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Chapter 7

Four Algorithms to Smooth
a Shape

In this short but important chapter, we discuss algorithms whose aim it is
to smooth shapes. Shape must be understood as a rough data which can be
extracted from an image, either a subset of the plane, or the curve surrounding it.
Shape smoothing is directed at the elimination of spurious, often noisy, details.
The smoothed shape can then be reduced to a compact and robust code for
recognition. The choice of the right smoothing will make us busy throughout
the book. A good part of the solution stems from the four algorithms we describe
and their progress towards more robustness, more invariance and more locality.
What we mean by such qualities will be progressively formalized. We will discuss
two algorithms which directly smooth sets, and two which smooth Jordan curves.
One of the aims of the book is actually to prove that both approaches, different
though they are, eventually yield the very same process, namely a curvature
motion.

7.1 Dynamic shape

In 1986, Koenderink and van Doorn defined a shape in R
N to be a closed subset

X of R
N [78]. They then proposed to smooth the shape by applying the heat

equation ∂u/∂t− ∆u = 0 directly to 1X , the characteristic function of X . Of
course, the solution Gt∗1X is not a characteristic function. The authors defined
the evolved shape at scale t to be

Xt = {x | u(t,x) ≥ 1/2}.

The value 1/2 is chosen so the following simple requirement is satisfied: Suppose
that X is the half-plane X = {(x, y) | (x, y) ∈ R

2, x ≥ 0}. The requirement is
that this half plane doesn’t move,

X = Xt = {(x, y) | Gt ∗ 1X(x, y) ≥ λ},

and this is true only if λ = 1/2. There are at least two problems with dynamic
shape evolution for image analysis. The first concerns nonlocal interactions, as
illustrated in Figure 7.1. Here we have two disks that are near one another.
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Figure 7.1: Nonlocal interactions in the dynamic shape method. Left to right:
Two close disks interact as the scale increases. This creates a new, qualitatively
different, shape. The change of topology, at the scale where the two disks
merge into one shape, also entails the appearance of a singularity (a cusp) on
the shape(s) boundaries.

The evolution of the union of both disks, considered as a single shape, is quite
different from the evolution of the disks separately. A related problem, also
illustrated in Figure 7.1, is the creation of singularities. Note how a singularity
in orientation and the curvature of the boundary of the shape develops at the
point where the two disks touch. Figure 7.2 further illustrates the problems
associated with the dynamic shape method.

7.2 Curve evolution using the heat equation

We consider shapes in R
2 whose boundaries can be represented by a finite num-

ber of simple closed rectifiable Jordan curves. Thus, each curve we consider can
be represented by a continuous mapping f : [0, 1] → R

2 such that f is one-to-one
on (0, 1) and f(0) = f(1), and each curve has a finite length. We also assume
that these curves do not intersect each other. We will focus on smoothing one
of these Jordan curves, which we call C0. We assume that C0 is parameterized
by s ∈ [0, L], where L is the length of the curve. Thus, C0 is represented as
x0(s) = (x(s), y(s)), where s is the length of the curve between x0(0) and x0(s).

At first glance, it might seem reasonable to smooth C0 by smoothing the
coordinate functions x and y separately. If this is done linearly, we have seen
from Theorem 2.3 that the process is asymptotic to smoothing with the heat
equation. Thus, one is led naturally to consider the vector heat equation

∂x

∂t
(t, s) =

∂2x

∂s2
(t, s) (7.1)

with initial condition x(0, s) = x0(s). If x(t, s) = (x(t, s), y(t, s)) is the solution
of (7.1), then we know from Proposition 1.9 that

inf
s∈[0,L]

x0(s) ≤ x(t, s) ≤ sup
s∈[0,L]

x0(s),

inf
s∈[0,L]

y0(s) ≤ y(t, s) ≤ sup
s∈[0,L]

y0(s),

for s ∈ [0, L] and t ∈ [0,+∞). Thus, the evolved curves Ct remain in the
rectangle that held C0. Also, we know from Proposition 2.5 that the coordinate
functions x(t, ·) and y(t, ·) are C∞ for t > 0. There are, however, at least two
reasons that argue against smoothing curves this way:
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Figure 7.2: Nonlocal behavior of shapes with the dynamic shape method. This
image displays the smoothing of two irregular shapes by the dynamic shape
method (Koenderink–van Doorn). Top left: initial image, made of two irregular
shapes. From left to right, top to bottom: dynamic shape smoothing with
increasing Gaussian variance. Notice how the shapes merge more and more.
We do not have a separate analysis of each shape but rather a “joint analysis”
of the two shapes. The way the shapes merge is of course sensitive to the initial
distance between the shapes. Compare with Figure 7.4.

(1) When t > 0, s is no longer a length parameter for the evolved curve Ct.

(2) Although x(t, ·) and y(t, ·) are C∞ for t > 0, this does not imply that the
curves Ct have similar smoothness properties. In fact, it can be seen from
Figure 7.3 that it is possible for an evolved curve to cross itself and it is
possible for it to develop singularities.

How is this last mentioned phenomenon possible ? It turns out that one can
parameterize a curve with corners or cusps with a very smooth parameterization:
see Exercise 7.1.

In image processing, we say that a process that introduces new features,
such as described in item (2) above, is not causal. 1

7.3 Restoring locality and causality

Our main objective is to redefine the smoothing processes so they are local and
do not create new singularities. This can be done by alternating a small-scale
linear convolution with a natural renormalization process.

1This informal definition should not be confused with the use of “causality,” as it is used,
for example, when speaking about filters: A filter F is said to be causal, or realizable, if the
equality of two signals s0 and s1 up to time t0 implies that Fs0(t) = Fs1(t) for the same
period.
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"A" "B"

"C" "D"

Figure 7.3: Curve evolution by the heat equation. The coordinates of the curves
are parameterized by the arc length and then smoothed as real functions of the
length using the heat equation. From A to D: the coordinates are smoothed
with an increasing scale. Each coordinate function therefore is C∞; the evolving
curve can, however, develop self-crossings (as in C) or singularities (as in D).

7.3.1 Localizing the dynamic shape method

In the case of dynamic shape analysis, we define an alternate dynamic shape
algorithm as follows:

Algorithm 7.1 (The Merriman–Bence–Osher algorithm).

(1) Convolve the characteristic function of the initial shape X0 with Gh, where
h is small.

(2) Define X1 = {x | Gh ∗ 1X0 ≥ 1/2}.
(3) Set X0 = X1 and go back to (1).

This is an iterated dynamic shape algorithm. The dynamic shape method
itself is an example of a median filter, which will be defined in Chapter ??. The
Merriman–Bence–Osher algorithm is thus an iterated median filter (see Figure
7.4). We will see in Chapters ?? and ?? that median filters have asymptotic
properties that are similar to those expressed in Theorem 3.3. In the case of
median filters, the associated partial differential equation will be a curvature
motion equation (defined in Chapter ??).

7.3.2 Renormalized heat equation for curves

In 1992, Mackworth and Mokhtarian noticed the loss of causality when the heat
equation was applied to curves [93]. Their method to restore causality looks,
at least formally, like the remedy given for the nonlocalization of the dynamic
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Figure 7.4: The Merriman–Bence–Osher shape smoothing method is a localized
and iterated version of the dynamic shape method. A convolution of the binary
image with small-sized Gaussians is alternated with mid-level thresholding. It
uses the same initial data (top, left) as in Figure 7.2. From left to right, top
to bottom: smoothing with increasing scales. Notice that the shapes remain
separate. In fact, their is no interaction between the evolving shapes. Each one
evolves as if the other did not exist.

shape method. Instead of applying the heat equation for relatively long times
(or, equivalently, convolving the curve x with the Gaussian Gt for large t), they
use the following algorithm:

Algorithm 7.2 (Renormalized heat equation for curves).

(1) Convolve the initial curve x0, parameterized by its length parameter s0 ∈
[0, L0], with the Gaussian Gh, where h is small.

(2) Let Ln denote the length of the curve xn obtained after n iterations and let
sn denote its length parameter. For n ≥ 1, write x̃n+1(sn) = Gh ∗ xn(sn).
Then reparameterize x̃n+1 by its length parameter sn+1 ∈ [0, Ln+1], and
denote it by xn+1.

(3) Iterate.

This algorithm is illustrated in Figure 7.5. It should be compared with
Figure 7.3.

Theorem 7.1. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L]. Then for small h,

Gh ∗ x(s) − x(s) = h
∂2x

∂s2
+ o(h). (7.2)
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Figure 7.5: Curve evolution by the renormalized heat equation (Mackworth–
Mokhtarian). After each smoothing step, the coordinates of the curve are repa-
rameterized by the arc length of the smoothed curve. From A to D: the curve is
smoothed with an increasing scale. Note that, in contrast with the linear heat
equation (Figure 7.3), the evolving curve shows no singularities and does not
cross itself.

This theorem is easily checked, see Exercise 7.2

In view of (7.2) and what we have seen regarding asymptotic limits in The-
orem 3.3 and Exercise 3.5, it is reasonable to conjecture that, in the asymptotic
limit, Algorithm 7.2 will yield the solution of following evolution equation:

∂x

∂t
=
∂2x

∂s2
, (7.3)

where x0 = x(0, ·). It is important to note that (7.3) is not the heat equa-
tion (7.1). Indeed, from Algorithm 7.2 we see that s must denote the length
parameter of the evolved curve x(t, ·) at time t. In fact ∂2x/∂s2 has a geo-
metric interpretation as a curvature vector. We will study this nonlinear curve
evolution equation in Chapter ??.

7.4 Exercises

Exercise 7.1. Construct a C∞ mapping f : [0, 1] → R
2 such that the image of [0, 1]

is a square. This shows that a curve can have a C∞ parameterization without being
smooth.

Exercise 7.2. Prove Theorem 7.1. If x is a C3 function of s, then the result follows
directly from Theorem 3.2. The result holds, however, for a C2 curve.
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7.5 Comments and references

Dynamic shape, curve evolution, and restoring causality. Our account
of the dynamic shape method is based on the well-known paper by Koenderink
and van Doorn in which they introduced this notion [78]. The curve evolution
by the heat equation is from the first 1986 version of curve analysis proposed
by Mackworth and Mokhtarian [92]. See also the paper by Horn and Weldon
[61]. There were model errors in the 1986 paper [92] that were corrected by the
authors in their 1992 paper [93]. There, they also proposed the correct intrinsic
equation. However, this 1992 paper contains several inexact statements about
the properties of the intrinsic equation. The correct theorems and proofs can
be found in a paper by Grayson written in 1987 [56]. The algorithm that
restores causality and locality to the dynamic shape method was discovered by
Merriman, Bence, and Osher, who devised this algorithm for a totally different
reason: They were looking for a clever numerical implementation of the mean
curvature equation [101].

Topological change under smoothing. We have included several figures
that illustrate how essential topological properties of an image change when the
image is smoothed with the Gaussian. Damon has made a complete analysis of
the topological behavior of critical points of an image under Gaussian smoothing
[34]. This analysis had been sketched in [159].
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Chapter 8

Affine Invariant Image
Comparison

If a physical object has a smooth or piecewise smooth boundary, its images ob-
tained by cameras in varying positions undergo smooth apparent deformations.
These deformations are locally well approximated by affine transforms of the
image plane.

In consequence the solid object recognition problem has often been led back
to the computation of affine invariant image local features. Such invariant fea-
tures could be obtained by normalization methods, but no fully affine normaliza-
tion method exists for the time being. As a matter of fact, the scale invariance,
which actually means invariance to blur, is only dealt with by methods inspired
from the scale space theory, like the SIFT method. By simulating zooms out,
this method normalizes the four translation, rotation and scale (blur) parame-
ters, out of the six parameters of an affine transform. Affine normalization
methods like MSER or Hessian Affine normalize with respect to all six para-
meters of the affine transform, but this normalization is imperfect, not dealing
rigorously with blur for MSER, or not starting with affine invariant scale space
extrema for Hessian Affine.

The method proposed in this chapter, affine SIFT (A-SIFT), simulates all
image views obtainable by varying the two camera parameters left over by the
SIFT method. Then it normalizes the other four parameters by simply using the
SIFT method itself. The two additional parameters are the angles (a longitude
and a latitude) defining the camera axis orientation. Mathematical arguments
will be given in Chapter 9 to prove that the resulting method is fully affine
invariant, up to an arbitrary precision.

Against any prognosis, simulating all views depending on the two camera
orientation parameters is feasible with no dramatic computational load. The
method permits to reliably identify features that have undergone tilts of large
magnitude, up to 30 and more, while state-of-the-art methods do not exceed
tilts of 2.5 (SIFT) or 4.5 (MSER). This chapter puts in evidence the role of high
transition tilts: while a tilt from a frontal to an oblique view exceeding 6 is rare,
higher transition tilts are common as soon as two oblique views of an object are
compared (see Fig. 8.1). Thus, a fully affine invariance is required for 3D scene
analysis. This fact is substantiated by many experiments.
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Figure 8.1: High transition tilts

Section 8.1 gives the main decomposition formula of affine maps used through-
out the paper and its geometric interpretation in terms of cameras at infinity.
Section 10.1 describes and discusses a method that attempts affine invariance
by normalization: MSER. Section 8.2 describes the A-SIFT algorithm and dis-
cusses precursors. Section 8.3 presents and experiments the crucial notion of
transition tilt.

8.1 The affine camera model

The general (solid) shape recognition problem starts with several photographs of
a physical object, possibly taken with different cameras and view points. These
digital images are the query images. Given other digital images, the search
images, the question is whether some of them contain, or not, a view of the
object taken in the query image. A solid object’s view can deform from an image
to another for two obvious reasons: First, because it underwent some physical
deformation, and second, because the change of camera position induced an
apparent deformation.

Image distortions arising from viewpoint changes can be locally modeled by
affine planar transforms, provided the object’s boundaries are piecewise smooth.
In other terms, a perspective effect can be modeled by a combination of several
different affine transforms in different image regions (see Fig. 8.3). Indeed, by
first order Taylor formula, any planar smooth deformation (x, y) → (X,Y ) =
(F1(x, y), F2(x, y)) can be locally approximated around each point (x0, y0) →
(X0, Y0) by the affine map

(
X−X0

Y−Y0

)

=

[
∂F1

∂x (x0, y0)
∂F1

∂y (x0, y0)
∂F2

∂x (x0, y0)
∂F2

∂y (x0, y0)

](
x−x0

y−y0

)

+O

(
(x−x0)

2 + (y−y0)2
(x−x0)

2 + (y−y0)2
)

.

(8.1)
Thus, all object deformations and all camera motions are locally approx-

imated by affine transforms. For example, in the case of a flat object, the
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Figure 8.2: Geometric interpretation of the Taylor formula (8.1): Although
the global deformation of each wall is strongly projective (a rectangle becomes
a trapezoid), the it local deformation is affine: each tile on the pavement is
almost a parallelogram. Indeed, projective maps are C1 and therefore locally
affine. The painting, due to Uccello, is one of the first Renaissance paintings with
a correct geometric perspectives following the rules invented by Brunelleschi.

Figure 8.3: Another way to understand why the local object apparent defor-
mations are affine. Local planar homographies are equivalent to multiple local
cameras at infinity. Cameras at infinity generate affine deformations of planar
objects. This is true even if the object under observation is curved, because it
is then locally planar. Thus, the overall apparent deformation of the object is
C1, and Formula (8.1) applies.
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deformation induced by a camera motion is a planar homographic transform,
which is smooth and therefore locally tangent to affine transforms.

The converse statement is true: any affine transform with positive determi-
nant can be interpreted as the apparent deformation induced on a planar object
by a camera motion, the camera being assumed far away from the object. Thus,
under the local smoothness assumption of the object’s boundary, the (local) de-
formation model of an image u(x, y) under a deformation of the object or under
a camera motion is

u(x, y) → u(ax+ by + e, cx+ dy + f),

where the mapping

(
x
y

)

→
[
a b
c d

] (
x
y

)

+

(
e
f

)

is any affine transform of the plane with positive determinant. The above state-
ments rely on the next crucial following decomposition formula.

Theorem 8.1. Any linear planar map whose matrix A has strictly positive
determinant has a unique decomposition

A=HλR1(ψ)TtR2(φ)=λ

[
cosψ − sinψ
sinψ cosψ

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]

(8.2)

where λ > 0, λt is the determinant of A, Ri are rotations, φ ∈ [0, π[, and Tt is
a tilt, namely a diagonal matrix with a first eigenvalue equal to t ≥ 1 and the
second one equal to 1.

Proof. Consider the real symmetric positive semi-definite matrix AtA, where
At denotes the transposed matrix of A. By classic spectral theory there is an
orthogonal transform O such that AtA = ODOt where D a diagonal matrix
with ordered eigenvalues λ1 ≥ λ2. Set O1 = AOD− 1

2 . Then

O1O
t
1 = AOD− 1

2D− 1
2OtAt = AOD−1OtAt = A(AtA)−1At = I.

Thus, there are orthogonal matrices O1 and O such that

A = O1D
1
2Ot. (8.3)

Since the determinant of A is positive, the product of the determinants of O and
O1 is positive. If both determinants are positive, then O and O1 are rotations
and we can write A = R(ψ)DR(φ). If φ is not in [0, π[, changing φ into φ−π and
ψ into ψ + π ensures that φ ∈ [0, π[. If the determinants of O and O1 are both

negative, replacing O and O1 respectively by

(
−1 0
0 1

)

O and

(
−1 0
0 1

)

O1

makes them into rotations without altering (8.3), and we can as above ensure
φ ∈ [0, π[ by adapting φ and ψ. The final decomposition is obtained by taking

for λ the smaller eigenvalue of D
1
2 . �
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Exercise 8.1. The aim of the exercise is to show the uniqueness of the decomposition

(8.2). Assume there are two decompositions λR1

�
t 0
0 1

�
R2 = λ′R′

1

�
t′ 0
0 1

�
R′

2. Using

the uniqueness of the eigenvalues of a matrix show first that λ = λ′, t = t′. You
will obtain a relation of the form R1DR2 = D where D is diagonal and R1 and R2

are rotations. Deduce from this relation that R1D
2Rt

1 = D2. Deduce from this last
relation the form of R1, conclude carefully.

Figure 8.4: Geometric interpretation of the decomposition formula (8.2).

Exercise 8.2. Consider two cameras looking at a flat square piece of landscape which
is assimilated to an infinite resolution image u0(x, y) (See Fig. 8.4). The first camera
is very far above the landscape and looking down perpendicularly to the landscape.

(i) Assuming the first camera is pin-hole, show that the generated image is a square

image u0(µR(ψ)(x, y)). Consider the coordinate system (O,~i,~j,~k) such that (~i,~j)
are the coordinate vectors in the square image u0, parallel to the image sides,
and O is the image center.

(ii) Assume a second pinhole camera has its optical axis pointing down to O. Assume
its optical axis is supported by the unit vector with coordinates
(sin θ cosφ, sin θ sinφ, cos θ). Assume again that this camera is very far from
the square piece of landscape, so the light rays coming from the landscape to
the camera are almost parallel. Thus the image formation on this second cam-
era is assimilated to an orthogonal projection of the landscape u0 onto a plane
passing by the camera center C and orthogonal to the optical axis. Taking ad-
equate coordinates on this coordinate plane, show that the generated image is

u0

�
R(ψ1)Tt1R(φ1)

�
x
y

��
for some values of ψ1, φ1, t, that you will relate to

φ, ψ, and θ.

Fig. 8.4 shows a camera motion interpretation of this affine decomposition:
φ and θ = arccos 1/t are the viewpoint angles and ψ parameterizes the camera
spin. Thus, this figure illustrates the four main parameters in the affine image
deformation caused by a camera motion, starting from a frontal view u. The
camera is assumed to stay far away from the image. The camera can first
move parallel to the object’s plane: this motion induces a translation T that is
not represented here. The camera can rotate around its optical axis (rotation
parameter ψ). Its optical axis can take a θ angle with respect to the normal to
the image plane u. This parameter is called latitude. The plane containing the
normal and the new position of the optical axis makes an angle φ with a fixed
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vertical plane. This angle is called longitude. Last but not least, the camera
can move forward or backward. This is the zoom parameter λ. The motion of
a frontal view λ = 1, t = 1, φ = ψ = 0 to a slanted view corresponds to the
image deformation u(x, y) → u(A(x, y)) given by (8.2).

8.2 A-SIFT : combining simulation and normal-
ization

The idea of combining simulation and normalization is the main successful ingre-
dient of the SIFT method. This method normalizes rotations and translations,
but simulates all zooms out of the query and of the search images. Because of
the feature, it is the only fully scale invariant method.

A-SIFT simulates with enough accuracy all distortions caused by a variation
of the direction of the optical axis of a camera (two parameters). Then it
normalizes the other four by the SIFT method, or any other method that is
rotation, translation, and scale invariant. More specifically, the method proceeds
by the following steps. (See Fig. 8.5.)

A-SIFT algorithm

1. Each image is transformed by simulating all possible affine distortions
caused by the change of orientation of the camera axis of camera from
a frontal position. These distortions depend upon two parameters: the
longitude φ and the latitude θ. The images undergo φ-rotations followed
by tilts with parameter t = | 1

cos θ | (a tilt by t in the direction of x is the
operation u(x, y) → u(tx, y)). For digital images, the tilt is performed as
t-subsampling, and therefore requires the previous application of an an-
tialiasing filter in the direction of x, namely the convolution by a gaussian
with standard deviation c

√
t2 − 1. For good antialiasing, c ≃ 0.8, see

Chapter 4.2.

2. These rotations and tilts are performed for a finite and small number of
latitudes and longitudes, the sampling steps of these parameters ensuring
that the simulated images keep close to any other possible view generated
by other values of φ and θ.

3. All simulated images are compared by SIFT.

4. To be more specific, the latitudes θ are such that the associated tilts follow
a geometric series 1, a, a2, , . . . , an, with a > 1. The choice a =

√
2 is

a good compromise between accuracy and sparsity. The value n can go
up to 6 or more, if the tilts are simulated on the query and the searched
image, and up to 10 and more if the tilts are simulated on one image only.
That way, transition tilts going up to 64 and more can be explored.

5. The longitudes φ are for each tilt an arithmetic series 0, b/t, . . . , kb/t,
where b ≃ 72◦ seems again a good compromise, and k is the last integer
such that kb/t < 180◦.


