Chapter 11

Contrast-Invariant Classes
of Functions and Their
Level Sets

This chapter is about one of the major technological contributions of mathe-
matical morphology, namely the representation of images by their upper level
sets. As we shall see in this chapter, this leads to a handy contrast invariant
representation of images.

Definition 11.1. Let u € F. The level set of u at level 0 < X\ < 1 is denoted
by X\u and defined by
Xu = {x | u(x) > A}

Strictly speaking, we have called level sets what should more properly be
called upper level sets. Several level sets of a digital image are shown in Figure
11.1 and all of the level sets of a synthetic image are illustrated in Figure 11.2.
The reconstruction of an image from its level sets is illustrated in Figure 11.3.
Two important properties of the level sets of a function follow directly from the
definition. The first is that the level sets provide a complete description of the
function. Indeed, we can reconstruct u from its level sets X\u by the formula

u(x) = sup{A | x € X\u}.

This formula is called superposition principle as u is being reconstructed by
“superposing” its level sets.

Exercise 11.1. Prove the superposition principle. =

The second important property is that level sets of a function are globally
invariant under contrast changes. We say that two functions v and v have the
same level sets globally if for every A there is p such that X,v = X)u, and
conversely. Now suppose that a contrast change g : R — R is continuous and
increasing. Then it is not difficult to show that v = g(u) and u have the same
level sets globally.

Exercise 11.2. Check this last statement for any function v and any continuous
increasing contrast change g. ®
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Figure 11.1: Level sets of a digital image. Left to right, top to bottom: We first
show an image with range of gray levels from 0 to 255. Then we show eight level
sets in decreasing order from A = 225 to A = 50, where the grayscale step is 25.
Notice how essential features of the shapes are contained in the boundaries of
level sets, the level lines. Each level set (which appears as white) is contained
in the next one, as guaranteed by Proposition 11.2.

Conversely, we shall prove that if the level sets of a function v € F are level
sets of u, then there is a continuous contrast change g such that v = g(u). This
justifies the attention we will dedicate to level sets, as they turn out to contain
all of the contrast invariant information about w.

11.1 From an image to its level sets and back

In the next proposition, for a sake of generality, we consider bounded measurable
functions on Sy, not just functions in F.
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Figure 11.2: A simple synthetic image and all of its level sets (in white) with
decreasing levels, from left to right and from top to bottom.

Proposition 11.2. Let X, denote the level sets X\u of a bounded measurable
function u : Sy — R. Then the sets X satisfy the following two structural
properties:

(@) If X\ > u, then X5 C X,,. In addition, there are two real numbers Amqy >
Amin 80 that Xy = Sy for X < Apin, Xx =0 for X > M-

(i) Xx ={,< Xy for every A € R.

Conversely, if (X)\)xer is a family of sets of M that satisfies (i) and (i1), then
the level sets of the function u defined by superposition principle,

u(x) =sup{A | x € X} (11.1)

satisfy Xoyu = Xy for all X € R and Apin < u < Aoz -

Proof. The first part of Relation (i) follows directly from the definition of upper
level sets. The second part of (i) works with A, = infu and Ap,e. = sup w.
The relation (i¢) follows from the equivalence u(x) > A & u(x) > u for every
<A

Conversely, take a family of subsets (X )ecr satisfying () and (i4) and define
u by the superposition principle. Let us show that X, = X\u. Take first x € X.
Then it follows from the definition of u that u(x) > A, and hence x € X\u. Thus,
Xx C Xyu. Conversely, let x € X\u. Then u(x) =sup{v |x € X,} > A\. Con-
sider any p < A. Then there exists a u' such that p < ¢’ < sup{v | x € X,}
and x € X,,. It follows from (i) that x € X,. Since p was any number less
that A, we conclude by using (ii) that x € (), X, = X). It is easily checked
that A\nin <u < Aoz O

Exercise 11.3. Check the last statement of the preceding proof, that Anin < u <
)\7'77,(1(1)' L]
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Figure 11.3: Reconstruction of an image from its level sets: an illustration of
Proposition 3.2. We use four different subsets of the image’s level sets to give
four reconstructions. Top, left: all level sets; top, right: all level sets whose gray
level is a multiple of 8; bottom, left: multiples of 16; bottom, right: multiples of
32. Notice the relative stability of the image shape content under these drastic
quantizations of the gray levels.

11.2 Contrast changes and level sets

Practical aspects of contrast changes are illustrated in Figures 11.4, 11.5, 11.6,
and 11.7, which illustrate how insensitive our perception of images is to contrast
changes, even when they are flat on some interval. When this happens, some
information on the image is even lost, as several grey levels melt together.

Definition 11.3. Any nondecreasing continuous surjection g : R — R will be
called a contrast change.

Exercise 11.4. Remark that g(s) - oo as s =& 0. Check that if u € F and g is
a contrast change, then g(u) € F. m

In case g is increasing, g has an inverse contrast change g~'. In case g is flat
on some interval, we shall be happy with a pseudo-inverse for g.

Definition 11.4. The pseudo-inverse of any contrast change g : R — R is
defined by
g\ =inf{r e R | g(r) > A}.

Exercise 11.5. Check that g~! is finite on R and tends to 0o as s — oo0. Give an
example of g such that g ! is not continuous. m

Exercise 11.6. Compute and draw ¢~V for the function g(s) = max(0,s). Notice
that such a function is ruled out by our conditions at infinity for contrast changes. m
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Figure 11.4: The histogram of the image Bird. For each i € {0,1,...,255}, we
display (above, right) the function h(i) = Card{x | u(x) = i}. The function
below is the cumulative histogram, namely the primitive of h defined by H, (i) =
Card {x | u(x) < i}. The shape of h provides an indication about the overall
contrast of the image and about the contrast change imposed by the sensors.
See Chap. 12 for manipulations of the cumulative histogram.

Lemma 11.5. Let g : R — R be a contrast change. Then for every A € R,
9(g" (N = A and

g(s) > X if and only if s > g\~ (). (11.2)
Proof. The first relation follows immediately from the continuity of g. If

g(s) > A, then s > g(=D()\) by the definition of g~V ()). Conversely, if
s> g (N), then g(s) > g(g-"P(\)) = X and thus g(s) > \. O

Theorem 11.6. Let u € F and g be a contrast change. Then any level set of
g(u) is a level set of u. More precisely, for X € R,

Xxg(u) = Xg(fn()‘)u. (113)

Proof. The proof is read directly from Lemma 11.5 by taking s = u. O

The next result is a converse statement to Theorem 11.6.
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L

Figure 11.5: Contrast changes and an equivalence class of images. The three
images have exactly the same level sets and level lines, but their level sets are
mapped onto three different gray-level scales. The graphs on the right are the
graphs of the contrast changes u +— g(u) that have been applied to the initial
gray levels. The first one is concave; it enhances the darker parts of the image.
The second one is the identity; it leaves the image unaltered. The third one
is convex; it enhances the brighter parts of the image. Software allows one to
manipulate the contrast of an image to obtain the best visualization. From the
image analysis viewpoint, image data should be considered as an equivalence
class under all possible contrast changes.

Theorem 11.7. Let u and v € F such that every level set of v is a level set of
u. Then v = g(u) for some contrast change g.

Proof. One can actually give an explicit formula for g, namely, for every u €
U(SN)a
g(p) = sup{A € v(Sn) | Xpu C Xy\v}. (11.4)

For 11 ¢ u(Sn), we can easily extend g into an nondecreasing function such that
g(£o0) = t00). (Take (e.g.) g piecewise affine). Note that v > u implies that
g(v) > g(p). Let us first show that infv < g(u) < supwv. Set

A= {A | Xou C Xyl
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Figure 11.6: The two images (left) have the same set of level sets. The contrast
change that maps the upper image onto the lower image is displayed on the
right. It corresponds to one of the possible g functions whose existence is stated
in Corollary 3.14. The function g may be locally constant on intervals where
the histogram of the upper image is zero (see top, middle graph). Indeed, on
such intervals, the level sets are invariant.

A is not empty because Xi,r, = Sy and therefore infv € A. Thus g(u) =
sup A > inf v. On the other hand Xsyp y4+cv = 0 for every e > 0. Since pu € u(Sn),
X,u # (0 and therefore g(u) = sup A < supw.

Step 1: Proof that v(x) > g(u(x)). By Proposition 11.2(i) A has the form

(—o00,sup A) or (—oo, sup A]. But by Proposition 11.2(i¢), Xsup v = ﬂksupA Xy,
and this implies by the definition of A that g(u) = sup A € A. Thus,

qu C X!](H)v' (115)
Given x € Sy, let pu = u(x) in (11.5). Then,
Au)t € Ag(u(x))v-

Since x € Xy x)u, we conclude that x € Xy, x)v ={y |v(y) > g(u(x))}.

Step 2: Proof that v(x) < g(u(x)). Given x € Sy, we translate the
assumption with A = v(x) as follows: There exists a u(x) € R such that

Xyxyv =y | uly) > p(x)} = X, x)u. (11.6)

Since x € X,(x)v, we know that x € X),xyu. Thus, u(x) > p(x), and Xy xyu C

Xyxyu = Xyxyv. This last relation implies by the definition of g that v(x) <

9(u(x)).

Step 3: Proof that g is continuous. Recall that the image of a con-
nected set by a continuous function is connected. Thus u(Sy) is an interval of
R and so is v(Sn). Since g(u) = v, g(u(Sn)) = v(Sn) is an interval. Now, a
nondecreasing function is continuous on an interval if and only if its range is
connected. Thus g is continuous on u(Sy) and so is its extension to R. O
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Figure 11.7: The original image (top, left) has a strictly positive histogram
(all gray levels between 0 and 255 are represented). Therefore, if any contrast
change ¢ that is not strictly increasing is applied, then some data will be lost.
Every level set of the transformed image g(u) is a level set of the original image;
however, the original image has more level sets than the transformed image.

Exercise 11.7. Prove the last statement in the theorem, namely that “a nondecreas-
ing function is continuous on an interval if and only if its range is connected”. m

Exercise 11.8. By reading carefully the steps 1 and 2 of the proof of Theorem 11.7,
check that this theorem applies with u and v just bounded and measurable on Sx.
Then one has still has v = g(u) with g defined in the same way. Of course g is still
nondecreasing but not necessarily continuous. Find a simple example of functions
and v such that g is not continuous. m

11.3 Exercises

Exercise 11.9. This exercise gives a way to compute the function g such that v = g(u)
defined in the proof of Theorem 11.7 in terms of the repartition functions of v and
v. Let G be a Gauss function defined on RY such that [,y G(x)dx = 1. For every
measurable subset of RY, set |A|¢ := [, G(x)dx. Let u be a bounded continuous
function on RY. We can associate with u its repartition function hy()\) = |Xsulc.
Show that h, : A € [infu,supu] — hy(X) is strictly decreasing. Show that it can
have jumps but is left-continuous, that is hy(X) = lim,4 hy(p). Define for every non
increasing function h a pseudo inverse by A=) () := sup{\ | h(\) > u}. Show that
R is non increasing and that R o h(p) > p, and that if h is left-continuous,
hoh=Y)(y) > pu. Using (11.4) prove that g = R o by,

Hint: prove that g(u) = sup{\ | |[X,u|c < |Xv|a}. =

Exercise 11.10. Let u be a real-valued function. If (u.)nen is an increasing sequence
that tends to A, prove that

Xou= () Xupu (11.7)
{x|u(x) >} = | X (11.8)
>
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11.4 Comments and references

Contrast invariance and level sets. It was Wertheimer who noticed that
the actual local values of the gray levels in an image could not be relevant in-
formation for the human visual system [164]. Contrast invariance is one of the
fundamental model assumptions in mathematical morphology. The two basic
books on this subject are Matheron [107] and Serra [144, 146]. See also the
fundamental paper by Serra [145]. Ballester et al. defined an “image intersec-
tion” whose principle is to keep all pieces of bilevel sets common to two images
[12]. (A bilevel set is of the form {x | A < u(x) < p}.) Monasse and Guichard
developed a fast level set transform (FLST) to associate with every image the
inclusion tree of connected components of level sets [119]. They show that the
inclusion trees of connected upper and lower level sets can be fused into a sin-
gle inclusion tree; among other applications, this tree can be used for image
registration. See Monasse [118].

Contrast changes. The ability to vary the contrast (to apply a contrast
change) of a digital image is a very useful tool for improving image visualization.
Professional image processing software has this capability, and it is also found
in popular software for manipulating digital images. For more about contrast
changes that preserve level sets, see [30]. Many reference on contrast-invariant
operators are given at the end of Chapter ?7?.






Chapter 12

Specifying the contrast of
images

Midway image equalization means any method giving to a pair of images a
similar histogram, while maintaining as much as possible their previous grey
level dynamics. The comparison of two images is one of the main goals of
computer vision. The pair can be a stereo pair, two images of the same object
(a painting for example), multi-channel images of the same region, images of a
movie, etc. Image comparison is perceptually greatly improved if both images
have the same grey level dynamics (which means, the same grey level histogram).
Many image comparison algorithms are based on grey level and take as basic
assumption that intensities of corresponding points in both images are equal.
However, this assumption is generally false for stereo pairs, and deviations from
this assumption cannot even be modeled by affine transforms [36]. Consequently,
if we want to compare visually and numerically two images, it is useful to give
them first the same dynamic range and luminance.

In all of this applicative chapter the images u(x) and v(x) are defined on a
domain which is the union of M pixels. The area of each pixel is equal to 1. The
images are discrete in space and values: they attain values in a finite set L. and
they are constant on each pixel of the domain. We shall call such images discrete
images. The piecewise constant interpolation is a very bad image interpolation.
It is only used here for a fast handling of image histograms. For other scopes,
better interpolation methods are of course necessary.

Definition 12.1. Let u be a discrete image. We call cumulative histogram of
u the function H,, : L. — M := [0, M] NN defined by

H,(l) =: meas({x | u(x) <1}).

This cumulative histogram is a primitive of the histogram of the image h(l) =
meas({x | u(x) =1}). Figures 11.4, 11.6 and the first line of Figure 12.1. show
the histograms of some images and their cumulative histograms. In fact Figure
11.7 shows first the histogram and then the modified histogram after a contrast
change has been applied. These experiments illustrate the robustness of image
relevant information to contrast changes and even to the removal of some level
sets, when the contrast change is flat on an interval. Such experiments suggest

157
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that one can specify the histogram of a given image by applying the adequate
contrast change. Before proceeding, we have to define the pseudo-inverses of a
discrete function.

Proposition 12.2. Let ¢ : L — M be a nondecreasing function from a finite
set of values into another. Define two pseudo-inverse functions for ¢ :

PD() == inf{s | p(s) > 1} and "D (1) := sup{s | o(s) < L.}
Then one has the following equivalences:
p(s) > 16 s> 0(1), os) <les< D) (12.1)

and the identity
(=N D) = (12.2)

Proof. The implication p(s) > 1= s > (=Y (]) is just the definition of p(~1).
The converse implication is due to the fact that the infimum on a a finite set
is attained. Thus (¢(~Y (1)) > [ and therefore s > (=1 (1) = (s) > I. The
identity (12.2) is a direct consequence of the equivalences (12.1). Indeed,

s < (P EDW) & oV (s) <l s < (D).

O

Exercise 12.1. Prove that if ¢ is increasing, (™" o p(I) =l and (=) o (1) = L.
If ¢ is surjective, g 0o o™ =T and po ") =1. =

Proposition 12.3. Let ¢ be a discrete contrast change and u o digital image.
Then

Hy(uy = Hy o).
Proof. By (12.1), p(u) < 1 < u < o(=D)(1). Thus by the definitions of H,
and H(p(u),
H () () = meas({x | p(u) < 1}) = meas({x | u(x) <o TV (D)}) = Huop "0

O
Let G : L - M :=[0,1,...,M] be any discrete nondecreasing function. Can
we find a contrast change ¢ : . = L such that the cumulative histogram of
@(u), Hy(y) becomes equal to G? Not quite: if for instance u is constant its
cumulative histogram is a one step function and Proposition 12.3 implies that
H,(,) will also be a one step function. More generally if u attains k values,
then p(u) attains k values or less. Hence its cumulative histogram is a step
function with &k + 1 steps. Yet, at least formally, the functional equation given
by Proposition 12.3, H, o ¢! = G, leads to ¢ = G~! o H,. We know that we
cannot get true inverses but we can involve pseudo-inverses. Thus, we are led
to the following definition:
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Definition 12.4. Let G : L. — M be a nondecreasing function. We call specifi-
cation of u on the cumulative histogram G the image

i =G o H,(u).

Exercise 12.2. Prove that if G and H, are one to one, then the cumulative histogram
of @ is G. Is it enough to assume that H, is one to one? m

Definition 12.5. Let, for | € [0,L] N IN, G(I) = [%£1], where [r| denotes
the largest integer smaller than r. Then @ := G("Y) o H,(u) is called the
uniform equalization of u. If v is another discrete image and one takes G = H,,
a:=HY o H,(u) is called the specification of u on v.

When H, is one to one, one can reach by applying a contrast change to u
any specified cumulative histogram G. Otherwise, the above definitions do the
best that can be expected and are actually quite efficient. For instance in the
“marshland experiment” (Figure 12.1) the equalized histogram and its cumu-
lative histogram are displayed on the second row. The cumulative histogram
is very close to its goal, the linear function. The equalized histogram does not
look flat but a sliding average of it would look almost flat.

Yet it is quite dangerous to specify the histogram of an image with an arbi-
trary histogram specification. This fact is illustrated in Figures 12.1 and 12.2
where a uniform equalization erases existing textures by making them too flat
(Figure 12.1) but also enhances the quantization noise in low contrasted regions
and produces artificial edges or textures (see Figure 12.2).

12.1 Midway equalization

We have seen that if one specifies w on v, then u inherits roughly the histogram
of v. It is sometimes more adequate to bring the cumulative histograms of u
and v towards a cumulative histogram which would be “midway” between both.
Indeed, if we want to compare visually and numerically two images, it is useful
to give them first the same dynamic range and luminance. Thus we wish:

e From two images u and v, construct by contrast changes two images @
and 9, which have a similar cumulative histogram.

e This common cumulative histogram h should stand “midway” between
the previous cumulative histograms of u and v, and be as close as possible
to each of them. This treatment must avoid to favor one cumulative
histogram rather than the other.

Definition 12.6. Let u and v be two discrete images. Set
1
@i (H}fl) + Hffl)) .
We call midway cumulative histogram of u and v the function

(-1)
G:=o(=1) = G(H};U + H,S—U)) (12.3)

and “midway specifications” of u and v the functions @ := ® o H,(u) and 0 :=
® o H,(v).
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Figure 12.1: First row: Image u, the corresponding grey level histogram h,, and
the cumulative histogram H,,. Second row: Equalized image H,(u), its histogram
and its cumulative histogram. In the discrete case, histogram equalization flat-
tens the histogram as much as possible. We see on this example that image
equalization can be visually harmful. In this marshland image, after equaliza-
tion, the water is no more distinguishable from the vegetation. The third row
shows a zoom on the rectangular zone, before and after equalization.

Exercise 12.3. Let u and v be two constant images, whose values are a and b. Prove
that their “midway” function is the right one, namely a function w which is constant

and equal to “T'H’. [

Exercise 12.4. Prove that if we take as a definition of the midway histogram
Loy gemy) "
G = (§(Hu + Hv )) )

then for two constant images © = a and v = b the midway image is constant and equal
to [1/2(a + b) — 1]. This proves that Definition 12.6 is better. m

Exercise 12.5. Prove that if u is a discrete image and f and g two nondecreasing
functions, then the midway image of f(u) and g(u) is W. L]

Exercise 12.6. If we want the “midway” cumulative histogram H to be a compromise
between H, and H,, the most elementary function that we could imagine is their
average, which amounts to average their histograms as well. However, the following
example proves that this idea is not judicious at all.

Consider two images whose histograms are “crenel” functions on two disjoint in-
tervals, for instance u(x) := ax, v(x) = bx + ¢. Compute a,b,c in such a way that
h, and h, have disjoint supports. Then compute the specifications of v and v on the
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Figure 12.2: Effect of histogram equalization on the quantization noise. On the
left, the original image. On the right, the same image after histogram equaliza-
tion. The effect of this equalization on the dark areas (the piano, the left part
of the wall), which are low contrasted, is perceptually dramatic. We see many
more details but the quantization noise has been exceedingly amplified.

mean cumulative histogram G := . Compare with their specifications on the

midway cumulative histogram. =

Hy+Hy
2

12.2 Midway equalization on image pairs

Results on a stereo pair

The top of Figure 12.3 shows a pair of aerial images in the region of Toulouse.
Although the angle variation between both views is small, and the photographs
are taken at nearly the same time, we see that the lightning conditions vary
significantly (the radiometric differences can also come from a change in camera
settings). The second line shows the result of the specification of the histogram
of each image on the other one. The third line shows both images after equal-
ization.

If we scan some image details, as illustrated on Figure 12.4, the damages
caused by a direct specification become obvious. Let us specify the darker
image on the brightest one. Then the information loss, due to the reduction
of dynamic range, can be detected in the brightest areas. Look at the roof of
the bright building in the top left corner of the image (first line of Figure 12.4):
the chimneys project horizontal shadows on the roof. In the specified image,
these shadows have almost completely vanished, and we cannot even discern
the presence of a chimney anymore. In the same image after equalization, the
shadows are still entirely recognizable, and their size reduction remains minimal.
The second line of Figure 12.4 illustrates the same phenomenon, observed in
the bottom center of the image. The structure present at the bottom of the
image has completely disappeared after specification and remains visible after
midway equalization. These examples show how visual information can be lost
by specification and how midway algorithms reduce significantly this loss.
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Figure 12.3: Stereo pair: two pieces of aerial images of a region of Toulouse.
Same images after specification of their histograms on each other (left: the
histogram of the first image has been specified on the second, and right: the
histogram of the second image has been specified on the first). Stereo pair after
midway equalization.
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Figure 12.4: Eztracts from the stereo pair shown on Figure 12.3. From left to
right: in the original image, in the specified one, in the original image after
midway equalization. Notice that no detail is lost in the midway image, in
contrast with the middle image.

Figure 12.5: First line: two images of Toulouse (blue and infrared channel).
Second line: same images after midway equalization.

Multi-Channel images

The top of Figure 12.5 shows two pieces of multi-channel images of Toulouse.
The first one is extracted from the blue channel, and the other one from the
infrared channel. The second and third line of the same figure show the same
images after midway equalization. The multichannel images have the peculiarity
to present contrast inversions : for instance, the trees appear to be darker than
the church in the blue channel, and are naturally brighter than the church
in the infrared channel. The midway equalization being limited to increasing
contrast changes, it obviously cannot handle these contrast inversions. In spite
of these contrast inversions, the results remain visually good, which underlines
the robustness of the method gives globally a good equalization.
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Photographs of the same painting

The top of Figure 12.6 shows two different snapshots of the same painting, Le
Radeau de la Méduse', by Théodore Géricault (small web public versions). The
second one is brighter and seems to be damaged at the bottom left. The second
line shows the same couple after midway equalization. Finally, the last line of
Figure 12.6 shows the difference between both images after equalization. We
see clear differences around the edges, due to the fact that the original images
are not completely similar from the geometric point of view.

12.2.1 Movie equalization

One can define a midway cumulative histogram to an arbitrary number of im-
ages. This is extremely useful for the removal of flicker in old movies. Flicker
has multiple causes, physical, chemical or numerical. The overall contrast of
successive images of the same scene in a movie oscillates, some images being
dark and others bright. Our main assumption is that image level sets are glob-
ally preserved from one image to the next, even if their level evolves. This leads
to the adoption of a movie equalization method preserving globally all level sets
of each image. We deduce from Theorem 11.7 in the previous chapter that the
correction must be a global contrast change on each image. Thus the only left
problem is to specify a common cumulative histogram (and therefore a common
histogram) to all images of a given movie scene. Noticing that the definition of
G in (12.3) for two images simply derives from a mean, its generalization is easy.
Let us denote u(t,x) the movie (now a discrete time variable has been added)
and by H' the cumulative histogram function of x — u(t,x) at time ¢. Since
flicker is localized in time, the idea is to define a time dependent cumulative
histogram function K}* which will be the “midway” cumulative histogram of
the cumulative histograms in an interval [t — h, ¢+ h]. Of course the linear scale
space theory of Chapter 3 applies here. The ideal average is gaussian. Hence
the following definition.

Definition 12.7. Let u(t,x) be a movie and denote by H; the cumulative his-
togram of u(t) : x — u(t,x). Consider a discrete version of the 1-D gaussian

Gr(t) = e in. Set

(47h)s
By = /Gh(t — $)(HD) (1) ds.

We call “midway gaussian cumulative histogram at scale h” of the movie u(t,x)
the time dependent cumulative histogram

((-1)) ) (=
G =45 = ([ Gnte =9t 0as) (12.9)

and “midway specification” of the movie u(t) the function @(t) := ®oH ) (u(t)).
If Hy ) is surjective, then 0(t) has G,y as common cumulative histogram.

Notice that this is a straightforward extension of Definition 12.6.

IMuse du Louvre, Paris.
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Figure 12.6: Two shots of the Radeau de la Méduse, by Géricault. The same
images after midway equalization. Image of the difference between both images
after equalization. The boundaries appearing in the difference are mainly due
to the small geometric distortions between the initial images.
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Figure 12.7: (a) Three images of Chaplin’ s film His New Job, taken at equal
intervals of time. This extract of the film suffers from a severe real flicker. (b)
Same images after the Scale-Time FEqualization at scale s = 100. The flicker
observed before has globally decreased. (c) Evolution of the mean of the current
frame in time and at three different scales. The most oscillating line is the mean
of the original sequence. The second one is the mean at scale s = 10. The last
one, almost constant, corresponds to the large scale s = 1000. As expected the
mean function is smoothed by the heat equation.
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The implementation and experimentation is easy. We simply show in Figure
12.7 three images of Chaplin’ s film His New Job, taken at equal intervals of time.
This extract of the film suffers from a severe real flicker. This flicker is corrected
at the scale where, after gaussian midway equalization, the image mean becomes
nearly constant through the sequence. The effects of this equalization are usually
excellent. They are easily extended to color movies by processing each channel
independently.

12.3 Comments and references

Histogram specification As we have seen histogram specification [60] can
be judicious if both images have the same kind of dynamic range. For the same
reason as in equalization, this method can also product contouring artifacts.
The midway theory is essentially based on Julie Delons’ PhD and papers [40],
[41] where she defines two midway histogram interpolation methods. One of
them, the square root method involves the definition of a square root of any
nondecreasing function g, namely a function g such that fo f = g. Assume that
u and v come from the same image (this intermediate image is unknown), up
to two contrast changes f and f~!. The function f is unknown, but satisfies
formally the equality H, o f = H, o f~'. Thus

HuiloHv:fof'

It follows that the general method consists in building an increasing function
f such that fo f = H, "o H, and replacing v by f(v) and u by f ' (u).
This led Delon [?] to call this new histogram midway method, the “square
root” equalization. The midway interpolation developed in this chapter uses
mainly J. Delon’s second definition of the midway cumulative histogram as the
harmonic mean of the cumulative histograms of both images. This definition is
preferable to the square root. Indeed, both definitions yield very similar results
but the harmonic mean extends easily to an arbitrary number of images and
in particular to movies [41]. The Cox, Roy and Hingorani algorithm defined
in [36] performs a midway equalization. They called their algorithm “Dynamic
histogram warping” and its aim is to give a common cumulative histogram (and
therefore a common histogram) to a pair of images. Although their method is
presented as a dynamic algorithm, there is a very simple underlying formula,
which is the harmonic mean of cumulative histograms discovered by Delon [40].



