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Chapter 4

From continuous to digital

images, and back

Consider a continuous and bounded image u(x) defined for every x = (x, y) ∈
R2. All continuous image operators including the sampling will be written in
capital letters A, B and their composition as a mere juxtaposition AB. For
any affine map A of the plane consider the affine transform of a continuous
image u defined by Au(x) =: u(Ax). For instance Hλu(x) =: u(λx) denotes an
expansion of u by a factor λ−1. In the same way if R is a rotation, Ru =: u ◦R
is the image rotation by R−1.

Sampling and interpolation

Digital images, only defined for (n1, n2) ∈ IZ2, will be denoted by u(n1, n2).
The δ-sampled image u = Sδu is defined on IZ2 by

u(n1, n2) = (Sδ)u(n1, n2) =: u(n1δ, n2δ); (4.1)

Conversely, the Shannon interpolate of a digital image u is defined as follows
[99]. Let u be a digital image, defined on IZ2 and such that

∑

n∈IZ2 |u(n)|2 <∞
and

∑

n∈IZ2 |u(n)| <∞. (Of course, these conditions are automatically satisfied
if the digital has a finite number of non-zero samples, which is the case here.)
We call Shannon interpolate Iu of u the only L2(R2) function u having u as
samples and with spectrum support contained in (−π, π)2. u = Iu is defined
by the Shannon-Whittaker formula

Iu(x, y) =:
∑

(n1,n2)∈IZ2

u(n1, n2)sinc(x− n1)sinc(y − n2),

where sinc x =: sin πx
πx . The Shannon interpolation has the fundamental property

S1Iu = u. Conversely, if u is L2 continuous image, band-limited in (−π, π)2,
then

IS1u = u. (4.2)

In that case we simply say that u is band-limited. We shall also say that a digital
image u = S1u is well-sampled if it was obtained from a band-limited image u.
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4.0.1 The practical Shannon interpolation: zero-padding

Of course, the Shannon interpolate is unpractical in that it assumes the knowl-
edge of infinitely many samples. In practice image samples and image interpo-
lation will be performed on rectangle. For a sake of simplicity we describe here
what happens on a square. Let a > 0 and consider a function u from [0, a]2 to
IR such that u(x + a, y + a) = u(x, y). Fix an integer N , and consider the N2

samples of u, uk,l = (Su)
(

ka
N , la

N

)
on [0, a]2.

Definition 4.1. The discrete Fourier transform (DFT) of the N2 samples
u = (uk,l)k,l=0,1,...,N−1 is the double sequence of discrete Fourier coefficients
for m,n ∈ {−N

2 , ...,
N
2 − 1} defined by

DFT (u)m,n = ũm,n =
1

N2

N−1∑

k=0

N−1∑

l=0

uk,lω
−mk
N ω−nl

N , (4.3)

where ωN =: e
2iπ
N is the first N -root of 1.

Proposition 4.2. Consider the trigonometric polynomial

Iu(x, y) =

N
2 −1
∑

m,n=−N
2

ũm,n exp(
2iπmx

a
) exp(

2iπny

a
). (4.4)

Then its coefficients ũm,n are the only complex numbers such that for every
k, l ∈ {0, ..., N−1}, Iu

(
ka
N , la

N

)
= u

(
ka
N , la

N

)
. In consequence, the discrete inverse

transform of the DFT u → ũ is nothing but the calculation of the value of the
polynomial at the samples (ka

N , la
N ), 0 ≤ k, l ≤ N−1. In other terms, setting

ũ = DFT (u), the inverse transform DFT−1 is given by

u(k, l) =

N
2 −1
∑

−N
2

N
2 −1
∑

−N
2

ũm,nω
km+ln
N ,

for every k, l = 0, 1, . . .N − 1.

Exercise 4.1. Recall that ωN = exp
�

2iπ
N

�
, N-th root of 1. Show that

PN−1
k=0 ω

k
N = 0,

and that
PN−1

k=0 ω
kl
N = 0 for l 6= 0 moduloN and finally that for every k0,

Pk0+N−1
k=k0

ωkl
N =

0 for all l 6= 0 modulo N . Using these relation show the above proposition, namely
that DFT (DFT−1) = Id.

In conclusion, the interpolation and sampling operators we shall consider
both in theory and practice are the usual sampling S, implicitly restricted to a
square. The inverse interpolation operator I is defined by (4.4), and Proposition
4.2 tells us that SIu = u. The next statement gives the converse statement.

Proposition 4.3. If u(x, y) is a a-periodic band-limited function, then it is a
trigonometric polynomial. If its highest degree is N

2 − 1, with N even, then its

coefficients ũm,n are obtained by DFT from the samples u(k, l) = u(ka
N , la

N ). In
consequence for such functions we have ISu = u.

Exercise 4.2. Give a detailed proof of Proposition 4.3. It is a direct consequence of
Proposition 4.2.

In the rest of this chapter and of the book, we shall always take the functional
setting of Proposition 4.3.
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Zoom in by zero-padding

Let (uk,l) be a digital image and define its zoomed version (vi,j)i,j=0, ..., 2N−1 as
the inverse discrete Fourier transform of ṽi,j defined for i, j = −N, ..., N−1 by

ṽm,n = ũm,n if − N

2
≤ m,n ≤ N

2
− 1, ṽm,n = 0 otherwise. (4.5)

Proposition 4.4. The image v whose Discrete Fourier Transform is given by
(4.5) satisfies v2k,2l = uk,l, for k, l = 0, ..., N−1.

Proof. Here is the proof in dimension 1:

v2k =

N−1∑

−N

ṽnω
2nk
2N =

N
2 −1
∑

−N
2

ũnω
nk
N = uk.

Indeed, ω2nk
2N = ωnk

N . �

Exercise 4.3. Prove Proposition (4.4) in two dimensions.

4.1 The Gaussian semigroup

For a sake of simple notation, Gσ denotes the convolution operator on R
2

with the gauss kernel Gσ(x1, x2) = 1
2π(σ)2 e

−x2
1+x2

2
2(σ)2 , namely Gσu(x, y) =: (Gσ ∗

u)(x, y). Notice that the paramaterization of the gaussian is not the same as the
parameterization used for the heat equation. To make a difference in notation,
we use Greek letters for the new parameter. It is easily checked that Gσ satisfies
the semigroup property

GσGβ = G√
σ2+β2 . (4.6)

Exercise 4.4. Prove (4.6).

The proof of the next formula is a mere change of variables in the integral
defining the convolution.

GσHγu = HγGσγu. (4.7)

Exercise 4.5. Prove (4.7).

Discrete Gaussians

Many algorithms in computer vision and image processing assume that all blurs
can be assumed gaussian. Thus, it will be crucial to prove that gaussian blur
gives in practice well-sampled images. Thus, in all that follows, we are deal-
ing with initial digital images obtained by sampling a continuous image with
gaussian blur, u = S1Gcu0;

Another question we need to deal with is how to perform a gaussian con-
volution on a discrete (digital) image. This is valid if and only if a discrete
convolution can give an account of the underlying continuous one.
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Definition 4.5. The discrete gaussian convolution applied to a digital
image u is defined as a digital operator by

Gδu =: S1GδIu. (4.8)

Proposition 4.6. This definition maintains the gaussian semi-group property,

GδGβ = G√
δ2+β2 . (4.9)

Proof Indeed, using twice (4.8) and once (4.6) and (4.2),

GδGβu = S1GδIS1GβIu = S1GδGβIu = S1G√δ2+β2Iu = G√
δ2+β2u.

�

The SIFT method that we will study in detail uses repeatedly the semi-
group formula and a 2-sub-sampling of images with a gaussian blur larger than
1.6. These SIFT sampling manoeuvres are valid if and only if the empirical
proposition below is true.

Proposition 4.7. For every σ larger than 0.8 and every continuous and bounded
image u0, the gaussian blurred image Gσu0 is well sampled, namely IS1Gσu0 =
Gσu0.

This proposition is not a mathematical statement, but it will be checked
experimentally in the next section, where we shall see that a 0.6 blur is enough
to ensure good sampling in practice.

4.2 The right gaussian blur for well-sampling

Images need to be blurred before they are sampled. In principle gaussian blur
cannot lead to a good sampling because it is not stricto sensu band limited.
Therefore the Shannon-Whittaker formula does not apply. However, in practice
it does. The aim in this section is to define a procedure that checks that a
gaussian blur works and to fix the minimal variance of the blur ensuring well-
sampling (up to a minor mean square and visual error).

One must distinguish two types of blur: The absolute blur with standard
deviation ca is the one that must be applied to an ideal infinite resolution (blur
free) image to create an approximately band-limited image before 1-sampling.
The relative blur σ = cr(t) is the one that must be applied to a well-sampled
image before a sub-sampling by a t factor. In the case of gaussian blur, because
of the semi-group formula (4.6), the relation between the absolute and relative
blur is

t2c2
a = c2

r(t) + c2
a,

which yields

cr(t) = ca

√

t2 − 1. (4.10)

In consequence, if t≫ 1, then cr(t) ≈ cat.
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Figure 4.1: Top left: u. Top right: MSE(u1,u2) vs cr(4). Middle (from left
to right): u1 and u2 with cr(4) = 1.2. MSE(u1,u2)=17.5. Bottom (from left
to right): u1 and u2 with cr(4) = 2.4. MSE(u1,u2)=0.33. Digital images are
always displayed by coloring each square pixel with its central sample value.



i

66CHAPTER 4. FROM CONTINUOUS TO DIGITAL IMAGES, AND BACK

Two experiments have been designed to calculate the anti-aliasing absolute
gaussian blur ca ensuring that an image is approximately well-sampled. The
first experiment compares for several values of cr(t) the digital images

u1 =: G
cr(t)u = S1Gcr(t)Iu and u2 =: (S1/tI)StGcr(t)u = (S1/tI)StGcr(t)Iu,

where u is an initial digital image that is (intuitively) well-sampled, St is a t sub-
sampling operator, S 1

t
a t over-sampling operator, and I a Shannon-Whitakker

interpolation operator. The discrete convolution by a gaussian is defined in
(4.8). Since t is an integer, the t sub-sampling is trivial.

If the anti-aliasing filter size cr(t) is too small, u1 and u2 can be very
different. The right value of cr(t) should be the smallest value permitting
u1 ≈ u2. Fig. 4.1 shows u1 and u2 with t = 4 and plots their mean square
error MSE(u1,u2). An anti-aliasing filter with cr(4) = 1.2 is clearly not broad
enough: u2 presents strong ringing artifacts. The ringing artifact is instead
hardly noticeable with cr(4) = 2.4. The value cr(4) ≃ 2.4 is a good visual
candidate, and this choice is confirmed by the curve showing that MSE(u1,u2)
decays rapidly until cr(4) gets close to 2.4, and is stable and small thereafter.
By (4.10), this value of cr yields ca = 0.62. This value has been confirmed by
experiments on ten digital images. A doubt can be cast on this experiment,
however: Its result slightly depends on the assumption that the initial blur on
u is equal to ca.

In a second experiment, ca has been evaluated directly by using a binary
image u0 that does not contain any blur. As illustrated in Fig. 4.2, u0 is
obtained by binarizing the digital test image Lena (Fig. 4.1), the threshold
being the median value of Lena. Since u0 is now blur-free, we can compare for
several values of ca and for t = 4, which is large enough, the digital images

u1 =: Gtcau = S1GtcaIu and u2 =: (S1/tI)StGtcau = (S1/tI)StGtcaIu,

As shown in Fig. 4.2, ca = 0.6 is the smallest value ensuring no visual ringing in
u2. Under this value, for example for ca = 0.3, clear ringing artifacts are present
in u2. That ca = 0.6 is the correct value is confirmed by the MSE(u1,u2) curve
showing that the mean square error decays rapidly until ca goes down to 0.6,
and is stable and small thereafter. The result, confirmed in ten experiments
with different initial images, is consistent with the value obtained in the first
experimental setting.

4.2.1 Discrete sampling

If u is digital and therefore only defined on IZ2 and if δ is an integer, then
one can define any sub- or over-sampling operations on u. But this requires
interpolating u first.

Definition 4.8. Thus we define a digital re-sampling operator by

Sδu =: SδIu. (4.11)

Sδ is a discrete filter. If δ < 1 Sδ is an over-sampling, and it is invertible. If
δ > 1 it is an sub-sampling, and may be not invertible.

Exercise 4.6. Show that if δ < 1, then Sδ−1Sδ = Id. What can happen if δ > 1?
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Figure 4.2: Top left: u. Top right: MSE(u1,u2) vs ca. Middle (from left to
right): u1 and u2 with ca = 0.3. MSE(u1,u2)=7.46. Bottom (from left to
right): u1 and u2 with ca = 0.6. MSE(u1,u2)=0.09.
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Over-sampling can be interpreted as a zoom in. A zoom in is not the same as
a blow up. Blow up is a photographic term involving the use of a system of lenses
increasing the image resolution : it permits to see more details of the observed
object. Zoom in is instead is a digital term. Being just an interpolation, it adds
no detail to the image. The next proposition confirms that it is just an image
enlargement.

Proposition 4.9. For every γ ≤ 1,

ISγu = HγIu. (4.12)

Proof. Iu is well sampled, with spectrum in [0, 2π]2. Thus since γ < 1, ISγu
is over-sampled: it has spectrum in [0, 2πγ]2. Thus ISγu is band limited, as
HγIu. Since

ISγu(n1, n2) = Sγu(n1, n2) = Iu(n1γ, n2γ) and HγIu(n1, n2) = Iu(n1γ, n2γ),

both functions have the same IZ2 samples and therefore coincide. �

Corollary 4.10. If γ ≤ 1, then

SβSγ = Sβγ . (4.13)

Proof. using once (4.12) and twice (4.11),

SβSγu = SβISγu = SβHγIu = SβγIu = Sβγu.

�

Proposition 4.11. A discrete commutation formula : Assume u is a digital
image. Then for γ < 1,

GβSγu = SγGβγu. (4.14)

Proof.

GβSγu
(4.8)
= S1(GβISγu)

(4.12)
= S1(GβHγIu)

(4.7)
= S1(Hγ(GβγIu))

(4.1)
= Sγ(GβγIu)

(4.2)
= SγIS1(GβγIu)

(4.8,4.11)
= SγGβγu.

Notice that we use IS1u = u with u = GβγIu. Indeed, this last function is well
sampled, because Iu is. �
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Chapter 5

The SIFT Method

This chapter is devoted to Lowe’s Scale-Invariant Feature Transform (SIFT
[166]), a very efficient image comparison method. The initial goal of the SIFT
method is to compare two images (or two image parts) that can be deduced from
each other (or from a common one) by a rotation, a translation, and a zoom.
The method turned out to be also robust to large enough changes in view point
angle, which explains its success. This method uses as fundamental tool the heat
equation or, in other terms, the linear scale space. The heat equation is used
to simulate all zooms out of both images that have to be compared. Indeed,
these images may contain similar objects taken at different distances. But at
least two of the simulated zoomed in images should contain these objects at the
same apparent distance. This is the principal ingredient of the SIFT method,
but other invariance requirements must be addressed as well.

Sect. 5.2 gives a detailed description of the SIFT shape encoding method.
Sect. 5.4 proves mathematically that the SIFT method indeed computes trans-
lation, rotation and scale invariants. This proof is correct under the main as-
sumption that image blur can be assumed to be gaussian, and that images with
a gaussian blur larger than 0.6 (SIFT takes 0.8) are approximately (but accu-
rately) well-sampled and can therefore be interpolated. Chapter. 4.2 checked
the validity of this crucial gaussian blur assumption.

5.1 Introduction

Image comparison is a fundamental step in many computer vision and image
processing applications. A typical image matching method first detects points
of interest, then selects a region around each point, and finally associates with
each region a descriptor. Correspondences between two images may then be
established by matching the descriptors of both images.

In the SIFT method, stable points of interest are supposed to lie at extrema
of the Laplacian of the image in the image scale-space representation. The
scale-space representation introduces a smoothing parameter σ. Images u0 are
smoothed at several scales to obtain w(σ, x, y) =: (Gσ ∗ u0)(x, y), where we use
the parameterization of the gaussian by its standard deviation σ,

Gσ(x, y) = G(σ, x, y) =
1

2πσ2
e−(x2+y2)/2σ2

.
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Figure 5.1: A result of the SIFT method, using an outliers elimination method
[219]. Pairs of matching points are connected by segments.

Taking apart all sampling issues and several thresholds whose aim it is to
eliminate unreliable features, the whole method can be summarized in one single
sentence:

One sentence description The SIFT method computes scale-space extrema
(σi, xi, yi) of the space Laplacian of w(σ, x, y), and then samples for each one of
these extrema a square image patch whose origin is (xi, yi), whose x-direction
is one of the dominant gradients around (xi, yi), and whose sampling rate is
√

σ2
i + c2.

The constant c ≃ 0.8 is the tentative standard deviation of the image blur.
The resulting samples of the digital patch at scale σi are encoded by their
gradient direction, which is invariant under nondecreasing contrast changes.
This accounts for the robustness of the method to illumination changes. In
addition, only local histograms of the direction of the gradient are kept, which
accounts for the robustness of the final descriptor to changes of view angle (see
Fig. 5.5).

Figs 5.1 and 5.6 show striking examples of the method scale invariance. Lowe
claims that 1) his descriptors are invariant with respect to translation, scale and
rotation, and that 2) they provide a robust matching across a substantial range
of affine distortions, change in 3D viewpoint, addition of noise, and change in
illumination. In addition, being local, they are robust to occlusion. Thus they
match all requirements for shape recognition algorithms except one: they are
not really affine invariant but only robust to moderate affine distortions.

5.2 A Short Guide to SIFT Encoding

The SIFT encoding algorithm consists of four steps: detection of scale-space
extrema (Sect. 5.2.1), accurate localization of key points (Sect. 5.2.2), and de-
scriptor construction (Sect. 5.2.3).



i

5.2. A SHORT GUIDE TO SIFT ENCODING 71

Figure 5.2: Gaussian pyramid for key points extraction (from [166])

5.2.1 Scale-Space Extrema

Following a classical paradigm, stable points of interest are supposed to lie
at extrema of the Laplacian of the image in the image scale-space represen-
tation. We recall that the scale-space representation introduces a smoothing
parameter σ, the scale, and convolves the image with Gaussian functions of
increasing standard deviation σ. By a classical approximation inspired from
psychophysics [178], the Laplacian of the Gaussian is replaced by a Difference of
Gaussians at different scales (DOG). Extrema of the Laplacian are then replaced
by extrema of DOG functions: D(σ, x, y) = w(kσ, x, y) − w(σ, x, y), where k is
a constant multiplicative factor. Indeed, it is easy to show that D(σ, x, y) is an
approximation of the Laplacian:

D(σ, x, y) ≈ (k − 1)σ2(∆Gσ ∗ u0)(x, y).

In the terms of David Lowe:

The factor (k− 1) in the equation is constant over all scales and
therefore does not influence extrema location. The approximation
error will go to zero as k goes to 1, but in practice we have found that
the approximation has almost no impact on the stability of extrema
detection or localization for even significant differences in scale, such
as k =

√
2.

To be more specific, quoting Lowe again:

D(σ, x, y) =: (G(kσ, x, y)−G(σ, x, y))∗u0(x, y) = w(kσ, x, y)−w(σ, x, y)

The relationship between D and σ2∆G can be understood from
the heat diffusion equation (parameterized in terms of σ rather than
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Figure 5.3: Neighborhood for the location of key points (from [166]). Local ex-
trema are detected by comparing each sample point in D with its eight neighbors
at scale σ and its nine neighbors in the scales above and below.

the more usual t = σ2):

∂G

∂σ
= σ∆G.

From this, we see that ∆G can be computed from the finite differ-
ence approximation to ∂G/∂σ, using the difference of nearby scales
at kσ and σ:

σ∆G =
∂G

∂σ
≈ G(kσ, x, y) −G(σ, x, y)

kσ − σ

and therefore,

G(kσ, x, y) −G(σ, x, y) ≈ (k − 1)σ2∆G.

This shows that when the difference-of-Gaussian function has
scales differing by a constant factor it already incorporates the σ2

scale normalization required for the scale-invariant Laplacian.

This leads to an efficient computation of local extrema of D by exploring neigh-
borhoods through a Gaussian pyramid ; see Figs. 5.2 and 5.3.

Exercise 5.1. Show that the gaussian Gσ parameterized by its standard deviation σ
satisfies as stated by Lowe the time-dependent heat equation ∂G

∂σ
= σ∆G.

5.2.2 Accurate Key Point Detection

In order to achieve sub-pixel accuracy, the interest point position is slightly
corrected thanks to a quadratic interpolation. Let us call x0 =: (σ0, x0, y0)
the current detected point in scale space, which is known up to the (rough)
sampling accuracy in space and scale. Notice that all points x = (σ, x, y) here
are scale-space coordinates. Let us call x1 = x0 + y the real extremum of the
DOG function. The Taylor expansion of D yields

D(x0 + y) = D(x0) + (DD) (x0) · y +
1

2

(
D2

D
)
(x0)(y,y) + o(‖y‖2),

where D and its derivatives are evaluated at an interest point and y denotes
an offset from this point. Since interest points are extrema of D in scale space,
setting the derivative to zero gives:

y = −
(
D2

D(x0)
)−1

(DD(x0)) , (5.1)
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which is the sub-pixel correction for a more accurate position of the key point
of interest.

Exercise 5.2. Check that (5.1) is a point where the gradient of D vanishes.

Since points with low contrast are sensitive to noise, and since points that are
poorly localized along an edge are not reliable, a filtering step is called for. Low
contrast points are handled through a simple thresholding step. Edge points are
swept out following the Harris and Stephen’s interest points paradigm. Let H
be the following Hessian matrix:

H =

(
Dxx Dxy

Dxy Dyy

)

.

The reliability test is simply to assess whether the ratio between the larger
eigenvalue and the smaller one is below a threshold r. This amounts to check:

Tr(H)2

Det(H)
<

(r + 1)2

r
. (5.2)

This rules out standard edge points and puts points of interest at locations
which are strong enough extrema, or saddle points.

Exercise 5.3. Explain why (5.2) is equivalent imposing that the ratio between the
smaller eigenvalue and the larger eigenvalue of H is smaller than r. These eigenvalues
are assumed to have the same sign. Why?

5.2.3 Construction of the SIFT descriptor

In order to extract rotation-invariant patches, an orientation must be assigned
to each key point. Lowe proposes to estimate a semi-local average orientation for
each key point. From each sample image Lσ, gradient magnitude and orientation
is pre-computed using a 2 × 2 scheme. An orientation histogram is assigned
to each key point by accumulating gradient orientations weighted by 1) the
corresponding gradient magnitude and by 2) a Gaussian factor depending on
the distance to the considered key point and on the scale. The precision of this
histogram is 10 degrees. Peaks simply correspond to dominant directions of
local gradients. Key points are created for each peak with similar magnitude,
and the assigned orientation is refined by local quadratic interpolation of the
histogram values.

Once a scale and an orientation are assigned to each key point, each key-
point is associated a square image patch whose size is proportional to the scale
and whose side direction is given by the assigned direction. The next step is to
extract from this patch robust information. Gradient samples are accumulated
into orientation histograms summarizing the contents over 4 × 4 subregions
surrounding the key point of interest. Each of the 16 subregions corresponds to
a 8-orientations bins histogram, leading to a 128 element feature for each key
point (see Fig. 5.5). Two modifications are made in order to reduce the effects
of illumination changes: histogram values are thresholded to reduce importance
of large gradients (in order to deal with a strong illumination change such as
camera saturation), and feature vectors are normalized to unit length (making
them invariant to affine changes in illumination).
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Figure 5.4: SIFT key points. The arrow starting point, length and the orienta-
tion signify respectively the key point position, scale, and dominant orientation.
These features are covariant to any image similarity.

5.2.4 Final matching

The outcome is for each image, a few hundreds or thousands SIFT descrip-
tors associated with as many key points. The descriptors of any image can be
compared to the descriptors of any other image, or belonging to a database
of descriptors built up from many images. The only remaining question is to
decide when two descriptors match, or not. In the terms of Lowe again:

The best candidate match for each keypoint is found by identi-
fying its nearest neighbor in the database of keypoints from training
images. The nearest neighbor is defined as the keypoint with min-
imum Euclidean distance for the invariant descriptor vector. How-
ever, many features from an image will not have any correct match
in the training database because they arise from background clutter
or were not detected in the training images. Therefore, it would be
useful to have a way to discard features that do not have any good
match to the database. A global threshold on distance to the closest
feature does not perform well, as some descriptors are much more
discriminative than others. A more effective measure is obtained by
comparing the distance of the closest neighbor to that of the second-
closest neighbor. (...) This measure performs well because correct
matches need to have the closest neighbor significantly closer than
the closest incorrect match to achieve reliable matching. For false
matches, there will likely be a number of other false matches within
similar distances due to the high dimensionality of the feature space.
We can think of the second-closest match as providing an estimate of
the density of false matches within this portion of the feature space
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Figure 5.5: Example of a 2×2 descriptor array of orientation histograms (right)
computed from an 8 × 8 set of samples (left). The orientation histograms are
quantized into 8 directions and the length of each arrow corresponds to the
magnitude of the histogram entry. (From [166])

and at the same time identifying specific instances of feature am-
biguity. (...) For our object recognition implementation, we reject
all matches in which the distance ratio is greater than 0.8, which
eliminates 90% of the false matches while discarding less than 5% of
the correct matches.

5.3 Image acquisition model underlying SIFT

5.3.1 The camera model

We always work on the camera CCD plane, whose mesh unit is taken to be 1.
We shall always assume that the camera pixels are indexed by IZ2. The image
sampling operator is therefore always S1. Our second assumption is that the
digital initial image is well-sampled and obtained by a gaussian kernel. Thus,
the digital image is u = S1GδAu0, where δ ≥ c, c ≃ 0.6 ensures well-sampling
(see Chapter 4.2), and A is a similarity with positive determinant.

Definition 5.1. We model all digital images obtained from a given ideal planar
object whose frontal infinite resolution image is u0 as

u0 =: S1GδAu0 (5.3)

where δ ≥ c and A is any affine map.

So the possibility of aliasing (under-sampling, δ < c is discarded). Taking
into account the way the digital image is blurred and sampled in the SIFT
method, we can now list the SIFT assumptions and formalize the method itself.
The description is by far simpler if we do it without mixing in sampling issues.
We need not mix them in, since the fact that images are well-sampled at all
stages permits equivalently to describe all operations with the continuous images
directly, and to deduce afterwards the discrete operators on samples. We refer
to section 4.2.1 for this passage from continuous to discrete operations in the
well-sampled world.
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5.3.2 Condensed description of the SIFT method

1. There is an underlying infinite resolution bounded planar image u0;

2. the initial digital image is S1GδAu0 where δ ≥ c, and A = RHλT is the
composition of a rotation, a zoom, and a translation;

3. at all scales σ > 0, the SIFT method computes good samplings of u(σ, ·) =
GσGδAu0 and deduces by the Newton method key points; The computa-
tion of these key points involves the computation of spatial derivatives of
u(σ, ·). Notice that if u(σ, ·) is well-sampled, then so are its derivatives;

4. the blurred u(σ, ·) image is then sampled around each characteristic point
at a pace proportional to

√
σ2 + c2. For a sake of simplicity we shall as-

sume without loss of generality in our discussion that the fixed proportion
is 1, so that the sampling is at

√
σ2 + c2 rate;

5. the directions of the sampling axes are fixed by a dominant direction of the
gradient of u(σ, ·) in a neighborhood with size proportional to σ around
the characteristic point.

The rest of the operations in the SIFT method is just a contrast invariant
encoding of the samples around each characteristic point. It is not needed for
the discussion to follow.

5.4 Scale and SIFT: consistency of the method

In this section, in conformity with the SIFT model of Sect. 5.3.2, the digital
image is a frontal view of an infinite resolution ideal image u0. In that case,
A = HT R is the composition of a homothety H , a translation T and a rotation
R. Thus the digital image is u = S1GδHT Ru0, for some H , T , R as above.
Assuming that the image is not aliased boils down, by the experimental results
of Sect. 4.2, to assuming δ ≥ 0.6. (Lowe always takes δ = 0.8.)

We denote by T an arbitrary image translation, by R an arbitrary image
rotation, by H an arbitrary image homothety, and by G an arbitrary gaussian
convolution, all applied to continuous images. We say that there is strong com-
mutation if we can exchange the order of application of two of these operators.
We say that there is weak commutation between two of these operators if we
have (e.g.) RT = T ′R, meaning that given R and T there is T ′ such that the
former relation occurs. The next lemma is straightforward.

Lemma 5.2. All of the aforementioned operators weakly commute. In addition,
R and G commute strongly.

Exercise 5.4. Check all of the mentioned weak and strong commutations and give
their exact formula. There are four kinds of operators: translations, rotations, homo-
theties, gaussian convolutions. Thus, there are 6 verifications to make.

Lemma 5.3. For any rotation R and any translation T , the SIFT descriptors
of S1GδHT Ru0 are identical to those of S1GδHu0.
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Proof. Using the weak commutation of translations and rotations with all other
operators (Lemma 5.2), it is easily checked that the SIFT method is rotation
and translation invariant: The SIFT descriptors of a rotated or translated image
are identical to those of the original. Indeed, the set of scale space Laplacian
extrema is covariant to translations and rotations. Then the normalization
process for each SIFT descriptor situates the origin at each extremum in turn,
thus canceling the translation, and the local sampling grid defining the SIFT
patch has axes given by peaks in its gradient direction histogram. Such peaks
are translation invariant and rotation covariant. Thus, the normalization of the
direction also cancels the rotation. �

Exercise 5.5. The above proof uses that gradients and Laplacians are covariant with
respect to translations and rotations. Prove that for any C2 function, ∆(Ru) = R(∆u)
and D(Ru) = RDu.

Lemma 5.4. Let u and v be two digital images that are frontal snapshots of the
same continuous flat image u0, u = S1GβHλu0 and v =: S1GδHµu0, taken at
different distances, with different gaussian blurs and possibly different sampling
rates. Let w(σ,x) = (Gσu)(x) denote the scale space of u. Then the scale spaces
of u and v are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds
to a key point of u at the scale σ1 such that λ

√

σ2
1 + β2 = s0, whose SIFT

descriptor is sampled with mesh
√
σ1 + c2. In the same way (s0,x0) corresponds

to a key point of v at scale σ2 such that s0 = µ
√

σ2
2 + δ2, whose SIFT descriptor

is sampled with mesh
√

σ2
2 + c2.

Proof. The interpolated initial images are by (4.2)

u =: IS1GβHλu0 = GβHλu0 and v =: IS1GδHµu0 = GδHµu0.

Computing the scale-space of these images amounts to convolve these images
for every σ > 0 with Gσ, which yields, using the commutation relation (4.7)
and the semigroup property (4.6):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HµGµ
√

σ2+δ2u0.

Set w(s,x) =: Gsu0. Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

Let us consider an extremal point (s0,x0) of the Laplacian of the scale space
function w. If s0 ≥ max(λβ, µδ), an extremal point occurs at scales σ1 for (the
Laplacian of) u(σ,x) and at scale σ2 for (the Laplacian of) v(σ,x) satisfying

s0 = λ
√

σ2
1 + β2 = µ

√

σ2
2 + δ2. (5.4)

�
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Theorem 5.5. Let u and v be two digital images that are frontal snapshots of
the same continuous flat image u0, u = S1GβHλT Ru0 and v =: S1GδHµu0,
taken at different distances, with different gaussian blurs and possibly different
sampling rates, and up to a camera translation and rotation around its optical
axe. Without loss of generality, assume λ ≤ µ. Then if the camera blurs are
standard (β = δ = c), all SIFT descriptors of u are identical to SIFT descriptors
of v. If β 6= δ (or β = δ 6= c), the SIFT descriptors of u and v become
(quickly) similar when their scales grow, namely as soon as σ1

max(c,β) ≫ 1 and
σ2

max(c,δ) ≫ 1.

Proof. By the result of Lemma 5.3, we can neglect the effect of translations
and rotations. Therefore assume w.l.o.g. that the images under comparison are
as in Lemma 5.4. Assume a key point (s0,x0) of w has scale s0 ≥ max(λβ, µδ).
This key point has a sampling rate proportional to s0. There is a corresponding
key point (σ1,

x0

λ ) for u with sampling rate
√

σ2
2 + c2 and a corresponding key

point (σ2,
x0

µ ) with sampling rate
√

σ2
2 + c2 for v. To have a common reference

for these sampling rates, it is convenient to refer to the corresponding sampling
rates for w(s0,x), which are λ

√

σ2
1 + c2 for the SIFT descriptors of u at scale σ1,

and µ
√

σ2
2 + c2 for the descriptors of v at scale σ2. Thus the SIFT descriptors

of u and v for x0 will be identical if and only if λ
√

σ2
1 + c2 = µ

√

σ2
2 + c2. Now,

we have λ
√

σ2
1 + β2 = µ

√

σ2
2 + δ2, which implies λ

√

σ2
1 + c2 = µ

√

σ2
2 + c2 if

and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2. (5.5)

Since λ and µ are proportional to camera distances to the observed object u0,
they are arbitrary and generally different. Thus, the only way to ensure (5.5)
is to have β = δ = c, which means that the blurs of both images (or of both
cameras) are ideal and gaussian). In any case, β = δ = c does imply that the
SIFT descriptors of both images are identical.

The second statement is straightforward: If σ1 and σ2 are large enough
with respect to β, δ and c, the relation λ

√

σ2
1 + β2 = µ

√

σ2
2 + δ2, implies

λ
√

σ2
1 + c2 ≃ µ

√

σ2
2 + c2. �

The almost perfect scale invariance of SIFT stated in Theorem 5.5 is illus-
trated by the striking example of Fig. 5.6. The 28 SIFT key points of a very
small image u are compared to the 86 key points obtained by zooming in u by
a 32 factor: The resulting digital image is v = S 1

32
Iu, again obtained by zero-

padding. For better observability, both images are displayed with the same size
by enlarging the pixels of u. Almost each key point (22 out of 28) of u finds
its counterpart in v. 22 matches are detected between the descriptors as shown
on the right. If we trust Theorem 5.5, all descriptors of u should have been
retrieved in v. This does not fully happen for two reasons. First, the SIFT
method thresholds (not taken into account in the theorem) eliminate many po-
tential key points. Second, the zero-padding interpolation giving v is imperfect
near the image boundaries.
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Figure 5.6: Scale invariance of SIFT, an illustration of Theorem 5.5. Left: a very
small digital image u with its 28 key points. For the conventions to represent
key points and matches, see the comments in Fig. 5.4. Middle: this image is
over sampled by a 32 factor to S 1

32
Iu. It has 86 key points. Right: 22 matches

found between u and S 1
32
Iu.

5.5 Exercises

Exercise 5.6. The aim of the exercise is to explain why the experiment of Fig. 5.6
works, and to illustrate Theorem 5.5. The digital zoom in by a factor λ is nothing but
the over-sampling operator S 1

λ
with sampling step 1

λ
, defined in (4.11). Here, λ = 32.

In the experiment an original digital image u = S1Gδu is zoomed into v = S 1
λ
u.

1) Using the definition of the discrete zoom and the right commutation relations given
in this chapter and in the former one (give their numbers), show that

v = S 1
λ
Gδu = S1GλδH 1

λ
u.

2) Is v well-sampled if u was?

3) By applying carefully Theorem 5.5, assuming that δ ≃ c, discuss why SIFT manages
to match SIFT descriptors of u and v.

5.6 Comments and references

Many variations exist on the computation of interest points, following the pi-
oneering work of Harris and Stephens [115]. The Harris-Laplace and Hessian-
Laplace region detectors [186, 189] are invariant to rotation and scale changes.
Some moment-based region detectors [160, 29] including Harris-Affine and Hessian-
Affine region detectors [187, 189], an edge-based region detector [256], an intensity-
based region detector [256], an entropy-based region detector [137], and two
independently developed level line-based region detectors MSER (“maximally
stable extremal region”) [182] and LLD (“level line descriptor”) [198, 200, 202]
are designed to be invariant to affine transformations. These two methods stem
from the Monasse image registration method [193] that used well contrasted
extremal regions to register images. MSER is the most efficient one and has
shown better performance than other affine invariant detectors [191]. However,
as pointed out in [166], no known detector is actually fully affine invariant: All
of them start with initial feature scales and locations selected in a non-affine
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invariant manner. The difficulty comes from the scale change from an image to
another: This change of scale is actually an under-sampling, which means that
the images differ by a blur.

In his milestone paper [166], Lowe has addressed this central problem and
has proposed the so called scale-invariant feature transform (SIFT) descriptor,
that is invariant to image translations and rotations, to scale changes (blur),
and robust to illumination changes. It is also surprisingly robust to large
enough orientation changes of the viewpoint (up to 60 degrees). Based on
the scale-space theory [159], the SIFT procedure simulates all gaussian blurs
and normalizes local patches around scale covariant image key points that
are Laplacian extrema. A number of SIFT variants and extensions, includ-
ing PCA-SIFT [139] and gradient location-orientation histogram (GLOH) [190],
that claim to have better robustness and distinctiveness with scaled-down com-
plexity have been developed ever since [93, 157]. Demonstrated to be supe-
rior to other descriptors [188, 190], SIFT has been popularly applied for scene
recognition [86, 196, 230, 261, 105, 240] and detection [94, 206], robot local-
ization [31, 208, 133], image registration [275], image retrieval [114], motion
tracking [257, 142], 3D modeling and reconstruction [224, 262], building panora-
mas [3, 39], or photo management [274, 155, 55].

As pointed out by several benchmarks, the robustness and repeatability of
the SIFT descriptors outperforms other methods. However, such benchmarks
mix three very different criteria that, in our opinion, should have been discussed
separately. The first one is the formal real invariance of each method when all
thresholds have been eliminated. This real invariance has been proved here for
SIFT. The second criterion is the practical validity of the sampling method used
in SIFT, that has been again checked in Chapter 4.2. The last criterion is the
clever fixing of several thresholds in the SIFT method ensuring robustness, re-
peatability, and a low false alarm rate. This one has been extensively tested and
confirmed in previous benchmark papers (see also the very recent and complete
report [87]). We think, however, that the success of SIFT in these benchmarks
is primarily due to its full scale invariance.


