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Exact Histogram Specification
Dinu Coltuc, Philippe Bolon, and Jean-Marc Chassery

Abstract—While in the continuous case, statistical models of his-
togram equalization/specification would yield exact results, their
discrete counterparts fail. This is due to the fact that the cumula-
tive distribution functions one deals with are not exactly invertible.
Otherwise stated, exact histogram specification for discrete images
is an ill-posed problem. Invertible cumulative distribution func-
tions are obtained by translating the problem in a -dimensional
space and further inducing a strict ordering among image pixels.
The proposed ordering refines the natural one. Experimental re-
sults and statistical models of the induced ordering are presented
and several applications are discussed: image enhancement, nor-
malization, watermarking, etc.

Index Terms—Exact histogram equalization, exact histogram
specification, strict ordering.

I. INTRODUCTION

H ISTOGRAM specification (or modeling) refers to a
class of image transforms which aims to obtain images

the histograms of which have a desired shape [1]–[3]. Even
if specifying a meaningful histogram for a certain image is
not obvious, there are some general ones (such as uniform,
Gaussian, exponential) whose usefulness is clearly understood.
Thus, obtaining a uniform histogram image corresponds to the
well-known image enhancement technique called histogram
equalization. By means of histogram equalization, graylevels
are spread over the entire scale and an equal number of pixels
is allocated to each graylevel. For human observers, this yields
more balanced and better contrasted images. Furthermore,
equalized images, besides their pleasant appearance, make
details visible in dark or bright regions of the original images.
Better results in image enhancement are obtained if the human
visual system (HVS) is taken into account. The image his-
togram is specified according to a certain model of the HVS
such that the subjectively perceived image has an equalized
histogram. Several models of the HVS have been taken into
account [4], [5].

Besides image enhancement, histogram specification is of in-
terest in many other image processing tasks. For example, most
tresholding/segmentation algorithms are based on mixtures of
Gaussian probability density functions and optimal schemes are
expected to be obtained if such conditions are met. Similarly, op-
timal coding could be obtained if exact histogram specification
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TABLE I
PROBABILITY OF PIXEL EQUALITY (GAUSSIAN-LIKE DISTRIBUTION)

were available. Finally, exact histogram specification immedi-
ately yields image normalization.

Histogram specification can be directly approached as an op-
timization problem: Given the original image histogram and the
desired one, find a graylevel mapping to obtain the best approx-
imation of the desired histogram. Such a mapping can be found
by simply grouping graylevels in order to minimize the approx-
imation error to the desired histogram [6]. Other solutions have
been investigated as well, for instance by using the graph theory
[7]. Although direct approaches are intuitive and straightfor-
ward, statistical modeling not only gives the mapping but also a
sound understanding of the histogram specification problem.

According to the classical approach to image enhancement by
histogram specification, image intensity is regarded as a contin-
uous random variable (RV) characterized by its probability den-
sity function (PDF). In this setting, given a RV with a known
distribution, the function (transform) to be found must be such
that the transformed RV has the specified PDF. In the sequel, the
approach of [1] is briefly recalled.

For example, in the case of histogram equalization, let be a
continuous RV supposed to take values in and let be
its PDF. If , i.e., the cumulative distribu-
tion function (CDF) of , is strictly increasing, the RV
is uniformly distributed in (see [8]). Given a continuous
graylevel image taking values in , the normalized image

takes values in . If the normalized image is consid-
ered as the RV , the RV z obtained as above is uniformly dis-
tributed in [0,1], is uniform in and, thus, the trans-
form equalizes the graylevel image.

Histogram specification generalizes the histogram equaliza-
tion case. As before, the continuous setting is considered. Let

be the original RV and let be a RV having the desired
PDF, . Let and be the CDFs of and , respec-
tively. Both and are supposed to be strictly increasing.
Let furthermore and . Since and
are uniform in , one can impose and therefore,

. Thus, is proven to be
the desired function which maps the given into the desired
to recover PDF . Even if cannot usually be given by
a closed formula, the problem can be solved numerically.

While in the continuous case the specification/equalization
algorithms are supposed to provide exact results, their discrete
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TABLE II
STRICT ORDERING PROBABILITY (GAUSSIAN-LIKE DISTRIBUTION)

counterpartsfail.Thus, thediscreteequalizationalgorithmcannot
separate among equal graylevel pixels in order to get a perfectly
flat histogram. As it is well-known, the discrete histogram equal-
ization becomes a point-wise transform on the graylevel scale.
Whatever the original image histogram, the resulted histogram is
flattened, but may be far frombeing uniform.Some graylevels are
merged together to approximate the bins of a uniform histogram.
The resulted graylevels are spread as uniformly as possible cov-
eringthewholerangeuptothewhite level.Obviously, thediscrete
specification algorithm gives approximate results, too. While for
histogram equalization the mapping immediately appears as the
CDF of the original image distribution, the mapping derivation
problem is more difficult for the general case of histogram spec-
ification [1], [2], [10].

Several attempts have been made so far to improve histogram
equalization/specification performances [2], [6], [9], [11]. For
instance, the conventional algorithm is further refined to get
exact histogram equalization by randomly separating pixels [2],
[9]. Exact uniform histograms are achieved at the expense of
noisy images as stated in [2]. A better solution was proposed in
[11], where the histogram approximation is improved avoiding
noise by separating pixels according to their local mean on the
four horizontal and vertical neighbors. We shall further refine
this latter solution.

In this paper, an approach to exact histogram specification
for real images is proposed. It extends our previous work on
strict ordering on discrete images [13] and introduces a theo-
retical analysis framework. The paper is organized as follows.
The basic principle of exact histogram specification is presented
in Section II. In Section III, the ordering relation is defined.
The theoretical analysis and experimental results concerning or-
dering are provided in Section IV. In Section V, applications
to image processing are investigated. Finally, conclusions are
given in Section VI.

II. EXACT HISTOGRAM SPECIFICATION

The discrete version of the statistical approaches could have
yielded exact results (perfectly equalized/specified histograms)

if CDFs had been invertible [1]. In the discrete case, CDFs are
staircase functions, hence they are not invertible except in the
case when pixels take distinct values. Since the number of pixels
in an image is usually considerably larger than the number of
graylevels, the distinct pixel value case is irrelevant. The CDF
of an RV determines the probabilities and con-
sequently, it depends on the ordering relation used. Otherwise
stated, a discrete exact histogram equalization/specification
problem is solved if the usual ordering is replaced by a new
ordering relation which induces a strict ordering among image
pixels. (Notice that a strict ordering reduces the problem to the
distinct pixel case.)

A. Principle

Let be a discrete image having graylevels and
let be the histogram to be specified.
Notice that is the nonnormalized image histogram, i.e.,
is the number of pixels having graylevel . Let us further sup-
pose that an ordering relation, , is defined among the pixels of

such that the induced ordering is strict. Then, the exact his-
togram specification simply proceeds as follows [13].

1) Order image pixels:

(1)

2) Split the ordered string (1) from left to right in groups,
such as group has pixels.

3) For all the pixels in a group , assign graylevel .
The exact equalization algorithm considers groups of
pixels in step 2).

The aforementioned scheme yields exact results, namely the
image is transformed to obtain exactly the desired histogram,
provided that such a histogram is a valid one. The validity of
histograms is understood as the equality between the image size
(number of pixels) and the sum of histogram bins, i.e.,

(2)
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Specifying a histogram is equivalent to specifying a certain dis-
tribution whose PDF is exactly the normalized image histogram.
Since histogram bins take integer values, for an size
image, PDFs cannot be specified at a resolution better than

(3)

In other words, given any desired continuous distribution, a
image can be transformed to approximate it with the preci-

sion defined in (3).
Equation (1) requires strict inequalities. On the other hand, the

histogram specification algorithm described previously does not
requireanabsolutelystrictorderedsequence; it simplyrequires to
discriminate among groups of pixels. Otherwise stated, prob-
lems appear when equal graylevel pixels have to be separated
(have to be assigned to different graylevels). Besides, even if two
pixels or a small group of equal pixels have to be split into two dis-
tinct groups, the error is not significant. Therefore, we can relax
the condition of strict ordering to almost strict ordering. In fact,
we could generally accept that some small groups of pixels are
equal in the sense of the considered ordering.

III. ORDERING

The discrete exact histogram specification is solved if a strict
ordering can be induced on image pixels. Such a strict ordering
can be obtained in many ways. For instance, any one-to-one
mapping between image coordinates and a set of integers,

, induces a strict ordering. Thus,
can be considered to be greater than in the

sense of the ordering induced by the mapping , if
with the usual ordering on the set of integers. The

number of such mappings is of the order of , but most
of them are useless for exact histogram specification. In order
to have a useful strict ordering, the induced ordering must be
consistent with the normal ordering; i.e., if a pixel graylevel is
greater than another one with the normal ordering on integers,
it should be greater with the new ordering as well. Otherwise
stated, the new ordering should refine the normal ordering on
the set of integers. Regarding refinement, the induced ordering
should correspond, in a certain way, to the human perception
of brightness; otherwise results would become noisy (see [2]).
All constraints stated above are intended to preserve the image
content, as it is perceived by humans.

In order to induce such an ordering the pixel neighborhood
is taken into account. In fact, this idea has already been used
to improve histogram equalization by taking into account the
graylevel average on the four neighbors in horizontal and ver-
tical directions [11]. Since only the average on the four neigh-
bors does not succeed to completely discriminate among equal
pixels, we elaborate on this idea by considering a family of
neighborhoods around each pixel.

Let be a fixed integer and let , be a family
of closed neighborhoods such that

(4)

For each pixel , let be the mean value
of the graylevels of on . We assume that the image is
expanded by replicating the border pixels in order to accom-
modate on its borders. Let denote the -tuple

and let us further consider
the lexicographic order defined on these -tuples. Let us recall
that is less than according to the lexicographic
order if or if there is
such that for and

.
The order defined by the lexicographic ordering induces a

complete ordering on the set of -tuples. Since a
-tuple has been associated to each pixel, there is a correspon-

dence between the set of -tuples and the image. Therefore,
the same ordering can be extended to discrete images as well.
We will further write when
is less than with respect to the lexicographic order.

To summarize, by using a vector operator, the problem is
transferred from a scalar image to a -dimensional space by
associating a vector to each pixel and then, by lexicographically
ordering the vectors the same order is induced among the image
pixels. The vector operator can be seen as a filter bank

(5)

and

(6)

Each extracts some local information about graylevels
around the current pixel . The inclusion among the filter
supports of (4) is intended to somehow order the amount of
information extracted by each filter. Thus, when is small,
the information extracted is strongly connected to the current
pixel. As index increases, support increases as well and
the weight of the current pixel decreases in the filter response.
This is a reason for ranking pixels using the lexicographic order
starting with the first index.

We consider the , as moving average filters.
Other linear or nonlinear filters can be used as well (Gaussian
filters, median, etc).

In order to completely specify the operator, filter supports
must be specified. If is of size 1 1 and , the usual
ordering on [0,L] is recovered. Let ; in this case, the
order induced on the image is refined. Thus, one can find a strict
ordering among pixels having the same graylevel (or alterna-
tively, the same mean value over ), but different mean values
over . The greater , the finer the ordering. Therefore, an
ordering consistent with the usual one is obtained if we restrict

to 1 1 (which implies that is the identity filter).
Under such weak constraints, there are many possibilities to

select the family, and thus, the operator. The objective
in our selection was to keep filter supports as small as pos-
sible. This choice reduces computational complexity. Moreover
it prevents pixels far apart from the current pixel from influ-
encing its rank in the ordered string. Meanwhile, the family
should have some geometrical meaning and symmetry. There-
fore a family of moving average filters is designed starting with

having a one-pixel size support and then, enlarging from the
next ones while keeping the symmetry for a minimum increase
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of the filter support. What follows is the description of the first
six filter masks:

The development of the family can continue, on the same
basis, with , and so on, keeping symmetry and the min-
imum increase between filter supports.

IV. ORDERING EVALUATION

With the proposed ordering relation, a pixel turns out to be
brighter than another pixel when its local mean is greater than
the local mean of the other one. The initial ordering of the
graylevels is refined. Our aim is to achieve a strict ordering, or,
in a less restrictive setting, a strict ordering almost everywhere,
i.e., having very few equalities in (1).

Obviously, the induced ordering depends on as well as on
the image: Original graylevel distribution, graylevel range and
image size. For images with very large uniform areas (like syn-
thetic images), a strict ordering may not be possible. We will
assume we deal with natural images having enough graylevels
and enough details (or noise). A too large value for means an
increase in the computational complexity of the ordering pro-
cedure. Moreover, when is increased, the rank of a pixel de-
pends on pixels located far apart (which is of no physical rele-
vance). Therefore, a moderate value for is desired.

A. Theoretical Analysis

In order to quantify the rather fuzzy measures given above,
namely moderate size and enough gray levels, the simplified
model of images having quantized Gaussian IID (independent
identically distributed) pixels is considered. The probability of
equal pixels as a function of and is evaluated. Notice that
the variance of the Gaussian distribution is closely related to
the number of graylevels of the image: since the probability of
having values outside the range situated around the mean
of the Gaussian is almost zero, the graylevel range can be
considered to be about .

With the proposed ordering, there is equality between two
pixels of coordinates and , respectively, if

(7)

for . Since are moving average filters, equalities
between averages stand for equalities of graylevel sums over the
corresponding neighborhoods. Thus

(8)

where . Due to the neighborhood inclusion, once
there is sum equality for , it is not necessary to verify the
equality for , but only for the set difference .
The previous observation leads to the replacement of each
by a set , where and

(9)

for . By replacing the family and discarding
the normalization in moving average filtering, the operator

is replaced by the equivalent operator
, where

The equality of two pixels from (7) becomes

(10)

which is equivalent to

(11)

In order to compute the probability of having pixel equality
according to the proposed ordering relation, one has to deter-
mine the probability of equality between sums of pixels. Let

be the probability of equality between the sum of pixels.
Original image pixel distribution is denoted by . Let
be the probability law of the sum of RV. For , the
probability that pixels and have the same
graylevel is

(12)
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In the general case, the probability to have equality between two
sums of independent random variables is

(13)

where the probability law is computed by convolution

(14)

Obviously, .
Let be the probability to have equality for the corre-

sponding sums of pixels on neighborhoods and be the
probability of equality of two pixels as a function of .
immediately follows as a mere product:

(15)

It should be noted that the probability of equality between
2 pixels, , depends not only on , but also on the pixel
locations. This is due to the fact that if the two pixels under con-
sideration are close together, some common pixels can appear
in the computation of probabilities. Thus, the probability of
sum equalities increases. Therefore, for a given varies
between a lower and an upper bound. In the sequel, let .

The lower bound is obtained if no pixels are common in the
computation of . In this case,

, and .
The upper bound is obtained if pixels are adjacent along diag-

onal directions. Thus, For one has , as above. Next, when
is centered on the two diagonal pixels, one has 2 pixels in

common. Since two pixels are common, their sum can be elimi-
nated from the sum of 4 pixels on each . Thus , increases
from the probability to have equality between sums of 4 RV’s
up to the probability to have equality between sums of 2 RV’s,
i.e., . Furthermore, the neighborhood of each pixel
contains the other current pixel, therefore only three pixels do
count, yielding . No differences appear for and

, i.e., one has .
For , two out of eight pixels are common, and there is

equality between the sums of the two pixels which are also con-
tained in neighborhoods. Therefore, . (When line
or column adjacency is considered, one has

and , which yields a
slightly lower probability.)

The case of a Gaussian-like graylevel distribution is further
considered

(16)

where and . Probabilities
can be directly computed by using (14)(15)–(16). Alternatively,
they can be approximated by considering the continuous case.
In the sequel, in order to get closed formulas, the latter approach
is considered.

For two independent Gaussian random variables,
and , the distribution of the sum is Gaussian as well,

, with: and . Then, if

, it immediately follows that ,
where , and .

The probabilities are

(17)

Since the final sum corresponds to a distribution
, one has

(18)

It follows:

(19)

Furthermore, by using (15) and the relation between and
discussed above, the lower and upper bounds of are

computed. It can be seen that the upper bound is approximately
twice the lower bound and, as increases, both probabilities
become very small. The results for are presented
in Table I.

For an image, there are pixel pairs. If the

probability to have two equal pixels according to the proposed
ordering is , the probability to have two distinct pixels is

. Then, the probability to have all pairs distinct is

(20)

Using (20) and Table I, the lower and upper bounds of the
probability of strict ordering can be evaluated. They depend on

1) the number of neighborhoods ;
2) the image size ;
3) the graylevel range , or equivalently, .

Thus, the probability increases with and decreases with
and . In Table II, the results for two typical image sizes

( and 512 512), and
are presented. In each case, the probability is evaluated by con-
sidering the bounds , lower and upper , of .
The results are given with a seven-decimal digit precision. The
error is less than which is considerably smaller than
, namely for and for

.
Several conclusions can be drawn from Table II. The most im-

portant result is that a reasonably small value of , i.e., ,
assures strict ordering. Next, the differences between the results
obtained with the lower and upper bounds of are not sig-
nificant as soon as . The results obtained for are
not of great concern—the image is supposed to have less than 30
graylevels range and consequently, a poor graylevel resolution.
As soon as increases, the Gaussian distribution model gives
very good results.

The probabilities of sum equality in the case of a uniform
distribution model are considerably lower than those obtained
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Fig. 1. (Left) Original and (right) perfectly equalized (right) test images.

for the Gaussian one and obviously, the strict ordering proba-
bility is higher. Thus, for an image having graylevels, one
has and, hence, . Next,

has a triangular shape. can be directly computed;
(using ); it follows that

. For can be very well ap-
proximated by a Gaussian distribution; the error decreases with

(central limit theorem). Thus,
and and

, finally
.

B. Experimental Results

The statistical analysis shows that strict ordering is achieved
for . Ordering evaluation on real images gives very good
results, too. Almost strict ordering is induced for . For
instance, with the image “Lena” of size 256 256 and with the
new ordering for , there are only 8 pairs of equal pixels
and for , the ordering is strict. As expected, on the same
image, but of size 512 512, there is a small decrease in per-
formance. There are 352 pairs of equal pixels for and
the number of equalities decreases to six pairs for . Quite
similar results have been found in all the tests performed so far.

Fig. 2. (Left) Logarithmic and (right) linear histogram specified test images.

In the worst case, for 512 512 size images, a couple of tens of
pairs of nonseparable pixels have been found. Compared with
the image size (262 144 pixels), this means that almost com-
pletely strict ordering is achieved.

In real images, the statistical independence of pixels is gen-
erally not satisfied. Conversely, pixels are correlated and this
increases the probability of equality. However, in the light of
the results obtained so far, the ordering obtained for
is appropriate for any application. A number of at most tens
of equal pixel pairs compared with the image size of 262 144
pixels, means a very good separation of image pixels and has
no practical influence on the specification result if pixel pairs
differ from the interval limits in the ordered string. Thus, the
burden of increasing does not make any sense.

V. APPLICATIONS

The immediate use of exact histogram equalization/specifica-
tion is to replace its classical counterpart in some applications
where improvements are expected as, for instance, exact image
normalization or image enhancement. New specific applications
are foreseen, for example, image watermarking or histogram
equalization inversion.
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Fig. 3. True histograms before and after exact specification.

Fig. 4. Local histogram equalization: (left) 16� 16 window; (right) 32� 32 window.

A. Image Enhancement

Histogram equalization/specification is mainly used for
image enhancement. For instance, in Fig. 1, the exact histogram
equalization of test images is presented. The same test images
having linear and logarithmic histogram are presented in Fig.
2. Compared with the exact equalization case, the transformed
images turn out to be biased to white levels. (We stress that
images shown in Fig. 1 (right column) and Fig. 2 have exactly
uniform, linear and logarithmic histograms as shown in Fig. 3).
Regarding image enhancement, it should be noticed that exact
histogram specification allows the precise implementation of
complex human visual histogram modeling techniques (see, for
instance, [4]).

Since image statistics may change drastically from one
region to another, local approaches have proven to give better
results than global ones. Contrast enhancement by local (adap-
tive) histogram specification has received much attention in
the literature [14]–[16]. Local exact histogram specification is
straightforward: A sliding window is considered and, for each
window location, the ordering and histogram specification are
performed, but only the value of the central pixel is kept. Two
examples of local histogram equalization for windows of size

16 16 (left) and 32 32 (right), respectively, are shown in
Fig. 4. Several comments should be made. First, local histogram
equalization considerably increases the contrast—this is why
such methods are used in medical imaging. Second, local
minima and maxima are firmly forced into black and white,
respectively. This is the reason why many details are enhanced
(for instance, white or black lines in the boat image). For
almost constant regions, the contrast increase generates noise;
the smaller the window, the bigger the noise. A final remark
concerning the image of Fig. 4 (left) advocates somehow the
importance of rank in image processing. Since the window size
is 16 16, the number of pixels in the window (256 pixels) is
equal to the number of graylevels. Therefore, in Fig. 4(a), the
graylevel of each pixel is exactly its local rank in the window. It
can be seen that the image information content is well preserved
by pixel local rank.

Extending histogram specification to color images is not
straightforward. Following the proposed approach, one should
define a strict ordering relation among color image pixels. An
immediate solution is to transfer the processing of color images
to simply graylevel ones by representing images in a color
space where one coordinate is intensity (luminance) and then
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Fig. 5. Color images exact histogram specification: (top) original, (middle) logarithmic, and (bottom) linear.

to process only the luminance component. Such color spaces
are so-called television color spaces ,
perceptual color spaces (HSI, CIELAB), etc., [17]. Let HSI
(hue, saturation, intensity) be such a color space. Since images
are generally represented in RGB color space, exact histogram
specification is addressed by: i) conversion from RGB to the
HSI, ii) ordering, iii) exact histogram specification performed
on the I component (like for graylevel images) and finally, and

iv) HSI to RGB conversion. By ordering on the I component,
the hypothesis of natural order refinement discussed above
holds. Besides, by histogram specification on the I component,
no color shift occurs. An example of exact histogram specifica-
tion for color images is shown in Fig. 5.

The proposed scheme is consistent with some classical
methods which perform histogram specification on luminance
in order to avoid color shifts (see, for instance, [18]). Our ap-
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proach allows fine histogram tuning thanks to exact histogram
specification. We mention that histogram equalization/speci-
fication directly in RGB color space has been approached as
well [19].

B. Other Specific Applications

1) Image Normalization: Exact histogram specification pro-
vides a procedure for real image normalization. By specifying
a uniform histogram one obtains images normalized with re-
spect to i) histogram (uniform histogram), ii) graylevel average
(L/2), iii) energy, and iv) entropy (8 bits/pixel). Other distribu-
tions could be of interest for image normalization such as, for
instance, Gaussian or mixture of Gaussians, Laplacian, etc.

2) Histogram Specification Inversion: In the framework of
classical histogram specification or equalization, the recovery of
the original image is an unsolved problem. With the proposed
approach, this problem turns out to be exact histogram specifi-
cation of the original histogram for the transformed image. The
solution is exactly the original image under the hypothesis that
ordering among pixels is preserved by exact histogram spec-
ification. Since the hypothesis of order preservation does not
completely hold, we expect the reconstruction not to be iden-
tical with the original. Obviously, the histogram of the recov-
ered image is exactly the original histogram.

The restored image is a very good approximation of the orig-
inal. As an example, we have considered original recovering
after classical histogram equalization. Thus, for image “Lena”
we have found less than 4% erroneous pixels (i.e., 10 343 out of
262 144); and a PSNR of 58.5 dB [20].

3) Invisible Watermarking: Another application of exact
histogram specification is image watermarking in the spa-
tial domain: the signature is inserted in the histogram (or it
is the histogram itself), marking becomes exact histogram
specification and the detection basically consists of histogram
computation [21], [22]. The choice of the signature determines
whether the watermarking is fragile or robust. By specifying
histograms for which compact graylevel intervals are elimi-
nated or considerably reduced, robust watermarking (resistant
to JPEG compression, linear and nonlinear filtering and notably
robust against geometrical distortions) is obtained.

VI. CONCLUSION

An ill-posed problem, exact histogram specification, is
solved. Our approach is based on the definition of an ordering
relation which induces almost strict ordering on image pixels.
Theoretical and experimental results on the existence of the
strict ordering are provided. Once ordering is achieved, pixels
are immediately separated into classes and assigned to the
desired graylevel. The proposed strict ordering is consistent
with the natural one and thus, the information content of images
is generally preserved.

An immediate application of the proposed technique is to
replace classical histogram equalization and specification. The
proposed approach allows direct verification of, for instance,
image enhancement by human visual models histogram specifi-
cation. Exact histogram specification allows very precise image
normalization, which is of general interest in image processing.

Recently, the use of exact histogram specification for image wa-
termarking was investigated with very promising results.

The proposed ordering principle is general. It is not re-
stricted to a specific filter bank or graylevel range. For instance,
Gaussian filters or combinations of Gaussians and Laplacians
could yield an ordering which better matches the human visual
system. The use of a bank of gradient or Laplacian filters pro-
vides the ordering of potential contour pixels and hence, a new
class of edge detectors. To conclude, we are convinced that,
besides the exact histogram specification, the strict ordering
proposed here is a fruitful concept which, once available to
the image processing community, will find a lot of interesting
applications.
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