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Figure 5.4: SIFT key points. The arrow starting point, length and the orienta-
tion signify respectively the key point position, scale, and dominant orientation.
These features are covariant to any image similarity.

5.2.4 Final matching

The outcome is for each image, a few hundreds or thousands SIFT descrip-
tors associated with as many key points. The descriptors of any image can be
compared to the descriptors of any other image, or belonging to a database
of descriptors built up from many images. The only remaining question is to
decide when two descriptors match, or not. In the terms of Lowe again:

The best candidate match for each keypoint is found by identi-
fying its nearest neighbor in the database of keypoints from training
images. The nearest neighbor is defined as the keypoint with min-
imum Euclidean distance for the invariant descriptor vector. How-
ever, many features from an image will not have any correct match
in the training database because they arise from background clutter
or were not detected in the training images. Therefore, it would be
useful to have a way to discard features that do not have any good
match to the database. A global threshold on distance to the closest
feature does not perform well, as some descriptors are much more
discriminative than others. A more effective measure is obtained by
comparing the distance of the closest neighbor to that of the second-
closest neighbor. (...) This measure performs well because correct
matches need to have the closest neighbor significantly closer than
the closest incorrect match to achieve reliable matching. For false
matches, there will likely be a number of other false matches within
similar distances due to the high dimensionality of the feature space.
We can think of the second-closest match as providing an estimate of
the density of false matches within this portion of the feature space
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Figure 5.5: Example of a 2×2 descriptor array of orientation histograms (right)
computed from an 8 × 8 set of samples (left). The orientation histograms are
quantized into 8 directions and the length of each arrow corresponds to the
magnitude of the histogram entry. (From [166])

and at the same time identifying specific instances of feature am-
biguity. (...) For our object recognition implementation, we reject
all matches in which the distance ratio is greater than 0.8, which
eliminates 90% of the false matches while discarding less than 5% of
the correct matches.

5.3 Image acquisition model underlying SIFT

5.3.1 The camera model

We always work on the camera CCD plane, whose mesh unit is taken to be
1. We shall always assume that the camera pixels are indexed by IZ2. The
image sampling operator is therefore always S1. Our second assumption is
that the digital initial image is well-sampled and obtained by a gaussian kernel.
Thus, the digital image is u = S1GδAu0, where δ ≥ c, c ≃ 0.6 ensures well-
sampling (see Chapter 4.2), and A is a similarity with positive determinant. (In
fact Lowe’s original paper assumes c ≃ 0.5, which amounts to assume a slight
under-sampling of the original image).

Definition 5.1. We model all digital frontal images obtained from a given ideal
planar object whose frontal infinite resolution image is u0 as

u0 =: S1GδAu0 (5.3)

where δ ≥ c and A is a A = RHλT is the composition of a translation and of a
similarity.

So the possibility of aliasing (under-sampling, δ < c is discarded). Taking
into account the way the digital image is blurred and sampled in the SIFT
method, we can now list the SIFT assumptions and formalize the method itself.
The description is by far simpler if we do it without mixing in sampling issues.
We need not mix them in, since the fact that images are well-sampled at all
stages permits equivalently to describe all operations with the continuous images
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directly, and to deduce afterwards the discrete operators on samples. We refer
to section 4.2.1 for this passage from continuous to discrete operations in the
well-sampled world.

5.3.2 Condensed description of the SIFT method

1. There is an underlying infinite resolution bounded planar image u0;

2. The initial digital image is S1GδAu0 where δ ≥ c, and A = RHλT is the
composition of a rotation, a zoom, and a translation;

3. the SIFT method computes a sufficient scale-space sampling of u(σ,x) =
(GσGδAu0)(x), and deduces by the Newton method the accurate loca-
tion or key points defined as extrema in scale-space of the spatial image
Laplacian, ∆u(σ;x);

4. The blurred u(σ, ·) image is then re-sampled around each characteristic
point with sampling mesh

√
σ2 + c2;

5. the directions of the sampling axes are fixed by a dominant direction of the
gradient of u(σ, ·) in a neighborhood, with size proportional to

√
σ2 + c2

around the characteristic point;

6. the rest of the operations in the SIFT method is a contrast invariant
encoding of the samples around each characteristic point. It is not needed
for the discussion to follow.

5.4 Scale and SIFT: consistency of the method

In this section, in conformity with the SIFT model of Sect. 5.3.2, the digital
image is a frontal view of an infinite resolution ideal image u0. In that case,
A = HT R is the composition of a homothety H , a translation T and a rotation
R. Thus the digital image is u = S1GδHT Ru0, for some H , T , R as above.
Assuming that the image is not aliased boils down, by the experimental results
of Sect. 4.2, to assuming δ ≥ 0.8.

Consider T an arbitrary image translation, R an arbitrary image rotation,
Hλ an arbitrary image homothety, G an arbitrary gaussian convolution, D the
gradient and ∆ the Laplacian, all applied to continuous images. We say that
there is strong commutation of two of these operators if we can exchange the
order of their application to any image. We say that there is weak commutation
between two of these operators if we can exchange their order by changing one
of the parameters of one of the operators. For example we have RT = T ′R,
meaning that given R and T there is T ′ such that the former relation occurs.
The next lemma is straightforward.

Lemma 5.2. All of the aforementioned operators weakly commute, with the fol-
lowing exceptions: R and G commute strongly, DHλ = λHλD, ∆Hλ = λ2Hλ∆,
and D and ∆ do not commute.

Exercise 5.4. Check all of the mentioned commutations and give their exact for-
mula. There are six kinds of operators: translations, rotations, homotheties, gaussian
convolutions, gradients, and Laplacians. Thus, there are 15 verifications to make.
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Lemma 5.3. For any rotation R and any translation T , the SIFT descriptors
of S1GδHT Ru0 are identical to those of S1GδHu0.

Proof. By the weak commutation of translations and rotations with all other
operators (Lemma 5.2), the SIFT descriptors of a rotated or translated image
are identical to those of the original. Indeed, the set of scale space Laplacian
extrema is covariant to space translations and rotations. The normalization
process for each SIFT descriptor situates the origin at each extremum in turn,
thus canceling the translation. The local sampling grid defining the SIFT patch
has axes given by peaks in its gradient direction histogram. Such peaks are
translation invariant and rotation covariant. Thus, the normalization of the
direction also cancels the rotation. �

Lemma 5.4. Let u and v be two digital images that are frontal snapshots of the
same continuous flat image u0, u = S1GβHλu0 and v =: S1GδHµu0, taken at
different distances, with different gaussian blurs and possibly different sampling
rates. Let w(σ,x) = (Gσu0)(x) denote the scale space of u0. Then the scale
spaces of u = GβHλu0 and v = GδHµu0 are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds
to a key point of u at the scale σ1 such that λ

√

σ2
1 + β2 = s0, whose SIFT

descriptor is sampled with mesh
√
σ1 + c2. In the same way (s0,x0) corresponds

to a key point of v at scale σ2 such that s0 = µ
√

σ2
2 + δ2, whose SIFT descriptor

is sampled with mesh
√

σ2
2 + c2.

Proof. The interpolated initial images are by (4.2)

u =: IS1GβHλu0 = GβHλu0 and v =: IS1GδHµu0 = GδHµu0.

Computing the scale-space of these images amounts to convolve these images
for every σ > 0 with Gσ, which yields, using the commutation relation (4.7)
and the semigroup property (4.6):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HµGµ
√

σ2+δ2u0.

Set w(s,x) =: Gsu0. Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√

σ2 + β2, λx) and v(σ,x) = w(µ
√

σ2 + δ2, µx).

Let us consider an extremal point (s0,x0) of the Laplacian of the scale space
function w. If s0 ≥ max(λβ, µδ), an extremal point occurs at scales σ1 for the
Laplacian of u(σ,x) and at scale σ2 for the Laplacian of v(σ,x) satisfying

s0 = λ
√

σ2
1 + β2 = µ

√

σ2
2 + δ2. (5.4)

�
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Theorem 5.5. Let u and v be two digital images that are frontal snapshots of
the same continuous flat image u0, u = S1GβHλT Ru0 and v =: S1GδHµu0,
taken from arbitrary distances, with possibly different camera gaussian blurs,
with an arbitrary camera translation parallel to its focal plane, and an arbitrary
rotation around its optical axe. Without loss of generality, assume λ ≤ µ. Then
if the camera blurs are standard (β = δ = c), each SIFT descriptor of u = Iu
is identical to some SIFT descriptor of v = Iv. If β 6= δ (or β = δ 6= c), the
SIFT descriptors of u become (quickly) similar to SIFT descriptors of v when
their scales grow, namely as soon as σ1

max(c,β) ≫ 1 and σ2

max(c,δ) ≫ 1.

Proof. By the result of Lemma 5.3, we can neglect the effect of translations
and rotations. Therefore assume w.l.o.g. that the images under comparison are
as in Lemma 5.4. Assume a key point (s0,x0) of w has scale s0 ≥ max(λβ, µδ).
This key point has a sampling rate proportional to s0. There is a corresponding
key point (σ1,

x0

λ ) for u with sampling rate
√

σ2
2 + c2 and a corresponding key

point (σ2,
x0

µ ) with sampling rate
√

σ2
2 + c2 for v. To have a common reference

for these sampling rates, it is convenient to refer to the corresponding sampling
rates for w(s0,x), which are λ

√

σ2
1 + c2 for the SIFT descriptors of u at scale σ1,

and µ
√

σ2
2 + c2 for the descriptors of v at scale σ2. Thus the SIFT descriptors

of u and v for x0 will be identical if and only if λ
√

σ2
1 + c2 = µ

√

σ2
2 + c2. Now,

we have λ
√

σ2
1 + β2 = µ

√

σ2
2 + δ2, which implies λ

√

σ2
1 + c2 = µ

√

σ2
2 + c2 if

and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2. (5.5)

Since λ and µ are proportional to camera distances to the observed object u0,
they are arbitrary and generally different. Thus, the only way to ensure (5.5)
is to have β = δ = c, which means that the blurs of both images (or of both
cameras) are ideal and gaussian. In any case, β = δ = c does imply that the
SIFT descriptors of both images are identical.

The second statement is straightforward: If σ1 and σ2 are large enough
with respect to β, δ and c, the relation λ

√

σ2
1 + β2 = µ

√

σ2
2 + δ2, implies

λ
√

σ2
1 + c2 ≃ µ

√

σ2
2 + c2. �

The almost perfect scale invariance of SIFT stated in Theorem 5.5 is illus-
trated by the striking example of Fig. 5.6. The 28 SIFT key points of a very
small digital image u are compared to the 86 key points obtained by zooming
in u by a 32 factor: The resulting digital image is the digital image v = S 1

32
Iu,

again obtained by zero-padding. For better observability, both images are dis-
played with the same size by enlarging the pixels of u. Almost each key point
(22 out of 28) of u finds its counterpart in v. 22 matches are detected between
the descriptors as shown on the right. If we trust Theorem 5.5, all descriptors of
u should have been retrieved in v. This does not fully happen for two reasons.
First, the SIFT method thresholds (not taken into account in the theorem) elim-
inate many potential key points. Second, the zero-padding interpolation giving
v is imperfect near the image boundaries.
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Figure 5.6: Scale invariance of SIFT, an illustration of Theorem 5.5. Left: a very
small digital image u with its 28 key points. For the conventions to represent
key points and matches, see the comments in Fig. 5.4. Middle: this image is
over sampled by a 32 factor to v = S 1

32
Iu. It has 86 key points. Right: 22

matches found between u and S 1
32
Iu.

5.5 Exercises

Exercise 5.5. The aim of the exercise is to explain why the experiment of Fig. 5.6
works, and to illustrate Theorem 5.5. The digital zoom in by a factor λ is nothing
but the discrete over-sampling operator S 1

λ
with sampling step 1

λ
, defined in (4.11).

Here, λ = 32. In the experiment an original digital image u = S1Gδu is zoomed into
v = S 1

λ
u.

1) Using the definition of the discrete zoom and the right commutation relations given
in this chapter and in the former one (give their numbers), show that

v = S 1
λ
GδIu = S1GλδH 1

λ
Iu.

2) Is v well-sampled if u was?

3) By applying carefully Theorem 5.5, assuming that δ ≃ c, discuss why SIFT manages
to match SIFT descriptors of u and v.

5.6 Comments and references

Many variations exist on the computation of interest points, following the pi-
oneering work of Harris and Stephens [115]. The Harris-Laplace and Hessian-
Laplace region detectors [186, 189] are invariant to rotation and scale changes.
Some moment-based region detectors [160, 29] including Harris-Affine and Hessian-
Affine region detectors [187, 189], an edge-based region detector [256], an intensity-
based region detector [256], an entropy-based region detector [137], and two
independently developed level line-based region detectors MSER (“maximally
stable extremal region”) [182] and LLD (“level line descriptor”) [198, 200, 202]
are designed to be invariant to affine transformations. These two methods stem
from the Monasse image registration method [193] that used well contrasted
extremal regions to register images. MSER is the most efficient one and has
shown better performance than other affine invariant detectors [191]. However,
as pointed out in [166], no known detector is actually fully affine invariant: All
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of them start with initial feature scales and locations selected in a non-affine
invariant manner. The difficulty comes from the scale change from an image to
another: This change of scale is actually an under-sampling, which means that
the images differ by a blur.

In his milestone paper [166], Lowe has addressed this central problem and
has proposed the so called scale-invariant feature transform (SIFT) descriptor,
that is invariant to image translations and rotations, to scale changes (blur),
and robust to illumination changes. It is also surprisingly robust to large
enough orientation changes of the viewpoint (up to 60 degrees). Based on
the scale-space theory [159], the SIFT procedure simulates all gaussian blurs
and normalizes local patches around scale covariant image key points that
are Laplacian extrema. A number of SIFT variants and extensions, includ-
ing PCA-SIFT [139] and gradient location-orientation histogram (GLOH) [190],
that claim to have better robustness and distinctiveness with scaled-down com-
plexity have been developed ever since [93, 157]. Demonstrated to be supe-
rior to other descriptors [188, 190], SIFT has been popularly applied for scene
recognition [86, 196, 230, 261, 105, 240] and detection [94, 206], robot local-
ization [31, 208, 133], image registration [275], image retrieval [114], motion
tracking [257, 142], 3D modeling and reconstruction [224, 262], building panora-
mas [3, 39], or photo management [274, 155, 55].

As pointed out by several benchmarks, the robustness and repeatability of
the SIFT descriptors outperforms other methods. However, such benchmarks
mix three very different criteria that, in our opinion, should have been discussed
separately. The first one is the formal real invariance of each method when all
thresholds have been eliminated. This real invariance has been proved here for
SIFT. The second criterion is the practical validity of the sampling method used
in SIFT, that has been again checked in Chapter 4.2. The last criterion is the
clever fixing of several thresholds in the SIFT method ensuring robustness, re-
peatability, and a low false alarm rate. This one has been extensively tested and
confirmed in previous benchmark papers (see also the very recent and complete
report [87]). We think, however, that the success of SIFT in these benchmarks
is primarily due to its full scale invariance.
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Chapter 6

Linear Scale Space and

Edge Detection

The general analysis framework in which an image is associated with smoothed
versions of itself at several scales is called scale space. Following the results
of Chapter 3, a linear scale space must be performed by applying the heat
equation to the image. The main aim of this smoothing is to find out edges in
the image. We shall first explain this doctrine. In the second section, we discuss
experiments and several serious objections to such an image representation.

6.1 The edge detection doctrine

One of the uses of linear theory in two dimensions is edge detection. The as-
sumption of the edge detection doctrine is that relevant information is contained
in the traces produced in an image by the apparent contours of physical objects.
If a black object is photographed against a white background, then one expects
the silhouette of the object in the image to be bounded by a closed curve across
which the light intensity u0 varies strongly. We call this curve an edge. At
first glance, it would seem that this edge could be detected by computing the
gradient Du0, since at a point x on the edge, |Du0(x)| should be large and
Du(x) should point in a direction normal to the boundary of the silhouette. It
would therefore appear that finding edges amounts to computing the gradient
of u0 and determining the points where the gradient is large. This conclusion is
unrealistic for two reasons:

(a) There may be many points where the gradient is large due to small oscilla-
tions in the image that are not related to real objects. Recall that digital
images are always noisy, and thus there is no reason to assume the existence
or computability of a gradient.

(b) The points where the gradient exceeds a given threshold are likely to form
regions and not curves.

As we emphasized in the Introduction, objection (a) is dealt with by smooth-
ing the image. We associate with the image u0 smoothed versions u(t, ·), where
the scale parameter t indicates the amount of smoothing. In the classical linear
theory, this smoothing is done by convolving u0 with the Gaussian Gt.

81
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One way that objection (b) has been approached is by redefining edge points.
Instead of just saying an edge point is a point x where |Du0(x)| exceeds a
threshold, one requires the gradient to satisfy a maximal property. We illustrate
this in one dimension. Suppose that u ∈ C2(R) and consider the points where
|u′(x)| attains a local maximum. At some of these points, the second derivative
u′′ changes sign, that is, sign(u′′(x− h)) 6= sign(u′′(x+ h)) for sufficiently small
h. These are the points where u′′ crosses zero, and they are taken to be the edge
points. Note that this criterion avoids classifying a point x as an edge point if
the gradient is constant in an interval around x. Marr and Hildreth generalized
this idea to two dimensions by replacing u′′ with the Laplacian ∆u, which is
the only isotropic linear differential operator of order two that generalizes u′′

[179]. Haralick’s edge detector is different but in the same spirit [111]. Haralick
gives up linearity and defines edge points as those points where the gradient
has a local maximum in the direction of the gradient. In other words, an edge
point x satisfies g′(0) = 0, where g(t) = |Du(x+ tDu(x)|/|Du(x)|. This implies
that D2u(x)(Du(x), Du(x)) = 0 (see Exercise 6.2). We are now going to state
these two algorithms formally. They are illustrated in Figures 6.2 and 6.3,
respectively.

Algorithm 6.1 (Edge detection: Marr–Hildreth zero-crossings).

(1) Create the multiscale images u(t, ·) = Gt ∗ u0 for increasing values of t.

(2) At each scale t, compute all the points where Du 6= 0 and ∆u changes
sign. These points are called zero-crossings of the Laplacian, or simply
zero-crossings.

(3) (Optional) Eliminate the zero-crossings where the gradient is below some
prefixed threshold.

(4) track back from large scales to fine scales the “main edges” detected at large
scales.

Algorithm 6.2 (Edge detection: The Haralick–Canny edge detector).

(1) As before, create the multiscale images u(t, ·) = Gt ∗u0 for increasing values
of t.

(2) At each scale t, find all points x where Du(x) 6= 0 and D2u(x)(z, z) crosses
zero, z = Du/|Du|. At such points, the function s 7→ u(x + sz) changes
from concave to convex, or conversely, as s passes through zero.

(3) At each scale t, fix a threshold θ(t) and retain as edge points at scale t only
those points found above that satisfy |Du(x)| > θ(t). The backtracking step
across scales is the same as for Marr–Hildreth.

In practice, edges are computed for a finite number of dyadic scales, t = 2n,
n ∈ Z.

6.1.1 Discussion and critique

The Haralick–Canny edge detector is generally preferred for its accuracy to the
Marr–Hildreth algorithm. Their use and characteristics are, however, essentially
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Figure 6.1: A three-dimensional representation of the Laplacian of the Gaussian.
This convolution kernel, which is a wavelet, is used to estimate the Laplacian
of an image at different scales of linear smoothing.

the same. There are also many variations—attempted improvements—of the
algorithms we have described, and the following discussion adapts easily to these
related edge detection schemes. The first thing to notice is that, by Proposition
2.5, u(t, ·) = Gt ∗ u0 is a C∞ function for each t > 0 if u0 ∈ F . Thus we can
indeed compute second order differential operators applied to u(t, ·) = Gt ∗ u0,
t > 0. In the case of linear operators like the Laplacian or the gradient, the task
is facilitated by the formula proved in the mentioned proposition. For example,
we have ∆u(t,x) = ∆(Gt ∗ u0)(x) = (∆Gt) ∗ u0(x), where in dimension two
(Figure 6.1),

∆Gt(x) =
|x|2 − 4t

16πt3
e−|x|2/4t.

In the same way, Haralick’s edge detector makes sense, because u is C∞, at
all points where Du(x) 6= 0. If Du(x) = 0, then x cannot be an edge point, since
u is “flat” there. Thus, thanks to the filtering, there is no theoretical problem
with computing edge points. There are, however, practical objections to these
methods, which we will now discuss.

Linear scale space

The first serious problems are associated with the addition of an extra dimen-
sion: Having many images u(t, ·) at different scales t confounds our understand-
ing of the image and adds to the cost of computation. We no longer have an
absolute definition of an edge. We can only speak of edges at a certain scale.
Conceivably, a way around this problem would be to track edges across scales.
In fact, it has been observed in experiments that the “main edges” persist under
convolution as t increases, but they lose much of their spatial accuracy. On the
other hand, filtering with a sharp low-pass filter, that is, with t small, keeps
these edges in their proper positions, but eventually, as t becomes very small,
even these main edges can be lost in the crowd of spurious edge signals due to
noise and texture. The scale space theory of Witkin proposes to identify the
main edges at some scale t and then to track them backward as t decreases [273].
In theory, it would seem that this method could give an accurate location of the
main edges. In practice, any implementation of these ideas is computationally
costly due to the problems involved with multiple thresholdings and following
edges across scales. In fact, tracking edges across scales is incompatible with
having thresholds for the gradients, since such thresholds may remove edges at
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Figure 6.2: Zero-crossings of the Laplacian at different scales. This figure il-
lustrates the original scale space theory as developed by David Marr [177]. To
extract more global structure, the image is convolved with Gaussians whose
variances are powers of two. One computes the Laplacian of the smoothed
image and displays the lines along which this Laplacian changes sign: the zero-
crossings of the Laplacian. According to Marr, these zero-crossings represent
the “raw primal sketch” of the image, or the essential information on which
further vision algorithms should be based. Above, left to right: the results of
smoothing and the associated Gaussian kernels at scales 1, 2, and 4. Below,
left to right: the zero-crossings of the Laplacian and the corresponding kernels,
which are the Laplacians of the Gaussians used above.

certain scales and not at others. The conclusion is that one should trace all
zero-crossings across scales without considering whether they are true edges or
not. This makes matching edges across scales very difficult. For example, ex-
periments show that zero-crossings of sharp edges that are sparse at small scales
are no longer sparse at large scales. (Figure 6.4 shows how zero-crossings can
be created by linear smoothing.) The Haralick–Canny detector suffers from the
same problems, as is well demonstrated by experiments.

Other problems with linear scale space are illustrated in Figures 6.5 and
6.6. Figure 6.5 illustrates how linear smoothing can create new gray levels and
new extrema. Figure 6.6 shows that linear scale space does not maintain the
inclusion between objects. The shape inclusion principal will be discussed in
Chapter 21.

We must conclude that the work on linear edge detection has been an at-
tempt to build a theory that has not succeeded. After more than thirty years
of activity, it has become clear that no robust technology can be based on these
ideas. Since edge detection algorithms depend on multiple thresholds on the
gradient, followed by “filling-the-holes” algorithms, there can be no scientific
agreement on the identification of edge points in a given image. In short, the
problems associated with linear smoothing followed by edge detection have not
been resolved by the idea of chasing edges across scales.
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Figure 6.3: Canny’s edge detector. These images illustrate the Canny edge
detector. Left column: result of the Canny filter without the threshold on the
gradient. Middle column: result with a visually “optimal” scale and an image-
dependent threshold (from top to bottom: 15, 0.5, 0.6). Right column: result
with a fixed gradient threshold equal to 0.7. Note that such an edge detection
theory depends on no fewer than two parameters that must be fixed by the user:
smoothing scale and gradient threshold .

Figure 6.4: Zero-crossings of the Laplacian of a synthetic image. Left to right:
the original image; the image linearly smoothed by convolution with a Gaussian;
the sign of the Laplacian of the filtered image (the gray color corresponds to
values close to 0, black to clear-cut negative values, white to clear-cut positive
values); the zero-crossings of the Laplacian. This experiment clearly shows a
drawback of the Laplacian as edge detector.

Contrast invariance

The use of contrast-invariant operators can solve some of the technical problems
associated with linear smoothing and other linear image operators. An (image)
operator u 7→ Tu is contrast invariant if T commutes with all nondecreasing
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(a) (b) (c)

Figure 6.5: The heat equation creates structure. This experiment shows that
linear scale space can create new structures and thus increase the complexity of
an image. Left to right: The original synthetic image (a) contains three gray
levels. The black disk is a regional and absolute minimum. The “white” ring
around the black disk is a regional and absolute maximum. The outer gray ring
has a gray value between the other two and is a regional minimum. The second
image (b) shows what happens when (a) is smoothed with the heat equation:
New local extrema have appeared. Image (c) illustrates the action on (a) of a
contrast-invariant local filter, the iterated median filter, which is introduced in
Chapter 13.

functions g, that is, if

g(Tu) = T (g(u)). (6.1)

If image analysis is to be robust, it must be invariant under changes in lighting
that produce contrast changes. It must also be invariant under the nonlinear
response of the sensors used to capture an image. These, and perhaps other,
contrast changes are modeled by g. If g is strictly increasing, then relation (6.1)
ensures that the filtered image Tu = g−1(T (g(u))) does not depend on g. A
problem with linear theory is that linear smoothing, that is, convolution, is not
generally contrast invariant:

g(k ∗ u) 6= k ∗ (g(u)).

In the same way, the operator Tt that maps u0 into the solution of the heat
equation, u(t, ·) is not generally contrast invariant. In fact, if g is C2, then

∂(g(u))

∂t
= g′(u)

∂u

∂t

and

∆(g(u)) = g′(u)∆u + g′′(u)|Du|2.

Exercise 6.1. Prove this last relation. Prove that if g(s) = as+ b then g(u) satisfies
the heat equation if u does.
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Figure 6.6: Violation of the inclusion by the linear scale space. Top, left: an
image that contains a black disk enclosed by a white disk. Top, right: At
a certain scale, the black and white circles mix together. Bottom, left: The
boundaries of the two circles. Bottom, right: After smoothing with a certain
value of t, the inclusion that existed for very small t in no longer preserved. We
display the level lines of the image at levels multiples of 16.

6.2 Exercises

Exercise 6.2. Define an edge point x in a smooth image u as a point x at which g(t)
attains a maximum, where

g(t) = |Du
�
x + t

Du(x)

|Du(x)|

�
|.

Prove by differentiating g(t) that edge points satisfy D2u(x)(Du(x),Du(x)) = 0

Exercise 6.3. Construct simple functions u, g, and k such that g(k ∗ u) 6= k ∗ (g(u)).

Exercise 6.4. Consider the Perona–Malik equation in divergence form:

∂u

∂t
= div(g(|Du|)Du), (6.2)

where g(s) = 1/(1+λ2s2). It is easily checked that we have a diffusion equation when
λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. To see this, consider
the second derivative of u in the direction of Du,

uξξ = D2u

�
Du

|Du| ,
Du

|Du|

�
,
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and the second derivative of u in the orthogonal direction,

uηη = D2u

�
Du⊥

|Du| ,
Du⊥

|Du|

�
,

where Du = (ux, uy) and Du⊥ = (−uy, ux). The Laplacian can be rewritten in the
intrinsic coordinates (ξ, η) as ∆u = uξξ + uηη. Prove that the Perona–Malik equation
then becomes

∂u

∂t
=

1

1 + λ2|Du|2 uηη +
1 − λ2|Du|2

(1 + λ2|Du|2)2 uξξ .

Interpret the local behavior of the equation as a heat equation or a reverse heat
equation according to the size of |Du| compared to λ−1.

6.3 Comments and references

Scale space. The term “scale space” was introduced by Witkin in 1983. He
suggested tracking the zero-crossings of the Laplacian of the smoothed image
across scales [273]. Yuille and Poggio proved that these zero-crossings can be
tracked for one-dimensional signals [278]. Hummel and Moniot [124, 127] and
Yuille and Poggio [279] analyzed the conjectures of Marr and Witkin according
to which an image is completely recoverable from its zero-crossings at different
scales. Mallat formulated Marr’s conjecture as an algorithm in the context of
wavelet analysis. He replaced the Gaussian with a two-dimensional cubic spline,
and he used both the zero-crossings of the smoothed images and the nonzero
values of the gradients at these points to reconstruct the image. This algorithm
works well in practice, and the conjecture was that these zero-crossings and
the values of the gradients determined the image. A counterexample given by
Meyer shows that this is not the case. Perfect reconstruction is possible in the
one-dimensional case for signals with compact support if the smoothing kernel is
the Tukey window, k(x) = 1+ cosx for |x| ≤ π and zero elsewhere. An account
of the Mallat conjecture and these examples can be found in [131]. Koenderink
presents a general and insightful theory of image scale space in [148].

Gaussian smoothing and edge detection. The use of Gaussian filtering
in image analysis is so pervasive that it is impossible to point to a “first paper.”
It is, however, safe to say that David Marr’s famous book, Vision [177], and the
original paper by Hildreth and Marr [179] have had an immeasurable impact
on edge detection and image processing in general. The term “edge detection”
appeared as early as 1959 in connection with television transmission [134]. The
idea that the computation of derivatives of an image necessitates a previous
smoothing has been extensively developed by the Dutch school of image analysis
[34, 92]. See also the books by Florack [91], Lindeberg [158], and Romeny [255],
and the paper [85]. Haralick’s edge detector [111], as implemented by Canny
[43], is probably the best known image analysis operator. A year after Canny’s
1986 paper, Deriche published a recursive implementation of Canny’s criteria
for edge detection [72].


