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Abstract

We introduce a new model for multiscale analysis of space-time echocardiographic sequences. The proposed
nonlinear partial differential equation, representing the multiscale analysis, filters the sequence with keeping of
the space-time coherent structures. It combines the ideas of regularized Perona-Malik anisotropic diffusion and
Galilean invariant movie multiscale analysis of Alvarez, Guichard, Lions and Morel. The numerical method for
solving the proposed partial differential equation is suggested and its stability is shown. The computational
results are discussed.
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I. INTRODUCTION

Two-dimensional (2D) echocardiography is currently an imaging modality most frequently used in cardiology
due to its simplicity, lack of ionizing radiation and a relative low cost. However, 2D echocardiography allows
visualization of only tomographic planar sections of the heart; thus to obtain a complete evaluation of the
heart anatomy and function, the physician must reassemble mentally a three-dimensional (3D) model from
multiple two-dimensional images. Moreover, 2D echocardiography relies on geometrical assumptions for the
determination of heart chamber volumes and thus presents a considerable measurement error, especially for
the right ventricular and atrial volume determination ([5]). 3D echocardiography may avoid the need for
geometrical assumptions, thereby allowing accurate evaluation of chambers size and shape, even in the case
of cavities with irregular or distorted geometry. The correct visualization and interpretation of 3D echo
images is often affected by the high amount of noise intrinsically linked to the acquisition method. It is
absolutely necessary to submit the data to pre-processing in order to improve their legibility from a clinical
point of view. The application of traditional pre-processing algorithms (moving average, median and Gaussian
filtering) does not reduce the noise superimposed to the image maintaining a good definition of the interfaces
([15]). Nonlinear filtering methods based on partial differential equations have been applied in [22], [11] to
3D echocardiographic images (however, without considering a time coherence of successive echocardiographic
frames). The importance of noise removal by nonlinear filtering both for visualization purposes as well as
optical flow estimation has been also outlined by several authors (see e.g. [3], [19]). The processing algorithm
should be able to distinguish the noise from the contours of the different cardiac structures by using both
spatial and temporal coherence.

In order to follow these aims we use the approach based on the so called image multiscale analysis, i.e.
the application of a special nonlinear partial differential equation (PDE) to an initial image. We propose a
nonlinear PDE, representing the multiscale analysis, which combines ideas of the regularized Perona-Malik
anisotropic diffusion model and Galilean invariant movie multiscale analysis equation of Alvarez, Guichard,
Lions and Morel. It filters the space-time image sequence with respecting of the spatial as well as temporal
coherent structures. The semi-implicit in scale, linear and unconditionally stable numerical method is proposed
for solving the problem in discrete form. The space discretization is based on finite volume technique, which
is widely used in the computational community dealing with numerical methods for diffusion equations. The
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proposed approximation leads to solving of a linear system of equations for each frame of the sequence in each
discrete scale step. It can be done efficiently using standard or parallel methods of linear algebra.

The rest of the paper is organized as follows: in section II we introduce the main equation and we outline
its general features. In section III we describe an approximation scheme and a numerical method to solve the
non-linear multiscale analysis for 3D sequences. In section IV we present the results obtained by applying
the filtering to a synthetic image sequence and to a real 3D echocardiographic sequence. The qualitative
and quantitative assessment of the accuracy of the results are provided. In section V we explain why 3D
ultrasound sequences fulfill the requirements of our multiscale analysis model. The last part of the section
will deal with a comparison among several linear solvers for discrete equations. Conclusions are presented in
section VI.

II. THE MODEL EQUATION

The input echocardiographic sequence can be modelled by a real function ug(z1,z2,x3,8), ug : Q@ x [0,T] —
IR, where Q C IRY represents a spatial domain and [0,7] is the time interval in which the acquisition is
performed. In practice, €2 is a rectangular domain and N = 2 for 2D echocardiography or N = 3 for 3D
echocardiography. The time sequence can be periodically prolonged from [0,7] to IR. The typical example
which can be represented by such ug is an ultrasound acquisition of an entire cardiac cycle.

The image multiscale analysis, as it has been introduced in [1], associates with ug a family u(t, z1, z2, z3, 0) of
smoothed - simplified images (in our case a family of smoothed - filtered sequences) depending on an abstract
parameter t, the scale. As it has been proved in [1], if such family fulfills basic assumptions - pyramidal
structure, regularity and local comparison principle - then, it can be represented as a (viscosity in the sense
of [7]) solution of a second order (degenerate) parabolic partial differential equation

0
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with the initial condition given by
u(0, 71, T2, 73,0) = uo(z1, T2, 73,0). (2)

In (1) and in the sequel, we denote the vector of first partial derivatives with respect to all space and time
variables 1, z2, 23,0 by Du, while Vu denotes its spatial part. D?u is the matrix of second order derivatives
with respect of all space and time variables.

The echocardiographic space-time sequence is a 4D image and we can apply (1)-(2) to it. The question is
how to choose the right hand side of (1) in order to extract the most important information from the sequence,
filter out the noise and enhance relevant moving structures. First we will write the continuous model and in
the next chapter its discrete-numerical analogy.

We will assume that certain objects acquired in different time, and thus being in different frames of the
sequence, are formed by points that preserve their intensity along the motion trajectory. Such objects are
called Lambertian structures. Moreover we assume that motion is Galilean locally in time, i.e. the motion
trajectories are smooth in time. Designing the model we consider the following quantity (see [1], [2]) proposed
by Guichard ([10])
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where w1, wy are arbitrary vectors in IRY and A# is the time increment. The scalar function clt(u) (the name
clt indicates the relation to the curvature of Lambertian trajectory) will introduce a measure of coherence in
time for the moving structures. It consists of the sum of three positive parts and we want to find the minimum
in all possible directions wy,ws. The last two terms in the sum on the right hand side of (3) are related to
the differences in the intensities of end-points of candidate Lambertian velocity vectors wi,ws. To find the



directions of such vectors we look at the points which have the closest intensity value to the intensity u(z, ) in
the previous frame (term |u(z—wi,0—Af)—u(z,d)|) and in the next frame (term |u(z+wq, 0+ A0)—u(z, )|).
Those differences are scaled by the factor 1/(A8)2. Note that, if we find corresponding Lambertian points
both terms vanish. The first term in the sum, namely | < Vu,w; —wy > |/(A8)?, corresponds to the so called
apparent acceleration, i.e. to the difference between candidate Lambertian velocity vectors w; and ws in the
direction of Vu. For details and some more background from the optical flow point of view we refer to [1],
[2], [10]. The quantity clt(u) is thus related to the curvature of the space-time level curve passing through the
space-time point (z,6), i.e. to the curvature of Lambertian trajectory. The value of clt(u) vanishes for the
Lambertian points that are in Galilean motion. It is consistent with our purposes to not alter such trajectories.
On the other hand for the noisy points there is no motion coherence and thus clt(u) will be large there.

Concerning the space coherence, we assume that distinguished structures are located in the regions with a
certain mean value of the image intensity function and that object boundary forms an edge in the image. On
the edges, the gradient of image is large. We intend to keep the object boundaries, thus we want to construct
a diffusion process which will not blur or move the edges. It is clear, that such requirement will be fulfilled
when the coefficient of spatial diffusion will be small on edges and large outside them. For that reason we
have chosen the regularized Perona-Malik anisotropic diffusion introduced in [8] where the diffusion process
is designed in such way.

To combine the benefits of both time and spatial coherence we propose the following PDE

S = () .(4(1VC, ) V) )

together with initial condition (2). We consider zero Neumann boundary conditions in the spatial part of the
boundary and periodic boundary conditions in time. The parameters in (4) fulfill the following assumptions

g is a continuous function, (5)

g(0) =1 and 0 < g(s) = 0 for s — oo,

G, € C®(IRY) is a smoothing kernel, (6)

/ G, (z)dz = 1,

Gy(x) = 04 for o — 0,

0, - the Dirac measure at point z.

Let us note that by the term VG, * u in (4) we mean [ VG,(z — &)u(€)dE, where @ is an extension of u by
N
reflection over the spatial boundaries. The possible choices of the two previous parameters are e.g.
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with some constant K ([26]), and N-dimensional Gauss function ([8])
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Due to the shape of the function g (see general assumption (5) and the (usual) choice (7)), the spatial diffusion
process is slowed down in the points where the Gaussian gradient VG, * u is large. In the regions with the
small variation in the signal the smoothing is close to standard linear diffusion due to g(0) = 1. In the original
Perona-Malik model the diffusion depends simply on |Vu|. Introducing |VG, * u| instead of |Vu| makes the
process more stable with respect to noise and the model does not keep the so called ’spurious‘ edges ([8]).
With G, given by (8), the convolution property VG, x u = G, * Vu = V(G4 * u) holds true. Thus the
term VG, * u in (4) represents the smoothing of the spatial gradient, i.e. G, * Vu, and also the gradient



of the solution of the linear diffusion (heat) equation at the time o with initial condition given by wu, i.e.
V(Gy x u). We will use that fact also in our numerical implementation. The result of the convolution is used
as the input for the function g. Thus one can consider the spatial Catté, Lions, Morel and Coll diffusion term
V.(9(|JVGs * u|)) as a coupling of nonlinear Perona-Malik diffusion and linear diffusion.

The change of image intensity in scale, i.e. ‘3—1;, is given by the right hand side of (4) where Perona-Malik
term is multiplied by clt(u). Thus, the diffusion process degenerates (is stopped) in the Lambertian points that
are in Galilean motion. It is the important difference from standard (e.g. anisotropic) selective smoothing
processes. We can conclude that, the equation (4) preserves moving in time structures as well as keeps
their spatial edges. The features of the spatial nonlinear selective smoothing given by Perona-Malik term

V.(9(|JVG, * u|)) and of the Guichard’s acceleration term clt(u) are connected in our model equation (4).

Remark 1. The equation (4) is related to the 2D-movie multiscale analysis introduced by Alvarez, Guichard,
Lions and Morel in [1] and by Guichard in [10]. If additional assumptions, namely time-translation, space-
Euclidean and morphological invariance, are added to the basic hypotheses of image processing, then 2D-movie
multiscale analysis obeys the PDE of the form

ou

Fri |Vu|F(t, curv(u), accel (u))

where curv refers to the mean curvature of spatial level sets of u and accel refers to the continuous apparent
acceleration. Moreover, assuming space and time affine invariance, the only multiscale analysis has the form

([1)
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for ¢ € [0,1], where sgn is the signum function and ()T means positive part of real number. The special

interesting case is g = i, when the previous equation reduces to

0
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where G(u) is the Gaussian curvature of level surface in 3D space ([1], [2], [6]).
Remark 2. In the equation (4), we can consider |Vul|curv(u) = |Vu|V.|g—Z| instead of the Perona-Malik

type term V.(g(|VG, * u|)Vu) for spatial smoothing process. Such model can be useful not for strict spatial
edges keeping, but e.g. for slight smoothing of silhouettes of moving objects by multiscale analysis (see also
[22]). The similar implementation ideas as described in the next section can be applied also for such level-set
type equation ([23], [29], [30],[11], [22]).

ITI. NUMERICAL SCHEME

In this section we describe a numerical solution method for the image sequence multiscale analysis repre-
sented by the equation (4). First let us give some useful notations. Let our space-time sequence consist of
m + 1 frames. Let ¢ = % be the discrete time step of the sequence. Let us denote a discrete scale step by 7.
Then by v} we denote the j-th frame of the sequence in the i-th discrete scale step, i.e.

(21,29, 3) = u(ir, £1, 79, 3, j99). 9)

The basic idea of our numerical approximation is to handle terms in (4) in such a way to obtain a linear
boundary value problem for u; The reason is that, such equations can be solved by robust and efficient spatial
discretization techniques based on finite volume (FVM), finite difference (FDM) or finite element methods
(FEM). To that goal, the nonlinearities of equation (4) are treated using the previous scale step, while the
linear terms are handled implicitly. Such approach is called semi-implicit approximation in scale ([34], [35],
[12],4],[11]). The term semi-implicit is related to the fact that the nonlinear parts of the equation are treated



from the previous step, like in the explicit method, while the linear ones are taken from the actual step, like
in the implicit schemes. Then we provide space-time discretization and our numerical method leads to solving
of linear algebraic system in order to update each frame in the sequence in the new scale. It is clear that the
semi-implicit approach is robust, because it avoids the stability problems (see Appendix) arising in explicit
schemes. At the same time we do not need to solve nonlinear algebraic systems as in fully-implicit schemes.
Let us discuss the discretization of the terms in (4) in details. From definition (3) we can obtain a time-
discrete version of clt(u) considering the current, previous and next time frame of the sequence. We define
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Now, we can write the semi-implicit scheme for solving (4). Let 7 be the given discrete scale step and o
be the given variance of the kernel. For i =1,2,... and for each frame j = 0,...,m we look for uj satisfying

S = ct(ui )V.(g(| VG * ul ) V) (11)

where the periodicity of the sequence is used for j = 0 and 7 = m and zero Neumann boundary conditions
are considered for the spatial boundary 2. We can use also other conditions to update the first and the last
frame in the sequence (e.g. reflexive, if only one half of the cardiac cycle is given). The equation (11) for
the unknown function u; is elliptic PDE in points where clt(uj-_l) > () while it degenerates to the algebraic
identity in points where clt(u;-_l) =0.

We can use the convolution derivative property VG, * u;-_l = V(Gy * u;_l) and perform the convolution
solving numerically the linear heat equation

dp
— =V.(V 12
2 _9.(V9) (12)
in the time interval [0, o] with the initial condition ¢(z,0) = u;_l(:c) Then we take uf = ¢(z,0) and [Vuf| is
used as the edge indicator. Numerically we solve the equation (12) implicitly in ¢ with just one discrete scale
step of length o. Thus, the scheme (11) can be rewritten into the couple of semi-discrete linear equations

BTN =y V(g Vug ) V) (13)
T 7 ) J J
where ug is the solution of
uj —uj! .
I = V.(Vu)) (14)
§=0,...,m, i=12,.. (15)

Now we will discuss the discretization of (13)-(14) on a given spatial discrete pixels/voxels structure. In
discrete settings, ur)nlurjl in (10) is evaluated only for vectors connecting pixels/voxels centers denoted by P (see
1,W2

also [10]). We look only to a certain rectangular neighborhood centered in P.

For space discretization of (13) as well as (14) we use the so called finite (or control) volume method. This
method is widely used in engineering and applied mathematics community for numerical computations of
diffusion (convection-diffusion and conservation laws as well) processes ([24]). In such approach, 3D space
is divided into a set of finite volumes and the partial differential equation is approximated by balancing the
flux through the finite volume boundaries. Let the discrete image intensity values be given in the central



points P of finite volumes corresponding to voxels in 3D. Let h denote the distance between two such points
(we consider uniform 3D grid in this explanation, but all considerations can be generalized to nonuniform,
non-rectangular 2D or 3D grids). Let us denote the grid neighbors of P by W (west), E (east), S (south), N

(north), B

(bottom), U (up) and the central points of the faces of the finite in direction of neighbors by w, e,

s, n, b, u. The finite volume around P then can be written as V = [w, €] x [s,n] x [b,u] C IR3.
To simplify the notation, denote d = g(|Vuj|). Let us integrate the equation (13) in the finite volume V.

We obtain

Let clt(uj-*1
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)(P) for all z € V, i.e. we assume constant profile of this quantity in V. Further,

assume that diffusion fluxes are constant on each face of the volume V. Then, applying the Green theorem to
the first integral on the right hand side of (16) we obtain
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Approximating partial derivatives by central differences and approximating integrals using values at central
points, we obtain the following difference equation holding in each grid point P

where
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ap=aw +ag+as+ay+ap+ay+1,
bp = ui ' (P).

Applying the zero Neumann boundary conditions we can represent the equations (18) in matrix form

AT =D (20)

where ﬁ; represents the vector of unknown discrete values of u; The coefficients of the matrix A depend on uj

and u;.-*l and thus they are recomputed in each discrete frame and scale step. Because of the dependence on
u7, we have to solve the equation (14). The finite volume method for (14) leads to a linear system represented
by a symmetric matrix which is the same in each frame and scale step. Hence we obtain the values of uf in
the grid points. Using those values we compute g(|VuJ|) for each face central point. Finally we arrange the

matrix A and we solve the system (20).

IV. COMPUTATIONAL RESULTS

In this section we present and discuss the computational results obtained by the approximation scheme
suggested in the previous section. First we consider a phantom-like image sequence consisting of an expanding,
slightly deforming and translating ellipse with a four-petal structure inside. We add uniform noise to the image
sequence. The original six-frame sequence and its noise-corrupted version are depicted in Figure 1. Figure
2 represents the results of the nonlinear multiscale analysis in the first, second and fifth discrete scale steps.
We have used 7 = 0.1, o0 = 0.001, h = 1/64.

Next we have applied multiscale analysis model to an in vivo acquired 3D echocardiographic sequence. The
sequence has been obtained by means of a rotational acquisition technique using the TomTec Imaging System.
With this technique the transducer undergoes a rotation around its main axis in a propeller configuration.
A series of tomographies corresponding to the sections of a cone of biological tissue has been acquired. The
acquisition consists of 14 image-cubes that represent a whole cardiac cycle of a real patient. A volume of
interest of 150 x 150 x 100 voxels has been processed. The interval of time between one cube and the next
one is 40 ms. In Figures 3-9 (first column) the left ventricular endocardium and the left atrium of an entire
unfiltered cardiac cycle has been visualized. The quality of the 3D raw dataset is very good. Nevertheless a
remarkable amount of noise is present in the sequence. The iso-surfaces corresponding to the interface between
cardiac muscle and blood have been computed by the marching cubes method and visualized by a Gouraud
shading surface rendering ([17], [31]). To clarify the visualization of the ventricular chambers we applied four
cutting planes that isolate the region of interest. In clinical practice a cutting plane that filters out the ”in
front” regions is often used ([25]). The epicardium is not visible because the gray levels of his interface are
out of the marching cubes threshold that we have chosen to visualize the left chambers. In particular the
low echogenicity of the blood allows the choice of a low isosurface threshold that avoids the visualization of
most of the other structures . Figures 3-9 consist of three sub-figures. For each row, in the left we plot the
echo-volume visualized using the original noisy data, in the middle the result after three discrete scale steps
and on the right after nine discrete scale steps. We have chosen 7 = 0.2, ¢ = 0.0001 and h = 1/150.

The parameter h represents the size of the pixel/voxel. In numerical integration of partial differential
equations, a classical choice is to consider a rectangular domain with the longest side S of unitary length.
In this case h = 1/Ng, where Ng is the number of equally spaced subintervals. In image processing Ng is
naturally chosen as the number of pixels/voxels in the direction of the longest side.

For any choice of the scale step 7 we have shown that the numerical scheme is unconditionally stable (see
Appendix). However the low-order (first order) accuracy in the scale integration places a restriction on the
maximum size of the scale step in order to be close to the continuous model (4). For practical purpose, we
have obtained good results for a range of values [0.01,0.2].

The parameter o in (14) corresponds to the shape of the Gauss function. Usually 0 < 7 where 7 is the
discrete scale step in (13). In the phantom sequence the structures to be preserved are quite large (more
than 10 pixels) and we have used o = 0.001. For the echo sequence we preserve spatial structures of small
dimension by using ¢ = 0.0001.



Fig. 1. 2D phantom - original and noisy images.



Fig. 2. 2D phantom - 1st, 2nd and 5th scale steps for each time frame.



Fig. 5. Multiscale analysis of the 5th frame of the 3D echocardiographic sequence.



Fig. 8. Multiscale analysis of the 11th frame of the 3D echocardiographic sequence.



Fig. 9. Multiscale analysis of the 13th frame of the 3D echocardiographic sequence.

We want to evaluate the accuracy of the proposed multiscale analysis model. We are interested in noise
removal by preserving the shape and the position of the coherent structures as much as possible. Thus we
set the following procedure to define and estimate the error. An external observer has manually segmented
the ventricular chamber by considering every single slice [ of a 3D unfiltered frame. We compute the mean
intensity value @ of the points corresponding to the manual segmentation over all the slices and we use @
to define the ”closest” isosurface to the manual segmentation itself. In Figure 10 a slice of a 3D frame
with the superimposition of % iso-level curves is shown. In Figure 11 the same situation after 9 discrete
scale steps is reproduced. The nonlinear multiscale analysis does not move significantly the position of
the coherent boundaries as it is shown in Figure 12, where the contour lines of the unfiltered and filtered
images are compared. At the same time the filtering of the non-coherent structures is performed. Our
goal now is to estimate the mean distance between the manual segmentation and the isoline in both cases
before and after filtering. For each slice a distance function D;(z,y) from the isoline is computed with level
set methods, following ([30]-Chapter 6). In Figure 13 the distance function from the isoline of Figure 12
is visualized. The mean distance between the manual segmentation curve C; and the isoline is defined as
Dy = [¢, Di(z,y)ds/ [g, ds, where s is the arclenght. In Figure 14 both C; and Dj(z,y) are visualized. The
distance error has been evaluated for every slice of the 3D dataset. The global distance error is computed
by averaging the errors over the L slices, i.e. D = %Zle D;. With this procedure we estimated D = 1.3
voxels for the unfiltered image and D = 0.8 voxels for the result of the multiscale analysis. Such results give
a quantitative confirmation of the qualitative visual inspection, about the ability of the method to keep the
position of the coherent structures.

V. DISCUSSION

To fulfill the filtering requirements the echocardiographic sequence should be Lambertian and locally
Galilean. The first requirement deals with the question: ”Is the echographic signal a conservative quan-
tity?”. Experimental results show that the rotation and deformation of the tissue produce nonconservative
effects of the brightness signal. It is therefore necessary to find out to what extent during the cardiac move-
ment the brightness signal is conserved in the echocardiographic sequence. Let us consider the correlation
between a deformed (rotated) reference echographic image and the echographic image obtained by deforming
(rotating) the tissue in the same way. Meunier and Bertrand [21] developed a mathematical analysis which
clearly shows how this correlation varies when a movement of translation, rotation and deformation is imposed
on the tissue. This analysis has been applied to 3D echocardiographic sequences in [36]. The nonconservative
phenomena have found to be negligible between subsequent frames and the brightness variation is due to a
large extent to the transport alone of the muscular tissue. Such conclusions have been achieved in [21] and
[36] also on the basis of the experimental results published by Streeter et al. ([32][33]). Moreover it should be
observed that a number of approaches used for calculating the motion field from sequences of echocardiogra-
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Fig. 10. The level contour line 4 = % computed on the unfiltered slice y=103. The gray-level image is visualized in the
background.

phies [18]-[20] implicitly assume that the variation of luminosity is due to the transport alone of the tissue,
and thus, that the echocardiographic signal is a Lambertian quantity.

A motion is locally Galilean if the trajectory of each material point is smooth. In 3D echocardiographic
sequences this is true for the two separate diastole and systole phases, while the motion is not Galilean during
the change of phases where the acceleration is high and the motion tends to be non smooth. Nevertheless our
experiments do not show a loss of accuracy in the edge preservation of this extremal points.

We finish the discussion by presenting several comparisons related to the efficiency of linear solvers for the
linear system (20). The huge number of unknowns in each system and the sparsity pattern of the coefficient
matrix suggest the use of an iterative solver. Research in iterative solvers is currently a very active field, see
([28]) and the quoted references. In our comparison we have chosen the classical and most relevant solvers,
namely Gauss-Seidel method (GS), conjugate gradient method (CG), biconjugate gradient stabilized method
(BICGSTAB), transpose free quasi minimal residual method (TFQMR), generalized minimum residual method
(GMRES). With a good preconditioner, the total amount of steps required for convergence can be reduced
dramatically, at the cost of a slight increase in the number of operations per step, resulting in much more
efficient algorithms in general. In this first investigation we use for each method, when it is possible, the
following well-known preconditioners: Right ILU(0) (zero fill-in incomplete LU factorization), Left ILU(0),
Right MILU(0) (modified ILU(0)), Left MILU(0) and ILUT(n) (ILU with n-fill in and thresholding). For

details we refer to ([28]) or ([9]). In case of GMRES method we allow the restart when the dimension of
)

Krylov subspace is 20. We stop the iterations when the Euclidean norm of the actual residual ) = b— Aﬂ;(k
satisfies
Ir® ) < alr @)

with tolerance parameter o = 0.01 and (0 representing the initial residual. We start with H;(O) = 0.
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Fig. 11. The level contour line 4 = @& computed on the slice y=103 after 9 discrete scale steps of filtering. The filtered
image is shown in the background.

We present two tables. Table 1 is related to computations on the first discrete scale level and Table 2 to
computations on the third one. In the 2D testing example, we process a simple phantom given by a moving
noisy circle and for report we choose the time frame from the middle of the sequence. We used 7 = 0.1,
o = 0.001 and h = 1/128. In the tables, we print the number of multiplications (matrix times vector)
performed until convergence is reached because this is the most expensive step of the iterative procedure and
this number is independent on computer architecture. We report also the CPU time in seconds (on SUN
Sparc 10 workstation) for each complete iterative procedure. This comparison is related also to work ([35])
in which an additive operator splitting method (AOS) is used for solving the anisotropic diffusion equation
by a semi-implicit technique. Such a method is direct and thus uses a fixed number of operations. They
report that, in general, the AOS scheme is about three times faster than classical Gauss-Seidel method with
the tolerance @ = 0.01. From our comparison, it is clear that any preconditioned iterative method is about
10 times faster than Gauss-Seidel procedure for matrices receiving from image multiscale analysis models. In
the best case, using the GMRES method we have a speed-up of about 50. We conclude that semi-implicit
numerical approximation leads to standard space discretization methods for boundary value problems and
then to linear systems that can be solved efficiently by iterative solvers, even with the use of preconditioners
designed for general classes of matrices. Clearly more investigations are necessary to design preconditioners
for these specific matrices and underlying problem, and this will be a future research topic.

VI. CONCLUSIONS

The multiscale analysis of 3D echocardiographic sequences we proposed uses spatial and temporal informa-
tion to filter out noise and to preserve the coherent space-time structures. The PDE representing the model
combines the effect of the anisotropic diffusion in space and the movie multiscale analysis in time. In the
limited number of synthesized and real sequences that we have considered the results are encouraging both
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Fig. 12. Comparison between the contour lines corresponding to the unfiltered (dot) and filtered (dot-line) image. In
background the unfiltered image is shown. For clarity of representation only the subregion around the left and right
ventricles is visualized.
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Fig. 13. Distance function Dj(z,y) from the @ level set of the filtered image (isoline of Figure 11). To allow a better
visualization the elevation axis has been reversed (0 on the top) and the distance has been cuted off for Dy (z,y) > 10.



10

20

30

40

50

60

50 60 70 80 90 100 110 120

Fig. 14. The manual segmentation curve C; (dashed line) over-imposed to the distance function D;(z,y) (solid iso-
contour lines). The thick lines represent the zero level set of D;(x,y).

from the qualitative and quantitative point of view. In particular the boundaries of the coherent structures
are not moved significantly while a remarkable reduction of the noise is provided. A statistically significant
number of diagnostic cases has to be investigated to assess a full clinical validation. A robust numerical
scheme to solve the discretized PDE has been proposed and a comparison among several iterative solvers
has been performed. The method is efficient for 2D+time sequences while the 3D+time implementation is
computationally intensive also due to the remarkable amount of data that has to be processed.
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VII. APPENDIX - PROPERTIES OF THE NUMERICAL APPROXIMATION

In this Appendix, we prove that the numerical scheme proposed in the paper is unconditionally stable in
the Ly, sense.

The matrix A in (20) is non-symmetric but strictly diagonally dominant and thus invertible, so we can
assert that the solution of the system (20) always exists and it can be expressed in the form

i vl a1
u; = Buj , where B=A"". (21)
The coefficients of A fulfill
agr > 0,Vk, ap <0,Vk, Ik #£1, (22)
Zakl == 1,Vk} (23)
l

Moreover, for the matrix C = I — D A, where D is the diagonal of A, we have

p(C) < Clloe = max Y [ea] < 1. (24)
!

Thus, using e.g. ([28], Theorem 1.16) we have that A is a M-matrix and hence for its inverse B we obtain
bk > 0,VE, 1. (25)
Using (23) we have that Av =7 for v = (1,1, ...,1) and hence Bt = BA7 = 7 from which
> b =1,k (26)
!
holds, too. Now let
min = infu " (k)

and 4
max = sup H;-_l (k)



where by uZ (k) we denote the k-th component of the vector ﬂ;-_l. Then due to (25) and (26) we have
min = Z by min < ZbkluZ L) = ﬂ;(k),Vk

Z bkluz 1 S Z bkl max = max,Vk.
l

Thus, the so called Lq-stability condition is fulfilled for the discrete solution.in each discrete frame and scale
step. Let a, b be real constants. We can state the following stability result:

which means that Ly.-stability condition holds for the entire discrete multiscale image sequence.



