems to be damaged at the bottom left. The second
line shows the same couple after midway equalization. Finally, the last line of
Figure 12.6 shows the difference between both images after equalization. We
see clear differences around the edges, due to the fact that the original images
are not completely similar from the geometric point of view.

12.2.1 Movie equalization

One can define a midway cumulative histogram to an arbitrary number of im-
ages. This is extremely useful for the removal of flicker in old movies. Flicker
has multiple causes, physical, chemical or numerical. The overall contrast of
successive images of the same scene in a movie oscillates, some images being
dark and others bright. Our main assumption is that image level sets are glob-
ally preserved from one image to the next, even if their level evolves. This leads
to the adoption of a movie equalization method preserving globally all level sets
of each image. We deduce from Theorem 11.7 in the previous chapter that the
correction must be a global contrast change on each image. Thus the only left
problem is to specify a common cumulative histogram (and therefore a common
histogram) to all images of a given movie scene. Noticing that the definition of
G in (12.3) for two images simply derives from a mean, its generalization is easy.
Let us denote u(t,x) the movie (now a discrete time variable has been added)
and by Ht the cumulative histogram function of x → u(t,x) at time t. Since
flicker is localized in time, the idea is to define a time dependent cumulative
histogram function Kh

t which will be the “midway” cumulative histogram of
the cumulative histograms in an interval [t−h, t+h]. Of course the linear scale
space theory of Chapter 3 applies here. The ideal average is gaussian. Hence
the following definition.

Definition 12.7. Let u(t,x) be a movie and denote by Ht the cumulative his-
togram of u(t) : x → u(t,x). Consider a discrete version of the 1-D gaussian

Gh(t) = 1

(4πh)
1
2
e−

t2

4h . Set

Φ(t,l) :=

∫

Gh(t− s)(H(−1)
s )(l)ds.

We call “midway gaussian cumulative histogram at scale h” of the movie u(t,x)
the time dependent cumulative histogram

G(t,l) := Φ
((−1))
(t,l) =

(∫

Gh(t− s)(H(−1)
s )(l)ds

)((−1))

(12.4)

and “midway specification” of the movie u(t) the function ũ(t) := Φ◦Hu(t)(u(t)).
If Hu(t) is surjective, then ũ(t) has G(t,l) as common cumulative histogram.

Notice that this is a straightforward extension of Definition 12.6.

1Muse du Louvre, Paris.
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Figure 12.6: Two shots of the Radeau de la Méduse, by Géricault. The same
images after midway equalization. Image of the difference between both images
after equalization. The boundaries appearing in the difference are mainly due
to the small geometric distortions between the initial images.
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Figure 12.7: (a) Three images of Chaplin’ s film His New Job, taken at equal
intervals of time. This extract of the film suffers from a severe real flicker. (b)
Same images after the Scale-Time Equalization at scale s = 100. The flicker
observed before has globally decreased. (c) Evolution of the mean of the current
frame in time and at three different scales. The most oscillating line is the mean
of the original sequence. The second one is the mean at scale s = 10. The last
one, almost constant, corresponds to the large scale s = 1000. As expected the
mean function is smoothed by the heat equation.
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The implementation and experimentation is easy. We simply show in Figure
12.7 three images of Chaplin’ s film His New Job, taken at equal intervals of time.
This extract of the film suffers from a severe real flicker. This flicker is corrected
at the scale where, after gaussian midway equalization, the image mean becomes
nearly constant through the sequence. The effects of this equalization are usually
excellent. They are easily extended to color movies by processing each channel
independently.

12.3 Comments and references

Histogram specification As we have seen histogram specification [95] can
be judicious if both images have the same kind of dynamic range. For the same
reason as in equalization, this method can also product contouring artifacts.
The midway theory is essentially based on Julie Delons’ PhD and papers [67],
[68] where she defines two midway histogram interpolation methods. One of
them, the square root method involves the definition of a square root of any
nondecreasing function g, namely a function g such that f ◦f = g. Assume that
u and v come from the same image (this intermediate image is unknown), up
to two contrast changes f and f−1. The function f is unknown, but satisfies
formally the equality Hu ◦ f = Hv ◦ f−1. Thus

Hu
−1 ◦Hv = f ◦ f.

It follows that the general method consists in building an increasing function
f such that f ◦ f = Hu

−1 ◦ Hv and replacing v by f(v) and u by f−1(u).
This led Delon [?] to call this new histogram midway method, the “square
root” equalization. The midway interpolation developed in this chapter uses
mainly J. Delon’s second definition of the midway cumulative histogram as the
harmonic mean of the cumulative histograms of both images. This definition is
preferable to the square root. Indeed, both definitions yield very similar results
but the harmonic mean extends easily to an arbitrary number of images and
in particular to movies [68]. The Cox, Roy and Hingorani algorithm defined
in [58] performs a midway equalization. They called their algorithm “Dynamic
histogram warping” and its aim is to give a common cumulative histogram (and
therefore a common histogram) to a pair of images. Although their method is
presented as a dynamic algorithm, there is a very simple underlying formula,
which is the harmonic mean of cumulative histograms discovered by Delon [67].
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Chapter 13

Contrast-Invariant
Monotone Operators

A function operator T is monotone if u ≥ v ⇒ Tu ≥ Tv. A set operator
T is monotone if X ⊂ Y implies T X ⊂ T Y . We are mainly interested in
monotone function operators, since they are nonlinear generalizations of linear
smoothing using a nonnegative convolution kernel. We have already argued that
for image analysis to be robust, the operators must also be contrast invariant.
The overall theme here will be to develop the equivalence between monotone
contrast-invariant function operators and monotone set operators. This equiva-
lence is based on one of the fundamentals of mathematical morphology described
in Chapter 11: A real-valued function is completely described by its level sets.

This allows one to process an image u by processing separately its level sets
by some monotone set operator T and defining the processed image by the
superposition principle

Tu = sup{λ,x ∈ T (Xλu)}.

Such an operator is called in digital technology a stack filter, since it processes
an image as a stack of level sets. Conversely, we shall associate with any contrast
invariant monotone function operator T a monotone set operator by setting

T (Xλu) = Xλ(Tu).

Such a construction is called a level set extension of T .
Several questions arise, which will be all answered positively once the func-

tional framework is fixed: Are stack filters contrast invariant? Conversely, is
any monotone contrast invariant operator a stack filter? Is any monotone set
operator the level set extension of its stack filter?

In Section 13.1 we shall make definitions precise and give some remarkable
conservative properties of contrast invariant monotone operators. Section 13.2 is
devoted to stack filters and shows that they are monotone and contrast invariant.
Section 13.3 defines the level set extension and shows the converse statement:
Any contrast invariant monotone operator is a stack filter. Section 13.4 applies
this construction to a remarkable denoising stack filter due to Vincent and Serra,
the area opening.

169
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13.1 Contrast-invariance

13.1.1 Set monotone operators

We will be mostly dealing with function operators T defined on F and set
operators T defined on L, but sometimes also defined on M. We denote by
D(T ) the domain of T . Now, all set operators we shall consider in practice are
defined first on subsets of RN .

Definition 13.1. Let T a monotone operator defined on a set of subsets of RN .
We call standard extension of T to SN the operator, still denoted by T , defined
by

T (X) = T (X \ {∞}) ∪ (X ∩ {∞}).

In other terms if X doesn’t contain ∞, T (X) is already defined and if X
contains ∞, T (X) contains it too. Thus a standard extension satisfies ∞ ∈
T X ⇔ ∞ ∈ X .

Remark 13.2. Let us examine the case where T is initially defined on C, the
set of all closed subsets of R

N . There are only two kinds of sets in L, namely

• compact sets of RN

• sets of the form X = C ∪ {∞}, where C is a closed set of RN .

Thus the standard extension of T extends T to L, the set of all closed (and
therefore compact) subsets of SN .

All of the usual monotone set operators used in shape analysis satisfy a small
list of standard properties which it is best to fix now. Their meaning will come
obvious in examples.

Definition 13.3. We say that a set operator T defined on its domain D(T ) is
standard monotone if

• X ⊂ Y =⇒ T X ⊂ T Y ;

• ∞ ∈ T X ⇐⇒ ∞ ∈ X;

• T (∅) = ∅, T (SN ) = SN ;

• T (X) is bounded in RN if X is;

• T (X)c is bounded in RN if Xc is.

Definition 13.4. Let T be a monotone set operator on its domain D(T ). We
call dual domain the set

D(T̃ ) := {X ⊂ SN | Xc ∈ D(T )}.

We call dual of T the operator X → T̃ X = (T (Xc))c, defined on D(T̃ ).

Proposition 13.5. T is a standard monotone operator if and only if T̃ is.

Exercise 13.1. Prove it!
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13.1.2 Monotone function operators

Function operators are usually defined on F , the set of continuous functions
having some limit u(∞) at infinity. We shall always assume that this limit
is preserved by T , that is, Tu(∞) = u(∞). Think that images are usually
compactly supported. Thus u(∞) is the “color of the frame” for a photograph.
There is no use in changing this color.

Definition 13.6. We say that a function operator T : F → F is standard
monotone if for all u, v ∈ F ,

u ≥ v =⇒ Tu ≥ Tv; Tu(∞) = u(∞). (13.1)

Exercise 13.2. Is the operator T defined by (Tu)(x) = u(x)+1 standard monotone?

Recall from Chapter 11 that any nondecreasing continuous surjection g :
R → R is called a contrast change.

Definition 13.7. A function operator T : F → F is said to be contrast invariant
if for every u ∈ F and every contrast change g,

g(Tu) = Tg(u). (13.2)

Checking contrast invariance with increasing contrast changes will make our
life simpler.

Lemma 13.8. A monotone operator is contrast invariant if and only if it com-
mutes with strictly increasing contrast changes.

Proof. Let g be a contrast change. We can find strictly increasing continuous
functions gn and hn : R → R such that gn(s) → g(s), hn(s) → g(s) for all s and
gn ≤ g ≤ hn (see Exercise 13.12.) Thus, by using the commutation of T with
increasing contrast changes, we have

T (g(u)) ≥ T (gn(u)) = gn(Tu) → g(Tu) and

T (g(u)) ≤ T (hn(u)) = hn(Tu) → g(Tu),

which yields T (g(u)) = g(Tu). �

Let us give some notable properties entailed by the monotonicity and the con-
trast invariance.

Lemma 13.9. Let T be standard monotone contrast invariant operator. Then
for every constant function u ≡ c one has Tu ≡ c.

Proof. Let g be a contrast change such that g(s) = s for inf Tu ≤ s ≤ supTu.
Since Tu(∞) = u(∞) = c, this implies that inf Tu ≤ c ≤ supTu and therefore
g(c) = c, which means g(u) = u.. By the contrast invariance we therefore obtain
Tu = Tg(u) = g(Tu) ≡ c. �
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We have indicated several times the importance of image operators being
contrast invariant. In practice, image operators are also translation invariant.
For x ∈ RN we are going to use the notation τx to denote the translation
operator for both sets and functions: For X ∈ M, τxX = {x + y | y ∈ X},
and for u ∈ F , τxu is defined by τxu(y) = u(y − x). Since elements of M
can contain ∞, we specify that ∞ ± x = ∞ when x ∈ RN . This implies that
τxu(∞) = u(∞).

Definition 13.10. A set operator T is said to be translation invariant if its
domain is translation invariant and if for all X ∈ D(T ) and x ∈ RN ,

τxT X = T τxX.
A function operator T is said to be translation invariant if for all u ∈ F and
x ∈ RN ,

τxTu = Tτxu.

We say that a function operator T commutes with the addition of constants if
u ∈ F and c ∈ R imply T (u+ c) = Tu+ c.

Contrast-invariant operators clearly commute with the addition of constants:
Consider the contrast change defined by g(s) = s+ c.

Lemma 13.11. Let T be a translation-invariant monotone function operator
on F that commutes with the addition of constants. If u ∈ F is K-Lipschitz on
RN , namely |u(x) − u(y)| ≤ K|x− y| for all x, y in RN , then so is Tu.

Proof. For any x ∈ RN , y ∈ RN , and z ∈ SN , we have

u(y + z) −K|x− y| ≤ u(x + z) ≤ u(y + z) +K|x− y|. (13.3)

These inequalities work for z = ∞ because u(y+∞) = u(x+∞) = u(∞). Thus
we can write them as inequalities between functions on SN :

τ−yu−K|x− y| ≤ τ−xu ≤ τ−yu+K|x− y|. (13.4)

Since T is monotone, we can apply T to the functions in (13.4) and preserve
the inequalities, which yields

T (τ−yu−K|x − y|) ≤ T (τ−xu) ≤ T (τ−yu+K|x− y|).
Now use the fact that T commutes with the addition of constants the translation
invariance of T to obtain

τ−y(Tu)−K|x − y| ≤ τ−x(Tu)) ≤ T (τ−yu) +K|x− y|).
Taking the values of these functions at 0 yields

Tu(y) −K|x− y| ≤ Tu(x) ≤ Tu(y) +K|x − y|,
which is the announced result. �

We say that an operator is monotone on a set of functions if u ≥ v ⇒ Tu ≥
Tv. Clearly all above proofs do not depend upon the fact that the operator is
standard, but just upon its translation invariance and monotonicity. Thus, by
considering the proof of Lemma 13.11 and the definition of uniform continuity
(Definition 1.3), one obtains the following generalizations.
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Corollary 13.12. Assume that T is a translation-invariant monotone operator
on a set of uniformly continuous functions, that commutes with the addition of
constants. Then Tu is uniformly continuous on RN with the same modulus of
continuity. In particular if u is L-Lipschitz on RN , then so is Tu.

Exercise 13.3. Prove corollary 13.12.

13.2 Stack filters

Definition 13.13. We say that a function operator T is obtained from a mono-
tone set operator T as a stack filter if

Tu(x) = sup{λ | x ∈ T (Xλu)} (13.5)

for every x ∈ SN .

The relation (13.5) has practical implications. It means that Tu can be
computed by applying T separately to each characteristic function of the level
sets Xλu. This leads to the following stack filter algorithm.

u

Xλu → T (Xλu)
ր ց

...
ց ր

Xµu → T (Xµu)

Tu(x) = sup{λ | x ∈ T (Xλu)}.

The image u is decomposed into the stack of level sets. Each level set is
processed independently by the monotone operator T . This yields a new stack
of sets T (Xλu) and Formula (13.5) always defines a function Tu. Now, this
construction will be perfect only if

Xλ(Tu) = T (Xλu). (13.6)

Definition 13.14. When (13.6) holds, we say that T “commutes with thresh-
olds”, or that T and T satisfy the “commutation with threshold” property.

Of course, this commutation can hold only if T sends L into itself. A further
condition which turns out to be necessary is introduced in the next definition.

Definition 13.15. We say that a monotone set operator T : L → L is upper
semicontinuous if for every sequence of compact sets Xn ∈ D(T ) = L such that
Xn+1 ⊂ Xn, we have

T (
⋂

n

Xn) =
⋂

n

T (Xn). (13.7)

Exercise 13.4. Show that a monotone operator T : L → L is upper semicontinuous
if and only if it satisfies, for every family (Xλ)λ∈R ⊂ L such that Xλ ⊂ Xµ for λ > µ,
the relation T (

⋂

λXλ) =
⋂

λ T (Xλ).
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Exercise 13.5. Show that a monotone operator on L is upper semicontinuous if and
only if it satisfies (13.7) for every sequence of compact sets Xn such that Xn+1 ⊂ X◦

n.
Hint: Since SN is the unit sphere in R

N+1, one can endow it with the euclidian distance
d in R

N+1. Given a nondecreasing sequence Yn in L, set Xn = {x, d(x, Yn) ≤ 1
n
}.

Then apply (13.7) to Xn and check that
⋂

nXn =
⋂

n Yn.

Exercise 13.6. Show that a monotone operator T : L → L is upper semicontinuous
if and only if it satisfies, for every family (Xλ)λ∈R ⊂ L such that Xλ ⊂ X◦

µ for λ > µ,
the relation T (

⋂

λ Xλ) =
⋂

λ T (Xλ).

Theorem 13.16. Let T : L → M be a translation invariant standard monotone
set operator. Then the associated stack filter T is translation invariant, contrast
invariant and standard monotone from F into itself. If, in addition, T is upper
semicontinuous, then T commutes with thresholds.

Proof that T is monotone. One has

u ≤ v ⇔ (∀λ, Xλu ⊂ Xλv).

Since T is monotone, we deduce that

∀λ, T (Xλu) ⊂ T (Xλv)

which by (13.5) implies Tu ≤ Tv.

Proof that T is contrast invariant.
By Lemma 13.8 we can take g strictly increasing and therefore a bijection from
R to R. We notice that :
For λ > g(supu), Xλg(u) = ∅ and therefore T (Xλg(u)) = ∅.
For λ < g(inf u), Xλg(u) = SN and therefore T (Xλg(u)) = SN .
Thus using (13.5) we can restrict the range of λ in the definition of T (g(u))(x)
:

T (g(u))(x) = sup{λ, g(inf u) ≤ λ ≤ g(supu), x ∈ T (Xλg(u))}

= sup{g(µ), x ∈ T (Xg(µ)g(u))}

= sup{g(µ), x ∈ T (Xµu)} = g(Tu(x)).

Proof that Tu belongs to F .
T is by construction translation invariant. By Corollary 13.12, Tu is uniformly
continuous on RN . Let us prove that Tu(x) → u(∞) as x → ∞. We notice
that for λ > u(∞), Xλu is bounded. Since T is standard monotone T (Xλu) is
bounded too. Now, by (13.5), Tu(x) ≤ λ if x ∈ T (Xλu)

c. This last condition
is satisfied if x is large enough and we deduce that lim supx→∞ Tu(x) ≤ u(∞).
In the same way notice that (Xλu)

c is bounded if λ < u(∞). So by the same
argument, we also get lim infx→∞ Tu(x) ≥ u(∞). T being standard, it is easily
checked using (13.5) that Tu(∞) = u(∞). Thus, Tu is continuous on RN and
at ∞ and therefore on SN .

Proof that T commutes with thresholds, when T is upper semicon-
tinuous.
Let us show that the sets Yλ = T (Xλu) satisfy the properties (i) and (ii) in
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Proposition 11.2. By the monotonicity of T , Yλ ⊂ Yµ for λ > µ. Since T (∅) = ∅,
we have

Yλ = T (Xλu) = T (∅) = ∅
for λ > maxu and, in the same way Yλ = SN for λ < minu. So Tu has the
same bounds as u. This proves Property (i). As for Property (ii), we have for
every λ, using the upper semicontinuity and exercise 13.4,

Yλ = T (Xλu) = T (
⋂

µ<λ

Xµu) =
⋂

µ<λ

T (Xµu) =
⋂

µ<λ

Yµ.

So by applying the converse statement of Proposition 11.2, we deduce that

Xλ(Tu) = T (Xλu).

�

Exercise 13.7. Check that Tu(∞) = u(∞), as claimed in the former proof.

The upper semicontinuity of T is necessary to ensure the commutation with
thresholds. See Exercise 13.21. The assumption that T sends bounded sets of
RN on bounded sets of RN and complementary sets of bounded sets onto com-
plementary sets of bounded sets also is necessary to ensure that Tu is continuous
at ∞: see Exercise 13.16.

13.3 The level set extension

Our aim here is just the converse as in the former section. We wish to associate
a standard monotone set operator T from L to L with any contrast invariant
standard monotone function operator T , in such a way that the whole machinery
works, namely both operators satisfy the commutation with threshold property
T (Xλu) = Xλ(Tu) and T is the stack filter of T .

Lemma 13.17. Let u ≤ 0 and v ≤ 0 ∈ F and assume that X0u = X0v (6= ∅).
Then there is a contrast change h such that h(0) = 0 and u ≥ h(v).

Proof. Define

h̃(r) =







min{u(x) | x ∈ Xrv} if min v ≤ r ≤ 0;
r if r > 0;
minu− min v + r if r ≤ min v.

Notice that h̃(0) = 0 and that h̃ is nondecreasing. The following relation holds
for all x ∈ RN by the definition of h̃ and because u(x) belongs to the set
{u(y) | v(y) ≥ v(x)}:

u(x) ≥ min{u(y) | v(y) ≥ v(x)} = h̃(v(x)).

We now use the compactness in SN of the level sets of v to show that h̃ is
continuous at zero. Let (rk)k∈N be an arbitrary increasing sequence tending to
zero. Choose xk ∈ Xrk

v such that h̃(rk) = u(xk). This is possible because u is
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continuous and the Xrk
v are compact and nonempty. Since h̃ is nondecreasing,

h̃(rk) → h̃−(0).
Let x be any accumulation point of the set {xk}k∈N. Since the Xrk

v are
compact, all the accumulation points of the set {xk}k∈N are contained in X0v =
⋂

k∈N
Xrk

v. This means that u(x) = 0. But limu(xk) = u(x) by the continuity

of u, and we conclude that h̃−(0) = 0. At this point h̃ satisfies the announced
requirements for h, except that it is not always continuous for all r < 0. This is
easily fixed by choosing a continuous nondecreasing function h such that h̃ ≥ h
and h(0) = 0. One way to do this is to take h(r) = (1/|r|)

∫ r

2r h̃(s) ds for r < 0.

Then u(x) ≥ h̃(v(x)) ≥ h(v(x)) as announced. �

Exercise 13.8. Prove that h(r) = (1/|r|)
∫ r

2r
h̃(s) ds is indeed nondecreasing and

continuous for r ≤ 0 and that h̃ ≥ h. Find examples of functions u and v defined on
S1 for which h̃ is not continuous.

Definition 13.18 (and proposition (Evans-Spruck)). 1 Given a contrast
invariant monotone operator T on F , we call level set extension of T the set
operator defined in the following way : for any X ∈ L, take u ≤ 0 such that
X0u = X and set

T (X) = X0T (u).

Then T (X) does not depend upon the particular choice of u.

Proof. The proof follows directly from Lemma 13.17: Take u and v ∈ F such
that u ≤ 0, v ≤ 0, and X0u = X0v. Let h be a contrast change such that
h(0) = 0 and u ≥ h(v). Since T is monotone and contrast invariant one has by
Lemma 13.1.2 Tu ≤ 0, and Tu ≥ Th(v) = h(Tv). Using the fact that h(0) = 0,
we obtain that Tv(x) = 0 implies that Tu(x) = 0. By interchanging the roles of
u and v, Tu(x) = 0 implies that Tv(x) = 0. We conclude that X0Tu = X0Tv. �

Exercise 13.9. Definition 13.18 would’nt be complete if we did not prove that for any
X ∈ L we can find u ≤ 0 in F such that X0u = X. Hint: Since SN is the unit sphere
in R

N+1, one can endow it with the euclidian distance d in R
N+1. Use the distance

function d(x, X) to define u. This distance function is continuous: see Exercise 13.18.

Theorem 13.19 (Evans–Spruck). Let T be a contrast-invariant monotone
operator on F and T its level set extension on L. Then T is monotone, T and
T satisfy the commutation with thresholds T Xλu = XλTu for all λ ∈ R, T is the
stack filter associated with T and T is upper semicontinuous on L. In addition,
if T is standard, then so is T .

Proof. Commutation with thresholds: Given u and λ, let g be a continuous
contrast change such that g(s) = min(s, λ) − λ on the range of u, which is a
compact interval of R. We then have X0g(u) = Xλu. Using this relation, the
level set extension and the contrast invariance of T ,

T (Xλu) = T (X0g(u)) = X0(T (g(u))) = X0(g(Tu)) = Xλ(Tu).

1What we are doing here is related to the scheme originally introduced by Osher and
Sethian as a numerical method for front propagation [199]. We briefly described their work
in the Introduction (see page 26).



i

i

13.4. A FIRST APPLICATION: THE EXTREMA KILLER 177

Proof of the stack filter property: This is an immediate consequence of the
superposition principle and the commutation with thresholds :

Tu(x) = sup{λ | x ∈ XλTu} = sup{λ | x ∈ T (Xλu)}.

Proof that T is upper semicontinuous on L: By the result of Exercise
13.5, it is enough to consider a sequence (Xn)n≥1 in L such that Xn+1 ⊂ X◦

n.
By Lemma 13.20 below there is a function u ∈ F such that X1− 1

n
u = Xn and

X1u =
⋂

nXn. Finally, using twice the just proven commutation of thresholds,

T (
⋂

n

Xn) = T (X1u) = X1(Tu) =
⋂

n

X1− 1
n
Tu =

⋂

n

T (X1− 1
n
u) =

⋂

n

T (Xn).

Proof that T is standard if T is: Recall that T is standard if Tu(∞) = u(∞).
By using the commutation with thresholds, all of the standard properties for T
are straightforward. For instance, taking some u ∈ F ,

T (∅) = T (Xmax u+1u) = Xmax u+1Tu = ∅.

Indeed, by the monotonicity, the contrast invariance, and Lemma 13.1.2, u ≤
C ⇒ Tu ≤ C.
In the same way, let X ∈ L and u a function such that X0u = X . If X is
bounded, then u(∞) < 0, so that Tu(∞) = u(∞) < 0. Thus T (X) = X0Tu is
bounded. If Xc = {x | u(x) < 0} is bounded, then Tu(∞) = u(∞) ≥ 0. Thus
T (X)c = (X0Tu)

c is bounded. Finally by the commutation with thresholds,

∞ ∈ X ⇔ u(∞) ≥ 0 ⇔ Tu(∞) ≥ 0 ⇔ ∞ ∈ X0(Tu) = T (X).

�

Exercise 13.10. Prove that the level set extension T is monotone. The argument is
not given in the above proof.

Lemma 13.20. Let (Xn)n≥1 be a sequence in L such that Xn+1 ⊂ X◦
n. There

is a function u ∈ F such that X1− 1
n
u = Xn for n ≥ 1 and X1u =

⋂

n≥1Xn.

Proof. Let us use the euclidian distance d of R
N+1 restricted to SN considered

as a subset of RN+1. Set u(x) = 1 if x ∈ ⋂nXn,

u(x) = (1 − 1

n
)

d(x, Xn+1)

d(x, Xc
n) + d(x, Xn+1)

+ (1 − 1

n+ 1
)

d(x, Xc
n)

d(x, Xc
n) + d(x, Xn+1)

for x ∈ Xn \ Xn+1 and n ≥ 1, u(x) = − sup(−1,−d(x, X1)) if x /∈ X1. It is
easily checked that u belongs in F and satisfies the announced properties. �

13.4 A first application: the extrema killer

This section is devoted to the study of operators that remove “peaks,” or ex-
treme values, from an image. Such peaks are often created by impulse noise,
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that is, local destruction of pixel values and their replacement by a random
value. Old movies present this kind of noise and it also occurs by transmission
failure in satellite imaging. The operators we study are called area opening, or
extrema killer operators, and they have been shown to be very effective at re-
moving this kind of noise. The action of these operators is illustrated in Figures
13.1 and 13.2.

The following definitions are standard, but we include them here for com-
pleteness.

Definition 13.21. Consider a closed subset X of SN . X is disconnected if it
can be written as X = (A ∩ X) ∪ (B ∩ X), where A and B are disjoint open
sets and both A ∩ X and B ∩ X are not empty. X is connected if it is not
disconnected. The connected component of x in X, denoted by cc(x, X), is the
maximal connected subset of X that contains x.

We wish to define a denoising operator on L ; since some sets therein contain
∞, we need an extension of the Lebesgue measure on RN to SN . This is
immediately fixed by setting meas({∞}) = +∞. The only property of this
extended measure that we need to check is following:

Lemma 13.22. if Yn is a nonincreasing sequence of compact sets of SN , then
meas(∩nYn) = limn meas(Yn).

Proof. If the compact sets Yn do not contain ∞ for n large enough, then they
are bounded in RN for n large and the result just follows from Lebesgue theo-
rem. If instead the sets Yn all contain ∞, then ∩nYn contains it too and all sets
have infinite measure. �

Definition 13.23. Let a > 0 a scale parameter and denote for every X ∈ L
by Xi its connected components, so that X =

⋃

iXi. We call small component
killer the operator on L which removes from X all connected components with
area stricly less than a :

TaX =
⋃

meas (Xi)≥a

Xi. (13.8)

Theoretically, X can have an uncountable number of components; take, for
example, the Cantor set. However, X can have only a countable number of
components with positive measure. The assumption meas({∞}) = +∞ implies
that all connected components of X containing ∞ stay in TaX . We are going
to prove that the small component killer is upper semicontinuous and this uses
some elementary topological lemmas.

Lemma 13.24. Consider an arbitrary nonincreasing sequence of nonempty
compact sets (Yn)n∈N of SN and its limit Y =

⋂

n∈N
Yn. Then Y is not empty

and compact. In addition, for any open set Z that contains Y , there is an index
n0 such that Yn ⊂ Z for all n ≥ n0.
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Proof. The first property is a classical property of compact sets. Assume by
contradiction that the second property is not true. Then Yn ∩ (SN \ Z) 6= ∅
infinitely often. This implies that (Yn∩(SN \Z))n∈N is a nonincreasing sequence
of nonempty compact sets. But this means that Y ∩ (SN \ Z) 6= ∅, which is a
contradiction. �

Lemma 13.25. Let (Yn)n∈N be a nonincreasing sequence of nonempty com-
pact subsets of SN and consider the intersection Y =

⋂

n∈N
Yn. If the Yn are

connected, then Y is connected.

Proof. We know that Y is not empty and compact. Suppose, by contradiction,
that Y is not connected. Then we can represent Y by Y = (Y ∩Z1)∪ (Y ∩Z2),
where Z1 and Z2 are disjoint open sets, Y ∩ Z1 6= ∅, and Y ∩ Z1 6= ∅. Since
Y ⊂ Z1 ∪Z2, by Lemma 13.24 there exists an n0 such that Yn ⊂ Z1 ∪Z2 for all
n ≥ n0, and for these n we have

Yn = Yn ∩ (Z1 ∪ Z2) = (Yn ∩ Z1) ∪ (Yn ∩ Z2).

Furthermore, Yn ∩ Z1 6= ∅ and Yn ∩ Z1 6= ∅. This contradicts the fact that the
Yn are connected. �

Exercise 13.11. Show that Ta is idempotent: Ta
2X = TaX and that it is a contrac-

tion mapping: TaX ⊂ X.

With the extrema killer we have a prime example of a theory that begins
with a set operator Ta defined on L.

Lemma 13.26. The small component killer Ta is upper semicontinuous on L.

Proof. We first prove that Ta is monotone. Assume X ⊂ Y . Then for every
x ∈ X , cc(x, X) ⊂ cc(x, Y ). If meas (cc(x, X)) ≥ a, then meas (cc(x, Y )) ≥
a, and we conclude that TaX ⊂ TaY . Now let (Xn)n be any nonincreasing
sequence of nonempty compact sets and X = ∩nXn. We wish to show that
TaX =

⋂

n TaXn. By monotonicity of Ta,

TaX ⊂
⋂

n

Ta(Xn).

Let us show the converse inclusion. Let x ∈ ∩nTa(Xn). Then Yn := cc(x,Xn)
has measure larger than a for all n. In addition if m < n then Yn ⊂ Ym. By
Lemmas 13.24 and 13.25, Y := ∩nYn is a connected compact set that contains
x. In addition by Lemma 13.22, measure(Y ) = limn measure(Yn) ≥ a. Since
Y = ∩nYn ⊂ ∩nXn = X , we have cc(x, X) ⊇ Y and therefore x ∈ Ta(X). �

We can now build a stack filter from Ta.

Definition 13.27 (and proposition). The stack filter Ta of Ta is called a
maxima killer. Ta and Ta satisfy the commutation with thresholds. As a conse-
quence, no connected component of a level set of Tau has measure less than a.
Furthermore, Ta is standard monotone, translation and contrast invariant from
F into F .
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Figure 13.1: Extrema killer: maxima killer followed by minima killer. The
extrema killer removes all connected components of upper and lower level sets
with area less than some threshold, which here equals 20 pixels. Notice how
texture disappears in the second image. All other features seem preserved. On
the second row, we see for both the original and the processed image the level
lines at 16 equally spaced levels. The level lines on the right hand side are a
subset of the level lines of the left hand. All level lines surrounding extremal
regions with area smaller than 20 have been removed and the other ones are
untouched.

Proof. We just have to check that all assumptions of Theorem 13.16 are satis-
fied. Ta is obviously translation invariant, monotone and is upper semicontinu-
ous by Lemma 13.26. It satisfies Ta(∅) = ∅, Ta(SN ) = SN . Ta(E) is compact if
E is. Indeed, it is the union of a finite set of compact connected components.
If E is bounded in RN , then so is TaE ⊂ E. (TaE)c is bounded in SN if Ec

is. Indeed, if Ec is bounded, then E has a connected component Y containing
B(0, R)c for some R > 0. This connected component has infinite measure. Then
Ta(E) still contains Y and Ta(E)c is contained in B(0, R). By construction, ∞
belongs to TaX if and only if it belongs to X . Thus, Ta is standard monotone. �
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A maxima killer Ta cuts off the maxima of continuous functions, but it does
nothing for the minima. We can immediately define a minima killer T−

a as the
dual operator of Ta,

T−
a u = −Ta(−u).

A good denoising process is to alternate Ta and T−
a , as illustrated in Figures

13.1 and 13.2 . We note, however, that Ta and T−
a do not necessarily commute,

as is shown in Exercise 13.17.

13.5 Exercises

Exercise 13.12. Let g : R → R be a contrast change. Construct increasing contrast
changes gn and hn such that gn(s) → g(s), hn(s) → g(s) for all s and gn ≤ g ≤ hn.
Hint : define first an increasing continuous function f(s) on R such that f(−∞) = 0
and f(+∞) = 1

n
.

Exercise 13.13. Let u : R
N → R. Show that τxXλu = Xλτxu, x ∈ R

N .

Exercise 13.14. Prove that a translation invariant operator T from L to L satisfies
one of the three possibilities : T ({∞}) = {∞}, T ({∞}) = SN or T ({∞}) = ∅.
Exercise 13.15. Let T be a translation invariant standard monotone operator on F .
Prove the following statements:

(i) Tu = c for every constant function u : SN → c.

(ii) u ≥ c implies Tu ≥ c, and u ≤ c implies Tu ≤ c.

(iii) If in addition T commutes with the addition of constants, supx∈RN |Tu(x) −
Tv(x)| ≤ supx∈RN |u(x) − v(x)|.
(Hint: Write − sup |u(x) − v(x)| ≤ u(x) − v(x) ≤ sup |u(x) − v(x)|.)

Exercise 13.16.

1) In dimension 1, consider the set operator defined on L by TX = [infX,∞] if
inf(X ∩ R) ∈ R, T X = S1 if inf(X ∩ R) = −∞, T ({∞}) = {∞}, T (∅) = ∅. Check
that T satisfies all assumptions of Theorem 13.16 except one. Compute the stack filter
associated with T and show that it satisfies all conclusions of the mentioned theorem
except one : Tu does not belong to F and more specifically Tu(x) is not continuous
at ∞.

2) Consider the function operator on F , Tu(x) = supx∈SN
u(x). Check that T is

monotone, contrast invariant, and sends F to F . Compute the level set extension T
of T .

Exercise 13.17. Let N = 1 and take u(x) = sin x for |x| ≤ 8π, u(x) = 0 otherwise.
Compute Tau and T−

a u and show that they commute on u if a ≤ π and do not commute
if a > π. Following the same idea, construct a function u ∈ F in dimension two such
that TaT

−
a u 6= T−

a Tau.

Exercise 13.18. Let X be a closed subset of a metric space endowed with a distance
d and consider the distance function to X,

d(y) = d(y,X) = inf
x∈X

d(x,y).

Show that d is 1-Lipschitz, that is, |d(x,X) − d(y,X)| ≤ d(x,y).
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Exercise 13.19. In the following questions, we explain the necessity of the assump-
tions T (∅) = ∅, T (SN ) = SN for defining function monotone operators from F to F .

1) Set T (X) = X0 for all X ∈ L, where X0 6= ∅ is a fixed set. Check that the
associated stack filter satisfies Tu(x) = +∞ if x ∈ X0, Tu(x) = −∞ otherwise.

2) Let T be a monotone set operator, without further assumption. Show that its as-
sociated stack filter T is, however, monotone and commutes with all contrast changes.
(We extend each contrast change g by setting g(±∞) = ±∞.)

Exercise 13.20. Take an operator T satisfying the same assumptions as in Theorem
13.16, but defined on M and apply the arguments of the proof of Theorem 13.16.
Check that the stack filter associated with T is a contrast invariant, translation in-
variant monotone operator on the set of all bounded measurable functions, L∞(RN ).
If in addition T is upper semicontinuous on M, then the commutation with thresholds
holds.

Exercise 13.21. The upper semicontinuity is necessary to ensure that a monotone
set operator defines a function operator such that the commutation with thresholds
Xλ(Tu) = T (Xλ(u)) holds for every λ. Let us choose for example the following set
operator T ,

T (X) = X if meas(X) > a and T (X) = ∅ otherwise .

(We use the Lebesgue measure on R
N , with the completion meas({∞}) = +∞)

1) Prove that T is standard monotone.

2) Let u be the function from S1 into S1 defined by u(x) = max(−|x|,−2a) for some
a > 0, with u(∞) = −2a. Check that u belongs to F . Then, applying the stack filter
T of T , check that

T (u)(x) = sup{λ, x ∈ T (Xλu)} = max(min(−|x|,−a/2),−2a).

3) Deduce that X−a/2T (u) = [−a/2, a/2], X−a/2u = [−a/2, a/2] and therefore

T (X−a/2u) = ∅ 6= X−a/2T (u),

which means that T does not commute with thresholds.

Exercise 13.22. Like in the preceding exercise, we consider here contrast invariant
operators defined on all measurable bounded functions of R

N . The aim of the exercise
is to show that such operators send images with finite range into images with finite
range. More precisely, denote by R(u) = u(RN ) the range of u. Then we shall prove
that for every u, R(Tu) ⊂ Ru. In particular, if R(u) is finite, then the range of Tu
is a finite subset of Ru. If u is binary, Tu is, etc. This shows that contrast invariant
operators preserve sharp contrasts. A binary image is transformed into a binary image.
So contrast invariant operators create no blur, as opposed to linear operators, which
always create new intermediate grey levels.

1) Consider

g(s) = s+
1

2
d(s,Ru)

where d(s,X) denotes the distance from s to X, that is, d(s,X) = infx∈X |s−x|. Show
that g is a contrast change satisfying g(s) = s for s ∈ Ru and g(s) > s otherwise.

2) Check that g(s) = s if and only if s ∈ Ru. In particular, g(u) = u. Deduce from
this and from the contrast invariance of T that for every x ∈ R

N , Tu(x) is a fixed
point of g. Conclude.
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Figure 13.2: Extrema killer: maxima killer followed by minima killer. Above,
left: original image. Above, right: image after extrema killer removed connected
components of 20 pixels or less. Below: level lines (levels of multiples of 16) of
the image before and after the application of the extrema killer.

13.6 Comments and references

Contrast invariance and stack filters. Image operators that commute with
thresholds have been popular because, among other reasons, they are easily
implemented in hardware (VLSI). This led to very simple patents being awarded
in signal and image processing as late as 1987 [59]. These operators have been
given four different names, although operators are equivalent: stack filters [37,
103, 259]; threshold decomposition [108]; rank filters [52, 129, 261]; and order
filters [241]. The best known of these are the sup, inf, and median operators.
The implementation of the last named has received much attention because of
its remarkable denoising properties [82, 197, 266].

Maragos and Shafer [160, 161] and Maragos and Ziff [162] introduced the
functional notation and established the link between stack filters and the Math-
eron formalism in “flat” mathematical morphology. The complete equivalence
between contrast-invariant operators and stack filters, as developed in this chap-
ter, does not seem to have appeared elsewhere; at least we do not know of other
references. A related classification of rank filters with elegant and useful gener-
alizations to the so-called neighborhood filters can be found in [129].

The extrema killer. The extrema killer is probably the most efficient de-
noising filter for images degraded by impulse noise, which is manifest by small
spots. In spite of its simplicity, this filter has only recently seen much use. This
is undoubtedly due to the nontrivial computations involved in searching for the
connected components of upper and lower level sets. The first reference to the
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extrema killer that we know is [55]. The filter in its generality was defined by
Vincent in [253]. This definition fits into the general theory of connected filters
developed by Salembier and Serra [219]. Masnou defined a variant called the
grain filter that is both contrast invariant and invariant under reverse contrast
changes [166]. Monasse and Guichard developed a fast implementation of this
filter based on the so-called fast level set transform [181].

We will develop in Chapter 19 a theory of scale space that is based on a
family of image smoothing operators Tt, where t is a scale parameter. We note
here that the family (Ta)a∈R+ of extrema killers does not constitute a scale space
because it does not satisfy one of the conditions, namely, what we call the local
comparison principle. That this is so, is the content of Exercise 19.1.



i

i

Chapter 14

Sup-Inf Operators

The main contents of this chapter are two representation theorems: one for
translation-invariant monotone set operators and one for functions operators
that are monotone, contrast invariant, and translation invariant. If T is a func-
tion operator satisfying these three conditions, then it has a “sup-inf” represen-
tation of the form

Tu(x) = sup
B∈B

inf
y∈B

u(x + y),

where B is a family of subsets of M(SN ), the set of all measurable subsets of
SN . This theorem is a nonlinear analogue of the Riesz theorem that states that
a continuous linear translation-invariant operator from L2(RN ) to C0(RN ) can
be represented as a convolution

Tu(x) =

∫

RN

u(x− y)k(y) dy.

In this case, the kernel k ∈ L2(RN ) is called the impulse response. In the same
way, B is an impulse response for the nonlinear operator.

14.1 Translation-invariant monotone set opera-

tors

Recall that a set of M can contain ∞. We have specified that x + ∞ = ∞ for
every x ∈ SN . As a consequence, for any subset B of SN , ∞ + B = {∞}. In
this chapter we shall associate with any nonempty subset B of M a set operator
defined by

T X = {x ∈ SN | x +B ⊂ X for some B ∈ B}. (14.1)

Definition 14.1. We say that a subset B of M is standard if it is not empty
and if its associated operator satisfies

(i) ∀R > 0, ∃R′ > 0, T (B(0, R)) ⊂ B(0, R′);

(ii) ∀R > 0, ∃R′ > 0, B(0, R′)c ⊂ T (B(0, R)c).

185
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Exercise 14.1. Conditions (i) and (ii) on B are easily satisfied. Check that Condition
(i) is equivalent to

∀R > 0, ∃C > 0, (B ∈ B, and diameter(B) ≤ R) ⇒ B ⊂ B(0, C).

Check that this condition is achieved (e.g.) if all elements of B contain 0. Check that
Condition (ii) is achieved if B contains at least one bounded element B.

Exercise 14.2. Show that if B contains ∅, then B is not standard.

Theorem 14.2 (Matheron). Let T be a translation-invariant and standard
monotone set operator. Consider the subset of D(T ),

B = {B ∈ D(T ) | 0 ∈ T B} (14.2)

Then B is standard and the operator T is associated with B by (14.1). Con-
versely, if B is any standard subset of M, then (14.1) defines a translation-
invariant standard monotone set operator on M.

Definition 14.3. In Mathematical Morphology, a set B such that (14.1) holds
is called a set of structuring elements of T and B = {X ∈ D(T ) | 0 ∈ T X} is
called the canonical set of structuring elements of T .

Proof of Theorem 14.2.

Proof of (14.1).
Let B = {X ∈ D(T ) | 0 ∈ T X}. Then for any x ∈ RN ,

x ∈ T X (1)⇐⇒ 0 ∈ T X − x
(2)⇐⇒ 0 ∈ T (X − x)

(3)⇐⇒ X − x ∈ B
(4)⇐⇒ X − x = B for some B ∈ B (5)⇐⇒ x +B ⊂ X for some B ∈ B.

The equivalence (2) follows from the translation invariance of T X ; (3) is just
the definition of B; and (4) is a restatement of (3). The implication from left
to right in (5) is obvious. The implication from right to left in (5) is the point
where the monotonicity of T is used: Since B ⊂ X − x, it follows from the
monotonicity of T that X − x ∈ B.
Let now x = ∞. Since T is standard, B is not empty (it contains SN because
T (SN ) = SN ) and we have

∞ ∈ T X ⇔ ∞ ∈ X ⇔ ∃B ∈ B, ∞ +B ⊂ X,

because ∞ + SN = {∞}.
Proof that B is standard if T is standard monotone.
Since T (SN ) = SN , B contains SN and is therefore not empty. The other
properties are straightforward.

Proof that (14.1) defines a standard monotone set operator if B is
standard.
Using (14.1), it is a straightforward calculation to check that T is monotone
and translation invariant, and that T (SN ) = SN , T (∅) = ∅. The equivalence
∞ ∈ T X if and only if ∞ ∈ X follows from the fact that B is not empty. T
sends bounded sets onto bounded sets and complementary sets of bounded sets
onto complementary sets of bounded sets by definition of a standard set B. �
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Exercise 14.3. Check that if T is standard monotone, then its canonical set of
structuring elements satisfies (ii).

B0 = {X | 0 ∈ T X} is not the only set that can be used to represent T . A
monotone operator T can have many such sets and here is their characterization.

Proposition 14.4. Let T be a translation invariant standard monotone set
operator and let B0 its canonical set of structuring elements. Then B1 is another
standard set of structuring elements for T if and only if it satisfies

(i) B1 ⊂ B0,

(ii) for all B0 ∈ B0, there is B1 ∈ B1 such that B1 ⊂ B0.

Proof. Assume that T is obtained from some set B1 by (14.1) and let B0

be the canonical set of structuring elements of T . Then for every B1 ∈ B1,
T B1 = {x | x + B ⊂ B1 for some B ∈ B1}. It follows that 0 ∈ T B1 and
therefore B1 ∈ B0. Thus B1 ⊂ B0. In addition, if B0 ∈ B0, then 0 ∈ T B0, which
means that 0 ∈ {x | x +B1 ⊂ B0 for some B1 ∈ B1}, that is B1 ⊂ B0 for some
B1 ∈ B1.

Conversely, let B1 satisfy (i) and (ii) and let

T1X = {x | ∃B1 ∈ B1, x +B1 ⊂ X}.

Using (i), one deduces that T1X ⊂ T X for every X and using (ii) yields the
converse inclusion. Thus B1 is a structuring set for T . The fact that B1 is
standard is an obvious check using (i) and (ii). �

14.2 The Sup-Inf form

Lemma 14.5. Let T : F → F be a standard monotone function operator, T a
standard monotone translation invariant set operator and B a set of structuring
elements for T . If T and T satisfy the commutation of thresholds T Xλu =
XλTu, then T has the “sup-inf” representation

Tu(x) = sup
B∈B

inf
y∈x+B

u(y). (14.3)

Proof. For u ∈ F , set T̃ u(x) = supB∈B infy∈x+B u(y). We shall derive the

identity T = T̃ from the equivalence

T̃ u(x) ≥ λ⇐⇒ Tu(x) ≥ λ. (14.4)

Assume first that x ∈ RN . Then

Tu(x) ≥ λ
(1)⇐⇒ Tu(x) ≥ µ for all µ < λ

(2)⇐⇒ x ∈ XµTu for all µ < λ

(3)⇐⇒ x ∈ T Xµu for all µ < λ
(4)⇐⇒ ∃B ∈ B, x +B ⊂ Xµu for all µ < λ

(5)⇐⇒ There is a B ∈ B such that inf
y∈x+B

u(y) ≥ µ for all µ < λ

(6)⇐⇒ sup
B∈B

inf
y∈x+B

u(y) ≥ λ
(7)⇐⇒ T̃ u(x) ≥ λ.
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Equivalence (1) is just a statement about real numbers and (2) is the definition
of a level set. It is at (3) that we replace XµTu with T Xµu. Equivalence (4)
follows by the definition of T from B by (14.1). The equivalence (5) is the
definition of the level set Xµu. Equivalence (6) is another statement about real

numbers, and (7) is the definition of T̃ .
Assume now that x = ∞. Since for all B ∈ L, ∞ + B = {∞}, one obtains
T̃ u(∞) = u(∞). By assumption Tu(∞) = u(∞). This completes the proof of
(14.3). �

From the preceding result, we can easily derive a general form for translation
and contrast invariant standard monotone operators.

Theorem 14.6. Let T : F → F be a translation and contrast invariant stan-
dard monotone operator. Then it has a “sup-inf” representation (14.3) with a
standard set of structuring elements.

Proof. By the level set extension (Theorem 13.19), T defines a unique stan-
dard monotone set operator T : L 7→ L. T is defined by the commutation of
thresholds, T Xλu = XλTu. By Lemma 14.5, the commutation with thresholds
is enough to ensure that T has the sup-inf representation (14.3) for any set of
structuring elements B of T . �

Definition 14.7. As a consequence of the preceding theorem, the canonical
set of structuring elements of T will also be called canonical set of structuring
elements of T .

The next theorem closes the loop.

Theorem 14.8. Given any standard subset B of M, Equation (14.3),

Tu(x) = sup
B∈B

inf
y∈x+B

u(y),

defines a contrast and translation invariant standard monotone function opera-
tor from F into itself.

Proof. By Theorem 13.16, it is enough to prove that T is the stack filter of T ,
the standard monotone set operator associated with B. Let us call T ′ this stack
filter and let us check that Tu(x) ≥ λ⇔ T ′u(x) ≥ λ.
we have T ′u = sup{λ, x ∈ T (Xλu)}. Thus by (14.1),

T ′u(x) ≥ λ⇔ ∀µ < λ, ∃B, x +B ⊂ Xµu.

On the other hand,

Tu(x) = sup
B∈B

inf
y∈x+B

u ≥ λ ⇔

∀µ < λ, ∃B ∈ B, inf
y∈x+B

u ≥ µ ⇔

∀µ < λ, ∃B ∈ B, x +B ⊂ Xµu.
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Thus, T = T ′. �

We end this section by showing that sup-inf operators can also be represented
as inf-sup operators,

Tu(x) = inf
B∈B

sup
y∈x+B

u(y).

This is done, in the mathematical morphology terminology, by “duality”. The
dual operator of a function operator is defined by T̃ u = −T (−u). Notice that
˜̃T = T .

Proposition 14.9. If T is a standard monotone, translation invariant and
contrast invariant operator, then so is T̃ . As a consequence, T has a dual “inf-
sup” form

Tu = inf
B∈B̃

sup
y∈x+B

u(y),

where B̃ is any set of structuring elements for T̃

Proof. Setting g̃(s) = −g(−s), it is easily checked that g̃ is a contrast change
if and only if g is. One has by the contrast invariance of T ,

T̃ (g(u)) = −T (−g(u)) = −T (g̃(−u)) = −g̃(T (−u)) = g(−T (−u)) = g(T̃ u).

Thus, T̃ is contrast invariant. The standard monotonicity and translation in-
variance of T̃ are obvious. Finally, if we have T̃ u(x) = supB∈B̃ infy∈x+B u(y),
then

Tu = − sup
B∈B̃

inf
y∈x+B

(−u(y)) = − sup
B∈B̃

(− sup
y∈x+B

u(y)) = inf
B∈B̃

sup
y∈x+B

u(y).

�

Exercise 14.4. Check the standard monotonicity and translation invariance of T̃ .

14.3 Locality and isotropy

For linear filters, locality can be defined by the fact that the convolution kernel
is compactly supported. This property is important, as it guarantees that the
smoothed image is obtained by a local average. Morphological filters may need
a locality property for the same reason.

Definition 14.10. We say that a translation invariant function operator T on
F is local if there is some M ≥ 0 such that

(u = u′ on B(0,M)) ⇒ Tu(0) = Tu′(0).

The point 0 plays no special role in the definition. By translation invariance
it is easily deduced from the definition that for x ∈ RN , the values of Tu(x)
only depend upon the restriction of u to B(x,M).
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Proposition 14.11. Let T : F → F be a contrast and translation invariant
standard monotone operator and B a set of structuring elements for T . If T is
local, then BM = {B ∈ B | B ⊂ B(0,M)} also is a set of structuring elements
for T . Conversely, if all elements of B are contained in B(0,M), then T is
local.

Proof. We prove the statement with the sup-inf form for T given by Theorem
14.6,

Tu(x) = sup
B∈B

inf
y∈B

u(x + y). (14.5)

Consider the new function uε(x) = u(x) − 1
εd(x, B(0,M)), where we take for

d a distance function on SN ⊂ RN+1, so that uε ∈ F . Take any B ∈ B
containing a point z /∈ B(0,M) and therefore not belonging to BM . Then
infy∈B uε(y) ≤ u(z) − 1

εd(z, B(0,M)) < Tu(0) for ε small enough. So we can
discard such B’s in the computation of Tu(0) by (14.5). Since by the locality
assumption Tu(0) = Tuε(0), we obtain

Tu(0) = Tuε(0) = sup
B∈BM

inf
y∈B

u(y).

By the translation invariance of all all considered operators, this proves the di-
rect statement. The converse statement is straightforward. �

We end this paragraph with a definition and an easy characterization of
isotropic operators in the sup-inf form. In the next proposition, we actually
consider a more general setting, namely the invariance of T under some geo-
metric group G of transformations of RN , for example the isometries. Since we
use to extend the set and function operators to SN , we must also extend such
transforms by setting g(∞) = ∞ for g ∈ G. Also, define the operator Ig on
functions u : SN → R by Igu(x) = u(gx).

Definition 14.12. • We say that B is invariant under a group G of trans-
formations of SN onto SN if, for all g ∈ G, B ∈ B implies gB ∈ B.

• If, for all g ∈ G, TIg = IgT (resp. T g = gT ), we say that T (resp. T ) is
invariant under G.

• In particular, we say that T (resp. T ) is isotropic if it commutes with
all linear isometries R of RN , and affine invariant if it commutes with all
linear maps A with determinant 1.

Proposition 14.13. Let G be any group of linear maps : g : RN → RN

extended to SN by setting g(∞) = ∞. If T (resp. T ) is translation invariant
and invariant under G and B is a standard set of structuring elements for T
(resp T ), then GB = {gB | g ∈ G, B ∈ B} is another, G-invariant, standard
set of structuring elements. Conversely, if B is a standard and G-invariant set
of structuring elements for T (resp. T ), then this operator is G-invariant (and
translation invariant.)

Proof. All the verifications are straightforward. The only point to mention is
that the considered groups are made of transforms sending bounded sets onto
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bounded sets and complementary sets of bounded sets onto complementary sets
of bounded sets. �

Exercise 14.5. Prove carefully Proposition 14.13.

Some terminology.
It would be tedious to state theorems on operators on F with such a long list
of requirements as Standard Monotone, Translation and Contrast Invariant,
Isotropic. We shall call such operators Morpho operators because they retain
the essential requirements of morphological smoothing filters . All the examples
we consider in this book are actually Morpho operators. Not all are local, so
we will specify it when needed. Operators can be still more invariant, in fact
affine invariant, and we will specify it as well. Since all of these operators T
have an inf-sup or a sup-inf form, we always take for B a standard structuring
set reflecting the properties of T , that is, bounded in B(0,M) when T is local
and invariant by the same group as T . A last thing to specify is this: We have
restricted our analysis to operators defined on F . On the other hand, their
inf-sup form permits to extend them to all measurable functions and we shall
still denote the resulting operator by T . Tu can then assume the −∞ and +∞
values. All the same, it is an immediate check to see that this extension still is
monotone and commutes with contrast changes:

Proposition 14.14. Let T be a function operator in the inf-sup or sup-inf
form associated with a standard set of structuring elements B ⊂ M. Then T is
monotone and contrast invariant on the set of all bounded measurable functions
of SN .

Exercise 14.6. Prove Proposition 14.14.

14.4 The who’s who of monotone contrast in-

variant operators

The aim of this short section is to draw a synthetic picture of an equivalence
chain built up in this chapter and in Chapter 13. We have constructed three
kinds of objects,

• contrast and translation invariant standard monotone function operators
T : F → F ;

• translation invariant standard monotone set operators T defined on L;

• standard sets of structuring elements B.

The results proven so far can be summarized in the following theorem.

Theorem 14.15. Given any of the standard objects T , T and B mentioned
above, one can pass to any other one by using one of the six formulae given
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below.

B → T, Tu(x) = sup
B∈B

inf
y∈x+B

u(y);

B → T , T X = {x | ∃B ∈ B, x +B ⊂ X};
T → T, Tu(x) = sup{λ | x ∈ T Xλu};
T → T , T (X0u) = X0(Tu);

T → B, B = {B ∈ L | 0 ∈ T B};
T → B, by T → T and T → B.

In addition, B can be bounded in some B(0,M) if and only if T is local; T
or T is G-invariant, for instance isotropic, if and only if it derives from some
G-invariant (isotropic) B. If an operator has the inf-sup or sup-inf form for
some B, it can be extended to all measurable functions on RN into a monotone
and contrast invariant operator.

Proof. Theorem 14.2 yields T → B and B → T ; Theorem 13.16 yields T → T ;
Theorem 14.6 yields T → T → B; Theorem 13.19 yields T → T . The final
statements come from Propositions 14.11, 14.13 and 14.14. �

So we get a full equivalence between all objects, but we have left apart the com-
mutation with thresholds property. When we define a set operator T from a
function operator T by the level set extension, we know that T : L → L is upper
semicontinuous and that the commutation with thresholds Xλ(Tu) = T (Xλu)
holds. Conversely, if we define a function operator T as the stack filter of a stan-
dard monotone set T , we do not necessarily have the commutation of thresholds;
this is true only if T is upper semicontinuous on L (see Theorem 13.16) and this
upper semicontinuity property is not always granted for interesting monotone
operators, particularly when they are affine invariant. Fortunately enough, the
commutation with thresholds is “almost” satisfied for any stack filter as we state
in Proposition 14.18 in the next section.

14.4.1 Commutation with thresholds almost everywhere

In this section we always assume the considered sets to belong to M and the con-
sidered functions to be Lebesgue measurable. We say that a set X is contained
in a set Y almost everywhere if

measure(X \ Y ) = 0,

where measure denotes the usual Lebesgue measure in RN . We say that X = Y
almost everywhere if X ⊂ Y and Y ⊂ X almost everywhere. We say that two
functions u and v are almost everywhere equal if measure({x, u(x) 6= v(x)}) = 0.

Lemma 14.16. Let (Xλ)λ∈R be a nonincreasing family of sets of M, that is
Xλ ⊂ Xµ if λ ≥ µ. Then, for almost every λ in R,

Xλ =
⋂

µ<λ

Xµ, almost everywhere. (14.6)
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Proof. Consider an integrable and strictly positive continuous function h ∈
L1(RN ) (for instance, the gaussian.) Set m(X) =

∫

X
h(x)dx. We notice that

m(X) = 0 if and only if measure(X) = 0. The function λ → m(Xλ) is nonin-
creasing. Thus, it has a countable set of jumps. Since every countable set has
zero Lebesgue measure, we deduce that for almost every λ,

lim
µ→λ

m(Xµ) = m(Xλ).

As a consequence, for those λ’s, m(
⋂

µ<λXµ \Xλ) = 0, which implies (14.6).
�

Corollary 14.17. Let (Xλ)λ∈R be a family of measurable subsets of SN such
that Xλ ⊂ Xµ for λ ≥ µ, Xλ = ∅ for λ ≥ λ0, Xλ = SN for λ ≤ µ0. Then the
function u defined on SN by the superposition principle

u(x) = sup{λ | x ∈ Xλ}

is bounded and satisfies for almost every λ, Xλ = Xλu almost everywhere.

Proof. It is easily checked that µ0 ≤ u ≤ λ0. We have

Xλu = {x | sup{µ,x ∈ Xµ} ≥ λ}

Now, if x ∈ Xλ, we have sup{µ | x ∈ Xµ} ≥ λ which implies x ∈ Xλu. Thus,
Xλ ⊂ Xλu. Conversely, let λ be chosen so that Xλ = ∩µ<λXµ almost every-
where. This is by Lemma 14.16 true for almost every λ ∈ R. Then if x ∈ Xλu,
we have by definition of u, x ∈ Xµ for every µ < λ. Thus x ∈ ⋂µ<λXµ. We
conclude that Xλu ⊂ ⋂µ<λ Xµ and therefore Xλu ⊂ Xλ almost everywhere. �

Exercise 14.7. By using Corollary 14.17 show that if two measurable functions u
and v are such that Xλu = Xλv almost everywhere for almost every λ, then u and v
are almost everywhere equal.

Proposition 14.18. Let T : L → M be a standard monotone set operator and
T its stack filter. If u ∈ F then for almost every level λ ∈ R,

Xλ(Tu) = T (Xλ(u)) almost everywhere.

Proof. Since Tu is obtained from the sets T (Xλu) by superposition principle,
this is an immediate consequence of Corollary 14.17. �

14.5 Exercises

Exercise 14.8. It is useful to have a test for B to determine whether or not the oper-
ator T can be expected to be upper semicontinuous on L. Prove that the translation-
invariant monotone operator in Theorem 14.2 defined by a given set B is upper semi-
continuous on L if and only if the following condition holds: If

⋂

n∈N
TXn 6= ∅, then

there is a B ∈ B such that x +B ⊂ ⋂

n∈N
Xn, where x ∈ ⋂n∈N

TXn and (Xn)n∈N is
any nonincreasing sequence in L.
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Exercise 14.9. Suppose that B ⊂ L contains exactly one set. Show that T is u.s.c.
Generalize this to the case where B contains a finite number of sets.

Exercise 14.10. Use Theorem 14.6 and Proposition 14.4 to show that the extrema
killer Ta can be represented as a sup-inf function operator with the structuring elements

Ba = {B | B is compact, connected, meas (B) = a, and 0 ∈ B} ∪ {∞}.

Check that Ba is standard.

Exercise 14.11. Let B = {{x} | x ∈ D(0, 1)}, D(0, 1) = {x | |x| ≤ 1} and consider
the associated set operator T and the associated function operator T , defined on all

measurable sets and functions of R
N by formulas (14.1) and (14.3).

1) Check that Tu(x) = supy∈x+D u(y).

2) Let (qn)n∈N be a countable dense set in R
N and consider u defined by u(x) = 1−1/n

if x = qn and u(x) = 0 otherwise. Show that T X1u 6= X1Tu. The operator T in this
exercise is one of the classic image operators called a dilation. Check that T commutes
with thresholds when its domain of definition is restricted to F and the domain of T
to L. This example shows that this restriction is useful to get a simple theory.

Exercise 14.12. Show the following property used in the proof of Lemma : if h is a
positive continuous integrable function on R

N and if we set m(X) =
∫

X
h(x)dx, then

for every measurable set X, m(X) = 0 if and only if measure(X) = 0.

14.6 Comments and references

The formalism presented in this chapter is due to Matheron [169] in the case
of set operators and to Serra [228] and Maragos [157] in the case of function
operators. Serra’s formalism is actually more general than the one presented
here; it will be developed in Chapter ??, which is about “nonflat” morphology.
Our presentation relating the sup-inf form of the operator directly to contrast
invariance and establishing the full equivalence between sup-inf operators and
contrast-invariant monotone operators is original. The fact, proven in Proposi-
tion 14.18 that commutation with thresholds occurs almost everywhere without
further assumption was proven in [100].

The mysterious “set of structuring elements” has received a great deal of
attention in the literature. Here are a few references: on finding the right set
of structuring elements [218, 240]; on simplifying them [225]; on decomposing
them into simpler ones as one does with linear filters [200, 270, 271]; on reducing
the number [209].
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Chapter 15

Erosions and Dilations

We are going to study in detail two of the simplest operators of mathematical
morphology, the erosions and dilations. In fact, there will be essentially four
operators: two set operators and the two related function operators. These
operators will depend on a scale parameter t. We will also study the underlying
PDEs ∂u/∂t = c|Du|, where c = 1 for dilations and c = −1 for erosions.

15.1 Set and function erosions and dilations

We saw in Chapter 14 that every contrast-invariant monotone function operator
has a sup-inf and an inf-sup representation in terms of some set of structuring
elements. This is the point of view we take here, and furthermore, we assume
that the set of structuring elements B has the simplest possible form, namely,
B = {B}. We actually introduce a parameter t scaling the size ofB and therefore
consider the two operators of the next definition.

Definition 15.1. For u ∈ F , define DtBu = Dtu by

Dtu(x) = sup
y∈tB

u(x − y), (15.1)

the “dilation of u by tB. In the same way, define EtBu = Etu, the “erosion of
u by −tB”, by

Etu(x) = inf
y∈−tB

u(x − y). (15.2)

These function operators have associated set operators.

Definition 15.2. Let B be a non empty subset of RN and let t ≥ 0 be a scale
parameter. The set operators DtB and EtB are defined on subsets X ∈ M(RN)
by

DtBX = DtX = X + tB = {x | ∃b ∈ B,x − tb ∈ X}, (15.3)

EtB = EtX = {x | x + tB ⊂ X}, (15.4)

and extended to M(SN ) by the standard extension (Definition 13.1.) DtX is
called the dilation of X by B at scale t. EtX is called the erosion of X by B at
scale t.

195
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Exercise 15.1. (Duality formulas.) Show that EtBu = −D−tB(−u) and EtBX =
(D−tBX

c)c.

Exercise 15.2. Show that if B is bounded, dilations and erosions are standard mono-
tone operators. Compute their associated set of structuring elements (Proposition
14.2) and check that it is standard.

Theorem 15.3. The function erosion by tB is the stack filter of the set erosion
by tB ; the function dilation by tB is the stack filter of the set dilation by tB
and the commutation with thresholds holds. In other terms for u ∈ F and all λ
in R, and calling Dt the dilation by tB,

Dtu(x) = sup{λ | x ∈ DtXλu}, DtXλu = XλDtu; (15.5)

Etu(x) = sup{λ | x ∈ EtXλu}, EtXλu = XλEtu. (15.6)

Proof. We prove the statement for the dilations, the case of the erosions being
just simpler. Consider someX ∈ L and u(x) ≤ 0 a function vanishing onX only.
By the definition 13.18 of the level set extension D̃t of Dt, D̃t(X) = X0Dt(u).
Thus, using (15.3),

x ∈ D̃t(X) ⇔ (Dtu)(x) = 0 ⇔ sup
y∈−tB

u(x − y) = 0 ⇔

∃y ∈ tB, x − y ∈ X ⇔ x ∈ X + tB ⇔ x ∈ Dt(X).

�

The operators Dt and Et are in a certain sense the inverse of each other. This
is clearly the case, for example, if B = {x0}. Then Dt is just the translation by
tx0, and Et = D−1

t is the translation by −tx0. If B is the open ball centered at
zero with radius one, then DtX is the set of all points whose distance from X
is less than t, or the t-neighborhood of X . When B is symmetric with respect
to zero, the operator DtEt is called an opening at scale t and EtDt is called a
closing at scale t. These names have a topological origin. If B is the open ball
centered at zero with radius one, then the opening at scale t of a set X is the
union of all balls with radius t contained in X . The interior of X is the union
of all open balls contained in X ; it is also the largest open set contained in X .
If we call the interior map T ◦X = X◦ the opening, then an opening at scale t
appears as a quantified opening (see Exercise 15.6). The topological statement
“the closure of the complement of X is the complement of the interior of X”
has its counterpart for openings and closings at scale t, as shown in Exercise
15.6. The actions of erosions and dilations are illustrated in Figures 15.2, 15.2,
and 15.2; actions of openings and closings are illustrated in Figures 15.2, 15.2,
15.2, 15.3, and 15.3.

15.2 Multiscale aspects

We say that the family of dilations {Dt | t > 0} associated with a structuring
element B is recursive if DtDs = Dt+s for all s, t > 0, and similarly for the
family {Et | t > 0}. (A recursive family is also called a semigroup.) Being
recursive is a very desirable property for any family of scaled operators used
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Figure 15.1: Dilation of a set. Left to right: A set; its dilation by a ball of
radius 20; the difference set.

Figure 15.2: Erosion of a set. Left to right: A set; its erosion by a ball of radius
20; the difference set.

Figure 15.3: Opening of a set as curvature threshold from above. Left to right:
A set X ; its opening by a ball of radius 20; the difference set. This opening
transformsX into the union of all balls of radius 20 contained in it. The resulting
operation can be understood as a threshold from above of the curvature of the
set boundary.

for image analysis. Having Dt = (Dt/n)n is useful for practical computations.
{Dt | t > 0} and {Et | t > 0} will be recursive if and only if B is convex, but
before proving this result we need the condition for B to be convex given in the
next lemma. The proof of the next statement is an easy exercise.

Lemma 15.4. B is convex if and only if (s+ t)B = sB + tB for all s, t ≥ 0.

Proposition 15.5. The dilations Dt and the erosions Et are recursive if and
only the structuring element B is convex.
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Figure 15.4: Closing of a set as a curvature threshold from below. Left to right:
A set X ; its closing by a ball of radius 20; the difference set. The closing of X
is just the opening of Xc. It can be viewed as a threshold from below of the
curvature of the set boundary.

Proof. Taking for simplicity B closed, we have

DtDsX = (X + sB) + tB = X + sB + tB

and
Ds+tX = X + (s+ t)B.

If (t+ s)B = tB + sB, then clearly DtDsX = Ds+tX . Conversely, if DtDsX =
Ds+tX , then by takingX = {0} we see that (t+s)B = tB+sB. One can deduce
the corresponding equivalence for erosions from the duality formula (Exercise
15.1). �

15.3 The PDEs associated with erosions and di-
lations

As indicated in the introduction to the chapter, scaled dilations and erosions
are associated with the equations ∂u/∂t = ±|Du|. To explain this connection,
we begin with a bounded convex set B that contains the origin, and we define
the gauge ‖ · ‖B on RN associated with B by ‖x‖B = supy∈B(x · y). If B is a
ball centered at the origin with radius one, then ‖ · ‖B is the usual Euclidean
norm, which we write simply as | · |.

Proposition 15.6. [Hopf–Lax formula [73, 140]]. Assume that B is a bounded
convex set in RN that contains the origin. Given u0 : RN → R, define u :
R+ × RN → R by u(t,x) = Dtu0(x). Then u satisfies the equation

∂u

∂t
= ‖Du‖−B

at each point (t,x) where u has continuous derivatives in t and x. One has an
analogue result with Et and the equation ∂u/∂t = −‖Du‖−B.

Proof. We begin by proving the result for Dt at t = 0. Thus assume that u0

is C1 at x. Then

u0(x − y) − u0(x) = −Du0(x) · y + o(|y|),
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Figure 15.5: Erosion and dilation of a natural image. First row: a sea bird
image and its level lines for all levels multiple of 12. Second row: an erosion
with radius 4 has been applied. On the right, the resulting level lines where the
circular shape of the structuring element (a disk with radius 4) appears around
each local minimum of the original image. Erosion removes local maxima (in
particular, all small white spots) but expands minima. Thus, all dark spots,
like the eye of the bird, are expanded. Third row: the effect of a dilation with
radius 4 and the resulting level lines. We see how local minima are removed (for
example, the eye of the bird) and how white spots on the tail expand. Here, in
turn, circular level lines appear around all local maxima of the original image.

and we have by applying Dh,

u(h,x) − u(0,x) = sup
y∈hB

(−Du0(x) · y + o(|y|)).

Since B is bounded, the term o(|y|) is o(|h|) uniformly for y ∈ hB, and we get

u(h,x) − u(0,x) = h sup
z∈B

((−Du0(x) · z) + o(|h|).
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Figure 15.6: Openings and closings of a natural image. First row: the original
image and its level lines for all levels multiple of 12. Second row: an opening
with radius 4 has been applied. Third row: a closing with radius 4 has been
applied. We can recognize the circular shape of the structuring element in the
level lines displayed on the right.

We can divide both sides by h and pass to the limit as |h| → 0 to obtain

∂u

∂t
(0,x) = ‖Du0(x)‖−B,

which is the result for t = 0. For an arbitrary t > 0, we have Dt+h = DtDh =
DhDt, and we can write

u(t+ h,x) − u(t,x) = Dhu(t, ·)(x) − u(t,x).

By repeating the argument made for t = 0 with u0 replaced with u(t, ·), we
arrive at the general result. The proof for Et is similar. �

Exercise 15.3. Prove the above result for Et.
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Figure 15.7: Denoising based on openings and closings. First row: scanned
picture of the word “operator” with black dots and a black line added; a dilation
with a 2× 5 rectangle; an erosion with the same structuring element applied to
the middle image. The resulting operator is a closing. Small black structures
are removed by such a process. Second row: the word “operator” with a white
line and white dots inside the letters; erosion with a rectangle 2 × 5; a dilation
with the same structuring element applied to the middle image. The resulting
operator is an opening. This time, small white structures are removed.

15.4 Exercises

Exercise 15.4. A straightforward adaptation on a grid Z×Z of the formulas u(t, x) :=
supy∈B(x,t) u0(y) for dilation and u(t, x) := infy∈B(x,t) u0(y) for erosion leads to the
zero-order schemes

un+1(i, j) = sup
(k,l)∈B((i,j),t)∩Z2

un(k, l)

and
un+1(i, j) = inf

(k,l)∈B((i,j),t)∩Z2
un(k, l), u0(i, j) = u0(i, j).

Unfortunately, the zero-order schemes are strongly grid dependent. They do not make
any difference between two balls which contain the same discrete pixels. In particular,
such schemes only permit discrete motions of the shape boundaries. Thus, they are
efficient only when t is large. Section 15.3 suggests that we can implement erosion
and dilations on a finite image grid by more clever numerical schemes. One can try to
discretize the associated PDE’s ∂u/∂t = ±|Du| by the Rouy-Tourin scheme:

un+1
ij =un

ij+∆t
(
max(0, un

i+1,j − un
ij ,u

n
i−1,j−un

ij)
2+max(0, un

i,j+1−un
ij ,u

n
i,j−1−un

ij)
2)

1
2

for dilation and

un+1
ij =un

ij−∆t
(
max(0, un

ij − un
i+1,j ,u

n
ij−un

i−1,j)
2+max(0, un

ij−un
i,j+1,u

n
ij−un

i,j−1)
2
) 1

2

for erosion. In both cases if t = n∆t then un(i, j) is a discrete version of u(t, (i, j)).

1) Explain why the schemes are consistent with their underlying partial differential
equation. Check that with this clever scheme local maxima of un do not go up by
dilation and local minima do not go down by erosion. Show that for example the
following scheme would be a catastrophe at extrema (you’ll have to try it anyway):

un+1
ij =un

ij+∆t
(
max(|un

i+1,j − un
ij |,|un

i−1,j−un
ij |)2+max(|un

i,j+1−un
ij |,|un

i,j−1−un
ij |)2

) 1
2 .

2) Implement the schemes and compare their performance with the discrete zero
order schemes for several shapes and images.

3) Compute on some well-chosen images the “top hat transforms” u − Otu and
Ftu−u. The first transform aims at extracting all structures from an image which are
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Figure 15.8: Examples of denoising based on opening or closing, as in Figure
15.7. Perturbations made with both black and white lines or dots have been
added to the “operator” image. First column, top to bottom: original perturbed
image; erosion with a 1 × 3 rectangle; then dilation with the same structuring
element. (In other words, opening with this rectangle.) Then a dilation is
applied with a rectangle 3 × 1, and finally an erosion with the same rectangle.
Second column: The same process is applied, but with erosions and dilations
exchanging their roles. It does not work so well because closing expands white
perturbations and opening expands black perturbations. These operators do
not commute. See Figure ??, where an application of the median filter is more
successful.

thinner than t and have brightness above the average. The second transform does the
same job for dark structures. These transforms can be successfully applied on aerial
images for extracting roads or rivers, and in many biological applications.

Exercise 15.5. Show that Et(u) = −Dt(−u) if B is symmetric with respect to zero.

Exercise 15.6.

(i) Let B = {x | |x| < 1}. Show that DtEtX is the union of all open balls with
radius t contained in X.

(ii) Let B be any structuring element that is symmetric with respect to zero. Write
Xc = R

N \ X. Show that DtX
c = (EtX)c. Use this to show that EtDtX

c =
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(DtEtX)c.

Exercise 15.7. Prove that the dilation and erosion set operators associated with B
are standard monotone if and only if B is bounded. If B is bounded and isotropic,
prove that the associated erosion and dilation function operators are local Morpho

operators.

15.5 Comments and references

Erosions and dilations. Matheron introduced dilations and erosions as use-
ful tools for set and shape analysis in his fundamental book [169]. A full account
of the properties of dilations, erosions, openings, and closings, both as set op-
erators and function operators, can be found in Serra’s books [228, 230]. We
also suggest the introductory paper by Haralick, Sternberg, and Zhuang [102]
and an earlier paper by Nakagawa and Rosenfeld [192]. An axiomatic algebraic
approach to erosions, dilations, openings, and closings has been developed by
Heijmans and Ronse [106, 212]. We did not develop this algebraic point of view
here. The obvious relations between the dilations and erosions of a set and the
distance function have been exploited numerically in [110], [132], and [234]. The
skeleton of a shape can be defined as the set of points where the distance func-
tion to the shape is singular. A numerical procedure for computing the skeleton
this way is proposed in [133].

The PDEs. The connection between the PDEs ∂u/∂t = ±|Du| and multiscale
dilations and erosions comes from the work of Lax, where it is used to give stable
and efficient numerical schemes for solving the equations [140]. Rouy and Tourin
[213] have shown that the distance function to a shape is a viscosity solution
of 1 − |Du| = 0 with the null boundary condition (Dirichlet condition) on the
boundary of the shape. To define efficient numerical schemes for computing the
distance function, they actually implement the evolution equation ∂u/∂t = 1−
|Du| starting from zero and with the null boundary condition on the boundary of
the shape. The fact that the multiscale dilations and erosions can be computed
using the PDEs ∂u/∂t = ±|Du| has been rediscovered or revived, thirty years
after Lax’s work, by several authors: Alvarez et. al. [7], van den Boomgaard
and Smeulders [249], Maragos [158, 159]. See also [248] for a numerical review.
For an implementation using curve evolution, see [220]. Curiously, the link
between erosions, dilations, and their PDEs seems to have remained unknown
or unexploited until 1992. The erosion and dilation PDEs can be used for shape
thinning, which is a popular way to compute the skeleton. Pasquignon developed
an erosion PDE with adaptive stopping time that allows one to compute directly
a skeleton that does not look like barbed wire [201].
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Chapter 16

Median Filters and
Mathematical Morphology

This entire chapter is devoted to median filters. They are among the most
characteristic and numerically efficient contrast-invariant monotone operators.
The denoising effects of median filters are illustrated in Figures 16.1 and 16.2;
the smoothing effect of a median filter is illustrated in Figure 16.4. They also
are extremely useful in 3D-image or movie denoising.

As usual, there will be two associated operators, a set operator and a function
operator. All of the median operators (or filters) will be defined in terms of a
nonnegative measurable weight function k : RN → [0,+∞) that is normalized:

∫

RN

k(y) dy = 1.

The k-measure of a measurable subset B ⊂ RN is denoted by |B|k and defined
by

|B|k =

∫

B

k(y) dy =

∫

RN

k(y)1B(y) dy.

Clearly, 0 ≤ |B|k ≤ 1. The simplest example for k is given by the function
k = c−1

N (r)1B(0,r), where B(0, r) denotes the ball of radius r centered at the
origin and cN (r) is the Lebesgue measure of B(0, r). Another classical example
to think of is the Gaussian.

16.1 Set and function medians

We first define the set operators, whose form is simpler. We define them on
M(RN ), the set of measurable subsets of RN and then apply the standard
extension to M(SN ) given in Definition 13.1.

Definition 16.1. Let X ∈ M(RN ) and let k be a weight function. The median
set of X weighted by k is defined by

MedkX = {x | |X − x|k ≥ 1
2} (16.1)

205
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and its standard extension to M(SN ) by

MedkX = {x | |X − x|k ≥ 1
2} ∪ (X ∩ {∞}). (16.2)

The extension amounts to add ∞ to MedkX if ∞ belongs to X . Note that
we have already encountered the median operator in Section 7.1. Koenderink
and van Doorn defined the dynamic shape of X at scale t to be the set of x such
that Gt∗1X(x) ≥ 1/2. The dynamic shape is, in our terms, a Gaussian-weighted
median filter.

To gain some intuition about median filters, we suggest considering the
weight k defined on R2 by k = (1/πr2)1B(0,r). Then x ∈ R2 belongs to MedkX
if and only if the Lebesgue measure of X∩B(x, r) is greater than or equal to half
the measure of B(0, r). Thus, x ∈ MedkX if points of X are in the majority
around x.

Lemma 16.2. Medk is a standard monotone operator on M.

Proof. Obviously Medk(∅) = ∅ and Medk(SN ) = SN . By definition, ∞ ∈
MedkX ⇔ ∞ ∈ X . If X is bounded, it is a direct application of Lebesgue
theorem that

|X − x|k =

∫

k(y)1X−x(y)dy → 0 as x → ∞.

Thus |X−x|k < 1
2 for x large enough and MedkX is therefore bounded. In the

same way, if Xc is bounded |X − x|k → 1 as x → ∞ and therefore (MedX)c is
bounded. �

Lemma 16.3. We can represent Medk by

MedkX = {x | x +B ⊂ X, for some B ∈ B}, (16.3)

where B = {B | |B|k ≥ 1
2} or B = {B | |B|k = 1

2}.

Proof. By Lemma 16.2, Medk is standard monotone and it is obviously transla-
tion invariant. So we can apply Theorem 14.2. The canonical set of structuring
elements of Medk is

B = {B | 0 ∈ MedkB} = {B | |B|k ≥ 1

2
}.

The second set B mentioned in the lemma, which we call now for convenience
B′, is a subset of B such that for every B ∈ B, there is some B′ ∈ B′ such that
B′ ⊂ B. Thus by Proposition 14.4, Medk can be defined from B′. �

The next lemma will help defining the function operator Medk associated
with the set operator Medk.

Lemma 16.4. The set operator Medk is translation invariant and upper semi-
continuous on M.
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Proof. The first property is straightforward. Consider a nonincreasing se-
quence (Xn)n∈N in M and let us show that

Medk

⋂

n∈N

Xn =
⋂

n∈N

MedkXn.

Since Medk is monotone, it is always true that Medk

⋂

n∈N
Xn ⊂ ⋂n∈N

MedkXn.
To prove the other inclusion, assume that x ∈ ⋂n∈N

MedkXn. If x ∈ RN , by the
definition of Medk, |Xn−x| ≥ 1/2 for all n ∈ N. Since Xn−x ↓ ⋂n∈N

(Xn−x),
we deduce from Lebesgue Theorem that |Xn − x|k ↓ |⋂n∈N

(Xn − x)|k. This
means that |⋂n∈N

(Xn − x)|k ≥ 1/2, and hence that x ∈ Medk

⋂

n∈N
(Xn − x).

If x = ∞, it belongs to MedkXn for all n and therefore to Xn for all n. Thus,
it belongs to

⋂

n∈N
Xn and therefore to Medk(

⋂

n∈N
Xn). �

Definition 16.5 (and proposition). Define the function operator Medk from
Medk as a stack filter,

Medku(x) = sup{λ | x ∈ MedkXλu}.

Then Medk is standard monotone, contrast invariant and translation invariant
from F to F . Medk and Medk commute with thresholds,

XλMedku = MedkXλu. (16.4)

If k is radial, Medk therefore is Morpho.

Proof. By Lemma 16.4, Medk is upper semicontinuous and by Lemma 16.2
it is standard monotone and translation invariant. So we can apply Theorem
13.16, which yields all announced properties for Medk. �

We get a sup-inf formula for the median as a direct application of Theorem
14.6.

Proposition 16.6. The median operator Medk has the sup-inf representation

Medku(x) = sup
B∈B

inf
y∈x+B

u(y), (16.5)

where B = {B | B ∈ M, |B|k = 1/2}.

A median value is a kind of average, but with quite different results, as is
illustrated in Exercise 16.4.

16.2 Self-dual median filters

The median operator Medk, as defined, is not invariant under “reverse contrast,”
that is, it does not satisfy −Medku = Medk(−u) for all u ∈ F . This is clear
from the example in the next exercise. Self-duality is a conservative requirement
which is true for all linear filters. It means that the white and black balance is
respected by the operator. We have seen that dilations favor whites and erosions
favor black colors: These operators are not self-dual.
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Figure 16.1: Example of denoising with a median filter. Left to right: scanned
picture of the word “operator” with perturbations and noise made with black
or white lines and dots; the image after one application of a median filter with
a circular neighborhood of radius 2; the image after a second application of the
same filter. Compare with the denoising using openings and closings (Figure
15.8).

Exercise 16.1. Consider the one-dimensional median filter with k = 1
2
1[−2,−1]∪[1,2].

Let u(x) = −1 if x ≤ −1, u(x) = 1 if x ≥ 1, u(x) = x elsewhere. Check that
Medku(0) 6= −Med(−u)(0).

As we did with erosions and dilations, one can define a dual version of the
median Med−

k by
Med−

k u = −Medk(−u), so that (16.6)

Med−
k u(x) = inf

|B|k≥ 1
2

sup
y∈x+B

u(y). (16.7)

A quite general condition on k is sufficient to guarantee that Medk and Med−
k

agree on continuous functions.

Definition 16.7. We say that k is not separable if |B|k ≥ 1/2 and |B′|k ≥ 1/2
imply that B ∩B′ 6= ∅.

Proposition 16.8.

(i) For every measurable function u, Medku ≥ Med−
k u.

(ii) Assume that k is not separable. Then for every u ∈ F , Medku = Med−
k u

and Medk is self-dual.

Proof. Both operators are translation invariant, so without loss of generality we
may assume that x = 0. To prove (i), let λ = Medku(0) = sup|B|k≥1/2 infy∈B u(y).
Take ε > 0 and consider the level set Xλ+εu. Then infy∈Xλ+ε

u(y) ≥ λ+ε. Thus
|Xλ+εu|k < 1/2, since infy∈B ≤ λ for any set B such that |B| ≥ 1/2. Thence
|(Xλ+εu)

c|k ≥ 1/2. By the definition of level sets, supy∈(Xλ+εu)c u(y) ≤ λ + ε.
These two last relations imply that

inf
|B|k≥ 1

2

sup
y∈B

u(y) ≤ λ+ ε.

Since ε > 0 was arbitrary, this proves (i).
The assumption that k is not separable implies that for all B and B′ having

k-measure greater than or equal to 1/2, we have infy∈B u(y) ≤ supy∈B′ u(y).

Since u ∈ F is continuous, infy∈B u(y) ≤ supy∈B′ u(y). Since B and B′ were
arbitrary except for the conditions |B|k ≥ 1/2 and |B′|k ≥ 1/2, the last inequal-
ity implies that

sup
|B|k≥ 1

2

inf
y∈B

u(y) ≤ inf
|B′|k≥ 1

2

sup
y∈B′

u(y).
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Figure 16.2: Denoising based on a median filter. Left: an image altered on
40% of its pixels with salt and pepper noise. Right: the same image after three
iterations of a median filter with a 3 × 3 square mask.

From this last inequality and (i), we conclude that Medku = Med−
k u. �

16.2.1 Chessboard dilemma and fattening effect

In Figure 16.2.1, the median filter has been applied iteratively to a function
u whose grid values are equal to 255 at the white pixels and to 0 at the black
pixels. The function is continuous, being (e.g.) interpolated by standard bilinear
interpolation. The iso-level set I127.5u := {x | u(x) = 127.5} consists of the
line segments separating the squares and has therefore zero measure. As we
know, the median filter tends to smooth, to round off the level lines of the
image. Yet we have with a chessboard a fundamental ambiguity : are these
iso-level lines surrounding the black squares, or are they surrounding the white
squares? In other terms, do we see in a chessboard a set of white squares on
black background, or conversely?

Since our operator is self-dual it doesn’t favor any of the considered interpre-
tations: it rounds off simultaneously the lines surrounding the black squares and
the level lines surrounding the white squares (second image of Figure 16.2.1).
This results in the “fattening” of the level lines separating white and black,
which have the mid-level 127.5. Hence the appearance in the second image of
a grey zone separating the smoothed out black and white squares. If we take a
level set XεTu of this image with ε < 0 (third image), the fattened set joins the
level set and we observe black squares on white background. Symmetrically if
ε > 0 the level set shows white squares on black background.

16.3 Discrete median filters and the ”usual” me-
dian value

We define a discrete median filter by considering, instead of a function, a uniform
discrete measure k =

∑

i=1,...,N δxi
, where δxi

denotes the Dirac mass at xi.
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Figure 16.3: The chessboard dilemma. Left: a chessboard image. The next
image is obtained by a self-dual median filter. Notice the expansion of the
median grey level, 127.5, who was invisible in the original image and grows in
the second one. This effect is called “fattening effect”. The third and fourth
image show the evolution of the level sets at levels 127 and 128 respectively.
This experiment illustrates a dilemma as to whether we consider the chessboard
as black squares on white background, or conversely.

We could normalize k, but this is not necessary, as will become clear. Translates
of the points xi create the discrete neighborhood that is used to compute the
median value of a function u at a point x. We denote the set of subsets of
{1, . . . , N} by P(N) and the number of elements in P ∈ P(N) by card(P ).
Since card(P ) = |P |k, we will suppress the k-notation is favor of the more
transparent “card(P ),” but one should remember that the k-measure is still
there. An immediate generalization of the definition of the median filters to the
case where k is such a discrete measure yields

Medu(x) = sup
P∈P(N)

card(P )≥N/2

inf
i∈P

u(x − xi),

Med−u(x) = inf
P∈P(N)

card(P )≥N/2

sup
i∈P

u(x− xi).

When k was continuous, we could replace “|B|k ≥ 1/2” with “|B|k = 1/2,” but
this is not directly possible in the discrete case, since N/2 is not an integer if
N is odd. To fix this, we define the function M by M(N) = N/2 if N is even
and M(N) = (N/2) + (1/2) if N is odd. Now we have

Medu(x) = sup
P∈P(N)

card(P )=M(N)

inf
i∈P

u(x− xi),

Med−u(x) = inf
P∈P(N)

card(P )=M(N)

sup
i∈P

u(x − xi).

The fact that we can replace “card(P ) ≥ N/2” with “card(P ) = M(N)”
has been argued elsewhere for the continuous case; for the discrete case, it is a
matter of simple combinatorics. Given any x, let yi = u(x−xi). After a suitable
permutation of the i’s, we can order the yi as follows: y1 ≤, · · · ,≤ yM ≤, · · · ≤
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yN . Then for N even,

{ inf
i∈P

yi | card(P ) ≥ N/2} = { inf
i∈P

yi | card(P ) = M} = {y1, . . . , yM+1},

{sup
i∈P

yi | card(P ) ≥ N/2} = {sup
i∈P

yi | card(P ) = M} = {yM , . . . , yN},

and Medu(x) = yM+1 ≥ yM = Med−u(x). If N is odd, we have

{ inf
i∈P

yi | card(P ) ≥ N/2} = { inf
i∈P

yi | card(P ) = M} = {y1, . . . , yM},

{sup
i∈P

yi | card(P ) ≥ N/2} = {sup
i∈P

yi | card(P ) = M} = {yM , . . . , yN},

and Medu(x) = Med−u(x) = yM . This shows that Med = Med− if and only ifN
is odd. What we see here is the discrete version of Proposition 16.8. When N is
odd, the measure is not separable, since two sets P and P ′ with card(P ) ≥ N/2
and card(P ′) ≥ N/2 always have a nonempty intersection. In general, a median
filter with an odd number of pixels is preferred, since Med = Med− in this case.

This discussion shows that the definition of the discrete median filter Med
corresponds to the usual statistical definition of the median of a set of data: If
the given data consists of the numbers y1 ≤ y2 ≤ · · · ≤ yN andN = 2n+1, them
by definition, the median is yn+1. In case N = 2n, the median is (yn + yn+1)/2.
In both cases, half of the terms are greater than or equal to the median and half
of the terms are less than or equal to the median. The usual median minimizes
the functional

∑N
i=1 |yi − y|. Exercise 16.9 shows how Med and Med− relate to

this functional.
Finally, we wish to show that the discrete median filter Med can be a cyclic

operator on discrete images. As a simple example, consider the chessboard
image, where u(i, j) = 255 if i + j is even and u(i, j) = 0 otherwise. When we
apply the median filter that takes the median of the four values surrounding
a pixel and the pixel value, it is clear that the filter “reverses” the chessboard
pattern. Indeed, any white pixel (value 255) is surrounded by four black pixels
(value zero), so the median filter transforms the white pixel into a black pixel.
In the same way, a black pixel is transformed into a white pixel and this can go
for ever.

16.4 Exercises

Exercise 16.2. Check that Medk as defined in Definition 16.1 is monotone and
translation invariant.

Exercise 16.3. Koenderink and van Doorn defined the dynamic shape of X at scale t
to be the set of x such that Gt ∗1X(x) ≥ 1/2. Check that this is a Gaussian-weighted
median filter.

Exercise 16.4. Consider the weighted median filter defined on S1 with k = (1/2)1[−1,1].
Compute Medku for u(x) = 1

1+x2 . Compare the result with the local averageM1u(x) =
1
2

∫ 1

−1
u(x+ y)dy. What happens on intervals where u is monotone?

Exercise 16.5. Saying that k is not separable is a fairly weak assumption. It cor-
responds roughly to saying that the support of k cannot be split into two disjoint
connected components each having k-measure 1/2. Show that if k is continuous and
if its support is connected, then it is not separable.
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Exercise 16.6. Prove the following inequalities for any measurable function :

sup
|B|k≥ 1

2

inf
y∈x+B

u(y) ≥ sup
|B|k> 1

2

inf
y∈x+B

u(y) ≥ inf
|B|k≥ 1

2

sup
y∈x+B

u(y),

sup
|B|k≥ 1

2

inf
y∈x+B

u(y) ≥ inf
|B|k> 1

2

sup
y∈x+B

u(y) ≥ inf
|B|k≥ 1

2

sup
y∈x+B

u(y).

Exercise 16.7. Median filter on measurable sets and functions. The aim of
the exercise is to study the properties of the median filter extended to the set M of
all measurable sets of SN and all bounded measurable functions (u ∈ L∞(SN)). The
definition of Medk on M is identical to the current definition.

1) Using the result of Exercise 13.20, show that one can define Medk from Medk as
a stack filter and that it is monotone, translation and contrast invariant. In addition,
Medk and Medk still satisfy the commutation with thresholds, XλMedku = MedkXλu.

2) Prove that Medk maps measurable sets into closed sets. Deduce that if u is a
measurable function, then Medku is upper semicontinuous and Med−

k u is lower semi-
continuous.

3) Assume that k is not separable. Check that the proof of Proposition 16.8 still applies
to the more general Medk and Med−

k , applied to all measurable functions. Deduce that
if k is not separable, then Medku is continuous whenever u is a measurable function.

Exercise 16.8. The discrete median filters can more generally be defined in terms of a
nonuniform measure k that places different weights ki on the points xi, so |{xi}|k = ki.
Check that Med−

k u ≤ Medku. Prove that Med−
k u = Medku if and only if there is no

subset of the numbers k1, . . . , kN whose sum is K/2. In particular, if the ki are integers
and K is odd, then Med−

k u = Medku.

Exercise 16.9. Variational interpretations of the median and the average

values.
Let arginfmg(m) denote the value ofm, if it exists, at which g attains its infimum. Con-
sider N real numbers {xi | i = 1, 2, . . . , N} and denote by Med((xi)i) and Med−((xi)i)
their usual lower and upper median values (we already know that both are equal if N
is odd but can be different if N is even).

(i) Show that

1

N

N∑

i=1

xi = arginfm

N∑

i=1

(xi −m)2.

(ii) Show that

Med−((xi)i) ≤ arginfm

N∑

i=1

|xi −m| ≤ Med((xi)i).

(iii) Let k = 1B , where B is set with Lebesgue measure equal to one. Let MedBu
denote the median value of u in B, defined by MedBu = Medku(0). Consider a
bounded measurable function u defined on B. Show that

∫

B

u(x) dx = arginfm

∫

B

(u(x) −m)2 dx

and that

Med−
Bu ≤ arginfm

∫

B

|u(x) −m|dx =
Med−

Bu+ MedBu

2
≤ MedBu.

(iv) Deduce from the above that the mean value is the best constant approximation
in the L2 norm and that the median is the best constant approximation in the
L1 norm.
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Figure 16.4: Smoothing effect of a median filter on level lines. Above, left
to right: original image; all of its level lines (boundaries of level sets) with
levels multiple of 12; level lines at level 100. Below,left to right: result of two
iterations of a median filter with a disk with radius 2; corresponding level lines
(levels multiple of 12); level lines at level 100.

16.5 Comments and references

The remarkable denoising properties and numerical efficiency of median filters
for the removal of all kinds of impulse noise in digital images, movies, and video
signals are well known and acclaimed [66, 117, 193, 202, 207]. The last reference
cited as well as the next three all propose simple and efficient implementations
of the median filter [19, 64, 111]. An introduction to weighted median filters can
be found in [35, 266], and information about some generalizations (conditional
median filters, for example) can be found in [16, 142, 239]. The min, max, and
median filters are particular instances of rank order filters; see [60] for a general
presentation of these filters. There are few studies on iterated median filters.
The use of iterated median filters as a scale space is, however, proposed in [23].
The extension of median filtering to multichannel (color) images is problematic,
although there have been some interesting attempts [50, 208].
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Chapter 17

Curves and Curvatures

This chapter contains the fundamentals of differential geometry that are used in
the book. Our main aim is to define the orientation and curvatures of a curve
or a surface as the main contrast invariant differential operators we shall deal
with in image and curve smoothing.

17.1 Tangent, normal, and curvature

We summarize in this section the concepts and results about smooth curves that
are needed in this chapter and elsewhere in the book. The curves we considered
will always be plane curves.

Definition 17.1. We call simple arc or Jordan arc the image Γ of a continuous
one-to-one function x : [0, 1] → R2, x(t) = (x(t), y(t)). We say that Γ is a
simple closed curve or Jordan curve if the mapping restricted to (0, 1) is one-
to-one and if x(0) = x(1). If x is continuously differentiable on [0, 1], we define
the arc length of the segment of the curve between x(t0) and x(t) by

L(x, t0, t) =

∫ t

t0

|x′(τ)| dτ =

∫ t

t0

√

x′(τ) · x′(τ) dτ. (17.1)

In particular, set

L(t) = L(x, 0, t) =

∫ t

0

|x′(τ)| dτ =

∫ t

0

√

x′(τ) · x′(τ) dτ.

The curves we deal with will always be smooth. Now, we want the definition
of “smoothness” to describe an intrinsic property of Γ rather than a property
of some parameterization x(s) of Γ. If a function x representing Γ is C1, then
the function L in equation (17.1) has a derivative with respect to s,

L′(t) = |x′(t)|

that is continuous. Nevertheless, the curve itself may not conform to our idea of
being smooth, which at a minimum requires a tangent at every point y ∈ Γ. For
example, the motion of a point on the boundary of a unit disk as it rolls along
the x-axis is described by x(t) = (t − sin t, 1 − cos t), which is a C∞ function.

217
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Nevertheless, the curve has cusps at all multiples of 2π. The problem is that
x′(2kπ) = 0.

Definition 17.2. We say that a curve Γ admits an arc-length parameterization
s ∈ R 7→ x(s) if the function x is C1 and L′(s) = |x′(s)| = 1 for all s. In case
Γ is closed, we identify [0, l(Γ)] algebraically with the circle group by adding
elements of [0, l(Γ)] modulo l(Γ). We say that Γ is Cm, m ∈ N, m ≥ 1, if the
arc-length parameterization x is a Cm function.

Exercise 17.1. The aim of the exercise is to give a formula transforming a C1 pa-
rameterization t ∈ [0, 1] → x(t) such that |x′(t)| 6= 0 for all t into an arc-length
parameterization. Notice that L : [0, 1] → [0, L(1)] is increasing. Set, for s ∈ [0, L(1)],
x̃(s) = x(L−1(s)) and check that x̃ is an arc-length parameterization of the curve
defined by x.

An arc-length parameterization is also called a Euclidean parameterization.
If a Jordan curve has an arc-length parameterization x, then the domain of
definition of x on the real line must be an interval [a, b], where b − a is the
length of Γ, which we denote by l(Γ). In this case, we will always take [0, l(Γ)]
as the domain of definition of x.

Definition 17.3. Assume that Γ is C2 and let s 7→ x(s) be an arc-length pa-
rameterization. The tangent vector τ is defined as τ (s) = x′(s). The curvature
vector of the curve Γ is defined by κ(s) = x′′(s). The normal vector n(s) is
defined by n(s) = τ⊥, where (x, y)⊥ = (−y, x).

One can easily describe all Euclidean parameterizations of a Jordan curve.

Proposition 17.4. Suppose that Γ is a C1 Jordan curve with arc-length pa-
rameterization x : [0, l(Γ)] → Γ. Then any other arc-length parameterization
y : [0, l(Γ)] → Γ is of the form y(s) = x(s + σ) or y(s) = x(−s + σ) for some
σ ∈ [0, l(Γ)].

Proof. Denote by C the interval [0, l(Γ)], defined as an additive subgroup of R

modulo l(Γ). Let x, y : C 7→ Γ be two length preserving parameterizations of
Γ. Then f = x ◦ y−1 is a length preserving bijection of C. Using the parame-
terization of C, this implies f(s) = ±s+ σ for some σ ∈ [0, l(Γ)] and the proof
is easily concluded. (See exercise 17.7 for some more details.) �

Proposition 17.5. Let Γ be a C2 Jordan curve, and let x and y by any two
arc-length parameterizations of Γ.

(i) If x(s) = y(t), then x′(s) = ±y′(t).

(ii) The vector κ is independent of the choice of arc-length parameterizations
and it is orthogonal to τ = x′.

Proof. By Proposition 17.4, y(s) = x(±s+σ) and (i) follows by differentiation.
This is also geometrically obvious: x′(s) and y′(t) are unit vectors tangent to Γ
at the same point. Thus, they either point in the same direction or they point
in opposite directions.
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Using any of the above representations and differentiating twice shows that
x′′ = y′′. Since x′ ·x′ = 1, differentiating this expression shows that x′′ ·x′ = 0.
Thus, x′′ and x′ are orthogonal and x′′ and x′⊥ are collinear. �

It will be convenient to have a flexible notation for the curvature in the
different contexts we will use it. This is the object of the next definition.

Definition 17.6 (and notation). Given a C2 curve Γ, which is parameterized
by length as s 7→ x(s) and x = x(s) a point of Γ, we denote in three equivalent
ways the curvature of Γ at x = x(s),

κ(x) = κ(x(s)) = κ(s) = x′′(s).

In the first notation, κ is the curvature of the curve Γ at a point x implicitly
supposed to belong Γ. In the second notation a particular parameterization of
Γ, x(s), is being used. In the third one, x is omitted.

The above notations create no ambiguity or contradiction, since by Propo-
sition 17.5 the curvature is independent of the Euclidean parameterization. Of
course, a smooth Jordan curve is locally a graph. More specifically:

Proposition 17.7. A C1 Jordan arc Γ can be represented around each one of
its points x0 as the graph of a C1 scalar function y = f(x) such that x0 =
(0, f(0)) = (0, 0), f ′(0) = 0, and

κ(x0) = (0, f ′′(0)). (17.2)

Conversely, the graph of any C1 function f is a C1 Jordan arc. If f is C2

the curvature of its associated Jordan curve satisfies (17.2) at each point where
f ′(0) = 0.

Proof. Assume we are given a C1 Jordan arc Γ and an arc-length parame-
terization c in a neighborhood of x0 = c(s0) ∈ Γ. We assume, without loss
of generality, that s0 = 0. Then we can establish a local coordinate system
with origin x0 and based on the two unit vectors c′(0) and c′(0)⊥ where the
x-axis is positive in the direction of c′(0). If we write c(s) = (x(s), y(s)) in this
coordinate system, then

x(s) = c(s) · c′(0),

y(s) = c(s) · c′(0)⊥.

Since dx/ds(s) = c′(s) ·c′(0), dx/ds(0) = 1. Then the inverse function theorem
implies the existence of a C1 function g and a δ > 0 such that s = g(x) for
|x| < δ. This means that, for |x| < δ, Γ is represented locally by the graph
of the C1 function f(x) = y(g(x)) = c(g(x)) · c′(0)⊥. To be slightly more
precise, denote the graph of f for |x| < δ by Γf . Since g is one-to-one, Γf is a
homeomorphic image of the open interval (−δ, δ) and Γf ⊂ Γ. If Γ is C2, then
f is C2 and f ′′(0) = c′′(0) · c′(0)⊥. Thus, on the local coordinate system, the
coordinates of c′′(0) = κ(x0) are (0, f ′′(0)).

Conversely, given a C1 function f , we can consider the graph Γf of f in a
neighborhood of the origin. Then Γf is represented by c, where c(x) = (x, f(x)).
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We may assume that f(0) = 0 and f ′(0) = 0 (by a translation and rotation if
necessary). The arc-length along Γ is measured by

s(x) =

∫ x

0

√

1 + [f ′(t)]2 dt,

and s′(x) =
√

1 + [f ′(x)]2, so that s′(0) = 1. This time there is a C1 function
h such that h(s) = x and h′(s) = (1 + [f ′(h(s))]2)−1/2. Then Γ is represented
by c̃(s) = (h(s), f(h(s))). Short computations show that |c̃′(s)| = 1. If in ad-
dition f is C2, then Γ is C2 and it is an easy check that c̃′′(0)· c̃′(0)⊥ = f ′′(0). �

Exercise 17.2. Make the above “short computations” and the “easy check”.

17.2 The structure of the set of level lines

We saw in Chapter 11 how an image can be represented by its level sets. The
next step, with a view toward shape analysis, is the representation of an image
in terms of its level lines. We rely heavily on the implicit function theorem
to develop this representation. We begin with a two-dimensional version. The
statement here is just a slight variation on the implicit function theorem quoted
in section 1.

Theorem 17.8. Let u ∈ F be a C1 function such that Du(x0) 6= 0 at some
x0 = (x0, y0). Let i denote the unit vector in the direction (ux, uy), let j denote
the unit vector in the orthogonal direction (−uy, ux), and write x = x0+xi+yj.
Then there is a disk D(x0, r) and a unique C1 function ϕ, ϕ : [−r, r] → R, such
that if x ∈ D(x0, r), then

u(x, y) = u(x0) ⇐⇒ x = ϕ(y).

The following corollary is a global version of this local result.

Corollary 17.9. Assume that u ∈ F is C1 and let u−1(λ) = {x | u(x) = λ}
for λ ∈ R. If λ 6= u(∞) and Du(x) 6= 0 for all x ∈ u−1(λ), then u−1(λ) is a
finite union of disjoint Jordan curves.

Proof. From Theorem 17.8 we know that for each point x ∈ u−1(λ) there is an
open disk D(x, r(x)) such that D(x, r(x))∩u−1(λ) is a C1 Jordan arc x(s) and
we can take the endpoints of the arc on ∂D(x, r(x)). Since λ 6= u(∞), u−1(λ)
is compact. Thus there is a finite number of points xi, i = 1, . . . ,m, such that
u−1(λ) ⊂ ⋃m

i=1D(xi, r(xi)). This implies that u−1(λ) is a finite union of Jordan
arcs which we can parameterize by length. The rest of the proof is very intuitive
and is left to the reader. I consists of iteratively gluing the Jordan arcs until
they close up into one or several Jordan curves. �

The next theorem is one of the few results that we are going to quote rather
than prove, as we have done with the implicit function theorem.

Theorem 17.10 (Sard’s theorem). Let u ∈ F ∩ C1. Then for almost every
λ in the range of u, the set u−1(λ) is nonsingular, which means that for all
x ∈ u−1(λ), Du(x) 6= 0.
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Figure 17.1: Level lines as representatives of the shapes present in an image.
Left: noisy binary image with two apparent shapes; right: the two longest level
lines.

As a direct consequence of Sard’s Theorem and Corollary 17.9, we obtain:

Corollary 17.11. Let u ∈ F ∩C1. Then for almost every λ in the range of u,
the set u−1(λ) is the union of a finite set of disjoint simple closed C1 curves.

The sole purpose of the next proposition is to convince the reader that the
level lines of a function provide a faithful representation of the function.

Proposition 17.12. Let u ∈ F ∩ C1. Then u can be reconstructed from the
following data: the family of all of its level lines at nonsingular levels, the level
of each level line being also kept.

Proof. Let G be the closure of the union of the ranges of all level lines of u at
nonsingular levels. If x ∈ G, then there are points xn belonging to level lines of
some levels λn such that xn → x. As a consequence, λn = u(xn) → u(x). So
we get back the value of u(x).
Let now x belong to the open set Gc. Let us first prove that Du(x) = 0. Assume
by contradiction that Du(x) 6= 0. By using the first order Taylor expansion of
u around x, one sees that for all r > 0 the connected range u(B(x, r)) must
contain some interval (u(x) − α(r), u(x) + α(r)) with α(r) → 0 as r → 0. By
Sard’s theorem some of the values in this interval are nonsingular. Thus we can
find nonsingular levels λn → u(x) and points xn → x such that u(xn) = λn.
This implies that x ∈ G and yields a contradiction.
Thus Du(x) = 0 on Gc and u is therefore constant on each connected compo-
nent A of Gc. The value of u is then uniquely determined by the value of u on
the boundary of A. This value is known, since ∂A is contained in G. �
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Figure 17.2: Level lines as a complete representation of the shapes present in an
image. All level lines of the image of a sea bird for levels that are multiples of
12 are displayed. Notice that we do not need a previous smoothing to visualize
the shape structures in an image: It is sufficient to quantize the displayed levels.

17.3 Curvature of the level lines

The intrinsic local coordinates

We continue to work in R
2. Consider a real-valued function u that is twice con-

tinuously differentiable in a neighborhood of x0 ∈ R2. To simplify the notation,
we will often write Du rather than Du(x0), and so on.

Definition 17.13. If Du = (ux, uy) 6= 0, then we establish a local coordinate

system by letting i = Du/|Du| and j = Du⊥/|Du|, where Du⊥ = (−uy, ux).
Thus, for a point x near x0, we write x = x0 +xi+yj and the local coordinates
of x are (x, y). (See Figure 17.3.) Without risk of ambiguity we shall write
u(x, y) for u(x) = u(x0 + xi + yj).

Since u is C2, we can use Taylor’s formula to express u in this coordinate
system in a neighborhood of x0.

u(x) = u(x, y) = u(x0) + px+ ax2 + by2 + cxy +O(|x|3), (17.3)

where p = ux(0, 0) = |Du(x0)| > 0 and

a =
1

2

∂2u

∂x2
(0, 0) =

1

2
D2u

( Du

|Du| ,
Du

|Du|
)

(x0),

b =
1

2

∂2u

∂y2
(0, 0) =

1

2
D2u

(Du⊥

|Du| ,
Du⊥

|Du|
)

(x0),

c =
∂2u

∂x∂y
(0, 0) = D2u

(Du⊥

|Du| ,
Du

|Du|
)

(x0).

(17.4)

Exercise 17.3. Check the three above formulas.

The implicit function theorem 17.8 ensures that in a neighborhood of x0 the
set {x | u(x) = u(x0)} is a C2 graph whose equation can be written in the
local coordinates x = ϕ(y), where ϕ is a C2 function in an interval I containing
y = 0. In this interval, we have u(ϕ(y), y) = u(x0). Differentiating this shows
that uxϕ

′ + uy = 0 for y ∈ I. Since |Du(x0)| = ux(0, 0) and uy(0, 0) = 0
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x= (y)
ϕ
j 


Du/|Du| = i


Figure 17.3: Intrinsic coordinates. Note that ϕ′′(0) > 0, so b < 0.

in our coordinate system, we obtain ϕ′(0) = 0. A second differentiation of
ux(ϕ(y), y)ϕ′ + uy(ϕ(y), y) = 0 yields

(uxxϕ
′ + uxy)ϕ′ + uxϕ

′′ + uyxϕ
′ + uyy = 0.

Since ϕ′(0) = 0, we obtain ϕ′′(0) = −uyy(0, 0)/ux(0, 0). Using the notation of
(17.4), one obtains

ϕ(y) = − b

p
y2 + o(y2). (17.5)

Equation (17.5) is the representation of the level line {x | u(x) = u(x0)} in
the intrinsic coordinates at x0. Let us set |2b/p| = 1/R. If the curve is a circle,
R is the radius of this circle. More generally R is called radius of the osculatory
circle to the curve. See exercise 17.11.

We are now going to do another simple computation to determine the cur-
vature vector of the Jordan arc c defined by c(y) = x0 + ϕ(y)i + yj near
y = 0. Recall that we denote the curvature of a curve c by κ(c) and the value
of this function at a point c(y) by κ(c)(y).) Since in the local coordinates
c′(y) = (ϕ′(y), 1) and c′′(y) = (ϕ′′(y), 0), at y = 0, we have c′(0) = (0, 1) and
c′′(0) = (ϕ′′(0), 0), so that c′′(0) · c′(0) = 0. Using this and the expression of
the curvature in local graph coordinates (17.2) yields

κ(c)(0) = (ϕ′′(0), 0) = ϕ′′(0)
Du

|Du| (x0).

We now use (17.5) and (17.4) to write the last expression as

κ(c)(0) = − 1

|Du|D
2u
(Du⊥

|Du| ,
Du⊥

|Du|
) Du

|Du|(x0) (17.6)

This tells us that the vectors κ(c)(0) and Du(0) are collinear. Equation (17.6)
also leads to the following definition and lemma introducing a scalar curvature.

Definition 17.14. Let u be a real-valued function that is C2 in a neighborhood
of a point x ∈ R2 and assume that Du(x) 6= 0. The curvature of u at x, denoted
by curv(u)(x), is the real number defined in the local coordinates at x by

1

|Du|3D
2u(Du⊥, Du⊥)(x) =

uxxu
2
y − 2uxyuxuy + uyyu

2
x

(u2
x + u2

y)3/2
(0, 0). (17.7)



i

i

224 CHAPTER 17. CURVES AND CURVATURES

Exercise 17.4. Check the above identity.

Lemma 17.15. Assume that u : R
2 → R is C2 in a neighborhood of a point

x0 and assume that Du(x0) 6= 0. Let N = N(x0) be a neighborhood of x0 in
which the iso-level set of u, {x | u(x) = u(x0)}, is a simple C2 arc, which we
still denote by x = x(s). Then at every point x of this arc,

κ(x) = −curv(u)(x)
Du

|Du| (x). (17.8)

Proof. This is an immediate consequence of (17.6) and (17.7). We need only
remark that, given the hypotheses of the lemma, there is a neighborhood N of
x0 such that Du(x) 6= 0 for x ∈ N and such that {x | u(x) = u(x0)} is a simple
C2 arc for x ∈ N . Then the argument we made to derive (17.6) holds for any
point x ∈ N ∩ {x | u(x) = u(x0)}. �

The next exercise proposes as a sanity check a verification that the curvature
thus defined is contrast invariant and rotation invariant.

Exercise 17.5. Use equation (17.7) to show that

curv(u) =
∂

∂x

( Du

|Du|
)

+
∂

∂y

( Du

|Du|
)

= div
( Du

|Du|
)

. (17.9)

Use this last relation to show that curv(g(u)) = curv(u) if g is any C2 function g : R →
R such that g′(x) > 0 for all x ∈ R. What happens if g′(x) < 0 for all x ∈ R? Show that
curv(U) = curv(u), where U(s, t) = u(x, y) and x = s cos θ−t sin θ, y = s sin θ+t cos θ.
Check that curv(−u) = −curv(u) and give a geometric interpretation to this relation.

Before leaving this section, we wish to emphasize geometric aspects of the
functions we have introduced. Perhaps the most important fact is that the
curvature of a C2 Jordan arc Γ is an intrinsic property of Γ; it does not depend
on the parameterization. If x is a point on Γ, then the curvature vector κ(x)
points toward the center of the osculating circle. Furthermore, 1/|κ(x)| is the
radius of this circle, so when |κ(x)| is large, the osculating circle is small, and
the curve is ”turning a sharp corner.”

If Du(x) 6= 0, then the vector Du(x) points in the direction of greatest
increase, or steepest ascent, of u at x: Following the gradient leads uphill.
The function curv(u) does not have such a clear geometric interpretation, and
it is perhaps best thought of in terms of equation (17.8): curv(u)(x) is the
coefficient of −Du(x)/|Du(x)| that yields the curvature vector κ(x) of the level
curve through the point x. We cannot over emphasize the importance of the
two operators curv and Curv for the theories that follow. In addition to (17.8),
a further relation between these operators is shown in Proposition 18.8, and it
is this result that connects function smoothing with curve smoothing.

17.4 The principal curvatures of a level surface

We saw in Exercise 17.5 that curv(u) was contrast invariant. This idea will be
generalized to RN by introducing other differential operators that are contrast
invariant. These operators will be functions of the principal curvatures of the
level surfaces of u. For z ∈ RN , z⊥ will denote the hyperplane {y | z · y = 0}
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that is orthogonal to z. (There should be no confusion with this notation and
the same notation for z ∈ R2. In R2, z⊥ is a vector orthogonal to z, and the
corresponding “hyperplane” is the line {tz⊥ | t ∈ R}.)

Proposition 17.16. Assume that u : RN → R is C2 in a neighborhood of a
point x0 and assume that Du(x0) 6= 0. Let g : R → R be a C2 contrast change
such that g′(s) > 0 for all s ∈ R. Then Dg(u(x0)) = g′(u(x0))Du(x0), and
D̃2g(u(x0)) = g′(u(x0))D̃

2u(x0), where D̃2u(x0) denotes the restriction of the
quadratic form D2u(x0) to the hyperplane Du(x0)

⊥. This means, in particular,
that (1/|Du(x0)|)D̃2u(x0) is invariant under such a contrast change.

Proof. To simplify the notation, we will suppress the argument x0; thus, we
write Du for Du(x0), and so on. We use the notation y⊗y, y ∈ RN , to denote
the linear mapping y ⊗ y : RN → RN defined by (y ⊗ y)(x) = (x · y)y. The
range of y ⊗ y is the one-dimensional space Ry.

An application of the chain rule shows that Dg(u) = g′(u)Du. This im-
plies that Du⊥ = Dg(u)⊥. (Recall that g′(s) > 0 for all s ∈ R.) A second
differentiation shows that

D2g(u) = g′′(u)Du ⊗Du+ g′(u)D2u.

If y ∈ Du⊥, then (Du ⊗Du)(y) = 0 and D2g(u)(y,y) = g′(u)D2u(y,y). This
means that D2g(u) = g′(u)D2u on Du⊥ = Dg(u)⊥, which proves the result. �

Exercise 17.6. Taking euclidian coordinates, give the matrix of y ⊗ y. Check the
above differentiations.

We are now going to define locally the level surface of a smooth function
u, and for this we quote one more version of the implicit function theorem, in
arbitrary dimension N .

Theorem 17.17 (Implicit function theorem). Assume that u : RN → R

is Cm in the neighborhood of x0 and assume that Du(x0) 6= 0. Write x =
x0 +y+ zi, where i = Du(x0)/|Du(x0)| and y ∈ Du(x0)

⊥. Then there exists a
ball B(x0, ρ) and a unique real-valued Cm function ϕ defined on B(x0, ρ)∩ {x |
x = x0 + y, i · y = 0} such that for every x ∈ B(x0, ρ)

u(x) = u(x0) ⇐⇒ ϕ(y) = z.

In other words, the equation ϕ(y) = z describes the set {x | u(x) = u(x0)}
near x0 as the graph of a Cm function ϕ. Thus, locally we have a surface passing
through x0 that we call the level surface of u around x0.

We are going to use Proposition 17.16 and Theorem 17.17, first, to give a
simple intrinsic representation for the level surface of a function u around a
point x0 and, second, to relate the eigenvalues of the quadratic form introduced
in Proposition 17.16 to the curvatures of lines drawn on the level surface of u.

Proposition 17.18. Assume that u : RN → R is C2 in a neighborhood of
x0 ∈ RN and that p = Du(x0) 6= 0. Denote the eigenvalues of the restriction of
the quadratic form D2u(x0) to the hyperplane Du(x0)

⊥ by µ1, . . . , µN−1. Let
iN = Du(x0)/|Du(x0)| and select i1, . . . , iN−1 so they form an orthonormal
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basis of eigenvectors of the restriction of D2u(x0) to Du(x0)
⊥. Write x = x0+z,

where z = x1i1 + · · · + xN iN = y + xN iN . Then if |z| is sufficiently small, the
function ϕ(y) = xN that solves the equation u(y, ϕ(y)) = u(x0) can be expressed
locally as

xN =
−1

2p

N−1∑

i=1

µix
2
i + o(|y|2).

Proof. Assume, without loss of generality, that x0 = 0 and that u(0) = 0.
Using the notation of Theorem 17.17, for x ∈ B(0, ρ), u(y, xN ) = 0 if and
only if ϕ(y) = xN , and ϕ is C2 in B(0, ρ). Furthermore, by differentiating the
expression u(y, ϕ(y)) = 0, we see that uxi + uxNϕxi = 0, i = 1, . . . , N − 1 for
|x| < ρ. In particular, uxi(0)+uxN (0)ϕxi(0) = 0. In the local coordinate system
we have chosen, |Du(0)| = |uxN (0)|, and since Du(0) 6= 0, we conclude that
uxi(0) = 0 for i = 1, . . . , N − 1 and hence that ϕxi(0) = 0 for i = 1, . . . , N − 1.
This means that the local expansion of ϕ has the form

ϕ(y) =
1

2
D2ϕ(0)(y,y) + o(|y|2).

Now differentiate the relation uxi + uxNϕxi = 0 again to obtain

uxixj + uxixNϕxj + (uxN xj + uxN xNϕxj )ϕxi + uxNϕxixj = 0.

Since we have just shown that ϕxi(0) = 0 for i = 1, . . . , N − 1, we see from
this last expression that D̃2u(0)+ pD̃2ϕ(0) = 0, where p = uxN (0) and D̃2u(0),
D̃2ϕ(0) are the restrictions of the quadratic forms D2u(0) and D2ϕ(0) to the
hyperplane Du(0)⊥. Thus we have

xN =
−1

2p
D2u(0)(y,y) + o(|y|2). (17.10)

Recall that y ∈ Du(0)⊥ and that y = x1i1 + · · · + xN−1iN−1, where the ii are
an orthonormal basis of eigenvectors of D2(0) restricted to Du(0)⊥. Thus,

xN =
−1

2p

N−1∑

i=1

µix
2
i + o(|y|2),

which is what we wished to prove. �

This formula reads

x2 =
−1

2p
µ1x

2
1 + o(|x1|2)

if N = 2, which is just equation (17.5) with different notation. Thus, µ1 =
|Du|curv(u), confirming that µ1 = ∂2u/∂x2

1. We are now going to use our two-
dimensional analysis to give a further interpretation of the eigenvalues µi for
N > 2. We begin by considering the curve Γν defined by the two equations
x = x0 + tν + xN iN and ϕ(tν) = xN , where ν is a unit vector in Du(x0)

⊥.
Their solution in the local coordinates is ϕ(tν) = xN , whenever t ∈ R is small.
Thus, Γν is a curve passing by x0, drawn on the level surface of u and projecting
into a straight line of Du⊥. By (17.10) its equation is

xN = ϕ(tν) =
−1

2|Du(x0)|
D2u(x0)(ν,ν)t2 + o(t2),
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and its normal at x0 is Du(x0)
|Du(x0)| . Thus the curvature vector of Γν at x0 is

κ(Γν)(x0) =
−1

|Du(x0)|
D2u(x0)(ν,ν)

Du(x0)

|Du(x0)|
.

By defining κν = |Du(x0)|−1D2u(x0)(ν,ν), we have

κ(Γν)(x0) = −κν

Du(x0)

|Du(x0)|
,

which has the same form as equation (17.8). So the modulus of κν is equal
to the modulus of the curvature of Γν at x0. This leads us to call principal
curvatures of the level surface of u at x0 the numbers κν obtained by letting
ν = ij, j = 1, . . . , N − 1, where the unit vectors ij are an orthonormal system
of eigenvectors of D2u(x0) restricted to Du(x0)

⊥.

Definition 17.19. Let u : R
2 → R be C2 at x0, with Du(x0) 6= 0. The principal

curvatures of u at x0 are the real numbers

κj =
µj

|Du(x0)|
,

where µj are the eigenvalues of D2u(x0) restricted to Du(x0)
⊥.

It follows from Proposition 17.16 that the principal curvatures are invariant
under a C2 contrast change g such that g′(s) > 0 for all s ∈ R.

Definition 17.20. The mean curvature of a C2 function u : RN → R at x0 ∈
RN is the sum of the principal curvatures at x0. It is denoted by curv(u)(x0).

Note that this definition agrees with Definition 17.2 when N = 2. The next
result provides another representation for curv(u).

Proposition 17.21. The mean curvature of u is given by

curv(u) = div
( Du

|Du|
)

.

Proof. Represent the matrix D2u in the coordinate system ij, j = 1, . . . , N−1,
and iN = Du(x0)/|Du(x0)|, where the ij, j = 1, . . . , N−1, form a complete set
of eigenvectors of the linear mapping D2u(x0) restricted to Du⊥(x0). Then in
this coordinate system, D2u(x0) has the following form (illustrated for N = 5):

D2u(x0) =









u11 0 0 0 u15

0 u22 0 0 u25

0 0 u33 0 u35

0 0 0 u44 u45

u51 u52 u53 u54 u55









,

where ujk = uxjxk
(x0), and ujj = κj is the eigenvalue associated with ij . Thus,

by definition, we see that

curv(u) =
∆u

|Du| −
1

|Du|D
2u
( Du

|Du| ,
Du

|Du|
)

.
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We also have

div
( Du

|Du|
)

=

N∑

j=1

∂

∂xj

( uxj

|Du|
)

=
1

|Du|

N∑

j=1

uxjxj −
1

|Du|3
N∑

j,k=1

uxjxk
uxjuxk

=
∆u

|Du| −
1

|Du|D
2u
( Du

|Du| ,
Du

|Du|
)

.

�

With this representation, it is clear that the mean curvature has the same
invariance properties as the curvature of a C2 function defined on R2. (See
Exercise 17.5.)

17.5 Exercises

Exercise 17.7. Let Γ by a Jordan arc parameterized by x : [0, 1] → Γ and by
y : [0, 1] → Γ. Show that x = y ◦ f or x = y ◦ (1− f), where f is a continuous, strictly
increasing function that maps [0, 1] onto [0, 1]. Hint: x and y are one-to-one, and
since [0, 1] is compact, they are homeomorphisms. Thus, y−1(x) = f is a one-to-one
continuous mapping of [0, 1] onto itself. As an application, give a proof of Proposition
17.4.

Exercise 17.8. State and prove an adaptation of Propositions 17.4 and 17.5 to a
Jordan arc.

The curvature vector has been defined in terms of the arc length. Curves,
however, are often naturally defined in terms of other parameters. The next two
exercises develop the differential relations between an arc-length parameteriza-
tion and another parameterization.

Exercise 17.9. Assume that Γ is a C2 Jordan arc or curve. Let s 7→ x(s) be an
arc-length parameterization and let t 7→ y(t) be any other parameterization with the
property that y′(t) 6= 0. Since x and y are one-to-one, we can consider the function
y−1(x) = ϕ. Then x(s) = y(ϕ(s)), where ϕ(s) = t. The inverse function ϕ−1 is given
by

s = ϕ−1(t) =

∫ t

t0

√

y′(r) · y′(r) dr,

so we know immediately that ϕ−1 is absolutely continuous with continuous derivative
equal to

√

y′(t) · y′(t). Thus, we also know that ϕ′(s) = |y′(ϕ(s))|−1. Note that we

made a choice above by taking
√

y′(r) · y′(r) to be positive. This is equivalent to
assuming that x′(s) and y′(ϕ(s)) point in the same direction or that ϕ′(s) > 0.

(i) Show that κ(s) = x′′(s) = y′′(ϕ(s))[ϕ′(s)]2 + y′(ϕ(s))ϕ′′(s) and deduce that

ϕ′′(s) = −y′′(ϕ(s))ϕ′(s) · y′(ϕ(s))

|y′(ϕ(s))|3 = −y′′(ϕ(s)) · y′(ϕ(s))

|y′(ϕ(s))|4 .

(ii) Use the results of (i) to show that

κ(s) = x
′′(s) =

1

|y′(t)|2

[

y
′′(t) −

(

y
′′(t) · y′(t)

|y′(t)|

)

y′(t)

|y′(t)|

]

, (17.11)
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where ϕ(s) = t. Show that we get the same expression for the right-hand side
of (17.11) with the assumption that ϕ′(s) < 0. This shows that the curvature
vector κ does not depend on the choice of parameter.

(iii) Consider the scalar function κ(y) defined by κ(y)(s) = κ(s)·x′(s)⊥. Use equation
(17.11) to show that

κ(y)(t) =
y′′(t) · [y′(t)]⊥

|y′(t)|3
Note that κ(y) is determined up to a sign that depends on the sign of ϕ′(s);
however, |κ(y)| = |κ| is uniquely determined.

Exercise 17.10. Assume that Γ is a Jordan arc or curve that is represented by a C1

function t 7→ x(t) with the property that x′(t) 6= 0. Prove that Γ is C1.

Exercise 17.11.

(i) Consider the arc-length parameterization of the circle with radius r centered at
the origin given by x(s) = (r cos(s/r), r sin(s/r)). Show that the length of the
curvature vector is 1/r.

(ii) Compute the scalar curvature of the graph of y = (a/2)x2 at x = 0.

Exercise 17.12. Complete the proof of Corollary 17.9.

Exercise 17.13. The kinds of techniques used in this exercise are important for
work in later chapters. The exercise demonstrates that it is possible to bracket a C2

function locally with two functions that are radial and either increasing or decreasing.
We say that a function f is radial and increasing if there exists an increasing function
g : R

+ → R such that f(x) = g(|xc − x|2), xc ∈ R
2. We say that f is radial and

decreasing if g is decreasing. Let u : R
2 → R be C2 and assume that Du(x0) 6= 0.

We wish to show that for every ε > 0 there exist two C2 radial functions f−
ε and f+

ε

(increasing or decreasing, depending on the situation) that satisfy the following four
conditions:

f−
ε (x0) = u(x0) = f+

ε (x0), (17.12)

Df−
ε (x0) = Du(x0) = Df+

ε (x0), (17.13)

curv(f−
ε )(x0) +

2ε

p
= curv(u)(x0) = curvf+

ε (x0) − 2ε

p
, (17.14)

f−
ε (x) + o(|x0 − x|2) ≤ u(x) ≤ f+

ε (x) + o(|x0 − x|2). (17.15)

1. Without loss of generality, take x0 = (0, 0), u(0, 0) = 0, and Du(x0) = (p, 0),
p > 0. Then we have the Taylor expansion

u(x) = px+ ax2 + by2 + cxy + o(x2 + y2),

where a, b, and c are given in (17.4). Show that for every ε > 0,

px+
(

− c
2

ε
+a
)

x2+(b−ε)y2+o(x2+y2) ≤ u(x, y) ≤ px+
( c2

ε
+a
)

x2+(b+ε)y2+o(x2+y2).

2. Let f be a radial function defined by f(x, y) = g((x − xc)
2 + y2), where g :

R
+ → R is C2 and either increasing or decreasing. Show by expanding f at (0, 0) that

f(x, y) = g(x2
c) − 2xcg

′(x2
c)x+ (2x2

cg
′′(x2

c) + g′(x2
c))x

2 + g′(x2
c)y

2 + o(x2 + y2).

3. The idea is to construct f+
ε and f−

ε by matching the coefficients of the expansion
of f with the coefficients of the functions px+ (±(c2/ε) + a)x2 + (b± ε)y2. There are
three cases to consider: b < 0, b = 0, and b > 0. Show that in each case it is possible to
find values of xc and functions g so the functions f+

ε and f−
ε satisfy the four condition.

Note that both xc and g depend on ε. Discuss the geometry for each case.

Exercise 17.14. By computing explicitly the terms ∂g(u)/∂xi, verify that Dg(u) =
g′(u)Du. Similarly, verify that D2(g(u)) = g′′(u)Du ⊗Du + g′(u)D2u by computing
the second-order terms ∂2g(u)/∂xi∂xj .
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17.6 Comments and references

Calculus and differential geometry. The differential calculus of curves and
surfaces used in this chapter can be found in many books, and no doubt most
readers are familiar with this material. Nevertheless, a few references to specific
results may be useful. As a general reference on calculus, and as a specific
reference for the implicit function theorem, we suggest the text by Courant and
John [57]. (The implicit function theorem can be found on page 221 of volume
II.) Elementary results about classical differential geometry can be found in
[237]. A statement and proof of Sard’s theorem can be found in [138].

Level lines. An introduction to the use of level lines in computer vision can be
found in [45]. A complete discussion of the definition of level lines for BV func-
tions can be found in [11]. One can decompose an image into into its level lines
at quantized levels and conversely reconstruct the image from this topographic
map. A fast algorithm, the Fast Level Set Transform (FLST) performing these
algorithms is described in [148]. Its principle is very simple: a) perform the
bilinear interpolation, b) rule out all singular levels where saddle point occur c)
quantize the other levels, in which the level lines are finite unions of parametric
Jordan curves. The image is then parsed into a set of parametric Jordan curves.
This set is easily ordered in a tree structure, since two Jordan level curves do
not meet. Thus either one surrounds the other one or conversely. The level lines
tree is a shape parser for the image, many level lines surrounding perceptual
shapes or parts of perceptual shapes.

Curvature. It is a well-known mathematical technique to define a set im-
plicitly as the zero set of its distance function. In case the set is a curve, one
can compute its curvature at a point x by computing the curvature curv(u)(x),
where u is a signed distance function of the curve. This yields an intrinsic for-
mula for the curvature that is not dependent on a parameterization of the curve.
The same technique has been applied in recent years as a useful numerical tool.
This started with Barles report on flame propagation [24] and was extended
by Sethian [231] and by Osher and Sethian [199] in a series of papers on the
numerical simulation of the motion of a surface by its mean curvature.
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Chapter 18

The Main Curvature
Equations

The purpose of this chapter is to introduce the curvature motion PDE’s for
Jordan curves and images. Our main task is to establish a formal link between
curve evolution and image evolution. This link will be established through the
PDE formulation. The basic differential geometry used in this chapter was
thoroughly developed in Chapter 17, which must therefore be read first.

18.1 The definition of a shape and how it is rec-

ognized

Relevant information in images has been reduced to the image level sets in
Chapter 11. By Corollary 17.9, if the image is C1, the boundary of its level sets
is a finite set Jordan curves at almost every level. Thus, shape analysis can be
led back to the study of these curves which we shall call “elementary shapes”.

Definition 18.1. We call elementary shape any C1 planar Jordan curve.

The many experiments where we display level lines of digital images make
clear enough why a smoothing is necessary to restore their structure. These
experiments also show that we can in no way assimilate these level lines with
our common notion of shape as the silhouette of a physical object in full view.
Indeed, in images of a natural environment, most observed objects are partially
hidden (occluded) by other objects and often deformed by perspective. When we
observe a level line we cannot be sure that it belongs to a single object; it may be
composed of pieces of the boundaries of several objects that are occluding each
other. Shape recognition technology has therefore focused on local methods,
that is, methods that work even if a shape is not in full view or if the visible part
is distorted. As a consequence, image analysis adopts the following principle:
Shape recognition must be based on local features of the shape’s boundary, in
this case local features of the Jordan curve, and not on its global features. If
the boundary has some degree of smoothness, then these local features are based
on the derivatives of the curve, namely the tangent vector, the curvature, and

231
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so on. Many local recognition methods involve the “salient” points of a shape,
which are the points where the curvature is zero (inflection points) and points
where the curvature has a maximum or minimum (the “corners” of the shape).

18.2 Multiscale features and scale space

Computational shape recognition methods often make the following two basic
assumptions, neither of which is true in practice for the rough shape data:

• The shape is a smooth Jordan curve.

• The boundary has a small number of inflexion points and curvature extrema.
This number can be made as small as desired by smoothing.

The fact that these conditions can be obtained by properly smoothing a C1

Jordan curve was proven in 1986-87 by Gage and Hamilton [90] and Grayson
[98]. They showed that it is possible to transform a C1 Jordan curve into a C∞

Jordan curve by using the so-called intrinsic heat equation.
For convenience, and unless it would cause ambiguity, we will not make a

distinction between a Jordan curve Γ as a subset of the plane and a function
s 7→ x(s) such that Γ = {x(s)}. As we have already done, we will speak of the
Jordan curve x. Since we will be speaking of families of Jordan curves dependent
on a parameter t > 0, we will most often denote these families by x(t, s), where
the second variable is a parameterization of the Jordan curve. Thus, x(t, s) has
three meanings: a family of Jordan curves, a family of functions that represent
these curves, and a particular point on one of these curves. The notation s will
be usually reserved to an arc-length parameter.

Definition 18.2. Let x(t), t > 0, be a family of C2 Jordan curves. We say
that x(t) satisfies the intrinsic heat equation if

∂x

∂t
= κ(x(t)). (18.1)

Theorem 18.3 (Grayson). Let x0 be a C1 Jordan curve. By using the in-
trinsic heat equation, it is possible to evolve x0 into a family of Jordan curves
x(t, s) such that x(0, s) = x0(s) and such that for every t > 0, x(t, s) is C∞

(actually analytical) and satisfies the equation (18.1). Furthermore, for every
t > 0, x(t, s) has only a finite number of inflection points and curvature extrema,
and the number of these points does not increase with t. For every initial curve,
there is a scale t0 such that the curve x(t, s) is convex for t ≥ t0 and there is a
scale t1 such that the curve x(t, s) is a single point for t ≥ t1.

It is time to say what we mean by “curve scale space”, or “shape scale space.”
We will refer to any process that smooths a Jordan curve and that depends
on a real parameter t. Thus a shape scale space associates with an initial
Jordan curve x(0, s) = x0(s) a family of smooth curves x(t, s). For example,
the intrinsic heat equation eliminates spurious details of the initial shape and
retains simpler, more reliable versions of the shape, and these smoothed shapes
have finite codes. A scale space is causal in the terminology of vision theory if it
does not introduce new features. Grayson’s theorem therefore defines a causal
scale space.
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18.3 From image motion to curve motion

The intrinsic heat equation is only one example from a large family of non-
linear equations that move curves with a curvature-dependent speed, that is,
∂x/∂t is a function of the curvature of the curve x. There are two conditions
on the curvature dependence. The velocity vector must always point towards
the concavity of the curve. Its norm must be a nondecreasing function of the
magnitude of the curvature |κ(x)|. The first condition ensures that the equa-
tion is a smoothing which reduces asperities. The second condition intuitively
preserves the inclusion between curves. This can be appreciated by considering
two circles C and C′ such that C′ surround C and C′ and C are tangent at
some point x. Then the first condition implies that both circles shrink, but the
second condition implies that the smaller circle C shrinks faster, so that the
inclusion between circles is preserved by the evolution.

Definition 18.4. We say that a C2 function u : R+ × R2 → R satisfies a cur-
vature equation if for some real-valued function g(κ, t), which is nondecreasing
in κ and satisfies g(0, t) = 0,

∂u

∂t
(t,x) = g(curv(u)(t,x), t)|Du|(t,x). (18.2)

Definition 18.5. Let x(t) be a family of C2 Jordan curves. We say that the
functions x(t) satisfy a curvature equation if for some real-valued function g(κ, t)
nondecreasing in κ with g(0, t) = 0, they satisfy

∂x

∂t
= g(|κ(x)|, t)n(t), (18.3)

where n is a unit vector in the direction of κ(x).

In the preceding definition, the equation makes sense if κ(x) = 0 since then
the second member is zero. As we shall see, these equations are the only candi-
dates to be curve or image scale spaces, and one of the objectives of this book
is to identify which forms for g are particularly relevant for image analysis. The
above definitions are quite restrictive because they require the curves or images
to be C2. A more generally applicable definition of solutions for these equations
will be given in Chapter ?? with the introduction of viscosity solutions. Our
immediate objective is to establish the link between the motion of an image and
the motion of its level lines. This will establish the relation between equations
(18.2) and (18.3).

18.3.1 A link between image and curve evolution

Lemma 18.6. (Definition of the “normal flow”). Suppose that (t,x) 7→
u(t,x) is C2 in a neighborhood T ×U of the point (t0,x0) ∈ R×R2, and assume
that Du(t0,x0) 6= 0. Then there exists an open interval J centered at t0, an
open disk V centered at x0, and a unique C1 function x : J × V → R2 that
satisfy the following properties:

(i) u(t,x(t,y)) = u(t0,y) and x(t0,y) = y for all (t,y) ∈ J × V .
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(ii) The vectors (∂x/∂t)(t,y) and Du(t,x(t,y)) are collinear.

In addition, the function x satisfies the following differential equation:

∂x

∂t
(t,y) = −

( Du

|Du|2
∂u

∂t

)

(t,x(t,y)). (18.4)

The trajectory t 7→ x(t,y) is called the normal flow starting from (t0,y).

Proof. Differentiating the relation u(t,x(t)) = 0 with respect to t yields ∂u
∂t +

Du.∂x∂t = 0. By multiplying this equation by the vector Du we see that ∂x
∂t is

collinear to Du if and only if (18.4) holds. Now, this relation defines x(t) as the
solution of an ordinary differential equation, with initial condition x(t0) = y.
Since u is C2, the second member of (18.4) appears to be a Lipschitz function of
(t,x) provided Du(t,x) 6= 0, which is ensured for (t,x) close enough to (t0,x0).
Thus, by Cauchy-Lipschitz Theorem, there exists an open interval J such that
the O.D.E. (18.4) has a unique solution x(t,y) for all y in a neighborhood of
x0 and t ∈ J . �

Proposition 18.7. Assume that the function (t,x) 7→ u(t,x) is C2 in a neigh-
borhood of (t0,x0) and that Du(t0,x0) 6= 0. Then u satisfies the curvature
motion equation

∂u

∂t
(t,x) = curv(u)(t,x)|Du|(t,x) (18.5)

in a neighborhood of (t0,x0) if and only if the normal flow x(t,y) of u in this
neighborhood satisfies the intrinsic heat equation

∂x

∂t
(t,y) = κ(x(t,y)), (18.6)

where κ(x(t,y)) denotes the curvature vector of the level line of u(t) passing by
x(t,y).

Proof. Assume first that x(t,y) satisfies (18.6). Applying (17.8) for all t in a
neighborhood of t0 to each image u(t) : x → u(t,x) yields

κ(x(t,y)) = −curv(u)
Du

|Du| (t,x(t,y)).

Substituting (18.6) in this last relation we obtain

∂x

∂t
(t,y) = −curv(u)

Du

|Du| (t,x(t,y))

and by the normal flow equation (18.4),

(
∂u

∂t

Du

|Du|2 )(t,x(t,y)) = curv(u)
Du

|Du| (t,x(t,y)).

Multiplying this equation by Du(t,x(t,y)) yields the curvature motion equation
(18.5).

The converse statement follows exactly the same lines backwards. �
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Exercise 18.1. Write the proof of the converse statement of Proposition 18.7.

The preceding proof is immediately adaptable to all curvature equations :

Proposition 18.8. Assume that the function (t,x) 7→ u(t,x) is C2 in a neigh-
borhood of (t0,x0) and that Du(t0,x0) 6= 0. Let g : R × R+ → R be continuous
and nondecreasing with respect to κ and such that g(−κ, t) = −g(κ, t). Then u
satisfies the curvature motion equation

∂u

∂t
(t,x) = g(curv(u)(t,x), t)|Du|(t,x) (18.7)

in a neighborhood of (t0,x0) if and only if the normal flow t 7→ x(t, ·) satisfies
the curvature equation

∂x

∂t
(t,y) = g(|κ(x(t,y))|) κ(x(t,y))

|κ(x(t,y))| . (18.8)

18.3.2 Introduction to the affine curve and function equa-
tions

There are two curvature equations that are affine invariant and are therefore
particularly well suited for use in shape recognition. In their definition, for
x ∈ R, x1/3 stands for sign(x)|x|1/3.

Definition 18.9. The image evolution equation

∂u

∂t
(t,x) = (curv(u)(t,x))1/3|Du(t,x)| (18.9)

is called affine morphological scale space (AMSS). The curve evolution equation

∂x

∂t
(t, s) = |κ(x(t, s))|1/3n(t, s)

(

=
κ(x(t, s))

|κ(x(t, s))|2/3

)

(18.10)

is called affine scale space (ASS).

It is clear that AMSS and ASS are equivalent in the sense of Proposition 18.8.
As one would expect from the names of these equations, they both have some
sort of affine invariance. This is the subject of the next definition, Exercises
18.3 and 18.4 and the next section.

Definition 18.10. We say that a curvature equation (E) (image evolution equa-
tion) is affine invariant, if for every linear map A with positive determinant,
there is a positive constant c = c(A) such that (t,x) 7→ u(t,x) is a solution of
(E) if and only if (ct, Ax) 7→ u(ct, Ax) is a solution of (E).

18.3.3 The affine scale space as an intrinsic heat equation

Suppose that for each scale t, σ 7→ x(t, σ) is a Jordan arc (or curve) parame-
terized by σ, which is not in general an arc length. As in Chapter 17, we will
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denote the curvature of x by κ. We wish to demonstrate a formal equivalence
between the affine scale space,

∂x

∂t
= |κ|1/3n(x), (18.11)

and an “intrinsic heat equation”

∂x

∂t
=
∂2x

∂σ2
, (18.12)

where σ is a special parameterization called affine length. We define an affine
length parameter of a Jordan curve (or arc) to be any parameterization σ 7→ x(σ)
such that

[xσ,xσσ] = 1, (18.13)

where [x,y] = x⊥ · y. If s is an arc-length parameterization, then we have
(Definition 17.3)

τ = xs n = |κ|−1xss

(

=
κ(x)

|κ(x)|
)

. (18.14)

We also have

xσ = xs
∂s

∂σ
and xσσ = xss

( ∂s

∂σ

)2

+ xs
∂2s

∂σ2
. (18.15)

Thus,

[xσ,xσσ] = [xs,xss]
( ∂s

∂σ

)3

,

and if (18.13) holds, then

[xs,xss]
( ∂s

∂σ

)3

= 1.

Since by (18.14) [xs,xss] = sign([xs,xss])|κ|, we conclude that

∂s

∂σ
= (sign([xs,xss])|κ|)−1/3. (18.16)

Substituting this result in the expression for xσσ shown in (18.15) and writing
xs = τ , we see that

xσσ = |κ|1/3n +
( ∂2s

∂σ2

)

τ .

This tells us that equation (18.12) is equivalent to the following equation:

∂x

∂t
= |κ|1/3n +

( ∂2s

∂σ2

)

τ . (18.17)

Now it turns out that the graphs of the functions x that you get from
one time to another do not depend on the term involving τ ; you could drop
this term and get the same graphs. More precisely, Epstein and Gage [72]
have shown that the tangential component of an equation like (18.17) does not
matter as far as the geometric evolution of the curve is concerned. In fact,
the tangential term just moves points along the curve itself, and the total curve
evolution is determined by the normal term. As a consequence, equation (18.11)
is equivalent to equation (18.12) in any neighborhood that avoids an inflection
point, that is, in any neighborhood where n(x) 6= 0. At an inflection point,
κ = 0, and the two equations give the same result.
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18.4 Curvature motion in N dimensions

We consider an evolution (t,x) 7→ u(t,x), where x ∈ RN and u(0, ·) = u0 is an
initial N–dimensional image. Let κi(u)(t,x), i = 1, . . . , N − 1, denote the ith

principal curvature at the point (t,x). By definition 17.20 the mean curvature is

curv(u) =
∑N−1

i=1 κi. We will now define three curvature motion flow equations
in N dimensions.

Mean curvature motion. This equation is a direct translation of equation
(18.5) in N dimensions:

∂u

∂t
= |Du|curv(u).

This says that the motion of a level hypersurface of u in the normal direction
is proportional to its mean curvature.

Gaussian curvature motion for convex functions. We say that a function
is convex if all of its principal curvatures have the same sign. An example of
such a function is the signed distance function to a regular convex shape. The
equation is

∂u

∂t
= |Du|

N−1∏

i=1

κi.

The motion of a level hypersurface is proportional to the product of its principal
curvatures, which is the Gaussian curvature. As we will see in Chapter ??, this
must be modified before it can be applied to a nonconvex function.

Affine-invariant curvature motion. The equation is

∂u

∂t
= |Du|

∣
∣
∣

N−1∏

i=1

κi

∣
∣
∣

1/(N+1)

H
(N−1∑

i=1

sign(κi)
)

,

where H(N − 1) = 1, H(−N + 1) = −1, and H(n) = 0 otherwise. The motion
is similar to Gaussian curvature motion, but the affine invariance requires that
the Gaussian curvature be raised to the power 1/(N + 1). There is no motion
at a point where the principal curvatures have mixed signs. This means that
only concave or convex parts of level surfaces get move by such an equation.

18.5 Exercises

Exercise 18.2. Check that all of the curvature equations (18.2) are contrast invariant.
That is, assuming that h is a real-valued C2 increasing function defined on R and u
is C2, show that the function v defined by v(t,x) = h(u(t,x)) satisfies one of these
equations if and only if u satisfies the same equation.

Exercise 18.3. Assume that (t,x) 7→ u(t,x) is a C2 function and that A is a 2 × 2
matrix with positive determinant, which we denote by |A|. Define the function v by
v(t,x) = u(ct, Ax), where c = |A|−2/3.

(i) Prove that for each point x such that Du(x) 6= 0 one has the relation

curv(v)(x)|Dv(x)|3 = |A|2curv(u)(Ax)|Du(Ax)|3.
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(ii) Use (i) to deduce that the AMSS equation (18.9) is affine invariant, that is,
(t,x) 7→ u(t,x) is a solution of AMSS if and only (t,x) 7→ v(t,x) does.

Exercise 18.4. This exercise is to show that the affine scale space (equation (18.10))
is affine invariant. It relies directly on results from Exercise 17.9. Let σ 7→ c(σ) be a
C2 curve, and assume that |c′(σ)| > 0. Then we know from Exercise 17.9 that

κ(c)(σ) =
1

|c′(σ)|2

[

c
′′(σ) −

(

c
′′(σ) · c′(σ)

|c′(σ)|

)

c′(σ)

|c′(σ)|

]

. (18.18)

Now assume that we have a family of C2 Jordan arcs (t, σ) 7→ c(t, σ). By projecting
both sides of the intrinsic heat equation onto the unit vector c′⊥/|c′| and by using
(18.18), we have the following equation:

∂c

∂t
· c′⊥

|c′| =
c′′ · c′⊥

|c′|3 (18.19)

We say that c satisfies a parametric curvature equation if it satisfies equation (18.19).
In the same spirit, we say that c satisfies a parametric affine equation if for some
constant γ > 0

∂c

∂t
· c′⊥ = γ(c′′ · c′⊥)1/3. (18.20)

(i) Suppose that σ = s, an arc-length parameterization of c. Show that equation
(18.19) can be written as

∂c

∂t
= κ(c) + λτ,

where λ is a real-valued function and τ is the unit tangent vector ∂c/∂s. (See
the remark following equation (18.17).)

(ii) Let A be a 2 × 2 matrix with positive determinant, and define the curve y by
y(t, σ) = Ac(t, σ). We wish to show that if c satisfies a parametric affine motion,
then so does y. As a first step, show that Ax · (Ay)⊥ = |A|x · y and hence that
A(x⊥) · (Ax)⊥ = |A||x|2 for any x,y ∈ R

2.

(iii) Show that if c satisfies equation (18.20), then y satisfies

∂y

∂t
· y′⊥ = γ|A|2/3(y′′ · y′⊥)1/3.

18.6 Comments and references

Our definition of shape. The Italian mathematician Renato Caccioppoli
proposed a theory of sets whose boundaries have finite length (finite Hausdorff
measure). From his theory, it can be deduced that the boundary of a Caccioppoli
set is composed of a countable number of Jordan curves, up to a set with zero
length. This decomposition can even be made unambiguous. In other words,
the set of Jordan curves associated with a given Caccioppoli set is unique and
gives enough information to reconstruct the set [10]. This result justifies our
focus on Jordan curves as the representatives of shapes.

The role of curvature in shape analysis. After Attneave’s founding paper
[20], let us mention the thesis by G. J. Agin [4] as being one of the first refer-
ences dealing with the use of curvature for the representation and recognition
of objects in computer vision. The now-classic paper by Asada and Brady [17]
entitled “The curvature primal sketch” introduced the notion of computing a
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“multiscale curvature” as a tool for object recognition. (The title is an allusion
to David Marr’s famous “raw primal sketch,” which is a set of geometric prim-
itives extracted from and representing an image.) The Asada–Brady paper led
to a long series of increasingly sophisticated attempts to represent shape from
curvature [70, 71] and to compute curvature correctly [186]. The shape recogni-
tion programme we sketched in the beginning of this chapter was anticipated in
a visionary paper by Attneave [20] and has been very recently fully developed
in the works of José Luis Lisani, Pablo Musé, Frédéric Sur, Yann Gousseau and
Frédéric Cao [188], [190], [39], [40].

Curve shortening. The mathematical study of the intrinsic heat equation
(or curvature motion in two dimensions) was done is a series of brilliant papers in
differential geometry between 1983 and 1987. We repeat a few of the titles, which
indicate the progress: There was Gage [88] and Gage [89]: “Curve shortening
makes convex curves circular.” Then there was Gage and Hamilton [90]: “The
heat equation shrinking convex plane curves.” In this paper the authors showed
that a plane convex curve became asymptotically close to a shrinking circle.
In 1987 there was the paper by Epstein and Gage [72], and, in the same year,
Grayson removed the convexity condition and finished the job [98]: “The heat
equation shrinks embedded plane curves to round points.” As the reviewer,
U. Pinkall, wrote, “This paper contains the final solution of the long-standing
curve-shortening problem for plane curves.”

The first papers that brought curve shortening (and some variations) to
image analysis were by Kimia, Tannenbaum, and Zucker [130] and by Mack-
worth and Mokhtarian [154]. Curve shortening was introduced as a way to do
a multiscale analysis of curves, which were considered as shapes extracted from
an image. In the latter paper, curve shortening was proposed as an efficient
numerical tool for multiscale shape analysis.

Affine-invariant curve shortening. Affine-invariant geometry seems to have
been founded by W. Blaschke. His three-volume work “Vorlesungen über Dif-
ferentialgeometrie” (1921–1929) contains definitions of affine length and affine
curvature. Curves with constant affine curvature are discussed in [155]. The
term “affine shortening” and the corresponding curve evolution equation were
introduced by Sapiro and Tannenbaum in [221]. Several mathematical proper-
ties were developed by the same authors in [222] and [223]. Angenent, Sapiro,
and Tannenbaum gave the first existence and uniqueness proof of affine short-
ening in [14] and prove a theorem comparable to Grayson’s theorem : they
prove that a shape eventually becomes convex and thereafter evolves towards
an ellipse before collapsing.

Mean curvature motion. In his famous paper entitled “Shapes of worn
stones,” Firey proposed a model for the natural erosion of stones on a beach [81].
He suggested that the rate of erosion of the surface of a stone was proportional
to the Gaussian curvature of the surface, so that areas with high Gaussian
curvature eroded faster than areas with lower curvature, and he conjectured that
the final shape was a sphere. The first attempt at a mathematical definition
of the mean curvature motion is found in Brakke [31]. Later in the book, we
will discuss the Sethian’s clever numerical implementation of the same equation
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[233]. Almgren, Taylor, Wang proposed a more general formulation of mean
curvature motion that is applicable to crystal growth and, in general, to the
evolution of anisotropic solids [5].
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Chapter 19

Finite Difference Schemes
for Curvature Motions

We shall consider the classical discrete representation of an image u on a grid
ui,j = u(i, j), with 1 ≤ i ≤ N , 1 ≤ j ≤ N . The image is the union of the
squares centered at the points (i, j).

19.1 Case of Mean curvature motion.

We start with the “Mean curvature motion” equation (M.C.M.) given by

∂u

∂t
= |Du|curv(u) =

u2
yuxx − 2uxuyuxy + u2

xuyy

u2
x + u2

y

In order to discretize this equation by finite differences we shall introduce
an explicit scheme which uses a fixed 3 × 3 stencil to discretize the differential
operators. We denote by ∆x = ∆y the pixel width. From the PDE viewpoint
∆x is considered as an infinitesimal length with respect to the image scale. Thus
we shall write formulas containing o(∆x). Numerically ∆x is equal to 1, and the
image scale ranges from 512 to 4096 and more. By the order 1 Taylor formula
one can give the following discrete versions of the first derivatives ux and uy at
a point (i, j) of the grid:

(ux)i,j =
2(ui+1,j − ui−1,j) + ui+1,j+1 − ui−1,j+1 + ui+1,j−1 − ui−1,j−1

8∆x
+O(∆x2);

(uy)i,j =
2(ui,j+1 − ui,j−1) + ui+1,j+1 − ui+1,j−1 + ui−1,j+1 − ui−1,j−1

8∆x
+O(∆x2);

|Dui,j | = ((ux)2i,j + (uy)2i,j)
1
2 .

Definition 19.1. A discrete scheme approximating a differential operator is
said to be consistent if, when the grid mesh ∆x tends to zero, the discrete scheme
tends to the differential operator.

241
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λ4

λ1

λ3

λ2

λ4

λ3

λ1

λ2

λ0−4

Figure 19.1: A 3 × 3 stencil

Clearly the above discrete versions of the partial derivatives and of the gra-
dient of u are consistent. When |Du| 6= 0, we can denote by ξ the direction
orthogonal to the gradient of u. It is easily deduced from Definition 17.14 that

|Du|curv(u) = uξξ.

Exercise 19.1. Show this formula.

Defining θ as the angle between the x direction and the gradient, we have

ξ = (− sin θ, cos θ) = (
−uy

√

u2
x + u2

y

,
ux

√

u2
x + u2

y

), and

uξξ = sin2(θ)uxx − 2 sin(θ) cos(θ)uxy + cos2(θ)uyy. (19.1)

We would like to write uξξ as a linear combination of the values of u on the fixed
3×3 stencil. Of course, the coefficients of the linear combination will depend on
ξ. Since the direction of ξ is defined modulo π, we must assume by symmetry
that the coefficients of points symmetrical with respect to the central point of
the stencil are equal (see Figure 19.1.)

In order to ensure consistency with the differential operator uξξ, we must
find λ0, λ1, λ2, λ3, λ4, such that

(uξξ)i,j =
1

∆x2
(−4λ0ui,j + λ1(ui+1,j + ui−1,j) + λ2(ui,j+1 + ui,j−1)

+λ3(ui−1,j−1 + ui+1,j+1) + λ4(ui−1,j+1 + ui+1,j−1)) + ε(∆x). (19.2)

We write

ui+1,j = ui,j + ∆x(ux)i,j +
∆x2

2
(uxx)i,j + o((∆x)3),

and the corresponding relations for the other points of the stencil. By substitut-
ing these relations into (19.2) and by using (19.1) one obtains four links between
the five coefficients, namely







λ1(θ) = 2λ0(θ) − sin2 θ
λ2(θ) = 2λ0(θ) − cos2 θ
λ3(θ) = −λ0(θ) + 0.5(sin θ cos θ + 1)
λ4(θ) = −λ0(θ) + 0.5(− sin θ cos θ + 1)

(19.3)
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Exercise 19.2. Prove these four relations.

Thus, one degree of freedom is left for our coefficients : we can for example
choose λ0(θ) as we wish. This choice will be driven by stability and geometric in-
variance requirements. Denoting by un

i,j an approximation of u(i∆x, j∆x, n∆t)
we can write our explicit scheme as

un+1
i,j = un

i,j + ∆t(un
ξξ)i,j (19.4)

Notice that this scheme can be rewritten as un+1
i,j =

∑1
k,l=−1 αk,lu

n
i+k,j+l where

the αk,l satisfy
∑1

k,l=−1 αk,l = 1. The following obvious lemma shows a general
condition to have L∞ stability in this kind of scheme.

Lemma 19.2. Let a finite difference scheme given by

T (u)i,j =
1∑

k,l=−1

αk,lui+k,j+l

where αk,l satisfy
∑1

k,l=−1 αk,l = 1. We say that the scheme is L∞-stable if for
all i, j,

min
i,j

u(i, j) ≤ T (u)i,j ≤ max
i,j

u(i, j).

Then the scheme is L∞ stable if and only if αk,l ≥ 0 for any k, l.

Proof. If αk,l ≥ 0 for any k, l, set min = infi,j{ui,j}, max = supi,j{ui,j} and
take a point (i, j). Then the L∞ stability follows from the inequality:

min =

1∑

k,l=−1

αk,lmin ≤
1∑

k,l=−1

αk,lui+k,j+l = (Tu)i,j ≤
1∑

k,l=−1

αk,lmax = max

On the other hand, if there exists αk0,l0 < 0 then choosing u and (i, j) such that
ui+k0,j+l0 = min and ui+k,j+l = max for any other k, l, we obtain

(Tu)i,j =

1∑

k 6=k0,l 6=l0

αk,lmax+ αk0,l0min = max+ αk0,l0(min−max) > max,

which means that the L∞ stability is violated.
�

Following this lemma, in order to guarantee the L∞ stability in the scheme
(19.4) we should look for λ0 such that λ1, λ2, λ3, λ4 ≥ 0 and (1 − 4λ0

∆x2 ) ≥ 0.
Unfortunately the links between these coefficients make it impossible to obtain
these relations, except for the particular values of θ = (0, π

4 ,
π
2 , ...). Indeed, for

θ in [0, π
4 ],

λ1 ≥ λ2 and λ3 ≥ λ4

But

λ2(θ) ≥ 0 ⇒ λ0(θ) ≥
cos2(θ)

2

λ4(θ) ≥ 0 ⇒ λ0(θ) ≤
1 − sin(θ) cos(θ)

2
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0.3
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0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

λ0(θ)

θ

Search of the optimal λ0

0.5 − cos2(θ) + cos4(θ)
cos2(θ)/2

(1 − sin(θ) cos(θ))/2

Figure 19.2: The middle curve represents the choice of the function λ0 of For-
mula 19.6. The upper function represents the smallest possibility for λ0(θ)
securing λ2 ≥ 0 for all angles and the lower one represents the largest values
of λ0(θ) securing λ4(θ) ≥ 0. Thus, it is not possible to satisfy simultaneously
both conditions. The intermediate curve is the simplest trigonometric function
which lies between these two bounds.

We cannot find λ0(θ) satisfying both inequalities, since

cos2(θ)

2
≥ 1 − sin(θ) cos(θ)

2

If we chose λ0(θ) ≥ cos2(θ)
2 , λ4(θ) would be significantly below zero. If we took

λ0(θ) ≤ 1−sin(θ) cos(θ)
2 , λ2(θ) would be significantly below zero. Thus we shall

choose λ0 somewhere between both functions, so that λ2 and λ4 become only
slightly negative. (see Figure 19.2.)

In addition, we can try to impose on λ0 the following geometrical require-
ments

(i). Invariance by rotation of angle π
2

λ0(θ +
π

2
) = λ0(θ)

(ii). Purely one-dimensional diffusion in the case θ = 0, π
2 , ...

λ0(0) = 0.5

This condition implies that λ2(0) = λ3(0) = λ4(0) = 0
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(iii). Pure one-dimensional diffusion in the case θ = π
4 ,

3π
4 , ...

λ0(
π

4
) = 0.25

This condition implies that λ1(
π
4 ) = λ2(

π
4 ) = λ4(

π
4 ) = 0

(iv). Symmetry with respect to the axes i+j and i-j,

λ0(
π

2
− θ) = λ0(θ)

We remark that by the above conditions it is enough to define the function λ0(θ)
in the interval [0, π

4 ] because it can be extended by periodicity elsewhere.
Two choices for the function λ0(θ) using as basis the trigonometric poly-

nomials were tested. The first one corresponds to an average of the boundary
functions:

λ0(θ) =
cos2(θ) + 1 − sin(θ)cos(θ)

4
(19.5)

As we shall see this choice is well-adapted to the “affine curvature motion”
equation. However, if we extend this function by periodicity, the extended
function is not smooth at π

4 . If we seek for a smooth function for λ0(θ), we must
impose λ′0(0) = λ′0(

π
4 ) = 0. The trigonometric polynomial with least degree

satisfying the above conditions and lying between both boundary functions is

λ0(θ)) = 0.5 − cos2(θ) sin2(θ) (19.6)

The formulas of the other λi’s are deduced using (19.3). For instance with the
above choice of λ0(θ) we have







λ1(θ) = cos2(θ)(cos2(θ) − sin2(θ));
λ2(θ) = sin2(θ)(sin2(θ) − cos2(θ));
λ3(θ) = cos2(θ) sin2(θ) + 0.5 sin(θ) cos(θ);
λ4(θ) = cos2(θ) sin2(θ) − 0.5 sin(θ) cos(θ).

When |Du| = 0, the direction of the gradient is unknown. Therefore the
diffusion term uξξ is not defined. We chose to replace this term by half the
Laplacian. (The Laplacian is equal to the sum of the two second derivatives in
orthogonal directions, whereas the diffusion term uξξ is the second derivative
in just one). However, other possibilities will be considered in Section 19.6.
Summarizing, a consistent, almost L∞ stable finite difference scheme for the
mean curvature motion is (iterations start with u0 as initial function)

1. If |Du| ≥ Tg

un+1 = un +
∆t

∆x2
(−4λ0ui,j + λ1(ui+1,j + ui−1,j) + λ2(ui,j+1 + ui,j−1)

+λ3(ui−1,j−1 + ui+1,j+1) + λ4(ui−1,j+1 + ui+1,j−1)).
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2. Otherwise,

un+1 = un +
1

2

∆t

∆x2
(−4λ0ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

Two parameters have to be fixed in the previous algorithm:

• The iteration step scale s := ∆t
∆x2 has to be chosen as large as possible in

order to reduce the number of iterations. However, 1/2 is a natural upper bound
for s. Indeed, consider the discrete image defined by u0

i,j = 0 for all i, j, except

for i = j = 0 where u0
0,0 = 1. Then the second formula yields u1

0,0 = 1 − 2 ∗ s.
If we want L∞ stability to be ensured we must have u1(0, 0) ≥ 0, which yields
s ≤ 1/2. Imposing this condition

∆t

∆x2
≤ 1

2
(19.7)

it is an experimental observation that there is a (small with respect to 255)
ǫ > 0 such that for any n ∈ IN and (i, j),

−ǫ+ inf
i,j

{u0
i,j} ≤ un

i,j ≤ sup
i,j

{u0
i,j} + ǫ.

• The threshold on the spatial gradient norm : Tg has been fixed ex-
perimentally to 6 for 0 to 255 images.

Figure 19.3: Curvature motion finite difference scheme and scale calibration.
Image filtered by curvature motion at scales 1, 2, 3, 4, 5. In order to give
a sound numerical meaning to the scale, a calibration of the numerical scales
(number of iterations) is made in such a way that a disk with radius t shrinks
to a point at scale t.

19.2 FDS for AMSS

We will use the ideas developed in the above section. We rewrite the AMSS
equation as
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Figure 19.4: Curvature motion finite difference scheme applied on each level set
separately, at scales 1, 2, 3, 4, 5. The processed image is then reconstructed by
the threshold superposition principle. In contrast with the same scheme directly
applied on the image, this scheme yields a fully contrast invariant smoothing.
However, a comparison with Figure 19.3 shows that the resulting images are
very close to each other. This shows that the contrast invariance is almost
achieved when applying the finite difference scheme directly on a good quality
image. As we shall see in Figure 19.6, if the initial image is noisy, the difference
between both methods can be huge.

Figure 19.5: Iterated median filter with normalized scales 1, 2, 3, 4, 5. The scale
normalization permits to compare very different schemes on the same images.
Compare with Figure 19.4. The striking similarity of the results anticipates
Theorem ??, according to which the application of the median filter is equivalent
to a mean curvature motion.

∂u

∂t
= (|Du|3curv(u)) 1

3 = (u2
yuxx − 2uxuyuxy + u2

xuyy)
1
3 (19.8)
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We remark that |Du|3curv(u) = |Du|2uξξ where ξ corresponds to the direction
orthogonal to the gradient. Therefore, in order to discretize this operator, it is
enough to multiply the discretization of uξξ presented in the above section by
|Du|2. We choose λ0(θ) given by (19.5) because it corresponds to a trigonometric
polynomial of degree two and then multiplying it by |Du|2 the coefficients ηi =
|Du|2λi, i = 0, 1, 2, 3, 4, are polynomials of degree two with respect to ux and
uy. Indeed, we obtain for θ ∈ [0, π

4 ]

(|Du|2uξξ)i,j =
1

∆x2
(−4η0ui,j + η1(ui+1,j + ui−1,j) + η2(ui,j+1 + ui,j−1)

+η3(ui−1,j−1 + ui+1,j+1) + η4(ui−1,j+1 + ui+1,j−1)) +O(∆x2)

where η0, η1, η2, η3, η4 are given by







η0 = 0.25(2u2
x + u2

y − uxuy)
η1 = 0.5(2u2

x − u2
y − uxuy)

η2 = 0.5(u2
y − uxuy)

η3 = 0.25(u2
y + 3uxuy)

η4 = 0.25(u2
y − uxuy)

Finally, the finite difference scheme for the A.M.S.S. equation is

un+1
i,j = un

i,j + ∆t(|Dun|2un
ξξ)

1
3

i,j (19.9)

We have tested this algorithm and we have noticed that in this case the condition
for the experimental stability (in the sense presented in the above subsection)
is

∆t

∆x2
≤ 1

10
.

Remark. The finite difference schemes presented above are consistent. Con-
trast invariance can only be obtained asymptotically by taking a very small time
step ∆t. The experimental results presented in Figures 19.3 and ?? have been
obtained by using these schemes with ∆t = 0.1 in the case of mean curvature
motion and ∆t = 0.01 in the case of affine curvature motion. Indeed, while
experimental stability is achieved with ∆t ≤ 0.1, the experimental affine inva-
riance needs ∆t < 0.05 (see Figure ??.)

19.3 IL MANQUE UNE EXPERIENCE AMSS
SUR L’INVARIANCE AFFINE!

19.4 Numerical normalization of scale.

(or Relation between scale and the number of iterations).
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The case of the curvature motion. Setting the distance between pixels
∆x to 1, the scale achieved with N iterations is simply N × ∆t. Now, the
scale t associated with the PDE is somewhat arbitrary : It has no geometric
meaning. In order to get it, we need a rescaling T → t(T ) which we will call
scale normalization.

A good way to perform this scale normalization is to define the correspon-
dence t(T ) as the time for which a circle with initial radius T vanishes under
curvature motion. Such a circle moves at a speed equal to its curvature, which
is the inverse of its radius. Thus have for a disk with radius R(t)

dR(t)

dt
= − 1

R(t)

which yields
1

2
(R2(0) −R2(t)) = t.

Exercise 19.3. Check this relation!

The disk disappears when R(t) = 0, that is, at scale T = R2(0)/2. This last
relation gives a scale normalization: In order to arrive at the normalized scale
T (at which any disk with radius less or equal to T vanishes), we have to evolve
the PDE at t = N∆t = T 2/2. This fixes the number of needed iterations as

N = T 2/2∆t.

The case of AMSS We can perform similar calculations. The radius of an
evolving disk satisfies

dR(t)

dt
= − 1

R(t)
1
3

which yields
3

4
(R

4
3 (0) −R

4
3 (t)) = t

The disappearance time is therefore t = 3
4R

4
3 . As for the curvature motion, we

define the normalized scale T as the one at which a disk with radius T vanishes.
In order to achieve this scale T , the needed number of iterations is

N =
3

4∆t
T

4
3 .

Exercise 19.4. Check the last two formulas!

19.5 Contrast invariance and the level set ex-

tension

Both schemes (M.C.M and A.M.S.S) presented above are not numerically con-
trast invariant. We have seen that a contrast operator cannot create new gray
levels (Exercise 13.22.) Now, starting with a binary image u0 and applying a
scheme defined by such a formula as

un+1 = un + ∆t(...)
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does not ensure that un+1 will be also a binary image.

A natural idea to overcome this problem is the following. Starting with a
binary image (with values 0 and 1): apply the scheme until the expected scale
is achieved, then threshold the obtained image at λ = 1

2 . This of course works
only for binary images. However, the level set extension (see Section 13.3) gives
us the key to extend this to general images.

The contrast invariance can be fully obtained by first applying the finite
difference scheme on each level set (considered as a binary image) separately.
Then by the superposition principle the evolved image is computed from the
evolved level sets. The procedure is the following :

Algorithm starting with an image u0 and evolving it to u(t,x) by
curvature motion

For each λ ∈ [0, 255], in increasing order:

• Let vλ(x) be the characteristic function of Xλu0. (This function is
equal to 1 inside the level set and to 0 outside.)

• Apply to vλ the MCM or AMSS FDS-scheme until scale t. This
yields the images wλ(t, .).

• Set u(t,x) = λ at each point (t,x) where wλ(t,x) ≥ 0.5.

19.6 Problems at extrema

For MCM and AMSS we raised the question of performing numerically the
equation when |Du| = 0. For MCM the right hand part of the equation is simply

not defined. For AMSS one can set by continuity asDu→ 0, (|Dun|2un
ξξ)

1
3

i,j = 0.
Now, numerically, this would imply that isolated black or white extrema will
not evolve by the equation. We know that this is simply wrong, since small sets
collapse by curvature motion.

In short, FDS for MCM and AMSS are not consistent with the equation
at extrema. In Figure 19.6, we added to an image a strong “salt and pepper”
noise. More than one fourth of the pixels have been given a uniform random
value in [0, 255] and most of them have become local extrema. Not only these
values do not evolve but they contaminate their neighboring pixels. There are
easy ways to avoid this spurious effect :

• One can first zoom by 2 the image by duplicating pixels. This, however,
multiplies by 16 the number of computations.

• One can first remove pixels extrema with diameter k since they must
anyway disappear by the equation at normalized scale k

2 .

• One can use the level set method. This multiplies the number of compu-
tations by the initial number of gray-levels.

All of these solutions are efficient, as shown in Figure 19.6.
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Figure 19.6: Various implementations of curvature motion on a noisy image.
Top left : image with 40% pixels replaced by a uniform random value in [0, 255].
Top right: application of the finite difference scheme (FDS) at normalized scale
3. On the lines 2 to 4, we see various solutions to the disastrous diffusion of
extrema. On the left the image is processed at normalized scale 1 and on the
right at normalized scale 3. Second line: FDS applied on the image previously
zoomed by a factor 2; third line: FDS applied on the image after its extrema
have been ”killed” (the reference area is given by the area of the disk vanishing
at the desired scale). Fourth line: FDS applied separately on each level set and
application of the threshold superposition principle. The third scheme offers a
good speed-quality compromise.
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19.7 Conclusion

We have seen that standard finite difference schemes are easy to implement but
cannot handle properly the invariance properties satisfied by the equations.

1. There is no finite difference scheme that insures the monotonicity. This
leads to slightly oscilatory solutions.

2. No full contrast invariance. For instance FDS create new grey levels and
blur edges. Also, a spurious diffusion occurs around the image extrema.
However this last problem was dealt with efficiently in the previous section.
The full contrast invariance has been restored by the level set extension
of the numerical schemes.

3. The worst drawback of FDS is the lack of Euclidean or affine invariance
which can be only approximately obtained by grid local schemes. A much
more clever strategy to achieve full invariance is to evolve all level curves
of the image and the reconstruct it. This is the aim of Section ??, but we
have already seen in Chapter 7 how to evolve curves by curvature.

19.8 Comments and references

Difference schemes for the curvature motion and the AMSS The pre-
sented difference scheme follows mainly [99], improved in Alvarez et al. [9]. This
scheme is somehow optimal among the rotationally invariant numerical schemes
for curvature motion and the AMSS. Now, this presentation is specific of those
two motions, while other many authors have analysed more general nonlinear
anisotropic diffusions in image processing, namely Acton [2], Kacur and Mikula
[122, 123]. Weickert and the Ütrecht school [195, 255, 1, 258] address many as-
pects of implementation of nonlinear scale spaces, namely speed, parallelism and
robustness. Crandall and Lions [61] also proposed a finite difference scheme for
mean curvature motion, valid in any dimension. Sethian’s book [232] explains
how to implement fast the motion of a curve or surface by the so called ”level set
method”, where a distance function to the curve or surface is evolved. Dynamic
programming allows a fast implementation (the ”fast marching method”).
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