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Introduction

This book addresses the problem of low-level image analysis and, as such, is
a contribution to image processing and imaging science. =~ While the material
touches on several aspects of image analysis—and peripherally on other parts
of image processing—the main subject is image smoothing using partial differ-
ential equations (PDEs). The rational for a book devoted to smoothing is the
assumption that a digital image must be smoothed before reliable features can
be extracted.

The purpose of this introduction is to establish some of the language, conven-
tions, and assumptions that are used throughout the book, to review part of the
history of PDEs in image processing, and to introduce notation and background
material.

I.1 Images

Since the objects of our study are ultimately digital images, we begin by defining
what we mean by “digital image” and by describing some of the ways these
images are obtained and some current assumptions about the “original images”
from which the digital images are derived.

Most of the images dealt with will be natural images, that is, images from
nature (people, landscapes, cityscapes, etc.). We include medical images and
astronomical images, and we do not exclude drawings, paintings, and other man-
made images. All of the images we consider will be grayscale images. Thus,
mathematically, an image is a real-valued function u defined on some subset €2
of the plane R2. The value u(z), © = (z,y) € ), represents the gray level of the
image at the point x. If u is a digital image, then its domain of definition is a
finite grid with evenly spaced points. It is often square with 2™ x 2™ points. The
gray levels u(x) are typically coded with the integers 0-255, where 0 represents
black and 255 represents white. If h is the distance between grid lines, then
the squares with sides of length h centered at the points u(x) are called pizels,
where “pix” is slang for “picture” and “el” stands for “element.”

The mathematical development in this book proceeds along two parallel
lines. The first is theoretical and deals with images u that belong to function
spaces, generally spaces of continuous functions that are defined on domains of
R2. The second line concerns numerical algorithms, and for this the images are
digital images. To understand the relations between the digital and continuous
images, it is useful to consider some examples of how images are obtained and
some of the assumptions we make about the processes and the images. Perhaps
the simplest example is that of taking a picture of a natural scene with a dig-
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ital camera. The scene—call it S—is focused at the focal plane of the camera
forming a representation of S that we denote by us. When we take the picture,
the image u¢ is sampled, or captured, by an array of charged coupled devices
(CCDs) producing the digital image ug4. This image, ug, is the only representa-
tion of S that is directly available to us; the image us is not directly available
to us. Even more elusive is the completely hypothetical image that we call ug.
This is the representation of S that would be formed at the focal plane of an
ideal camera having perfect optics. A variation on this example is to capture
uy on film as the image u,. Then wu, can be sampled (scanned) to produce a
digital image ug4. For example, before the advent of CCDs, astronomical images
were captured on Schmidt plates. Many of these plates have been scanned re-
cently, and the digital images have been made available to astronomers via the
Internet.

Aspects of the photographic example could be recast for medical imaging.
Although photography plays an important role in medicine, images for diagnos-
tic use are often obtained using other kinds of radiation. X-rays are perhaps
closest to our photographic example. In this case, there is an image correspond-
ing to u, that can be scanned to produce a digital image uq. Other medical
imaging processes, such as scintigraphy and nuclear magnetic resonance, are
more complicated, but these processes yield digital images. The images ex-
amined by the experts are often “negatives” produced from an original digital
images. Irrespective of the process, digital images captured by some technology
all have one characteristic in common: They are all noisy.

One way to relate the different representations of S, is to write

ug = Tug + n,

where T is a hypothetical operator representing some technology and n is noise.
In the case of photography, we might write this in two steps,

up = Pxug+nq,

uqg = Ruy + na,
where P represents the optics and R represents the sampling. This is a use-
ful model in optical astronomy, since astronomers have considerable knowledge
about the operators P and R and about the noises n; and no. Similarly, experts
in other technologies know a great deal about the processes and noise sources.
Noise and pixels are illustrated in Figure 1.1

In the photographic example, the image uy is a smoothed version of ug.

Furthermore, Rus(x) is not exactly uy(x) but rather an average of values of u s
in a small neighborhood of @, which is to say that the operator R does some
smoothing. Thus, in this example, u4 is sampled from a smoothed version of S.
We are going to assume that this is the case for the digital images considered
in the book, except for digital images that are artificially generated. This is
realistic, since all of the processes T that we can imagine for capturing images,
smooth the original photon flux. In fact, this is more of an observation about
technology than it is an assumption. We are also going to assume that, for any
technology considered, the sampling rate used to produce uq4 is high enough

so that ugq is a “good” representation of the smoothed version of S, call it uy,
from which it was derived. Here, “good” means that the parallel development
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in the book mentioned above make sense; it means that, from a practical point
of view, the theoretical development that uses smooth functions to model the
images uy is indeed related to the algorithmic development that uses the digital
images uq. We will say more about smoothing and sampling in section 1.2.

Figure I.1: A noisy image magnified to show the pixels.

It is widely assumed that the underlying “real image” ug is either a mea-
sure or, for more optimistic authors, a function that has strong discontinuities.
Rudin in 1987 [241] and De Giorgi and Ambrosio in 1988 [125] proposed inde-
pendently the space BV (R?) of functions with bounded variation as the correct
function space for modeling the images ug. A function f is in BV (R?) if its
partial derivatives 9f/0x and Of/Jy, taken as distributions, are Radon mea-
sures with finite total mass. BV (R?) looked at first well adapted to modeling
digital images because it contains functions having step discontinuities. In fact,
the characteristic functions of smooth domains in R? belong to BV (R?). How-
ever, in 1999, Alvarez, Gousseau, and Morel used a statistical device on digital
images ug to estimate how the corresponding images ug oscillate [8]. They de-
duced by geometric-measure arguments, that the ug have, in fact, unbounded
variation. We may therefore accept the idea that these high-resolution images
contain very strong oscillations. Although the images uy are smoothed versions
of the ug, and hence the oscillations have been averaged, common sense tells us
that they also have large derivatives at transitions between different observed
objects, that is, on the apparent contours of physical objects. Furthermore, we
expect that these large derivatives (along with noise) are passed to the digital
images ugq.

I.2 Image processing

For the convenience of exposition, we divide image processing into separate
disciplines. These are distinguished not so much by their techniques, which
often overlap, as they are by their goals. We will briefly describe two of these
areas: compression and restoration. The third area, image analysis, is the main
subject of the book and will be discussed in more detail.
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Image compression

Compression is based on the discrete nature of digital images, and it is motivated
by economic necessity: Each form of storage and transmission has an associated
cost, and hence one wishes to represent an image with the least number of bits
that is compatible with end usage. There are two kinds of compression: lossless
compression and lossy compression. Lossless compression algorithms are used
to compress digital files where the decompressed file must agree bit-by-bit with
the original file. Perhaps the best known example of lossless compression is
the zip format. Lossless algorithms can be used on any digital file, including
digital images. These algorithms take advantage of the structure of the file it-
self and have nothing to do with what the file represents. On the other hand,
lossy compression algorithms take advantage of redundancies in natural images
and subtleties of the human visual system. Done correctly, one can throw away
information contained in an image without impairing its usefulness. The goal
is to develop algorithms that provide high compression factors without objec-
tionable visible alterations. Naturally, what is visually objectionable depends
on how the decompressed image is used. This is nicely illustrated with our
photographic example. Suppose that we capture the image uy at our camera’s
highest resolution. If we are going to send ug over the Internet to a publisher
to be printed in a high-quality publication, then we want no loss of information
and will probably send the entire file in the zip format. If, however, we just want
the publisher to have a quick look at the image, then we would probably send wug
compressed as a .jpg file, using the Joint Photographic Expert Group (JPEG)
standard for still image compression. This kind of compression is illustrated in
Figure 1.2

Figure 1.2: Compression. Left to right: the original image and its increasingly
compressed versions. The compression factors are roughly 7, 10, and 25. Up
too a 10 factor, alterations are hardly visible.

Image restoration

A second area is restoration or denoising. Restoring digital images is much like
restoring dirty or damaged paintings or photographs. Beginning with a digital
image that contains blurs or other perturbations (all of which may be considered
as noise), one wishes to produce a better version of the image; one wishes to
enhance aspects of the image that have been attenuated or degraded. Image
restoration plays an important role in law enforcement and legal proceedings.
For example, surveillance cameras generally produce rather poor images that
must often be denoised and enhanced as needed. Image restoration is also
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important in science. When the Hubble Space Telescope was first launched in
1990, and until it was repaired in 1993, the images it returned were all blurred
due to a spherical aberration in the telescope’s primary mirror. Elaborate (and
costly) algorithms were developed to restore these poor images, and indeed
useful images were obtained during this period. Restoration is illustrated in
Figure 1.3 with an artificial example. The image on the left has been ostensibly
destroyed by introducing random-valued pixels amounting to 75% of the total
pixel count. Nevertheless, the image can be significantly restored, and a restored
version is shown on the right, by using a Vincent and Serra operator which we
will study in Chapter ??, the “area opening”.

Figure I.3: Denoising. Left: an image with up to 75% of its pixels contaminated
by simulated noise. Right: a denoised version by the Vincent-Serra algorithm
(area opening).

Image analysis

A third area of image processing is low-level image analysis, and since this is the
main topic of the book, it is important to explain what we mean by “low-level”
and “analysis.” “Analysis” is widely used in mathematics, with various shades
of meaning. Our use of “analyze,” and thus of “analysis,” is very close to its
common meaning, which is to decompose a whole into its constituent parts, to
study the parts, and to study their relation to the whole. For our purposes, the
constituent parts are, for the most part, the “edges” and “shapes” in an image.
These objects, which are often called features, are things that we could, for a
given image, point to and outline, although for a complex natural image this
would be a tedious process. The goal of image analysis is to create algorithms
that do this automatically.

The term “low-level” comes from the study of human vision and means ex-
tracting reliable, local geometric information from an image. At the same time,
we would like the information to be minimal but rich enough to characterize
the image. The goal here is not compression, although some of the techniques
may provide a compressed representation of the image. Our goal is rather to
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answer questions like, Does a feature extracted from image A exist in image
B? We are also interested in comparing features extracted from an image with
features stored in a database. As an example, consider the level set at the left
of Figure I.4. Tt consists of major features (roughly, the seven appendages) and
noise. The noise, which is highly variable, prevents us from comparing the image
directly with other images having similar shapes. Thus we ask for a sketchy ver-
sion, where, however, all essential features are kept. The images on the right
are such a sketchy versions, where most of the spurious details (or noise) have
disappeared, but the main structures are maintained. These sketchy versions
may lead to concise invariant encoding of the shape. Notice how the number of
inflexion points of the shape has decreased in the simplification process. This
is an example of what we mean by image analysis. The aim is not denoising or
compression. The aim is to construct an invariant code that puts in evidence
the “main parts” of an image (in this case, the appendages) and that facilitates
fast recognition in a large database of shapes.

X % 3

Figure 1.4: Analysis of a shape. The original scanned shape is on the left.
Simplified versions are to the right.

Edge detection and scale space

Since the earliest work in the 1960s, one of the goals of image analysis has
been to locate the strong discontinuities in an image. This search is called edge
detection, and it derives from early research that involved working with images
of cubes. This seemingly simple goal turned out to be exceedingly difficult.
Here is what David Marr wrote about the problem in the early 1980s ([198], p.
16):

The first great revelation was that the problems are difficult. Of
course, these days this fact is a commonplace. But in the 1960s
almost no one realized that machine vision was difficult. The field
had to go through the same experience as the machine translation
field did in its fiascoes of the 1950s before it was at last realized
that here were some problems that had to be taken seriously. The
reason for this misconception is that we humans are ourselves so
good at vision. The notion of a feature detector was well established
by Barlow and by Hubel and Wiesel, and the idea that extracting
edges and lines from images might be at all difficult simply did not
occur to those who had not tried to do it. It turned out to be an
elusive problem: Edges that are of critical importance from a three-
dimensional point of view often cannot be found at all by looking
at the intensity changes in an image. Any kind of textured image
gives a multitude of noisy edge segments; variations in reflectance
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and illumination cause no end of trouble; and even if an edge has a
clear existence at one point, it is as likely as not to fade out quite
soon, appearing only in patches along its length in the image. The
common and almost despairing feeling of the early investigators like
B.K.P. Horn and T.O. Binford was that practically anything could
happen in an image and furthermore that practically everything did.

The point we wish to emphasize is that textures and noise (which are often
lumped together in image analysis) produce unwanted edges. The challenge was
to separate the “true edges” from the noise. For example, one did not want to
extract all of the small edges in a textured wall paper; one wanted the outline
of the wall. The response was to blur out the textures and noise in a way that
left the “true edges” intact, and then to extract these features. More formally,
image analysis was reformulated as two processes: smoothing followed by edge
detection. At the same time, a new doctrine, the scale space, was proposed.
Scale space means that instead of speaking of features of an image at a given
location, we speak of them at a given location and at a given scale, where
the scale quantifies the amount of smoothing performed on the image before
computing the features. We will see in experiments that “edges at scale 4” and
“edges at scale 77 are different outputs of an edge detector.

Three requirements for image smoothing operators

We have advertised that this book is about image analysis, which we have just
defined to be smoothing followed by edge detection, or feature extraction. In
fact, the text focuses on smoothing and particularly on discussing and answer-
ing the question, What kind of smoothing should be used? To approach this
problem, we need to introduce three concepts associated with image analysis op-
erators. These concepts will be used to narrow the field of smoothing operators.
We introduce them informally at first; more precise meanings will follow.

Localization

The first notion is localization. Roughly speaking, to say that an operator T'
is localized means it essentially uses information from a small neighborhood of
@ to compute the output Tu(x). Recall that the sampling operator R in the
photographic example was well localized. As another example, consider the
classic Gaussian smoothing operators G; defined by

Giu(z) = Gy xu(x) = . Gi(y)u(x —y)dy,

where Gi(x) = (1/47rt)e_|m‘2/4t. If t > 0 is small, then the Gaussian G; is
well localized around zero and Gyu(x) is essentially an average of the values of
u(x) in a small neighborhood of . The importance of localization is related
to the occlusion problem: Most optical images consist of a superposition of
different objects that partially obscure one another. It is clear that we must
avoid confusing them in the analysis, as would, for example, G, if ¢ is large. It
is for reasons like this that we want the analysis to be as local as possible.
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We will prove in Chapter 1 under rather general conditions that u(t,x) =
G4 * ug() is the unique solution of the heat equation

Ju

ar = A
with initial value ug. Thus, we can say that smoothing ug with the Gaussian
G} is equivalent to applying the heat equation to ug. We will see that the heat
equation is possibly the worst candidate in our search for the ideal smoothing
operator, since, except for small ¢, it is poorly localized and produces a very
blurred image.

Iteration

One might conjecture that a way around this problem with the heat equation
would be to replace G; with a more suitable positive kernel. This is not the
case, but it does serve to introduce the second concept, which is iteration. We
will show in Chapter 2 that under reasonable assumptions and appropriate
rescalings, iterating a convolution with a positive kernel leads to the Gaussian,
and thus directly back to the heat equation. There is, however, a different
point of view that leads to useful smoothing operators: Instead of looking for
a different kernel, look for other PDEs that provide smoothing. This program
leads to a class of nonlinear PDEs, where the Laplacian in the heat equation is
replaced by various nonlinear operators. We will see that for these operators it
is generally better, from the localization point of view, to iterate a well localized
operator than to apply it directly at a large scale. This, of course, is just not
true for the heat equation; if you iterate n times the convolution Gt * u you
get exactly Gpn: * u. This is a good place to point out that if we are dealing
with smoothing, localization, and iteration, then we are talking about parabolic
PDEs. This announcement is heuristic, and the object of the book is to formalize
and to make precise the necessity and the role of several PDEs in image analysis.

Invariance

Our last concept is invariance. Invariance requirements play a central role in
image analysis because the objects to be recognized must be recognized un-
der varying conditions of illumination (contrast invariance) and from different
points of view (projective invariance). Contrast invariance is one of the central
requirements of the theory of image analysis called mathematical morphology
(see, for example, Matheron [202] or Serra [253]). This theory involves a num-
ber of contrast-invariant image analysis operators, including dilations, erosions,
median filters, openings, and closings. We are going to use this theory by at-
tempting to localize as much as possible these morphomath operators to exploit
their behavior at small scales. We will then iterate these operators. This will
lead to the proof that several geometric PDEs, namely, the curvature motions,
are asymptotically related to certain morphomath operators in much the same
way that linear smoothing is related to the heat equation. Thus, through these
PDEs, one is able to combine the scale space doctrine and mathematical mor-
phology. In particular, affine-invariant morphomath operators, which seemed at
first to be computationally impractical, turn out to yield in their local iterated
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Figure 1.5: Shannon theory and sampling. Left to right: original image;
smoothed image; sampled version of the original image; sampled version of
the smoothed image. This illustrates the famous Shannon-Nyquist law that an
image must be smoothed before sampling in order to avoid the aliasing arti-
facts.

version a very affordable PDE, the so called affine morphological scale space
(AMSS) equation.

Shannon’s sampling theory

We mentioned in section I.1 that most of the digital images ugy that come to
us in practice have been sampled from a smoothed version, call it u¢, of the
“real image” ug. This was basically a comment about the technology. Another
comment (or assumption) was that the sampling rate was high enough to capture
all of the information in us that is needed in practice. What we mean by this
is that the representations of us that we reconstruct from uy show no signs
that uy was undersampled. This is an empirical statement; we will comment on
the theory in a moment, but first we wish to illustrate in Figure 1.5 what can
happen if an image is undersampled.

We call the original image on the left Victor. Notice that Victor’s sweater
contains a striped pattern, which has a spatial frequency that is high relative
to other aspects of the picture. If we attempt to reduce the size of Victor
by simply sampling, for example, by taking one pixel in sixteen in a square
pattern, we obtain a new image (the third panel) in which the sampling has
created new and unstable patterns. Notice how new stripes have been created
with a frequency and direction that has nothing to do with the original. This
is called aliasing, and it is caused by high spatial frequencies being projected
onto lower frequencies, which creates new patterns. If this had been a video
instead of being a still photo, these newly created patterns would move and
flicker in a totally uncontrolled way. This kind of moving pattern often appears
in recent commercial DVDs. They have simply not been sampled at a high
enough rate. The second panel in Figure 1.5 is a version of Victor that has been
smoothed enough so that we no longer see the stripes in the sweater. This image
is sampled the same way—every fourth pixel horizontally and vertically—and
appears in panel four. It is not a good image, but there are no longer the kinds
of artifacts that appear in the third image. To compare the images we have
magnified the sampled versions by a factor of four. This example also shows
that simply subsampling an image is a poor way to compress it.

This pragmatic discussion and the experiment have their theoretical counter-
part, namely, Shannon’s theory of sampling. Briefly, Shannon’s theorem, in the
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two-dimensional case, states that for an image to be accurately reconstructed
from samples, the image must be bandlimited, which means that it contains no
spatial frequencies greater than some bound A, and the sampling rate must be
higher than a factor of \. Some implications of these statements are that the
image u must be infinitely differentiable, that its domain of definition is all of R?,
and that there must be an infinite number of samples to accurately reconstruct
u. Furthermore, in Shannon’s theory, the image u is reconstructed as an infinite
series of trigonometric functions. Note that this is very different from what was
done in Figure 1.5. So what does this have to do with the problems addressed in
this book? What does this have to do with, say, a hypothesized ug in BV (R?)
that is definitely not bandlimited? Our answer, which may smack of smoke and
mirrors, is that we always are working in two parallel worlds, the theoretical
one and the practical one based on numerical computations, and that these two
worlds live together in harmony at a certain scale. Here is an example of what
we mean: Suppose that v is not a bandlimited image. To sample it properly we
would first have to smooth it with a bandlimited kernel. Suppose that instead
we smooth it with the Gaussian G, which is not bandlimited. Theoretically
this is wrong, but practically, the spectrum of G, which is G; itself, decays
exponentially. If |z|? /4t is sufficiently large, then G () appears as zero in com-
putations, and thus it is “essentially” bandlimited. Arguments like this could
be made for other situations, but the important point for the reader to keep in
mind is that the parallel developments, theory and practice, make sense in the
limit.

In the next section, we present a survey of most of the PDEs that have
been proposed for image analysis. This provides an informal account of the
mathematics that will be developed in detail in the following chapters.

We wish to end this section with a mild disclaimer, and for this we take
a page from Theory of Games and Economic Behavior by John von Neumann
and Oskar Morgenstern where they comment on their theory of a zero-sum
two-person game [277] p. 147:

We are trying to find a satisfactory theory,—at this stage for
the zero-sum two-person game. Consequently we are not arguing
deductively from the firm basis of an existing theory—which has
already stood all reasonable tests—but we are searching for such a
theory.. .. This consists in imagining that we have a satisfactory the-
ory of a certain desired type, trying to picture the consequences of
this imaginary intellectual situation, and then drawing conclusions
from this as to what the hypothetical theory must be like in detail.
If this process is applied successfully, it may narrow the possibilities
for the hypothetical theory of the type in question to such an extent
that only one possibility is left,—i.e. that the theory is determined,
discovered by this device. Of course, it can happen that the applica-
tion is even more “successful,” and that it narrows the possibilities
down to nothing—i.e. that it demonstrates that a consistent theory
of the kind desired is inconceivable.

We take much the same philosophical position, and here is our variation on
the von Neumann-Morgenstern statement: We do not suggest that what will
be developed here is a necessary future for image analysis. However, if image
analysis requires a smoothing theory, then here is how it should be done, and
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here is the proof that there is no other way to do it. This statement does not
exclude the possibility of other theories, based on different principles, or even
the impossibility of making any theory.

1.3 PDEs and image processing

We have argued that smoothing—suppressing high spatial frequencies—is a nec-
essary part of image processing in at least two situations: An image needs to
be smoothed before features can be extracted, and images must be smoothed
before they are sampled. We have also mentioned that, while smoothing with
the Gaussian is not a good candidate for the first situation (we will see that it
is not contrast invariant, and it is not well localized except for small ¢), it is not
unreasonable to use it numerically in the second situation, since it does a good
job of suppressing high frequencies. These smoothing requirements and the fact
that the Gaussian is the fundamental solution of the heat equation mean that
the heat equation appears completely naturally in image processing, and indeed
it is the first PDE to enter the picture in Chapters 1 and 2. Smoothing with
the heat equation is illustrated in Figure 1.6.

Figure 1.6: Heat equation and smoothing. The original image is on the left; the
heat equation has been applied at some scale, and the resulting blurred image
is on the right.

There is another path hinted at in section 1.1 that leads to the Gaussian
and thus to the heat equation. Suppose that k is any positive kernel such
that k(x) = k(|z|) and such that k is localized in the sense that k(x) — 0
sufficiently rapidly as || — oco. If k is normalized properly and if we write
kn(x) = (1/h)k(x/h/?), then

kp * uo(x) — up(x)

) — Aup(x)
as h — 0 whenever the image ug is sufficiently smooth. We write this as
kp * up(x) — ug(x) = hAug(x) + o(h). (L.1)

Now let u(t, ) denote the solution of the heat equation
0
6—1; = Au, u(0,x) = up(x).

If ug is sufficiently smooth, then we can write

u(t, ) — u(0, ) = tAug(x) + o(t). (1.2)
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The reverse heat equation

Equations (I.1) and (I.2) suggest that blurring uo with a kernel kj, for small h
is equivalent to applying the heat equation to ug at some small scale ¢. This is
true, and it will be made precise in Chapter 2. These equations also lead to an-
other idea: We read in the paper [183] by Lindenbaum, Fischer, and Bruckstein
that Kovasznay and Joseph [175] introduced in 1955 the notion that a slightly
blurred image could be deblurred by subtracting a small amount of its Lapla-
cian. Numerically, this amounts to subtracting a fraction A of the Laplacian of
the observed image from itself:

Urestored = Uobserved — >\Auobscrvcd-

Dennis Gabor, who received the Nobel prize in 1971 for his invention of
optical holography, studied this process and determined that the best value of A
was the one that doubled the steepest slope in the image [183]. Empirically, one
can start with a small value of A and repeat the process until a good image is
obtained; with further repetitions the process blows up. Indeed, this process is
just applying the reverse heat equation to the observed image, and the reverse
heat equation is notoriously ill-posed. On the other hand, the Kovasznay-
Joseph—Gabor method is efficient for sufficiently small A and can be successfully
applied to most images obtained from optical devices. This process is illustrated
in Figure 1.7. A few iterations can enhance the image (second panel), but the
inverse heat equation finally blows up (third panel).

Figure 1.7: Kovasznay—Joseph—Gabor deblurring. Left to right: original image;
three iterations of the algorithm; ten iterations of the algorithm.

Figure 1.8 shows that same experiment applied to an image of Victor that
has been numerically blurred. Again, the process blows up, but it yields a
significant improvement at some scales.

We have now seen the heat equation used in two senses, each with a different
objective. In both cases, we have noted drawbacks. In the first instance, the
heat equation (or Gaussian) was used to smooth an image, but as we have
mentioned, this operator is not contrast invariant, and thus is not appropriate
for any theory of image analysis that requires contrast-invariant operators. This
does not mean that the Gaussian should be dismissed; it only means that it is
not appropriate for our version of image analysis. To meet our objectives, we
will replace the Laplacian, which is a linear isotropic operator, with nonlinear,
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Figure 1.8: Kovasznay—Joseph—-Gabor deblurring. This is the same deblurring
experiment as in Figure 1.7, but it is applied to a much more blurred image.

nonisotropic smoothing operators. This will bring us to the central theme of
the book: appropriate smoothing for a possible theory of image analysis.

In the second instance, the heat equation is run backward (the inverse heat
equation) with the objective of restoring a blurred image. As we have seen,
this is successful to some extent, but the drawback is that it is an unstable
process. The practical problem is more complex than the fact that the inverse
heat equation is not well posed. In the absence of noise, the best way to deblurr
a slightly blurred image is to use the inverse heat equation. However, in the
presence of noise, this isotropic operator acts equally in all direction, and while
it enhances the definition of edges, the edges become jagged due to the noise.
This observation led Gabor to try to improve matters by using more directional
operators in place of the Laplacian. Gabor was concerned with image restora-
tion, but his ideas will appear later in our story in connection with smoothing.
(For an account of Gabor’s work see [183].)

Shock filters

The objective for running the heat equation backward is image restoration,
and although restoration is not the main subject of the book, we are going to
pause here to describe two ways to improve the stability of the inverse heat
equation. Image restoration is an extremely important area of image process-
ing, and the techniques we describe illustrate another use of PDEs in image
processing. There are indeed stable ways to “reverse” the heat equation. More
precisely, there are “inverse diffusions” that deblurr an image and reach a steady
state. The first example, due to Rudin in 1987 [241] and Osher and Rudin in
1990 [223] is a pseudoinverse for the heat equation, where the propagation term
|Du| = |(ugz, uy)| is controlled by the sign of the Laplacian:

Ou _ —sign(Au)|Dul. (I.3)
ot
This equation is called a shock filter. We will see later that this operator prop-
agates the level lines of an image with a constant speed and in the same direc-
tion as the reverse heat equation would propagate these lines; hence it acts as
a pseudoinverse for the heat equation. This motion enhances the definition of
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the contours and thus sharpens the image. Equation (I.3) is similar to a classic
nonlinear filter introduced by Kramer in the seventies [176]. Kramer’s filter can
be interpreted in terms of a PDE using the same kinds of heuristic arguments
that have been used to derive the heat equation. This equation is

% = —sign(D2u(Du, Du))|Dul, (1.4)

where the Laplacian has been replaced by
D?u(Du, Du) = Uy () + 2Upy gty + tyy (uy)?. (I.5)

We will see in Chapter 2 that D*u(Du, Du)/|Dul|? is the second derivative of u in
the direction of its gradient Du, and we will interpret the differential operator
(I.5) as Haralick’s edge detector. Kramer’s equation yields a slightly better
version of a shock filter. The actions of these filters are illustrated in Figure 1.9.
The image on the left is a blurred image of Victor. The next image has been
deblurred using the Rudin—Osher shock filter. This is a pseudoinverse of the
heat equation that attains a steady state. The third image has been deblurred
using Kramer’s improved shock filter, which also attains steady state. The
fourth image was deblurred using the Rudin-Osher—Fatemi restoration scheme,
which is described below [242].

Figure 1.9: Deblurring with shock filters and a variational method. Left to
right: blurred image; Rudin—Osher shock filter; Kramer’s improved shock filter;
Rudin—-Osher—Fatemi restoration method.

The deblurring algorithms (1.3) and (I.4) work to the extent that, experimen-
tally, they attain steady states and do not blow up. However, a third deblurring
method, the Rudin—Osher—Fatemi algorithm, is definitely better. It poses the
deblurring problem as an inverse problem. It is very efficient when the observed
image ug is of the form £ % u + n, where k is known and where the statistics of
the noise n are also known. Given the observed image ug, one tries to find a
restored version u such that k *w is as close as possible to ug and such that the
oscillation of u is nonetheless bounded. This is done by finding « that minimizes
the functional

/ (IDu(@)] + Ak * u(x) — uo(@))?) dx. (16)

The parameter A controls the oscillation in the restored version u. If X is large,
the restored version will closely satisfy the equation k % u = ug, but it may be
very oscillatory. If instead A is small, the solution is smooth but inaccurate.
This parameter can be computed in principle as a Lagrange multiplier. The
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obtained restoration can be remarkable. The best result we can obtain with
the blurred Victor is shown in the fourth panel of Figure 1.9. This scheme was
selected by the French Space Agency (CNES) after a benchmark for satellite
image deblurring, and it is currently being used by the CNES for satellite image
restoration. This total variation restoration method also has fast wavelet packets
versions.

From the heat equation to wavelets

The observation by Kovasznay, Joseph, and Gabor (and undoubtedly others)
that the difference between a smoothed image and the original image is related
to the Laplacian of the original image is also the departure of one of the paths
that lead to wavelet theory. Here, very briefly, is the idea: If we convolve an
image with an appropriate smoothing kernel and then take the difference, we
obtain a new image related to the Laplacian of the original image (see equation
(I.1)). This new “Laplacian image” turns out to be faded with respect to the
original, and if one retains only the values greater than some threshold, the
image is often sparse. This is illustrated in Figure 1.10. The last panel on the
right shows in black the values of this Laplacian image of Victor that differ
significantly from zero. Here, and in most natural images, this representation
is sparse and thus useful for compression. This experiment simulates the first
step of a well-known algorithm due to Burt and Adelson.

In 1983, Burt and Adelson developed a compression algorithm called the
Laplacian pyramid based on this idea [49]. Their algorithm consists of iterating
two operations: a convolution followed by subsampling. After each convolution,
one keeps only the difference k,, * u,, — u,, where n is used here to indicate that
each step takes place at a different scale due to the subsampling. The image
is then coded by the (finite) sequence of these differences. These differences
resemble the Laplacian of u,, hence the name “Laplacian pyramid.” An impor-
tant aspect of this algorithm is that the discrete kernels k,,, which are low-pass
filters, are all the same kernel k; the index n merely indicates that k is adjusted
for the scale of the space where the subsampled image u,, lives. Ironically, the
smoothing function cannot be the Gaussian, since the requirements for recon-
structing the image from its coded version rule out the Gaussian. Burt and
Adelson’s algorithm turned out to be one of the key steps that led to multireso-
lution analyses and wavelets. Burt and Adelson were interested in compression,
and, indeed, the differences k,, * u,, — u, tend to be sparse for natural images.
On the other hand, we are interested in image analysis, and for us, the Burt
and Adelson algorithm has the drawback that it is not translation invariant or
isotropic because of the multiscale subsampling.

Back to edge detection

Early research in computer vision focused on edge detection as a main tool for
image representation and analysis. It was assumed that the apparent contours of
objects, and also the boundaries of the facets of objects, produce step disconti-
nuities, while inside these boundaries, the image oscillates mildly. The apparent
contour points, or edges points, were to be computed as points where the gra-
dient is in some sense largest. Two ways were proposed to do this: Marr and
Hildreth proposed computing the points where Awu crosses zero, the now-famous



16 Introduction

AN

e,

Figure 1.10: The Laplacian pyramid of Burt and Adelson. Left to right: the orig-
inal image; the image blurred by Gaussian convolution; the difference between
the original image and the blurred version, which approximates the Laplacian
of the original image; the points where this Laplacian image is large.

zero-crossings [199]. A significant improvement was made by Harakick who de-
fined the boundaries, or edges, of an image as those points where |Du| attains
a local maximum along the gradient lines [135]. Two years later, Canny imple-
mented Haralick’s detector in an algorithm that consists of Gaussian smoothing
followed by computing the (edge) points where D?u(Du, Du) = 0 and |Du| is
above some threshold [51]. We refer to this algorithm as the Haralick-Canny
edge detector. The fourth panel in Figure 1.11 displays what happens when
we smooth the image with the Gaussian (the heat equation) and then compute
the points where D?u(Du, Du) = 0 and |Dul is above some threshold. If this
computation is done on the raw image (first panel), then ”edges” show up every-
where (second panel) because the raw image is a highly oscillatory function and
contains a very dense set of inflexion points. After applying the heat equation
and letting it evolve to some scale (third panel), we see that the Haralick—Canny
edge detector is able to extract some meaningful structure.

e

Figure I.11: Heat equation and Haralick’s edge detector. Left to right: original
image; edge points found in the original image using Haralick’s detector; blurred
image; edges found in the blurred image using the Haralick—-Canny detector.
The image “edges” are singled out after the image has been smoothed. This
smoothing eliminates tiny oscillations and maintains the big ones.

The Perona-Malik equation

Given certain natural requirements such as isotropy, localization, and scale in-
variance, the heat equation is the only good linear smoothing operator. There
are, however, many nonlinear ways to smooth an image. The first one was pro-
posed by Perona and Malik in 1987 [231, 232]. Roughly, the idea is to smooth
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what needs to be smoothed, namely, the irrelevant homogeneous regions, and
to enhance the boundaries. With this in mind, the diffusion should look like
the heat equation when |Du/ is small, but it should act like the inverse heat
equation when |Dul is large. Here is an example of a Perona—Malik equation in
divergence form:

0

— = div(g(|Dul) Du), (L7)
where g(s) = 1/(1+\%s?). Tt is easily checked that we have a diffusion equation
when A\|Du| < 1 and an inverse diffusion equation when A|Du| > 1. To see this,
consider the second derivative of u in the direction of Du,

Du Du
— D2y =— =
e “<|Du|’ |Du|)’

and the second derivative of u in the orthogonal direction,

Dut Dut
Uy = D2 o )
|Du|’ |Dul|

where Du = (uy,uy) and Dut = (—uy, u;). The Laplacian can be rewritten in
the intrinsic coordinates (£,7) as Au = ug¢e + yy. The Perona-Malik equation
then becomes

ou _ 1 —_— 1 — \2|Dul? "
1+ X[Dulz2 "™ 1+ X2[Duf?)? ¢

The first term in this representation always appears as a one-dimensional diffu-
sion in the direction orthogonal to the gradient, tuned by the size of the gradient.
The nature of the second term depends on the value of the gradient; it can be ei-
ther diffusion in the direction Du or inverse diffusion in the same direction. This

model indeed mixes the heat equation and the reverse heat equation. Figure
1.12 is used to compare the Perona—Malik equation with the classical heat equa-
tion (illustrated in Figure I.11) in terms of accuracy of the boundaries obtained
by the Haralick-Canny edge detector (see Chapter 3). At a comparable scale of
smoothing, we clearly gain some accuracy in the boundaries and remove more
“spurious” boundaries using this Perona—Malik equation. The representation is
both more sparse and more accurate.

Figure 1.12: A Perona—Malik equation and edge detection. This is the same
experiment as in Figure 1.11, but here the Perona—Malik equation is used in
place of the heat equation. Notice that the edge map looks slightly better in
this case.
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The ambitious Perona—Malik model attempts to build into a single operator
the ability to perform two very different tasks, namely, restoration and analysis.
This has its cost: The model contains a “contrast threshold” A~! that must
be set manually, and although experimental results have been impressive, the
mathematical existence and uniqueness of solutions are not guaranteed, despite
some partial results by Kichenassamy [165] and Weickert and Benhamouda [281].
There are three parameters involved in the overall smoothing and edge-detecting
scheme: the gradient threshold A~! in the equation (3.2), the smoothing scale(s)
t (or the time that equation (3.2) evolves), and the gradient threshold in the
Haralick—-Canny detector. We can use the same gradient threshold in both the
Haralick—Canny detector and the Perona—Malik equation, but this still leaves
us with a two-parameter algorithm. Can these parameters be dealt with auto-
matically for an image analysis scheme? This question seems to have no general
answer at present. An interesting attempt based on statistical arguments had
been made, however, by Black et al. [40].

A proliferation of PDE’s

If one believes that some nonlinear diffusion might be a good image analysis
model, why not try them all? This is exactly what has happened during the last
ten years. We can claim with some certainty that almost all possible nonlinear
parabolic equations have been proposed. A few of the proposed models are
even systems of PDEs. The common theme in this proliferation of models is
this: Each attempt fixes one intrinsic diffusion direction and tunes the diffusion
using the size of the gradient or the value of an estimate of the gradient. To keep
the size of this introduction reasonable, we will focus on a few of the simplest
models.

We begin with the Rudin-Osher-Fatemi model [242]. In this model the
BV norm of u, [|Du(x)|dx, is one of the terms in the expression (I.6) that
is minimized to obtain a restored image. It is this term that provides the
smoothing. The gradient descent for [ |Du(z)|dx translates into the equation

ou Qi Du 1

— = Ad1v| ——— = ——Upn-

ot | D |Du| ™"
Written this way, the method appears as a diffusion in the direction orthogonal
to the gradient, tuned by the size of the gradient. Andreu et al. proved that
this equation is well posed in the space BV of functions of bounded variation

[18, 19]. A variant of this model was proposed independently by Alvarez, Lions,
and Morel [12]. In this case, the relevant equation is

Ou 1 | Dul di Du 1
— = —— | Du|div = u
Ot |k * Dul | Dul |k * Du| ™

and again the diffusion is in the direction Du" orthogonal to the gradient. Note
that the rate of diffusion depends on the average value k * Du of the gradient
in a neighborhood of @, whereas the direction of diffusion, Du*(zx)/|Du(z)|,
depends on the value of Du(x) at . The kernel k is usually the Gaussian.
Kimia, Tannenbaum, and Zucker, working in a more general shape-analysis
framework, proposed the simplest equation of our list [168]:

ou Du Dut Dut
_:D d. —_— :D2 —_, T—— - . 18
gr ~ 1P ”<|Du> ”(|Du|’|Du|) o (L8)
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This equation had been proposed earlier in another context by Sethian as a tool
for front-propagation algorithms [258]. This equation is a “pure” diffusion in
the direction orthogonal to the gradient. We call this equation the curvature
equation; this is to distinguish it from other equations that depend on the cur-
vature of u in some other way. These latter will be called curvature equations.
When we refer to the action of the equations, we often write curvature motions
or curvature-dependent motions. (See Chapters 11 and 12.)

The Weickert equation can be viewed as a variant of the curvature equation
[280]. It uses a nonlocal estimate of the direction orthogonal to the gradient
for the diffusion direction. This direction is computed as the direction v of the
eigenvector corresponding to the smallest eigenvalue of k * (Du ® Du), where
(y®y)(x) = (z-y)y. Note that if the convolution kernel is removed, then this
eigenvector is simply Du'. So the equation writes

ou
E = Uny, (1'9)

where 717 denotes the coordinate in the direction v. The three models just de-
scribed can be interpreted as diffusions in a direction orthogonal to the gradient
(or an estimate of this direction), tuned by the size of the gradient. They are
illustrated in Figure 1.13. (The original image is in the first panel of Figure
1.14.)

Carmona and Zhong proposed a diffusion in the direction of the eigenvector
w corresponding to the smallest eigenvalue of D?u [56]. So the equation is
again 2.19, but this time n denotes the coordinate in the direction of w. This is
illustrated in panel three of Figure I.14. Sochen, Kimmel, and Malladi propose
instead a nondegenerate diffusion associated with a minimal surface variational
formulation [260]. Their idea was to make a gradient descent for the area,
J /1 + |Du(x)]? de, of the graph of u. This leads to the diffusion equation

ou di < Du )
— =div| — |.
ot V14 |Dul?

At points where Du is large this equation behaves like % = div(lg—z ,

where we retrieve the Rudin-Osher-Fatemi model of Section 1.3. At points where
Du is small we have %—1; = div(Du) which is the heat equation. This equation
is illustrated in panel four of Figure 1.14. Other diffusions have also been con-
sidered. For purposes of interpolation, Caselles, Morel, and Sbert proposed a
diffusion that may be interpreted as the strongest possible image smoothing
[64],

Ju 9 9

Tl D*u(Du, Du) = |Du| uge.
This equation is not used for preprocessing the image as the others are; rather,
it is a way to interpolate between the level lines of an image with sparse level
lines (Figure 1.15). Among the models mentioned, only the curvature motion
proposed by Kimia, Tannenbaum, and Zucker was specifically introduced as a
shape analysis tool. We are going to explain this, but to do so we must say
more about image analysis.
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Figure 1.13: Diffusion models I. Left to right: Osher, Sethian 1988: the curva-
ture equation; Rudin, Osher, Fatemi 1992: minimization of the image’s total
variation; Alvarez, Lions, Morel 1992: nonlocal variant of the preceding; We-
ickert 1994: nonlocal variant of the curvature equation. All of these models
diffuse only in the direction orthogonal to the gradient, using a more or less
local estimate of this direction. This explains why the results of the filters are
so similar. However, the Weickert model captures better the texture direction.

Principles of image analysis

There are probably as many ways to approach image analysis as there are uses
of digital images, and today the range of applications covers much of human
activity. Most scientific and technical activities, including particularly medicine,
and even sound analysis (visual sonograms), involve the perceptual analysis of
images. Our goal is to look for fundamental principles that underlie most of
these applications and to develop algorithms that are widely applicable. From
a less lofty point of view, we wish to examine the collection of existing and
potential image operators to determine which among them fit our vision of
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Figure 1.14: Diffusion models II. Left to right: original image; Perona—Malik
equation 1987, creating blurry parts separated by sharp edges; Carmona, Zhong
1998 which actually blurs the whole image: diffusion along the least eigenvector
of D?u; Sochen, Kimmel, Malladi 1998: minimization of the image graph area.
This last equation has effects similar to the Perona-Malik model.

Figure 1.15: Diffusion models III. Left to right: original image; quantized image
(only 10 levels are kept - 3.32 bits/pixel); the quantized image reinterpolated us-
ing the Caselles—Sbert algorithm 1998. They apply a diffusion on the quantized
image with values on the remaining level lines taken as boundary conditions.

image analysis. Instead of examining an endless list of partial and specific
requirements, we rely on a mathematical shortcut, well known in mechanics,
that consists of stating a short list of invariance requirements. These invariance
requirements will lead to a classification of models and point out the ones that
are the most suitable as image analysis tools. The first invariance requirement
is the Wertheimer principle according to which visual perception (and therefore,
we add, image analysis) should be independent of the image contrast [287]. We
formalize this as follows:

Contrast-invariant classes. Two images v and v are said to be (per-
ceptually) equivalent if there is a continuous increasing function g such that
v = g(u). In this case, u and v are said to belong to the same contrast-invariant
class. (“Increasing” always means “strictly increasing.”)

Contrast invariance requirement. An image analysis operator 7' must
act directly on the equivalence class. As a consequence, we ask that T'(g(u)) =
g(T'w), which means that the image analysis operator commutes with contrast
changes.

The contrast invariance requirement rules out the heat equation and all of the
models described above except the curvature motion (1.8). Contrast invariance
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led Matheron in 1975 to formulate image analysis as set analysis, namely, the
analysis of the level sets of an image. The upper level set of an image u at level
A is the set

Xu = {x | u(x) > A}

We define in exactly the same way the lower level sets by changing “>” into
“<.” The main point to retain here is the global invariance of level sets under
contrast changes. if g is a continuous increasing contrast change, then

Xgn9(u) = Xyu.

According to mathematical morphology, the image analysis doctrine founded
by Matheron and Serra, the essential image shape information is contained in
its level sets. It can be proved (Chapter 5) that an image can be reconstructed,
up to a contrast change, from its set of level sets [202]. Figure 1.16 shows an
image and one of its level sets.

Figure 1.16: An image and one of its level sets. On the right is level set 140
of the left image. This experiment illustrates Matheron’s thesis that the main
shape information is contained in the level sets of an image. Level sets are
contrast invariant.

The contrast invariance requirement leads to powerful and simple denoising
operators like the so-called extrema killer, or area opening, (Chapter 7) defined
by Vincent in 1993 [276]. This image operator simply removes all connected
components of upper and lower level sets with areas smaller than some fixed
value. This operator is not a PDE; actually it’s much simpler. Its effect is
amagzingly good for impulse noise, which includes the local destruction of the
image and spots. The action of the extrema killer is illustrated in Figure 1.17.
The original image is in the first panel. In the third panel, the image has been
degraded by adding “salt and pepper” noise to 75% of the pixels. The next
panel shows its restoration using the extrema killer set to remove upper and
lower level sets with areas smaller than 80 pixels. The second panel shows the
result of the same operator applied to the original.

Level lines as a complete contrast invariant representation

In 1996, Caselles, Coll, and Morel further localized the contrast invariance re-
quirement in image analysis. They proposed as the main objects of analysis the
level lines of an image, that is, the boundaries of its level sets [61]. For this
program—and the previous one involving level sets—to make sense, the levels
sets and level lines must have certain topological and analytic properties. Level
sets and isolevel sets {x | u(x) = A}, which we would like to be the “level lines,”
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Figure 1.17: The extrema killer filter. Left to right: original image; extrema
killer applied with area threshold equal 80 pixels; 75% salt and pepper noise
added to the original image; the same filter applied.

can be defined for any image (or function) w, but they will not necessarily be
useful for image analysis. In particular, we cannot directly define useful level
sets and level lines for a digital image ug. What is needed is a representation
of ug for which these concepts make sense. But this is not a problem. By the
assumptions of section 1.1, a digital representation uy of a natural image S has
been obtained by suitably sampling a smooth version of S, call it us, and a
smooth approximation of uy is available to us by interpolation. There are, of
course, different interpolation methods to produce smooth representations of
ug. One can also obtain a useful discontinuous representation by considering
the extension of ug that is constant on each pixel. For an interpolation method
to be useful, the level lines should have certain minimal properties: They should
be composed of a finite number of rectifiable Jordan curves, and they should be
nested. This means that they do not cross, and thus that they form a tree by
inclusion (Section 11.2.)

A study by Kronrod in 1950 shows that if the function u is continuous, then
the isolevels sets {x | u(x) = A} are nested and thus form a tree when ordered
by inclusion [178]. These isolevel sets are not necessarily curves; they are curves,
however, if u has continuous first derivatives. Monasse proved Kronrod’s result
for lower semicontinuous and upper semicontinuous functions in 2000 [206] (see
also [30]). His result implies that the extension of ug4 that is constant on each
pixel yields a nested set of Jordan curves bounding the pixels. Thus we have at
least two ways to associate a set of nested Jordan curves with a digital image
ug, depending on how w4 is interpolated. Given an interpolation method, we
call this set of nested curves a topographic map of the image.! By introducing
the topographic map, the search for image smoothing, which had already been
reduced to set smoothing, is further reduced to curve smoothing. Of course, we
require that this smoothing preserves curve inclusion. Level lines of an image
at a fixed level are shown in Figure 1.18.

IThe use of level lines is also consistent with the “BV assumption” mentioned in section
1.1, according to which the correct function space for modeling images is the space BV of
functions of bounded variation. In this case, the coarea formula can be used to associate a
set of Jordan curves with an image (see [16]) It is, however, in general false for BV functions
that the boundaries of lower and upper level sets form a nested set of curves; these curves
may cross (see again [206].)
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Figure 1.18: Level lines of an image. Level lines, defined as the boundaries of
level sets, can be defined to be a nested set of Jordan curves. They provide a
contrast-invariant representation of the image. On the right are the level lines
at level 183 of the left image.

Contrast invariant PDE’s

Chen, Giga, and Goto [70, 71] and Alvarez et al. [11] proved that if one adds con-
trast invariance to the usual isotropic invariance requirement for image process-
ing, then all multiscale image analyses should have a curvature-dependent mo-

tion of the form
ou

5= F(curv(u),t)|Dul, (1.10)
where F' is increasing with respect to its first argument (see chapters 21 and
22). This equation can be interpreted as follows: Consider a point x on a given
level curve C of u at time ¢t. Let n(x) denote the unit vector normal to C' at x
and let curv(x) denote its curvature. Then the preceding equation is associated

with the curve motion equation
9]
S = Fllxl(0,tn(x)

that describes how the point x moves in the direction of the normal. The formula
defining curv(u) at a point x is (Chapter 11)

1
[ Duf?

2 2
Uz Uy — Uy Ug Uy + Ugyy U,

D?u(Du*, Dut)(x) = (2 + a2y (x).

curv(u)(x)

The curvature vector at a point of a C? curve is the second derivative for a
curve x(s) parameterized by length : k = d?x/ds?. We refer to Chapter 11
for the detailed definitions and the links between the curvature vector of a level
line of w and curv(u). Not much more can be said at this level of generality
about F. Two specific cases play prominent roles in this subject. The first case
is F(curv(u),t) = curv(u), the curvature equation (I.8). The second case is
F(curv(u),t) = (curv(u))*/3.
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This particular one-third power form for the curvature dependence provides
an important additional invariance, namely, affine invariance. We would like
to have complete projective invariance, but a theorem proved by Alvarez et
al. shows that this is impossible [11] (Chapter 22). The best we can have is
invariance with respect to the so-called Chinese perspective, which preserves
parallelism. Most of these equations, particularly when F is a power of the
curvature, have a viscosity solution in the sense of Crandall and Lions [82].
This was shown in 1995 by Ishii and Souganidis [157]. We refer to Chapters 19
and 20 for all details.

As we have mentioned, contrast-invariant processing can be reduced to level
set processing and, finally, to level curve processing. The equations mentioned
above are indeed equivalent to curve evolution models if existence and regularity
have been established. These results exist for the most important cases, namely,
for F(curv(u),t) = curv(u), called curve shortening, and for F(curv(u),t) =
(curv(u))'/3, known as affine shortening. Grayson proved existence, uniqueness,
and analyticity for the curve shortening equation [128],

7 _ curv(x)n(x), (I.11)

NE PAS LAISSER COMMME C’EST : curv n’est pas la meme notation
qu’apres et n’est pas meme defini!

and Angenent, Sapiro, and Tannenbaum proved the same results for the
affine shortening equation [21],

19)

P _ (curv(x))Fn(x). (L12)
ot

These results are very important for image analysis because they ensure that
the shortening processes do indeed reduce a curve to a more and more sketchy
version of itself.

Affine invariance

An experimental verification of affine invariance for affine shortening is illus-
trated in Figure I.19. The numerical tests were made using a very fast numerical
scheme for the affine shortening designed by Lionel Moisan [205]. The principle
of this algorithm is explained in Chapter 16. Unlike many numerical schemes,
this one is itself affine invariant. Each of the three panels in Figure 1.19 contains
three shapes. The first panel shows the action of an affine transformation A:
Call the first shape in the first panel X; then the second shape is A(X) and
the third shape is A7 A(X) = X. The second panel shows that affine short-
ening, S, commutes with A: The shapes are, from left to right, S(X), SA(X),
and A71SA(X). Since this third shape is the same as the first, we see that
A7ISA(X) = S(X), or that SA(X) = AS(X). The third panel shows the same
experiment with affine shortening replaced with curve shortening. Since the
first and third shapes are different, this illustrates that A does not commute
with curve shortening, and hence that curve shortening is not affine invariant.

Evans and Spruck [99] (also [100, 101, 102]) and Chen, Giga, and Goto
[70, 71] proved in 1991 that a continuous function moves by the curvature motion
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Figure 1.19: Experimental verification of the affine invariance of the affine short-
ening (AMSS). The first panel contains three shapes, X, A(X), and A~'A(X).
The second panel contains S(X), SA(X), and A~1SA(X). The congruence of
the first and third shapes implies that S and A commute. In the third panel,
the same procedure has been applied using equation (I.11). Here the first and
third shapes are not congruent, which shows that the curve shortening is not
affine invariant, as expected.

(equation (I.10) with F(curv(u),t) = curv(u)) if and only if almost all of its
level curves move by curve shortening (equation (I.11)). The same result is true
for the affine invariant curve evolution (equation (I.10) with F(curv(u),t) =
(curv(u))'/?) and affine shortening (equation (I.12)).

In the case of the curvature motion, this result provides a mathematical
justification for the now-classic Osher—Sethian numerical method for moving
fronts [224]: They associate with some curve or surface C' its signed distance
function u(x) = +d(x, C), and the curve or surface is handled indirectly as the
zero isolevel set of u. Then w is evolved by, say, the curvature motion with a
classic numerical difference scheme. Thus, the evolution of the curve C is dealt
with efficiently and accurately as a by-product of the evolution of u. The point
of view that we adopt is slightly different from that of Osher and Sethian. We
view the image as a generalized distance function to each of its level sets, since
we are interested in all of them.

We show in Figure 1.20 how the level lines are simplified by evolving the
image numerically using affine invariant curvature motion. For clarity, we dis-
play only sixteen levels of level curves. Notice that the aim here is not subsam-
pling; we keep the same resolution. Nor is the aim restoration; the processed
image is clearly worse than the original. The aim is invariant simplification
leading to shape recognition.

Figures 1.21 and 1.22 illustrate the effect of affine curvature motion on the
values of the curvature of an image. In Figure 1.21 the sea bird image has been
smoothed by affine curvature motion at calibrated scale 1. In Figure 1.22 the
smoothing is stronger at calibrated scale 4. (A calibrated scale ¢t means that at
this scale a disk with radius ¢ disappears.) The absolute values of the curvature
of the smoothed images are shown in the upper-right panels of both figures, with
the convention that the darkest points have the largest curvature. For clarity,
the curvature is shown only at points where the gradient of the image was larger
than 6 in a scale ranging from 0 to 255. Note how the density of points having
large curvature is reduced in the second figure where the smoothing is stronger.
On the other hand, the regions with large curvature are more concentrated with
stronger smoothing. Each degree of smoothing produces a different curvature
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Figure 1.20: The affine and morphological scale space (AMSS model). Left to
right: original image; level lines of this image (16 levels only); original image
smoothed using the AMSS equation; level lines of the third image.

map of the original image, and thus curvature motions can be used as a nonlinear
means to compute a "multiscale” curvature of the original image. The bottom
two panels of the figures show, from left to right, the positive curvature and the
negative curvature.

The snake method

Before proceeding to shape recognition, we mention that a variant of the cur-
vature equation can be used for shape detection. This is a well-known method
of contour detection, initially proposed by Kass, Witkin, and Terzopoulos [163].
Their method was very unstable. A better method is a variant of curvature
motion proposed by Caselles, Catté, Coll, and Dibos [57] and improved simulta-
neously by Caselles, Kimmel, and Sapiro [62] and Malladi, Sethian, and Vemuri
[191]. Here is how it works. The user draws roughly the desired contour in
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Figure 1.21: Curvature scale space 1. Top, left to right: original sea bird image
smoothed by affine curvature motion at calibrated scale 1; the absolute value
of the curvature. Bottom, left to right: the positive part of the curvature; the
negative part. Compare with Figure 1.22, where the calibrated smoothing scale
is 4.

Figure 1.22: Curvature scale space II. Top, left to right: original sea bird image
smoothed by affine curvature motion at calibrated scale 4; the absolute value
of the curvature. Bottom, left to right: the positive part of the curvature; the
negative part. Compare with Figure 1.21, where the calibrated smoothing scale
is 1.

the image, and the algorithm then finds the best possible contour in terms of
some variational criterion. This method is very useful in medical imaging. The
motion of the contour is a tuned curvature motion that tends to minimize an
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energy function E. Given an original image ug containing some closed contour
that we wish to approximate, we start with an edge map

1

9% = TR D E

that is, a function that vanishes on the edges of the image. The user then
designates the contour of interest by drawing a polygon ~ roughly following the
desired contour. The geodesic snake algorithm then builds a distance function
v to this initial contour, so that -y is the zero level set of vg. The energy to be
minimized is

where ¢ is the edge map associated with the original image uo and s denotes the
parameter measuring the length along . The motion of the “analyzing image”
v is governed by

ov

5 (@ 1) = g(@)|Dv(@)|curv(v)(@) — Dv() - Dg(z).

This algorithm is illustrated with a medical example in Figure 1.23.

Figure 1.23: Active contour, or “snake.” Left to right: original image; initial
contour; evolved distance function; final contour.

Shape retrieval

It seems to us that the most obvious application of invariant PDEs is shape
retrieval in large databases. There are thousands of different definitions of
shapes and a multitude of shape recognition algorithms. The real bottleneck
has always been the ability to extract the relevant shapes. The discussion above
points to a brute force strategy: All contrast-invariant local elements, or the
level lines of the image, are candidates to be “shape elements.” Of course,
this notion of shape element suggests the contours of some object, but there
is no way to give a simple geometric definition of objects. We must give up
the hope of jumping from the geometry to the common sense world. We may
instead simply ask the question, Given two images, can we retrieve all the level
lines that are similar in both images? This would give a factual, a posteriori,
definition of shapes. They would be defined as pieces of level lines common to
two different images, irrespective of their relationships to real physical objects.

Of course, this brute force strategy would be impossible without the initial
invariant filtering (AMSS). It is doable only if the level lines have been sig-
nificantly simplified. This simplification entails the possibility of compressed
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invariant encoding. In Figure 1.24, we present an experiment due to Lisani et
al. [186]. Two images of a desk and the backs of chairs, viewed from different
angles, are shown in the first two panels. All of the pieces of level lines in the two
images that found a match in the other image are shown in the last two panels.
Notice that several of these matches are doubled. Indeed, there are two similar
chairs in each image. This brings to mind a Gestalt law that states that human
perception tends to group similar shapes. We now see the numerical necessity
of this perceptual grouping: A preliminary self-matching of each image, with
grouping of similar shapes, must be performed before we can compare it with
other images.

This concludes our overview of the use of PDEs in image analysis. The rest
of the book is devoted to filling in the mathematical details that support most
of the results mentioned in this introduction. We have tried to prove all of the
mathematical statements, assuming only two or three years of mathematical
training at the university level. Thus, for most of the PDEs addressed, and
for all of the relevant ones, we prove the existence and uniqueness of solutions.
We also develop invariant, monotone approximation schemes. This has been
technically possible by combining tools from the recent, and remarkably sim-
ple, theory of viscosity solutions with the Matheron formalism for monotone
set and function operators. Thus, the really necessary mathematical knowledge
amounts to elementary differential calculus, linear algebra, and some results
from the theory of Lebesgue integration, which are used in the chapters on the
heat equation. Mathematical statements are not introduced as art for art’s
sake; all of the results are directed at proving the correctness of a model, of
its properties, or of the associated numerical schemes. Numerical experiments,
with detailed comments, are described throughout the text. They provide an
independent development that is parallel to the central theoretical development.
Most image processing algorithms mentioned in the text are accessible in the
public software MegaWave. MegaWave was developed jointly by several uni-
versity research groups in France, Spain and America, and it is available at
http://www.cmla.ens-cachan.fr.

I.4 Notation and background material

R¥Y denotes the real N-dimensional Euclidian space. If x € RY and N > 2,
we write € = (21,22,...,2yn); if N = 2, we usually write = (z,y). For
x, y € RV, we denote their scalar product by x -y =z1y1 + x2y2 + -+ TNYN
and write

2| = (z )"/ = (2 + 25 + - +23) "%

Let © be an open set in RY, and let n € N be a fixed integer. C™($2) denotes
the set of real-valued functions f : 2 — R that have continuous derivatives of
all orders up to and including n. f € C°°(Q2) means that f has continuous
derivatives of all orders; f € C(Q) = C°(Q2) means that f is continuous on .
We will often write “f is C™” as shorthand for f € C™(Q2), and we often omit
the domain €2 if there is no chance of confusion.

We use multi-indices of the form a = (a1, aq,...,ay) € NV as shorthand
in several cases. For # € RY, we write % and |z|* for z{*25? - 23" and

|z1] ¥t |z2]?2 - - - |xn |V, respectively. For f € C™(€2), we abbreviate the partial
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Figure 1.24: A shape parser based on level lines. The two left images are of a
desk and the backs of chairs viewed from different angles. In the far left panel,
one level line has been selected (in white). In the second panel we show, also
in white, all matching pieces of level lines. The match is ambiguous, as must
be expected when the same object is repeated in the scene. In the two panels
on the right, we display all the matching pairs of pieces of level lines (in white).
The non matching parts of the same level lines are shown in black. Usually,
recognized shape elements are pieces of level lines, seldom whole level lines. See

[

derivatives of f by writing

ololf

aq ag an ?
0x"'0x5” - - - Ox'y

0 f =

where |o| = a1 + ag + -+ an and |a| < n.

We also write the partial derivatives of f(z) = f(z1,22,...,2n) as f; =
of|0zi, fij = 0*f/0x;0z;, and so on. In the two-dimensional case f(z) =
f(z,y), we usually write 8f /0x = f,, Of /0y = f,, O*f/0xdy = fuy, and so on.

The gradient of f is denoted by Df. Thus, if f(x) = f(x1,z2,...,2N),

Df = (f1,fo,--, In)s
and
Df = (fz, fy)

in case N = 2. The Laplacian of f is denoted by Af. Thus Af = f11 + fao +
<-4+ fyn in general, and Af = fop + fyy if N = 2.
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We will often use the symbols O, o, and . They are defined as follows. We
assume that h is a real variable that tends to a limit hg that can be finite or
infinite. We assume that g is a positive function of A and that f is any other
function of h. Then f = O(g) means that there is a constant C' > 0 such
that [f(h)| < Cg(h) for all values of h. The expression f = o(g) means that
f(h)/g(h) — 0 as h — hg. We occasionally will use € to denote a function of h
that tends to zero as h — 0. Thus, f(h) = o(h) can be written equivalently as

F(h) = he(h).

Taylor’s formula

An N-dimensional form of Taylor’s formula is used several times in the book.
We will first state it and then explain the notation. Assume that f € C™(£2)
for some open set Q € RV, that z,y € 2, and that the segment joining « and
x + y is also in ). Then

Pl ty) = f@)+ 5 Di @)D + D @)y e+ D" )y oyl

This has been written compactly to resemble the one-dimensional case, but
the price to be paid is to explain the meaning of Dpf(:n)y(p). We have already
seen special cases of this expression in section 1.3, for example, D?u(Du, Du)
in equation (I.4). The expression DP f(x)y(?) is

orf
DP (®) — pr y) = — e (X)YiYis Vi
fl2)y f@) gy oy = > Py el o LU R
p terms (i1,82,..., ip)
where the sum is taken over all N? different vectors (i1, 42, ...,%p),4; =1,2,..., N.

Notice that D f(x)y™ is just Zjvzl fy; = Df(x) - y, which is how we usually
write it.

The implicit function theorem

Consider a real-valued C* function f defined on an open set € in RY. For
ease of notation we write z = (x,y), where x = (x1,...,2y-1) and y = zy.
Assume that f(zo) = 0 for a point zg € Q and that f,(x¢) # 0. Then there is a
neighborhood M = M (x¢) and a neighborhood N = N(yo) such that for every
x € M there is exactly one y € N such that f(x,y) = 0. The function y = ¢(x)
is C* on M and yo = p(x¢). Furthermore, if f € C™(Q), then ¢ € C™(M).

Lebesgue integration

The Lebesgue integral, which first appeared in 1901 and is thus over a hun-
dred years old, has become the workhorse of analysis. It plays a role in chapters
1 and 2 and appears briefly in other parts of the book. One does not need a
profound understanding of abstract measure theory and integration to follow
the arguments. One should, however, be familiar with a few key results and be
comfortable with the basic manipulations of the integral. With this in mind,
we restate some of these fundamentals.

The functions and sets in this book are always measurable. Thus we dispense
in general with phrases like “let f be a measurable function.” We denote by
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M the set Lebesgue measurable subsets of RY. Since we shall sometimes need
to complete RY by a point at infinity, oo, we still denote by M the measurable
sets of Sy = RY N {oc} and take measure({oo}) = 0. A function f defined on
a subset A of RY is integrable, if

/ |f(x)] dx < +oo0.
A

The Banach space of all integrable function defined on A is denoted as usual
by L'(A); we write || f| 14y = [, |f(x)|dx to denote the norm of f in L'(A).
The most important applications in the book are the two cases A = RN and
A = [-1,1]". Here are two results that we use in chapters 1 and 2. We state
them not in the most general form, but rather in the simplest form suitable for
our work.

A density theorem for L'(RY)

If fis in LY(RY), then there exists a sequence of continuous functions {g,},
each of which has compact support, such that g, — f in L*(RY), that is,
llgn — fll — 0 as n — +oo. This result is true for L'([—1,1]"), in which case
the g, are continuous on [—1,1]V.

Fubini’s theorem

Suppose that f is a measurable function defined on A x B € RN x RY.
Fubini’s theorem states that

| is@iaz= [ [ irplaxdy = [ [ 1reylayax

where we have written z = (x,y). It further states, that if any one of the
integrals is finite, then

| seaz= [ [ recyaxay = [ [ sy

Lebesgue’s dominated convergence theorem

If a sequence of functions {f,} is such that f,(x) — f(x) for almost every
x € RN asn — +oo0, and if there is an integrable function g such that | f,,(x)| <
g(x) almost everywhere, then

Jn(x)dx — f(x)dx.
RN RN

We often use the following direct consequence: if A,, is a decreasing sequence
of measurable sets with bounded measure then measure(A,) — measure(A). To
prove this, apply Lebesgue’s theorem to the characteristic functions of A,, and
A, 14, and 14.

We also use the following result, which is a direct consequence of the domi-
nated convergence theorem.
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Interchanging differentiation and integration

Suppose that a function f defined on (tg,t1) x RY, where (to,t1) is any
interval of R, is such that ¢ — f(¢,x) is continuously differentiable (for almost
every x € RY) on some interval [a,b] C (to,t1). If there exists an integrable
function g such that for all ¢ € [a, b]

af

5 (t,x)| < g(x) almost everywhere,

then the integral I(t) = [p~ f(t,x)dx is differentiable for ¢ € (a,b) and

il [ Of
E(t)_/l;v E(t,x)dx.

A brief but comprehensive discussion of the Lebesgue integral can be found in
the classic textbook by Walter Rudin [243].

1.4.1 A framework for sets and images

We start by fixing a simple and handy functional framework for images and
sets, which will be maintained throughout the book. Until now, we have been
vague about the domain of definition of an image. On one hand, a real digital
image is defined on a finite grid. On the other hand, standard interpolation
methods give a continuous representation defined on a finite domain of RY,
usually a rectangle. Now, it is convenient to have images defined on all of RY,
but it is not convenient to extend them by making them zero outside their
original domains of definition because that would make them discontinuous. So
an usual way is to extend them into a continuous function tending to a constant
at infinity. One way to do that is illustrated in Figure 1.25. First, an extension
to a wider domain is performed by reflection across the domain’s boundary and
periodization. Then, it is easy to let the function fade at infinity or to make
it compactly supported. This also means that we fix a value at infinity for w,
which we denote by u(00). We denote the topological completion of R by this
infinity point by Sy = RY U{oo}, which can also be denoted RN. Let us justify
the notation.

Proposition 0.1. Consider the sphere Sy = {z € RNT! ||z|| = 1}. Then the
mapping T : RN U {cc} — Sy defined by

2x x2—1)

T = .
(x) <1+x2’x2+1

is a homeomorphism (that is, a continuous bijection with continuous inverse.)
This is easily checked (Exercise 1.4).

Definition 0.2. We denote by F the set of continuous functions on Sy, which
can be identified with the set of continuous functions on RY tending to some
constant at infinity. The natural norm of F is

[ullz = sup |u(x)]. (L13)
XeRN
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Figure 1.25: Image extension by symmetry, followed by periodization. Then the
image can be extended continuously to the rest of the plane into a function which
is constant for x large. The purpose of these successive extensions of u to all of
RY is to facilitate the definition of certain operations on u, such as convolution
with smoothing kernels, and, at the same time, to preserve the continuity of
w. This method of extending a function is widely used in image processing;
in particular, it is used in most compression and transmission standards. For
instance, the discrete cosine transform (DCT) applied to the initial data wu,
restricted to [0, 1]V, is easily interpreted as an application of the FFT to the
symmetric extension of u.

We say that an image v in F is C*, if the function u is C* at each point x € RV,
We define in the same way the C2,... C* functions of F.

Definition 0.3. We say that a function u defined on RN is uniformly contin-
uous if for every x, y,

lu(x+y) —u(x)| <e(lyl),

for some function € called modulus of continuity of u, satisfying limg_oe(s) = 0.

Continuous functions on a compact set are uniformly continuous, so func-
tions of F are uniformly continuous. We shall often consider the level sets of
functions in F, which simply are compact sets of Sy.
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Definition 0.4. We denote by L the set of all compact sets of Sn.
These sets are easy to characterize:

Proposition 0.5. The elements of L are of three kinds:
e compact subsets of RN
o FU{oo}, where F is a compact set of RY.

o U {oo}, where F is an unbounded closed subset of RY
Proof. Indeed, BNRY is a closed set of RY and is therefore either a bounded

compact set or an unbounded closed set of RY. In the latter case, B must
contain co. (]
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Chapter 1

The Heat Equation

The heat equation is the prototype of all the PDEs used in image analysis.
There are strong reasons for that and it is the aim of this chapter to explain
some of them. Some more will be given in Chapter 21. Our first section is ded-
icated to a simple example of linear smoothing illustrating the relation between
linear smoothing and the Laplacian. In the next section, we prove the existence
and uniqueness of its solutions, which incidentally establishes the equivalence
between the convolution with a Gaussian and the heat equation.

1.1 Linear smoothing and the Laplacian

Consider a continuous and bounded function ug defined on R2. If we wish to
smooth ug, then the simplest way to do so without favoring a particular direction
is to replace uo(x) with the average of the values of ug in a disk D(x, h) of radius
h centered at x. This means that we replace ug(x) with

1 1
M) = 2 [ way = [ ey ()
X, )

Although the operator M} is quite simple, it exhibits important charac-
teristics of a general linear isotropic smoothing operator. For example, it is
localizable: As h becomes small, M}, becomes more localized, that is, Mpuo(x)
depends only on the values of ug(x) in a small neighborhood of x. Smoothing
an image by averaging over a small symmetric area is illustrated in Figure 1.1.

Our objective is to point out the relation between the action of M}, and the
action of the Laplacian, or the heat equation. To do so, we assume enough
regularity for ug, namely that it is C2. We shall actually prove in Theorem 2.2
that under that condition

Mpup(x) = ug(x) + %QAUO(X) + h2e(x, h), (1.2)

where £(x, h) tends to 0 when h — 0. As we have seen in the introduction, (1.2)
provides the theoretical basis for deblurring an image by subtracting a small
amount of its Laplacian. It also suggests that M} acts as one step forward in
the heat equation starting with initial condition ug,

ou

1
E(t,x) = gAu(t,x), u(0,x) = up(x). (1.3)

39
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Figure 1.1: Local averaging algorithm. Left to right: original image; result of
replacing the grey level at each pixel by the average of the grey levels over the
neighboring pixels. The shape of the neighborhood is shown by the black spot
displayed in the upper right-hand corner.

Figure 1.2: The Gaussian in two dimensions.

This statement is made more precise in Exercise 1.3. Equation (1.2) actually
suggests that if we let n — 400 and at the same time require that nh? — t,
then

(M ug)(x) — u(t,x) (1.4)

where u(t, z) is a solution of (1.3).

This heuristics justifies the need for a thorough analysis of the heat equation.
The next chapter will prove that (1.4) is true under fairly general conditions.
In the next section, we shall prove that the heat equation has a unique solution
for a given continuous initial condition ug, and that this solution at time ¢ is
equal to the convolution Gy * ug, where Gy is the Gaussian (Figure 1.2). The
effect on level lines of smoothing with the Gaussian is shown in Figure 1.4.
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1.2 Existence and uniqueness of solutions of the
heat equation

Definition 1.1. We say that a function g defined on RY belongs to the Schwartz
class S if g € C®(RY) and if for each pair of multi-indices o, 3 there is a
constant C' such that

x[%19%g(x)| < C.

Proposition 1.2. Ifg € S, then g € L*(RY), that is, [5x |9(x)|dx < +o0. For
each pair of multi-indices o, 3, the function x°0%g also belongs to S, and 0%g
is uniformly continuous on RN .

Proof. The second statement follows from the Leibnitz rule for differentiating
a product. (A complete proof by induction is tedious but not profound.) By the
definition of S, there is a constant C' such that |x|V2|g(x)| < C. Thus there is
another C such that |g(x)| < C/(1 + |x|VT2); since C/(1 + |x|V2) € LY(RY),
g € L*(RY). Finally, note that [0%g(x)| — 0 as |x| — oco. But any continuous
function on RY that tends to zero at infinity is uniformly continuous. O

Proposition 1.3 (The Gaussian and the heat equation). For all t > 0,
the function x — Gy(x) = (1/(4mt)N/2)e=XI*/4 belongs to S and satisfies the
heat equation

0G
5 AG: = 0.

Proof. 1t is sufficient to prove the first statement for the function g(x) = e~ I’
An induction argument shows that 9%g(x) = Pu(x)e~ X", where P, (x) is a

polynomial of degree |« in the variables x1, 23, ..., zy. The fact that, for every
k €N, z*¢=*" — 0 as |z| — 4oo finishes the proof. Differentiation shows that
G satisfies the heat equation. O

Exercise 1.1. Check that G; is solution of the heat equation. m
Linear image filtering is mainly done by convolving an image u with a positive

integrable kernel g. This means that the smoothed image is given by the function
g * u defined as

geut) = [ ox=yuy)ay = [ outx—yay

Note that the convolution, when it makes sense, is translation invariant. This
means that g x u(x — z) = gz * u(x), where gz(x) = g(x — z). (Linear filtering
with the Gaussian at several scales is illustrated in Figure 1.3.) The next result
establishes properties of the convolution that we need for our treatment of the
heat equation.

Proposition 1.4. Assume that u € F and that g € L*(RY). Then the function
g *u belongs to F and satisfies the inequality

g * ull7 <lgllr@m)llull#- (1.5)
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Figure 1.3: Convolution with Gaussian kernels (heat equation). Displayed from
top-left to bottom-right are the original image and the results of convolutions
with Gaussians of increasing variance. A grey level representation of the convo-
lution kernel is put on the right of each convolved image to give an idea of the
size of the involved neighborhood.

Proof.

g * u(x)| < / lg(x = y)l[u(y)|dy < ||U||.7-'/ l9(x —y)[dy = [lul|[lgllL: , -
RN RN R

O

Exercise 1.2. Verify that g % u indeed is continuous and tends to u(oco) at infinity :
this a direct application of Lebesgue Theorem. m

We are now going to focus on kernels that, like the Gaussian, belong to S.

Proposition 1.5. Ifu € F and g € S, then g u € C®(RN)NF and
O%(gxu) = (0%g) * u (1.6)
for every multi-index o.

Proof. Since g € S, g € LY(RY), as is 9%g for any multi-index o (Proposition
1.2). Thus by Proposition 1.4, g *u belongs to F. To prove (1.6), it is sufficient
to prove it for a = (1,0,...,0). Indeed, we know that 9%g is in S if g is
in S, so the general case follows from the case a = (1,0,...,0) by induction.
Letting e; = (1,0,...,0) and using Taylor’s formula with Lagrange’s form for
the remainder, we can write

grutxthen) —g s = [ (96t her —) = glox— y)u(y) dy

- / (gly +her) — g(y)ulx — y) dy

(1.7)

_ 99
=0 axl(Y)“(x y)dy

h? 0?
B g

3 Jow 6—$%(y + 0(y)her)u(x —y)dy,
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where 0 < 0(y) < 1. To complete the proof, we wish to have a bound on the
last integral that is independent of x € C. This last integral is of the form
f * u, where f is defined by f(y) = (0%g/0x%)(y + 0(y)he1). Since g € S,
0g/0x1 € S, and from this it is a simple computation to show that f decays
rapidly at infinity. Having done this, Proposition 1.4 applies, and we deduce
that g * u is differentiable in z1 and that 0(g * u)/0x1 = (0g/0x1) * . O

Proposition 1.6. Assume that g decreases rapidly at infinity, that g(x) > 0 for
all x € RN, and that [, g(x)dx =1 and set, for t >0, gi(x) = (1/tV)g(x/t).
Then: If ug € F, gt * ug converges to ug uniformly as t — 0. In addition, we
have a mazximum principle :

inf ugp(x) < gt * up(x) < sup ug(x). (1.8)
XeC XecC

Proof. Note first that g; is normalized so that

/ g(y)dy = 1. (1.9)
]RN

Next, since g decreases rapidly at infinity, a quick computation shows that, for
any 1 > 0,

/ gt(y)dy — 0 as ¢t — 0. (1.10)
MBS

Using (1.9), we have

gorual) =) = [ a)uolx—y) —wb)dy.  (111)

As already mentioned, ug € F is uniformly continuous. Thus, for any € > 0,
there is an n = n(e) > 0 such that |ug(x —y) — uo(x)| < & when |y| < 7. Using
this inequality, we have

g1 * 0 (x) — g ()] < / g (3)uo(x — ¥) — uo(x)| dy

lYI<n
+ /Iy>ngt<y>|uo<x —y) - uo(x)|dy

< / ge(y) dy + 2llul z (o) / () dy.
[YI<n YI=>n

Since nyn g:(y)dy < 1 and f\y\> g:(y)dy — 0 as t — 0, we conclude that

gt * u tends to wo uniformly in x as ¢ — 0. Relation (1.8) is an immediate
consequence of the assumption that g:(x) > 0 and equation (1.9). O

Lemma 1.7. Let ug € F and u(t,x) = (Gt * ug)(x). Then for every ty > 0,
u(t,x) — ug(00) uniformly fort <ty as x — oo.
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Proof. By assumption,
Ve >0, 3R, |x| > R = |uo(x) — ug(o0)| < e. (1.12)
As a direct consequence of Lebesgue’s theorem,
Ve >0, Ir(e), r>r(e) = Gy, (y)dy < e. (1.13)
lyl=r
By using [ Gi(y)dy = 1, we have
|u(t, x)—u(0)| S/ ‘ G (y)luO(X—Y)—uO(y)ldy+/| | Gi(y)|uo(x—y)—uo(y)|dy.
yisr yi>r
(1.14)

Using (1.13), the second term in (1.14) is bound from above for r > r(¢) and
t < to by

(2 5up [uo)) / G () < (25up ug))e.
ly|>r

Fix therefore 7 > r(g). Then using [ G; = 1, the first term in (1.14) is bound
by e by (1.12) for |x| > R+ r.
O

Lemma 1.8. Let ug € F and G, the gaussian. Then

(8Gt/8t) * Uy = 8(Gt * uo)/8t

Proof. Proposition 1.5 does not apply directly, since it applies to the spatial
partial derivatives of G; but not to the derivative with respect to t. Observe,
however, that a slight modification of the proof of this proposition does the job:
Replace g with Gy and x; with ¢. Then the crux of the matter is to notice that,
given an interval 0 < tg < 1, there is a rapidly decreasing function f such that
|(8%G:/0t%)(t + 0(t)h,y)| < f(y) uniformly for ¢ € [to,t1], where f depends on
to and t1 but not on h. Then Proposition 1.4 applies, and the last integral in
equation (1.7) is uniformly bounded. O

All of the tools are in place to state and prove the main theorem of this
chapter.

Theorem 1.9 (Existence and uniqueness of solutions of the heat equa-
tion). Assume that ug € F and define for t > 0 and x € RN, u(t,x) =
(G * up)(x), u(t,00) = ug(oc0) and u(0,x) = ug(x). Then

(i) w is C* and bounded on (0,+oc) x RY;
(i) x — u(t,x) belongs to F for every t > 0;
(iii) for any to > 0, u(t,x) tends uniformly for t < tg to u(oo) as x — oo;

(iv) u(t,x) tends uniformly to u(0,x) as t — 0;
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(v) u(t,x) satisfies the heat equation with initial value ug;

% =Au and u(0,%) = uo(x); (1.15)
(vi) More specifically,
sup  |u(t,x)| < [Juo| . (1.16)
XERN, >0

Conversely, given ug € F, u(t,x) = (G x ug)(x) is the only C? bounded
solution w of (1.15) that satisfies properties (ii)-(v).

Proof. Let us prove properties (i)-(vi). For each ¢ > 0, G; € S, so by Proposi-
tion 1.5 and Lemma 1.8,

du e

Proposition 1.5 also tells us that u(t,-) € C°(RY) N F for each t > 0. The
right-hand side of (1.17) is zero by Proposition 1.3, and the fact that |u(t,x) —
ug(x)| — 0 uniformly as ¢ — 0 follows from Proposition 1.6. The inequal-
ity (1.16) is a direct application of Proposition 1.4. Relation (iii) comes from
Lemma 1.7.

Uniqueness proof. If both v and w are solutions of the heat equation with the
same initial condition ug € F, then u = v — w is in F and satisfies (1.15) with
the initial condition ug(x) = 0 for all x € RY. Also, by the assumptions of (ii),
u is bounded on [0, +0c0) x RY and is C? on (0,4+00) x RY. We wish to show
that u(t,x) = 0 for all ¢t > 0 and all x € RY. Assume that this is not the case.
Then there is some point (¢,x) where u(t,x) # 0. Assume that u(¢,x) > 0, by
changing u to —u if necessary.

We now consider the function u® defined by u®(t,x) = e “tu(t,x). This
function tends to zero uniformly in x as ¢ — 0 and as t — +oo. It also tends
uniformly to zero for each t <ty when x — co. These conditions imply that u®
attains its supremum at some point (tg,xg) € (0,+00) x RY, and this means
that Auc(tg,x0) = e ' Au(to,x¢) < 0 and (9u®/dt)(to,x0) = 0. Here is the
payoff: Using the fact that w is a solution of the heat equation, we have the
following relations:

Out 9]
0= (;; (to,x0) = —eu®(to,X0) + e_ata—’?(to,XQ)
= —eu(to, x0) + e " Au(to, xg) < —eu(to,%o) < 0.
This contradiction completes the uniqueness proof. (I

1.3 Exercises

Exercise 1.3. The aim of this exercise is to prove relation (1.2) and its consequence:
A local average is equivalent to one step forward of the heat equation. Theorem 2.2
yields actually a more general statement.
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Figure 1.4: Level lines and the heat equation. Top, left to right: original
410x270 grey level image; level lines of original image for levels at multiples
of 12. Bottom, left to right: original image smoothed by the heat equation
(convolution with the Gaussian). The standard deviation of the Gaussian is 4,
which means that its spatial range is comparable to a disk of radius 4. The
image gets blurred by the convolution, which averages grey level values and
removes all sharp edges. This can be appreciated on the right, where we have
displayed all level lines for levels at multiples of 12. Note how some level lines
on the boundaries of the image have split into parallel level lines that have
drifted away from each other. The image has become smooth, but it is losing
its structure.

1) Expanding uo around the point x using Taylor’s formula, write

wo(x +y) = uo(x) + Duo() -y + 3 DPuo(x) (v, ) +ollyl®).  (118)

Expand the various terms using the coordinates (z,y) of x.
2) Apply M, to both sides of this expansion and deduce relation (1.2).

3) Assume uo € F and consider the solution u(t,x) of the heat equation (1.3) Then,
for fixed to > 0 and x, apply M, to the function u' : x — wu(to, x) and write equation
(1.2) for u'®. Using that u(t,x) is a solution of the heat equation and its Taylor
expansion between to and to + h, deduce that

Myu(to,x) = u(to + h*, x) + h’e(to, x, ). (1.19)

Exercise 1.4. Consider the sphere Sy = {z € RY™!  ||z|| = 1}. Prove that the
mapping T : RY U {co} — S defined in Proposition 0.1 by

169 = (125 51) 160 = 0.1

14+x2 x2+41

is a homeomorphism.
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Exercise 1.5. A natural norm for F N C" is

lull 7rcr = sup |u(x)] + [Du(x)]. (1.20)
XeRN

Prove that F N C! is complete, namely that if u, — u for the preceding norm, then
u(x) tends to a constant and Du(x) tends to zero as |x| tends to infinity.

Exercise 1.6. Let uo be a continuous function defined on RY having the property
that there exist a constant C' > 0 and an integer k such that

luo(x)| < C(1 + [x|)

for all x € RY. Show that the function u defined by u(t,x) = Gy *uo(x) is well defined
and C* on (0, 00) x RY and that it is a classical solution of the heat equation. Hints:
Everything follows from the fact that the Gaussian and all of its derivatives decay
exponentially at infinity. =

Exercise 1.7. We want to prove the general principle that any linear, translation
invariant and continuous operator 7' is a convolution, that is T'u = g*u for some kernel
g. This is one of the fundamental principles of both mechanics and signal processing,
and it has many generalizations that depend on the domain, range, and continuity
properties of T'. For instance, assume that T is translation invariant (commutes with
translations) and is continuous from L?(RY) into L°°(RY) N C°(RY). Show that
Tu = g *u, where the convolution kernel g is in L*(RY). This is a direct consequence
of Riesz theorem, which states that every bounded linear functional on L?(R™) has
the form f — [Ln f(x)g(x)dx for some g € L*(R™). Show that if u > 0 (u(x) > 0
for all x) implies Tu > 0, then ¢ > 0. =

1.4 Comments and references

The heat equation. One should not conclude from Theorem 1.9 that the
solutions of the heat equation are always unique. The assumption in (ii) that
the solution was bounded is crucial. In fact, without this assumption, there
are solutions u that grow so fast that gu is not in L*(RY) for g € S (see, for
example, [266, page 217]). The existence and uniqueness proof of Theorem 1.9
is classic and can be found in most textbooks on partial differential equations,
such as Evans [98], Taylor [266], or Brezis [46].

Convolution. The heat equation—its solutions and their uniqueness—has
been the main topic in this chapter, but to approach this, we have studied
several aspects of the convolution, such as the continuity property (1.5). We
also noted that the convolution commutes with translation. Conversely, as a
general principle, any linear, translation invariant and continuous operator T
is a convolution, that is, Tu = ¢ * u for some kernel g. This is a direct con-
sequence of a result discovered independently by F. Riesz and M. Fréchet in
1907 (see [238, page 61] and exercise 1.7). Since we want smoothing to be
translation invariant and continuous in some topology, this means that linear
smoothing operators—which are called filters in the context of signal and image
processing—are described by their convolution kernels. The Gaussian serves as
a model for linear filters because it is the only one whose shape is stable under
iteration. Other positive filters change their shape when iterated. This fact will
be made precise in the next chapter where we show that a large class of iterated
linear filters behaves asymptotically as a convolution with the Gaussian.
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Smoothing and the Laplacian. One of the first tools proposed in the early
days of image processing in the 1960s came, not surprisingly, directly from signal
processing. The idea was to restore an image by averaging the gray levels locally
(see, for example, [126] and [140]). The observation that the difference between
an image and its local average is proportional to the Laplacian of the image
has proved to be one of the most fruitful contributions to image processing. As
noted in the Introduction, this method for deblurring an image was introduced
by Kovasznay and Joseph in 1955 [175], and it was studied and optimized by
Gabor in 1965 [117] (information taken from [183]). (See also [151] and [152].)
Burt and Adelson based their Laplacian pyramid algorithm on this idea, and
this was one of the results that led to multiresolution analysis and wavelets [49].



Chapter 2

Iterated Linear Filters and
the Heat Equation

The title of this chapter is self-explanatory. The next section fixes fairly general
conditions so that the difference of a smoothed image and the original be pro-
portional to the Laplacian. The second section proves the main result, namely
the convergence of iterated linear filters to the heat equation. So the choice
of a smoothing convolution kernel is somewhat forced : Iterating the convolu-
tion with a smoothing kernel is asymptotically equivalent to the convolution
with a Gauss function. This result is known in Probability as the central limit
theorem, where it has a quite different interpretation. In image processing, it
justifies the prominent role of Gaussian filtering. A last section is devoted to
linear directional filters and their associated differential operators.

2.1 Smoothing and the Laplacian

There are minimal requirements on the smoothing kernels g which we state in
the next definition.

Definition 2.1. We say that a real-valued kernel g € L'(RY) is Laplacian
consistent if it satisfies the following moment conditions:

(1) Jpvg(x)dx=1.

(ii) Fori=1,2,...,N, [pn xig(x)dx =0.

(iii) For each pairi,j =1,2,...,N, i # j, [pn Tiz;g(x)dx = 0.
(iv) Fori=1,2,...,N, [zn 279(x)dx = o, where o > 0.

(V) Jav XPlg(x)]dx < +oo.

Note that we do not assume that g > 0; in fact, many important filters used
in signal and image processing are not positive. However, condition (7) implies
that g is “on average” positive. A discussion of the necessity of the requirements
(i) — (v) is performed in Exercise 2.4.

49
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Figure 2.1: The rescalings g;(x) = (1/t?)g(x/t) of a kernel for t=4, 3, and 2.

We say that a function g is radial if g(x) = g(|x|), x € RY. This is equivalent
to saying that g is invariant under all rotations around the origin in RV. As
pointed out in Exercise 2.3, any radial function g € L'(RY) can be rescaled to
be Laplacian consistent if it decays fast enough at infinity and if f]RN x2g(x) dx
and [~ g(x)dx have the same sign.

We consider rescalings of a kernel g defined by

909 = x759(5273) (21)

for h > 0 (see Figure 2.1). Notice that this rescaling differs slightly from the
one used in Section 1.2. We have used the factor h'/2 here because it agrees
with the factor t'/2 in the Gaussian. We denote the convolution of g with itself
n times by g"*. The main result of this section concerns the behavior of g;* as
n — 400 and h — 0.
Exercise 2.1. Prove the following two statements:

(i) gn is Laplacian consistent if and only it g is Laplacian consistent.

(i) If g € L*(RY), then (gn)™ = (g™ )n. =

Our first result concerns the behavior of g, as h — 0. This will establish a

more general and precise form of equation (1.2).

Theorem 2.2. If g is Laplacian consistent, then for every u € F N C3,
gn *u(x) —u(x) = h%Au(x) +e(h,x) (2.2)
where |e(h,x)| < Ch?/2.

Proof. We use condition (), the definition of gp,, and rescaling inside the inte-
gral to see that

1 x
gn * u(x) — u(x) Z/RN N2 9(@) (“(X -y) - U(X)) dy
=/ 9(z) (u(x — h'/2z) — u(x)) dz.
RN
Using Taylor’s formula with the Lagrange remainder, we have
1/2 _ 1/2 h o
u(x—h'%z) —u(x) = —h/“Du(x)-z+ §D u(x)(z,2)

1
- 6h3/2D3u(x — h/%02)(2,2,2),
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where § = 6(x,z,h) € [0,1]. By condition (ii), [p~ g(z)Du(x)-zdz = 0; by
conditions (iii) and (iv), [z~ 9(2)D?*u(x)(2,2) dz = cAu(x). Thus,

gn *u(x) —u(x) = h%Au(x) — %h3/2/ g(2)D3u(x — h'/?02) (2, z,z) dz.
RN

We denote the error term by €(h,x). Then we have the following estimate:

1
| <gh? [ o@D ulx  11/262)(3.2,2)] 2
RN

1
§6h3/2N3/2 sup |0%u(x)] / |z|%|g(z)| dz,
a,X RN

where the supremum is taken over all vectors a@ = (aq, a2, - ,an), a; €
{1,2,3}, such that |a| = 3 and over all x € RY. O

The preceding theorem shows a direct relation between smoothing with a
Laplacian-consistent kernel and the heat equation. It also shows why we require
o to be positive: If it is not positive, the kernel is associated with the inverse
heat equation (see Exercise 2.4.)

2.2 The convergence theorem
The result of the next theorem is illustrated in Figure 2.2.

Theorem 2.3. Let g be a nonnegative Laplacian-consistent kernel with o = 2
and define gy, by (2.1). Write Thuo = gp*ug for ug € F, and let u(t, ) = Gyxug
be the solution of the heat equation (1.15). Then, for each t > 0,

(TFlug)(x) — u(t,x) uniformly in x as n — +oo and nh — t. (2.3)

Proof. Let us start with some preliminaries. We have (gp * ug)(00) = ug(00)
and therefore T;'ug(00) = ug(oc). The norm in F is ||u||r = supxeg, |u(x)| =
supxegrn |u(x)|. The first order of business is to say precisely what is meant
by the asymptotic limit (2.3): Given ¢t > 0 and given € > 0, there exists an
no = no(t,e) and a 6 = d(t,e) such that || T up — u(t,-)||r < e if n > ng and
|[nh —t] < §. This is what we must prove. We will first prove the result when
h =t/n. We will then show that the result is true when h is suitably close to
t/n.

We begin with comments about the notation. By Exercise 2.1, (T3)" =
(T™)n, so there is no ambiguity in writing 7;'. We will be applying 77" to the
solution u of the heat equation, which is C* on (0, +00) x R¥. In this situation,
t is considered to be a parameter, and we write T;'u(¢,x) as shorthand for
Ty u(t, -)(x). Throughout the proof, we will be dealing with error terms that we
write as O(h"). These terms invariably depend on h, ¢, and x. However, in all
cases, given a closed interval [¢y,t2] C (0, +00), there will be a constant C' such
that |O(h™)| < Ch" uniformly for t € [t1,t2] and x € RY. Finally, keep in mind
that all functions of x tend to ug(c0) as x — oc.

We wish to fix an interval [t1,¢2], but since this depends on the point ¢ in
(2.3) and on €, we must first choose these numbers. Thus, choose 7 > 0 and
keep it fixed. This will be the “¢” in (2.3). Next, choose € > 0. Here are the
conditions we wish ¢; and t5 to satisfy:
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Figure 2.2: Iterated linear smoothing converges to the heat equation. In this
experiment with one-dimensional functions, it can be appreciated how fast an
iterated convolution of a positive kernel converges to a Gaussian. On the left
are displayed nine iterations of the convolution of the characteristic function
of an interval with itself, with appropriate rescalings. On the right, the same
experiment is repeated with a much more irregular kernel. The convergence is
almost as fast as the first case.

(1) ¢ is small enough so ||u(t1,-) — uoll# < €. (This is possible by Theorem
1.9.)

(2) t1 is small enough so ||u(t1 +7,-) —u(7, )| < . (Again, by Theorem 1.9.)
(3) tq is large enough so t1 + 7 < ta.

There is no problem meeting these conditions, so we fix the interval [ty t2] C
(0, +00).

Step 1, main argument : proof that

HIP Tru(ty, x) = u(ty + 7,%), (2.4)
nh=r1

where the convergence is uniform for x € R,

We can use Theorem 2.2 to write

Thu(t,x) — u(t,x) = hAu(t,x) + O(h%/?), (2.5)

where t € [t;,t3]. That the error function is bounded uniformly by C'h%/? on
[t1,t2] x RN follows from the fact that sup, , x [0%u(t,x)| is finite for (¢,x) €
[t1,t2] x RN (see the proof of Theorem 2.2). Since u is a solution of the heat
equation, we also have

u(t + h,x) — u(t,x) = hAu(t,x) + O(h?). (2.6)

This time the error term is bounded uniformly by Ch? on [t1,ts] x RY because
w is C* on (0,+00) x RY. By subtracting (2.6) from (2.5) we see that

Thu(t,x) = u(t + h,x) + O(h*/?). (2.7)

This shows that applying 77, to a solution of the heat equation at time ¢ advances
the solution to time ¢ 4 h, plus an error term.

So far we have not used the assumption that g is nonnegative. Thus, (2.7)
is true for any Laplacian-consistent kernel g with o = 2. However, we now wish
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to apply the linear operator T}, to both sides of equation (2.7), and in doing so
we do not want the error term to increase. Since g > 0, this is not a problem:

ITLO(R*/?)] < /RN |0(h3/?)|gn(x — y) dy < /RN Ch3%gy(x — y)dy = Ch*/2,

With this in hand, we can apply T} to both sides of (2.7) and obtain
TEu(t,x) = Thu(t + h,x) + O(h/?). (2.8)

If we write equation (2.7) with ¢ + h in place of ¢ and substitute the expression
for Thu(t + h,x) in equation (2.8), we have

TRu(t,x) = u(t + 2h,x) + 20(h3/?). (2.9)
We can iterate this process and get

TPu(t, x) = u(t + nh,x) +nO(h*/?) (2.10)
with the same constant C' in the estimate |O(h3/2)| < Ch3/2 as long as t +nh €

[t1,t2]. To ensure that this happens, we take t =¢; and h = 7/n. Then

Tru(ty, x) = u(ty + 7,%x) + O((I)l/z) (2.11)

n

and we obtain (2.4). If we could take ¢; = 0, this would end the proof. This
is not possible because all of the O terms were based on a fixed interval [t1, t2].
However, we have taken t; small enough to finish the proof .

Step 2 : getting rid of ¢;.
Since [pn g(x)dx =1, ||gnll1 @y = 1, and thus

lgn™ *vll7 < |lvll#.
If we take v = u(t1, ) — ug, then this inequality and condition (1) imply that
| Tou(t, ) — ThuollF < e. (2.12)
Relations (2.12) and (2.11) imply that
| Thuwo —u(ts + 7,) || 7 < 2e. (2.13)
This inequality and condition (2) show that
I T7ug — u(r, )| 7 < 3e (2.14)
for n > ng and h = 7/n. This proves the theorem in the case h = 7/n.

Conclusion. It is a simple matter to obtain the more general result. Again,
by Theorem 1.10, there is a § = §(7,¢) such that [nh — 7| < § implies that
[lu(nh,-) —u(r,-)||# < e and that nh € [t1,t2] (by condition (3)). Combining
this with (2.14) shows that

Ty uo — u(nh,-)||F < 4e

if n > ng and |nh — 7| < 4, and this completes the proof. O
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2.3 Directional averages and directional heat equa-
tions

In this section, we list easy extensions of Theorem 2.2. They analyze local
averaging processes which take averages at each point in a singular neighbor-
hood made of a segment. In that way, we will make appear several nonlinear
generalizations of the Laplacian which will accompany us throughout the book.
Consider a C? function from RY into R and a vector z € RY with |z| = 1. We
wish to compute the mean value of u along a segment of the line through x
parallel to the vector z. To do this, we define the operator TZ, h € [—1,1], by

1 [h
TPu(x) = —/ u(x + sz)ds.
2h J_p
This operator is the directional counterpart of the isotropic operator M}, defined
by equation (1.1). We use Taylor’s formula to expand u at the point x along
the line through x parallel to the vector z:

2
u(x + sz) = u(x) + sDu(x) -z + %DQU(X)(Z, z) + o(s?). (2.15)
By averaging both sides of (2.15) over s € [—h, h|, we obtain the next result.

Proposition 2.4.

zZ _ R s 2
THu(x) = u(x) + 5 D*u(x)(z,z) + o(h®).

Proposition 2.4 is similar to to Theorem 2.2, and it suggests that iterations
of the operator T# are associated with the directional heat equation

%(t,x) = éDQU(t,x)(z,z) (2.16)
in the same way that the iterations of the operator Tj in Theorem 2.3 are
associated with the ordinary heat equation. If z is fixed, then the operator T}
and equation (2.16) act on u along each line in RY parallel to z separately;
there is no “cross talk” between lines. Exercise 2.5 formalizes and clarifies
these comments when z is fixed. However, Proposition 2.4 is true when z is a
function of x. This means that we are able to approximate the directional second
derivative by taking directional averages where z varies from point to point.
The main choices considered in the book are z = Du/|Du| and z = Du'/|Dul|,
where Du = (uz,u,) and Dut = (—u,,u,). Then by Proposition 2.4 we have
the following limiting relations:

e Average in the direction of the gradient. By choosing z = Du/|Dul,

Du/|D
u/|Dul,, _

D*u(Du, Du) = 6 lim —2
u(Du, Du) 6;111% %

1 U
[ Dul?
We will interpret this differential operator as Haralick’s edge detector in sec-
tion 3.1.
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e Average in the direction orthogonal to the gradient. By choosing z = Du/|Du>|,
T,DuL /| Du| u—

1 2 1 1y : h

u

This differential operator appears as the second term of the curvature equa-
tion. (See Chapter 12.)

Although we have not written them as such, the limits are pointwise in both
cases.

2.4 Exercises

Exercise 2.2. We will denote the characteristic function of a set A C RY by 14. Thus,
la(x) =1if x € A and 14(x) = 0 otherwise. Consider the kernel g = (1/7)1p(0,1),
where D(0,1) is the disk of radius one centered at zero. In this case, g is a radial
function and it is clearly Laplacian consistent. For N = 2, let A = [-1/2,1/2] x
[-1/2,1/2]. Then g = 14 is not radial. Show that it is, however, Laplacian consistent.
If we take B = [—1,1]x[—1/2,1/2], then g = (1/2)13 is no longer Laplacian consistent
because it does not satisfy condition (iv). Show that this kernel does, however, satisfy
a relation similar to (2.2). =

Exercise 2.3. The aim of the exercise is to prove roughly that radial functions with
fast decay are Laplacian consistent. Assume g € L'(R") is radial with finite first
second moments, [,y |x|*|g(x)|dx < +oc0, k = 0,1,2,3 and such that [,y x7g(x) dx >
0. Show that g satisfies conditions (i¢) and (iii) of Definition 2.1 and that, for suitably
chosen a,b € R, the rescaled function x — ag(x/b) satisfies conditions (i) and (iv),
where o can be taken to be an arbitrary positive number. m

Exercise 2.4. The aim of the exercise is to illustrate by simple examples what happens
to the iterated filter g"*, n € N when g does not satisfy some of the requirements of
the Laplacian consistency (Definition 2.1). We recall the notation (2.1), gn(x) =
w9 (i)

1) Take on R, g(z) =1 on [—1,1], g(z) = 0 otherwise. Which one of the assumptions

(¢) — (v) is not satisfied in Definition 2.1 ? Compute ¢t* * u, where v = 1 on R.

Conclude : the iterated filter blows up.
2) Take on R, g(z) = 1 on [0,1], g(x) = 0 otherwise. Which one of the assumptions

(7) — (v) is not satisfied in Definition 2.1 Compute g"* * u, where u(z) = z on R.
Conclude : the iterated filter “drifts”.

3) Assume that the assumptions (i) — (v) hold, except (ii7). By a simple adaptation
of its proof, draw a more general form of Theorem 2.2.

4) Perform the same analysis as in 3) when all assumptions hold but (iv).

5) Take the case of dimension N = 1 and assume that (¢) hold but (i¢) does not hold.
Set gn(x) = %g(%) and give a version of Theorem 2.2 in that case (make an order 1
Taylor expansion of u). m

Exercise 2.5. Let z be a fixed vector in RY with |z| = 1 and let ug be in F. Define
a one-dimensional kernel g by g(s) = $1(_11)(s).

(i) Show that g is Laplacian consistent. Compute the variance o of g.
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(ii) Show that
u(t,x) = / uo(x + s2)G¢(s) ds
Jr

is a solution of the directional heat equation

g—z(tx) = D’u(t,x)(z,2), u(0,x) = uo(x). (2.17)
Give an example to show that (¢, -) is not necessarily C?. This being the case,
how does one interpret the right-hand side of (2.17)?

(iii) Let gn(s) = (6h)"Y2g(s/(6h)"'/?) and Thu(x) = Jp u(x + sz)gn(s)ds. By ap-
plying Theorem 2.3 for N = 1, show that, for each ¢ > 0,

Tpuo — u(t,”) in F as n — +oo and nh —t. m (2.18)

Exercise 2.6. The Weickert equation can be viewed as a variant of the curvature equa-
tion [280]. It uses a nonlocal estimate of the direction orthogonal to the gradient for
the diffusion direction. This direction is computed as the direction v of the eigenvector
corresponding to the smallest eigenvalue of k* (Du® Du), where (y®y)(z) = (x-y)y.
Prove that if the convolution kernel is removed, then this eigenvector is simply Du™.
So the equation writes

ou
57 = (2.19)
where 1 denotes the coordinate in the direction v. m
Exercise 2.7. Suppose that u € C?(R). Assuming that u'(x) # 0, show that
u(z) = %13%) h_12 ( Serﬁalifh] u(xz + s) + sEI[Ilil?,h] u(z +s) — 2u(:c)). (2.20)

What is the value of the right-hand side of (2.20) if uv'(z) = 07

Now consider u € C?(R?). We wish to establish an algorithm similar to (2.20) to
compute the second derivative of w in the direction of the gradient Du = (ua,uy). For
this to make sense, we must assume that Du(x) # 0. With these assumptions, we
know from (2.20) that

2
uge (x) = g_;;(x, 0) = }1}3}) % (Serﬁaﬁh] u(x+ sz) + sEI[IliIIzl,h] u(x+ sz) — 2u(x)), (2.21)

where v(x,£) = u(x + £z) and z = Du/|Du|. The second part of the exercise is to
prove that, in fact,

1 .
uge (x) = ,11111%) 7z (ye%%(,h) u(x+y)+ yele(I(},h) u(x+y)— 2u(x)) , (2.22)
where D(0, h) is the disk of radius h centered at the origin. Intuitively, (2.22) follows
from (2.21) because the gradient indicates the direction of maximal change in u(x), so
in the limit as h — 0, taking max and min in the direction of the gradient is equivalent
to taking max and min in the disk. The point of the exercise is to formalize this. =

2.5 Comments and references

Asymptotics. Our proof that iterated and rescaled convolutions of a Laplacian-
consistent kernel tend asymptotically to the Gaussian is a version of the De
Moivre-Laplace formula, or the central limit theorem, adapted to image process-
ing [45]. This result is particularly relevant to image analysis, since it implies
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that iterated linear smoothing leads inevitably to convolution with the Gaussian,
or equivalently, to the application of the heat equation. We do not wish to imply,
however, that the Gaussian is the only important kernel for image processing.
The Gaussian plays a significant role in our form of image analysis, but there
are other kernels that, because of their spectral and algebraic properties, have
equally important roles in other aspects of signal and image processing. This
is particularly true for wavelet theory which combines recursive filtering and
sub-sampling.

Directional diffusion. Directional diffusion has a long history that began
when Hubel and Wiesel showed the existence of direction-sensitive cells in the
visual areas of the neocortex [146]. There has been an explosion of publication
on directional linear filters, beginning, for example, with influential papers such
as that by Daugman [85]. We note again that Gabor’s contribution to directional
filtering is described in [183].






Chapter 3

Linear Scale Space and
Edge Detection

The general analysis framework in which an image is associated with smoothed
versions of itself at several scales is called scale space. Following the results
of Chapter 2, a linear scale space must be performed by applying the heat
equation to the image. The main aim of this smoothing is to find out edges in
the image. We shall first explain this doctrine. In the second section, we discuss
experiments and several serious objections to such an image representation.

3.1 The edge detection doctrine

One of the uses of linear theory in two dimensions is edge detection. The as-
sumption of the edge detection doctrine is that relevant information is contained
in the traces produced in an image by the apparent contours of physical objects.
If a black object is photographed against a white background, then one expects
the silhouette of the object in the image to be bounded by a closed curve across
which the light intensity uo varies strongly. We call this curve an edge. At
first glance, it would seem that this edge could be detected by computing the
gradient Duyg, since at a point x on the edge, |Dug(x)| should be large and
Du(x) should point in a direction normal to the boundary of the silhouette. It
would therefore appear that finding edges amounts to computing the gradient
of ug and determining the points where the gradient is large. This conclusion is
unrealistic for two reasons:

(a) There may be many points where the gradient is large due to small oscilla-
tions in the image that are not related to real objects. Recall that digital
images are always noisy, and thus there is no reason to assume the existence
or computability of a gradient.

(b) The points where the gradient exceeds a given threshold are likely to form
regions and not curves.

As we emphasized in the Introduction, objection (a) is dealt with by smooth-
ing the image. We associate with the image uo smoothed versions (¢, -), where
the scale parameter ¢ indicates the amount of smoothing. In the classical linear
theory, this smoothing is done by convolving ug with the Gaussian Gj.

99
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One way that objection (b) has been approached is by redefining edge points.
Instead of just saying an edge point is a point x where |Dug(x)| exceeds a
threshold, one requires the gradient to satisfy a maximal property. We illustrate
this in one dimension. Suppose that u € C?(R) and consider the points where
|u’(x)| attains a local maximum. At some of these points, the second derivative
u” changes sign, that is, sign(u”(z — h)) # sign(u”(z + h)) for sufficiently small
h. These are the points where u” crosses zero, and they are taken to be the edge
points. Note that this criterion avoids classifying a point x as an edge point if
the gradient is constant in an interval around x. Marr and Hildreth generalized
this idea to two dimensions by replacing u” with the Laplacian Awu, which is
the only isotropic linear differential operator of order two that generalizes u”
[199]. Haralick’s edge detector is different but in the same spirit [135]. Haralick
gives up linearity and defines edge points as those points where the gradient
has a local maximum in the direction of the gradient. In other words, an edge
point x satisfies ¢’(0) = 0, where g(t) = |Du(x +tDu(x)|/|Du(x)|. This implies
that D?u(x)(Du(x), Du(x)) = 0 (see Exercise 3.2). We are now going to state
these two algorithms formally. They are illustrated in Figures 3.2 and 3.3,
respectively.

Algorithm 3.1 (Edge detection: Marr—Hildreth zero-crossings).

(1) Create the multiscale images u(t, ) = Gy * ug for increasing values of .

(2) At each scale t, compute all the points where Du # 0 and Au changes
sign. These points are called zero-crossings of the Laplacian, or simply
ZETro-Crossings.

(3) (Optional) Eliminate the zero-crossings where the gradient is below some
prefixed threshold.

(4) track back from large scales to fine scales the “main edges” detected at large

scales.

Algorithm 3.2 (Edge detection: The Haralick—Canny edge detector).

(1) As before, create the multiscale images u(t, -) = Gy *ug for increasing values
of .

(2) At each scale t, find all points x where Du(x) # 0 and D?u(x)(z, ) crosses
zero, z = Du/|Du|. At such points, the function s — u(x + sz) changes
from concave to convex, or conversely, as s passes through zero.

(3) At each scale ¢, fix a threshold 6(¢) and retain as edge points at scale t only
those points found above that satisfy | Du(x)| > 6(t). The backtracking step
across scales is the same as for Marr-Hildreth.

In practice, edges are computed for a finite number of dyadic scales, t = 27,
n € Z.

3.1.1 Discussion and critique

The Haralick—Canny edge detector is generally preferred for its accuracy to the
Marr—Hildreth algorithm. Their use and characteristics are, however, essentially



3.1. THE EDGE DETECTION DOCTRINE 61

A

Figure 3.1: A three-dimensional representation of the Laplacian of the Gaussian.
This convolution kernel, which is a wavelet, is used to estimate the Laplacian
of an image at different scales of linear smoothing.

the same. There are also many variations—attempted improvements—of the
algorithms we have described, and the following discussion adapts easily to these
related edge detection schemes. The first thing to notice is that, by Proposition
1.5, u(t, ) = Gy % ug is a C* function for each t > 0 if ug € F. Thus we can
indeed compute second order differential operators applied to u(t, ) = Gy * ug,
t > 0. In the case of linear operators like the Laplacian or the gradient, the task
is facilitated by the formula proved in the mentioned proposition. For example,
we have Au(t,x) = A(Gy * ug)(x) = (AG,) * ug(x), where in dimension two
(Figure 3.1),

|X|2 — 4t _ 2
AGt(X) = We X /4t.

In the same way, Haralick’s edge detector makes sense, because u is C'*°, at
all points where Du(x) # 0. If Du(x) = 0, then x cannot be an edge point, since
u is “flat” there. Thus, thanks to the filtering, there is no theoretical problem
with computing edge points. There are, however, practical objections to these
methods, which we will now discuss.

Linear scale space

The first serious problems are associated with the addition of an extra dimen-
sion: Having many images u(t, -) at different scales ¢ confounds our understand-
ing of the image and adds to the cost of computation. We no longer have an
absolute definition of an edge. We can only speak of edges at a certain scale.
Conceivably, a way around this problem would be to track edges across scales.
In fact, it has been observed in experiments that the “main edges” persist under
convolution as t increases, but they lose much of their spatial accuracy. On the
other hand, filtering with a sharp low-pass filter, that is, with ¢ small, keeps
these edges in their proper positions, but eventually, as ¢t becomes very small,
even these main edges can be lost in the crowd of spurious edge signals due to
noise and texture. The scale space theory of Witkin proposes to identify the
main edges at some scale ¢t and then to track them backward as ¢t decreases [289).
In theory, it would seem that this method could give an accurate location of the
main edges. In practice, any implementation of these ideas is computationally
costly due to the problems involved with multiple thresholdings and following
edges across scales. In fact, tracking edges across scales is incompatible with
having thresholds for the gradients, since such thresholds may remove edges at
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Figure 3.2: Zero-crossings of the Laplacian at different scales. This figure il-
lustrates the original scale space theory as developed by David Marr [198]. To
extract more global structure, the image is convolved with Gaussians whose
variances are powers of two. Omne computes the Laplacian of the smoothed
image and displays the lines along which this Laplacian changes sign: the zero-
crossings of the Laplacian. According to Marr, these zero-crossings represent
the “raw primal sketch” of the image, or the essential information on which
further vision algorithms should be based. Above, left to right: the results of
smoothing and the associated Gaussian kernels at scales 1, 2, and 4. Below,
left to right: the zero-crossings of the Laplacian and the corresponding kernels,
which are the Laplacians of the Gaussians used above.

certain scales and not at others. The conclusion is that one should trace all
zero-crossings across scales without considering whether they are true edges or
not. This makes matching edges across scales very difficult. For example, ex-
periments show that zero-crossings of sharp edges that are sparse at small scales
are no longer sparse at large scales. (Figure 3.4 shows how zero-crossings can
be created by linear smoothing.) The Haralick—-Canny detector suffers from the
same problems, as is well demonstrated by experiments.

Other problems with linear scale space are illustrated in Figures 3.5 and
3.6. Figure 3.5 illustrates how linear smoothing can create new gray levels and
new extrema. Figure 3.6 shows that linear scale space does not maintain the
inclusion between objects. The shape inclusion principal will be discussed in
Chapter 21.

We must conclude that the work on linear edge detection has been an at-
tempt to build a theory that has not succeeded. After more than thirty years
of activity, it has become clear that no robust technology can be based on these
ideas. Since edge detection algorithms depend on multiple thresholds on the
gradient, followed by “filling-the-holes” algorithms, there can be no scientific
agreement on the identification of edge points in a given image. In short, the
problems associated with linear smoothing followed by edge detection have not
been resolved by the idea of chasing edges across scales.
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Figure 3.3: Canny’s edge detector. These images illustrate the Canny edge
detector. Left column: result of the Canny filter without the threshold on the
gradient. Middle column: result with a visually “optimal” scale and an image-
dependent threshold (from top to bottom: 15, 0.5, 0.6). Right column: result
with a fixed gradient threshold equal to 0.7. Note that such an edge detection
theory depends on no fewer than two parameters that must be fixed by the user:
smoothing scale and gradient threshold .

Figure 3.4: Zero-crossings of the Laplacian of a synthetic image. Left to right:
the original image; the image linearly smoothed by convolution with a Gaussian;
the sign of the Laplacian of the filtered image (the gray color corresponds to
values close to 0, black to clear-cut negative values, white to clear-cut positive
values); the zero-crossings of the Laplacian. This experiment clearly shows a
drawback of the Laplacian as edge detector.

Contrast invariance

As already mentioned in the Introduction, a central theme of the book is that
the use of contrast-invariant operators will solve some of the technical prob-
lems associated with linear smoothing and other linear image operators. The
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(@) (b) ()

Figure 3.5: The heat equation creates structure. This experiment shows that
linear scale space can create new structures and thus increase the complexity of
an image. Left to right: The original synthetic image (a) contains three gray
levels. The black disk is a regional and absolute minimum. The “white” ring
around the black disk is a regional and absolute maximum. The outer gray ring
has a gray value between the other two and is a regional minimum. The second
image (b) shows what happens when (a) is smoothed with the heat equation:
New local extrema have appeared. Image (c) illustrates the action on (a) of a
contrast-invariant local filter, the iterated median filter, which is introduced in
Chapter 10.

development of these ideas starts in Chapter 3.
Recall from section 1.3 that an (image) operator u — T'u is contrast invariant
if T commutes with all nondecreasing functions g, that is, if

9(Tu) = T(g(u)). (3.1)

If image analysis is to be robust, it must be invariant under changes in lighting
that produce contrast changes. It must also be invariant under the nonlinear
response of the sensors used to capture an image. These, and perhaps other,
contrast changes are modeled by g. If g is strictly increasing, then relation (3.1)
ensures that the filtered image Tu = g~ !(T(g(u))) does not depend on g. A
problem with linear theory is that linear smoothing, that is, convolution, is not
generally contrast invariant:

g(k *u) # k* (g(u)).

In the same way, the operator T; that maps ug into the solution of the heat
equation, u(t,-) is not generally contrast invariant. In fact, if g is C?, then

Ng(w) _ , | Ou
ot —g(u)a

and
A(g(u)) = ¢'(u)Au+ g" (u)| Dul?.

Exercise 3.1. Prove this last relation. Prove that if g(s) = as + b then g(u) satisfies
the heat equation if u does. m
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Figure 3.6: Violation of the inclusion by the linear scale space. Top, left: an
image that contains a black disk enclosed by a white disk. Top, right: At
a certain scale, the black and white circles mix together. Bottom, left: The
boundaries of the two circles. Bottom, right: After smoothing with a certain
value of ¢, the inclusion that existed for very small ¢ in no longer preserved. We
display the level lines of the image at levels multiples of 16.

3.2 Exercises

Exercise 3.2. Define an edge point x in a smooth image u as a point x at which g(t)
attains a maximum, where

Du(x)
g(t) = |Du (x +t ) .
) = | Du)] |
Prove by differentiating g(t) that edge points satisfy D?u(x)(Du(x), Du(x)) =0 =

Exercise 3.3. Construct simple functions u, g, and k such that g(k*u) # k* (g(u)).
L]

Exercise 3.4. Consider the Perona—Malik equation in divergence form:

Ou — aiv(g(Dul)Du), (3.2)
where g(s) = 1/(14 A%s?). Tt is easily checked that we have a diffusion equation when
A|Du| < 1 and an inverse diffusion equation when A|Du| > 1. To see this, consider

the second derivative of u in the direction of Du,

wee — D% Du Du
€ [Du|” [Dul )’
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and the second derivative of u in the orthogonal direction,

w — D%y Dut Dut
nn — |DU| ’ |DU| )

where Du = (ug,u,) and Du™ = (—uy, u;). The Laplacian can be rewritten in the
intrinsic coordinates (§,7) as Au = uge + upy. Prove that the Perona—Malik equation
then becomes

ou 1 1— A% Dul?

ot T 1+ )\2|Du|2u7m + 1+ )\2|Du|2)2u55‘
Interpret the local behavior of the equation as a heat equation or a reverse heat
equation according to the size of |Du| compared to A7l om

3.3 Comments and references

Scale space. The term “scale space” was introduced by Witkin in 1983. He
suggested tracking the zero-crossings of the Laplacian of the smoothed image
across scales [289]. Yuille and Poggio proved that these zero-crossings can be
tracked for one-dimensional signals [292]. Hummel and Moniot [149, 153] and
Yuille and Poggio [293] analyzed the conjectures of Marr and Witkin according
to which an image is completely recoverable from its zero-crossings at different
scales. Mallat formulated Marr’s conjecture as an algorithm in the context of
wavelet analysis. He replaced the Gaussian with a two-dimensional cubic spline,
and he used both the zero-crossings of the smoothed images and the nonzero
values of the gradients at these points to reconstruct the image. This algorithm
works well in practice, and the conjecture was that these zero-crossings and
the values of the gradients determined the image. A counterexample given by
Meyer shows that this is not the case. Perfect reconstruction is possible in the
one-dimensional case for signals with compact support if the smoothing kernel is
the Tukey window, k(z) = 14 cosz for |z| < 7 and zero elsewhere. An account
of the Mallat conjecture and these examples can be found in [159]. Koenderink
presents a general and insightful theory of image scale space in [171].

Gaussian smoothing and edge detection. The use of Gaussian filtering
in image analysis is so pervasive that it is impossible to point to a “first paper.”
It is, however, safe to say that David Marr’s famous book, Vision [198], and the
original paper by Hildreth and Marr [199] have had an immeasurable impact
on edge detection and image processing in general. The term “edge detection”
appeared as early as 1959 in connection with television transmission [161]. The
idea that the computation of derivatives of an image necessitates a previous
smoothing has been extensively developed by the Dutch school of image analysis
[42, 115]. See also the books by Florack [110], Lindeberg [182], and Romeny
[268], and the paper [103]. Haralick’s edge detector [135], as implemented by
Canny [51], is probably the best known image analysis operator. A year after
Canny’s 1986 paper, Deriche published a recursive implementation of Canny’s
criteria for edge detection [89).



Chapter 4

Four Algorithms to Smooth
a Shape

In this short but important chapter, we discuss algorithms whose aim it is
to smooth shapes. Shape must be understood as a rough data which can be
extracted from an image, either a subset of the plane, or the curve surrounding it.
Shape smoothing is directed at the elimination of spurious, often noisy, details.
The smoothed shape can then be reduced to a compact and robust code for
recognition. The choice of the right smoothing will make us busy throughout
the book. A good part of the solution stems from the four algorithms we describe
and their progress towards more robustness, more invariance and more locality.
What we mean by such qualities will be progressively formalized. We will discuss
two algorithms which directly smooth sets, and two which smooth Jordan curves.
One of the aims of the book is actually to prove that both approaches, different
though they are, eventually yield the very same process, namely a curvature
motion.

4.1 Dynamic shape

In 1986, Koenderink and van Doorn defined a shape in RY to be a closed subset
X of RY [174]. They then proposed to smooth the shape by applying the heat
equation Ou/0t — Au = 0 directly to 1x, the characteristic function of X. Of
course, the solution Gy *1x is not a characteristic function. The authors defined
the evolved shape at scale ¢ to be

X: = {x | u(t,x) > 1/2}.

The value 1/2 is chosen so the following simple requirement is satisfied: Suppose
that X is the half-plane X = {(z,y) | (z,y) € R*,z > 0}. The requirement is
that this half plane doesn’t move,

XZXt:{(xvy) | Gt*lX(xay) > /\}7

and this is true only if A = 1/2. There are at least two problems with dynamic
shape evolution for image analysis. The first concerns nonlocal interactions, as
illustrated in Figure 4.1. Here we have two disks that are near one another.

67
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Figure 4.1: Nonlocal interactions in the dynamic shape method. Left to right:
Two close disks interact as the scale increases. This creates a new, qualitatively
different, shape. The change of topology, at the scale where the two disks
merge into one shape, also entails the appearance of a singularity (a cusp) on
the shape(s) boundaries.

The evolution of the union of both disks, considered as a single shape, is quite
different from the evolution of the disks separately. A related problem, also
illustrated in Figure 4.1, is the creation of singularities. Note how a singularity
in orientation and the curvature of the boundary of the shape develops at the
point where the two disks touch. Figure 4.2 further illustrates the problems
associated with the dynamic shape method.

4.2 Curve evolution using the heat equation

We consider shapes in R? whose boundaries can be represented by a finite num-
ber of simple closed rectifiable Jordan curves. Thus, each curve we consider can
be represented by a continuous mapping f : [0, 1] — R? such that f is one-to-one
on (0,1) and f(0) = f(1), and each curve has a finite length. We also assume
that these curves do not intersect each other. We will focus on smoothing one
of these Jordan curves, which we call Cy. We assume that Cj is parameterized
by s € [0, L], where L is the length of the curve. Thus, Cy is represented as
x0(s) = (x(s),y(s)), where s is the length of the curve between x((0) and x¢(s).
At first glance, it might seem reasonable to smooth Cy by smoothing the
coordinate functions x and y separately. If this is done linearly, we have seen
from Theorem 2.3 that the process is asymptotic to smoothing with the heat
equation. Thus, one is led naturally to consider the vector heat equation

ox 0%x

with initial condition x(0, s) = xo(s). If x(¢,s) = (z(¢, s),y(t, s)) is the solution
of (4.1), then we know from Proposition 1.9 that

inf xo(s) <x(t,s) < sup zp(s),

s€[0,L] s€0,L]
inf yo(s) <y(t,s) < sup yo(s),
s€[0,L] s€[0,L]

for s € [0,L] and ¢t € [0,4+00). Thus, the evolved curves Cy remain in the
rectangle that held Cy. Also, we know from Proposition 1.5 that the coordinate
functions z(¢,-) and y(t,-) are C* for ¢ > 0. There are, however, at least two
reasons that argue against smoothing curves this way:
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Figure 4.2: Nonlocal behavior of shapes with the dynamic shape method. This
image displays the smoothing of two irregular shapes by the dynamic shape
method (Koenderink—van Doorn). Top left: initial image, made of two irregular
shapes. From left to right, top to bottom: dynamic shape smoothing with
increasing Gaussian variance. Notice how the shapes merge more and more.
We do not have a separate analysis of each shape but rather a “joint analysis”
of the two shapes. The way the shapes merge is of course sensitive to the initial
distance between the shapes. Compare with Figure 4.4.

(1) When t > 0, s is no longer a length parameter for the evolved curve C.

(2) Although z(t,-) and y(t,-) are C* for ¢ > 0, this does not imply that the
curves C; have similar smoothness properties. In fact, it can be seen from
Figure 4.3 that it is possible for an evolved curve to cross itself and it is
possible for it to develop singularities.

How is this last mentioned phenomenon possible ? It turns out that one can
parameterize a curve with corners or cusps with a very smooth parameterization:
see Exercise 4.1.

In image processing, we say that a process that introduces new features,
such as described in item (2) above, is not causal. (This informal definition
should not be confused with the use of “causality,” as it is used, for example,
when speaking about filters: A filter F is said to be causal, or realizable, if the
equality of two signals so and s1 up to time to implies that F'so(t) = F's1(t) for
the same period.)

4.3 Restoring locality and causality

Our main objective is to redefine the smoothing processes so they are local and
do not create new singularities. This can be done by alternating a small-scale
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Figure 4.3: Curve evolution by the heat equation. The coordinates of the curves
are parameterized by the arc length and then smoothed as real functions of the
length using the heat equation. From A to D: the coordinates are smoothed
with an increasing scale. Each coordinate function therefore is C°°; the evolving
curve can, however, develop self-crossings (as in C) or singularities (as in D).

linear convolution with a natural renormalization process.

4.3.1 Localizing the dynamic shape method

In the case of dynamic shape analysis, we define an alternate dynamic shape
algorithm as follows:

Algorithm 4.1 (The Merriman—Bence—Osher algorithm).

(1) Convolve the characteristic function of the initial shape Xy with G}, where
h is small.

(2) Define Xy = {x| Gp *x1x, > 1/2}.

(3) Set X¢ = X; and go back to (1).

This is an iterated dynamic shape algorithm. The dynamic shape method
itself is an example of a median filter, which will be defined in Chapter 10. The
Merriman—Bence—Osher algorithm is thus an iterated median filter (see Figure
4.4). We will see in Chapters 14 and 15 that median filters have asymptotic
properties that are similar to those expressed in Theorem 2.3. In the case of
median filters, the associated partial differential equation will be a curvature
motion equation (defined in Chapter 12).
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Figure 4.4: The Merriman—Bence—Osher shape smoothing method is a localized
and iterated version of the dynamic shape method. A convolution of the binary
image with small-sized Gaussians is alternated with mid-level thresholding. It
uses the same initial data (top, left) as in Figure 4.2. From left to right, top
to bottom: smoothing with increasing scales. Notice that the shapes remain
separate. In fact, their is no interaction between the evolving shapes. Each one
evolves as if the other did not exist.

4.3.2 Renormalized heat equation for curves

In 1992, Mackworth and Mokhtarian noticed the loss of causality when the heat
equation was applied to curves [189]. Their method to restore causality looks,
at least formally, like the remedy given for the nonlocalization of the dynamic
shape method. Instead of applying the heat equation for relatively long times
(or, equivalently, convolving the curve x with the Gaussian G; for large t), they
use the following algorithm:

Algorithm 4.2 (Renormalized heat equation for curves).

(1) Convolve the initial curve xo, parameterized by its length parameter sg €
[0, Lo, with the Gaussian G}, where h is small.

(2) Let L,, denote the length of the curve x,, obtained after n iterations and let
$n, denote its length parameter. For n > 1, write X,41(sn) = G * X, ().
Then reparameterize X,1 by its length parameter s,11 € [0, Ly,+1], and
denote it by X;,41-

(3) Tterate.

This algorithm is illustrated in Figure 4.5. It should be compared with
Figure 4.3.
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N

Figure 4.5: Curve evolution by the renormalized heat equation (Mackworth—
Mokhtarian). After each smoothing step, the coordinates of the curve are repa-
rameterized by the arc length of the smoothed curve. From A to D: the curve is
smoothed with an increasing scale. Note that, in contrast with the linear heat
equation (Figure 4.3), the evolving curve shows no singularities and does not
cross itself.

Theorem 4.1. Let x be a C? curve parameterized by its length parameter s €
[0, L]. Then for small h,

0%x

Gp *xx(s) —x(s) = h@

+ o(h). (4.2)
This theorem is easily checked, see Exercise 4.2
In view of (4.2) and what we have seen regarding asymptotic limits in The-
orem 2.3 and Exercise 2.5, it is reasonable to conjecture that, in the asymptotic
limit, Algorithm 4.2 will yield the solution of following evolution equation:

2

ox_ it »

ot 0s?
where xg = x(0,-). It is important to note that (4.3) is not the heat equa-
tion (4.1). Indeed, from Algorithm 4.2 we see that s must denote the length
parameter of the evolved curve x(t,-) at time ¢t. In fact 9°x/ds? has a geo-
metric interpretation as a curvature vector. We will study this nonlinear curve
evolution equation in Chapter 12.

4.4 Exercises
Exercise 4.1. Construct a C* mapping f : [0, 1] — R? such that the image of [0, 1]

is a square. This shows that a curve can have a C'°° parameterization without being
smooth. m
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Exercise 4.2. Prove Theorem 4.1. If x is a C® function of s, then the result follows
directly from Theorem 2.2. The result holds, however, for a C? curve. m

4.5 Comments and references

Dynamic shape, curve evolution, and restoring causality. Our account
of the dynamic shape method is based on the well-known paper by Koenderink
and van Doorn in which they introduced this notion [174]. The curve evolution
by the heat equation is from the first 1986 version of curve analysis proposed
by Mackworth and Mokhtarian [188]. See also the paper by Horn and Weldon
[143]. There were model errors in the 1986 paper [188] that were corrected
by the authors in their 1992 paper [189]. There, they also proposed the correct
intrinsic equation. However, this 1992 paper contains several inexact statements
about the properties of the intrinsic equation. The correct theorems and proofs
can be found in a paper by Grayson written in 1987 [128]. The algorithm that
restores causality and locality to the dynamic shape method was discovered by
Merriman, Bence, and Osher, who devised this algorithm for a totally different
reason: They were looking for a clever numerical implementation of the mean
curvature equation [203].

Topological change under smoothing. We have included several figures
that illustrate how essential topological properties of an image change when the
image is smoothed with the Gaussian. Damon has made a complete analysis of
the topological behavior of critical points of an image under Gaussian smoothing
[83]. This analysis had been sketched in [291].
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Chapter 5

Contrast-Invariant Classes
of Functions and Their
Level Sets

This chapter is about one of the major technological contributions of mathe-
matical morphology, namely the representation of images by their upper level
sets. As we shall see in this chapter, this leads to a handy contrast invariant
representation of images.

Definition 5.1. Let u € F. The level set of u at level 0 < X < 1 is denoted by
Xau and defined by
X = {x | u(x) > A}

Strictly speaking, we have called level sets what should more properly be
called upper level sets. Several level sets of a digital image are shown in Figure
5.1 and all of the level sets of a synthetic image are illustrated in Figure 5.2.
The reconstruction of an image from its level sets is illustrated in Figure 5.3.
Two important properties of the level sets of a function follow directly from the
definition. The first is that the level sets provide a complete description of the
function. Indeed, we can reconstruct u from its level sets Xyu by the formula

u(x) = sup{\ | x € Xyu}.

This formula is called superposition principle as u is being reconstructed by
“superposing” its level sets.

Exercise 5.1. Prove the superposition principle. =

The second important property is that level sets of a function are globally
invariant under contrast changes. We say that two functions u and v have the
same level sets globally if for every A there is p such that X,v = X)u, and
conversely. Now suppose that a contrast change g : R — R is continuous and
increasing. Then it is not difficult to show that v = g(u) and u have the same
level sets globally.

Exercise 5.2. Check this last statement for any function u and any continuous in-
creasing contrast change g. =

7
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Figure 5.1: Level sets of a digital image. Left to right, top to bottom: We first
show an image with range of gray levels from 0 to 255. Then we show eight level
sets in decreasing order from A = 225 to A = 50, where the grayscale step is 25.
Notice how essential features of the shapes are contained in the boundaries of
level sets, the level lines. Each level set (which appears as white) is contained
in the next one, as guaranteed by Proposition 5.2.

Conversely, we shall prove that if the level sets of a function v € F are level
sets of u, then there is a continuous contrast change g such that v = g(u). This
justifies the attention we will dedicate to level sets, as they turn out to contain
all of the contrast invariant information about w.

5.1 From an image to its level sets and back

In the next proposition, for a sake of generality, we consider bounded measurable
functions on Sy, not just functions in F.

Proposition 5.2. Let X, denote the level sets Xyu of a bounded measurable
function u : Sy — R. Then the sets X satisfy the following two structural
properties:

(@) If X > p, then Xx C X,,. In addition, there are two real numbers Apmqz >
Amin 80 that Xy = Sy for A < Amin, Xa =0 for A > Anas-

(#1) Xx ={,<r Xpu for every X € R.

Conversely, if (Xx)aer is a family of sets of M that satisfies (i) and (ii), then
the level sets of the function u defined by superposition principle,

u(x) =sup{\ | x € X} (5.1)
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Figure 5.2: A simple synthetic image and all of its level sets (in white) with
decreasing levels, from left to right and from top to bottom.

satisfy Xou = Xy for all A € R and Amin < u < Apaz-

Proof. The first part of Relation (¢) follows directly from the definition of upper
level sets. The second part of (i) works with Ay, = infu and Apep = supu.
The relation (i¢) follows from the equivalence u(x) > A < wu(x) > u for every
<A

Conversely, take a family of subsets (X)) xcr satisfying (i) and (i¢) and define
u by the superposition principle. Let us show that X, = X\u. Take first x € X.
Then it follows from the definition of u that u(x) > A, and hence x € X\u. Thus,
X C Xyu. Conversely, let x € Xyu. Then u(x) = sup{v | x € X,} > A. Con-
sider any p < A. Then there exists a p’ such that p < ¢/ < sup{v | x € X, }
and x € X,,. It follows from (¢) that x € X,. Since p was any number less
that A\, we conclude by using (i¢) that x € ﬂ“<)\ X, = X It is easily checked
that Mnin < u < AMngz- O

Exercise 5.3. Check the last statement of the preceding proof, that Apmin < u < Apmaz-
[

5.2 Contrast changes and level sets

Practical aspects of contrast changes are illustrated in Figures 5.4, 5.5, 5.6,
and 5.7, which illustrate how insensitive our perception of images is to contrast
changes, even when they are flat on some interval. When this happens, some
information on the image is even lost, as several grey levels melt together.

Definition 5.3. Any nondecreasing continuous surjection g : R — R will be
called a contrast change.

Exercise 5.4. Remark that g(s) — +o0o as s — fo00. Check that if u € F and g is a
contrast change, then g(u) € . m

In case g is increasing, ¢ has an inverse contrast change g~ '. In case g is flat
on some interval, we shall be happy with a pseudo-inverse for g.
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Figure 5.3: Reconstruction of an image from its level sets: an illustration of
Proposition 3.2. We use four different subsets of the image’s level sets to give
four reconstructions. Top, left: all level sets; top, right: all level sets whose gray
level is a multiple of 8; bottom, left: multiples of 16; bottom, right: multiples of
32. Notice the relative stability of the image shape content under these drastic
quantizations of the gray levels.

Definition 5.4. The pseudo-inverse of any contrast change g : R — R is defined

by
g(_l)()\) =inf{r e R | g(r) > A}.

Exercise 5.5. Check that g~' is finite on R and tends to +oco as s — +oo. Give an
example of g such that ¢! is not continuous. m

Exercise 5.6. Compute and draw g(! for the function g(s) = max(0,s). Notice
that such a function is ruled out by our conditions at infinity for contrast changes. m

Lemma 5.5. Let g : R — R be a contrast change. Then for every A € R,
g(g=)(\) =\ and

g(s) > X if and only if s > g Y(N). (5.2)
Proof. The first relation follows immediately from the continuity of g. If

g(s) > A, then s > ¢g(=Y()\) by the definition of g(~Y(\). Conversely, if
s> gt (), then g(s) > g(g¢="()\)) = X and thus g(s) > . O

Theorem 5.6. Let u € F and g be a contrast change. Then any level set of
g(u) is a level set of u. More precisely, for A € R,

X)\g(u) = Xg(—l)(x)u. (5.3)
Proof. The proof is read directly from Lemma 5.5 by taking s = u. (|

The next result is a converse statement to Theorem 5.6.
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Figure 5.4: The histogram of the image Bird. For each i € {0,1,...,255}, we
display (above, right) the function k(i) = Card {x | u(x) = ¢}. The function
below is given by g(i) = Card{x | u(x) < i}, an integral of h. It provides
an indication about the overall contrast of the image and about the contrast
change imposed by the sensors. The pseudo inverse function ¢(— can be used
as a contrast change to create an image g(_l)(u) with a flat histogram.

Theorem 5.7. Let u and v € F such that every level set of v is a level set of
u. Then v = g(u) for some contrast change g.

Proof. One can actually give an explicit formula for g, namely, for every p €

u(Sn),
g(p) = sup{A € v(Sn) | Xyu C X\v}. (5.4)

For p ¢ u(Sn), we can easily extend g into an nondecreasing function such that
g(£o0) = £00). (Take (e.g.) g piecewise affine). Note that v > p implies that
g(v) > g(u). Let us first show that infv < g(u) < supwv. Set

A= {\| Xuu C Xy}

A is not empty because Xy, = Sy and therefore infv € A. Thus g(u) =
sup A > inf v. On the other hand Xyup y4cv = 0 for every € > 0. Since 1 € u(Sn),
X, u # () and therefore g(p) = sup A < supw.

Step 1: Proof that v(x) > g(u(x)). By Proposition 5.2(7) A has the form
(—o0,sup A) or (—oo, sup A]. But by Proposition 5.2(i7), Xsup AV = [y cup o XNV
and this implies by the definition of A that g(u) = sup A € A. Thus,

XM’LL - Xg(#)v. (5.5)
Given x € Sy, let = u(x) in (5.5). Then,
u)t © Xg(u(x))?-

Since x € X, x)u, we conclude that x € Xy, x)v ={y | v(y) > g(u(x))}.

Step 2: Proof that v(x) < g(u(x)). Given x € Sy, we translate the
assumption with A = v(x) as follows: There exists a u(x) € R such that

Xoxyv = {y [ uly) = p(x)} = Xyxyu. (5.6)
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Figure 5.5: Contrast changes and an equivalence class of images. The three
images have exactly the same level sets and level lines, but their level sets are
mapped onto three different gray-level scales. The graphs on the right are the
graphs of the contrast changes u — g(u) that have been applied to the initial
gray levels. The first one is concave; it enhances the darker parts of the image.
The second one is the identity; it leaves the image unaltered. The third one
is convex; it enhances the brighter parts of the image. Software allows one to
manipulate the contrast of an image to obtain the best visualization. From the
image analysis viewpoint, image data should be considered as an equivalence
class under all possible contrast changes.

Since x € X,(x)v, we know that x € X),xyu. Thus, u(x) > p(x), and X, xyu C
X, xyu = Xyxyv. This last relation implies by the definition of g that v(x) <

g(u(x)).

Step 3: Proof that g is continuous. Recall that the image of a con-
nected set by a continuous function is connected. Thus u(Sy) is an interval of
R and so is v(Sn). Since g(u) = v, g(u(Sn)) = v(Sn) is an interval. Now, a
nondecreasing function is continuous on an interval if and only if its range is
connected. Thus g is continuous on u(Sx) and so is its extension to R. O

Exercise 5.7. Prove the last statement in the theorem, namely that “a nondecreasing
function is continuous on an interval if and only if its range is connected”. m



5.2. CONTRAST CHANGES AND LEVEL SETS 83

§ chista() V g
250

2000 200]

1000 150
500
I A‘M 100-]
T

1560 : ) '5‘0 1&0 1%0 2&0 2%{)
1000
I

Figure 5.6: The two images (left) have the same set of level sets. The contrast
change that maps the upper image onto the lower image is displayed on the
right. It corresponds to one of the possible g functions whose existence is stated
in Corollary 3.14. The function g may be locally constant on intervals where
the histogram of the upper image is zero (see top, middle graph). Indeed, on
such intervals, the level sets are invariant.
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Figure 5.7: The original image (top, left) has a strictly positive histogram (all
gray levels between 0 and 255 are represented). Therefore, if any contrast change
g that is not strictly increasing is applied, then some data will be lost. Every
level set of the transformed image g(u) is a level set of the original image;
however, the original image has more level sets than the transformed image.

Exercise 5.8. By reading carefully the steps 1 and 2 of the proof of Theorem 5.7,
check that this theorem applies with u and v just bounded and measurable on Sy.
Then one has still has v = g(u) with g defined in the same way. Of course g is still
nondecreasing but not necessarily continuous. Find a simple example of functions u
and v such that g is not continuous. m
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5.3 Exercises

Exercise 5.9. This exercise gives a way to compute the function g such that v = g(u)
defined in the proof of Theorem 5.7 in terms of the repartition functions of v and v.
Let G be a Gauss function defined on RY such that f]RN G(x)dx = 1. For every
measurable subset of RY, set |A|g = J, G(x)dx. Let u be a bounded continuous
function on RY. We can associate with u its repartition function h.(\) = |X\u|a.
Show that hy : A € [infu,supu] — hy(A) is strictly decreasing. Show that it can
have jumps but is left-continuous, that is hy(A) = lim,1x hy(p). Define for every non
increasing function h a pseudo inverse by A=) (1) := sup{\ | A(\) > u}. Show that
R{=1) is non increasing and that R 6 h(p) > p, and that if h is left-continuous,
hoh{D) (1) > p. Using (5.4) prove that g = hi{™" o h,,.

Hint: prove that g(u) = sup{\ | |X,ule < |Xov|c}. =

Exercise 5.10. Let u be a real-valued function. If (un)nen is an increasing sequence
that tends to A, prove that

Xu = ﬂ Xy, u (5.7)
{x|ux) >} = Xu. (5.8)
>

5.4 Comments and references

Contrast invariance and level sets. It was Wertheimer who noticed that
the actual local values of the gray levels in an image could not be relevant in-
formation for the human visual system [287]. Contrast invariance is one of the
fundamental model assumptions in mathematical morphology. The two basic
books on this subject are Matheron [202] and Serra [253, 255]. See also the
fundamental paper by Serra [254]. Ballester et al. defined an “image intersec-
tion” whose principle is to keep all pieces of bilevel sets common to two images
[31]. (A bilevel set is of the form {x | A < u(x) < p}.) Monasse and Guichard
developed a fast level set transform (FLST) to associate with every image the
inclusion tree of connected components of level sets [207]. They show that the
inclusion trees of connected upper and lower level sets can be fused into a sin-
gle inclusion tree; among other applications, this tree can be used for image
registration. See Monasse [206].

Contrast changes. The ability to vary the contrast (to apply a contrast
change) of a digital image is a very useful tool for improving image visualization.
Professional image processing software has this capability, and it is also found
in popular software for manipulating digital images. For more about contrast
changes that preserve level sets, see [63]. Many reference on contrast-invariant
operators are given at the end of Chapter 7.



Chapter 6

Specifying the contrast of
images

Midway image equalization means any method giving to a pair of images a
similar histogram, while maintaining as much as possible their previous grey
level dynamics. The comparison of two images, in order to extract a mutual
information, is one of the main themes in computer vision. The pair of images
can be obtained in many ways: they can be a stereo pair, two images of the
same object (a painting for example), multi-channel images of the same region,
images of a movie, etc. This comparison is perceptually greatly improved if
both images have the same grey level dynamics. In addition, a lot of image
comparison algorithms, based on grey level, take as basic assumption that in-
tensities of corresponding points in both images are equal. As it is well known
by experts in stereo vision, this assumption is generally false for stereo pairs and
deviations from this assumption cannot even be modeled by affine transforms
[78]. Consequently, if we want to compare visually and numerically two images,
it is useful to give them first the same dynamic range and luminance.

In all of this applicative chapter the images u(x) and v(x) are defined on a
domain which is the union of M pixels. The area of each pixel is equal to 1. The
images are discrete in space and values: they attain values in a finite set [ and
they are constant on each pixel of the domain. We shall call such images discrete
images. The piecewise constant interpolation is a very bad image interpolation.
It is only used here for a fast handling of image histograms. For other scopes,
better interpolation methods are of course necessary.

Definition 6.1. Let u be a discrete image. We call cumulative histogram of u
the function H, : L — M := [0, M] NN defined by

H,(l) := meas({x | u(x) <1}).

This cumulative histogram is the integral of the histogram of the image,
the function h(l) = meas({x | u(x) = [}). Figures 5.4, 5.6 and the first line
of Figure 6.1. show the histograms of some images and their cumulative his-
tograms. In fact Figure 5.7 shows first the histogram and then the modified
histogram after a contrast change has been applied. These experiments illus-
trate the robustness of image relevant information to contrast changes and even
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to the removal of some level sets, when the contrast change is flat on an interval.
Such experiments suggest that one can specify the histogram of a given image
by applying the adequate contrast change. Before proceeding, we have to define
the pseudo-inverses of a discrete function.

Proposition 6.2. Let ¢ : L — M be a nondecreasing function from a finite
set of values into another. Define two pseudo-inverse functions for ¢ :

V() = inf{s | p(s) > 1} and o T (1) == sup{s | o(s) < 1.}
Then one has the following equivalences:
pls) 21 s> 0000), ¢(s) <les< D) (6.1)

and the identity
((p(—l))((—l)) = . (6.2)

Proof. The implication p(s) > 1= s > (=1 (1) is just the definition of o(~1),
The converse implication is due to the fact that the infimum on a a finite set
is attained. Thus ¢(("1 (1)) > [ and therefore s > (=1 (1) = ¢(s) > . The
identity (6.2) is a direct consequence of the equivalences (6.1). Indeed,

s < (@) VW) & oV (s) <l e s < (D).
O

Exercise 6.1. Prove that if ¢ is increasing, np(*l) op(l) =1 and @((—1)) op(l) =1 If
 is surjective, p o <p(*1) =land po (p((*l))(l) — 1l =

Proposition 6.3. Let ¢ be a discrete contrast change and set 4 := @(u). Then

Hz = Hy, 0 o(=1),

Proof. By (6.1), & <1 < u < ¢(=1)(1). Thus by the definitions of H,, and
Hﬁa

Hy(l) = meas({x | & < I}) = meas({x | u(x) < oD (1)}) = H, 0 p((=1)(1).

O
Let G: L — M := [0,1,..., M] be any discrete nondecreasing function. Can
we find a contrast change ¢ : L. — L such that the cumulative histogram of
@(u), Hyy) becomes equal to G? Not quite: if for instance u is constant its
cumulative histogram is a one step function and Proposition 6.3 implies that
H, () will also be a one step function. More generally if u attains k values,
then ¢(u) attains k values or less. Hence its cumulative histogram is a step
function with k£ + 1 steps. Yet, at least formally, the functional equation given
by Proposition 6.3, H, o o~! = G, leads to ¢ = G~! o H,. We know that we
cannot get true inverses but we can involve pseudo-inverses. Thus, we are led
to the following definition:

Proposition 6.4. Let G : L — M be a nondecreasing function. We call speci-
fication of u on the cumulative histogram G the image

=GV o Hy,(u).
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Exercise 6.2. Prove that if G and H are one to one, then the cumulative histogram
of tis G. m

Definition 6.5. Let, for | € [0,L] N IN, G(I) = [%£1], where |r] denotes
the largest integer smaller than r. Then @ = G(=1) o H,(u) is called the
uniform equalization of u. Ifv is another discrete image and one takes G = H,,
0= 1 o H,(u) is called the specification of u on v.

When H, is one to one, any specified cumulative histogram G. Otherwise,
the above definitions do the best that can be expected and are actually quite
efficient. For instance in the “marshland experiment” (Figure 6.1) the equalized
histogram and its cumulative histogram are displayed on the second row. The
cumulative histogram is very close to its goal, the linear function. The equalized
histogram does not look flat but a sliding average of it would look almost flat.
Yet it is quite dangerous to specify the histogram of an image with an arbitrary

Figure 6.1: First row: Image u, the corresponding grey level histogram h.,,, and
the cumulative histogram H,. Second row: Equalized image H, (u), its histogram
and its cumulative histogram. In the discrete case, histogram equalization flat-
tens the histogram as much as possible. We see on this example that image
equalization can be visually harmful. In this marshland image, after equaliza-
tion, the water is no more distinguishable from the vegetation. The third row
shows a zoom on the rectangular zone, before and after equalization.

histogram specification. This fact is illustrated in Figures 6.1 and 6.2 where a
uniform equalization erases existing textures by making them too flat (Figure
6.1) but also enhances the quantization noise in low contrasted regions and
produces artificial edges or textures (see Figure 6.2).
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Figure 6.2: Effect of histogram equalization on the quantization noise. On the
left, the original image. On the right, the same image after histogram equaliza-
tion. The effect of this equalization on the dark areas (the piano, the left part
of the wall), which are low contrasted, is perceptually dramatic. We see many
more details but the quantization noise has been exceedingly amplified.

6.1 Midway equalization

We have seen that if one specifies v on v, then u inherits roughly the histogram
of v. It is sometimes more adequate to bring the cumulative histograms of u
and v towards a cumulative histogram which would be “midway” between both.
Indeed, if we want to compare visually and numerically two images, it is useful
to give them first the same dynamic range and luminance. Thus we wish:

e From two images u and v, construct by contrast changes two images @
and v, which have a similar cumulative histogram.

e This common cumulative histogram h should stand “midway” between
the previous cumulative histograms of u and v, and be as close as possible
to each of them. This treatment must avoid to favor one cumulative
histogram rather than the other.

Definition 6.6. Let u and v be two discrete images. Set
1 _1 _
= (HCD+ HEY).
2 u v
We call midway cumulative histogram of u and v the function

(-1)
G = o= = (%(Hg—” - Hg—”)) (6.3)

and “midway specifications” of u and v the functions 4 := ® o H,(u) and ¥ :=

® o H,(v).

Exercise 6.3. Prove the last statement by application of Proposition 6.4. m

Exercise 6.4. Let u and v be two constant images, whose values are a and b. Prove
that their “midway” function is the right one, namely a function w which is constant
and equal to aT“. [
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Exercise 6.5. Prove that if we take as a definition of the midway histogram

1 (-1)
G- (5(1{5*1» " Hﬁ(’l)))>

then for two constant images u = a and v = b the midway image is constant and equal
to [1/2(a + b) — 1]. ! This proves that Definition 6.6 is better. m

Exercise 6.6. Prove that if u is a discrete image and f and g two nondecreasing
functions, then the midway image of f(u) and g(u) is w. L]

Exercise 6.7. If we want the “midway” cumulative histogram H to be a compromise
between H, and H,, the most elementary function that we could imagine is their
average, which amounts to average their histograms as well. However, the following
example proves that this idea is not judicious at all.

Consider two images whose histograms are “crenel” functions on two disjoint in-
tervals, for instance u(x) := ax, v(x) = bx + ¢. Compute a,b,c in such a way that
h. and h, have disjoint supports. Then compute the specifications of u and v on the
mean cumulative histogram G := % Compare with their specifications on the
midway cumulative histogram. m

6.2 Experimenting midway equalization on image
pairs

Results on a stereo pair

The top of Figure 6.3 shows a pair of aerial images in the region of Toulouse.
Although the angle variation between both views is small, and the photographs
are taken at nearly the same time, we see that the lightning conditions vary
significantly (the radiometric differences can also come from a change in camera
settings). The second line shows the result of the specification of the histogram
of each image on the other one. The third line shows both images after equal-
ization.

If we scan some image details, as illustrated on Figure 6.4, the damages
caused by a direct specification become obvious. Let us specify the darker image
on the brightest one. Then the information loss, due to the reduction of dynamic
range, can be detected in the brightest areas. Look at the roof of the bright
building in the top left corner of the image (first line of Figure 6.4): the chimneys
project horizontal shadows on the roof. In the specified image, these shadows
have almost completely vanished, and we cannot even discern the presence of a
chimney anymore. In the same image after equalization, the shadows are still
entirely recognizable, and their size reduction remains minimal. The second line
of Figure 6.4 illustrates the same phenomenon, observed in the bottom center
of the image. The structure present at the bottom of the image has completely
disappeared after specification and remains visible after midway equalization.
These examples show how visual information can be lost by specification and
how midway algorithms reduce significantly this loss.

Multi-Channel images

The top of Figure 6.5 shows two pieces of multi-channel images of Toulouse. The
first one is extracted from the blue channel, and the other one from the infrared
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Figure 6.3: Stereo pair: two pieces of aerial images of a region of Toulouse. Same
images after specification of their histograms on each other (left: the histogram
of the first image has been specified on the second, and right: the histogram
of the second image has been specified on the first). Stereo pair after midway
equalization.
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Figure 6.4: Extracts from the stereo pair shown on Figure 6.53. From left to right:
in the original image, in the specified one, in the original image after midway
equalization. Notice that no detail is lost in the midway image, in contrast with
the middle image.

Figure 6.5: First line: two images of Toulouse (blue and infrared channel).
Second line: same images after midway equalization.

channel. The second and third line of the same figure show the same images after
midway equalization. The multichannel images have the peculiarity to present
contrast inversions : for instance, the trees appear to be darker than the church
in the blue channel, and are naturally brighter than the church in the infrared
channel. The midway equalization being limited to increasing contrast changes,
it obviously cannot handle these contrast inversions. In spite of these contrast
inversions, the results remain visually good, which underlines the robustness of
the method gives globally a good equalization.

Photographs of the same painting

The top of Figure 6.6 shows two different snapshots of the same painting, Le
Radeau de la Méduse®, by Théodore Géricault (small web public versions). The

1Muse du Louvre, Paris.
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second one is brighter and seems to be damaged at the bottom left. The second
line shows the same couple after midway equalization. Finally, the last line of
Figure 6.6 shows the difference between both images after equalization. We see
clear differences around the edges, due to the fact that the original images are
not completely similar from the geometric point of view.

6.2.1 Movie equalization

One can define a midway cumulative histogram to an arbitrary number of im-
ages. This is extremely useful for the removal of flicker in old movies. Flicker
has multiple causes, physical, chemical or numerical. The overall contrast of
successive images of the same scene in a movie oscillates, some images being
dark and others bright. Our main assumption is that image level sets are glob-
ally preserved from one image to the next, even if their level evolves. This leads
to the adoption of a movie equalization method preserving globally all level sets
of each image. We deduce from Theorem 5.7 in the previous chapter that the
correction must be a global contrast change on each image. Thus the only left
problem is to specify a common cumulative histogram (and therefore a common
histogram) to all images of a given movie scene. Noticing that the definition of
G in (6.3) for two images simply derives from a mean, its generalization is easy.
Let us denote u(t,x) the movie (now a discrete time variable has been added)
and by H' the cumulative histogram function of x — w(t,x) at time ¢. Since
flicker is localized in time, the idea is to define a time dependent cumulative
histogram function K which will the “midway” cumulative histogram of the
cumulative histograms in an interval [t — h,t + h]. Of course the linear scale
space theory of Chapter 2 applies here. The ideal average is gaussian. Hence
the following definition.

Definition 6.7. Let u(t,x) be a movie and denote by H; the cumulative his-
togram of u(t) : x — u(t,x). Consider a discrete version of the 1-D gaussian

Gr(t) = (4ﬂ1h)% e, Set

By i= [ Galt = ) (HE ) D

We call “midway gaussian cumulative histogram at scale h” of the movie u(t,x)
the time dependent cumulative histogram

(-1)) 1 (=)
Glpy =2y, = </ Gu(t — s)(H{ )(l)d8> (6.4)

and “midway specification” of the movie u(t) the function (t) := ®oH,u)(u(t)).
If Hyyy is surjective, then w(t) has G,y as common cumulative histogram.

Notice that this is a straightforward extension of Definition 6.6.

The implementation and experimentation is easy. We simply show in Figure
6.7 three images of Chaplin’ s film His New Job, taken at equal intervals of time.
This extract of the film suffers from a severe real flicker. This flicker is corrected
at the scale where, after gaussian midway equalization, the image mean becomes
nearly constant through the sequence. The effects of this equalization are usually
excellent. They are easily extended to color movies by processing each channel
independently.
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Figure 6.6: Two shots of the Radeau de la Méduse, by Géricault. The same
images after midway equalization. Image of the difference between both images
after equalization. The boundaries appearing in the difference are mainly due
to the small geometric distortions between the initial images.
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Figure 6.7: (a) Three images of Chaplin’ s film His New Job, taken at equal
intervals of time. This extract of the film suffers from a severe real flicker. (b)
Same images after the Scale-Time Equalization at scale s = 100. The flicker
observed before has globally decreased. (c) Evolution of the mean of the current
frame in time and at three different scales. The most oscillating line is the mean
of the original sequence. The second one is the mean at scale s = 10. The last
one, almost constant, corresponds to the large scale s = 1000. As expected the
mean function is smoothed by the heat equation.
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6.3 Comments and references

Histogram specification As we have seen histogram specification [127] can
be judicious if both images have the same kind of dynamic range. For the same
reason as in equalization, this method can also product contouring artifacts.
The midway theory is essentially based on Julie Delons’ PhD and papers [87],
[88] where she defines two midway histogram interpolation methods. One of
them, the square root method involves the definition of a square root of any
nondecreasing function g, namely a function g such that fo f = g. Assume that
u and v come from the same image (this intermediate image is unknown), up
to two contrast changes f and f~!. The function f is unknown, but satisfies
formally the equality H, o f = H, o f~*. Thus

Hu_loHv:fof'

It follows that the general method consists in building an increasing function
f such that fo f = H, ' o H, and replacing v by f(v) and u by f~'(u).
This led Delon [?] to call this new histogram midway method, the “square
root” equalization. The midway interpolation developed in this chapter uses
mainly J. Delon’s second definition of the midway cumulative histogram as the
harmonic mean of the cumulative histograms of both images. This definition is
preferable to the square root. Indeed, both definitions yield very similar results
but the harmonic mean extends easily to an arbitrary number of images and
in particular to movies [88]. The Cox, Roy and Hingorani algorithm defined
in [78] performs a midway equalization. They called their algorithm “Dynamic
histogram warping” and its aim is to give a common cumulative histogram (and
therefore a common histogram) to a pair of images. Although their method is
presented as a dynamic algorithm, there is a very simple underlying formula,
which is the harmonic mean of cumulative histograms discovered by Delon [87].






Chapter 7

Contrast-Invariant
Monotone Operators

A function operator T is monotone if v > v = Tu > Twv. A set operator
7T is monotone if X C Y implies 7X C 7Y. We are mainly interested in
monotone function operators, since they are nonlinear generalizations of linear
smoothing using a nonnegative convolution kernel. We have already argued that
for image analysis to be robust, the operators must also be contrast invariant.
The overall theme here will be to develop the equivalence between monotone
contrast-invariant function operators and monotone set operators. This equiva-
lence is based on one of the fundamentals of mathematical morphology described
in Chapter 5: A real-valued function is completely described by its level sets.

This allows one to process an image u by processing separately its level sets
by some monotone set operator 7 and defining the processed image by the
superposition principle

Tu =sup{\,x € T(Xyu)}.

Such an operator is called in digital technology a stack filter, since it processes
an image as a stack of level sets. Conversely, we shall associate with any contrast
invariant monotone function operator T' a monotone set operator by setting

T(X,\u) = X,\(Tu).

Such a construction is called a level set extension of T.

Several questions arise, which will be all answered positively once the func-
tional framework is fixed: Are stack filters contrast invariant? Conversely, is
any monotone contrast invariant operator a stack filter? Is any monotone set
operator the level set extension of its stack filter?

In Section 7.1 we shall make definitions precise and give some remarkable
conservative properties of contrast invariant monotone operators. Section 7.2 is
devoted to stack filters and shows that they are monotone and contrast invariant.
Section 7.3 defines the level set extension and shows the converse statement: Any
contrast invariant monotone operator is a stack filter. Section 7.4 applies this
construction to a remarkable denoising stack filter due to Vincent and Serra,
the area opening.

97
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7.1 Contrast-invariance

7.1.1 Set monotone operators

We will be mostly dealing with function operators T defined on F and set
operators 7 defined on £, but sometimes also defined on M. We denote by
D(T) the domain of 7. Now, all set operators we shall consider in practice are
defined first on subsets of RY.

Definition 7.1. Let T a monotone operator defined on a set of subsets of RY.
We call standard extension of 7 to Sy the operator, still denoted by T, defined

by
T(X) =T (X \ {oo}) U(X N{oo}).

In other terms if X doesn’t contain oo, 7(X) is already defined and if X
contains oo, 7(X) contains it too. Thus a standard extension satisfies co €
TX & o0 € X.

Remark 7.2. Let us examine the case where T is initially defined on C, the set
of all closed subsets of RN . There are only two kinds of sets in L, namely

e compact sets of RN
o sets of the form X = C U {oo}, where C is a closed set of RN.

Thus the standard extension of T extends T to L, the set of all closed (and
therefore compact) subsets of Sy.

All of the usual monotone set operators used in shape analysis satisfy a small
list of standard properties which it is best to fix now. Their meaning will come
obvious in examples.

Definition 7.3. We say that a set operator T defined on its domain D(T) is
standard monotone if

e XCY = TXCTY;

e 0 EeTX <= xxeX;

e T(0)=0,7T(Sn)=Sn;

o T(X) is bounded in RY if X is;
o T(X)¢ is bounded in RN if X¢ is.

Definition 7.4. Let T be a monotone set operator on its domain D(T). We
call dual domain the set

D(T):={X CSy| X eDT)}.
We call dual of T the operator X — TX = (T(X¢))¢, defined on D(T).
Proposition 7.5. 7 is a standard monotone operator if and only if T is.

Exercise 7.1. Prove it! m
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7.1.2 Monotone function operators

Function operators are usually defined on F, the set of continuous functions
having some limit u(oo) at infinity. We shall always assume that this limit
is preserved by T, that is, Tu(co) = u(oco). Think that images are usually
compactly supported. Thus u(co) is the “color of the frame” for a photograph.
There is no use in changing this color.

Definition 7.6. We say that a function operator T : F — F is standard
monotone if for all u,v € F,

u>v = Tu>Tv; Tu(co)=u(co). (7.1)

Exercise 7.2. Is the operator T defined by (Tu)(x) = u(x) + 1 standard monotone?
L]

Recall from Chapter 5 that any nondecreasing continuous surjection g : R —
R is called a contrast change.

Definition 7.7. A function operator T: F — F is said to be contrast invariant
if for every u € F and every contrast change g,

g(Tu) = Tyg(u). (7.2)

Checking contrast invariance with increasing contrast changes will make our
life simpler.

Lemma 7.8. A monotone operator is contrast invariant if and only if it com-
mutes with strictly increasing contrast changes.

Proof. Let g be a contrast change. We can find strictly increasing continuous
functions g, and h,, : R — R such that g,(s) — g(s), hn(s) — g(s) for all s and
gn < g < hy, (see Exercise 7.12.) Thus, by using the commutation of T with
increasing contrast changes, we have

T(g(u)) > T(gn(u)) = gn(Tu) — g(Tu) and

T(9(u)) < T(hn(u)) = hn(Tu) — g(Tu),

which yields T'(g(u)) = g(T'u). O
Let us give some notable properties entailed by the monotonicity and the con-
trast invariance.

Lemma 7.9. Let T be standard monotone contrast invariant operator. Then
for every constant function u = c one has Tu = c.

Proof. Let g be a contrast change such that g(s) = s for inf Tu < s < supT'u.
Since Tu(oco) = u(oco) = ¢, this implies that inf Tu < ¢ < sup T'u and therefore
g(c) = ¢, which means g(u) = .. By the contrast invariance we therefore obtain
Tu=Tg(u) =g(Tu) = c. O
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We have indicated several times the importance of image operators being
contrast invariant. In practice, image operators are also translation invariant.
For x € RV we are going to use the notation 7x to denote the translation
operator for both sets and functions: For X € M, X = {x+y |y € X},
and for u € F, 7xu is defined by m~u(y) = u(y — x). Since elements of M
can contain co, we specify that oo £ x = co when x € RY. This implies that
xu(00) = u(00).

Definition 7.10. A set operator T is said to be translation invariant if its
domain is translation invariant and if for all X € D(T) and x € RY,

TxTX = TTxX.

A function operator T is said to be translation invariant if for all u € F and
x € RY,

TxT’u = TTx’u.
We say that a function operator T commutes with the addition of constants if
u€F and c € R imply T(u+c) =Tu+ c.

Contrast-invariant operators clearly commute with the addition of constants:
Consider the contrast change defined by g(s) = s + c.

Lemma 7.11. Let T be a translation-invariant monotone function operator on
F that commutes with the addition of constants. If uw € F is K-Lipschitz on
RN namely |u(x) — u(y)| < K|x —y| for all x, y in RN, then so is Tu.
Proof. For any x € RN, y € RV, and z € Sy, we have
uy+z)—Klx—y|<ulx+z)<uly+z)+Kx—y| (7.3)

These inequalities work for z = oo because u(y +0o0) = u(x+00) = u(oo). Thus
we can write them as inequalities between functions on Sy:

Tyu—Klx—y| <7 xu <1t yu+ Klx—yl| (7.4)
Since T is monotone, we can apply T to the functions in (7.4) and preserve the
inequalities, which yields

T(royu— K|x —y|) <T(t_xu) <T(1_yu+ K|x —y|).

Now use the fact that T' commutes with the addition of constants the translation
invariance of T to obtain

T_y(Tu) = K|x —y| < 7x(Tw)) < T(r—yu) + K|x —yl).
Taking the values of these functions at 0 yields
Tu(y) — Klx —y| < Tu(x) < Tu(y) + K|x -y,
which is the announced result. O
We say that an operator is monotone on a set of functions if u > v = Tu >
Tv. Clearly all above proofs do not depend upon the fact that the operator is
standard, but just upon its translation invariance and monotonicity. Thus, by

considering the proof of Lemma 7.11 and the definition of uniform continuity
(Definition 0.3), one obtains the following generalizations.
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Corollary 7.12. Assume that T is a translation-invariant monotone operator
on a set of uniformly continuous functions, that commutes with the addition of
constants. Then Tu is uniformly continuous on RN with the same modulus of
continwity. In particular if u is L-Lipschitz on RY, then so is Tu.

Exercise 7.3. Prove corollary 7.12.
(]

7.2 Stack filters

Definition 7.13. We say that a function operator T is obtained from a monotone
set operator T as a stack filter if

Tu(x) =sup{\ | x € T(X\u)} (7.5)

for every x € Sn.

The relation (7.5) has practical implications. It means that T'u can be com-
puted by applying 7 separately to each characteristic function of the level sets
Xyu. This leads to the following stack filter algorithm.

X,\u — T(X)\u)
u Tu(x) = sup{ | x € T(X\u)}.

Xou — T(X,u)

The image u is decomposed into the stack of level sets. Each level set is
processed independently by the monotone operator 7. This yields a new stack
of sets 7(X\u) and Formula (7.5) always defines a function Tu. Now, this
construction will be perfect only if

X,\(Tu) = T(X,\u) (7.6)

Definition 7.14. When (7.6) holds, we say that T “commutes with thresholds”,
or that T and T satisfy the “commutation with threshold” property.

Of course, this commutation can hold only if 7 sends £ into itself. A further
condition which turns out to be necessary is introduced in the next definition.

Definition 7.15. We say that a monotone set operator T : L — L is upper
semicontinuous if for every sequence of compact sets X,, € D(T) = L such that
Xp41 C X, we have

Exercise 7.4. Show that a monotone operator 7 : £ — L is upper semicontinuous if
and only if it satisfies, for every family (Xx)aer C £ such that Xy C X, for A > p,
the relation 7 ([, Xa) =), 7(X»). =
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Exercise 7.5. Show that a monotone operator on £ is upper semicontinuous if and
only if it satisfies (7.7) for every sequence of compact sets X, such that X,4+1 C X,,.
Hint: Since Sy is the unit sphere in RV, one can endow it with the euclidian distance
d in RNT'. Given a nondecreasing sequence Y, in £, set X, = {x,d(x,Y,) < 1}.
Then apply (7.7) to X, and check that (), Xn =), Yn. =

Exercise 7.6. Show that a monotone operator 7 : £L — L is upper semicontinuous if
and only if it satisfies, for every family (Xi)aer C £ such that Xy C X for A > p,
the relation 7 (N, Xx) =Ny 7 (Xx). =

Theorem 7.16. Let T: L — M be a translation invariant standard monotone
set operator. Then the associated stack filter T is translation invariant, contrast
invariant and standard monotone from F into itself. If, in addition, T is upper
semicontinuous, then T commutes with thresholds.

Proof that T is monotone. One has
u<ve (YA, Xyu C Xyv).
Since 7 is monotone, we deduce that
VA, T(Xu) C T(X\w)

which by (7.5) implies Tu < T.

Proof that T is contrast invariant.

By Lemma 7.8 we can take g strictly increasing and therefore a bijection from
R to R. We notice that :

For A > g(supu), X\g(u) = 0 and therefore T (Xg(u)) = 0.

For A < g(infu), Xrg(u) = Sy and therefore 7 (Xyg(u)) = Sn.

Thus using (7.5) we can restrict the range of A in the definition of T'(g(u))(x) :

T(g(u))(x) = sup{A, g(infu) <A < g(supu), x € T(Xrg(u))}

= Sup{g(ﬂ)v X € T(Xg(,u)g(u))}
=sup{g(n), x € T(Xuu)} = g(Tu(x)).

Proof that Tu belongs to F.

T is by construction translation invariant. By Corollary 7.12, T'u is uniformly
continuous on RY. Let us prove that Tu(x) — u(co) as x — oo. We notice
that for A > u(00), Xyu is bounded. Since 7T is standard monotone 7 (Xyu) is
bounded too. Now, by (7.5), Tu(x) < X if x € T(X\u)°. This last condition
is satisfied if x is large enough and we deduce that lim supy_, . Tu(x) < u(co).
In the same way notice that (Xyu)¢ is bounded if A < u(00). So by the same
argument, we also get liminfx_,o, Tu(x) > u(o0). 7 being standard, it is easily
checked using (7.5) that Tu(co) = u(oo). Thus, T is continuous on RY and at
oo and therefore on Sy.

Proof that T' commutes with thresholds, when 7 is upper semicon-
tinuous.
Let us show that the sets Yy = 7T (X)u) satisfy the properties (i) and (i) in
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Proposition 5.2. By the monotonicity of 7, Yy C Y, for A > u. Since 7 (0) = 0,
we have

Y>\ = T(X,\u) = T((Z)) = @

for A > maxwu and, in the same way Yy = Sy for A < minu. So Tu has the
same bounds as u. This proves Property (7). As for Property (i7), we have for
every A, using the upper semicontinuity and exercise 7.4,

Va=T(Xuw) =T([) Xuw) = ) T(Xuu) = () Yo

pn<A pn<A pn<A
So by applying the converse statement of Proposition 5.2, we deduce that

X)\(T’u) = T(X)\u)

Exercise 7.7. Check that Tu(co) = u(00), as claimed in the former proof. m

The upper semicontinuity of 7 is necessary to ensure the commutation with
thresholds. See Exercise 7.21. The assumption that 7 sends bounded sets of RV
on bounded sets of RY and complementary sets of bounded sets onto comple-
mentary sets of bounded sets also is necessary to ensure that T'u is continuous
at oo: see Exercise 7.16.

7.3 The level set extension

Our aim here is just the converse as in the former section. We wish to associate
a standard monotone set operator 7 from £ to £ with any contrast invariant
standard monotone function operator 7', in such a way that the whole machinery
works, namely both operators satisfy the commutation with threshold property
T (Xu) = X (Tu) and T is the stack filter of 7.

Lemma 7.17. Let u < 0 and v < 0 € F and assume that Xou = Xov (# 0).
Then there is a contrast change h such that h(0) = 0 and u > h(v).

Proof. Define

min{u(x) | x € Xv} if mino <r <0;
h(T‘) = r if r > 0;
minuw — minv + 7 if » < minw.

Notice that A(0) = 0 and that & is nondecreasing. The following relation holds
for all x € RY by the definition of h and because u(x) belongs to the set

{u(y) [v(y) =z v(x)}:
u(x) = min{u(y) | v(y) = v(x)} = h(v(x)).

We now use the compactness in Sy of the level sets of v to show that h is
continuous at zero. Let (% )ren be an arbitrary increasing sequence tending to
zero. Choose xj, € X,, v such that h(ry) = u(xx). This is possible because u is
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continuous and the &, v are compact and nonempty. Since h is nondecreasing,
h(ry) — h=(0).

Let x be any accumulation point of the set {xj}ren. Since the X, v are
compact, all the accumulation points of the set {xj }ren are contained in Ayv =
Mren Ar v This means that u(x) = 0. But limu(xx) = u(x) by the continuity
of u, and we conclude that h~(0) = 0. At this point & satisfies the announced
requirements for h, except that it is not always continuous for all < 0. This is
easily fixed by choosing a continuous nondecreasing function A such that h>h
and h(0) = 0. One way to do this is to take h(r) = (1/|r|) [, h(s)ds for r < 0.

Then u(x) > h(v(x)) > h(v(x)) as announced. O

Exercise 7.8. Prove that h(r) = (1/|r]) [, h(s)ds is indeed nondecreasing and con-

tinuous for r < 0 and that h > h. Find examples of functions u and v defined on S
for which A is not continuous. m

Definition 7.18 (and proposition (Evans-Spruck)). ! Given a contrast
invariant monotone operator T on F, we call level set extension of T' the set
operator defined in the following way : for any X € L, take u < 0 such that
Xou = X and set

T(X) = XT(u).

Then T (X) does not depend upon the particular choice of u.

Proof. The proof follows directly from Lemma 7.17: Take v and v € F such
that v < 0, v < 0, and Xpu = Xpv. Let h be a contrast change such that
h(0) =0 and u > h(v). Since T is monotone and contrast invariant one has by
Lemma 7.1.2 Tu < 0, and Tu > Th(v) = h(Tv). Using the fact that h(0) = 0,
we obtain that T'w(x) = 0 implies that Tu(x) = 0. By interchanging the roles of
uwand v, Tu(x) = 0 implies that Tw(x) = 0. We conclude that XyTu = XyTv. O

Exercise 7.9. Definition 7.18 would’nt be complete if we did not prove that for any
X € L we can find v < 0 in F such that Xpu = X. Hint: Since Sy is the unit sphere
in RV, one can endow it with the euclidian distance d in R¥T!. Use the distance
function d(x, X) to define u. This distance function is continuous: see Exercise 7.18.
[

Theorem 7.19 (Evans—Spruck). Let T be a contrast-invariant monotone
operator on F and T its level set extension on L. Then T is monotone, T and
T satisfy the commutation with thresholds T Xhu = Xx\Tu for all A € R, T is the
stack filter associated with T and T is upper semicontinuous on L. In addition,
if T is standard, then so is T .

Proof. Commutation with thresholds: Given u and A, let g be a continuous
contrast change such that g(s) = min(s,A) — A on the range of u, which is a
compact interval of R. We then have Xyg(u) = Xyu. Using this relation, the
level set extension and the contrast invariance of T,

T(Xau) = T(Xog(u)) = Xo(T(g9(u))) = Xo(9(Tw)) = Xx(Tw).

IWhat we are doing here is related to the scheme originally introduced by Osher and
Sethian as a numerical method for front propagation [224]. We briefly described their work
in the Introduction (see page 26).
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Proof of the stack filter property: This is an immediate consequence of the
superposition principle and the commutation with thresholds :

Tu(x) = sup{A | x € Xh\Tu} =sup{\ | x € T(X\u)}.

Proof that 7 is upper semicontinuous on £: By the result of Exercise
7.5, it is enough to consider a sequence (X,)p,>1 in £ such that X,4+1 C Xg.
By Lemma 7.20 below there is a function v € F such that Xl_%u = X, and
Xiu = (),, Xy Finally, using twice the just proven commutation of thresholds,

n

T(()Xn) = T(Xu) = X1 (Tu) = (X2 Tu = [ T(X_1u) = [T (Xn).

Proof that 7 is standard if T is: Recall that T is standard if Tu(c0) = u(c0).
By using the commutation with thresholds, all of the standard properties for 7°
are straightforward. For instance, taking some u € F,

T(@) = T(Xmaxu-l—lu) = Xmaxu-{-lTU = (Z)

Indeed, by the monotonicity, the contrast invariance, and Lemma 7.1.2, u <
C=Tu<C.

In the same way, let X € £ and u a function such that Apu = X. If X is
bounded, then u(c0) < 0, so that Tu(oo) = u(cc) < 0. Thus 7(X) = XpTu is
bounded. If X¢ = {x | u(x) < 0} is bounded, then Tu(co0) = u(c0) > 0. Thus
T(X)¢ = (XpTu) is bounded. Finally by the commutation with thresholds,

0 €eX < uloo) >0 Tu(x) >0 00 e X(Tu) =T(X).

d

Exercise 7.10. Prove that the level set extension 7 is monotone. The argument is
not given in the above proof. m

Lemma 7.20. Let (X,)n>1 be a sequence in L such that Xn+1 C X;. There
is a function u € F such that X;_1u = X, forn >1 and X1u = ﬂn>1 X,.

Proof. Let us use the euclidian distance d of RV restricted to Sy considered
as a subset of RVT1. Set u(x) =1 if x € ), Xn,

(1 1) d(vanJrl) (1 1 ) d(X,Xﬁ)
n’d(x, X¢)+d(x, Xn+1) n+17d(x,X¢)+d(x, Xni1)

u(x) =

for x € X;, \ Xp41 and n > 1, u(x) = —sup(—1,—d(x,X1)) if x ¢ X;. It is
easily checked that u belongs in F and satisfies the announced properties. [

7.4 A first application: the extrema killer

¢

This section is devoted to the study of operators that remove “peaks,” or ex-
treme values, from an image. Such peaks are often created by impulse noise,
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that is, local destruction of pixel values and their replacement by a random
value. Old movies present this kind of noise and it also occurs by transmission
failure in satellite imaging. The operators we study are called area opening, or
extrema killer operators, and they have been shown to be very effective at re-
moving this kind of noise. The action of these operators is illustrated in Figures
7.1 and 7.2.

The following definitions are standard, but we include them here for com-
pleteness.

Definition 7.21. Consider a closed subset X of Sy. X is disconnected if it
can be written as X = (AN X)U (BN X), where A and B are disjoint open
sets and both AN X and BN X are not empty. X is connected if it is not
disconnected. The connected component of x in X, denoted by cc(x, X), is the
mazimal connected subset of X that contains x.

We wish to define a denoising operator on L ; since some sets therein contain
0o, we need an extension of the Lebesgue measure on RV to Sy. This is
immediately fixed by setting meas({occ}) = 4o00. The only property of this
extended measure that we need to check is following:

Lemma 7.22. if Y, is a nonincreasing sequence of compact sets of Sy, then
meas(N,Yy) = lim,, meas(Yy,).

Proof. If the compact sets Y,, do not contain oo for n large enough, then they
are bounded in RY for n large and the result just follows from Lebesgue theo-
rem. If instead the sets Y,, all contain oo, then N,,Y,, contains it too and all sets
have infinite measure. (|

Definition 7.23. Let a > 0 a scale parameter and denote for every X € L
by X; its connected components, so that X = |J, X;. We call small component
killer the operator on L which removes from X all connected components with
area stricly less than a :

.X= |J x (7.8)

meas (X;)>a

Theoretically, X can have an uncountable number of components; take, for
example, the Cantor set. However, X can have only a countable number of
components with positive measure. The assumption meas({oo}) = +o0o implies
that all connected components of X containing co stay in 7,X. We are going
to prove that the small component killer is upper semicontinuous and this uses
some elementary topological lemmas.

Lemma 7.24. Consider an arbitrary nonincreasing sequence of nonempty com-
pact sets (Yo )nen of Sy and its limit Y = (), e Yn. Then Y is not empty and
compact. In addition, for any open set Z that contains Y, there is an index ng
such that Y, C Z for all n > ng.
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Proof. The first property is a classical property of compact sets. Assume by
contradiction that the second property is not true. Then Y, N (Sy \ Z) # 0
infinitely often. This implies that (Y,,N(Sx\ Z))nen is a nonincreasing sequence
of nonempty compact sets. But this means that Y N (Sy \ Z) # 0, which is a
contradiction. (|

Lemma 7.25. Let (Y, )nen be a nonincreasing sequence of nonempty compact
subsets of Sy and consider the intersection ¥ = ﬂneN Y,. If the Y,, are con-
nected, then Y is connected.

Proof. We know that Y is not empty and compact. Suppose, by contradiction,
that Y is not connected. Then we can represent Y by Y = (Y N Z;) U (Y N Z3),
where Z; and Zy are disjoint open sets, Y N Z; # (), and Y N Z; # (). Since
Y C Z1 U Zy, by Lemma 7.24 there exists an ng such that Y,, C Z; U Z; for all
n > ng, and for these n we have

Yo =Y, N (Z,UZ) = (YN Z1) U (Yo N Zo).

Furthermore, Y,, N Z; # 0 and Y,, N Z; # (). This contradicts the fact that the
Y,, are connected. O

Exercise 7.11. Show that 7, is idempotent: T.2X = 7T, X and that it is a contraction
mapping: 7, X C X. =

With the extrema killer we have a prime example of a theory that begins
with a set operator 7, defined on L.

Lemma 7.26. The small component killer T, is upper semicontinuous on L.

Proof. We first prove that 7, is monotone. Assume X C Y. Then for every
x € X, ce(x,X) C ce(x,Y). If meas(ce(x,X)) > a, then meas (cc(x,Y)) >
a, and we conclude that 7,X C 7,Y. Now let (X,,), be any nonincreasing
sequence of nonempty compact sets and X = N,X,,. We wish to show that
7.X =(),, ZoX». By monotonicity of 7,

T.X C [ )Ta(Xn).

Let us show the converse inclusion. Let x € N,7,(X,,). Then Y, := cc(z, X,,)
has measure larger than a for all n. In addition if m < n then Y,, C Y,,. By
Lemmas 7.24 and 7.25, Y := N,Y,, is a connected compact set that contains
x. In addition by Lemma 7.22, measure(Y) = lim, measure(Y;,) > a. Since
Y =n,Y, CNpX, = X, we have cc(x, X) DY and therefore x € 7,(X). O

We can now build a stack filter from 7.

Definition 7.27 (and proposition). The stack filter T, of T, is called a
mazima killer. T, and T, satisfy the commutation with thresholds. As a conse-
quence, no connected component of a level set of T,u has measure less than a.
Furthermore, Ty, is standard monotone, translation and contrast invariant from

F into F.
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Figure 7.1: Extrema killer: maxima killer followed by minima killer. The ex-
trema Kkiller removes all connected components of upper and lower level sets
with area less than some threshold, which here equals 20 pixels. Notice how
texture disappears in the second image. All other features seem preserved. On
the second row, we see for both the original and the processed image the level
lines at 16 equally spaced levels. The level lines on the right hand side are a
subset of the level lines of the left hand. All level lines surrounding extremal
regions with area smaller than 20 have been removed and the other ones are
untouched.

Proof. We just have to check that all assumptions of Theorem 7.16 are satisfied.
7, is obviously translation invariant, monotone and is upper semicontinuous by
Lemma 7.26. It satisfies 7,(0) = 0, 7,(Sn) = Sny. 7.(F) is compact if £
is. Indeed, it is the union of a finite set of compact connected components.
If E is bounded in RY, then so is T,E C E. (7,E)¢ is bounded in Sy if E¢
is. Indeed, if E° is bounded, then E has a connected component Y containing
B(0, R)¢ for some R > 0. This connected component has infinite measure. Then
T.(E) still contains Y and 7,(F)° is contained in B(0, R). By construction, co
belongs to 7, X if and only if it belongs to X . Thus, 7, is standard monotone. [J
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A maxima killer T, cuts off the maxima of continuous functions, but it does
nothing for the minima. We can immediately define a minima killer T, as the
dual operator of Ty,

T u=—T,(—u).

a

A good denoising process is to alternate T, and T, , as illustrated in Figures
7.1 and 7.2 . We note, however, that T,, and T, do not necessarily commute,
as is shown in Exercise 7.17.

7.5 Exercises

Exercise 7.12. Let g : R — R be a contrast change. Construct increasing contrast
changes g, and h, such that gn(s) — g(s), hn(s) — g(s) for all s and g, < g < hn.
Hint : define first an increasing continuous function f(s) on R such that f(—o0) =0
and f(+o0) =21. m

Exercise 7.13. Let v : RY — R. Show that TxXu = XhTxu, X € RY. m
Exercise 7.14. Prove that a translation invariant operator 7 from L to L satisfies
one of the three possibilities : 7 ({c0}) = {00}, T({o0}) = Sy or T({oc}) =0. =
Exercise 7.15. Let T be a translation invariant standard monotone operator on F.
Prove the following statements:

(i) Tw = c for every constant function u: Sy — c.

(ii) w > ¢ implies Tu > ¢, and u < ¢ implies Tu < c.

(iii) If in addition 7' commutes with the addition of constants, supyxepn |Tu(x) —
Tv(x)| < supxepn [u(x) = v(x)|.
(Hint: Write — sup |u(x) — v(x)| < u(x) — v(x) < sup |u(x) — v(x)].)

Exercise 7.16.

1) In dimension 1, consider the set operator defined on £ by 7X = [inf X, o0] if
nf(X NR) e R, 7X = 5 if inf(X NR) = —o0, T({o0}) = {0}, T(0) = 0. Check
that 7 satisfies all assumptions of Theorem 7.16 except one. Compute the stack filter
associated with 7 and show that it satisfies all conclusions of the mentioned theorem
except one : Tu does not belong to F and more specifically T'u(x) is not continuous
at oo.

2) Consider the function operator on F, Tu(x) = supxcg, u(x). Check that T is
monotone, contrast invariant, and sends F to F. Compute the level set extension 7
of T.m

Exercise 7.17. Let N = 1 and take u(z) = sinz for |z| < 8, u(xz) = 0 otherwise.
Compute T,u and T, u and show that they commute on u if a < 7 and do not commute

if @ > w. Following the same idea, construct a function v € F in dimension two such
that ToT, u # T, Tou. =

Exercise 7.18. Let X be a closed subset of a metric space endowed with a distance
d and consider the distance function to X,

d(y) = d(y, X) = inf d(x,y).

Show that d is 1-Lipschitz, that is, |d(x, X) — d(y, X)| < d(x,y). =
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Exercise 7.19. In the following questions, we explain the necessity of the assump-
tions 7 (@) = 0, 7(Sn) = Sy for defining function monotone operators from F to F.

1) Set 7(X) = Xo for all X € £, where Xo # 0 is a fixed set. Check that the
associated stack filter satisfies Tu(x) = 400 if x € Xo, Tu(x) = —oo otherwise.

2) Let 7 be a monotone set operator, without further assumption. Show that its as-
sociated stack filter T' is, however, monotone and commutes with all contrast changes.
(We extend each contrast change g by setting g(+o0) = +c0.) =

Exercise 7.20. Take an operator 7 satisfying the same assumptions as in Theorem
7.16, but defined on M and apply the arguments of the proof of Theorem 7.16. Check
that the stack filter associated with 7 is a contrast invariant, translation invariant
monotone operator on the set of all bounded measurable functions, L>(RY). If in
addition 7 is upper semicontinuous on M, then the commutation with thresholds
holds. m

Exercise 7.21. The upper semicontinuity is necessary to ensure that a monotone
set operator defines a function operator such that the commutation with thresholds
Xx(Tu) = T(Xx(u)) holds for every A. Let us choose for example the following set
operator 7,

7(X)=X if meas(X) > a and 7(X) = () otherwise .
(We use the Lebesgue measure on RY | with the completion meas({co}) = +00)

1) Prove that 7 is standard monotone.

2) Let u be the function from S into Sp defined by u(z) = max(—|z|, —2a) for some
a > 0, with u(co) = —2a. Check that u belongs to F. Then, applying the stack filter
T of T, check that

T(u)(z) = sup{\,z € T (X u)} = maz(min(—|z|, —a/2), —2a).

3) Deduce that X_, /2T (u) = [-a/2,a/2], X_o/2u = [—a/2,a/2] and therefore
T(X,E/Q’U/) = 0 # )(‘,a(/gjj(u)7

which means that T' does not commute with thresholds. m

Exercise 7.22. Like in the preceding exercise, we consider here contrast invariant
operators defined on all measurable bounded functions of RY. The aim of the exercise
is to show that such operators send images with finite range into images with finite
range. More precisely, denote by R(u) = u(R") the range of u. Then we shall prove
that for every u, R(Tu) C Ru. In particular, if R(u) is finite, then the range of Tu
is a finite subset of Ru. If u is binary, T'u is, etc. This shows that contrast invariant
operators preserve sharp contrasts. A binary image is transformed into a binary image.
So contrast invariant operators create no blur, as opposed to linear operators, which
always create new intermediate grey levels.

1) Consider
g(s) =s+ %d(s,m)

where d(s, X) denotes the distance from s to X, that is, d(s, X) = infrex |s—z|. Show
that g is a contrast change satisfying g(s) = s for s € Ru and g(s) > s otherwise.

2) Check that g(s) = s if and only if s € Ru. In particular, g(u) = u. Deduce from
this and from the contrast invariance of T that for every x € RY, Twu(x) is a fixed
point of g. Conclude. =
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Figure 7.2: Extrema killer: maxima killer followed by minima killer. Above,
left: original image. Above, right: image after extrema killer removed connected
components of 20 pixels or less. Below: level lines (levels of multiples of 16) of
the image before and after the application of the extrema killer.

7.6 Comments and references

Contrast invariance and stack filters. Image operators that commute with
thresholds have been popular because, among other reasons, they are easily
implemented in hardware (VLSI). This led to very simple patents being awarded
in signal and image processing as late as 1987 [79]. These operators have been
given four different names, although operators are equivalent: stack filters [50,
137, 286]; threshold decomposition [141]; rank filters [69, 166, 288]; and order
filters [265]. The best known of these are the sup, inf, and median operators.
The implementation of the last named has received much attention because of
its remarkable denoising properties [109, 218, 290].

Maragos and Shafer [195, 196] and Maragos and Ziff [197] introduced the
functional notation and established the link between stack filters and the Math-
eron formalism in “flat” mathematical morphology. The complete equivalence
between contrast-invariant operators and stack filters, as developed in this chap-
ter, does not seem to have appeared elsewhere; at least we do not know of other
references. A related classification of rank filters with elegant and useful gener-
alizations to the so-called neighborhood filters can be found in [166].

The extrema killer. The extrema Kkiller is probably the most efficient de-
noising filter for images degraded by impulse noise, which is manifest by small
spots. In spite of its simplicity, this filter has only recently seen much use. This
is undoubtedly due to the nontrivial computations involved in searching for the
connected components of upper and lower level sets. The first reference to the
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extrema killer that we know is [72]. The filter in its generality was defined by
Vincent in [276]. This definition fits into the general theory of connected filters
developed by Salembier and Serra [246]. Masnou defined a variant called the
grain filter that is both contrast invariant and invariant under reverse contrast
changes [201]. Monasse and Guichard developed a fast implementation of this
filter based on the so-called fast level set transform [207].

We will develop in Chapter 19 a theory of scale space that is based on a
family of image smoothing operators T}, where t is a scale parameter. We note
here that the family (7}, ),ecr+ of extrema killers does not constitute a scale space
because it does not satisfy one of the conditions, namely, what we call the local
comparison principle. That this is so, is the content of Exercise 19.1.



Chapter 8

Sup-Inf Operators

The main contents of this chapter are two representation theorems: one for
translation-invariant monotone set operators and one for functions operators
that are monotone, contrast invariant, and translation invariant. If T is a func-
tion operator satisfying these three conditions, then it has a “sup-inf” represen-
tation of the form

Tu(x) = sup inf

ux-+y),
BeBY€EB ( )

where B is a family of subsets of M(Sy), the set of all measurable subsets of
Sn. This theorem is a nonlinear version of the Riesz theorem that states that
a continuous linear translation-invariant operator from L?(RY) to C°(RY) can
be represented as a convolution

Tu(x) = / ufx—y)k(y)dy.

In this case, the kernel k£ € L2(RY) is called the impulse response. In the same
way, B is an impulse response for the nonlinear operator.

8.1 Translation-invariant monotone set opera-
tors

Recall that a set of M can contain co. We have specified that x 4+ co = oo for
every x € Sy. As a consequence, for any subset B of Sy, oo + B = {c0}.

Definition 8.1. We say that a subset B of M is standard if it is not empty
and satisfies

(i) VR>0, 3R’ >0, (x+ B C B(0,R) and B € B) = x € B(0,R');

(ii) VR >0, 3R’ >0, x € B(0,R")* = (3B € B, x+ B C B(0, R)°).

Exercise 8.1. Conditions (i) and (ii) look a bit sophisticated, but are easily satisfied.
Check that Condition (i) is equivalent to
VR >0, 3C > 0, (B € B, and diameter(B) < R) = B C B(0,C).

Check that this condition is achieved (e.g.) if all elements of B contain 0. Check that
Condition (ii) is achieved if B contains at least one bounded element B. m

113
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Exercise 8.2. Show that if B contains ), then B is not standard. m

Theorem 8.2 (Matheron). Let T be a translation-invariant and standard
monotone set operator. Consider the subset of D(T), B={B € D(T) |0 €
TB}. Then B is standard and

TX ={x€Sn|x+BCX for some B € B}. (8.1)

Conversely, if B is any standard subset of M, then formula (8.1) defines a
translation-invariant standard monotone set operator on M.

Definition 8.3. In Mathematical Morphology, a set B such that (8.1) holds is
called a set of structuring elements of 7 and B={X € D(7T) |0 € TX} is
called the canonical set of structuring elements of 7.

Proof of Theorem 8.2.

Proof of (8.1).
Let B={X €D(7)|0€ TX}. Then for any x € RY,

XETX<(—L)>O€TX—X<£—)>O€T(X—X)<(—i)>X—x€B

&)X—XZBforsomeBEB&X#—BCXforsomeBeB.

The equivalence (2) follows from the translation invariance of 7 X; (3) is just
the definition of B; and (4) is a restatement of (3). The implication from left
to right in (5) is obvious. The implication from right to left in (5) is the point
where the monotonicity of 7 is used: Since B C X — x, it follows from the
monotonicity of 7 that X —x € B.

Let now x = oo. Since 7 is standard, B is not empty (it contains Sy) and we
have

xeTXscoeX<dBeB, o+ BCX,

because oo + Sy = {o0}.

Proof that B is standard if 7 is standard monotone.

Since 7 (Sn) = S, B contains Sy and is therefore not empty. 7 sends bounded
sets on bounded sets if and only if there is for every R > 0 some R’ > 0 such
that 7(B(0,R)) C B(0,R'). Using (8.1), this last relation is equivalent to
{x | x4+ B c B(0,R)} C B(0,R’) which is (i). In the same way, 7 sends
complementary sets of bounded sets on complementary sets of bounded sets if
and only if (ii) holds.

Proof that (8.1) defines a standard monotone set operator if B is stan-
dard.

Using (8.1), it is a straightforward calculation to check that 7 is monotone
and translation invariant, and that 7(Sy) = Sy, 7(0) = 0. The equivalence
oo € TX if and only if co € X follows from the fact that B is not empty. The
argument of the preceding paragraph already proved that 7" sends bounded sets
onto bounded sets and complementary sets of bounded sets onto complementary
sets of bounded sets. O
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Exercise 8.3. Check that if 7 is standard monotone, then its canonical set of struc-
turing elements satisfies (ii). m

By ={X | 0€ TX} is not the only set that can be used to represent 7. A
monotone operator 7 can have many such sets and here is their characterization.

Proposition 8.4. Let T be a translation invariant standard monotone set op-
erator and let By its canonical set of structuring elements. Then B; is another
standard set of structuring elements for T if and only if it satisfies

(i) By C Bo,
(i) for all By € By, there is By € By such that By C By.

Proof. Assume that 7 is obtained from some set B; by (8.1). Let By be the

canonical set of structuring elements of 7. Then for every By € By, 7B, =

{x | x4+ B C Bj for some B € B;}. It follows that 0 € 7B; and therefore

By € By. Thus By C By. In addition, if By € By, then 0 € 7 By, which means

that 0 € {x | x+ By C By for some By € B;} that is By C By for some B; € Bj.
Conversely, let By satisfy (i) and (ii) and let

ﬂX:{X|E|Bl€Bl, X+B1CX}.

Using (i), one deduces that 77X C 7X for every X and using (ii) yields the
converse inclusion. Thus B; is a structuring set for 7. The fact that By is
standard is an obvious check using (i) and (ii). O

8.2 The Sup-Inf form

Lemma 8.5. Let T : F — F be a standard monotone function operator, T a
standard monotone translation invariant set operator and B a set of structuring
elements for T. If T and T satisfy the commutation of thresholds T Xy\u =
XaTu, then T has the “sup-inf” representation

Tu(x) = zté% yel?ciB u(y). (8.2)

Proof. For u € F, set Tu(x) = suppep infyexpu(y). We shall derive the
identity T'= T from the equivalence

Tu(x) > A <= Tu(x) > A (8.3)
Assume first that x € RY. Then

Tu(x)ZA&TU(X)Zuforall,u<)\&>x€XMTuforallu</\

ExeTxuforall p<A<S 3B e B, x+ B C X,uforall < A

(5) . .
<= Th B € B such that f > u for all A
ere is a B € B such tha yel>Ié+Bu(y) > p for all p <

(6) . (), =
= f >ANe=T > )\
sup . in +Bu(y) > u(x) >
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Equivalence (1) is just a statement about real numbers and (2) is the definition
of a level set. It is at (3) that we replace X, Tu with 7X,u. Equivalence (4)
follows by the definition of 7 from B by (8.1). The equivalence (5) is the de-
finition of the level set X,u. Equivalence (6) is another statement about real
numbers, and (7) is the definition of 7.

Assume now that x = co. Since for all B € £, co + B = {o0}, one obtains
Tu(oo) = u(oo). By assumption Tu(co) = u(oo). This completes the proof of
(8.2). O

From the preceding result, we can easily derive a general form for translation
and contrast invariant standard monotone operators.

Theorem 8.6. LetT : F — F be a translation and contrast invariant standard
monotone operator. Then it has a “sup-inf” representation (8.2) with a standard
set of structuring elements.

Proof. By the level set extension (Theorem 7.19), T defines a unique upper
semicontinuous standard monotone set operator 7 : £ +— L. 7 is defined by the
commutation of thresholds, 7 Xy\u = X\Tu. By Lemma 8.5, the commutation
with thresholds is enough to ensure that 7" has the sup-inf representation (8.2)
for any set of structuring elements 5 of 7. O

Definition 8.7. As a consequence of the preceding theorem, the canonical set of
structuring elements of T will also be called canonical set of structuring elements
of T.

The next theorem closes the loop.

Theorem 8.8. Given any standard subset B of M, Equation (8.2),

T =5 inf ,
u(x) sup i £ ,u®)

defines a contrast and translation invariant standard monotone function opera-
tor from F into itself.

Proof. By Theorem 7.16, it is enough to prove that T is the stack filter of 7,
the standard monotone set operator associated with B. Let us call T this stack
filter and let us check that Tu(x) > X & T'u(x) > .

we have T'u = sup{\, x € T(X\u)}. Thus by (8.1),

T'u(x) > A& Vu < A, 3B, x+ B C X,u.
On the other hand,
Tu(x)=sup inf u>X &
BeBYEX+B
YVu< A\ dBeB, inf u>p &
YEX+B
Yu <\ 3B € B, x+ B C X,u.
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Thus, T = T". 0

We end this section by showing that sup-inf operators can also be represented
as inf-sup operators,
Tu(x) = inf sup wu(y).
() = jat, swp u(y)
This is done, in the mathematical morphology terminology, by “duality”. The
dual operator of a function operator is defined by Tu = —T'(—u). Notice that

T=T.

Proposition 8.9. If T is a standard monotone, translation invariant and con-
trast invariant operator, then so is T. As a consequence, T has a dual “inf-sup”
form
Tu= inf sup u(y),
BeBYyeX+B

where B is any set of structuring elements for T

Proof. Setting g(s) = —g(—s), it is easily checked that § is a contrast change
if and only if g is. One has by the contrast invariance of T,

Thus, T is contrast invariant. The standard monotonicity and translation in-
variance of T" are obvious. Finally, if we have Tu(x) = supg g infyex s u(y),
then

Tu=—sup inf (—u(y))=-—sup(— sup wu(y))= inf sup u(y).
BeBYEX+E BeB YE€X+B BeByeX+B

O

Exercise 8.4. Check the standard monotonicity and translation invariance of T. m

8.3 Locality and isotropy

For linear filters, locality can be defined by the fact that the convolution kernel
is compactly supported. This property is important, as it guarantees that the
smoothed image is obtained by a local average. Morphological filters may need
a locality property for the same reason.

Definition 8.10. We say that a translation invariant function operator T on
F is local if there is some M > 0 such that

(u =" on B(0,M)) = Tu(0) = Tu(0).

The point 0 plays no special role in the definition. By translation invariance
it is easily deduced from the definition that for x € RY, the values of Tu(x)
only depend upon the restriction of u to B(x, M).
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Proposition 8.11. Let T : F — F be a contrast and translation invariant
standard monotone operator and B a set of structuring elements for T. If T is

local, then By = {B € B| B C B(0, M)} also is a set of structuring elements

for T. Conversely, if all elements of B are contained in B(0, M), then T is
local.

Proof. We prove the statement with the sup-inf form for 7. Since T' is local if
and only if T is, the same result will hold for the inf-sup form. So assume that
some local T' derives from B in the sup-inf form,

Tu(x) = zlé%)}IelfBu(X-i-y). (8.4)

Consider the new function uc(x) = u(x) — Ld(x, B(0,M)), where we take for
d a distance function on Sy, so that u. € F. Take any B € B containing a
point z ¢ B(0, M) and therefore not belonging to Bas. Then infycp u.(y) <
u(z) — 1d(z, B(0,M)) < Tu(0) for € small enough. So we can discard such
B’s in the computation of Tu(0) by (8.4). Since by the locality assumption

Tu(0) = Tu.(0), we obtain

Tu(0) = Tu.(0) = sup inf u(y).
(0)=Tue(0) = sup nf u(y)

By the translation invariance of all all considered operators, this proves the di-
rect statement. The converse statement is straightforward. O

We end this paragraph with a definition and an easy characterization of
isotropic operators in the sup-inf form. In the next proposition, we actually
consider a more general setting, namely the invariance of 7" under some geomet-
ric group of transformations of RY. Since we use to extend the set and function
operators to Sy, we shall extend such transforms by setting g(co) = oco.

Definition 8.12. Let T (resp T ) be a standard monotone contrast and transla-
tion invariant function operator associated with some set of structuring elements
B (resp. a standard monotone set operator associated with B). We say that B is
invariant under a group G of transformations of Sy onto Sy if, for all g € G,
B € B implies gB € B. Define the operator I, on functions u : Sy — R by
Lou(x) = u(gx). If, for all g € G, TI, = I,T (resp. Tg = gT ), we say that
T (resp. T) is invariant under G. In particular, we say that T (resp. T ) is
isotropic if it commutes with all linear isometries R of RY, and affine invariant
if it commutes with all linear maps A with determinant 1.

Proposition 8.13. Let G be any group of linear maps : g : RN — RN eg-
tended to Sy by setting g(oo) = oo. If T (resp. T ) is translation invariant
and invariant under G and B is a standard set of structuring elements for T
(resp T ), then GB = {¢B | g € G, B € B} is another, G-invariant, standard
set of structuring elements. Conversely, if B is a standard and G-invariant set
of structuring elements for T (resp. T ), then this operator is G-invariant (and
translation invariant.)

Proof. All the verifications are straightforward. The only point to mention is
that the considered groups are made of transforms sending bounded sets onto
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bounded sets and complementary sets of bounded sets onto complementary sets
of bounded sets. O

Exercise 8.5. Prove carefully Proposition 8.13. m

Some terminology.

It would be tedious to state theorems on operators on F with such a long list
of requirements as Standard Monotone, Translation and Contrast Invariant,
Isotropic. We shall keep the initials and call such operators SMTCII operators.
All the examples we consider in this book are actually SMTCII operators. Not
all are local, so we will specify it when needed. Operators can be still more
invariant, in fact affine invariant, and we will specify it as well. Since all of these
operators T have an inf-sup or a sup-inf form, we always take for B a standard
structuring set reflecting the properties of T, that is, bounded in B(0, M) when
T is local and invariant by the same group as T'. A last thing to specify is this:
We have restricted our analysis to operators defined on F. On the other hand,
their inf-sup form permits to extend them on all measurable functions and we
shall still denote the resulting operator by T'. T'u can then assume the —oo and
400 values. All the same, it is an immediate check to see that this extension
still is monotone and commutes with contrast changes:

Proposition 8.14. Let T be a function operator in the inf-sup or sup-inf form
associated with a standard set of structuring elements B C M. Then T is
standard monotone and contrast invariant on the set of all bounded measurable
functions of Sn.

Exercise 8.6. Prove Proposition 8.14. m

8.4 The who’s who of monotone contrast invari-
ant operators

The aim of this short section is to draw a synthetic picture of an equivalence
chain built up in this chapter and in Chapter 7. We have constructed three
kinds of objects,

e contrast and translation invariant standard monotone function operators

T: F—F;
e translation invariant standard monotone set operators 7 defined on L;

e standard sets of structuring elements B.

The results proven so far can be summarized in the following theorem.
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Theorem 8.15. Given any of the standard objects T', T and B mentioned above,
one can pass to any other one by using one of the six formulae given below.

B—T, Tu(x)= inf ;
— u(x) sup yé§+3“(3’)

B—T, TX={x|3Be€eB,x+BC X};
T—-T, Tu(x) = sup{\ | x € TX\u};
T—1T, T (Xou) = X (Tu);

T — B, B={BeL|0eTB};

T — B, byT — T and T — B.

In addition, B can be bounded in some B(0, M) if and only if T is local; T
or T is G-invariant, for instance isotropic, if and only if it derives from some
G-invariant (isotropic) B. If an operator has the inf-sup or sup-inf form for
some B, it can be extended to all measurable functions on RN into a monotone
and contrast invariant operator.

Proof. Theorem 8.2 yields 7 — B and B — 7; Theorem 7.16 yields 7 — T}
Theorem 8.6 yields T — 7 — B; Theorem 7.19 yields T'— 7. The final state-
ments come from Propositions 8.11, 8.13 and 8.14. O
So we get a full equivalence between all objects, but we have left apart the com-
mutation with thresholds property. When we define a set operator 7 from a
function operator T by the level set extension, we know that 7 : £ — L is upper
semicontinuous and that the commutation with thresholds X (Tu) = 7 (X\u)
holds. Conversely, if we define a function operator 7" as the stack filter of a stan-
dard monotone set 7, we do not necessarily have the commutation of thresholds
; this is true only if 7 is upper semicontinuous on £ (see Theorem 7.16) and this
upper semicontinuity property is not always granted for interesting monotone
operators, particularly when they are affine invariant. Fortunately enough, the
commutation with thresholds is “almost” satisfied for any stack filter as we state
in Proposition 8.18 in the next section.

8.4.1 Commutation with thresholds almost everywhere

In this section we always assume the considered sets to belong to M and the con-
sidered functions to be Lebesgue measurable. We say that a set X is contained
in a set Y almost everywhere if

measure(X \'Y) =0,

where measure denotes the usual Lebesgue measure in RY. We say that X =Y
almost everywhere if X C Y and Y C X almost everywhere. We say that two
functions u and v are almost everywhere equal if measure({x, u(x) # v(x)}) = 0.

Lemma 8.16. Let (X))xer be a nonincreasing family of sets of M, that is
X\ C X, if X\ > p. Then, for almost every A in R,

X\ = ﬂ Xy, almost everywhere. (8.5)
<A
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Proof. Consider an integrable and strictly positive continuous function h €
LY(RYN) (for instance, the gaussian.) Set m(X) = [, h(x)dx. We notice that
m(X) = 0 if and only if measure(X) = 0. The function A — m(X)) is nonin-
creasing. Thus, it has a countable set of jumps. Since every countable set has
zero Lebesgue measure, we deduce that for almost every A,

lim m(X,) = m(X)).
H—A

As a consequence, for those A’s, m([,_, X, \ X)) = 0, which implies (8.5).

d

<A

Corollary 8.17. Let (X)\)xer be a family of measurable subsets of Sy such
that Xy C X,, for X > p, Xx =0 for A > g, X» = Sy for X < po. Then the
function u defined on Sy by the superposition principle

u(x) =sup{\ | x € X}
is bounded and satisfies for almost every A\, X\ = X u almost everywhere.

Proof. 1t is easily checked that py < u < Ag. We have
Xou = {x |sup{p,x € X,} > A}

Now, if x € X, we have sup{p | x € X,} > A which implies x € Xyu. Thus,
X C Xyu. Conversely, let A be chosen so that X = N,< X, almost every-
where. This is by Lemma 8.16 true for almost every A € R. Then if x € X)u,
we have by definition of u, x € X, for every pr < A. Thus x € ﬂlK)\ X,. We
conclude that X u C LA X, and therefore X\u C X, almost everywhere. [

Exercise 8.7. By using Corollary 8.17 show that if two measurable functions u and
v are such that Xyu = X\v almost everywhere for almost every A, then u and v are
almost everywhere equal. =

Proposition 8.18. Let T : L — M be a standard monotone set operator and
T its stack filter. If u € F then for almost every level A € R,

X(Tu) =T (X\(u)) almost everywhere.

Proof. Since Tu is obtained from the sets 7 (X\u) by superposition principle,
this is an immediate consequence of Corollary 8.17. O

8.4.2 Chessboard dilemma and fattening effect

With any standard monotone contrast invariant function operator 1" we can
associate a stack filter 7, and by the above proposition the commutation with
thresholds is true for almost every level. Yet for some levels the commutation
with thresholds may not occur! As follows from the proofs of Proposition 8.18
and Lemma 8.16, the levels A for which commutation does not occur are those
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Figure 8.1: The chessboard dilemma. Left: a chessboard image. The next image
is obtained by a self-dual version of the median filter. Notice the expansion of
the median grey level, 127.5, who was invisible in the original image and grows
in the second one. This effect is called “fattening effect”. The third and fourth
image show the evolution of the level sets at levels 127 and 128 respectively.
This experiment illustrates a dilemma as to whether we consider the chessboard
as black squares on white background, or conversely. There is fundamental
perceptual instability here, that no theory can eliminate.

such that measure({x | XAu = A} > 0. We call such sets flat parts of the function
u.

As will be illustrated in Figure 8.4.2, T'u can have flat parts even if v had
none. If Tu has a flat part at level A\, by monotonicity for every € > 0 the sets
T (Xy—cu) and 7 (X\4cu) differ by a measure larger than the measure of the flat
part. Thus, the set X\u becomes somewhat ambiguous for the operator 7.

Figure 8.4.2 proves that this ambiguity is perceptually sound. In this figure a
self-dual version T of the median filter has been applied iteratively to a function
u whose grid values are equal to 255 on the white squares and to 0 on the black
square. The function is then interpolated by standard bilinear interpolation.
The iso-level set I1o75u := {x | u(x) = 127.5} consists of the line segments
separating the squares and has therefore zero measure. As we know, the median
filter tends to smooth, to round off the level lines of the image. Yet we have with
a chessboard a fundamental ambiguity : are these iso-level lines surrounding the
black squares, or are they surrounding the white squares? In other terms, do we
see in a chessboard a set of white squares on black background, or conversely?

Since our operator is self-dual it doesn’t favor any of the considered inter-
pretations: it rounds off simultaneously the lines surrounding the black squares
and the level lines surrounding the white squares (second image of Figure 8.4.2).
This results in the “fattening” of the level lines separating white and black,
which have the mid-level 128. Hence the appearance in the second image of a
grey zone separating the smoothed out black and white squares. If we take a
level set X.Tu of this image with ¢ < 0 (third image), the fattened set joins the
level set and we observe black squares on white background. Symmetrically if
€ > 0 the level set shows white squares on black background.

8.5 Exercises
Exercise 8.8. It is useful to have a test for B to determine whether or not the oper-

ator 7 can be expected to be upper semicontinuous on £. Prove that the translation-
invariant monotone operator in Theorem 8.2 defined by a given set B is upper semi-
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continuous on £ if and only if the following condition holds: If N
there is a B € B such that x + B C )
any nonincreasing sequence in £. m

nen T Xn # (0, then
Xn)

nen Xn, Where x € ﬂnEN T X, and (Xn)nen is

Exercise 8.9. Suppose that B C £ contains exactly one set. Show that 7 is u.s.c.
Generalize this to the case where B contains a finite number of sets. m

Exercise 8.10. Use Theorem 8.6 and Proposition 8.4 to show that the extrema killer
To can be represented as a sup-inf function operator with the structuring elements

B, = {B | B is compact, connected, meas (B) = a, and 0 € B} U{c0}. m

Check that B, is standard.

Exercise 8.11. Let B = {{x} | x € D(0,1)}, D(0,1) = {x | |x| < 1} and consider
the associated set operator 7 and the associated function operator T, defined on all
measurable sets and functions of RY by formulas (8.1) and (8.2).

1) Check that T'u(x) = supycxp u(y).

2) Let (¢n)nen be a countable dense set in R and consider v defined by u(x) = 1—1/n
if x = g» and u(x) = 0 otherwise. Show that 7X1u # X1Tu. The operator T in this
exercise is one of the classic image operators called a dilation. Check that T' commutes
with thresholds when its domain of definition is restricted to F and the domain of 7°
to £. This example shows that this restriction is useful to get a simple theory. m

Exercise 8.12. Show the following property used in the proof of Lemma : if h is a
positive continuous integrable function on RY and if we set m(X) = Jx h(x)dx, then
for every measurable set X, m(X) = 0 if and only if measure(X) =0. m

8.6 Comments and references

The formalism presented in this chapter is due to Matheron [202] in the case
of set operators and to Serra [253] and Maragos [192] in the case of function
operators. Serra’s formalism is actually more general than the one presented
here; it will be developed in Chapter ??, which is about “nonflat” morphology.
Our presentation relating the sup-inf form of the operator directly to contrast
invariance and establishing the full equivalence between sup-inf operators and
contrast-invariant monotone operators is original. The fact, proven in Section
8.18 that commutation with thresholds occurs without further assumption was
proven in [132].

The mysterious “set of structuring elements” has received a great deal of
attention in the literature. Here are a few references: on finding the right set
of structuring elements [245, 264]; on simplifying them [252]; on decomposing
them into simpler ones as one does with linear filters [225, 295, 296]; on reducing
the number [237].






Chapter 9

Erosions and Dilations

We are going to study in detail two of the simplest operators of mathematical
morphology, the erosions and dilations. In fact, there will be essentially four
operators: two set operators and the two related function operators. These
operators will depend on a scale parameter ¢t. We will also study the underlying
PDEs 0u/0t = ¢|Du|, where ¢ = 1 for dilations and ¢ = —1 for erosions.

9.1 Set and function erosions and dilations

We saw in chapter 8 that every contrast-invariant monotone function operator
has a sup-inf and an inf-sup representation in terms of some set of structuring
elements. This is the point of view we take here, and furthermore, we assume
that the set of structuring elements B has the simplest possible form, namely,
B = {B}. We actually introduce a parameter ¢ scaling the size of B and therefore
consider the two operators of the next definition.

Definition 9.1. For u € F, define Digu = Dyu by

Dyu(x) = ;ggg u(x —y), (9.1)

the “dilation of u by tB. In the same way, define Eypu = Eyu, the “erosion of
u by —tB”, by
Eu(x) = yéliftBu(x—y). (9.2)
These function operators have associated set operators.

Definition 9.2. Let B be a non empty subset of RN and let t > 0 be a scale
parameter. The set operators Dyp and Ep are defined on subsets X € M(RYN)

by
DX =D, X =X +tB={x|IeB,x—the X}, (9.3)

gtB:th:{X|X+tBCX}, (94)

and extended to M(Sy) by the standard extension (Definition 7.1.) DX is
called the dilation of X by B at scale t. £X s called the erosion of X by B at
scale t.

125
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Exercise 9.1. (Duality formulas.) Show that Eipu = —D_:p(—u) and &pX =
(D_¢tgX°)°. m
Exercise 9.2. Show that if B is bounded, dilations and erosions are standard monotone

operators. Compute their associated set of structuring elements (Proposition 8.2) and
check that it is standard. m

Theorem 9.3. The function erosion by tB is the stack filter of the set erosion
by tB ; the function dilation by tB is the stack filter of the set dilation by tB
and the commutation with thresholds holds. In other terms for uw € F and all A
in R, and calling D, the dilation by tB,

Dyu(x) = sup{\ | x € D;Xyu}, DiXyu = X\Du; (9.5)

Eu(x) =sup{\ | x € EXou}, EXu = X Eu. (9.6)

Proof. We prove the statement for the dilations, the case of the erosions being
just simpler. Consider some X € £ and u(x) < 0 a function vanishing on X only.
By the definition 7.18 of the level set extension Dy of Dy, Dy(X) = XoDy(u).
Thus, using (9.3),

x € Dy(X) & (Du)(x) =0 sup u(x—y)=0<
ye—tB

JyetB,x—yeX&xeX+tBexeDi(X).
(]

The operators D; and &; are in a certain sense the inverse of each other. This
is clearly the case, for example, if B = {x¢}. Then D; is just the translation by
txg, and & =D, ! is the translation by —txg. If B is the open ball centered at
zero with radius one, then D; X is the set of all points whose distance from X
is less than ¢, or the t-neighborhood of X. When B is symmetric with respect
to zero, the operator D;&; is called an opening at scale t and &D; is called a
closing at scale t. These names have a topological origin. If B is the open ball
centered at zero with radius one, then the opening at scale ¢ of a set X is the
union of all balls with radius ¢ contained in X. The interior of X is the union
of all open balls contained in X it is also the largest open set contained in X.
If we call the interior map 7°X = X° the opening, then an opening at scale ¢
appears as a quantified opening (see Exercise 9.6). The topological statement
“the closure of the complement of X is the complement of the interior of X”
has its counterpart for openings and closings at scale ¢, as shown in exercise 9.6.
The actions of erosions and dilations are illustrated in Figures 9.2, 9.2, and 9.2;
actions of openings and closings are illustrated in Figures 9.2, 9.2, 9.2, 9.3, and
9.3.

9.2 Multiscale aspects

We say that the family of dilations {D; | t > 0} associated with a structuring
element B is recursive if DDy = Dy for all s,t > 0, and similarly for the
family {F; | t > 0}. (A recursive family is also called a semigroup.) Being
recursive is a very desirable property for any family of scaled operators used
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L d5

Figure 9.1: Dilation of a set. Left to right: A set; its dilation by a ball of radius
20; the difference set.

¥+

Figure 9.2: Erosion of a set. Left to right: A set; its erosion by a ball of radius

20; the difference set.
I »

Figure 9.3: Opening of a set as curvature threshold from above. Left to right:
A set X; its opening by a ball of radius 20; the difference set. This opening
transforms X into the union of all balls of radius 20 contained in it. The resulting
operation can be understood as a threshold from above of the curvature of the
set boundary.

for image analysis. Having D; = (D,/,)" is useful for practical computations.
{D; |t >0} and {E; | t > 0} will be recursive if and only if B is convex, but
before proving this result we need the condition for B to be convex given in the
next lemma. The proof of the next statement is an easy exercise.

Lemma 9.4. B is convez if and only if (s +t)B = sB +tB for all s,t > 0.

Proposition 9.5. The dilations Dy and the erosions & are recursive if and
only the structuring element B is convex.
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Figure 9.4: Closing of a set as a curvature threshold from below. Left to right:
A set X; its closing by a ball of radius 20; the difference set. The closing of X
is just the opening of X€¢. It can be viewed as a threshold from below of the
curvature of the set boundary.

Proof. By the stack filter construction and the level set extension, we see that
the proof of the equivalence can be performed on set dilations. Taking for
simplicity B closed, we have

DD X =(X+sB)+tB=X+sB+1B

and
Dsi: X =X + (s+1t)B.

If (t 4+ s)B = tB + sB, then clearly D;D; X = Dy X. Conversely, if D;Ds X =
D4+ X, then by taking X = {0} we see that (t + s)B = tB + sB. One can
deduce the corresponding equivalence for erosions from the duality formula (ex-
ercise 9.1.) O

9.3 The PDEs associated with erosions and di-
lations

As indicated in the introduction to the chapter, scaled dilations and erosions
are associated with the equations du/0t = £|Dul. To explain this connection,
we begin with a bounded convex set B that contains the origin, and we define
the gauge || - ||p on RY associated with B by ||x||z = supyep(x-y). If Bisa
ball centered at the origin with radius one, then | - | g is the usual Euclidean
norm, which we write simply as | - |.

Proposition 9.6. [Hopf-Laz formula [98, 179]]. Assume that B is a bounded
convex set in RN that contains the origin. Given ug : RN — R, define u :
Rt x RN — R by u(t,x) = Dyug(x). Then u satisfies the equation

ou

— = ||Du||-

= IDull_p
at each point (t,x) where u has continuous derivatives in t and x. The same
result hold when Dy is replaced by E; and the equation is replaced with Ou/dt =
—[Dull-5-
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Figure 9.5: Erosion and dilation of a natural image. First row: a sea bird image
and its level lines for all levels multiple of 12. Second row: an erosion with
radius 4 has been applied. On the right, the resulting level lines where the
circular shape of the structuring element (a disk with radius 4) appears around
each local minimum of the original image. Erosion removes local maxima (in
particular, all small white spots) but expands minima. Thus, all dark spots,
like the eye of the bird, are expanded. Third row: the effect of a dilation with
radius 4 and the resulting level lines. We see how local minima are removed (for
example, the eye of the bird) and how white spots on the tail expand. Here, in
turn, circular level lines appear around all local maxima of the original image.

Proof. We begin by proving the result for D; at ¢ = 0. Thus assume that ug
is C! at x. Then

uo(x —y) —uo(x) = —=Duo(x) - y + o(lyl),
and we have by applying Dy,

u(h,x) —u(0,x) = sup (=Duo(x) -y + o(|y])).
yehB
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Figure 9.6: Openings and closings of a natural image. First row: the original
image and its level lines for all levels multiple of 12. Second row: an opening
with radius 4 has been applied. Third row: a closing with radius 4 has been
applied. We can recognize the circular shape of the structuring element in the
level lines displayed on the right.

Since B is bounded, the term o(|y|) is o(|h|) uniformly for y € hB, and we get
u(h,x) —u(0,x) = h sup((—Duo(x) - z) + o(|h]).
ZeB

We can divide both sides by h and pass to the limit as |h| — 0 to obtain

0
50, = [|Dug(x)]|-5,

which is the result for ¢t = 0. For an arbitrary ¢ > 0, we have Dy, = DDy =
Dy D;, and we can write

U(t +h, X) - u(tv X) = Dhu(ta )(X) - U(t, X)'

By repeating the argument made for ¢ = 0 with wg replaced with w(t,-), we
arrive at the general result. The proof for E, is similar. O
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Figure 9.7: Denoising based on openings and closings. First row: scanned
picture of the word “operator” with black dots and a black line added; a dilation
with a 2 x 5 rectangle; an erosion with the same structuring element applied to
the middle image. The resulting operator is a closing. Small black structures
are removed by such a process. Second row: the word “operator” with a white
line and white dots inside the letters; erosion with a rectangle 2 x 5; a dilation
with the same structuring element applied to the middle image. The resulting
operator is an opening. This time, small white structures are removed.

Exercise 9.3. Prove the above result for E;.
]
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Figure 9.8: Examples of denoising based on opening or closing, as in Figure 9.7.
Perturbations made with both black and white lines or dots have been added to
the “operator” image. First column, top to bottom: original perturbed image;
erosion with a 1 x 3 rectangle; then dilation with the same structuring element.
(In other words, opening with this rectangle.) Then a dilation is applied with a
rectangle 3 x 1, and finally an erosion with the same rectangle. Second column:
The same process is applied, but with erosions and dilations exchanging their
roles. It does not work so well because closing expands white perturbations and
opening expands black perturbations. These operators do not commute. See
Figure 7?7, where an application of the median filter is more successful.

)
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9.4 Exercises

Exercise 9.4. A straightforward adaptation on a grid Z x Z of the formulas u(t, z) :=
SUD, ¢ gz, Uo(y) for dilation and u(t,z) := infyecp(a,+) uo(y) for erosion leads to the
zero-order schemes

u" (i, 5) = sup u” (k, 1)
(k,1)EB((i,5),t)NZ2
and
u" (i, ) = inf u(k, 1), u°(i,5) = uo(i, ).

(k,1)€B((4,4),t)NZ?

Unfortunately, the zero-order schemes are strongly grid dependent. They do not make
any difference between two balls which contain the same discrete pixels. In particular,
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such schemes only permit discrete motions of the shape boundaries. Thus, they are
efficient only when t is large. Section 9.3 suggests that we can implement erosion and
dilations on a finite image grid by more clever numerical schemes. One can try to
discretize the associated PDE’s du/0t = £|Du| by the Rouy-Tourin scheme:

[N

n+1

n n n n n\2 n n n n\2
uiy = u+ At (max(0, uly 1,y — i —uiy)” +max(0, uij e —uiyu o —uij)”)

for dilation and

Nl=

n+1

n n n n n 2 n n n n 2
uy; = ugy— At (max(0, ufy — uiyr, g U —ui—1,;)” +max (0, ugy —ug i,y —ui1)°)

for erosion. In both cases if ¢ = nAt then u™(4,7) is a discrete version of u(t, (¢,7)).

1) Explain why the schemes are consistent with their underlying partial differential
equation. Check that with this clever scheme local maxima of "™ do not go up by
dilation and local minima do not go down by erosion. Show that for example the
following scheme would be a catastrophe at extrema (you’ll have to try it anyway):

n+1 %

ugy " =uiAAL (max(ufy g — willui-g; —ug |)2+max(|“?,j+1 —uii|,lui 1 —U?j|)2)

2) Implement the schemes and compare their performance with the discrete zero
order schemes for several shapes and images.

3) Compute on some well-chosen images the “top hat transforms” u — Osu and
Fiu—wu. The first transform aims at extracting all structures from an image which are
thinner than ¢ and have brightness above the average. The second transform does the
same job for dark structures. These transforms can be successfully applied on aerial
images for extracting roads or rivers, and in many biological applications. m
Exercise 9.5. Show that Ei(u) = —D;(—u) if B is symmetric with respect to zero. m
Exercise 9.6.

(i) Let B = {x | |x| < 1}. Show that D:&X is the union of all open balls with
radius ¢ contained in X.

(ii) Let B be any structuring element that is symmetric with respect to zero. Write
X =RV \ X. Show that D:X°¢ = (& X)°. Use this to show that &D:X° =
(D& X)°. m

Exercise 9.7. Prove that the dilation and erosion set operators associated with B
are standard monotone if and only if B is bounded. If B is bounded and isotropic,
prove that the associated erosion and dilation function operators are local SMTCII
operators. m

9.5 Comments and references

Erosions and dilations. Matheron introduced dilations and erosions as use-
ful tools for set and shape analysis in his fundamental book [202]. A full account
of the properties of dilations, erosions, openings, and closings, both as set op-
erators and function operators, can be found in Serra’s books [253, 255]. We
also suggest the introductory paper by Haralick, Sternberg, and Zhuang [136]
and an earlier paper by Nakagawa and Rosenfeld [214]. An axiomatic algebraic
approach to erosions, dilations, openings, and closings has been developed by
Heijmans and Ronse [139, 239]. We did not develop this algebraic point of view
here. The obvious relations between the dilations and erosions of a set and the
distance function have been exploited numerically in [144], [169], and [259]. The
skeleton of a shape can be defined as the set of points where the distance func-
tion to the shape is singular. A numerical procedure for computing the skeleton
this way is proposed in [170].
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The PDEs. The connection between the PDEs du/0t = +|Du| and multiscale
dilations and erosions comes from the work of Lax, where it is used to give stable
and efficient numerical schemes for solving the equations [179]. Rouy and Tourin
[240] have shown that the distance function to a shape is a viscosity solution
of 1 — |Du| = 0 with the null boundary condition (Dirichlet condition) on the
boundary of the shape. To define efficient numerical schemes for computing the
distance function, they actually implement the evolution equation du/dt =1 —
| Du| starting from zero and with the null boundary condition on the boundary of
the shape. The fact that the multiscale dilations and erosions can be computed
using the PDEs Ju/0t = £|Du| has been rediscovered or revived, thirty years
after Lax’s work, by several authors: Alvarez et. al. [11], van den Boomgaard
and Smeulders [273], Maragos [193, 194]. See also [272] for a numerical review.
For an implementation using curve evolution, see [248]. Curiously, the link
between erosions, dilations, and their PDEs seems to have remained unknown
or unexploited until 1992. The erosion and dilation PDEs can be used for shape
thinning, which is a popular way to compute the skeleton. Pasquignon developed
an erosion PDE with adaptive stopping time that allows one to compute directly
a skeleton that does not look like barbed wire [226].



Chapter 10

Median Filters and
Mathematical Morphology

This entire chapter is devoted to median filters. They are among the most
characteristic and numerically efficient contrast-invariant monotone operators.
The denoising effects of median filters are illustrated in Figures 10.1 and 10.2;
the smoothing effect of a median filter is illustrated in Figure 10.3. They also
are extremely useful in 3D-image or movie denoising.

As usual, there will be two associated operators, a set operator and a function
operator. All of the median operators (or filters) will be defined in terms of a
nonnegative measurable weight function k : RY — [0, +00) that is normalized:

/RN k(y)dy = 1.

The k-measure of a measurable subset B C R is denoted by |B|; and defined
by
Blu= [ k) dy= [ k3)1a)dy.
B RN
Clearly, 0 < |B|r < 1. The simplest example for k is given by the function
k=cy' (r)1B(0,r), where B(0,7) denotes the ball of radius r centered at the

origin and ¢y (r) is the Lebesgue measure of B(0,r). Another classical example
to think of is the Gaussian.

10.1 Set and function medians
We first define the set operators, whose form is simpler. We define them on

M(RYN), the set of measurable subsets of RY and then apply the standard
extension to M(Sy) given in Definition 7.1.

Definition 10.1. Let X € M(RY) and let k be a weight function. The median
set of X weighted by k is defined by

Medp X = {x | |X — x|, > 3} (10.1)

135
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and its standard extension to M(Sy) by
Medp X = {x | |X — x|, = 3} U (X N {oo}). (10.2)

The extension amounts to add co to Medi X if co belongs to X. Note that
we have already encountered the median operator in Section 4.1. Koenderink
and van Doorn defined the dynamic shape of X at scale ¢t to be the set of x such
that Gi+#1x(x) > 1/2. The dynamic shape is, in our terms, a Gaussian-weighted
median filter.

To gain some intuition about median filters, we suggest considering the
weight & defined on R? by k = (1/77%)1p(q,). Then x € R? belongs to Med; X
if and only if the Lebesgue measure of X NB(x, r) is greater than or equal to half
the measure of B(0,7). Thus, x € Med;X if points of X are in the majority
around x.

Lemma 10.2. Medy, is a standard monotone operator on M.

Proof. Obviously Medy () = 0 and Medg(Sy) = Sy. By definition, oo €
Medi X < oo € X. If X is bounded, it is a direct application of Lebesgue
theorem that

X =l = [ by Lx-x(y)dy — 0 as x = .

Thus |X —x|; < 3 for x large enough and Med;, X is therefore bounded. In the
same way, if X¢ is bounded | X — x|, — 1 as x — oo and therefore (Medx)® is
bounded. g

Lemma 10.3. We can represent Medy, by
Medp X = {x|x+ B C X, for some B € B}, (10.3)

where B={B | |Bli > %} or B={B||BJ; = %}

Proof. By Lemma 10.2, Medy, is standard monotone and it is obviously trans-
lation invariant. So we can apply Theorem 8.2. The canonical set of structuring
elements of Medy, is

1
B={B|0e Med;B} ={B||B|x > 5}
The second set B mentioned in the lemma, which we call now for convenience
B’, is a subset of B such that for every B € B, there is some B’ € B’ such that

B’ € B. Thus by Proposition 8.4, Medy, can be defined from B'. O

The next lemma will help defining the function operator Med; associated
with the set operator Medy.

Lemma 10.4. The set operator Medy is monotone, translation invariant and
upper semicontinuous on M.
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Proof. The first two properties are straightforward. Consider a nonincreasing
sequence (X, )nen in M and let us show that

Medy, () X =[] Med,X,,.

neN neN

Since Medy, is monotone, it is always true that Medy ﬂneN X, C ﬂneN Medp X,,.
To prove the other inclusion, assume that x € [, .y Medp X, If x € R, by the
definition of Medy, |X,, —x| > 1/2 for all n € N. Since X,, —x | [, cn(Xn — %),
we deduce from Lebesgue Theorem that [X,, — x| | [(,en(Xn — X)[r. This
means that |, cy(Xn — X)[x > 1/2, and hence that x € Med ), cn(Xn — X).
If x = o0, it belongs to Medy X,, for all n and therefore to X,, for all n. Thus,

it belongs to [,,cy Xn and therefore to Medg (N, ey Xn)- O

Definition 10.5 (and proposition). Define the function operator Medy, from
Medy, as a stack filter,

Medgu(x) = sup{\ | x € Med, X\u}.

Then Medy, is standard monotone, contrast invariant and translation invariant

from F to F. Medy and Medy commute with thresholds,
XAMedku = Mede,\u. (10.4)

If k is radial, Medy, therefore is SMTCII.

Proof. By Lemma 10.4, Medy, is upper semicontinuous and by Lemma 10.2 it
is standard monotone. It also is translation invariant. So we can apply Theorem
7.16, which yields all announced properties for Medy. O

We get a sup-inf formula for the median as a direct application of Theorem
8.6.

Proposition 10.6. The median operator Medy, has the sup-inf representation

Medgu(x) = inf : 10.5
edyu(x) = sup inf u(y) (10.5)

where B={B | B € M,|B|, =1/2}.

A median value is a kind of average, but with quite different results, as is
illustrated in Exercise 10.4.

10.2 Self-dual median filters

The median operator Medy, as defined, is not invariant under “reverse contrast,”
that is, it does not satisfy —Medju = Medy(—u) for all u € F. This is clear
from the example in the next exercise. Self-duality is a conservative requirement
which is true for all linear filters. It means that the white and black balance is
respected by the operator. We have seen that dilations favor whites and erosions
favor black colors: These operators are not self-dual.
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Figure 10.1: Example of denoising with a median filter. Left to right: scanned
picture of the word “operator” with perturbations and noise made with black
or white lines and dots; the image after one application of a median filter with
a circular neighborhood of radius 2; the image after a second application of the
same filter. Compare with the denoising using openings and closings (Figure
9.8).

Exercise 10.1. Consider the one-dimensional median filter with k& = %1[,2,,1]%1,2].
Let u(z) = =1 if # < =1, u(z) = 1 if & > 1, u(z) = =z elsewhere. Check that
Med,u(0) # —Med(—u)(0). =
As we did with erosions and dilations, one can define a dual version of the
median Med, by
Med, v = —Medy(—u), so that (10.6)
Med, u(x) = inf  sup u(y). (10.7)
|Blx>3 YeX+B
A quite general condition on £ is sufficient to guarantee that Med;, and Med,
agree on continuous functions.

Definition 10.7. We say that k is not separable if |Blx > 1/2 and |B'[, > 1/2
imply that BN B’ # ().

Proposition 10.8.

(i) For every measurable function u, Mediu > Med,, u.

(13) Assume that k is not separable. Then for every u € F, Medru = Med, u
and Medy, is self-dual.

Proof. Both operators are translation invariant, so without loss of generality we
may assume that x = 0. To prove (i), let A = Medyu(0) = supg|, >1/2 infyep u(y).
Take € > 0 and consider the level set X;.u. Then infycx, . u(y) > A+e. Thus
|Xxyeulr < 1/2, since infycp < A for any set B such that |B| > 1/2. Thence
|(Xrteu)[e = 1/2. By the definition of level sets, supyc(x,  u)e u(¥) < A +e.
These two last relations imply that

inf supu(y) <A+e.
|Blx>3 yeB

Since € > 0 was arbitrary, this proves (7).

The assumption that k is not separable implies that for all B and B’ having
k-measure greater than or equal to 1/2, we have infy 5 u(y) < SUDy ¢ 77 u(y).
Since u € F is continuous, infyep u(y) < supycp u(y). Since B and B’ were
arbitrary except for the conditions |B|; > 1/2 and |B’[; > 1/2, the last inequal-
ity implies that

sup inf u(y) < inf sup u(y).
|Bl,>1YEB |B'|x>5 yeB’
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Figure 10.2: Denoising based on a median filter. Left: an image altered on
40% of its pixels with salt and pepper noise. Right: the same image after three
iterations of a median filter with a 3 x 3 square mask.

From this last inequality and (i), we conclude that Mediu = Med, u. O

10.3 Discrete median filters and the ”usual” me-
dian value

We define a discrete median filter by considering, instead of a function, a uniform
discrete measure k = ) .,  0x,, where dx, denotes the Dirac mass at x;.
We could normalize k, but this is not necessary, as will become clear. Translates
of the points x; create the discrete neighborhood that is used to compute the
median value of a function u at a point x. We denote the set of subsets of
{1,...,N} by P(N) and the number of elements in P € P(N) by card(P).
Since card(P) = |P|k, we will suppress the k-notation is favor of the more
transparent “card(P),” but one should remember that the k-measure is still
there. An immediate generalization of the definition of the median filters to the
case where k is such a discrete measure yields

Medu(x) =  sup  inf u(x — x;),
pep(N) ‘€F
card(P)>N/2
Med ™ u(x) = inf  supu(x —x;).
PcP(N) ieP
card(P)>N/2

When k was continuous, we could replace “| Bl > 1/2” with “|B|x = 1/2,” but
this is not directly possible in the discrete case, since N/2 is not an integer if
N is odd. To fix this, we define the function M by M(N) = N/2 if N is even
and M(N) = (N/2)+ (1/2) if N is odd. Now we have
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Medu(x) = sup inf u(x — x;),
PeP(N) €P
card(P)=M(N)

Med ™ u(x) = Peing) sggu(x —X;).
card(P)=M(N) ’

The fact that we can replace “card(P) > N/2” with “card(P) = M(N)”
has been argued elsewhere for the continuous case; for the discrete case, it is a
matter of simple combinatorics. Given any x, let y; = u(x—x;). After a suitable
permutation of the i’s, we can order the y; as follows: y1 <, -, <yy <, -+ <
yn. Then for N even,

{zlélInyl | card(P) > N/2} = {Zléllf;yz | card(P) = M} ={y1,.-.,ym+1},

{su}:))yi | card(P) > N/2} = {su}gyi | card(P) = M} ={ym,...,yn},
i€ i

and Medu(x) = yar+1 > yu = Med ™ u(x). If N is odd, we have
{inf y: | card(P) = N/2} = {inf y; | card(P) = M} = {yn......yar}.
1€ 1€

{Sugyi | card(P) > N/2} = {ﬁugyi | card(P) = M} = {yn, ..., yn},
1€ 1€

and Medu(x) = Med™ u(x) = yas. This shows that Med = Med ™ if and only if NV
is odd. What we see here is the discrete version of Proposition 10.8. When N is
odd, the measure is not separable, since two sets P and P’ with card(P) > N/2
and card(P’) > N/2 always have a nonempty intersection. In general, a median
filter with an odd number of pixels is preferred, since Med = Med ™ in this case.

This discussion shows that the definition of the discrete median filter Med
corresponds to the usual statistical definition of the median of a set of data: If
the given data consists of the numbers y; < yo <--- < yy and N = 2n+1, them
by definition, the median is y,4+1. In case N = 2n, the median is (y, + yn+1)/2.
In both cases, half of the terms are greater than or equal to the median and half
of the terms are less than or equal to the median. The usual median minimizes
the functional Zil ly; — y|. Exercise 10.9 shows how Med and Med™ relate to
this functional.

The discrete median filters can also be defined in terms of a nonuniform
measure k that places different weights on the points x;. To see what this does,
assume that the weights are integers k;, so [{x;}|r = k;. Then k has total mass
Zij\il k; = K, and the condition card(P) > N/2 is replaced with |P|, > K/2.
As before, let y; = u(x — x;) and display the data set as y; < yo < -+ < yn.
Then Med,u(x) = y;, where j is the largest index such that k;+---+kn > N/2.
To see this, transform the original ordered sequence into the expanded ordered
sequence

== S Sy ==Y S SYN = = YN (10.8)
—_— | — _

k1 terms k; terms kn terms

Then by the definition of j, y; € {inficpy; | |Plx > K/2}, but y; for ¢ > j is
not in this set. Thus, Medu(x) = y;. Conversely, if Medju(x) = y;, then y;
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is the largest member of the set {inf;cpy; | |P|r > K/2}. This implies that
kj+---+kn ZN/Q, but that k; +--- 4+ kn <K/2f01"i>j.

If K is odd, what we have just done implies that Med, = Med, and that
Medyu(x) is equal to the ordinary median of the ordered set (10.8). Exercise
10.8 completes this part of the theory.

Finally, we wish to show that the discrete median filter Med can be a cyclic
operator on discrete images. As a simple example, consider the chessboard
image, where u(i,j) = 255 if ¢ + j is even and u(i,j) = 0 otherwise. When we
apply the median filter that takes the median of the four values surrounding
a pixel and the pixel value, it is clear that the filter “reverses” the chessboard
pattern. Indeed, any white pixel (value 255) is surrounded by four black pixels
(value zero), so the median filter transforms the white pixel into a black pixel.
In the same way, a black pixel is transformed into a white pixel and this can go
for ever.

10.4 Exercises

Exercise 10.2. Check that Med, as defined in Definition 10.1 is monotone and
translation invariant. m

Exercise 10.3. Koenderink and van Doorn defined the dynamic shape of X at scale t
to be the set of x such that Gt x 1x(x) > 1/2. Check that this is a Gaussian-weighted
median filter. =

Exercise 10.4. Consider the weighted median filter defined on Sy with k = (1/2)1(_1 4.
Compute Medyu for u(z) = ﬁ Compare the result with the local average Miu(z) =
% fil u(x 4+ y)dy. What happens on intervals where u is monotone? m

Exercise 10.5. Saying that k is not separable is a fairly weak assumption. It cor-
responds roughly to saying that the support of k cannot be split into two disjoint
connected components each having k-measure 1/2. Show that if k is continuous and
if its support is connected, then it is not separable. m

Exercise 10.6. Prove the following inequalities for any measurable function :

sup _inf wu(y)> sup _inf wu(y)> inf sup u(y),

1Bl >4 YEXTB |Blp>3 YEX+E T Bl > yex+B

sup _inf wu(y)> inf sup wu(y)> inf sup u(y).
|B,>1 YEX+EB |Bly>3 yex+B |Bly>3 yexX+B

Exercise 10.7. Median filter on measurable sets and functions. The aim of
the exercise is to study the properties of the median filter extended to the set M of
all measurable sets of Sy and all bounded measurable functions (v € L (Sy)). The
definition of Medy on M is identical to the current definition.

1) Using the result of Exercise 7.20, show that one can define Med, from Medy as a
stack filter and that it is monotone, translation and contrast invariant. In addition,
Medy, and Medy, still satisfy the commutation with thresholds, XxMedyu = Medi Xyu.

2) Prove that Med; maps measurable sets into closed sets. Deduce that if u is a
measurable function, then Medyu is upper semicontinuous and Med, u is lower semi-
continuous.

3) Assume that k is not separable. Check that the proof of Proposition 10.8 still applies
to the more general Med, and Med, , applied to all measurable functions. Deduce that
if k£ is not separable, then Medyu is continuous whenever u is a measurable function.
[
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Exercise 10.8. Let us consider a discrete nonuniform weight distribution k. Check
that Med, © < Medyu. Prove that Med, u = Medu if and only if there is no subset of
the numbers k1, ..., ky whose sum is K/2. In particular, if K is odd, then Med; u =
Mediu. m

Exercise 10.9. Variational interpretations of the median and the average
values.

Let arginf,, g(m) denote the value of m, if it exists, at which g attains its infimum. Con-
sider N real numbers {x; | i = 1,2,..., N} and denote by Med((x;);) and Med™ ((x;))
their usual lower and upper median values (we already know that both are equal if N
is odd but can be different if N is even).

(i) Show that
| X N
N Z x; = arginf, Z(:cl — m)z.
i=1 i=1

(ii) Show that
N

Med ™ ((z:):) < arginf,, Z |zs —m| < Med((x:):).
i=1
(iii) Let k = 1p, where B is set with Lebesgue measure equal to one. Let Medgu
denote the median value of u in B, defined by Medpu = Med,u(0). Consider a
bounded measurable function u defined on B. Show that

/B u(x) dx = arginf, / (u(x) —m)? dx

B
and that

_ . Medzu + Medpu
Medpu < arginf,, / lu(x) —m|dx = % < Medpu.
JB
(iv) Deduce from the above that the mean value is the best constant approximation
in the L? norm and that the median is the best constant approximation in the
L' norm. m

10.5 Comments and references

The remarkable denoising properties and numerical efficiency of median filters
for the removal of all kinds of impulse noise in digital images, movies, and video
signals are well known and acclaimed [86, 156, 215, 230, 235]. The last reference
cited as well as the next three all propose simple and efficient implementations
of the median filter [26, 84, 145]. An introduction to weighted median filters can
be found in [47, 290], and information about some generalizations (conditional
median filters, for example) can be found in [24, 180, 263]. The min, max, and
median filters are particular instances of rank order filters; see [80] for a general
presentation of these filters. There are few studies on iterated median filters.
The use of iterated median filters as a scale space is, however, proposed in [32].
The extension of median filtering to multichannel (color) images is problematic,
although there have been some interesting attempts [65, 236].
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Figure 10.3: Smoothing effect of a median filter on level lines. Above, left
to right: original image; all of its level lines (boundaries of level sets) with
levels multiple of 12; level lines at level 100. Below,left to right: result of two
iterations of a median filter with a disk with radius 2; corresponding level lines
(levels multiple of 12); level lines at level 100.
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Chapter 11

Curves and Curvatures

This chapter contains the fundamentals of differential geometry that are used in
the book. Our main aim is to define the orientation and curvatures of a curve
or a surface as the main contrast invariant differential operators we shall deal
with in image and curve smoothing.

11.1 Tangent, normal, and curvature

We summarize in this section the concepts and results about smooth curves that
are needed in this chapter and elsewhere in the book. The curves we considered
will always be plane curves.

Definition 11.1. We call simple arc or Jordan arc the image I' of a continuous
one-to-one function x : [0,1] — R2, x(t) = (z(t),y(t)). We say that T is a
simple closed curve or Jordan curve if the mapping restricted to (0,1) is one-
to-one and if x(0) = x(1). If x is continuously differentiable on [0,1], we define
the arc length of the segment of the curve between x(tg) and x(t) by

L(x,to,t):/t |XI(T)|dT:/t VX (1) - X/ (1)dT. (11.1)

In particular, set
t t
L(t) = L(x,0,t) = / |x'(1)]dT = / VX (1) - X/ (1) dT.
0 0

The curves we deal with will always be smooth. Now, we want the definition
of “smoothness” to describe an intrinsic property of I' rather than a property
of some parameterization x(s) of I'. If a function x representing I" is C*, then
the function L in equation (11.1) has a derivative with respect to s,

L'(t) = [x'(1)]

that is continuous. Nevertheless, the curve itself may not conform to our idea of
being smooth, which at a minimum requires a tangent at every point y € I'. For
example, the motion of a point on the boundary of a unit disk as it rolls along
the z-axis is described by x(t) = (¢t — sint, 1 — cost), which is a C°° function.

147
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Nevertheless, the curve has cusps at all multiples of 27. The problem is that
x'(2kw) = 0. It is this sort of phenomenon that motivates the definition of
smoothness for curves.

Definition 11.2. We say that a curve I' admits an arc-length parameterization
s € R x(s) if the function x is C* and L'(s) = |x'(s)| = 1 for all s. We
say that T is C™, m € N, m > 1, if the arc-length parameterization x is a C™
function.

Exercise 11.1. The aim of the exercise is to give a formula transforming a C* pa-
rameterization ¢ € [0,1] — x(¢) such that |[x'(t)] # 0 for all ¢ into an arc-length
parameterization. Notice that L : [0,1] — [0, L(1)] is increasing. Set, for s € [0, L(1)],
%(s) = x(L7'(s)) and check that % is an arc-length parameterization of the curve
defined by x. =

An arc-length parameterization is also called a Fuclidean parameterization.
If a Jordan curve has an arc-length parameterization x, then the domain of
definition of x on the real line must be an interval [a,b], where b — a is the
length of T, which we denote by [(T"). In this case, we will always take [0, 1(T")]
as the domain of definition of x. We identify [0,(T")] algebraically with the
circle group by adding elements of [0,(T")] modulo I(T").

Definition 11.3. Assume that T is C? and let s — x(s) be an arc-length
parameterization. The tangent vector T is defined as T = dx/ds. The curvature
vector of the curve ' is defined by k = d?x/ds?. The normal vector n is defined
by n = 71, where (z,y)* = (~y, z).

One can easily describe all Euclidean parameterizations of a Jordan curve.

Proposition 11.4. Suppose that T' is a C* Jordan curve with arc-length pa-
rameterization x : [0,1(T')] — T'. Then any other arc-length parameterization
vy : [0,1(T)] = T is of the form y(s) = x(s+ o) or y(s) = x(—s + o) for some
o € [0,1(I)].

Proof. Denote by C the interval [0,1(T')], defined as an additive subgroup of R
modulo [(T). Let x, y : C — T be two length preserving parameterizations of
I. Then f = x oy~ ! is a length preserving bijection of C. Using the parame-
terization of C, this implies f(s) = £s+ o for some o € [0,1(I")] and the proof
is easily concluded. (See exercise 11.7 for some more details.) (]

Proposition 11.5. Let I’ be a C? Jordan curve, and let x and y by any two
arc-length parameterizations of T'.

(i) Ifx(s) = y(t), then x/(s) = +y'(1).
(i1) The vector k is independent of the choice of arc-length parameterizations

and it is orthogonal to T = x.

Proof. By Proposition 11.4, y(s) = x(£s+0) and (4) follows by differentiation.
This is also geometrically obvious: x'(s) and y’(¢) are unit vectors tangent to T’
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at the same point. Thus, they either point in the same direction or they point
in opposite directions.

Using any of the above representations and differentiating twice shows that
=y". Since x’ - x’ = 1, differentiating this expression shows that x” -x’ = 0.
Thus, x” and x’ are orthogonal and x” and x’* are collinear. O

X//

It will be convenient to have a flexible notation for the curvature in the
different contexts we will use it. This is the object of the next definition.

Definition 11.6 (and notation). Given a C? curve ', which is parameterized
by length as s — x(s) and x = x(s) a point of T', we denote in three equivalent
ways the curvature of T at x = x(s),

In the first notation, Kk is the curvature of the curve I' at a point x implicitly
supposed to belong I'. In the second notation, I' is omitted. In the third notation
a particular parameterization of T, x(s), is being used. In the fourth one, x is
omitted.

The above notations create no ambiguity or contradiction, since by Propo-
sition 11.5 the curvature is independent of the Euclidean parameterization. Of
course, a smooth Jordan curve is locally a graph. More specifically:

Proposition 11.7. A C' Jordan arc T can be represented around each one of
its points xo as the graph of a C' scalar function y = f(x) such that xo =

(0, (0)) = (0,0), f'(0) =0, and
K(x0) = (0, /(0)). (11.2)

Conversely, the graph of any C' function f is a C* Jordan arc. If f is C?
the curvature of its associated Jordan curve satisfies (11.2) at each point where

£'(0) = 0.

Proof. Assume we are given a C! Jordan arc I' and an arc-length parame-
terization ¢ in a neighborhood of xg = c(sp) € I'. We assume, without loss
of generality, that sp = 0. Then we can establish a local coordinate system
with origin xo and based on the two unit vectors ¢/(0) and ¢’(0)* where the
x-axis is positive in the direction of ¢/(0). If we write c(s) = (x(s), y(s)) in this
coordinate system, then

Since da/ds(s) = c¢/(s)-¢'(0), dz/ds(0) = 1. Then the inverse function theorem
implies the existence of a C! function g and a § > 0 such that s = g(x) for
|z| < §. This means that, for |z| < J, T is represented locally by the graph of
the C* function f, where f(z) = y(g9(z)) = c(g(x)) - ¢’(0)*. To be slightly more
precise, denote the graph of f for |x| < ¢ by I'y. Since g is one-to-one, I'y is a
homeomorphic image of the open interval (—4,8) and I'y C T'. If I" is C?, then
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fis C? and f”(0) = ¢”(0) - ¢'(0). Thus, on the local coordinate system, the
coordinates of ¢”’(0) = k(xg) are (0, f”(0)).

Conversely, given a C! function f, we can consider the graph I'y of f in a
neighborhood of the origin. Then I'y is represented by ¢, where c(z) = (z, f(x)).
We may assume that f(0) = 0 and f'(0) = 0 (by a translation and rotation if
necessary). The arc-length along I" is measured by

s = [ CVIT PO,

and ds/dx = /1+ [f’(z)]2. This time there is a C! function h such that
h(s) = z and A'(s) = (1 + [f'(h(s))]?)""/2. Then T is represented by &(s) =
(h(s), f(h(s))). Short computations show that |&¢'(s)| = 1. If in addition f is
C?, then T' is C? and it is an easy check that &¢”(0) - &’ (0)* = f(0). O

Exercise 11.2. Make the above “short computations” and the “easy check”. m

11.2 The structure of the set of level lines

We saw in Chapter 5 how an image can be represented by its level sets. The
next step, with a view toward shape analysis, is the representation of an image
in terms of its level lines. We rely heavily on the implicit function theorem
to develop this representation. We begin with a two-dimensional version. The
statement here is just a slight variation on the implicit function theorem quoted
in section 1.4.

Theorem 11.8. Let u € F be a C' function such that Du(xq) # 0 at some
xo0 = (%0, y0). Let ¢ denote the unit vector in the direction (ug,uy), let j denote
the unit vector in the orthogonal direction (—uy,uy), and write x = Xo+xi+yj.
Then there is a disk D(xo,7) and a unique C* function ¢, ¢ : [-r,7] — R, such
that if x € D(xq,1), then

ulz,y) =0 <= z=¢y).
The following corollary is a global version of this local result.

Corollary 11.9. Assume that u € F is C' and let u=*(\) = {x | u(x) = A}
for X € R. If X # u(o0) and Du(x) # 0 for all x € u=1()\), then u=1()\) is a

finite union of disjoint Jordan curves.

Proof. From Theorem 11.8 we know that for each point x € u=!()) there is an
open disk D(x,r(x)) such that D(x,r(x))Nu~t(\) is a C* Jordan arc x(s) and
we can take the endpoints of the arc on dD(x,r(x)). Since A # u(o0), u=1(\)
is compact. Thus there is a finite number of points x;, ¢ = 1,...,m, such that
u™t(A\) € U~, D(xi,7(x;)). This implies that u=!()\) is a finite union of Jordan
arcs which we can parameterize by length. The rest of the proof is very intuitive
and is left to the reader. I consists of iteratively gluing the Jordan arcs until
they close up into one or several Jordan curves. O

The next theorem is one of the few results that we are going to quote rather
than prove, as we have done with the implicit function theorem.
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Figure 11.1: Level lines as representatives of the shapes present in an image.
Left: noisy binary image with two apparent shapes; right: the two longest level
lines.

Theorem 11.10 (Sard’s theorem). Let u € F N C*. Then for almost every
X in the range of u, the set u=1()\) is nonsingular, which means that for all

x € u=t(N), Du(x) # 0.
As a direct consequence of Sard’s Theorem and Corollary 11.9, we obtain:

Corollary 11.11. Let u € FNC. Then for almost every A in the range of u,
the set u=t(\) is the union of a finite set of disjoint simple closed C' curves.

The sole purpose of the next proposition is to convince the reader that the
level lines of a function provide a faithful representation of the function.

Proposition 11.12. Let w € F N C. Then u can be reconstructed from the
family of all of its level lines at nonsingular levels, along with their levels.

Proof. Let G be the closure of the union of the ranges of all level lines of u at
nonsingular levels. If x € G, then there are points x,, belonging to level lines of
some levels A, such that x,, — x. As a consequence, A\, = u(xy) — u(x). So
we get back the value of u(x).

Let now x belong to the open set G°. Let us first prove that Du(x) = 0. Assume
by contradiction that Du(x) # 0. By using the first order Taylor expansion of
u around x, one sees that for all » > 0 the connected range u(B(x,7)) must
contain some interval (u(x) — a(r), u(x) + «(r)) with a(r) — 0 as r — 0. By
Sard’s theorem some of the values in this interval are nonsingular. Thus we can
find nonsingular levels A\, — u(x) and points x, — x such that u(x,) = A,.
This implies that x € G and yields a contradiction.

Thus Du(x) = 0 on G° and wu is therefore constant on each connected compo-
nent A of G°. The value of u is then uniquely determined by the value of u on
the boundary of A. This value is known, since JA is contained in G. O
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Figure 11.2: Level lines as a complete representation of the shapes present in an
image. All level lines of the image of a sea bird for levels that are multiples of
12 are displayed. Notice that we do not need a previous smoothing to visualize
the shape structures in an image: It is sufficient to quantize the displayed levels.

11.3 Curvature of the level lines

The intrinsic local coordinates

We continue to work in R?. Consider a real-valued function w that is twice con-
tinuously differentiable in a neighborhood of xq € R2. To simplify the notation,
we will often write Du rather than Du(xg), and so on.

Definition 11.13. If the gradient Du = (ug,u,) # 0, then we establish a
local coordinate system by letting i = Du/|Du| and j = Dur/|Dul|, where
Dut = (—uy,uz). Thus, for a point x near Xo, we write X = Xo + ¢ + yj
and the local coordinates of x are (x,y). (See Figure 11.3.) Without risk of
ambiguity we shall write u(xz,y) for u(x) = u(xg + zt + yj).

Since u is C?, we can use Taylor’s formula to express u in this coordinate
system in a neighborhood of xg.

u(x) = u(z,y) = u(xo) + pr + az® + by® + cxy + O(|x|*), (11.3)

where p = u,(0,0) = |Du(xo)| > 0 and

10%u 1 Du Du
=-— =_D%u—,—=—
1= 55200 =3 u(|Du|’|Du|)(XO)’
10%u 1 _, (Dut Dut
_1 1 Du Dur 11.4
b=35,200 =3P “(|Du|’ |Du|)(X0)’ (11.4)

0?u 5 (Dut Du
= Pagy V0= D u(|Du|’|Du|)(XO)'

Exercise 11.3. Check the three above formulas. m

The implicit function theorem 11.8 ensures that in a neighborhood of x¢ the
set {x | u(x) = u(xp)} is a C? graph whose equation can be written in the
local coordinates * = ¢(y), where ¢ is a C? function in an interval I containing
y = 0. In this interval, we have u(¢(y),y) = u(xo). Differentiating this shows
that u,¢’ +uy = 0 for y € I. Since |Du(x¢)| = u;(0,0) and u,(0,0) = 0
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x3(y)

Du/|Du| =i

Figure 11.3: Intrinsic coordinates. Note that ¢”(0) > 0, so b < 0.

in our coordinate system, we obtain ¢'(0) = 0. A second differentiation of
g’ + uy = 0 yields

(g’ + Ugy) @’ + Uz + uyr’ + Uy, = 0.

Since ¢'(0) = 0, we obtain ¢”(0) = —uy,(0,0)/u;(0,0). Using the notation of
(11.4), one obtains

o(y) = —FyQ + o(y?). (11.5)

Equation (11.5) is the representation of the level line {x | u(x) = u(x¢)} in
the intrinsic coordinates at xo. Let us set |2b/p| = 1/R. If the curve is a circle,
R is the radius of this circle. More generally R is called radius of the osculatory
circle to the curve. See exercise 11.11.

We are now going to do another simple computation to determine the cur-
vature vector of the Jordan arc ¢ defined by c(y) = xo + ¢(y)é + yj near
y = 0. Recall that we denote the curvature of a curve ¢ by k(c) and the value
of this function at a point c(y) by k(c)(y).) Since in the local coordinates
c'(y) = (¢'(y),1) and ¢"(y) = (¥"(y),0), at y = 0, we have c¢’(0) = (0,1) and
c¢”(0) = (¢”(0),0), so that ¢”’(0) - ¢/(0) = 0. Using this and the expression of
the curvature in local graph coordinates (11.2) yields &(c)(0) = (¢”(0),0). We
now use (11.5) and (11.4) to write the last expression as

K(c)(0) =

1 gu(DuL DuL) Du (x0) (11.6)

| Dul |Du|’ |Du|/ | Dul

This tells us that the vectors k(c)(0) and Du(0) are collinear. Equation (11.6)
also leads to the following definition and lemma introducing a scalar curvature.

Definition 11.14. Let u be a real-valued function that is C? in a neighborhood
of a point x € R? and assume that Du(x) # 0. The curvature of u at x, denoted
by curv(u)(x), is the real number defined in the local coordinates at x by

2 2
Ugg Uy — 2Ugy Uz Uy + UyyUZ

(u2 4 u2)3/2

1
|Dul?

D*u(Dut, Dut)(x) = (0,0). (11.7)

Exercise 11.4. Check the above identity. m
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Lemma 11.15. Assume that u : R?> — R is C? in a neighborhood of a point
xg and assume that Du(xg) # 0. Let N = N(xq) be a neighborhood of x¢ in
which the iso-level set of u, {x | u(x) = u(xo)}, is a simple C? arc, which we
still denote by x = x(s). Then at every point x of this arc,

Du

m(x). (11.8)

K(x) = —curv(u)(x)

Proof. This is an immediate consequence of (11.6) and (11.7). We need only
remark that, given the hypotheses of the lemma, there is a neighborhood N of
xo such that Du(x) # 0 for x € N and such that {x | u(x) = u(x¢)} is a simple
C? arc for x € N. Then the argument we made to derive (11.6) holds for any
point x € N N {x | u(x) = u(x0)}. O
The next exercise proposes as a sanity check a verification that the curvature
thus defined is contrast invariant and rotation invariant.

Exercise 11.5. Use equation (11.7) to show that

0 ( Du 0 ( Du . ( Du
curv(u) = e (m) + 3y (W) = dlv(m). (11.9)
Use this last relation to show that curv(g(u)) = curv(u) if g is any C? function

g : R — R such that ¢g’(z) > 0 for all z € R. What happens if g’'(z) < 0 for all
x € R? Show that curv(U) = curv(u), where U(s,t) = u(z,y) and © = scos — ¢sin 0,
y =ssinf +tcosf. m

Before leaving this section, we wish to emphasize geometric aspects of the
functions we have introduced. Perhaps the most important fact is that the
curvature of a C? Jordan arc I is an intrinsic property of I'; it does not depend
on the parameterization. If x is a point on I', then the curvature vector ~(I")(x)
points toward the center of the osculating circle. Furthermore, 1/|&(I")(x)] is
the radius of this circle, so when |« (I")(x)] is large, the osculating circle is small,
and the curve is ”turning a sharp corner.”

If Du(x) # 0, then the vector Du(x) points in the direction of greatest
increase, or steepest ascent, of u at x: Following the gradient leads uphill.
The function curv(u) does not have such a clear geometric interpretation, and
it is perhaps best thought of in terms of equation (11.8): curv(u)(x) is the
coefficient of —Du(x)/|Du(x)| that yields the curvature vector k(x) of the level
curve through the point x. We cannot over emphasize the importance of the
two operators curv and Curv for the theories that follow. In addition to (11.8),
a further relation between these operators is shown in Proposition 12.8, and it
is this result that connects function smoothing with curve smoothing.

11.4 The principal curvatures of a level surface

We saw in Exercise 11.5 that curv(u) was contrast invariant. This idea will be
generalized to RY by introducing other differential operators that are contrast
invariant. These operators will be functions of the principal curvatures of the
level surfaces of u. For z € RV, z+ will denote the hyperplane {y | z-y = 0}
that is orthogonal to z. (There should be no confusion with this notation and
the same notation for z € R%. In R?, z! is a vector orthogonal to z, and the
corresponding “hyperplane” is the line {tz* | t € R}.)
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Proposition 11.16. Assume that u : RY — R is C? in a neighborhood of a
point xg and assume that Du(xo) # 0. Let g : R — R be a C? contrast change
such that ¢'(s) > 0 for all s € R. Then Dg(u(xo)) = ¢'(u(x0))Du(x¢), and
D?g(u(x0)) = ¢ (u(x0))D?u(x0), where D*u(xo) denotes the restriction of the
quadratic form D?u(xq) to the hyperplane Du(xo)*. This means, in particular,
that (1/|Du(xo)|)D?u(x0) is invariant under such a contrast change.

Proof. To simplify the notation, we will suppress the argument xg; thus, we
write Du for Du(xg), and so on. We use the notation y ® y, y € R, to denote
the linear mapping y ® y : RY — R¥ defined by (y ® y)(x) = (x-y)y. The
range of y ® y is the one-dimensional space Ry.

An application of the chain rule shows that Dg(u) = ¢'(v)Du. This im-
plies that Dut = Dg(u)*. (Recall that ¢/(s) > 0 for all s € R.) A second
differentiation shows that

D?g(u) = g (u)Du ® Du + ¢'(u) D?u.

If y € Dut, then (Du ® Du)(y) = 0 and D?g(u)(y,y) = ¢'(u)D?u(y,y). This
means that D2g(u) = ¢’(u)D?*u on Du’ = Dg(u)*, which proves the result. [J

Exercise 11.6. Taking euclidian coordinates, give the matrix of y ® y. Check the
above differentiations. m

We are now going to define locally the level surface of a smooth function
u, and for this we quote one more version of the implicit function theorem, in
arbitrary dimension V.

Theorem 11.17 (Implicit function theorem). Assume that u : RN — R
is C™ in the neighborhood of x¢ and assume that Du(xg) # 0. Write x =
X0 +y + 23, where i = Du(xo)/|Du(xo)| and'y € Du(xo)*. Then there erists a
ball B(xg, p) and a unique real-valued C™ function ¢ defined on B(xg, p) N{x |
X =X0+Yy,i-y =0} such that for every x € B(xg, p)

u(x) = u(xo) <= ¢(y) = 2.

In other words, the equation ¢(y) = z describes the set {x | u(x) = u(x0)}
near xg as the graph of a C™ function ¢. Thus, locally we have a surface passing
through xo that we call the level surface of u around xg.

We are going to use Proposition 11.16 and Theorem 11.17, first, to give a
simple intrinsic representation for the level surface of a function u around a
point xg and, second, to relate the eigenvalues of the quadratic form introduced
in Proposition 11.16 to the curvatures of lines drawn on the level surface of w.

Proposition 11.18. Assume that u : RY — R is C? in a neighborhood of
xo € RN and that p = Du(xo) # 0. Denote the eigenvalues of the restriction of
the quadratic form D?u(xq) to the hyperplane Du(xo)* by p1,...,un—1. Let
in = Du(xo)/|Du(xo)| and select i1,...,in_1 so they form an orthonormal
basis of eigenvectors of the restriction of D*u(xg) to Du(xo)t. Writex = xo+z,
where z = 2191 + - + anin =y + xnin. Then if |z] is sufficiently small, the
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function p(y) = xn that solves the equation u(y, p(y)) = u(xg) can be expressed
locally as

_1 N—-1
o =g D mat +ollyP).
=1

Proof. Assume, without loss of generality, that xo = 0 and that «(0) = 0.
Using the notation of Theorem 11.17, for x € B(0,p), u(y,zn) = 0 if and
only if p(y) = xn, and ¢ is C% in B(0, p). Furthermore, by differentiating the
expression u(y, p(y)) = 0, we see that uz, + tuzype;, = 0,4 =1,...,N — 1 for
|x| < p. In particular, uy, (0)+ugy (0)ps, (0) = 0. In the local coordinate system
we have chosen, |Du(0)| = |uz,(0)], and since Du(0) # 0, we conclude that
ug;(0)=0fori=1,...,N —1 and hence that ¢,,(0)=0fori=1,...,N — 1.
This means that the local expansion of ¢ has the form

Ply) = 3D%(0)(3,y) + oy ).

Now differentiate the relation u,, + u; @2, = 0 again to obtain

Ugiz; T Uzizy Pa; + (uwij + uwNwN‘ij)SDwi + Ugy Paiz; = 0.

Since we have just shown that ¢,,(0) = 0 for i = 1,...,N — 1, we see from
this last expression that D?u(0) +pD?p(0) = 0, where p = u,, (0) and D?u(0),
D?p(0) are the restrictions of the quadratic forms D?u(0) and D?p(0) to the
hyperplane Du(0)1. Thus we have
-1

N = 55 D2u(0)(y:y) + olly[?). (11.10)
Recall that y € Du(0)* and that y = 2141 + -+ + ony_18y_1, where the 4; are
an orthonormal basis of eigenvectors of D?(0) restricted to Du(0)*. Thus,

Nl
TN = W Z pix; + o(ly[?),
i1

which is what we wished to prove. ([

This formula reads

-1
Ty = %#1517% +o(|1]?)

if N = 2, which is just equation (11.5) with different notation. Thus, u; =
| Du|curv(u), confirming that p; = 9%u/0x2. We are now going to use our two-
dimensional analysis to give a further interpretation of the eigenvalues u; for
N > 2. We begin by considering the curve I', defined by the two equations
X = Xo + tv + znin and ¢(tv) = zy, where v is a unit vector in Du(xg)t.
Their solution in the local coordinates is ¢(tv) = xxn, whenever ¢ € R is small.
Thus, I', is a curve passing by X, drawn on the level surface of u and projecting
into a straight line of Dut. By (11.10) its equation is

-1

Ty = p(tv) = WD2u(xo)(u, v)t? + o(t?),



11.4. THE PRINCIPAL CURVATURES OF A LEVEL SURFACE 157

and its normal at xq is %. Thus the curvature vector of I',, at xq is
-1 Du(xg)
T =——_D? —_.
K’( V)(XO) |DU(X0)| U(Xo)(l/, V) |DU(X0)|

By defining x,, = |Du(xo)| " D?*u(x¢) (v, v), we have

Du(xo)

H(Fu)(xo) = —Hum7

which has the same form as equation (11.8). So the modulus of «, is equal
to the modulus of the curvature of I'), at xg. This leads us to call principal
curvatures of the level surface of u at x¢ the numbers , obtained by letting
v=t;,7=1,...,N —1, where the unit vectors 2; are an orthonormal system
of eigenvectors of D?u(xg) restricted to Du(xq)*.

Definition 11.19. Let u : R? — R be C? at xq, with Du(xq) # 0. The principal
curvatures of u at xo are the real numbers
|Du(xo)|’

Kj

where p; are the eigenvalues of D*u(xo) restricted to Du(xo)".
It follows from Proposition 11.16 that the principal curvatures are invariant
under a C? contrast change g such that ¢’(s) > 0 for all s € R.

Definition 11.20. The mean curvature of a C? function u : RV — R at xo €
RY is the sum of the principal curvatures at xqo. It is denoted by curv(u)(xo).

Note that this definition agrees with Definition 11.2 when N = 2. The next
result provides another representation for curv(u).

Proposition 11.21. The mean curvature of u is given by

curv(u) = div(|g—z|) .

Proof. Represent the matrix D?u in the coordinate system 4;, j = 1,..., N—1,
and iy = Du(x¢)/|Du(xo)|, where the i;, j = 1,..., N — 1, form a complete set
of eigenvectors of the linear mapping D?u(xg) restricted to DuL(xg). Then in
this coordinate system, D?u(xg) has the following form (illustrated for N = 5):

U1 O 0 0
0 U929 0 0 U5
D*u(xg)=|0 0 wugs O
0 0 0 Ug4 Ugs
Us1  Us2 U3 Us4  Uss

where u;, = Ug,4, (X0), and uj; = K; is the eigenvalue associated with ;. Thus,
by definition, we see that

Au 1 2u( Du Du)'

ourv(u) = Du| ~ Du [Du|’ |Du
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We also have
N
. 0 .
dw(ém - ; a_a:j(|1;);|)

1 & 1 &
= m Zuiﬂjwj - W Z quIkquuwk
j=1

k=1

Au 1 Du Du
- _ ( , ) O

Du| ~ [Du” “\|Du|’ Dy
O

With this representation, it is clear that the mean curvature has the same
invariance properties as the curvature of a C? function defined on R2. (See
Exercise 11.5.)

11.5 Exercises

Exercise 11.7. Let I" by a Jordan arc parameterized by x : [0,1] — I' and by
y :[0,1] — I". Show that x =yo f or x =yo(1l— f), where f is a continuous, strictly
increasing function that maps [0,1] onto [0,1]. Hint: x and y are one-to-one, and
since [0, 1] is compact, they are homeomorphisms. Thus, y~!(x) = f is a one-to-one
continuous mapping of [0, 1] onto itself. As an application, give a proof of Proposition
114. =

Exercise 11.8. State and prove an adaptation of Propositions 11.4 and 11.5 to a
Jordan arc. m

The curvature vector has been defined in terms of the arc length. Curves,
however, are often naturally defined in terms of other parameters. The next two
exercises develop the differential relations between an arc-length parameteriza-
tion and another parameterization.

Exercise 11.9. Assume that T' is a C? Jordan arc or curve. Let s +— x(s) be an
arc-length parameterization and let ¢ — y(t) be any other parameterization with the
property that y'(¢) # 0. Since x and y are one-to-one, we can consider the function
y (%) = ¢. Then x(s) = y(¢(s)), where (s) = t. The inverse function ¢! is given

by
szw”ur:[’www»wvwn

so we know immediately that ¢ ' is absolutely continuous with continuous derivative

equal to \/y’(t) - y'(t). Thus, we also know that ¢'(s) = |y'((s))|”*. Note that we
made a choice above by taking /y’(r) - y'(r) to be positive. This is equivalent to
assuming that x'(s) and y’((s)) point in the same direction or that ¢'(s) > 0.

(i) Show that k(s) = x"(s) = y"(¢(5))[¢(5)]* + ¥'((s))¢” (s) and deduce that

Yp(s) _ ¥ (e(s)-¥'(e(s))

—  —

N A OIIE _
o) = V@GP REON

(if) Use the results of (i) to show that

— x"(s) = 1 ey N y/(t) y,(t)
K(s) =x"(s) IO [y (t) (y (t) | |)| ,(t)|]7 (11.11)

ly’(t
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where ¢(s) = t. Show that we get the same expression for the right-hand side
of (11.11) with the assumption that ¢’(s) < 0. This shows that the curvature
vector k does not depend on the choice of parameter.

(iii) Consider the scalar function x(y) defined by k(y)(s) = k(s)-x'(s)*. Use equation
(11.11) to show that

" / 1
y (@) - [y (1)
Y = — S

ly' ()1

Note that x(y) is determined up to a sign that depends on the sign of ¢’'(s);
however, |k(y)| = || is uniquely determined. m

Exercise 11.10. Assume that I' is a Jordan arc or curve that is represented by a C*
function ¢ — x(t) with the property that x’(t) # 0. Prove that " is C*.

Exercise 11.11.

(i) Consider the arc-length parameterization of the circle with radius r centered at
the origin given by x(s) = (rcos(s/r),rsin(s/r)). Show that the length of the
curvature vector is 1/r.

(ii) Compute the scalar curvature of the graph of y = (a/2)z* at © =0. =
Exercise 11.12. Complete the proof of Corollary 11.9.

Exercise 11.13. The kinds of techniques used in this exercise are important for
work in later chapters. The exercise demonstrates that it is possible to bracket a C?
function locally with two functions that are radial and either increasing or decreasing.
We say that a function f is radial and increasing if there exists an increasing function
g : RT™ — R such that f(x) = g(|xc — x|*), xc € R®. We say that f is radial and
decreasing if g is decreasing. Let u : R?> — R be C? and assume that Du(xo) # 0.
We wish to show that for every € > 0 there exist two C? radial functions f= and £
(increasing or decreasing, depending on the situation) that satisfy the following four
conditions:

17 (x0) = ulx0) = £ (x0), (11.12)

D2 (x0) = Du(xo) = Df (x0), (11.13)

curv(f: )(xo) + %E = curv(u)(x0) = curvf (x¢) — 2;57 (11.14)
1760 + oo — xI%) < u(x) < £(x) + ofx0 — xI%). (11.15)

1. Without loss of generality, take xo = (0,0), u(0,0) = 0, and Du(xo) = (p,0),
p > 0. Then we have the Taylor expansion
u(x) = px + az® + by® + cxy + o(alc2 + 1/2)7

where a, b, and ¢ are given in (11.4). Show that for every € > 0,
2 2
pa (=S +a) 2’ +b—e)y +o(@’+y?) < ule,y) < pat(S+a)a’ +Hbre)y +ola®+y?).

2. Let f be a radial function defined by f(z,y) = g((z — x.)* 4+ y?), where g :
R* — R is C? and either increasing or decreasing. Show by expanding f at (0,0) that
2 n

fla,y) = gla?) — 2weq/ (e2)a + (2029" (€2) + ¢ (22))2” + ¢ (€2)y” + o(z® + ).

3. The idea is to construct f= and fo by matching the coefficients of the expansion
of f with the coefficients of the functions px 4 (£(c?/e) + a)x? + (b+ €)y?. There are
three cases to consider: b < 0, b =0, and b > 0. Show that in each case it is possible to
find values of z. and functions ¢ so the functions . and f~ satisfy the four condition.
Note that both z. and g depend on . Discuss the geometry for each case. m
Exercise 11.14. By computing explicitly the terms dg(u)/dx;, verify that Dg(u) =
¢'(u)Du. Similarly, verify that D?(g(u)) = ¢” (u)Du ® Du + ¢'(u)D?*u by computing
the second-order terms 9%g(u)/dx;0z;. m
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11.6 Comments and references

Calculus and differential geometry. The differential calculus of curves and
surfaces used in this chapter can be found in many books, and no doubt most
readers are familiar with this material. Nevertheless, a few references to specific
results may be useful. As a general reference on calculus, and as a specific
reference for the implicit function theorem, we suggest the text by Courant and
John [77]. (The implicit function theorem can be found on page 221 of volume
I1.) Elementary results about classical differential geometry can be found in
[262]. A statement and proof of Sard’s theorem can be found in [177].

Level lines. An introduction to the use of level lines in computer vision can be
found in [58]. A complete discussion of the definition of level lines for BV func-
tions can be found in [16]. One can decompose an image into into its level lines
at quantized levels and conversely reconstruct the image from this topographic
map. A fast algorithm, the Fast Level Set Transform (FLST) performing these
algorithms is described in [185]. Its principle is very simple: a) perform the
bilinear interpolation, b) rule out all singular levels where saddle point occur ¢)
quantize the other levels, in which the level lines are finite unions of parametric
Jordan curves. The image is then parsed into a set of parametric Jordan curves.
This set is easily ordered in a tree structure, since two Jordan level curves do
not meet. Thus either one surrounds the other one or conversely. The level lines
tree is a shape parser for the image, many level lines surrounding perceptual
shapes or parts of perceptual shapes.

Curvature. It is a well-known mathematical technique to define a set im-
plicitly as the zero set of its distance function. In case the set is a curve, one
can compute its curvature at a point x by computing the curvature curv(u)(x),
where v is a signed distance function of the curve. This yields an intrinsic for-
mula for the curvature that is not dependent on a parameterization of the curve.
The same technique has been applied in recent years as a useful numerical tool.
This started with Barles report on flame propagation [34] and was extended
by Sethian [256] and by Osher and Sethian [224] in a series of papers on the
numerical simulation of the motion of a surface by its mean curvature.



Chapter 12

The Main Curvature
Equations

The purpose of this chapter is to introduce the curvature motion PDE’s for
Jordan curves and images. Our main task is to establish a formal link between
curve evolution and image evolution. This link will be established through the
PDE formulation. The basic differential geometry used in this chapter was
thoroughly developed in Chapter 11, which must therefore be read first.

12.1 The definition of a shape and how it is
recognized

Relevant information in images has been reduced to the image level sets in
Chapter 5. By Corollary 11.9, if the image is C!, the boundary of its level sets
is a finite set Jordan curves at almost every level. Thus, shape analysis can be
led back to the study of these curves which we shall call “elementary shapes”.

Definition 12.1. We call elementary shape any C* planar Jordan curve.

The many experiments where we display level lines of digital images make
clear enough why a smoothing is necessary to restore their structure. These
experiments also show that we can in no way assimilate these level lines with
our common notion of shape as the silhouette of a physical object in full view.
Indeed, in images of a natural environment, most observed objects are partially
hidden (occluded) by other objects and often deformed by perspective. When
we observe a level line we cannot be sure that it belongs to a single object;
it may be composed of pieces of the boundaries of several objects that are
occluding each other. Shape recognition technology has therefore focused on
local methods, that is, methods that work even if a shape is not in full view
or if the visible part is distorted. As a consequence, image analysis adopts
the following principle: Shape recognition must be based on local features of the
shape’s boundary, in this case local features of the Jordan curve, and not on its
global features. If the boundary has some degree of smoothness, then these local
features are based on the derivatives of the curve, namely the tangent vector, the
curvature, and so on.

161
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Before beginning the technical aspects of this version of shape recognition, we
note that most local recognition methods involve the “salient” points of a shape,
which are the points where the curvature is zero (inflection points) and points
where the curvature has a maximum or minimum (the “corners” of the shape).
These methods reduce a shape to a finite code that consists of the coordinates
of a set of characteristic points, which are mainly corners and inflection points.
Recognition then amounts to comparing these sets of numbers.

12.2 Multiscale features and scale space

The methods we have just outlined—in fact, all non global computational shape
recognition methods—make the following two basic assumptions, neither of
which is true in practice for the rough shape data:

e The shape is a smooth Jordan curve.

e The boundary has a finite number of inflexion points and points where the
curvature has a local maximum or local minimum and this number can be
made as small as desired by smoothing.

The fact that these conditions can be obtained by properly smoothing a C*
Jordan curve was proven in 1986-87 by Gage and Hamilton [120] and Grayson
[128]. They showed that it is possible to transform a C' Jordan curve into a C*>°
Jordan curve by using the so-called intrinsic heat equation. The more precise
statement follows soon.

Before proceeding, we wish to inject a comment about notation. For con-
venience, and unless it would cause ambiguity, we will not make a distinction
between a Jordan curve I' as a subset of the plane and a function s — x(s)
such that T' = {x(s)}. As we have already done, we will speak of the Jordan
curve x. Since we will be speaking of families of Jordan curves dependent on
a parameter t > 0, we will most often denote these families by x(¢, s), where
the second variable is a parameterization of the Jordan curve. Thus, x(¢, s) has
three meanings: a family of Jordan curves, a family of functions that represent
these curves, and a particular point on one of these curves. The notation s will
be usually reserved to an arc-length parameter. Finally, everything we do in
this chapter is local—it takes place in some neighborhood of a given point. This
means we are generally speaking of Jordan arcs rather than Jordan curves.

Definition 12.2. Letx(t,s), t > 0, be a family of C? Jordan curves and assume
that for each t, s is an arc length parameterization of x(t,s). We say that x(t, s)
satisfies the intrinsic heat equation if

X 2x

%(t, s) = g?(t, s) = k(x)(t, s). (12.1)
Theorem 12.3 (Grayson). Let xo be a C' Jordan curve. By using the in-
trinsic heat equation, it is possible to evolve xq into a family of Jordan curves
x(t,s) such that x(0,s) = xo(s) and such that for every t > 0, x(t,s) is C*>
(actually analytical) and satisfies the equation (12.1). Furthermore, for every
t >0, x(t,s) has only a finite number of inflection points and curvature extrema,
and the number of these points does not increase with t. For every initial curve,
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there is a scale to such that the curve x(t,s) is convex for t > to and there is a
scale t1 such that the curve x(t, s) is a single point for t > t;.

It is time to say what we mean by “curve scale space”, or “shape scale space.”
We will refer to any process that smooths a Jordan curve and that depends
on a real parameter t. Thus a shape scale space associates with an initial
Jordan curve x(0,s) = xo(s) a family of smooth curves x(¢,s). For example,
the intrinsic heat equation eliminates spurious details of the initial shape and
retains simpler, more reliable versions of the shape, and these smoothed shapes
have finite codes. Suppose that we wish to compare two original versions of a
shape xo and x; that have been captured under different conditions of noise and
distortions. Comparing these two shapes is simply impossible. If, however, they
are smoothed to the shapes x¢(t,-) and x1 (¢, -), then it is possible to compare
the codes of xo(t,-) and x;(,-). A scale space is causal in the terminology of
vision theory if it does not introduce new features. Grayson’s theorem therefore
defines a causal scale space.

12.3 From image motion to curve motion

The intrinsic heat equation is only one example from a large family of nonlinear
equations that move curves with a curvature-dependent speed, that is, dx/0t
is a function of the curvature of the curve x. The only requirement for our
purposes is that the speed is a nondecreasing function of the magnitude of the
curvature |k(x)|.

Definition 12.4. We say that a C? function u: Rt x R? — R satisfies a cur-
vature equation if for some real-valued function g(k,t), which is nondecreasing
in k and satisfies g(0,t) =0,

0

2 (6:3) = glewrv(u)(t,x), D] Dul (£, ). (12.2)
Definition 12.5. Let x(t,s) be a family of C* Jordan curves such that for
every t > 0, s — x(t,s) is an arc-length parameterization. We say that the
functions x(t,s) satisfy a curvature equation if for some real-valued function
g(k,t) nondecreasing in k with g(0,t) =0, they satisfy

ox

3¢ (08) = 9([k(x)(2, 5)], t)n(t, ), (12.3)

where n is a unit vector in the direction of K(x).

In the preceding definition, the equation makes sense if k(x) = 0 since
then the second member is zero. As we shall see, these equations are the only
candidates to be curve or image scale spaces, and one of the main objectives
of this book is to identify which forms for g are particularly relevant for image
analysis. The above definitions are quite restrictive because they require the
curves or images to be C2. A more generally applicable definition of solutions
for these equations will be given in Chapter 19 with the introduction of viscosity
solutions. Our immediate objective is to establish the link between the motion
of an image and the motion of its level lines. This will establish the relation
between equations (12.2) and (12.3).
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12.3.1 A link between image and curve evolution

Lemma 12.6. (Definition of the “normal flow”). Suppose that (t,x) —
u(t,x) is C% in a neighborhood T x U of the point (to,xo) € R x R?, and assume
that Du(to,xo) # 0. Then there exists an open interval J centered at to, an
open disk V centered at xq, and a unique C' function x : J x V. — R? that
satisfy the following properties:

(Z) ’Lb(t,X(t,y)) = u(t07Y) and X(thy) =Y fOT all (tay) €JxV.
(14) The vectors (0x/0t)(t,y) and Du(t,x(t,y)) are collinear.
In addition, the function x satisfies the following differential equation:

G 3) =~ (1 37 ) tx(t.9)) (12.4

The trajectory t — x(t,y) is called the normal flow starting from (¢p,y).

Proof. Differentiating the relation u(t,x(t)) = 0 with respect to ¢ yields % +
Du.%—’f = 0. By multiplying this equation by the vector Du we see that %—’f is
collinear to Du if and only if (12.4) holds. Now, this relation defines x(¢) as the
solution of an ordinary differential equation, with initial condition x(0) = y.
Since u is C?, the second member of (12.4) appears to be a Lipschitz function of
(t,x) provided Du(t,x) # 0, which is ensured for (¢,x) close enough to (¢o,Xo).
Thus, by Cauchy-Lipschitz Theorem, there exists an open interval J such that
the O.D.E. (12.4) has a unique solution x(¢,y) for all y in a neighborhood of
X and t € J. [l

Proposition 12.7. Assume that the function (t,x) — u(t,x) is C? in a neigh-
borhood of (to,xo) and that Du(ty,x¢) # 0. Then u satisfies the curvature
motion equation

ou
E(t’ x) = curv(u)(t, x)|Du|(t,x) (12.5)

in a neighborhood of (to,xo) if and only if the normal parameterization of the
level lines of u passing in this neighborhood satisfies the intrinsic heat equation

(12.1),

ox

a(tay) = K)(t,X(t,y)), (126)
where k(t,x(t,y)) denotes the curvature vector of the level line of u(t) passing

by x(t,y)-

Proof. Assume first that x(t,y) satisfies (12.6). Applying (11.8) for all ¢ in a
neighborhood of ¢y to each image u(t) : x — u(t,x) yields

Du

Kk(t,x(t,y)) = —curv(u) m (t,x(t,y)).

Substituting (12.6) in this last relation we obtain

ox Du

E(t’ y) = —curv(u) Dl (t.x(t,y))
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and by the normal flow equation (12.4),

Ju Du Du
——7) (¢, x(¢ = — (¢, x(¢ .
(5 Toufe) (6 x(1:¥) = enrv(u) 5t (. x(0.)
Multiplying this equation by Du(t,x(¢,y)) yields the curvature motion equation
(12.5).
The converse statement follows exactly the same lines backwards. (|

Exercise 12.1. Write the proof of the converse statement of Proposition 12.7. =

The preceding proof is immediately adaptable to all curvature equations :

Proposition 12.8. Assume that the function (t,x) — u(t,x) is C? in a neigh-
borhood of (to,xo) and that Du(to,xo) # 0. Let g : R x RT — R be continuous

and nondecreasing with respect to k and such that g(—k,t) = —g(k,t). Then u
satisfies the curvature motion equation

ou

O (1,%) = glenrv(u)(1,), )| Dul(t, ) (127

in a neighborhood of (to,xo) if and only if the normal flow t — x(t,-) satisfies
the curvature equation

%(t,Y) = 9(|R(t,x(t7y))|)w'

(12.8)

12.3.2 Introduction to the affine curve and function equa-
tions

There are two curvature equations that are affine invariant and are therefore
particularly well suited for use in shape recognition. In their definition, for
r € R, 2'/3 stands for sign(x)|z|*/3.

Definition 12.9. The image evolution equation
ou
ot

is called affine morphological scale space (AMSS). The curve evolution equation

ox Kk(x(t,s))

() = k(x(t, ) *nt, ) (: W) (12.10)

(t,x) = (curv(u)(t,X))1/3|Du(t,x)| (12.9)

is called affine scale space (ASS).

It is clear that AMSS and ASS are equivalent in the sense of Proposition 12.8.
As one would expect from the names of these equations, they both have some
sort of affine invariance. This is the subject of the next definition, Exercises
12.3 and 12.4 and the next section.

Definition 12.10. We say that a curvature equation (E) (image evolution equa-
tion) is affine invariant, if for every linear map A with positive determinant,
there is a positive constant ¢ = ¢(A) such that (t,x) — u(t,x) is a solution of
(E) if and only if (ct, Ax) — u(ct, AX) is a solution of (E).
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12.3.3 The affine scale space as an intrinsic heat equation

Suppose that for each scale ¢, ¢ — x(t,0) is a Jordan arc (or curve) parame-
terized by o, which is not in general an arc length. As in Chapter 11, we will
denote the curvature of x by k. We wish to demonstrate a formal equivalence
between the affine scale space,

0
a—’t‘ = |k|"/3n(x), (12.11)
and an “intrinsic heat equation”
ox 0%
— = — 12.12
ot  0o?’ ( )

where o is a special parameterization called affine length. We define an affine
length parameter of a Jordan curve (or arc) to be any parameterization o — x(o)
such that

[Xoy Xoo] = 1, (12.13)
where [x,y] = x* -y. If s is an arc-length parameterization, then we have
(Definition 11.3)

T=%X, n=|k x4 ( = |HEX§|) (12.14)
K(x

We also have

9N 2
Xy = Xg %0 and X,o xss(a ) + 952 (12.15)
Thus,
3
[Xa';xa'a'] - [X57Xss](§_j) 5
and if (12.13) holds, then
0s\3
[XS7XSS](%) - 1
Since by (12.14) [xs, Xss] = sign([xs, Xss])|K|, we conclude that
Os . _
5o = (sign((xs, xs5])|)) /3, (12.16)
o

Substituting this result in the expression for x,, shown in (12.15) and writing
Xs = T, we see that

0?%s
| el1/3
xor = Il Pm ot (55 )
This tells us that equation (12.12) is equivalent to the following equation:

ax

9%s
= 1/3 _—
Er |k "n+ (802)7' (12.17)

Now it turns out that the graphs of the functions x that you get from
one time to another do not depend on the term involving 7; you could drop
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this term and get the same graphs. More precisely, Epstein and Gage [94]
have shown that the tangential component of an equation like (12.17) does not
matter as far as the geometric evolution of the curve is concerned. In fact,
the tangential term just moves points along the curve itself, and the total curve
evolution is determined by the normal term. As a consequence, equation (12.11)
is equivalent to equation (12.12) in any neighborhood that avoids an inflection
point, that is, in any neighborhood where n(x) # 0. At an inflection point,
x = 0, and the two equations give the same result.

12.4 Curvature motion in N dimensions

We consider an evolution (t,x) — u(t,x), where x € RY and u(0,-) = ug is an
initial N-dimensional image. Let r;(u)(t,x), i = 1,..., N — 1, denote the i*}
principal curvature at the point (¢,x). By definition 11.20 the mean curvature is
curv(u) = Zf;l ;. We will now define three curvature motion flow equations
in N dimensions.

Mean curvature motion. This equation is a direct translation of equation
(12.5) in N dimensions:

ou

ot
This says that the motion of a level hypersurface of u in the normal direction
is proportional to its mean curvature.

= |Dulcurv(u).

Gaussian curvature motion for convex functions. We say that a function
is convex if all of its principal curvatures have the same sign. An example of
such a function is the signed distance function to a regular convex shape. The
equation is

ou
pri | D H Ki.

The motion of a level hypersurface is proportional to the product of its principal
curvatures, which is the Gaussian curvature. As we will see in Chapter 22, this
must be modified before it can be applied to a nonconvex function.

Affine-invariant curvature motion. The equation is

o N-1 N-1
pri |Du|’ 1:[1 Ki H( Zl sign(m-)),

where H(N —1) =1, H(—N + 1) = —1, and H(n) = 0 otherwise. The motion
is similar to Gaussian curvature motion, but the affine invariance requires that
the Gaussian curvature be raised to the power 1/(N + 1). There is no motion
at a point where the principal curvatures have mixed signs. This means that
only concave or convex parts of level surfaces get move by such an equation.

1/(N+1)
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12.5 Exercises

Exercise 12.2. Check that all of the curvature equations (12.2) are contrast invariant.
That is, assuming that h is a real-valued C? increasing function defined on R and u
is C?, show that the function v defined by v(t,x) = h(u(t,x)) satisfies one of these
equations if and only if u satisfies the same equation. =

Exercise 12.3. Assume that (¢,x) — u(t,x) is a C? function and that A is a 2 x 2
matrix with positive determinant, which we denote by |A|. Define the function v by
v(t,x) = u(ct, Ax), where ¢ = |A|72/3,

(i) Prove that for each point x such that Du(x) # 0 one has the relation
curv(v)(x)|Dv(x)]* = | A’ curv(u)(Ax)| Du(Ax)[>.

(ii) Use (i) to deduce that the AMSS equation (12.9) is affine invariant, that is,
(t,x) — u(t,x) is a solution of AMSS if and only (¢,x) — v(¢,x) does. m

Exercise 12.4. This exercise is to show that the affine scale space (equation (12.10))
is affine invariant. It relies directly on results from Exercise 11.9. Let o — c(o) be a
C? curve, and assume that |¢/(¢)| > 0. Then we know from Exercise 11.9 that

k(c)(o) = ﬁ [c“(g) - (c”(a)~ c(o) ) c'(0) ] . (12.18)

|c’(o ()] ) le' (o)l

Now assume that we have a family of C? Jordan arcs (t,0) — c(t,0). By projecting
both sides of the intrinsic heat equation onto the unit vector ¢’*/|c’| and by using
(12.18), we have the following equation:

de C/J_ C// . C/J_

= 12.19
ot || le’|3 ( )
We say that c satisfies a parametric curvature equation if it satisfies equation (12.19).
In the same spirit, we say that c satisfies a parametric affine equation if for some

constant v > 0
Oc /L

_— C
ot
(i) Suppose that o = s, an arc-length parameterization of c. Show that equation
(12.19) can be written as

=~ (c" - )5, (12.20)

% = k(c) + A7,
where )\ is a real-valued function and 7 is the unit tangent vector dc/ds. (See
the remark following equation (12.17).)

(ii) Let A be a 2 x 2 matrix with positive determinant, and define the curve y by
y(t,0) = Ac(t,o). We wish to show that if ¢ satisfies a parametric affine motion,
then so does y. As a first step, show that Ax - (Ay)* = |A|x -y and hence that
A(xt) - (Ax)* = |A||x|? for any x,y € R

(iii) Show that if c satisfies equation (12.20), then y satisfies

88_); .yll — ’Y|A|2/3(y// . ylL)1/3. -

12.6 Comments and references

Our definition of shape. The Italian mathematician Renato Caccioppoli
proposed a theory of sets whose boundaries have finite length (finite Hausdorff
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measure). From his theory, it can be deduced that the boundary of a Caccioppoli
set is composed of a countable number of Jordan curves, up to a set with zero
length. This decomposition can even be made unambiguous. In other words,
the set of Jordan curves associated with a given Caccioppoli set is unique and
gives enough information to reconstruct the set [15]. This result justifies our
focus on Jordan curves as the representatives of shapes.

The role of curvature in shape analysis. After Attneave’s founding paper
[27], let us mention the thesis by G. J. Agin [4] as being one of the first refer-
ences dealing with the use of curvature for the representation and recognition
of objects in computer vision. The now-classic paper by Asada and Brady [25]
entitled “The curvature primal sketch” introduced the notion of computing a
“multiscale curvature” as a tool for object recognition. (The title is an allusion
to David Marr’s famous “raw primal sketch,” which is a set of geometric prim-
itives extracted from and representing an image.) The Asada—Brady paper led
to a long series of increasingly sophisticated attempts to represent shape from
curvature [92, 93] and to compute curvature correctly [208]. The shape recogni-
tion programme we sketched in the beginning of this chapter was anticipated in
a visionary paper by Attneave [27] and has been very recently fully developed
in the works of José Luis Lisani, Pablo Musé, Frédéric Sur, Yann Gousseau and
Frédéric Cao [211], [212], [54], [55].

Curve shortening. The mathematical study of the intrinsic heat equation
(or curvature motion in two dimensions) was done is a series of brilliant papers
in differential geometry between 1983 and 1987. We repeat a few of the titles,
which indicate the progress: There was Gage [118] and Gage [119]: “Curve
shortening makes convex curves circular.” Then there was Gage and Hamilton
[120]: “The heat equation shrinking convex plane curves.” In this paper the
authors showed that a plane convex curve became asymptotically close to a
shrinking circle. In 1987 there was the paper by Epstein and Gage [94], and, in
the same year, Grayson removed the convexity condition and finished the job
[128]: “The heat equation shrinks embedded plane curves to round points.” As
the reviewer, U. Pinkall, wrote, “This paper contains the final solution of the
long-standing curve-shortening problem for plane curves.”

The first papers that brought curve shortening (and some variations) to
image analysis were by Kimia, Tannenbaum, and Zucker [167] and by Mack-
worth and Mokhtarian [189]. Curve shortening was introduced as a way to do
a multiscale analysis of curves, which were considered as shapes extracted from
an image. In the latter paper, curve shortening was proposed as an efficient
numerical tool for multiscale shape analysis.

Affine-invariant curve shortening. Affine-invariant geometry seems to have
been founded by W. Blaschke. His three-volume work “Vorlesungen iiber Dif-
ferentialgeometrie” (1921-1929) contains definitions of affine length and affine
curvature. Curves with constant affine curvature are discussed in [190]. The
term “affine shortening” and the corresponding curve evolution equation were
introduced by Sapiro and Tannenbaum in [249]. Several mathematical proper-
ties were developed by the same authors in [250] and [251]. Angenent, Sapiro,
and Tannenbaum gave the first existence and uniqueness proof of affine short-
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ening in [21] and prove a theorem comparable to Grayson’s theorem : they
prove that a shape eventually becomes convex and thereafter evolves towards
an ellipse before collapsing.

Mean curvature motion. In his famous paper entitled “Shapes of worn
stones,” Firey proposed a model for the natural erosion of stones on a beach
[108]. He suggested that the rate of erosion of the surface of a stone was propor-
tional to the Gaussian curvature of the surface, so that areas with high Gaussian
curvature eroded faster than areas with lower curvature, and he conjectured that
the final shape was a sphere. The first attempt at a mathematical definition
of the mean curvature motion is found in Brakke [44]. Later in the book, we
will discuss the Sethian’s clever numerical implementation of the same equation
[258]. Almgren, Taylor, Wang proposed a more general formulation of mean
curvature motion that is applicable to crystal growth and, in general, to the
evolution of anisotropic solids [5].



Chapter 13

Finite Difference Schemes
for Curvature Motions

We shall consider the classical discrete representation of an image u on a grid
u;; = u(i, ), with1 <4 < N,1<j <N . Theimage is the union of the squares
centered at the points (,7), and the brightness in each square is constant and
equal u; ;. Each one of the squares is called pizel (for “picture element”).

13.1 Case of Mean curvature motion.
We start with the “Mean curvature motion” equation (M.C.M.) given by

2 2
ou Uy Ugg — 2Ug Uy Uy + UG Uy
— = |Dulcurv(u) = SR
ot u? +u

In order to discretize this equation by finite differences we shall introduce
an explicit scheme which uses a fixed stencil of 3 x 3 points to discretize the
differential operators. We denote by Ax = Ay the pixel width. From the PDE
viewpoint Az is considered as an infinitesimal length with respect to the image
scale. Thus we shall write formulas containing o(Axz). Numerically Az is equal
to 1, and the image scale ranges from 512 to 4096 and more. By the order 1
Taylor formula one can give the following discrete versions of the first derivatives
ug and u, at a point (4, j) of the grid:

VUit 5 — U1 s e s e
(Uz)ij = (wit1,5 — s 17J)+ul+173+18A1;z 141 + Uit1,j-1 — Ui-1, l—i—O(AxQ);

Qs i1 — Ui s i i i s
(uy)i,j _ (ul7]+1 Uq,j 1)+uz+l,]+18AQ;1+1,] 1+ U 1,541 Ui—1,5 1+O(AZC2);

2 2 \1
|Du; ;| = ((“w)m + (U’U)ZJ)2
Definition 13.1. A discrete scheme approzimating a differential operator is

said to be consistent if, when the grid mesh Ax tends to zero, the discrete scheme
tends to the differential operator.

171
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A A2 A3

Al | 420 | Al

A3 A2 A

Figure 13.1: A 3 x 3 stencil

Clearly the above discrete versions of the partial derivatives and of the gra-
dient of u are consistent. When |Du| # 0, we can denote by ¢ the direction
orthogonal to the gradient of u. It is easily deduced from Definition 11.14 that

| Du|curv(u) = uge.

Exercise 13.1. Show this formula. m

Defining 6 as the angle between the z direction and the gradient, we have

&= (—sinb,cos) = ( — ) Yo ), and
\/ug +u? \/ug +u?
uge = Sin®(0) Uy — 25in(6) cos(0)uzy + cos?(0)uy, . (13.1)

We would like to write ug¢ as a linear combination of the values of v on the fixed
3 x 3 stencil. Of course, the coefficients of the linear combination will depend on
&. Since the direction of ¢ is defined modulo 7, we must assume by symmetry
that the coefficients of points symmetrical with respect to the central point of
the stencil are equal (see Figure 13.1.)

In order to ensure consistency with the differential operator ug¢e, we must
find )\0, /\1, /\27 )\3, )\4, such that

1
(uge)ij = m(—‘l)\oui,g‘ + A1 (Wit1,5 + wio1,5) + A2 (i g1 + wij—1)

FA3(Wim1,-1 + Uigrj1) + Aa(Uio i1+ uigj-1)) +o((Ax)?). (13.2)
We write

Az?
Uiy = i+ Ax(ug)ij + = ()i + o((A2)%),
and the corresponding relations for the other points of the stencil. By substitut-
ing these relations into (13.2) and by using (13.1) one obtains four links between
the five coefficients, namely

A1 (0) = 2X0(0) —sin? 0

A2 (0) = 2Xo(6) — cos?

A3(0) = —/\00(9) + O.S5(Sin9C089 +1) (13.3)
Ag(0) = —Xo(0) + 0.5(—sinfcosf + 1)
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Exercise 13.2. Prove these four relations. m

Thus, one degree of freedom is left for our coefficients : we can for example
choose \o(6) as we wish. This choice will be driven by stability and geometric in-
variance requirements. Denoting by u;'; an approximation of u(iAx, jAz, nAt)
we can write our explicit scheme as

1

u T =l + At(uge)ig (13.4)
Notice that this scheme can be rewritten as u?jl = Z,lc =1 ak,lu?+k)j+l where
the ay,; satisfy Z,lé 1—_1 0k, = 1. The following obvious lemma shows a general

condition to have L°° stability in this kind of schemes.

Lemma 13.2. Let a finite difference scheme given by

1
T(uw)ig= Y Qrilitk+
ki——1

where ay,; satisfy E,lg 1—_1 0k, = 1. We say that the scheme is L*-stable if for
all 1,7,
minu(i, j) < T(u)i; < maxu(i, j).
iJ i,J

Then the scheme is L™ stable if and only if ay; > 0 for any k, 1.

Proof. If oy, > 0 for any k, 1, set min = inf; j{u; ;}, maxr = sup; j{u;;} and
take a point (7,7). Then the L stability follows from the inequality:

1 1 1

min = g o gmin < g Ok (Wit ke 41 = (T'Uz)iyj < E Qg Mmax = max
kil=—1 kil=—1 kil=—1

On the other hand, if there exists ay, ;, < 0 then choosing u and (i, j) such that
Uitko,j+lo = Min and U4k j4+; = max for any other k, [, we obtain

1
(Tw);; = E Qg MAT + Qg 1, MIN = Max + Qg 1, (Min — max) > maz,
k#ko,l1#lo

which means that the L stability is violated.
O

Following this lemma, in order to guarantee the L*> stability in the scheme
(13.4) we should seek for A\g such that Aj, Aa,A3,A4 > 0 and (1 — i’;‘;) > 0.
Unfortunately the links between these coefficients make it impossible to obtain
these relations, except for the particular values of 6 = (0, 7, 7, ...). Indeed, for
6 in [0, §],

)\1 Z )\2 and )\3 Z )\4
But
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Search of the optimal A\

0.5 T \ T \ \
0.5 — cos?(0) + cos*() —

0.45 - cos?(6)/2 — -

(1 sin(0) cos(0)) /2 —
0.4 - B

Ao(0)

0.35 |- I
0.3 - ]
0.25 : : :

Figure 13.2: The middle curve represents the choice of the function Ay of For-
mula 13.6. The upper function represents the smallest possibility for Ag(6)
securing Ao > 0 for all angles and the lower one represents the largest values
of A\g(8) securing A\4(f) > 0. Thus, it is not possible to satisfy simultaneously
both conditions. The intermediate curve is the simplest trigonometric function
which lies between these two bounds.

We cannot find \g(6) satisfying both inequalities, since

cos?(0) 1= sin(#) cos(6)
2 - 2
If we chose A\g(0) > w, A4(0) would be significantly below zero. If we took

Xo(8) < w, A2(0) would be significantly below zero. Thus we shall
choose )y somewhere between both functions, so that Ao and Ay become only
slightly negative. (see Figure 13.2.)

In addition, we can try to impose on \g the following geometrical require-
ments

s

(i). Invariance by rotation of angle

M0+ 3) = ho(6)

(ii). Purely one-dimensional diffusion in the case # = 0, 7, ...
Ao(0) = 0.5

This condition implies that A2(0) = A3(0) = A4(0) =0
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3T

(iii). Pure one-dimensional diffusion in the case 6 = T, =F, ...

/\0(%) ~0.25

This condition implies that A1 () = A2(F) = \(F) =0

(iv). Symmetry with respect to the axes i+j and i-j,

™

)\0(2 —6) = Xo(0)

We remark that by the above conditions it is enough to define the function Ao (6)
in the interval [0, 7] because it can be extended by periodicity elsewhere.

Two choices for the function A\g(f) using as basis the trigonometric poly-
nomials were tested. The first one corresponds to an average of the boundary
functions:

Nol6) = cos?(6) +1 —4sin(9)cos(9) (13.5)
As we shall see this choice is well-adapted to the “affine curvature motion”
equation. However, if we extend this function by periodicity, the extended
function is not smooth at 7. If we seek for a smooth function for Ao (f), we must
impose \j(0) = Ag(%) = 0. The trigonometric polynomial with least degree
satisfying the above conditions and lying between both boundary functions is

Mo(0)) = 0.5 — cos?(#) sin?() (13.6)

The formulas of the other \;’s are deduced using (13.3). For instance with the
above choice of Ag(#) we have

A1 (0) = cos?(0)(cos?(#) — sin?(h));
A2 (0) = sin?(0)(sin?(0) — cos?(6));
A3(0) = cos?() sin?(0) + 0.5 sin(#) cos(6);
M (0) = cos?() sin?(#) — 0.5 sin(f) cos(6).

When |Du| = 0, the direction of the gradient is unknown. Therefore the
diffusion term uee is not defined. We chose to replace this term by half the
Laplacian. (The Laplacian is equal to the sum of the two second derivatives in
orthogonal directions, whereas the diffusion term wuge is the second derivative
in just one). However, other possibilities will be considered in Section 13.6.
Summarizing, a consistent, almost L°° stable finite difference scheme for the
mean curvature motion is (iterations start with «° as initial function)

1. If |Du| > T,

At
ut =" Az (Aot g+ AL(igrj + tim1g) + Ao (Ui + tig-1)

Fn3(wio1 -1+ Uir1 1)+ na(wio1 i1+ wit1 1))
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2. Otherwise,
1 At
= 4 §A—x2(_4)\oui,j + Uit Uim1j Wi+ Ui-1)

Two parameters have to be fixed in the previous algorithm:

e The iteration step scale s:= AAJQ has to be chosen as large as possible in

order to reduce the number of iterations. However,% is a natural upper bound
for s. Indeed, consider the discrete image defined by ug ; = 0for all 4, j, except
for i = j = 0 where ug o = 1. Then the second formula yields uj, =1 —2xs.
If we want L™ stability to be ensured we must have u!(0,0) > 0, which yields

s < 1/2. Imposing this condition

(13.7)

it is an experimental observation that there is a (small with respect to 255)
€ > 0 such that for any n € IN and (4, j),

—e+ infi,j{u?,j} <u; < SuPiyj{u?,j} +e

e The threshold on the spatial gradient norm : T, has been fixed ex-
perimentally to 6 for 0 to 255 images.

Figure 13.3: Curvature motion finite difference scheme and scale calibration.
Image filtered by curvature motion at scales 1, 2, 3, 4, 5. In order to give
a sound numerical meaning to the scale, a calibration of the numerical scales
(number of iterations) is made in such a way that a disk with radius ¢ shrinks
to a point at scale t.

13.2 FDS for AMSS

We will use the ideas developed in the above section. We rewrite the AMSS
equation as
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Figure 13.4: Curvature motion finite difference scheme applied on each level set
separately, at scales 1, 2, 3, 4, 5. The processed image is then reconstructed by
the threshold superposition principle. In contrast with the same scheme directly
applied on the image, this scheme yields a fully contrast invariant smoothing.
However, a comparison with Figure 13.3 shows that the resulting images are
very close to each other. This shows that the contrast invariance is almost
achieved when applying the finite difference scheme directly on the image. The
experiment makes sense if the original image is of good quality, that is relatively
smooth and with no strong oscillations. In that case, it can be considered as
a distance function to each one of its own level sets. As we shall see in Figure
13.6, if the initial image is noisy, the difference between both methods can be
huge.

Figure 13.5: Iterated median filter with normalized scales 1, 2, 3, 4, 5. The scale
normalization permits to compare very different schemes on the same images.
Compare with Figure 13.4. The striking similarity of the results anticipates The-
orem 14.7, according to which the application of the median filter is equivalent
to a mean curvature motion.
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ou

ot
We remark that |Dul?>curv(u) = |Dul?uge where € corresponds to the direction
orthogonal to the gradient. Therefore, in order to discretize this operator, it is
enough to multiply the discretization of u¢e presented in the above section by
|Du|?. We choose \o(6) given by (13.5) because it corresponds to a trigonometric
polynomial of degree two and then multiplying it by |Dul|? the coefficients n; =
|Dul*)\;,i = 0,1,2,3,4, are polynomials of degree two with respect to u, and
uy. Indeed, we obtain for 6 € [0, 7]

= (|Du|3curv(u))% = (uium — 2Ug Uy Uy + uiuyy)% (13.8)

1
(IDulPuge)i; = N (=4nowij + m(wit1,j +wi-1,3) + m2(wij+1 + wij-1)

+n3(wic1j—1 + Wikt j+1) + Na(Wiz1 jg1 + it1,5-1)) + O(Az?)

where 79, 71,12, 73,14 are given by

no = 0.25(2u2 + u? — ugty)
n = 0.5(2u2 — ugl— Uply)
N2 = 0.5(ul — uyuy)

n3 = 0.25(ul + 3uguy)

na = 0.25(uy — uyty)

Finally, the finite difference scheme for the A.M.S.S. equation is

1

ul T =l + AL(|DuPuge)

i.J i (13.9)
We have tested this algorithm and we have noticed that in this case the condition
for the experimental stability (in the sense presented in the above subsection)

1S

At 1

= <=
Az2 — 10

Remark. The finite difference schemes presented above are consistent. Con-
trast invariance can only be obtained asymptotically by taking a very small time
step At. The experimental results presented in Figures 13.3 and 7?7 have been
obtained by using these schemes with At = 0.1 in the case of mean curvature
motion and At = 0.01 in the case of affine curvature motion. Indeed, while
experimental stability is achieved with At < 0.1, the experimental affine inva-
riance needs At < 0.05 (see Figure ?77.)

13.3 IL MANQUE UNE EXPERIENCE AMSS
SUR L’INVARIANCE AFFINE!

13.4 Numerical normalization of scale.

(or Relation between scale and the number of iterations).
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The case of the curvature motion. Setting the distance between pixels
Ax to 1, the scale achieved with N iterations is simply N x At. Now, the
scale t associated with the PDE is somewhat arbitrary : It has no geometric
meaning. In order to get it, we need a rescaling T — ¢(T") which we will call
scale normalization.

A good way to perform this scale normalization is to define the correspon-
dence t(T) as the time for which a circle with initial radius T vanishes under
curvature motion. Such a circle moves at a speed equal to its curvature, which
is the inverse of its radius. Thus have for a disk with radius R(t)

dR(t) 1

dt R{D)
which yields
1
§(R2(0) — R%(t)) = t.
Exercise 13.3. Check this relation! m

The disk disappears when R(t) = 0, that is, at scale T = R?(0)/2. This last
relation gives a scale normalization: In order to arrive at the normalized scale
T (at which any disk with radius less or equal to T' vanishes), we have to evolve
the PDE at t = NAt = T?/2. This fixes the number of needed iterations as

N =T?/2At.

The case of AMSS We can perform similar calculations. The radius of an
evolving disk satisfies

dR(t) 1
dt  R(t)s
which yields
3, a 4
7 (B3(0) = Rs (1)) =t

The disappearance time is therefore t = %R%. As for the curvature motion, we
define the normalized scale T" as the one at which a disk with radius 7" vanishes.
In order to achieve this scale T', the needed number of iterations is

3 4
N=—Ts3,
4At

Exercise 13.4. Check the last two formulas! m

13.5 Contrast invariance and the level set ex-
tension

Both schemes (M.C.M and A.M.S.S) presented above are not numerically con-
trast invariant. We have seen that a contrast operator cannot create new gray
levels (Exercise 7.22.) Now, starting with a binary image u" and applying a
scheme defined by such a formula as

u™ = w4 At(.)
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does not ensure that u"*! will be also a binary image.

A natural idea to overcome this problem is the following. Starting with a
binary image (with values 0 and 1): apply the scheme until the expected scale
is achieved, then threshold the obtained image at A = % This of course works
only for binary images. However, the level set extension (see Section 7.3) gives
us the key to extend this to general images.

The contrast invariance can be fully obtained by first applying the finite
difference scheme on each level set (considered as a binary image) separately.
Then by the superposition principle the evolved image is computed from the
evolved level sets. The procedure is the following :

Algorithm starting with an image uo and evolving it to u(t,x) by
curvature motion

For each A € [0, 255], in increasing order:

e Let va(x) be the characteristic function of Xyug. (This function is
equal to 1 inside the level set and to 0 outside.)

e Apply to vy the MCM or AMSS FDS-scheme until scale ¢. This
yields the images wy (¢, .).

e Set u(t,x) = A at each point (¢,x) where wy(¢,x) > 0.5.

13.6 Problems at extrema

For MCM and AMSS we raised the question of performing numerically the
equation when |Du| = 0. For MCM the right hand part of the equation is simply
1

not defined. For AMSS one can set by continuity as Du — 0, (|Du"|2u?£)f)j =0.
Now, numerically, this would imply that isolated black or white extrema will
not evolve by the equation. We know that this is simply wrong, since small sets
collapse by curvature motion.

In short, FDS for MCM and AMSS are not consistent with the equation
at extrema. In Figure 13.6, we added to an image a strong “salt and pepper”
noise. More than one fourth of the pixels have been given a uniform random
value in [0,255] and most of them have become local extrema. Not only these
values do not evolve but they contaminate their neighboring pixels. There are
easy ways to avoid this spurious effect :

e One can first zoom by 2 the image by duplicating pixels. This, however,
multiplies by 16 the number of computations.

e One can first remove pixels extrema with diameter k£ since they must
anyway disappear by the equation at normalized scale %

e One can use the level set method. This multiplies the number of compu-
tations by the initial number of gray-levels.

All of these solutions are efficient, as shown in Figure 13.6.
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Figure 13.6: Various implementations of curvature motion on a noisy image.
Top left : image with 40% pixels replaced by a uniform random value in [0, 255].
Top right: application of the finite difference scheme (FDS) at normalized scale
3. On the lines 2 to 4, we see various solutions to the disastrous diffusion of
extrema. On the left the image is processed at normalized scale 1 and on the
right at normalized scale 3. Second line: FDS applied on the image previously
zoomed by a factor 2; third line: FDS applied on the image after its extrema
have been ”killed” (the reference area is given by the area of the disk vanishing
at the desired scale). Fourth line: FDS applied separately on each level set and
application of the threshold superposition principle. The third scheme offers a
good speed-quality compromise.
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13.7 Conclusion

We have seen that standard finite difference schemes are easy to implement but
cannot handle properly the invariance properties satisfied by the equations.

1. There is no finite difference scheme that insures the monotonicity. This
leads to slightly oscilatory solutions.

2. No full contrast invariance. For instance FDS create new grey levels and
blur edges. Also, a spurious diffusion occurs around the image extrema.
However this last problem was dealt with efficiently in the previous section.
The full contrast invariance has been restored by the level set extension
of the numerical schemes.

3. The worst drawback of FDS is the lack of Euclidean or affine invariance
which can be only approximately obtained by grid local schemes. A much
more clever strategy to achieve full invariance is to evolve all level curves
of the image and the reconstruct it. This is the aim of Section 16.4, but
we have already seen in Chapter 4 how to evolve curves by curvature.

13.8 Comments and references

Difference schemes for the curvature motion and the AMSS The pre-
sented difference scheme follows mainly [130], improved in Alvarez et al. [14].
This scheme is somehow optimal among the rotationally invariant numerical
schemes for curvature motion and the AMSS. Now, this presentation is specific
of those two motions, while other many authors have analysed more general
nonlinear anisotropic diffusions in image processing, namely Acton [2], Kacur
and Mikula [162, ?]. Weickert and the Utrecht school [216, 278, 1, 284] ad-
dress many aspects of implementation of nonlinear scale spaces, namely speed,
parallelism and robustness. Crandall and Lions [81] also proposed a finite dif-
ference scheme for mean curvature motion, valid in any dimension. Sethian’s
book [257] explains how to implement fast the motion of a curve or surface by
the so called "level set method”, where a distance function to the curve or sur-
face is evolved. Dynamic programming allows a fast implementation (the ”fast
marching method”).



Chapter 14

Asymptotic Behavior of
SMTCII Operators,
Dimension Two

As we know by Theorem 8.15, a function operator on F is contrast and trans-
lation invariant and standard monotone if and only if it has a sup-inf, or equiv-
alently an inf-sup form

Tu(x) = inf sup u(y),

BeByex+B

where B is a standard subset of £. In case we require such operators to be
isotropic and local, it is enough to take for B any set of sets invariant by rotation
and contained in some B(0, M) by Proposition 8.11.

We will see, however, that such operators fall into a few classes when we
make them more and more local. To see this, we introduce a scale parameter
0 < h <1 and define the scaled operators T}, by

Thu(x) = inf  sup u(y).
&) BeByex+nB ¥)
We will prove that in the limit, as h tends to zero, the action of T} on smooth
functions is not as varied as one might expect given the possible sets of struc-
turing elements. As an example, we will show that if T}, is a scaled median
operator, then

Thu(x) — u(x) = h2C|Du(x)|curv(u)(x) + o(h?),

where the constant C' depends only on the function & used to define the median
operator. Thus, the operator |Du|curv(u) plays the same role for the weighted
median filters, as the Laplacian Awu does for linear operators. In short, we shall
get contrast invariant analogues of Theorem 2.2.

14.1 Asymptotic behavior theorem in R?

A simple real function will describe the asymptotic behavior of any local contrast
invariant filter.

183
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Definition 14.1. Let T be a SMTCII local operator. Consider the real function
H(s), s € R,

H(s) = Tz + sy*](0), (14.1)
where T|x + sy?] denotes “T'w with u(z,y) = x+sy?.” H is called the structure
function of T'.

Notice that u(x,y) = x + sy is not in F, so we use here the extension
described in the introduction. The function H(s) is well defined by the result
of Exercise 8.14.

Proposition 14.2. The structure function of a local SMTCII operator is non-
decreasing, Lipschitz, and satisfies for h > 0,

Tylx + sy?](0) = T [z + hsy®)(0) = hH (hs), (14.2)
Ty, [2](0) = hT'[x](0) = hH(0) (14.3)

Proof. Take T in the inf-sup form with B C B(0, M), 0 < M < 1.

Since T' is monotone, H is a nondecreasing function. Let B € B be one of the
structuring elements that define T' and write = + 5132 = = + s2y? + (51 — 52)y>.
Then

sup (z+s1y°) < sup (z + s0y?) + [0 — 51| M,
(z,y)eB (z,y)eB
since B is contained in D(0, M). By taking the infimum over B € B of both
sides and using the definition of H, we see that

H(Sl) - H(SQ) S |Sl - 52|M2.

By interchanging s; and s, in this last inequality, we deduce the Lipschitz
relation

|H(s1) — H(s2)| < |s1 — s2|M2. (14.4)
0

Theorem 14.3. Let T be a local SMTCII operator and Ty, 1 > h > 0 its scaled
versions. Call H its structure function. Then, for any C? function u: R?> — R,

Thu(x) — u(x) = hH(0)|Du(x)| + o(h?).

Proof. By Propositions 8.9, 8.11 and 8.13, we can take T' in the inf-sup form
and assume, for all B in B, that B C B(0, M) and that B is invariant under
rotations. Set p = |Du(x)|. By a suitable rotation, and since T is isotropic, we
may assume that Du(x) = (|Du(x)],0), and the first-order Taylor expansion of
u in a neighborhood of x can be written as

u(x +y) = u(x) + pr + O(x, y|*), (14.5)
where y = (z,y) and |O(x, |y|*)| < Cly|? for y € D(0, M). Hence,

u(x + hy) — u(x) < phx + Ch?ly|*> and pha < u(x + hy) — u(x) + Ch?|y|?
(14.6)
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Figure 14.1: The result of smoothing with an erosion is independent of the
curvature of the level lines. Left: image of a simple shape. Right: difference
of this image and its eroded image. Note that the width of the difference is
constant. By Theorem 14.3, all filters such that H(0) # 0 perform such an
erosion, or a dilation.

for all y € D(0, M). Since hB C D(0,hM), we see from the first inequality of
(14.6) that

sup u(x + hy) — u(x) < sup [phx] + sup Ch?|y|* = hp sup [z] + CM?h>.
yeB yeB yeB yeB

This implies that

Thu(x) —u(x) < hp éléfg;lelg[x] + CM?h?

for 0 < h < 1, and since infgep supyeB[x] = T[z](0) = H(0), we see that
Thu(x) — u(x) < hpH(0) + CM?h2.
The same argument applied to the second inequality of (14.6) shows that
hpH (0) < Thu(x) — u(x) + CM?h?,
so |Thu(x) — u(x) — hpH(0)] < CM?h2. Since p = |Du(x)|, we see that
Thu(x) — u(x) = hH(0)|Du(x)| + O(x, h?),

which proves the result in case p # 0. (I
Interpretation. Theorem 14.3 tells us that the behavior of local contrast
invariant operators T}, depends, for small h, completely on the action of T on
the test function u(z,y) = x. Assume H(0) = H(0) # 0. When h — 0, T acts
like a dilation by a disk D(0,h) if H(0) > 0 and like an erosion with D(0, h)
if H(0) < 0 (see Proposition 9.6). Thus, if H(0) # 0, there is no need to
define T with a complicated set of structuring elements. Asymptotically these
operators are either dilations or erosions, and these can be defined with a single
structuring element, namely, a disk. Exercise 14.4 gives the more general PDE
obtained when T is local but not isotropic.
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14.1.1 The asymptotic behavior of 7}, when T'[z](0) =0

If H(0) = T[z](0) = 0, then Theorem 14.3 is true but not very interesting. On
the other hand, operators for which T'[z](0) = 0 are interesting. If we consider
Tu(x) to be a kind of average of the values of u in a neighborhood of x, then
assuming that T'[z](0) = 0 makes sense. This means, however, that we must
consider the next term in the expansion of Thu; to do so we need to assume that
w is C3. This is the content of the next theorem, which is the main theoretical
result of the chapter. The proof is more involved than that of Theorem 14.3,
but at the macro level, they are similar. We start with some precise Taylor
expansion of u.

Lemma 14.4. Let u(y) be C® around some point x € R%. By using adequate
Euclidean coordinates y = (x,y), we can expand u in a neighborhood of x as

u(x + hy) = u(x) + h(pz + ahz® + bhy® + chay) + R(x, hy), (14.7)

where |R(x,hy)| < Ch? for allx € K, y € D(0,M) and 0 < h < 1.

Proof. Set p = |Du(x)|. We define the local coordinate system by taking x as
origin and Du(x) = (p,0). Relation (14.7) is nothing but a Taylor expansion
where R can be written as

R(x, hy) = ( /0 1(1 — t)2D3u(x + thy) dt) Ry,

The announced estimate follows because the function x — || D3u(x)| is contin-
uous and thus bounded on the compact set K + D(0, M). (]

Theorem 14.5. Let T be a local SMTCII operator on F whose structure func-
tion H satisfies H(0) = 0. Then for every C* function u on R?,

(1) On every compact set K C {x | Du(x) # 0},
Thu(x) — u(x) = h|Du(x)|H(%h curv(u)(x)) +O(x, B3),

where [0(x,h®)| < Cxh3 for some constant C that depends only on u
and K.

(ii) On every compact set K in R?,
|Thu(x) — u(x)| < Cich?
where the constant C, depends only on u and K.

Proof. We take T in the inf-sup form and B bounded by D(0, M) and isotropic.
Let us use the Taylor expansion (14.7). For 0 < h <1,

u(x + hy) = u(x) + h(pz + aha? + bhy? + chay) + R(x, hy),
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and so for any B € B,

sup u(x + hy) < u(x) + h sup un(z,y)] + sup [R(x, hy)|.

yeB yeB yeB
Thus,
Thu(x) < u(x) + WT[un(z,1)](0) + inf sup [R(xhy),  (148)
BeB yeB

where up(z,y) = pr + aha® + bhy? + chry and y = (z,y). Now let K be an
arbitrary compact set. From Lemma 14.4 we deduce that

Thu(x) < u(x) + hT[un(z,y)](0) + Ch? (14.9)
for all x € K. The same analysis shows that
u(x) < Thu(x) + hT [up(z,y)](0) + Ch3, (14.10)
and we conclude that
Thu(x) — u(x) = hT [up(x, y)](0) + O(x, h3) (14.11)

for all x € K where |O(x,h%)| < Cxh®. Relation (14.11) reduces the proof to
an analysis of Tup/(0).

Step 1: Estimating Tup(0). If x € K and y = (x,y) € B, then |y| < M and
pr — h(la| + [b] + [e) M? < un(z,y) < pz+ h(la] + [b] + |c[)M>.

We write this as

2 2

hM
ID*u()|| < un(z,y) < pr+ =

pr -2 ID%u(x)].
By assumption T'[z](0) = 0 (hence T[pz](0) = 0), so after applying T to the

inequalities, we see that

hM?
[T (@, y)](0)] < —— [ D*u(x)] (14.12)
This and equation (14.11) show that
h2M?
[Thu(x) — u(x)| < | D*u(x)|| + Cxh? (14.13)

2

for x € K and 0 < h < 1. This proves part (i7). Let us now prove (i). We
just recall the meaning of p and b, namely b = (1/2)curv(u)(x)|Du(x)| and
p = |Du(x)|. Those terms are the only terms appearing in the main announced
result (7). So the proof of (i) consists of getting rid of a and ¢ in the asymptotic
expansion (T'up,)(0). This elimination is performed in Steps 2 and 3.

Step 2: First reduction. We now focus on proving (i), and for this we assume
that p = |Du(x)| # 0. Define C = (|a| + |b| + |¢|)M?2. By Step 1, for every
B € B, we see that

sup up(z,y) > inf sup up(x,y) = Tlup(z,y)](0) > —Ch.
yeB BeByen
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If y = (z,y) € B and z < —2Ch/p, then
up (2, y) = px + ahz? + bhy* + chaxy < —2Ch + h(|a| + |b] + |¢|])M?* = —Ch.
Thus, if we let C' = 2C/p, then for any B € B we have

sup up(z,y) = sup un(z,y)
yeB yeBn{(z,y)|z>—C"’h}

Step 3: Second reduction. Since T[up(x,y)](0) < Ch (Step 1), it is not nec-
essary to consider sets B for which supyc g un(z,y) > Ch. If supyc g un(z,y) <
Ch, then for all (z,y) € B

px + ahx® + bhy? + chay < Ch,

and hence ) 9Ch
r < 1—9(0h+ (la| + |b] + |c|)M?R) < - C'h.
This means that we can write
Tlun(z,4)](0) inf sup A (7, ), (14.14)

 BeB,B{(z,)|e<C'h} yep
and by the result of Step 2,

Tlun(z, y)](0) = inf ). (1415
[un(z,y)](0) sesmeit oeem yeBm{(mS,Llﬁmz—cm} up(z,y).  ( )

This relation is true if we replace uy(z,y) with px + bhy? and leads directly to
the inequality

Tlun(z,y)](0) T'[pz + bhy?)(0)

<
—T— h inf sup laz? + cxy|
BeB,BC{(z,y)|v<C’h} ye Bn{(z,y)|x>—C'h}
and, by interchanging uy(x,y) and pz + bhy?, to the equation
Tlun(z,y)](0) = T[pz + bhy?](0) + &(z, y). (14.16)
The error term is
le(x, y)| < h3|a|C" + h?|c|C" M.
Step 4: Conclusion. We now return to equation (14.11),
Thu(x) — u(x) = KT {un (2, 9))(0) + O(x, h°),
and replace T[up(z,y)](0) with T'[pz + bhy?](0) + e(z,y) to obtain
Thu(x) — u(x) = hT[px + bhy?®](0) + he(z,y) + O(x, h?).
By definition H(s) = T'[z + sy?](0), so the last equation can be written as

Thu(x) — u(x) = hpH (bh/p) + he(x,y) + O(x, h?),
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or, by replacing p and b with |Du(x)| and (1/2)curv(u)(x)|Du(x)|, as
Thu(x) — u(x) = h|Du(x)|H(h%curv(u)(x)) +he(z,y) + O(x, k%), (14.17)

To finish the proof, we must examine the error term ¢ to establish a uni-
form bound on compact sets where Du(x) # 0. Thus, let K be any compact
subset of R? such that K C {x | Du(x) # 0}. For y € D(0,M) (hence
for y € B € B € B), we have |g(x,y)] < h?a|C” + h?|c||C'|M. Now,
la|C"% + |c||C’"|M is a continuous function of Du(x) and D?u(x) at each point
x where Du(x) # 0. Since u is C3, all of the functions on the right-hand side
of this relation are continuous on K. Thus there is a constant C- that depends
only on u and K such that |e(z,y)| < h?CY;. By combining and renaming the
constants Cx and C', this completes the proof of (7). O

Exercise 14.1. Returning to the meaning in the preceding proof of a, b, ¢, p and C’
in term of derivatives of u, check that |a|C"* + |¢||C’| M is, as announced, a continuous
function at each point where Du(x) # 0.

14.2 Median filters and curvature motion in R?

Recall that the median filter, Medy, defined in Chapter 10 can be written by
Proposition 10.6 as
Med =5 inf , 14.18
kulx) = sup - inf | u(y) (14.18)
where B = {B € M | |B|; = 1/2}. The first example we examine is k =
1p(0,1)/7. This function is not separable in the sense of Definition 10.7. So, by
Proposition 10.8, Med;u = Med, u and the median also has the inf-sup form
Medgu(x) = inf  sup wu(y). (14.19)
BeByex+B
From Proposition 8.11 follows that the set of structuring elements B’ = {B €
B | B C D(0,1)} generates the same median filter. Thus we assume in what
follows that B C D(0,1). There is one more point that needs to be clarified,
and we relegate it to the next exercise.
Exercise 14.2. The scaled median filter (Medy)s, h < 1, is defined by

Medg)pu(x) = inf  sup u(y). 14.20
(Meds)uux) = jnf, sup_u(y) (14.20)

At first glance, it is not clear that this is a median filter, but, in fact, it is: Show that
(Medy,)n = Medy, , where kj, = 1p(o,n)/7h°. m
The actions of median filters and comparisons of these filters with other sim-
ple filters are illustrated in Figures 14.1, 14.2, 14.4, 14.5, and 14.6. Everything
is now in place to investigate the asymptotic behavior of the scaled median filter
Medy,, , which is represented by
Medg, u(x) = inf sup u(y),
) = Jnl s u(y)
where hB = {B | |Blx, = 1/2,B C D(0,h)}. The main result of this section,
Theorem 14.7, gives an infinitesimal interpretation of this filter. We know that
the median is an SMTCII operator, and it is local in our case. The proof of the
next lemma is quite special, having no immediate generalization to R¥.
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Lemma 14.6. 5
Medy [z + s3°](0) = 3 +O(Js]?).

Proof. Represent Medy, by Medju(x) = sup{\ | x € Med; X\u}. Then
Medg [z + s3%](0) = sup{A | 0 € Med.X)[z + sy?] }.

By definition, 0 € Med,X)\[z + sy?] if and only if |X)\[z + sy?]|x > 1/2. This
implies that Medy[z + sy?](0) = m(s), where | X, (5@ + sy][x = 1/2, and this
is true if and only if the graph of z + sy? = m(s) divides D(0,1) into two sets
that have equal area. Of course, we are only considering small s, say |s| < 1/2.
The geometry of this situation is illustrated in Figure 14.3. The signed area
between the y-axis and the parabola P(s) for |y| <1 is

/ (m(s) — sy?) dy = 2m(s) — %

-1

Thus, m(s) is the proper value if and only if
m(s) — % — Area(ABE), (14.21)

where ABFE denotes the curved triangle bounded by the parabola, the circle,
and the line y = —1. This area could be computed, but it is sufficient to bound
it by Area(ABCD). The length of the base AB is |m(s) — s|, and an easy
computation shows that the length of the height BC' is less than (m(s) — s)2.
This and (14.21) imply that

< |m(s) — s[>

‘m<s> -3

From this we conclude that m(s) = s/3 + O(|s|?), which proves the lemma. [

Theorem 14.7. If u: R? — R is C2, then we have the following expansions:

(1) On every compact set K C {x | Du(x) # 0},
Medg, u(x) = u(x) + é|Du(x)|curv(u)(x)h2 +O(x,h?),

where |O(x, h?)| < Cxh® for some constant Cx that depends only on u
and K.

(ii) On every compact set K in R?,
[Medg, u(x) — u(x)| < Cxh?
where the constant Cx depends only on u and K.

Proof. We have shown (or it is immediate) that the operator T, = Medy,
satisfies all of the hypotheses of Theorem 14.5. In particular, H(0) = Med[z +
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Figure 14.2: Median filter and the curvature of level lines. Smoothing with
a median filter is related to the curvature of the level lines. Left: image of
a simple shape. Right: difference of this image with itself after it has been
smoothed by one iteration of the median filter. We see, in black, the points which
have changed. The width of the difference is proportional to the curvature, as
indicated by Theorem 14.7.

5y2](0) = 0 by Lemma 14.6. Also by Lemma 14.6, H(s) = s/3 + O(|s|®). This

means that we have
H(%h Curv(u)(x)) - %h curv(u)(x) + O(h® [eurv(u)(x)]?).

The first result is now read directly from Theorem 14.5(4). Relation (i¢) follows
immediately from Theorem 14.5(i3). O

Our second example is called the Catté—Dibos—Koepfler scheme. It involves
another application of Theorem 14.5.

Theorem 14.8. Let B be the set of all line segments of length 2 centered at the
origin of R%. Define the operators SIj, and ISy, by

STpu(x) = sup inf wu(y and ISpu(x) = inf  sup u(y).
wu(x) BchBYEX+EB ®) wu(x) BehByex+B ®)

If u:R?* - R is C? and |Du(x)| # 0, then

1 1

§(ISh + STp)u(x) = u(x) + hQZcurV(u)(x)|Du(x)| +O(h®).
Proof. The first step is to compute the action of the operators on u(z,y) =
x + sy?. Define H(s) = IS[x + sy?](0) and write (x,y) = (r cos@,rsinf). Then

H(s)= inf sup (rcosf + sr?sin? 0).
—5<0<3 —1<r<1

For s > 0 and r > 0, the function r — r cos 6 + sr?sin? 6 is increasing. Hence,

H(s) = inef (cos® + ssin®@) = s

w3
R

for sufficiently small s, say, s < 1/2. If s <0, then H(0) = 0, since

0< sup (rcosf+ sr’sin?6) < cosé.
—1<r<1
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Figure 14.3: When s is small, the parabola P(s) with equation x + sy? = m
divides D(0,1) into two components. The median value m(s) of z + sy? on
D(0,1) simply is the value m for which these two components have equal area.

If H=(s) = SI[z + sy?](0), then it is an easy check that H~(s) = —H(—s).
Thus we have

if s > 0; if s > 0;
His =5 520 d g =0 520
0, if s<O0; s, if s <O.

Thus, H(s) + H (s) = s for all small s. Since H(0) = H(0) = 0, the conclu-
sions of Theorem 14.5 apply. By applying Theorem 14.5(¢) to I.S;, and SI; and
adding, we have

(ISh + SIy)u(x) = 2u(x) + h(H + H™) (gcurv(u)(x)) + O
h2

= 2u(x) + 7curv(u)(x) +O(h?).

Dividing both sides by two gives the result. (Il

Exercise 14.3. Prove the relation H ™ (s) = —H(—s) used in the above proof. m

14.3 Exercises

Exercise 14.4. Assume that T is a local translation and contrast invariant operator,
but not necessarily isotropic. Show that
Thu(x) = u(x) + hT[Du(x) - x](0) + O(h*). m

Exercise 14.5. Let B be the set of all rectangles in the plane with length two, width
0 < 1, and centered at the origin. Define the operators I.S, and SI by

ISpu(x) = Blél}fgy:;EBu(y) and SThu(x) = BSE}IL)Byel?(gB u(y).
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(i) Let u : R*> — R be C%. Compute the expansions of ISyu(x), SIyu(x), and
(1/2)(ISh + SIp)u(x) in terms of small A > 0.

(ii) Take § = h and compute the same expansions.

(iii) Take 6 = h* and interpret the expansions for & > 0 and for « < 0. m

14.4 Comments and references

Merriman, Bence, and Osher [203] discovered, and gave some heuristic argu-
ments to prove, that a convolution of a shape with a Gaussian followed by
a threshold at 1/2 simulated the mean-curvature motion given by du/dt =
| Du|curv(u). The consistency of their arguments was checked by Mascarenhas
[200]. Barles and Georgelin [36] and Evans [97] also gave consistency proofs;
in addition, they showed that iterated weighted Gaussian median filtering con-
verges to the mean curvature motion. An extension of this result to any iterated
weighted median filter was given by Ishii in [142]. An interesting attempt to gen-
eralize this result to vector median filters was made Caselles, Sapiro, and Chung
in [65]. Catté, Dibos, and Koepfler [67] related mean curvature motion to the
classic morphological filters whose structuring elements are one-dimensional sets
oriented in all directions (see [213] and [261] regarding these filters.)

The importance of the function H in the main expansion theorem raises
the following question: Given an increasing continuous function H, are there
structuring elements B such that H(s) = infpessup(, , ep(® + sy*)? As we
have seen is this chapter, the function H(s) = s is attained by a median filter.
Pasquignon [227] has studied this question extensively and shown that all of the
functions of the form H(s) = s are possible using sets of simple structuring
elements.

The presentation of the main results of this chapter is mainly original and
was announced in the tutorials [133] and [134]. An early version of this work
appeared in [130].

Figure 14.4: Fixed point property of the discrete median filter, showing its grid-
dependence. Left: original image. Right: result of 46 iterations of the median
filter with a radius of 2. The resulting image turns out to be a fixed point of
this median filter. This is not in agreement with Theorem 14.7, which shows
that median filters move images by their curvature : The image on the right
clearly has nonzero curvatures! Yet, the discrete median filter that we have
applied here operating on a discrete image is grid-dependent and blind to small
curvatures.
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Figure 14.5: Comparing an iterated median filter and a median filter. Top-left:
original image. Top-middle: 16 iterations of the median filter with a radius 2,
Top-right: one iteration of the same median filter with a radius 8. Below each
image are the level-lines for grey levels equal to multiples of 16. This shows that
iterating a small size median filter provides more accuracy and less shape mixing
than applying a large size median filter. Compare this with the Koenderink—
Van Doorn shape smoothing and the Merriman—Bence—Osher iterated filter in
Chapter 4, in particular Figures 4.2, 4.1, and 4.4.
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Figure 14.6: Consistency of the median filter and of the Catté—Dibos—Koepfler
numerical scheme. Top row: the sea bird image and its level lines for all levels
equal to multiples of 12. Second row: a median filter on a disk with radius 2 has
been iterated twice. Third row: an inf-sup and then a sup-inf filter based on
segments have been applied. On the right: the corresponding level lines of the
results, which, according to the theoretical results (Theorems 14.7 and 14.8),
must have moved at a speed proportional to their curvature. The results are
very close. This yields a cross validation of two very different numerical schemes
that implement curvature-motion based smoothing.
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Chapter 15

Asymptotic Behavior in
Dimension N

We are going to generalize to N dimensions the asymptotic results of Chapter
14. Our aim is to show that the action of any local SMTCII operator, when
properly scaled, is a motion of the N-dimensional image that is controlled by its
principal curvatures. In particular, we will relate the median filter to the mean
curvature of the level surface.

15.1 Asymptotic behavior theorem in RY

Let u : RV — R be C? and assume that Du(x) # 0. Then we denote the vector
whose terms are the N — 1 principal curvatures of the level surface {y | u(y) =
u(x)} that passes through x by k(u)(x) = k(u) = (kz2,...,&n). The terms
ki (u)(x)|Du(x)| are then the eigenvalues of the restriction of D?u(x) to Du(x)*.
(See Definition 11.19.) For x € RV, we write x = (z,y2,...,yn) = (2,Y),
y € R¥~! and in the same way s = (s2,...,5n).

Theorem 15.1. Let T be a local SMTCII operator. Define
H(s) = T[z + say3 + - - + snyx](0). (15.1)
Then for every C® function u : RN — R,
(1) Thu(x) = u(x) + hH(0)|Du(x)| + O(x, h?);
(#9) If H(0) = 0, then on every compact set K contained in {x | Du(x) # 0}

Thu(x) = u(x) + hH <h%n(u)(x)> | Du(x)| + O(x, h*)

where |O(x, h3)| < Cxh?;
i13) If H(0) = 0, then on every compact set K C RV,
Y
|Thu(x) — u(x)| < Crh?,

where Ck denotes some constant that depends only on u and K.

197
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Proof. The proof is the same as the proof of Theorems 14.3 and 14.5. We
simply have to relate the notation used for the N-dimensional case to that used
in the two-dimensional case. We begin by assuming that Du(x) # 0. We then
establish the local coordinate system at x defined by 41 = Du(x)/|Du(x) and
i2,...,4n, Where 4o,...,4y are the eigenvectors of the restriction of D?u(x)
to the hyperplane Du(x)*. Then in a neighborhood of x we can expand u as
follows:

ux+y)=ux)+pr+ ax’® + bgyg 4t bNszv + (c-y)z+ R(x,y), (15.2)

where y = 21 + y2t2 + - + ynin, p = |Du(x)| > 0, and for j =2,..., N,

o= 1040 = L Dtuo i),
bj = %%(X) - %D%(X)(ijaij% (15.3)
= o) = DAul)ini).
We can also write b; as
by = 5 Du(x) s () (x). (15.4)

For the proof of (i), we write u(x +y) = u(x) + pz + O(x, [y|?) and just
follow the steps of the proof of Theorem 15.1. The proof of (i) and (iii) fol-
lows, step by step, the proof of Theorem 14.5. We need only make the following
identifications: czy < (c-y)z, by? < boys +---+bny%;, and curv(u) < x(u). O

15.2 Asymptotic behavior of median filters in
RN

The action of median filtering in three dimensions is illustrated in Figures 15.1
and 15.2. The median filters we consider will be defined in terms of a continuous
weight function k : RY — [0, 4+00) that is radial, k(x) = k(|x|), and that is
normalized, [,y k(x)dx = 1. Recall that, by definition,

|B|;€:/Bk(x)dx.

We also assume that k is nonseparable, which is the case if {x | k(x) > 0}
is connected. Then by Proposition 10.8, Medju = Med, v and the median
operator can defined by

Mediu(x) = inf sup u(y). 15.5
k() \B|k:1/2y€XIE)FB ) ( )

Define the scaled weight function ky, 0 < h < 1, by kun(x) = h=Vk(x/h).
Then a change of variable shows that |B|; = 1/2 if and only if |hB|;, = 1/2,
and this implies that (Medg), = Medy, (see Exercise 14.2). Since we consider
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Figure 15.1: Three-dimensional median filter. The original three-dimensional
image (not shown) is of 20 slices of a vertebra. Three successive slices are
displayed in the left column. The next column shows their level lines (multiples
of 20). The third column shows these three slices after one iteration of the
median filter based on the three-dimensional ball of radius two. The resulting
level lines are shown in the last column.

only one weight function at a time, there should be no confusion if we write
Medy, for the scaled operator.

We analyzed the asymptotic behavior of a median filter in R? whose weight
function was the characteristic function of the unit disk in Chapter 14. This
proof can be generalized to RY by taking k to be the normalized characteristic
function of the unit ball. We will go in a different direction by taking smooth
weight functions. Our analysis will not be as general as possible because this
would be needlessly complicated. The k we consider will be smooth (C*°) and
have compact support. This means that the considered median filters are local.
Thus, the results of Theorem 15.1 apply, provided we get an estimate near 0 of
the structure function H of the median filter.

Lemma 15.2. Let k be a nonnegative radial function belonging to the Schwartz
class §. Assume that fRN k(x)dx =1 and that the support of k is connected in
RY. Then the structure function of Medy, H(hb) = Medy[z + h(bay2 + --- +
bny%)](0) can be expressed as

N

H(hb) = hex (Y b ) + O(2),

Jj=2
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where
_ Jrva u3k(y) dy
fRN—l k(y)dy ’

y=(y2,...,yn), and b = (ba,...,bn).

Ck

Proof. Before beginning the proof, note that we have not assumed that k has
compact support, so the result applies to the Gaussian, for example.

We will use the abbreviation b(y,y) = bay3 + - - - + byy3,, since b is, in fact,
a diagonal matrix. Our proof is based on an analysis of the function f(\, h) =
|Xx(z + hb(y,y))|k. Since Xx(z + hb(y,y)) = {(z,¥) | = + hb(y,y) > A}, we
can express f as an integral,

FOuR) = / / k(e,y) de dy.
RN-1 Jx—nb(y,y)

It follows from the assumption that k is in the Schwartz class that f : R? —
R is bounded and C*°. Also, for every h € R, limy_,_ f(A,h) = 1 and
limy— oo f(A, h) = 0. Thus, for every h € R, there is at least one A such that
f(A h) = 1/2. In fact, there is only one such A; this is a consequence of the
assumption that the k is continuous and that its support is connected, which
implies that it is nonseparable (see Exercise 10.5). To see that A is unique,
assume that there are A < ) such that f(A\, k) =1/2 and f(\,h) =1/2. Then
the two sets {(z,y) | z + hb(y,y) > X'} and {(x,y) | x + hb(y,y) < A} both
have k-measure 1/2, but their intersection is empty. This contradicts the fact
that k is nonseparable. This means that the relation f(\ h) = 1/2 defines
implicitly a well-defined function h — A(h).

Recall that Medy, was originally defined in terms of the superposition formula

Medgu(x) = sup{\ | x € MedyX\u}.
This translates for our case into the relation
Medg [z + hb(y,y)](0) = sup{\ | 0 € MedXx[z + hb(y,y)]} = A(h)

because 0 € Med, X[z + hb(y,y)] if and only if |Xy[x + hb(y,y)]|x > 1/2.
We are interested in the behavior of h +— A(h) near the origin. The first
thing to note is that A(0) = 0. To see this, write
o 1
RY-1 JA(0)

Since k is radial, the value A = 0 solves the equation [py_, [, k(z,y)dzdy =
1/2. We have just shown that this equation has a unique solution, so A(0) = 0.
Now consider the first partial derivatives of f:

e == [ By 4y 3) ) dy, (15.6)

G = [ by k(- iblyy)? vy ) ay. as)
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Figure 15.2: Median filtering of a three-dimensional image. The first image is
a representation of the horizontal slices of a three-dimensional level surface of
the three-dimensional image of a vertebra. Right to left, top to bottom: 1, 2,
5, 10, 20, 30, 60, 100 iterations of a three-dimensional median filter based on a
ball with radius three. This scheme is a possible implementation of the mean
curvature motion, originally proposed as such by Merriman, Bence and Osher.

These functions are C* because k is in the Schwartz class; also, (0.f/9X)(0,0) #
0. Then by the implicit function theorem, we know that the function h — A(h)
that satisfies f(A(h),h) = 1/2 is also C*° and that

of of

X(h)a()\(h), h) + %()\(h), h) =0.
Thus, for small A, o %(/\(h% .
M) b

and, using equations (15.6) and(15.7), we see that

_ Jax b y)E((y - y)'/?) dy
Jon o k(-2 dy

X(0)

o~

Now expand A for small h:
A(h) = A0) + X (0)h + O(h?).

Since fpn-1 by, ¥)k((yy)V/2) dy = (05" b5) fan— v3k((yy)/2) dy, H(hb) =
A(h), and A(0) = 0, this proves the lemma. O

Theorem 15.3. Let k be a nonnegative radial function belonging to the Schwartz
class S. Assume that jﬁN k(y)dy = 1 and that the support of k is compact and
connected. Then for every C3 function u: RY — R:
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(i) On every compact set K C {x | Du(x) # 0},

N
Medpu(x) = u(x) + hzéck(z /@i(u)(x)) |Du(x)| + O(x, h%),

i=2
where |O(x, h?)| < Cxh® for some constant that depends only on u and
K.

(ii) On every compact set K C RN, |Medju(x) — u(x)| < Ckh? for some
constant Ci that depends only on u and K.

Proof. Theorem 15.1 is directly applicable. We know from Lemma 15.2 that
H(0) = 0, so we can read (i7) directly from Theorem 15.1(4i7). By Lemma 15.2,

N

H(hk(u)) = hck(z m(u)|Du|) +O(h?).

=2

From this and Theorem 15.1(i¢), we get
1 N
_ 22 , 3
Medpu(x) = u(x) + h 5Ck ( 222 m(u)(x)) |Du(x)| + O(x, h°),

and we know that the estimate is uniform on any compact set K C {x | Du(x) #

0}.

15.3 Exercises : other motions by the principal
curvatures

This section contains several applications of Theorem 15.1 in three dimensions.
A level surface of a C? function in three dimensions has two principal curvatures,
and this provides an extra degree of freedom for constructing contrast-invariant
operators based on curvature motion. We develop the applications in three
exercises. For each case, we will assume that the principal curvatures x; and ko
are ordered so that k1 < ko. In each example, the set of structuring elements
B is constructed from a single set B in R? by rotating B in all possible ways,
that is, B={RB | B € R?* R € SO(3)}. For each example we write

SThu(x) = su inf  w

) = sup il u(y)

and

ISpu(x) = inf  sup u(y),

BEByex+hB

where 0 < h < 1.

Exercise 15.1. Let B be a segment of length 2 centered at the origin. Our aim is to
show that

ISpu = u + hQ%Kf(u)wm + O(h?),

SThu=u+ h2%ff;(u)|Du| + O,
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This implies
1
ISpu+ SIhu=u+ hzi(sign(m (u)) + sign (k2 (u))) min(|r1 (u)], |k2(uw)]) + O(h?).

(i) The first step is to compute H(hb). One way to do this is to write z = rsin ¢,
y2 = rcos¢cosl, ys = rcos ¢ cos b, and use an argument similar to that given in
the proof of Theorem 14.8 to show that, for a fixed § and small h, the “inf-sup”
of

rsin ¢ + hbar? cos? ¢0052 0 + hbsr? cos® ¢ cos? 0

always occurs at ¢ = 0. Then H(hb) = hH(b) and

H(b) = inf sup (bays + bsy3) = inf sup 7°(ba cos® O + bz sin® 0).
BeByep 0 o<r<i

Deduce that b2 < 0 or b3 < 0 implies H(b) = 0 and that 0 < b < bs implies
H(b) = bs.
(ii) Since H(0) = 0, deduce from Theorem 15.1 that

ISpu(x) = u(x) + hzémf (u)(x)| Du(x)| + O(R®). (15.8)

Exercise 15.2. Let B be the union of two symmetric points (1,0,0) and (—1,0,0).
Use the techniques of Exercise 11.2 to show that

IShu = u + h2% min{r1 (u), k2 (u) Y Du| + O(h%);
SThu=mu+ h2% max{r1(u), k2(u)}|Du| + O(h*);

1
ISy + SThu=u + h2§(m(u) + ko (u))|Du| + O(R?).

The last formula shows that the operator 1.5, 4+ S involves the mean curvature of u
at x. m

Exercise 15.3. Let B consist of two orthogonal segments of length two centered at
the origin.

(i) Show that

K1 (u) + K2 (u)
2

K1 (u) + K2 (u)
2

+
IShu:u—i—hQ%( )" 1Dul + O(h%);

1 —_
Shu=u+ 03 ) IDul +O?).
(ii) Show that you can get the mean curvature by simply taking B to be the four end-
points of the orthogonal segments. Check that another possibility for obtaining
the mean curvature is to alternate these operators or to add them. m

15.4 Comments and references

The references for this chapter are essentially the same as those for Chapter 14.
The main theorem on the asymptotic behavior of morphological filters was first
stated and proved in [133] and [134]. The examples developed in Exercises 15.1,
15.2, and 15.3 have not been published elsewhere. The consistency of Gaussian
smoothing followed by thresholding and mean-curvature motion was proved in
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increasing mathematical sophistication and generality by Merriman, Bence, and
Osher [203], Mascarenhas [200], Barles and Georgelin [36], and Evans [97]. Our
presentation is slightly more general than the ones cited because we allow any
nonnegative weight function in the Schwartz class. The most general result was
given by Ishii in [142].



Chapter 16

Affine-Invariant
Mathematical Morphology

In Chapter 9, we introduced a class of simple set and function operators called
erosions and dilations. These operators were defined by a single structuring set.
They are contrast invariant and translation invariant, but they are not affine
invariant. In this chapter, we introduce set operators, also called erosions and
dilations, that are affine invariant.

Our interest in affine-invariant smoothing, like our interest in contrast- and
translation-invariant smoothing, is based on practical considerations. When we
take a photograph of a plane image, say, a painting, the image is projected onto
the focal plane of the camera. If the camera is an ideal pin-hole device, then
this is a projective transformation where the center of projection is the pin hole.
In any case, it approximates a projective transformation. If we are far removed
from the plane of the painting, then the focal plane of the camera approximates
the plane at infinity, and the transformation looks like an affine transformation.
For a more common example, we note that most digital cameras, copy machines,
fax machines, and scanners introduce a slight affine distortion. Thus, we would
like the smoothing to be affine invariant so it is “blind” to any deformations
introduced by these processes. It would be nice to have a smoothing that is
invariant under the full projective group, but we will see later (Chapter 22)
that this is not possible.

16.1 Affine invariance

Isometries, by definition, preserve the distance between points, and hence, pre-
serve the angle between vectors. In a finite dimensional space RY, any isometry
can be represented by x — Ax + a, where A is an orthogonal matrix and a is a
fixed vector. These transformations include all of the rigid motions of R™ plus
reflections. Classical Euclidean geometry in R? is concerned with the objects
that are invariant under these transformations. If we loosen the requirement
that the matrix A be orthogonal and assume only that it is nonsingular, then
we have generalized Euclidean motions to affine motions, and the distance be-
tween points is no longer an invariant. However, there are affine invariants, and
the most important from our point of view is that parallel lines are mapped

205
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S

p—

Figure 16.1: A rectangle seen from far enough has its sides roughly parallel and
looks like a parallelogram. Thus affine invariance is a particular instance of
projective invariance.

into parallel lines and finite points are mapped into finite points. Furthermore,
if the determinant of A is one, |A| = 1, then the transformation preserves area:
Unit squares are mapped into parallelograms whose area is one. Note, however,
that the parallelograms can be arbitrarily long.

If we jump to projective geometry and the projective plane, then parallel
lines are not necessarily preserved. Thus, affine transformations are a special
class of projective transformations. This means that affine geometry can be
considered a generalization of Euclidian geometry or a specialization of projec-
tive geometry. Incidentally, this is the view taken in classical Chinese drawing,
which tends always to display scenes as seen from a distance and to maintain
parallelism.

16.2 Affine-invariant erosions and dilations

Everything in this chapter will take place in R? so the following definition is
given for R2. The group of all linear affine transformations A : R? — R? with
determinant one, |A| = 1, is called the special linear group; it is often denoted
by SL(R?).

Our goal is to define erosions and dilations that are invariant under SL(R?).
Any attempt to do so using Euclidean distance is doomed to failure, since the
distances between points are not affine invariant. It is thus necessary to base
the definition of affine-invariant erosions and dilations on some affine invariant,
and the most obvious one to use is area. This leads to the notion of the affine-
invariant distance between a point and a set. We begin with the definition of a
chord-arc set.
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Definition 16.1. Let X be a subset of R? and let A be a straight line in R2.
Any connected component of X \ A = X N A€ is called a chord-arc set defined
by X and A.

Exercise 16.1. Chord-arc sets take their name from the case where X is a disk, in
which case a chord-arc set is called a segment. What are the chord-arc sets if (i) X is
an open disk and (ii) X is a closed disk? What is the situation when X is a closed arc
of a circle or a closed segment of a disk? =

Exercise 16.2. Suppose that x € (X)° N A. Show that there are two, and only two,

chord-arc sets defined by (X )¢ = (X°)° and A that contain x in their boundary. (Note

that we are assuming that (X)¢#0.) =

We are interested first in some special chord-arc sets that will be used to
define the affine distance from a point x to a set X. From Exercise 16.2, we
know that there are only two chord-arc sets defined by (X)¢ and A that contain
X in their boundary, if X # R2. In this case, we call these two sets C A (x, A, X)

and CAy(x, A, X), and we order them so that
area(C'A;(x,A, X)) < area(CAs(x, A, X)).

Definition 16.2. Let X be a subset of R? and let x be an arbitrary point in
R2. We define the affine distance from x to X to be

i(x,X) = iIAlf[area(C'Al (x,A, X)]V2 if x € (X)¢ and 5(x, X) = 0 otherwise.
(See Figure 16.2.)

The power 1/2 is taken so that § has the “dimension” of a distance. Notice
that §(x, X) can be infinite: Take X convex and compact and x ¢ X. Then all
chord-arc sets defined by a straight line A through x have infinite area. Notice
also that §(x, () = +oo and §(x, R?) = 0.

Definition 16.3. The affine a-dilation D, and the affine a-erosion &, are set
operators defined for X C R? by

DX = {x|6(x,X) < a'/?} and E,X = {x| d(x, X¢) > a'/?}.
They are extended to M(S2) by the standard extension (Definition 7.1.)

Exercise 16.3. Check that D,R? = £,R? = R2. Show that £,X = (ﬁaXc)c. (Recall
Exercise 8.1(ii).) This relation shows that eroding a set and dilating its complement
yield complementary sets. This is a useful symmetry, since the same shape can appear
as an upper level set or as the complement of an upper level set, depending on whether
it is darker or lighter than the background. m

The names we have used for the operators 5~a and f)a are not standard
nomenclature in mathematical morphology. Indeed, in mathematical morphol-
ogy, a dilation must commute with set union and an erosion is expected to
commute with set intersection. It is easy to check that c‘:'a and 15@ do not satisfy
these properties.! Nevertheless, we will use these names. There should be no
confusion, and these operators are natural generalizations of the corresponding
Euclidean erosions and dilations discussed in Chapter 9.

1We thank Michel Schmitt for pointing this out to us.
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CAl(x, X. A)

Figure 16.2: Affine distance to a set.

Exercise 16.4. Prove the above statements, that a standard erosion commutes with
set intersection, a standard dilation commutes with set union. Give examples showing
that this commutation is no more true with affine dilation or erosion. m

Proposition 16.4. £, and D, are monotone and _affine-invariant. More pre-
cisely, for every linear map A such that |A| > 0, EA = AE‘A‘ 1o and D,A =

AD|A|71a. In particular, E,A = AE, and D,A = AD, if |Al = 1.

Proof. If X C'Y C R?, then it is easily seen from the definitions that §(x,Y) <
d(x, X) for every x € R2 It then follows from the definition of D, that D, X C
D,Y. Hence, D, is monotone. The monotonicity of &, follows directly from the
relation £,X — (D X°)e.

The transformation A preserves the topological properties of the configura-
tion determined by x, X, and A and multiplies all areas by |A|. This implies
that 0(Ax, AX) = |A|1/25(x X). Tt follows from the definition of D, that
D, AX = AD‘A‘ 1,X. Thus D,A = AD|A| 14. The result for &, follows from

the result for D, and the relations AX¢ = (AX)® and £, X = (D,X°)°. The
extension of this relation to subsets of RQ U {oo} is straightforward, since we
have set Aco = oo. O

The next proposition shows that it is equivalent to erode a set or its interior,
and to dilate a set or its closure.

Proposition 16.5. For any X C_RQ, E.X = E,X° and D, X = D, X, where
X° denotes the interior of X and X denotes the closure of X.

Proof. We will first prove the result about &,. Since &, is monotone, £, X° C
E.X. Now, x € &X if and only if §(x,X¢) > a'/2. By the definition,
i(x,Y) = 5(x Y), sox € £,X if and only if §(x, X¢) > a'/2. Since X¢ = (X°)°,
this means that d(x,(X°)°) > a'/2, which proves that x € £,X°. That
DX = D, X follows from the two identities £, X = (Da X )¢ and ((X¢)°)¢ = X.
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Figure 16.3: An affine structuring element: All lines through 0 divide B into sev-
eral connected components. The two of them which contain 0 in their boundary
have area larger or equal to b.

O

This result means in particular that affine erosion erases all boundary points.
It is easy to check that the affine erosion processes independently connected
components of a set. This is the object of the next exercise.
Exercise 16.5. Let X7, i € I, be the connected components of X°. Then the E.X?
are disjoint and £, X° = Uie] E. XS

Lemma 16.6. g'a and ba are standard monotone.

Proof. We have to check five properties, but the three first items of Definition
7.3 are obvious. Let X C R? be bounded. Then gaX C X also is bounded.
Assume now that X¢ is bounded. Then X D B(0, R)¢ for some R > 0. It is
easily checked that &,(B(0, R)¢) = B(0, R)°. Thus &,(X) D B(0, R)°. We con-
clude that &, is standard monotone. By Proposition 7.5 its dual operator D,
also is standard monotone. (]

Definition 16.7. A set B is called an affine structuring element if B is open
and connected and if §(0, B¢) > 1. We denote the set of all affine structuring
elements by Bag.

Exercise 16.6. If A is a linear transformation and B an affine structuring element,
check that §(0, (AB)¢) = (0, AB®) = |A|*/25(0, B®). Deduce that ABag = Bag for all
A€ SL(R?). m

TX = U m(X—Y)Z{X|X+BCXf0rsomeBeB},
BeBYyeB
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where B = {X | 0 € TX}. The task reduces to characterizing the set of
structuring elements B. We know that 0 € £ X if and only if £,X # 0 and
6(0,X°) > a'/2, and this, and the results stated above, lead to the following
definition.

Proposition 16.8. B; = a%Baff is a standard set of structuring elements for
Ea. Thus for every set X C R2,

EX = U ﬂ (X—y):{x|X+a1/2BCXforsomeB€Baﬁ}.
BeBast yea'/2B

Proof. &, is translation invariant and standard monotone. Thus we can apply
Matheron Theorem 8.2. The canonical set of structuring elements of &, is

Bo={B|& 50} ={B|50,B% > az.}.

Then By = a8, ¢# is the subset of elements in By which are open and connected.
By Proposition 8.4 we only need to show that every element By in By contains
some element B of B;. Let us choose for B; the open connected component
of 0 in By. For every line A passing by 0, CA;1(0, A, Bf) is a connected open
set contained in By \ A. Thus it is also contained in B; \ A. This implies that
CA1(0,A,Bf) 2 CA1(0,A, BS) and, by taking the infimum of the areas of these
sets, that 6(0, B§) > 6(0, B) > a2.

O

Remark 16.9. An alternative way to prove the above proposition is the follow-
ing. By Proposition 16.5 and the result of Ezercise 16.5 we know that

gaBo = gaBg = Uielga [(BS)Z] )

where (Bg); are the open connected components of B5. Now one of them (By); =
By is the open connected component containing 0. Thus E,By 3 0« E,B1 2 0.

Let us give a more practical characterization for the affine structuring ele-
ments, which follows immediately from Definitions 16.2 and 16.7.

Proposition 16.10. A set B is an affine structuring element if it is open,
connected, and contains the origin, and if for some b > 1 and for every straight
line A through the origin, the two connected components of B\ A that contain
the origin in their boundary each have area greater than some number b > 1.
(See Figure 16.3.)

It is easy to see that &, is not upper semicontinuous on L. &, sends a closed
disk on an open disk and therefore doesn’t map £ into itself. As for Dy, it is not
known whether it is upper semicontinuous or not and this is a good question!
All the same we can define a stack filter for D, or &, by the superposition
principle. Thus we set for u € F,

Dau(x) =sup{A € R | x € D,(Xru)};
Eau(x) = sup{\ € R | x € &,(Xu)}

and we call them respectively affine function dilation and affine function erosion.
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Proposition 16.11. The affine function dilation and erosion are translation
invariant, contrast invariant and standard monotone from F to F. In addition
they are affine invariant. Finally the commutation almost everywhere holds:

X (Dau) = Do (Xyu) and X\(Equ) = E,(Xyu), (16.1)
almost everywhere for almost every A € R.

Proof. Since f)a and 5~a are standard monotone and translation invariant, this
is a direct application of Theorem 7.16. Since the set operators are not upper
semicontinuous, there is no chance to get a full commutation with thresholds.
However, the commutation with thresholds almost everywhere holds by Propo-
sition 8.18. (|
Let us finally point out that the affine function erosion and dilation are dual of
each other.

Proposition 16.12. Foru € F, E;u = —D,(—u).

Proof. We wish to use the duality relations between &, and D, and the super-
position principle. This leads us to deal with upper level sets of —u which are
lower level sets of u. Thus we will need the following relations,

Xy (—u) C (X_xteu) and (16.2)
(X,)\Jrs(—u))c C Xr_cu, (163)
for € > 0. We then have
~ (16.2) ~ cae. [~ c
X3(=Da(—u) C [Xrse(Da(-w))| ™ [Dens(-u)]
5. 16.3) - .
deié‘a &, (X_,\+8(—u))c ( C ) 5,1(X>\_5u) a.c. XA_E(E,IU),

where the a.e. relations are true for every A and almost every € > 0 by the
commutation with thresholds almost everywhere (16.1). By using the relation
Xov = NesoXr_ov with v = E,u, we obtain X)\(—Da(—u)) - XA(Eau) almost
everywhere for almost every A. By taking ¢ < 0 it is easily checked that all
inclusions in the above argument reverse. Thus almost all level sets of E,u and
—f)a(—u) are equal almost everywhere. By Corollary 8.17 and its consequence
in Exercise 8.7 this implies that E,u and —f)a(—u) coincide almost everywhere.
Since in addition these functions belong to F and are therefore continuous, they
coincide everywhere.

O

Exercise 16.7. Prove the relations (16.2) and (16.3) used in the proof of Proposition
16.12. m

16.3 Principles for an algorithm

This section won’t give an explicit algorithm for performing affine erosions or
dilations, but rather a general principle from which algorithms can be derived.
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A

Figure 16.4: Tllustration for Proposition 16.13.

Since D, is obtained by duality from &, we’ll focus on the implementation of
affine erosion. Since as we shall see a curve will be split into convex parts to
apply the erosion, we can restrict ourselves to the case where X is convex.

The intuitive idea is that £, X could be obtained from X by removing all
chord-arc sets C defined by X and A that have area less than or equal to a,
but this is not quite true. A simple example is given by taking for X the open
disk D(0,1). Removing all chord-arc sets with area less than or equal to a < %
will leave a closed disk D(0,r), whereas £,D(0, 1) is the open disk D(0,r). We
need only make a small modification. If C' is a chord-arc set defined by X and
A, we define C* by C* = C U (CNA).

Proposition 16.13. Assume that X is an open, conver and bounded subset of
R2. Then £,X can be obtained from X by removing all of the modified chord
arc sets C* with area less than or equal to a.

Proof. Let C be any chord-arc set defined by X and a line A such that
area(C) < a. Then we claim that x € C* implies that d(x, X¢) < a'/2. To
see this, let A’ be the line parallel to A that contains x. The lines A and A’
each define two open half-planes, which we denote by R and L and R’ and L.
Without loss of generality, we may assume that A’ C R, or equivalently, that
A C L. (See Figure 16.4.)

Consider the sets C'A;(x,A’, X¢), i = 1,2. These are the connected compo-
nents of R2\ (X<UA’) = (X¢)°N(A’)¢ = X°\ A’ that contain x in their bound-
aries. One of these sets, say, CA;(x,A’, X¢) isin RNR'. Now CA;(x,A’, X°)N
C # (), since both sets contain x. This means that CA;(x, A’, X¢) U C is con-
nected, and since C' was a maximal connected set in X \ A we conclude that
CA;1(x,A’, X¢) C C. Thus the area of CA;(x,A’, X€) is less than or equal to
a, 50 0(x, X¢) <a'/?, and x ¢ EX.

For the converse, we must show that if a point was eroded, then it had
to have been in a set C*, where C' is a chord-arc set with area less than or
equal to a. Our proof uses a result that we prove in the next exercise 16.10,
namely, that if 6(z, X¢) < a'/2, then there is a line A that contains x such that
§(z, X¢) = [area(C)]'/2, where C' is a chord-arc set defined by X and A. Then
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for this C, x € C* and area(C) < a. O

16.4 Affine Plane Curve Evolution Scheme.

Curve evolution applied to image level lines also yields an image evolution.
Osher and Sethian proposed in order to simulate the evolution of a surface
by the curvature motion by evolving its distance function by a finite difference
scheme of the curvature motion. This strategy is quite well justified in dimension
3 but less in dimension 2 where level lines are simple Jordan curves. One can
instead extract all level lines of the image and compute their evolution by the
affine shortening. Each curve will be numerically represented as a polygon. The
affine shortening is numerically defined as an alternate filter, which alternates
affine erosion and affine dilation with a small parameter a.

16.4.1 A fast algorithm

The affine erosion of a set X is not simple to compute, because it is a strongly
non local process. However, if X is convex, it has been shown in [205] that it
can be exactly computed in linear time. In practice, ¢ will be a polygon and the
exact affine erosion of X —whose boundary is made of straight segments and
pieces of hyperbolae— is not really needed ; numerically, a good approximation
by a new polygon is enough. Now the point is that we can approximate the
alternate affine erosion and dilation of X by computing the affine erosion of
each conver or concave component of ¢, provided that the erosion/dilation area
is small enough.

The algorithm consists in the iteration of a four-steps process :

1. Break the curve into convex or concave parts. This operation
permits to apply the affine erosion to convex pieces of curves, which is
much faster (the complexity is linear) and can be done simply in a discrete
way. The main numerical issue is to take into account the finite precision
of the computer in order to avoid spurious (small and almost straight)
convex components.

2. Sample each component. At this stage, points are removed or added in
order to guarantee an optimal representation of the curve that is preserved
by step 3.

3. Apply discrete an affine erosion to each component.

4. Concatenate the pieces of curves obtained at step 3. This way,
we obtain a new closed curve on which the whole process can be applied
again.

The curve has to be broken at points where the sign of the determinant

d; = [Pi—1P;, PiPiqq]
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changes. Numerically, we use the formula

di = (xi — 1) Wir1 — ¥i) — ¥ — Yi—1)(Tip1 — 23) (16.4)

Since we are interested in the sign of d;, we must be careful because the finite
numerical precision of the computer can make this sign wrong. Let us introduce
the relative precision of the computer

g0 = max{zx >0, (1.0®z) ©1.0 = 0.0}. (16.5)

In this definition, & (resp. ©) represent the computer addition (resp. substrac-
tion), which is not associative. When computing d; using (16.4), the computer
gives a result d; such that |d; — d;| < e;, with

ei = €o ( |zi — i1 [(|yira| + |9il) + (@il + |zim1 D Yyiv1 — vil
+ Y = yical(@iga | + |zi]) + (yil + |yi-1Dlzips — @i ) :

In practice, we take ¢ a little bit larger than its theoretical value to overcome
other possible errors (in particular, errors in the computation of e;). For four-
bytes C float numbers, we use g = 10~7, whereas the theoretical value (that can
be checked experimentally using (16.5)) is g = 272 ~ 5.96 10~8. For eight-
bytes C double numbers, the correct value would be g9 = 27%3 ~ 1.11 10716

The algorithm that breaks the polygonal curve into convex components con-
sists in the iteration of the following decision rule :

1. If |JZ| < e;, then remove P; (which means that to new polygon to be
considered from this point is PyPy...P,—1 Piqt1...Py—1)

2. If |CL‘+1| S €it1, then remove PiJrl

3. If d; and CZH_l have opposite signs, then the middle of P;, P;y; is an inflex-
ion point where the curve must be broken

4. If d~l and d~i+1 have the same sign, then increment ¢

This operation is performed until the whole curve has been visited. The
result is a chained (looping) list of convex pieces of curves.

e Sampling

At this stage, we add or remove points from each polygonal curve in order to
ensure that the Euclidean distance between two successive points lies between
¢ and 2¢ (¢ being the absolute space precision parameter of the algorithm).

e Discrete affine erosion
This is the main step of the algorithm : compute quickly an approximation
of the affine erosion of scale o of the whole curve.

The first step is the computation of the “area” A; of each convex component
Ci=PlP]..P]

n—1»

given by

{ngijvpg‘PijJrl
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Then, the effective area used to compute the affine erosion is
o
Oc = max{—,minAj} .
8 J

We restrict the erosion area to o. (which is less than o in general) because
the simplified algorithm for affine erosion (based on the breaking of the initial
curve into convex components) may give a bad estimation of the continuous
affine erosion+dilation when the area of one component is less than the erosion
parameter. The term ¢/8 is rather arbitrary and guarantees an upper bound
to the number of iterations required to achieve the final scale.

Once o, is computed, the discrete erosion of each component is defined as
the sequence of middle points of all segments [AB] such that

1. A and B lie on the polygonal curve
2. A or B is a vertex of the polygonal curve
3. the area enclosed by [AB] and the polygonal curve is equal to o,

These points are easily computed by keeping in memory and updating the points
A and B of the curve plus the associated chord area.

Notice that if the convex component is not closed (which is the case if the
initial curve is not convex), its endpoints are kept.

Figure 16.5: Affine scale space of a “hand” curve, performed with the alternate
affine erosion-dilation scheme. (scales 1, 20, 400). Experiment : Lionel Moisan.

e Iteration of the process
To iterate the process, we use the fact that if E, denotes the affine erosion
plus dilation operator of area o, and h = (h;) is a subdivision of the interval

[0,H] with H =T/w and w = % (%)2/3, then as we are going to show further,

E(hl—h0)3/2 ] E(hg—h1)3/2 0...0 E(hn—hn,l)fm (CQ) — CrT

as |h| = max; hi+1 — h; — 0, where ¢ is the affine shortening of ¢y up to scale
T, described by the evolution equation (12.11). We refer to Chapters 18 and 20
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for a proof of the equivalence between this affine invariant curve evolution and
the above iterated alternate affine erosion-dilation scheme.

¢ Comments

The algorithm takes a curve (closed or not) as input, and produces an output
curve representing the affine shortening of the input curve (it can be empty if
the curve has disappeared) . The parameters are

e T’ the scale to which the input curve must be smoothed

e ¢, the relative spacial precision at which the curve must be numerically
represented (between 107> and 10~2 when using four bytes C float num-
bers).

e 7, the minimum number of iterations required to compute the affine short-
ening (it seems that n ~ 5 is a good choice). From n, the erosion area o
used in step 3 is computed with the formula

'T4/3
0'2/3 = 7(1 .

n

Notice that thanks to the o/8 lower bound for o, the effective number of
iterations cannot exceed 4n.

e R, the radius of a disk containing the input curve, used to obtain homoge-
neous results when processing simultaneously several curves. The absolute
precision € used at step 2 is defined by € = Re,.

The algorithm has linear complexity in time and memory, and its stability
is ensured by the fact that each new curve is obtained as the set of the middle
points of some particular chords of the initial curve, defined themselves by an
integration process (an area computation). Hence, no derivation or curvature
computation appears in the algorithm.

16.5 Exercises

Exercise 16.8. The aim of this exercise is to prove that a one-to-one mapping A
R? — R? that preserves parallelism must be of the form A(x) = Ax + b, where A is
a linear mapping and b is a fixed vector. The preservation of parallelism is defined as
follows: If any four points x1, x2, X3, and X4 satis~fy X1 — Xg = )\(3{3 — x4) for some
A € R, then there exists a 1 € R such that Ax; — Axs = u(Axs — Axy).

(i) Let ¢ and j be the usual orthonormal basis for R? and write x = x4+ yj. Define
A by Ax = Ax — A0. Show that there are two real function p; : R — R, i = 1,2,
such that A(zi) = p1(z)As and A(yg) = p2(y)Aj.

Notice that A preserves parallelism and that A0 = 0.

Show that Ax = p1(z)As + p2(y)Aj.

Show that g1 (A\) = p2(X).

We wish to show that u1(z) = z. One way to do this is to prove that u; : R — R
is an isomorphism. This can be done using the fact that x1 — x2 = A(x3 — x4)
implies that Ax; — Ax2 = u(Axs — Ax4). Once you have shown that 1 : R — R

is an isomorphism, you can quote the result that says any isomorphism of R onto
itself must be x — x, or you can prove this result. m
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Exercise 16.9. A justification of the main step of Moisan’s algorithm. We refer to
the ”discrete affine erosion” step of the Moisan algorithm described in Section 16.4.1.
It is said that a polygon approximating a the affine erosion of a convex set can be
obtained by finding many chord-arc sets and taking the middle points of their chords
as vertices of the eroded polygon. This follows from the fact that the chords of two
nearby chord-arc sets with same area tend to meet at their common middle point.

1. Let abed be a quadrilateral with diagonals ac and bd. Let ¢ be the crossing point
of ac and bd. Assume that the areas of the triangles abi and icd are equal and
that a and c are fixed points while b and d move in such a way that d — ¢ and
b — a. Prove that the lengths [ial, |ib], |ic|, |id| all tend to @ Hint: to do so,

0.lid|?
2

prove that the area of the triangle idc is equivalent to , where 6 is the

angle of id with ic.

2. Let C be a convex Jordan curve surrounding a convex set X and let A be a
straight line meeting C at a and ¢. Call C'A one of the two chord-arc sets defined
by A and C. Let b be a point close to ¢ on C and d a point close to ¢ chosen in
such a way that the chord-arc CA’ defined by the line A’ = bd and C has the
same area as C'A. Apply the result of the first question with b — a.

3. Deduce from this and Proposition 16.13 that the Moisan algorithm computes
an approximation to an affine erosion of a polygon.

Exercise 16.10. Assume that X is convex, open and bounded. We refer to Figure
16.6 below for the definitions of the various objects. Thus, A(0) is an arbitrary line
that contains x and C(0) is the connected component of X \ A(0) on the arrow-side
of A(0) whose boundary contains x. C(y) is the connected component of X \ A(p)
on the arrow-side of A(yp) whose boundary contains x. Since X is open, there is an
r > 0 such that the disk D(z, ) is contained in X; since X is assumed to be bounded,
there is an R > 0 such that X C D(z, R).

C(0,9) Ao
@

D(x,r) AO)

Figure 16.6: Definition of C'(0, ). The set C(0, ¢) is the connected component
of X\ (A(0) UA(yp)) that lies in the direction of the arrows.

(i) Show that C(0,¢) C C(0) and C(0,¢) C C(p).

(ii) Show that area(C(0) N C(0,¢)¢) — 0 as ¢ — 0 and similarly that area(C(¢p) N
C(0,¢)¢) = 0 as ¢ — 0.
(iii) Deduce that area(C(p)) — area(C(0)) as ¢ — 0.

This shows that area(C/(y)) is a continuous function of . Thus, the inf () area(C/(¢))
is attained, which means that for every x € X there is some ¢ such that d(x, X°) =
[area(C(0))]'/2.

Is the above result still true if X is not convex? m
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16.6 Comments and references

Shape-recognition algorithms in the plane are clearly more robust if they are
affine invariant, if only because most optical devices that copy plane images
(photocopiers) or that convert plane images to digital information (scanners,
faxes) create a slight affine distortion. Also, all diffeomorphisms are locally
affine. Affine-invariant techniques for matching shapes are described in [154];
discussions of the role of affine and projective invariance for object recognition
can be found in [43], [285], and [164]. Corners and T-junctions can appear in
images with arbitrary angles, and the detection of angles between straight lines
should be affine invariant. Algorithms for affine-detection of angles are proposed
n [41], [13], [275], and [90]. See Merriman, Bence, and Osher [204] for a very
original numerical view for filtering multiple junctions. Because of the relevance
to computer vision, there has been considerable research devoted to looking for
affine-invariant definitions of classical concepts in geometric measure theory
and integral geometry. An interesting attempt to define an “affine-invariant
length” and an “affine-invariant dimension” analogous to Hausdorff lengths and
dimensions is given in [91]. The diameters of the sets of a Hausdorff covering
are simply replaced by their areas. Several attempts to define affine-invariant
analyses of discrete sets of points are described in [121] and [247]. An affine-
invariant symmetry set (skeleton) for shapes is defined in [123]; the 1/3 power
law of planar motion perception and generation is related to affine invariance in
[233]. Some of the techniques on affine erosions and dilations presented in this
chapter were announced in [186]. We have made liberal use of the Matheron
formalism for monotone set operators [202].

The fully invariant affine curve evolution geometric algorithm which we pre-
sented was found by Moisan [205]. Its implementation for all level lines of an
image was realized in Koepfler [?]. Cao and Moisan [?] have generalized this
curve evolution approach to curvature motions at arbitrary speed of the curva-
ture. They succeeded in numerically moving curves at velocities proportional
to the power 10 of curvature. Lisani et al. [186] and later Cao, Gousseau, Sur
and Musé [?] have used the affine curve evolution scheme for shape recognition
and image comparison algorithms.



Chapter 17

Localizable Structuring
Elements and the Local
Maximum Principle

Given a set of structuring elements B, the scaled operators IS, defined by

ISpu(x) = inf vl u(y)
are immediately translation invariant and contrast invariant. Furthermore, if
the elements of B are uniformly bounded, then the operators satisfy an impor-
tant local property that we have not yet emphasized: If two functions u and v
are such that u(y) < v(y) for all y in some disk D(x,r), then for sufficiently
small h, hB € D(0,r), and ISpu(x) < IS)v(x). This is a special case of the
local mazimum principle, which for bounded structuring elements goes almost
un-noticed. It might seem at first glance that we would not have a local max-
imum principle if the structuring elements were not bounded. It turns out,
however, that for a large class of unbounded structuring elements, the opera-
tors ISy, behave as if they were local operators—in the sense that they satisfy a
local maximum principle. For example, if the operators IS}, are affine invariant,
then the affine-invariant structuring elements B cannot be bounded. Indeed,
affine invariance allows an element B € B to be stretched arbitrarily far in any

direction: The matrix A = (6 198), where ¢ is small, followed by a rotation,

does the job. Nevertheless, there are affine-invariant operators that satisfy a
local maximum principle. In particular, we will show that this is the case for
B = B.g. In general, the application of operators that satisfy this property
involves an error term:

ISpu(x) < ISpu(x) + o(h?).

We are going to define a property of structuring elements B called local-
izability, and even though B may contain arbitrarily large elements, or even
unbounded elements, if it is localizable, then the inf-sup operators defined by B
will satisfy a local maximum principle. The importance of the local maximum
principle for our program will become clear in the chapter on viscosity solu-
tions. Since our focus is on affine-invariant operators, we will apply the concept
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of localizability only to families of affine-invariant structuring elements, but the
reader should keep in mind that concept is applicable to other situations. For
example, the structuring elements associated with a median filter defined by a
k that does not have compact support, are unbounded, but they may be local-
izable. A case in point is the Gaussian: It does not have compact support, but
it can be shown that the structuring elements are localizable.

17.1 Localizable sets of structuring elements

Recall that the Euclidean distance d between a point x and a set Y is defined
by
d(x,Y) = inf |x—y|
(x,Y) = dnf |x — ]

It will be convenient to use the following notation: D(0, p) will denote the open
disk (or ball) {x | |x| < p}, and D, will denote the dilation operator defined by

D,(X)={x|d(x,X) <a}.

In the notation of Chapter 9, this means that D, = D,, where the structuring
element for D, is D(0,1). Note that if X is open and connected, then D,(X)
is open and connected. We will write X to denote the boundary of X. These
definitions and notation are used to define the concept of a set of structuring
elements being localizable.

For convenience, we introduce two set operators:

e Co[X] = the connected component of X that contains the origin.

° Cg [X] = the connected component of X that contains the origin in its boundary.

The set X will always be open and either contain the origin or contain the origin
in its boundary. Note that these operators commute with scaling: For example,
Co[hX] = hCo[X]. Note also that these operators are monotone.

Definition 17.1. Let o > 0 be a positive constant. Assume that B is a set of
structuring elements whose members are open and contain the origin. B is said
to be a-localizable if there are two constants ¢ > 0 and R > 0, where ¢ and R
depend on B, such that for every p > R the following conditions holds: For each
B € B, there is a B’ € B such that

(i) B" < D(0, p);
(ii) B' C Dgjpe(Co[By]), where B, = BN D(0,p).

The constant « is called the exponent of localizability.

We wish to emphasize that our definition of localizable includes the as-
sumption that the elements of B are open and contain the origin. Note also
that a localizable set B contains bounded members. Also, it may happen that
Co[D¢p (Co[Bp]) N D(0, p)] is itself a member of B for all B € B; indeed, the
proof of Proposition 13.4 shows that this is the case if B = Bag. The next result
shows how the concept of localizability scales.
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Proposition 17.2. Let h, 0 < h < 1, be a scaling factor and assume the
notation of Definition 13.1. A set of structuring elements B is a-localizable if
and only if there are constants ¢ > 0 and R > 0 such that for all r > 0 and all
h < r/R the following conditions holds: For each B € hB, there is a B' € hB
such that

(i) B" C D(0,r);
(ii") B' C Depatrjra(ColBy]), where B, = BN D(0,7).

Proof. Assume the conditions of the proposition. Then r/R > 1 for all r > R.
Since h can be any number in the range 0 < h < r/R, the conditions of the
proposition are true for h = 1. By letting p = r, we have the conditions of
Definition 13.1.

To prove that the conditions of Definition 13.1 imply the conditions of the
proposition, let p = r/h. Then the statement “all p > R” is equivalent to the
statement “all 7 > 0 and all < r/R.” Next, we need to see how D/, (X)
scales:

hD.jpe(X) = {hx | d(x, X) < ¢/p”}
= {hx | d(hx,hX) < ch/p®}
= {y | d(y,hX) < ch/p*}
= Denjpe (hX).

If X = Co[B,], then hD/,0 (Co[B,]) = Depatijra(Co[hB,]), where hB, = B,. In
other words, B’ € D,y (Co[B,]) implies that hB" € Dpat1/pa(Co[Br]), which
shows that (i¢) implies (i7'). O

We will use Definition 13.1 and its scaled version, Proposition 13.1, to prove
two results: The first is that if B is localizable, then the IS} satisfy the local
maximum principle; the second is that B,g is 1-localizable.

17.2 The local maximum principle

While the notion of a-localizability has an important role in mathematical mor-
phology, we are concerned in this book only with the 1-localizabable families of
structuring elements. Thus, from this point, we assume that a = 1 and leave
the general cases as exercises.

Lemma 17.3 (local maximum principle). Let B be a 1-localizable set of
structuring elements with the associated constants ¢ > 0 and R > 0. Assume
that the functions u and v satisfy a Lipschitz condition on a disk D(x,r) with
Lipschitz constant L. If u(y) < v(y) fory € D(x,r) and if h < r/R, then

2 2
IShu(x) < ISpv(x) + Lch— and SThu(x) < STpv(x) + Lch—.
r r

Proof. For notational convenience, we take x = 0. Then

I1S,v(0) = inf supw > inf su v > inf su u(y).
©) BehB‘ye% ®) BEhByeBﬂE(O,r) ®) BEhByeBmg(O,r) ®)

(17.1)
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By Proposition 13.2, for all B € hBB, there exists B’ € hl8 such that B’ C D(0,r)
and B’ C D.p2/-(Co[B N D(0,r)]). Thus, since u is Lipschitz with constant L
and since for every point b € B’ there is a point b € BN D(0,r) such that
|b' — b| < ch?/r, we have
h2
sup  u(y) > sup u(y) — Le—. (17.2)
YeBND(0,r) yeB’ r

These last two inequalities imply that

2

h
I Le— > inf
Spv(0) + Le i Blghls‘ ;gg/ u(y),

where B’ is any set such that B’ € h3, B’ C D(0,7), and B’ C Dp2,(Co[B N
D(0,7)]). If we denote the family of all such sets B’ associated with B by
B’ = B'(B), then a more precise statement is that

2

h
I1S,v(0) + Le— > inf (su sup u )
h ( ) r BehB B/e%/ ng' (y)

Letinfpeppi (supB/eB/ SUpyep u(y)) = A. Then we claim that inf peps supye g u(y) <

A. To see this, let € > 0 be arbitrary. By the definition of A, there is some set
B € hB such that supycpu(y) < A +e. Thus, infpenssupycp u(y) < A +e,
which, since ¢ is arbitrary, implies that infpepssupycp u(y) < A. This yields

the result: )

h
= ] < e
IShu(x) Blél}fs yg;]iBu(y) < ISpu(x) + Le .

The result for ST, follows from the relation —I.Sy(—u) = STj,(u). O

Note that the proof for IS, does not use the fact that v is locally Lipschitz.
In fact, the proof works for any v. The problem with this is that we would not
have the result for SI; if we did not assume that v is locally Lipschitz. Also,
taking x = 0 in the proof is indeed only a notational convenience; knowing that
the assumptions hold at x does not imply they hold elsewhere. Thus, as stated,
the result of Lemma 13.3 is strictly local.

Lemma 13.3 and the next lemma provide the links between the localizability
of structuring elements and the local properties of the associated operators. As
such, they lie near the heart of our program. Their use is the key to demon-
strating the asymptotic behavior of inf-sup operators defined by 1-localizable
families of affine-invariant structuring elements. The local maximum principle
is also used in the proof of the Barles—Souganidis theorem, Proposition 15.13,
which is essential for relating the inf-sup operators to their associated PDEs via
viscosity solutions of the PDEs.

Exercise 17.1. Prove the general form of Lemma 13.3: Replace the hypothesis that
B is 1-localizable with the hypothesis that it is a-localizable and conclude that

a+1

IShu(x) < ISpv(x) + Le L]

re

Lemma 13.3 compares the action of 1.5, on two functions v and v. In the
next lemma, we consider an operator IS} that approximates I.S; and examine
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its action on a single function u. The approximate operator 1.5} is defined by
truncating the structuring elements 3: We replace the family B with the family
B, ={B, | B, =BnD(0,r),B € B}. Thus,

ISju(x) = inf sup u(y)= inf sup u(y)
" Br€hBr yex+B, BehBye(x+B)ND(X,r)
The local properties of 1.5} have been imposed by definition. Later, when we
apply this result, we will take » = h'/2, so the error term will be Leh3/2.

Lemma 17.4 (localization lemma). Let B be a 1-localizable set of structuring
elements with constants ¢ > 0 and R > 0 and assume that h < r/R. If u satisfies
a Lipschitz condition in D(x,r) with constant L, then

(i) 1Stu(x) < ISpu(x) < ISyu(x) + Leh?/r;

(i4) 1ISju(x) — ISyu(x)| < Lch?/r:

(4ii) |STTu(x) — SIhu(x)| < Leh?/r.

(iv) |STFIS;u(x) — SILISpu(x)| < 2Lch?/r, if u is L-Lipschitz on RN

Proof. By taking v = v in inequality (17.1), we see that ISpu(x) > IS} u(x).
This half of (7) does not depend on u being Lipschitz on D(x,r), but the other
half of (i) does depend on u being Lipschitz on D(x,r). To prove the other half
of (i), we are going to follow the proof of Lemma 13.3, including the notational
convenience that x = 0. In particular, we use the 1-localizability of B to establish
the inequality
h2
sup  u(y) > sup u(y)+ Le—,

YeBND(0,r) yeB’ r

which is (17.2). The remainder of the proof shows that

2
ISju(x) + Lch— > ISpu(x),
r

and this proves the other half of (7).

Inequality (i) is just a restatement of (7). Inequality (iii) is deduced from
(#4) by using the relation IS,(—u) = —SIpu. To prove (iv), first recall from
Lemma 6.5 that if u is Lipschitz with constant L, then ISju and ISju are
Lipschitz with constants no greater than L. By (i) and (iii) we have

ISpu(x) < ISpu(x) < IShu(x) + Leh? /rs (17.3)
SIiu(x) < SThu(x) < STiu(x) + Leh? /r. (17.4)

Replacing u with ISpu in (17.4) and applying SI} to (17.3) shows that
SIFISiu(x) < SInISpu(x) < SIFIShu(x) + 2Lch?/r,
which proves (iv). O

The statements and proofs of Lemmas 13.3 and 13.4 are strictly local. There
are, however, immediate global generalizations, and since these more general
results are important for later applications, we give them a precise statement
for future reference.
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Lemma 17.5. Let K be an arbitrary set and assume that the function v and v
in Lemmas 13.8, 13.4(i), 13.4(ii), and 18.4(iii) are L-Lipschitz in D(x,r) for
every x € K. Then the results of these lemmas are true uniformly for x € K.

These uniform results need no special proofs. One merely rereads the proofs
of the local lemmas and notes that, if the same hypotheses hold at each point
x € K, then the results are true for each x with exactly the same error term.
When we apply Lemma 13.5, K will be compact, but clearly this is not a
necessary condition for the lemma.

The next result is a direct consequence of Lemma 13.3. It allows us to fix
an optimal relation between the localization scale  and the operator scale h.
Again, it is a local result that can easily be made uniform.

Lemma 17.6. Let B be a 1-localizable set of structuring elements with constants
c>0and R > 0. Let u and v be two continuous functions that satisfy Lipschitz
conditions with the same constant L on a disk D(0,r). If

u(x) — v(x)| < Clxf’
for x € D(0,7), and if h <12 and h < 1/R?, then
|1S,u(0) — 1S,v(0)| < (C + Le)h®/2.

Proof. The relation v(x) — Cr® < u(x) < v(x)+Cr3 is true for all x € D(0, ),
so we can apply Lemma 13.3 and conclude that

h? h?
ISpv(0) — Cr® — Le— < ISpu(0) < ISKv(0) + Cr3 + Le—

for h < r/R. This argument is also true for 0 < s < r, if we have h < s/R. So,
in particular, if we take s = h'/2 < r and h < s/R, that is, h < 1/R?, we have

ISpv(0) — Ch*/? — Leh3/? < 1S,u(0) < ISKv(0) + Ch*/% + Leh3/2,
which proves the result. O

Here, we have taken the point of view that  is given, and we ask that h = 2.
In other situation, we may take the opposite view and ask that r be determined
by h. This is the case, for example, if we are able to choose the size of r for the
localized operator IS}.

The main application of Lemma 13.4 is to reduce the asymptotic analysis
of the operator IS, as h — 0 to the case where it is applied to quadratic
polynomials. (We have seen in Chapters 10 and 11 how this kind of analysis
works in the case of structuring elements that are bounded and isotropic.)

17.3 B.g is 1-localizable

We are going to prove that B,g is 1-localizable, but to make things as transparent
as possible, we first do some geometry. Thus, consider Figure 17.1.

We are interested in the area of D./,([0, z]) N D(0, p) N A°. This is the area
of the figure ABCD. In what follows, ¢ > 0 is a constant. For the figure to
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Figure 17.1: Dilation of [0, z].

make sense, we must assume that p2 > ¢. We want a lower bound for the area
of the set ABCD that will hold for any 5 € [0,7/2]. (In the limit case 5 = 7/2,
and z € A.) We also wish to compare this area with that of another set, and
the way we do this limits us to using the set A0zD. (The reason for this will
become clear.) Denote the area of A0zD by A = A(w, (). Thus, assuming
p2 > ¢, we have

c i o
Aa, B) = §(ﬁs1na+ . —i—cosa).

This is written in terms of o and § because it is easy to see what happens as «
ranges from zero to m/2. This is equivalent to p going from ~+oo to /¢, which
is just the range of interest. The smallest value of the function

fla,B) = Bsina + ,L + cos «
sin «
for0<a<7/2,0<3<7/20ccursat « =7/2,3 =0, and A(7/2,0) = (7/4)c
for these values.

To avoid repeating it, we assume that the set D(0, p) N A¢ always denotes
the same open half-disk, and all of the sets we consider are understood to lie on
the same side of A as D(0, p) N A°.

Parameterize the segment [0, z] so the points are represented by ¢z, t € [0, 1].
Let L(t) denote the line orthogonal to [0, z] at tz. Let y; be any point on L(t)
such that y; € D(0, p) N A€, and consider the set D(y;, c/p)ND(0, p)NA€. Then
the open segment L(t) N D(y;, c/p) N D(0, p) N A€ is always at least as long as
the segment on the same line defined by D(tz,c/p) N L(t) N (A0zD). Note that
this is true for all ¢ € [0, 1], even for those ¢ close to one.

Lemma 17.7. Assume the geometry and notation of Figure 17.1. Let T be
any Jordan arc connecting the origin and z and lying completely in the set
D(0, p) N A°, except for the end points. Then

area(D,;,(I') N D(0, p) N A®) > area(A0zD) > —c

INE
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whenever p? > c.

Proof. Let f denote the characteristic function of D.,,(I') N D(0,p) N A = G.
Then

area(G) = . f(z,y) da dy.

By Fubini’s theorem,

areal@) = [ ( [ s dy> dr,

1
area(G) > gﬁsina—i—/o </Rf(tz,y) dy) dt.

and

For fixed t,
/f(t&y)dy:/ f(tz,y)dy,
R 1(t)

where [(t) = G N L(t). We know that [(¢) contains a line segment at least as
long as (A0zD) N L(t), so

area(G) > gﬁ sina + area(0zDFE) = area(A0zD).

Note that in adding the term (¢/2)8sin « to the area of G, we use the fact that
the origin is a point of T'. O

Ostensibly, this lemma has little to do with B,g. The lemma only compares
the area of D.,/,(I') N D(0, p) N A¢, where I is a Jordan arc that connects the
origin to z € 9D(0, p), with the area of D,/,([0,2]) N D(0,p) N A°. This is a
purely geometric result, however, the application to B,g is direct.

Before stating and proving the theorem, we note that all of the connected
sets involved in the proof are open and thus arcwise connected. As usual, A
denotes a straight line through the origin, and A€ always denotes the same open
half-plane. If A is an open set that contains the origin, then the set AN A€ will
contain a half-neighborhood D(0, ) N A¢ for some ¢ > 0.

Proposition 17.8. B.g is 1-localizable.

Proof. We must exhibit a ¢ > and an R > 0 such that the conditions of
Definition 13.1 hold. Taking a clue from Lemma 13.6, we wish to have ¢ > 4/,
so we take ¢ = 2 and R = /2. These are not the “best” constants; we only
claim that they work.

Let B be any element of B,g. Then B is open and connected, B contains the
origin, and §(0, B¢) > 1, or equivalently, given any A through the origin, the
two connected components of BN A€ that contain the origin in their boundaries
always have areas greater than or equal to b = §(0, B¢).
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Three open connected sets enter the proof:
B’ = Co[Des, (ColB N D(0, p)]) N D(O, p))-
C' = C§[B'n A“).
C =C8[B N A°.

By our convention regarding the use of A€, the sets C' and C’ lie on the same
side of A.

The plan is to show that B’ is in B,g. Since B’ is open and connected, it
remains to exhibit a ¢/ > 1 that does not depend on A such that area(C’) >
d > 1

There are two cases: C C D(0,p) and C' ¢ D(0, p). If C C D(0, p), then, by
the definition of Bag, area(C') > b. (This is the only place where the definition
of Bagr is used.) In this case, C' C C’, and area(C’) > b > 1. Thus, ¢/ = b works
for this case, and we are done. (The proof that C C C” is left as an exercise.)

If C ¢ D(0,p), then there is a point a € C such that |a| > p. There is a
Jordan arc v € C that connects the origin to a. (In fact, we may assume that
this Jordan arc is piecewise linear.) Let ¢ : [0,1] — v be a parameterization such
that 4(0) = 0 and (1) = a. Then there is a smallest ¢ = to such that v(tg) €
0D(0, p). Call this point z and let I denote the part of v defined by 0 < ¢t < t;.
The arc I lies in C N D(0, p) N A°, and in particular, I' € BN D(0, p) N A°. It
follows that D.,,(I') N D(0,p) N A C C".

By Lemma 13.6, area(D,,,(I') N D(0, p) N A€) > (m/4)c, so area(C’) > /2,
by the definition of ¢. Thus, by taking ¢’ = min{x/2,b}, it is always true that
area(C’) > ¢ > 1, and ¢’ does not depend on A. It follows from Definition 13.1
that B.g is 1-localizable. O

Exercise 17.2. We skipped over two points in the proof that the reader should check.
The first was when we stated that C C C’ (the case C C D(0, p)), and the second was
when we claimed that D,,,(I'") N D(0, p) N A° C C” (the case C ¢ D(0,p)). (Hint: All
of the sets in sight are open and connected, so they are arcwise connected.) m

The next two exercises show that there are other affine-invariant families of
structuring elements that are 1-localizable.

Exercise 17.3. Let B be an affine-invariant family of open convex sets, each of which
contains the origin and has area less than one. The goal is to show that B is 1-
localizable. Here is one way to do this. Suppose p > R, where R > 0 is a constant
to be determined, and that B is an element of B. If B C D(0, p), take B’ = B, and
we are done. If not, let x be a vector such that |x| = § = supy 5 |y|. Establish the

coordinate system based on i = x/|x| and j = i*. Consider the affine transformation

defined by A = (pég 5(/)/))7 and show that if p is greater than some constant, then

AB C D(p,0). Let B = AB, which belongs to B by assumption. (Hint: Let n be
the longest perpendicular distance from the z-axis to B°. Relate the product n§ to
the area of B and determine a value for R that works.) Having found an R such that
B’ € D(0, p) for p > R, look for a ¢ > 0 such that B’ C D.,,(B). =

Exercise 17.4. Let B be a bounded, open, and connected set that contains the origin.
Define the affine-invariant family B by B = {AB | A € SL(R?)}. Use the methods of
Exercise 3.2 to show that B is 1-localizable. m
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17.4 Comments and references

We were vague about the domains of the various functions that appear in section
13.2. In fact, the results are true in RV even though we spoke of “disks” rather
than “balls.” The results in section 13.3 are, however, strictly limited to R2.

The mathematical techniques for localizing a set of structuring elements
developed in this chapter were first explained in [134], [133], and [130]. The
version presented here is much simpler. The doctoral dissertations by Frédéric
Cao and Denis Pasquignon contain related techniques [52, 53, 227].



Chapter 18

Asymptotic Behavior of
Affine-Invariant Filters

We are going to analyze the asymptotic behavior of affine-invariant operators
in much the same way we analyzed contrast-invariant isometric operators in
Chapters 10 and 11. The analysis in this chapter will be in R2. Recall that
when we say an operator T is affine invariant, we mean that 7" commutes with
all elements of the special linear group SL(R?). Thus, for A € SL(R?), we
have ATu = T Au for all functions u in the domain of T, where Aw is defined by
Au(x) = u(Ax), x € R?. At this point, there are two possible scenarios: Assume
we are given an affine-invariant operator 1" that is also contrast and translation
invariant and then use Theorem 7.3 to conclude that T’ can be represented as

Tu(x) = éléfogﬁB u(y), (18.1)

where the set of structuring elements B may be taken to be {X | 0 € TX},
TX = X1T1x, and where (14.1) holds almost everywhere for u in the domain
of T. The other approach, which is the one we take, is to assume the set of
structuring elements B is given and to define T by (14.1). This places the
focus on B. With this approach, we know immediately that T is contrast and
translation invariant and that it is defined on all v : R? — R. We are, however,
left with the task of proving that T is affine invariant if and only if B is affine
invariant. (This is the content of Exercise 14.1.). Again, it is understood that, in
our context, “affine invariant” always means “invariant with respect to SL(R?).”

We assume that B is a set of affine-invariant structuring elements, and we
define for every u: R? — R,

SThu(x) = su inf  u(y);

i) = sup infu(y)

: (18.2)

ISpu(x) = inf  sup u(y).
BeByex+hB

STnu is considered to be an affine erosion of u, and IShu is considered to be
an affine dilation of u. (Note that this nomenclature is consistent with the
definitions of E:'a and @a in Chapter 12.) Since we have the relation STpu =
—1Sp(—u), it suffices to study just one of these operators, and we choose to

229
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investigate I.Sy. Our main concern is the behavior of ISpu(x) as h — 0 for
u € C3(R?). We will prove that, if B is affine invariant and 1-localizable, then

. IShu(x) —u(x 1 1/3
}1112% % = cB|Du(x)|(§curV(u)(x)+) ,

where cp is a suitable constant. (As before, /3 means (r/|r|)|r|'/3.)

Exercise 18.1. Show that T is affine invariant if and only if B is affine invariant. m

18.1 The analysis of 15},

The analysis of affine-invariant operators 1.5}, will follow the general plan out-
lined in section 10.1.1 and exemplified by Theorem 10.2, with the important
difference that the structuring elements B are not bounded. They are, however,
isometric, since the group of isometries is a subgroup of the SL(R?). This means
that given a C® function u, we can expand it in the form

u(x +y) = u(x) + pr + az”® + by® + cay + R(x,y),

wherey = (x,y) and the linear term is pxz. (We use the notation and conventions
of section 4.5.) If we assume that this expansion holds for y € D(0,r), then the
analysis of the error term R given in the proof of Theorem 10.2 implies that

lu(x +y) — u(x) — (px + az® + by® + cay)| < Sup |D3(x +y)|llyl*.
yi<r

Define v for y € D(0,r) by v(y) = u(x) + pr + ax?® + by? + cxy. If B is
1-localizable, and if h < r? and h < 1/R2, then we know from Lemma 13.6 that

[ISpu(x) — ISpu(x)| < (C + Ke)h®/2.

(Here and elsewhere we use the fact that, if u is locally C3, then it is locally
Lipschitz. Also, refer to sections 13.1 and 13.2 for the meaning of the constants.)
This implies that the analysis of I.S), can be reduced to analyzing the action of
1S}, on polynomials of degree two. This analysis will be done in Theorem 14.4,
but before we get there, we need to consider the action of IS}, on two specific
polynomials. Because the cases a = c =0 and b =1 or b = —1 play key roles,
we introduce special notation:

¢ = inf sup(z+y*) and cgz = inf sup(z —y?),

BEByeB BEByeB

where “IS}, (pr+ax?+by?+cxy)” always means “ISy, (pz +ax?+by*+ cxy)(0).”
Since our main results use these constants, it is worth examining some examples.

Lemma 18.1. (i) Let B be an affine-invariant family of open convex sets that
have area one and that are symmetric with respect to the origin. Then cg >0
and ¢z = 0. (ii) If B = Bag, then cf > 0 and ¢z = 0. (iii) If a set of
structuring elements B is affine invariant and contains one bounded element
that is open and contains the origin, then cg = 0. In particular, this is the case
if B is affine invariant and 1-localizable.
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Proof. We prove (i) first. Let B be an element of B, and let [(«) denote the
line segment defined in polar coordinates by (a,p), 0 < p < +oco. Both B
and I(«) are convex, so their intersection B NI(«) is convex. Since B is open,
this set has the form [0, d(«)), where d(«) is the distance from the origin to
the boundary of B in the direction a. The function o — d(a) is continuous
(Exercise 14.2). Since B has area one, this function can be a constant only if
d(a) = 1/4/m. In all other cases, d(«) takes values greater than 1/,/7 and less
than 1/y/m, and since it is continuous, it must take the value 1/y/7. In fact,
since B is symmetric, d must assume the value 1//7 four times. In any case,
there is a point (z,y) € OB such that x > 0 and 22 + y? = 1/7.

Now consider the disk D = D(0,1/+/7). We have just seen that there is a
point (z,y) € 8B N D such that x > 0. If (z,y) € D and = > 0, then = > 22,
and we have the following inequalities:

1
sup (z+y?) > sup (z+y°) > sup (2" +¢%) = -,
(X,y)eB (X,y)eBND,z>0 (X,y)eBND,z>0 ™

The right-hand term does not depend on B, so we have czg > 1/m. The value
1/7 is not significant for our purposes; we just wish to show that czg > 0.

To prove that cz = 0, first note that since B is open and contains the origin,
there are points (z,y) € B with > 0 and y = 0. Thus, ¢z > 0. Fix B € B
and consider the sets obtained by “squeezing” B onto the line z = 0:

Be ={(2",y) |2’ =ex,y =y/e,(z,y) € B}.
Then B. is an affine transform of B, so B, € B. Therefore,

cg < sup (r—9y°)< sup (z) < Ce.
(z,y)€Be (z,y)€Be

Thus, cz = 0.

We turn now to the proof of (ii). Assume that B is in B,g. Then by
definition, B is open, connected, and contains the origin, and the connected
components of B N A¢ that contain the origin in their boundaries have areas
greater than or equal to b = 6(0,B°) > 1. If we let A be the y-axis and
H be the open half-plane defined by =z > 0, then the definition implies that
area(B N H) > 1. This implies that

( sw <x>)(( s (yh)) > 5. (18.3)

(z,y)eBNH x,y)€EBNH

We wish to find a lower bound for sup(%y)eB(:v +y?), so we may assume that B
is bounded, and define p = sup(, ,\epnp(*) and v = sup, ,yepnp(y*). Then

sup (z4+9%) > sup (z+9?) > inf{p,v}.
(z,y)eB (z,y)EBNH

Thus, czga“ > inf{u,v}. Using the constraint (18.3), we conclude that

1
+ . _ 5—2/3
Choy = :Lg% {,u, 4M2} =223 5.
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Finally, we must show that ¢z == 0. If B € Bag and if B is bounded, then, as
in the proof of (i),

cgaff < sup (LL' - y2) < sup ($) < Cg,
(z,y)E€B: (z,y)€B:

and cg . = 0. The proof of (7i7) is exactly the same as showing that g = 0. 0

Exercise 18.2. The purpose of this exercise is to show that the function a — d(«)
in Lemma 14.1 is continuous. (Hint: The assumption that d is not continuous leads
to a contradiction of the fact that the line segment I(«) intersects OB in one and only
one point.) m

Exercise 18.3. This exercise is to show that it is possible to have c; < 0 for a simple
set of structuring elements. Let B = {AC | A € SL(R?)}, where C is a square with
one side missing defined as follows: C' = {(z,y) |z = —2,-2 <y < 2,y = +2,-2 <
x <2;y=-2,-2<z <2} Show that cg >0and cz <0. m

As one can imagine, the polynomial pz + by?, with p > 0, is particularly
important in the affine-invariant theory. Fortunately, an invariance argument
allows us to compute explicitly the action of IS}, on px + by?.

Lemma 18.2. Let B be an affine-invariant set of structuring elements and
assume that at least one B € B is bounded. Let IS} be the associate inf-sup
operator and assume that p > 0. Then

by\1/3
ISy (px +by?) = c}'(;) ph*®  if b >0;

—b\1/3
ISh(pa:—l—byQ):cg(?) ph*? if b<o0.

Proof. The existence of a bounded structuring element ensures that sup, e g(pr+
by?) is not always infinite. If b # 0, then

h1/3 b 1/3 0
BeB<:>h< (|)| h—1/3|b|—1/3)B€hB'
Thus,
inf  sup (z+by?) = inf sup (|b|"3hY3z + b(|b|72/3h/3y?
BehB@,y)eB( ) BGB(z,y)GB(| | (lol )
= [b]"/3h*3 inf  sup (x+ (b/]b])y?).
o s 8/)?)

Then we have

cf bY/3hA/3 if b>0;

2\ _
ISh(fE‘f’by )_ {Cg(_b)1/3h4/3 if b<o.

Since p > 0, IS, (pz + by?) = pISk(z + (b/p)y?), and we deduce that

s (b/p)Y3phA3 if b > 0;

ISh(px + by?) =
n(px + by®) {CB(_b/p)1/3ph4/3 if b<0.
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Finally, we must deal with the case b = 0. Let B be a bounded element
of B and assume it is contained in the square [—R, R] x [—-R, R]. Then the

he 0
0 h=le?

[—Reh?, Reh?] x [—-R/¢, R/¢]. Hence,

element h( )B belongs to hB and is contained in the rectangle R =

0 <ISn(px) < sup (px) < pRh%e.
(z,y)eER

Since we can take & > 0 arbitrarily small, IS, (pz) = 0. 0

When we studied the asymptotic behavior of an operator T applied to a
smooth function u in Chapters 10 and 11, we usually assumed that Du(x) # 0;
Du(x) = 0 was a special case. This is also true for affine-invariant inf-sup
operators, and the next lemma deals with this case.

Lemma 18.3. Let B be an affine-invariant set of structuring elements, one of
which is bounded and all of which contain the origin, and let K be a compact
subset of R2. Then for x € K the following inequality holds for every C3
function u:

| 1Shu(x) = u(x)| < C(|D*u(x)| + [Du(x))h*"* + Cxch?,

where 0 < h <1, C > 0 is a constant that depends only on B, and the constant
Ck depends only on B, u, and K. If Du(x) =0, then

|1Spu(x) — u(x)| < C'||D*u(x)||h? + Chh3,
where C' depends only on B and CY depends only on B, u, and K.
Proof. We use the notation of sections 4.5 and 10.1. Let B be an arbitrary
element of B. Since B contains the origin, supyexspu(y) = u(x), which
implies that ISpu(x) > u(x).
Now expand w« in the familiar local coordinate system in a neighborhood of
u(x + hy) = u(x) + phx + ah®z? + bh*y* + ch’zy + R(x, hy),

where y = (z,y). Then for any B € B,

sup u(x + hy) < u(x) + h sup (pz + ahx® + bhy? + chay) + sup |R(x, hy)|.
yeB yeB yeB

Now assume that B* is bounded. Then all of the suprema are finite, and
Supyep- u(x + hy) is a finite upper bound for infpessupycpu(x + hy) =
ISpu(x). Thus we have

0 < ISpu(x)—u(x) < h sup (pr+ahz?4+bhy*+chay)+ sup |R(x, hy)|, (18.4)
yeB* yeB*

which is true for any bounded set B* € B. We are now going to use the affine
invariance of B to manipulate B* and thereby obtain a good estimate for the
terms on the right-hand side of (18.4). Since B* is bounded, it is contained in
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the square [, S| x [, S|, where S = supy¢ - |y|- By the affine invariance of

B, the set B’ = (hlo/3 hﬂ/s )B* belongs to B and is contained in the rectangle

R = [-Sh'/3, Sh!/3] x [-Sh~Y/3, Sh=1/3].

We replace B* with B’ in (18.4) and proceed to estimate the terms on the
right-hand side.

sup (px + aha® 4 bhy?* + chxy) < sup (pr + aha® 4 bhy?* + chry)

yeB’ YeR

< pShY3 4+ a|S?h/3 + |b|S2h3 + |¢|S?h < pShY® + (|la| + |b| + |¢])S?hY/?

= |Du(x)[Sh'"* + (1/2)[|D?u(x) | S*h'/* < C(|| D*u(x)[| + [Du(x)|)n'/?,
where C' = max{S, S?/2}. Note that C depends only on B; in particular, it

does not depend on x. Note also that this holds for all h, 0 < A < 1. We now
turn to the other term:

sup |R(x, hy)| < sup |R(x, hy)| < sup [[D*u(x + hy)[|°|y|®
yeB’ YerR YER

S sup ||D3U(X+ hy)||h3(52h2/3 4 S2h—2/3)3/2
yYeR

< sup || D3u(x + hy)||23/25%h2.
YeR

If K is an arbitrary compact set, then supxc g supyer || D?u(x + hy)||23/25% <
Ck for some constant that depends only on K, u, and B. This proves that

|1Shu(x) = u(x)| < C(|Du(x)| + | D*u(x)[)h*"* + Cxh®.

If Du(x) = 0, we do the same computation, but we treat both axes the same:
R is replaced with the square [—Sh, Sh] x [-Sh, Sh], and

sup (az? + by? + cxy) + sup |R(x, hy)| < C'||D?*u(x)||h? + Cih®. O
YeR yeR

O

Since SIpu = —ISp(—u), it is clear that the lemma is true for SI;,. Every-
thing is now in place to state and prove the first major result of this chapter.

Theorem 18.4. Let B be a 1-localizable affine-invariant family of structuring
elements. Assume that u : R?> — R is a Lipschitz function that is C° in a
neighborhood of x. Then

IShu(x) — u(x) = h3cs|Du(x)| (%curv(u)(x)Jr) v + o(x, h'/3),

where cg = c;g. If u is C? in a neighborhood of a compact set K and Du(x) # 0
on K, then the result holds for all x € K and o(x,h*/3)/h*? — 0 as h — 0
uniformly for x € K.
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has a local maximum at (t.,x.). This means that Lemma 19.3 applies to V..
Since Dy, (te,y.) = DY:(te,y.) # 0 and D?p(t.,y.) = D*V.(tc,y.), we have

dyp

Spterye) < F(D*¢(te,ye), Dolte,ye), ¥e, te)
< GH(D*(te,y.), Dolte,y.), v te),
using (19.5) and (19.2). Again, letting € tend to zero gives (19.9). O

Exercise 19.3. Prove the inequality (19.11). m

The next lemma provides another very useful simplification for verifying that
a function w is a viscosity solution of (19.4).

Lemma 19.5. To show that u is a viscosity subsolution (or supersolution),
it suffices to use test functions ¢ € C*([0,00) x RY) of the form ¢(t,x) =
F(x) +9(t)-

Proof. This is the assumption: If a function of the form (¢, x) = f(x)+g(t) is
such that u—¢ attains a local maximum at (¢, Xo), then (19.5) and (19.9) follow.
From this assumption, we must prove: If ¢ is any function in C*°(]0, 00) x RY)
such that u — ¢ attains a local maximum, then (19.5) and (19.9) follow. The
technique for doing this is to develop ¢ as a Taylor series and separate the
variables. To keep the notation manageable, we will assume without loss of
generality that (¢g,x0) = (0,0) = 0. With this assumption, the Taylor expansion
of pis

(t,x) = a+bt + (p,x) + ct® + (Qx,x) + t{g,x) + o(|x[* + ),
where a = ¢(0), b = 0¢/0t(0), c = (1/2)9%p/0t*(0), Q = (1/2)D?*p(0), and

0% 0%
= (83:1815 0 5o (0))'

For € > 0, we define
f(x) =a+ (p,x) +(Qx,x) +|x|* + ¢|q|[x[?

and
lq|

g(t) = bt + —t* + et* + ct*.
3

This means that
o(t:x) = (%) + g(t) = (elallx* + '#g'ﬁ — t{g, %) + (X2 + 2)) + of|x|* + 12),

Since, by the Cauchy-Schwartz inequality, ¢|q||x|* + (|q|/e)t* — t(g,x) > 0,
we have ¢(t,x) < f(x) + g(t) for all sufficiently small (¢,x). Thus, in some
neighborhood of (0, 0), u(t,x)—@(t,x) > u(t,x)— f(x) —g(t) and this inequality
is an equality for (¢,x) = (0,0). The assumption is that v — ¢ has a local
maximum at (0,0). Hence this last inequality implies that © — f — g has a local
maximum at (0,0). Thus, by assumption, (19.5) and (19.9) hold for f+g. More
precisely, we have the following two cases.
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Case (1): D(f +¢)(0) #0.
From (19.5),
(f +9)
ot

It is easy to see that

Dip(0) = D(f + 9)(0) # 0 and (9¢/0t)(0) = (8(f + 9)/9t)(0),

and a short computation shows that D?(f + ¢)(0) = D?p(0) + 2(1 + |g|)I).
Substituting these values in the expression above shows that

‘Z—f(o) < F(D?p(0) + 2¢(1 + |¢])I, Dg(0),0,0).

We let & — 0 and use the continuity of F' to see that (19.5) holds for ¢.
Case (2): D(f +g)(0) =0.
In this case, (19.9) is true for f + g:

af+g)
ot

Letting € — 0 and using the continuity of G yields (19.9) for ¢. O

(0) < F(D*(f + 9)(0), D(f + 9)(0),0,0).

(0) < GH(D*(f + 9)(0), D(f + 9)(0),0,0).

We are now in position to see how classical and viscosity solutions are related.
The next two propositions show that the notion of viscosity solution is indeed
a generalization of that of classical solution.

Proposition 19.6. Let F' be an admissible function that is continuous every-
where, and assume u : [0,00) x RN — R is C? with respect to x and C* with
respect to t. If u is a classical solution of

ou

E(t’ x) = F(D?u, Du,x,t)

at (to,Xo), then u is a viscosity solution at (to,Xo).

Proof. We prove this for the case Du(tg,xo) # 0. (The other cases follow im-
mediately.) Thus, let ¢ € C*°(]0,00) x RY) be such that u — ¢ has a local max-
imum at (tg,xo). This implies that (Ou/0t, Du)(to,x0) = (Op/0t, D) (tg, X0)
and that D?(u — ¢)(to,x0) < 0, so

Dzu(to, XQ) S D2g0(t0, Xo).

Hence,

0 ou
a—f(tovxo) = E(to,xo) = F(D?u(to,X0), Du(to, Xo), X0, to)

< F(D?p(to,%0), De(to, Xo), Xo, to).

This proves that u is a viscosity supersolution. A similar argument shows that
it is a viscosity subsolution. O
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Proposition 19.7. Assume that F is admissible and continuous everywhere.
Let u be a C*(R* x RYN) wiscosity solution of Ou/0t = F(D*u, Du,x,t). Then
u s a classical solution of the same equation.

Proof. Assume that u is a viscosity solution at the point (tg,xg). We write the
second-order Taylor expansion of u in the N + 1 variables near (tg,X¢) as

u(t,x) =u(ty,x0) + (Du(to, o), (t — to,x — Xq))
+ (D%u(to, x0)(t — to,x — Xq), (t — to,x — X)) + o(|t — to]® + |x — x0|?),

where the operators D and D? involve all N + 1 variables. For ¢ > 0, define Ve
by

e (t,x) = ulto,x0) + (Du(to, X0), (t — to,x — Xp))
+ ((D?u(to, x0) + ) (t — to,x — X0), (t — o, X — X0)).

Thus,
u(t,x) — e (t,x) = —e(|t — to]? + [x — x0[*) + ([t — to|* + [x — x0[*)

and the point (tp,Xo) is a local maximum of u — @, for all € > 0. Similarly,
(to,x0) is a local minimum of u — ¢_.. The test functions ¢. and ¢_. are C°,
so we can apply Definition 15.2 directly. Thus,

ou 15]
E(toaxo) = %(toaxo) < F(D?p.(to,%0), De(to, X0), X0, to)
= F((D2u + EI)(tQ, XQ), D’u(to, XQ), X0, to),
and
ou Op_
E(toaxo) = %(t07}(0) > F(D?*p_.(to,%0), Dee(to, X0), X0, to)

= F((D2’U, - EI)(tQ, XQ), D’u(to, XQ), X0, to).
Letting ¢ — 0 and using the continuity of F' shows that

ou

E(tovxo) = F(D?u(to, %o), Du(to, Xo), X0, to)- O

Before discussing several examples, we need a useful further restriction on
the test functions .

Lemma 19.8. To show that u is a viscosity subsolution (or supersolution), it
suffices to use test functions p € C*°(]0,00) x RY) that satisfy x — p(t,x) €
F(RN) for all t > 0 and are globally Lipschitz on RY.

Proof. In fact the properties we deal with are all local around a point (¢g,xg).

Thus we can replace ¢ by another C'*° function v which coincides with ¢ on a
ball B(0, (tp,Xo), belongs to F for all ¢, and is globally Lipschitz on RY. O

Exercise 19.4. Give a detailed construction of ¢ from ¢. =
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19.2 Application to mathematical morphology

In Proposition 9.6, we showed that u(t,x) = Diug(x) is a solution of du/dt =
|Du| at each point (tg,Xo) where u is C1. We are now going to prove that u is
a viscosity solution of this equation at all points.

Theorem 19.9. Assume that ug € F(RY). Let D(0,1) be the unit ball in RN
and let u be defined by

u(t,x) = Dyug(x) = sup  wug(x+Yy).

yetD(0,1)
Then u is a viscosity solution of
0
8—1‘ = [Dul, u(0,%) = ug(x). (19.12)

Proof. We will use the fact that the dilation Dy is recursive, that is, Dsy¢ =
D, D; (see Proposition 9.5). In particular, for ¢t > 0, D; = DpD;_p, so

u(t,x) = sup u(t—h,x+y). (19.13)
lyl<h

Let ¢ be a C* test function and assume that v — ¢ has a local maximum
at (to,xp). To prove that u is a viscosity subsolution of (19.12), we must show
that

0
=5 (t0.x0) = [Di(to, x0)| < 0.

Since u — ¢ has a local maximum at (¢,Xp), we have for sufficiently small h
and |y,

u(to — h,xo +y) — ¢(to — h,x0 +y) < ulto,x0) — ¢(to,X0)
It follows that

sup u(to — h,Xo +y) < ulto,Xo) = ¢(to, x0) + sup p(to = h,xo +),
yl<h yl<h

and using (19.13) shows that

u(to,x0) < u(to,x0) — ¢(to,Xo0) + sup ¢(to — h,x0 +y).
yI<h

Thus,

©(to,x0) < sup ¢(tg — h,xo +¥).
lyl<h

Subtracting ¢(to — h,xg) from both sides yields

o(to,x0) — @(to — h,xg) < ‘s?p (go(to —h,x0+Yy)— o(to — h,xo)).
yI<h

By writing ¢(to — h, X0 +¥) — ¢(to — h,%0) = (Dy(to,%0), (0,y)) + o(h + |y]),
we see that

@(to,x0) — @(to — h,x0) < |Dp(to,Xo)|h + o(h).
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Dividing both sides by h and letting h tend to zero leads to

2 (t0,x0) ~ [Deplto, x0)| < 0.

t

We have proven this under the assumption that ¢y > 0 and h > 0 is sufficiently
small. But by continuity, the last inequality is true for o = 0. This proves that
u is a subsolution of (19.12); the proof that it is a supersolution is similar. The
fact that u(0,x) = ug(x) is a direct consequence of the assumption that ug is
continuous. O

19.3 Approximation theory of viscosity solutions

For simplicity, we consider slightly less general PDEs, namely, those of the form

%(t,x) — F(D%u(t,x), Du(t,x),x) = 0, (19.14)
where (A, p,x) — F(A4, p,x) is admissible, but independent of ¢. This is the case
for the functions listed at the beginning of the chapter. For these equations, it is
reasonable to expect that the operator S; : ug — u(t,-) could be approximated
by iterations of an operator Ty, by which we mean that (7,)™ — S; in some
sense as h — 0, n — oco. We have seen this in Theorem 2.3, where it was shown
that a large class of iterated linear operators converge asymptotically to the heat
equation. We have promised to show that whole classes of nonlinear operators
converge asymptotically to other PDEs. We are mainly interested in operators
that have been shown to be useful for image analysis and that have been studied
in previous chapters. To include all of these operators in the theory, we shall
first state three abstract properties which were proven under various forms for
scaled morphological operators Tj,.

Definition 19.10. We say that a family of operators Ty, h > 0 is uniformly
consistent with Equation (19.14) if for every C3, Lipschitz function u we can
assert that

if Du(x) # 0, (Thu)(x) — u(x) = hF(D*u, Du,x) + ox(h), (19.15)

where the convergence of ox(h) is uniform for x in every compact set contained
in the set {x, Du(x) # 0} and

if Du(x) = 0, |(Thu)(x) — u(x)| < hG(D?*u,0,x) + ox(h) (19.16)

for a continuous functions G, with G(0,0,x) = 0, and where the convergence of
ox (h) is uniform for x in every compact set.

Definition 19.11. We say that a family of operators Ty,h > 0 satisfies a
uniform local comparison principle if for every L and all L-Lipschitz functions
u and v such that u(y) > v(y) on a disk D(x,7),

(Thu)(x) > (Thv)(x) — o(h), (19.17)

where the function o(h) only depends upon the Lipschitz constant L and r.
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Notice that if T' is a local morphological operator like the median on a ball
and T}, its rescaled version, then (19.17) is trivially satisfied, with o(h) = 0 for
h small enough.

Definition 19.12. Let T}, h > 0, be a family of operators: F — F which is
uniformly consistent with Equation (19.14). We call approximate solutions
of (19.14) with initial condition ug(x) the functions up(t,x) defined for every
h >0 by

Vn € IN, wup(nh,x) = (Tjlug)(x).

The functions wuy, are only defined on (hN) x RY. All the same, we are
interested in their limit on Rt x RY = [0, +00) x RY.

Definition 19.13. We say that approzimate solutions up converge uniformly
on compacts sets to a function u defined on RT xRN if for every compact subset
K of R* x RY and every e > 0, there is ho such that |u(t,x) — up(t,x)| < & for
all h < hy and all (t,x) € K N (hN) x RY.

Proposition 19.14 (Barles-Souganidis). Let (T})5>0 be a family of transla-
tion invariant operators uniformly consistent with (19.14), satisfying a uniform
comparison principle and commuting with the addition of constants. Let ug € F
be Lipschitz. Assume that a sequence of approximate solutions up, converges
uniformly on every compact set to a function w, with hy — 0. Then u is a
viscosity solution of (19.14).

Before starting with the proof, let us state two obvious but useful lemmas.

Lemma 19.15. Consider up converging to u uniformly on compact sets, as in
Definition 19.13. Assume that u is continuous on a ball B, = B((t,x),r) and
that it attains its strict mazimum on B, at (t,x). Then if (tn,Xn) is a mazimum
point of up, on B, one has (tn,xp) — (t,%).

Proof. For every ¢ > 0, there is 7 > 0 such that supp \p_u < supp u — 1.
Take h small enough so that supp |u—wup| < 4. Then suppg_|ux| > supp u— 2.
On the other hand, supp \p,_ |us| < supg, u —n + &, which proves that the
maximum of uy, is attained on B, only.

O

Lemma 19.16. Assume that ug is L-Lipschitz. Then for every n, up(nh,x) is
L-Lipschitz in x.

Proof. This is a straightforward consequence of the definition of uj, and Lemma
7.11. O
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Proof of Proposition 19.14. Without risk of ambiguity, we shall write up
instead of wup,. Let B = B((x,t),r) be a closed ball and ¢(s,y) a C* and
Lipschitz function such that (u — ¢)(s,y) attains its strict maximum on B at
(t,x). Without loss of generality, we can assume by Lemma 19.5 that ¢(t,y) =
f(y) + g(t). Notice that the functions x — u,(nh,x) are in F and therefore
continuous. The maximum of uj, — ¢ on BN (hN) x RY is attained, because
this function is discrete in time and continuous in x. Since up — ¢ — u — @
uniformly on BN(hN) xR we know by Lemma 19.15 that a sequence (nph, x5,)
of maxima of up — ¢ on B converges to (t,x). By the maximum property of
(nph,xp), we have

un((nn — 1)h,y) = e((nn = Dh,y) < un(nnh,xn) — o(nnh, xa).
for every y such that ((n;, — 1)h,y) € B and therefore
un((nn — 1)h,y) < un(nnh, xn) = e(nuh,xn) + o((nn = 1)h,y)

for h small enough (i.e. k large enough) and every y € B(x, 5). Applying on
both sides T} and using the local comparison principle and the commutation of
Ty, with the addition of constants,

T (un((nn—=1)h, ) (xn) < un(nnh, xn)—=@(nnh, xp)+(Thp((nn—1)h), .)(xn)+o(h).
Since ¢(t,y) = f(y) + g(t) and T (u((nn, — 1)h),.)(x) = up(nrh, x), we get
0 < —f(xn) = g(nnh) + Tnf(xn) + g((nn — 1)h) + o(h),

where we have used again the commutation of T, with the addition of constants.
Let us first assume that D f(x) # 0. By the uniform consistency assumption
(19.15), since for h small enough D f(xy) # 0,

(Tnf)(xn) = f(xn) + hF(D?f(xn), Df(xn),xn) + 0x, (h).

Thus

g(nnh) — g((ny, — 1)h) < hF(D? f(xn), Df(xn),%n) + 0x, (h).

Dividing by h, letting h — 0 so that (xp,nph) — (x,t) and using the continuity
of F, we get
99
%9(1) < F(D*F(x), DS (x), %),
that is to say
9%
ot
We treat now the case where Df(x) = 0 and D?f(x) = 0. The uniform
consistency yields

(Thf)(xn) — f(xn)
h

(t) < F(D*p(x), Dy(x), x).

| | < G(D?f(xn), Df (xn),%n) + o(1).

The right term, by continuity of G, tends to zero, when h tends to 0. Thus

e

t) <
81%)0
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Thus u is a subsolution of Equation (19.14) and we prove in exactly the same
way that it is a supersolution and therefore a viscosity solution. (I

At this point it should be clear that the last important step in our program
is to show that the approximate solutions converge uniformly on compact sets.
It should also be clear that Definitions 15.9 and 15.10 were fashioned to abstract
from previous results about inf-sup operators, conditions that are sufficient to
prove the Barles—Souganidis theorem. We will see in the next chapter that these
conditions are also sufficient to prove that the approximate solutions converge.
This then will close the gap and show that the iterated operators converge to
viscosity solutions of their associated equations.

19.4 A uniqueness result for viscosity solutions

Proving uniqueness is technically quite difficult, and we are going to fudge by
quoting a uniqueness result without proof. Our statement has been simplified
to cover only those admissible functions F' that are associated with image op-
erators. References where one can find this and more general results are given
in the next section.

Theorem 19.17 (Uniqueness). Assume that (A,p) — F(A,p) is admissible.
Let u(t,x) and v(t,x) be two continuous functions for (t,x) € RT x Sy, such
that for all t € RT, x — u(t,x) and x — v(t,x) belong to F. If u and v are
continuous viscosity solutions of

9 _ p(D?u, Du) (19.18)
ot
then
sup  (u(t,x) —v(t,x)) < sup (u(0,x) —v(0,x)). (19.19)
te R+, XeRN XERN

As a consequence, if u(0,x) = v(0,x) for all x, then u(t,x) = v(t,x) for all x
and t.

19.5 Exercises

Exercise 19.5. The exercise refers to the proof of Lemma 19.4. Consider u — ¢,
continuous and having a strict maximum at (¢o,Xo). Set

_ 4
=yl Lo

7/}5 (tv X, y) = U’(t7 X) - @(t, y) -
Prove the existence of the points (tc, X, ys) where 1. has local maxima and that tend
to (to,Xo0,y,) as € — 0. Hints: Since u — ¢ has a local maximum at (to,%o), we
can choose an r such that u(t,x) — ¢(¢,x) < u(to,x0) — ¢(to,x0) = A for (¢,x) €
D((to,x0),7) = D. For any (t,x),(t,y) € D we have

4 4
X—-y X—y
u(t,x) — o(t,y) — =y < sup (u(t7x) —o(t,y) — u)
¢ (t,X),(t,y)eD €
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Let x = y = x¢ on the left-hand side, so

_ 4
ve s (ult) - plty) - XYY,
(t.X),(t,y)€D €

For each € > 0, there is some point (tc,Xc,y,.) where the supremum is attained. Now
argue that these points must tend to (to,%o0,y,) as € — 0. (This is where the fact that
(to,Xo0,y,) is “strict” is used.) Hence, for small enough ¢ the points (¢.,x.,y.) must
all be in the interior of D and are therefore local maximum points. m

Exercise 19.6. We have seen in Lemma 19.5 that the test functions in Definition
19.2 can be replaced with functions of the form ¢(¢,x) = f(x) + g(t). Prove that the
requirement can be weakened further by only requiring that f belongs to any class
C of C? functions that has the following property: For any x € RY, any a € R, any
p € RY, and any symmetric N x N matrix A, there exists f € C such that

JOx—y) = a+ (x—y)+ 3{AG =), (x = y) + ollx — y ).

Hint: use the techniques used to prove Lemma 19.5. m

19.6 Comments and references

The simple definition of viscosity solution given in this chapter was originally
proposed by Michael G. Crandall and Pierre-Louis Lions [?] for first-order PDEs
associated with control theory. It was then shown to be applicable to second-
order equations, in particular the so-called geometric equations like mean cur-
vature motion. The first complete treatise is User’s guide to viscosity solutions
of second order partial differential equations by Crandall, Ishii, and Lions [82].
First-order equations are treated extensively in Barles [33]. An elementary ac-
count for first-order equations is given in the textbook by Evans [98]. Crandall’s
later presentation of the theory for both first- and second-order equations, pub-
lished in [?], is a masterpiece of simplicity and brevity. This book contains a
rather complete overview of the techniques, results, and applications, although
it does not include applications to image analysis.

The approximation theory for viscosity solutions presented here is based on
the seminal paper by Barles and Souganidis [37].

Proving uniqueness for viscosity solutions of second-order parabolic or ellip-
tic equations is the technically difficult part of the theory. The key step that
leads to the uniqueness results was made by Robert Jensen in his 1988 paper
[160]. See also [187] and [294] for general uniqueness proofs in the parabolic
case. Some alternative (or related) existence and uniqueness theories, namely,
the nonlinear semigroup theory and De Giorgi’s theory of barriers, are discussed
in [95] and [39].
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19.7 Tables of multiscale differential operators
and equations

e All equations have a unique viscosity solution starting from a Lipschitz
initial image uo;

e all iterated radial convolutions converge to the heat equation;

e iterated monotone contrast invariant isotropic filters converge to a curva-
ture motion or an erosion or a dilation;

e iterated contrast invariant affine invariant self-dual filters converge to an
affine curvature motion;

e iterated medians converge to a mean curvature or curvature (dim. 2)

motion.
operator % = F(A,p)
Laplacian Au trace(A)
gradient | Dul| Ip|
curvature | Du|curv(u) A(%, Zl%l)
affine curvature | Dulcurv(u) s Alpt,ph)s
snake g.|Dulcurv(u) + (Dg.Du) gA(%, %) + Dg.p
mean curvature [ Dul(k1(u) + ra(u)) Tr(A) — Ap/Ipl,p/Ipl)
affine curvature sgn(r1)tY?| Dul|G (u) ]/
acceleration | Du|curv(u) = (sgn(curv(u))accel (u)?)™
operator finite difference scheme structuring elements B
Laplacian Ugg + Uyy gaussian convolution
gradient (u2 + u%)% ball
2 _ : 2
curvature Bootly 21;2%?:: y iyt median
* v 1 .
affine curv. (Ut — 2y U Uy + Uy u2) 3 affine inv.
umzu2—2uzyuzuy+uyyui . . .
snake g. — e +(gzta+gyuy) x-dependent median, dilation
z Ty
mean curv. div (‘?)—Z) median (BMO)
affine curv. sgn (k1) "2 | Dul|G(u) M4 affine inv.
acceleration | |Du|curv(u) = (sgn(curv(u))accel(u)?)+ galilean invariant

o ki(A,p) = % where 4; is the i-th eigenvalue of Q,AQ, of A to p*, with
Qp = p® p. In other terms p; is the i-th eigenvalue of the restriction of
A to p*, the hyperplane orthogonal to p.

ki(u) = k;(D*u, Du).

g(x) = m is small on edges of uy and large otherwise;

affine invariant structuring elements (dim. 2) computed by Moisan scheme;

curvature motion implemented by BMO (iterated median) or finite differ-

ence scheme;

e alternatively mean curvature and mean curvature motion computed by
diffusion (heat equation) on the hyperplane orthogonal to the gradient;

e accel(u) is a bit long to write but the galilean invariant set of structuring

elements leads to an easy inf sup computation; ¢ €0, 1[.
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Chapter 20

Curvature Equations and
Iterated Contrast-Invariant
Operators

In this chapter, we apply the viscosity solution theory to the main curvature
equations. A first important consistency result is that the viscosity solutions are
invariant under contrast changes (Proposition 20.2): If u is a viscosity solution
of a curvature equation, then, for any continuous contrast change g, g(u) is also
a viscosity solution of the same equation. Our second main focus is to illustrate
the general principle that “iterated contrast invariant filters are asymptotically
equivalent to a curvature equation.” We shall not prove this principle in whole
generality. We shall limit ourselves to two cases which were proven of great
interest in image analysis. The first example is the iterated median filter, which
will be showed to converge to a curvature equation. The second example is the
iteration of alternate affine filters, which converges to the AMSS equation.

20.1 The main curvature equations used for image
processing

The curvature equation of most interest to image processing have the general
form

ou

Fri | Du|B(curv(u)) (20.1)
in two dimensions and the form
ou
Fri |Du|B(k1(u), k2 (u), ..., kn—1(u)) (20.2)

in N dimensions. The real-valued function g is continuous and nondecreasing
with respect to each of its variables. The k;(u) denote the principal curvatures
of the level surface of u, defined as the eigenvalues of the restriction of ‘DD—?' to

the hyperplane orthogonal to Du (see Definition 11.19.)

263
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Here are some specific examples. In two dimensions, we have shown that
the equations

% = |Du|curv(u) (20.3)
and 5
a_? = | Du(curv(u))*/3, (20.4)
as well as variants like
% = | Du(curv(u)")Y3, (20.5)

are relevant for image processing. In three dimensions, we will be concerned
with
ou

Fri |Du|(k1(u) + ka2 (u)). (20.6)

This is the classical mean curvature motion that is important because it appears

as a limit of iterated median filters. Our assumptions also cover variants like

ou

Fri | Du| min(kq (u), k2(w)). (20.7)

This filter provides a less destructive smoothing of three-dimensional images
than the mean curvature motion. Finally, let us mention affine-invariant curva-
ture motion, which is a particularly important equation in three dimensions:

% = sgn(k1)tY?|Dul|G(u) T4 (20.8)

The admissible functions F' for these equations were listed in Section 19.1 and
in the synoptic tables of Section 19.7.

20.2 Contrast invariance and viscosity solutions

We are going to show that the concepts of contrast invariance and viscosity
solution are compatible. Proposition 20.2 will show that f u is a viscosity solution
of (20.1) or (20.2), then for all continuous nondecreasing functions g, g(u) is
also a viscosity solution of the same equation.

Lemma 20.1. Assume that (A,p) — F(A,p) is an admissible function of the
form F(D?(u), D(u)) = |D(u)|8(k1(u), ka(u), ..., kx—1(u)) and that g : R — R
is C% with ¢'(s) > 0 for all s € R.

If Du # 0, then
F(D*(g(u)), D(9(w))) = ¢'(u)F(D*u, Du) (20.9)

for any C? function u: RV — R.

If D?>u =0 and Du = 0, then

F(D*(g(u)), D(g(w))) = F(0,0) = 0. (20.10)



20.2. CONTRAST INVARIANCE AND VISCOSITY SOLUTIONS 265

Proof. If D(u) # 0, then we know from Proposition 11.16 that curv(g(u)) =
curv(u) in two dimensions and that x;(g(u)) = ;(u) in the N-dimensional case.
Thus,

F(D?(g(w)), D(g(u))) =|D(g(u))|B(r1(g(w)), 52(g(w)), .., in-1(g(w)))
=g'(u)|D(u)|B(k1(u), k2(u), . .., kn—1(u))
=g’ (u)F(D?*u, Du),

u

u
as announced. In general, D(g(u)) = ¢’(u)Du and
D?*(g(u)) = ¢'(v)D*u + ¢"(u)Du ® Du.
Thus, if D?u = 0 and Du = 0, then D?(g(u)) = 0 and D(g(u)) = 0, and
F(D?(g(u)), D{g(w))) = F(0,0) = 0.

d
Exercise 20.1. Check the formula D?(g(u)) = ¢’ (u)D*u + ¢g" (uv)Du ® Du. =

The proof of the next result, the main one of this section, is slightly more
involved because we drop the assumption that ¢’(s) > 0.

Proposition 20.2. Assume that u is a viscosity solution of the equation

o = F(D*(w), D(w)),
where F' satisfies the conditions of Lemma 20.1. If g : R — R is continuous and
nondecreasing, then g(u) is also a viscosity solution of this equation.

Proof. We begin by assuming that g is C* and that ¢’(s) > 0, and we write
f = g! for convenience. Let (t,x) be a strict local maximum of g(u) — ¢.
Without loss of generality, we can assume that g(u(t,x)) — ¢(t,x) = 0: Just
replace ¢ with ¢ — g(u(t,x)). Then (¢,x) is also a strict local maximum of
u— f(p). To see this, note that

g(u(s,y)) — o(s,y) < g(u(t,x)) —o(t,x) =0

for (s,y) sufficiently close to (but not equal to) (¢,x). Thus,

u(s,y) < f(e(s,y))

and
u(s,y) — f(p(s,y)) <0=u(t,x) - fe(t x)),

again, for (s,y) sufficiently close to (but not equal to) (¢,x).
Since f(p) is C* and u is a viscosity solution, it follows from the definition
of viscosity solution that, for D(f(y)(t,x) # 0,

3({9(;0)) (t,x) < F(D*(f())(t,x), D(f())(t,%)).

This implies by Lemma 20.1 that

dyp

File) 5 (%) < F (@) F(D*(p)(t,x), D(9)(t, x));
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since f'(s) > 0, 5
=(t:%) < F(D*() (¢ x), Dg)(t,%)).

If D(f(p)) = 0 and D?(f(¢)) = 0, then, by Definition 19.2, (9f()/0t)(t,x) <
0, and so (9¢p/0t)(t,x) < 0. This proves that g(u) is a viscosity subsolution when
g € C* and ¢'(s) > 0.

Now assume that g is simply continuous and nondecreasing. We replace g
with g., € > 0, a C°° function such that g.(s) > e and g. — ¢ uniformly on
compact subsets of R as ¢ — 0. (See Exercise 20.5.)

We know from Lemma 19.15 that there is a sequence of points (t. (), Xc(x)),
k € N, with the following properties: e(k) — 0 as k — 00, (to(x), Xe(r)) — (t,X)
as k — 00, and g.(x)(u) — ¢ has a local maximum at (t.(zy, Xc(x)). (Having fixed
this sequence, we will now simplify the notation by writing e(k) = ¢.)

If Dp(t,x) # 0, then Dp(t.,x.) # 0 for all sufficiently small ¢, that is, all
sufficiently large k. Since we have shown in the first part of the proof that g.(u)
is a viscosity solution of

ou 9
= = F(D*(w), D(w))
it follows from Lemma 19.3 that
0
S (te,x2) < F(D?p(te, x.), Dplte,x2))

for all sufficiently small . Since both sides of this inequality are continuous, we
can pass to the limit as € — 0 and conclude that

02 1:%) < F(D(t,%), D (1, ).
In case D?p(t,x) = 0 and Dep(t,x) = 0, we call on Lemma 19.4 and write
9y

E(t@xs) < G+(D2g0(t5,xs), Do(t-,xc)),

where G satisfies the conditions of Definition 19.1. By passing to the limit and
using the fact that G*(0,0) = 0, we see that

Iy

—(t,x) <0.

(?t( )<
This proves that g(u) is a viscosity subsolution of d¢/0t = F(D?u, Du); the
same proof adapts to prove that it is a viscosity supersolution. O

20.3 Uniform continuity of approximate solu-
tions

Lemma 20.3. Consider scaled monotone translation invariant operators Tp
defined on the set of Lipschitz functions on RYN. Assume that they commute
with the addition of constants and that there exists a continuous real function,
e(t) satisfying €(0) = 0 and such that for nh <t, ((Th)"(L|x]))(0) < Le(t) and
((Tw)™(=L|z|))(0) > —Le(t). Then for every L-Lipschitz function ug, one has
—Le(t) < ((Th) u0)(x) — uo(x) < Le(?).
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Proof. Since the operators T;, commute with translations, we can prove the
statements in the case of x = 0 without loss of generality. Since wug is L-
Lipschitz, we have

—L|x| < up(x) —uo(0) < L|x|

Applying (T%)™, using its monotonicity and its commutation with the addition
of constants and taking the value at 0,

((Th)" (=Lx))(0) < ((Th)"u0)(0) — uo(0) < ((Th)" (Lx))(0),
that is, by assumption if nh < ¢,
—Le(t) < ((Th)"u0)(0) — uo(0) < Le(t).

O

Lemma 20.4. Let ug(x) be a Lipschitz function on RN . Let Ty, be a family of
operators satisfying the assumptions of Lemma 20.5. Assume in addition that
the associated function £(h) is concave near 0. Then the approximate solutions
up(t,x) associated with Ty, are uniformly equicontinuous when we restrict t to
the set hIN. More precisely, for all n,m € IN and all x,y in RY,

|up (nh,x) — up(mh,y)| < Lix —y| + €(|n — m|h). (20.11)

We can extend uy, into functions iy, on Rt xRN which are uniformly equicon-
tinuous. As a consequence, there are sequences up, , with h, — 0, which con-
verge uniformly on every compact subset of Rt x RY.

Proof. Since by definition up(nh,x) = ((Th)"uo)(x), the result is a direct con-
sequence of Lemmas 7.11 and 20.3 : By the first mentioned lemma,

lun(nh,x) = un(nh,y)| < L|x —y|
and by the second one applied with (T,)"~™,
|un(nh, x) = un(mh, x)| = [((Tn)" " un(mh, .))(x) = un(mh, x)| < e(|n —m|h).
Thus, we obtain (20.11) by remarking that
lun (nh, x)—up(mh,y)| < |up(nh, x)—un(nh, y) Hun (nh, y)—un(mh, y)|. (20.12)

Consider the linear interpolation of uy,

t—nh +1h—t
n +%

ap(t,x) = up((n+ 1)h,x) up(nh,x).

Since € is concave, the function L:) is nonincreasing. It follows that

lan(t,y) — an(s,y)| < L}IZ)H —s|<e(lt—s|) < for|t—s| <h (20.13)
and

|a(t,y) —a(s,y)| < 3e(|t — s]) for |t — s| > h. (20.14)
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(See Exercise 20.2.) By using again (20.12) we conclude that the family of
functions 4y, is uniformly equicontinuous on all of [0, +oo[xRY. Notice that
Up(0,x) = wuo(x) is fixed. Thus, we can apply Ascoli-Arzela Theorem which
asserts that under such conditions, the family of functions @y, (¢, x) has a subse-
quence converging uniformly on every compact set of [0, +-00] x RV towards a
uniformly continuous function u(t, x). The same conclusion holds for uy, (¢, x). O

Exercise 20.2. Proof of (20.13), (20.14).
a) Assume first that ¢, s belong to some [nh, (n 4+ 1)h[ and prove (20.13) in that case.
b) Assume that [t — s| < h and t < nh < s. By using |u(t) — u(s)| < |u(t) — u(nh)| +
|u(nh) — u(s)| prove again (20.13).
¢) If |t — s| > h there are m,n such that (n — 1)h <t < nh < mh < s < (m+ 1)h.
By using again the triangular inequality and the fact that |(m — n)h| < |t — s| and
h < |t — s|, prove (20.14). =
Exercise 20.3. Consider the assumptions of Lemmas and 20.3 and see whether the re-
sults of these lemmas can be extended to the case where ug is assumed to be uniformly
continuous instead of Lipschitz. More precisely, assume that there exists a continuous
increasing function e : RT — R such that £(0) = 0 and |uo(x) —uo(y)| < e(||x —y]])-
Hint: use Corollary 7.12.

L]

20.4 Convergence of iterated median filters to
the mean curvature motion

We shall prove in Theorem 20.6 one of the main practical and theoretical re-
sults of this book : the iterated median filters converge to the mean curvature
motion equation. The action of iterated median filters and the action of the
corresponding PDE are illustrated and compared in Figures 20.1 and 20.2 and
show how true this theorem is.

Figure 20.1: Scale-space based on iterations of the median filter. From left to
right and top to bottom: original shape, size of the disk used for the median
filter, and the results of applying the iterated median filter for an increasing
number of iterations.
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Figure 20.2: Comparing an iterated median filter with a curvature motion.
Numerically, the iterated median filter and the curvature motion must be very
close, at least when the curvatures of the level lines are not too small. Indeed,
the iterated median filter converges towards the curvature motion. Left: the
initial shape of Figure 20.1 has been smoothed by a finite difference scheme of
the curvature motion; middle: smoothing with a median filter at the same scale;
right: difference between left and middle images. The difference is no greater
than the width of one pixel. To have a rigorous comparison, scales have been
calibrated by ensuring that for both schemes and all r a circle with radius r
vanishes at scale r

Lemma 20.5. (median filter) Let k be a radial, nonnegative, non separable,
compactly supported function and kp(y) = }%Nh(%) the associated scaled func-
tion. Assume, without loss of generality, that the support of kp is B(0,h) and
consider the weighted median filter associated with kp, Thu(x) = Medg, u(x).
Set vo(x) = vo(|x|) = vo(r) = Lr. Then, if nh? < t,

(T7v)(0) < LV2t and T]*(—v)(0) > —LV/2t

Proof. Let us first estimate Tpv(r) when v(x) = v(|x|) = v(r) is any radial
nondecreasing function. To this aim, let x be such that |x| = r. By the
triangular inequality, the sphere with center 0 and radius /72 + h? divides the
ball B = B(x, h) into two parts such that

measg, ({y, |y| > vVr? + h2} N B — x) < meas, ({y,|y| < vVr2+ h?2} N B —x).
(20.15)

As a consequence, v being nondecreasing, we have

medy, v(x) < v(vr2 + h?). (20.16)

Let us set for brevity fi(r) = Vvr2 + h? and rp41(r) = fi(rn), ro = 7. Then we
obviously have from (20.16) and the monotonicity of T},

(Tyo)(r) < v(ra(r)). (20.17)

In addition, since vr2 +h2 < r + %hQ and 7, is an increasing sequence, we

. 2 2
obtain r,+1 <7y + % <r,+ 2hTU and therefore

nh?
W< 20.18
re ST+ o ( )
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B(x,h)

Figure 20.3: Illustrating the inequality (20.15).

Let us assume that nh? < t. Taking into account that v is a nondecreasing
function, (20.17-20.18) yield

(Thv)(r) <v(r+ %). (20.19)

Since (T;'v)(r) is a nondecreasing function of r, we deduce that (T}'v)(r) <
v(v/2t) if r < \/g Thus, if v(r) = Lr, we have for nh? <t

(Trv)(0) < LV2t.

The kernel kj being non separable, the second announced inequality comes
from the self-duality of the median, namely T} (—v) = —Tx(v). Applying this
iteratively we deduce that (77*(—v))(0) = —T7*v(0) > —L(v/2t).

O

Exercise 20.4. Fill in the details of the arguments leading to Equations (20.16) and
(20.17).
[

Theorem 20.6. Convergence of iterated weighted median filter. Let kj, be
either a C°° compactly supported non separable radial function (in any dimen-
sion), or the uniform distribution on the unit disk in R%. and (Thu) = Medy,, u.
Let ugp € F. Then the approzimate solutions uy, associated with ug and Medy,
converge to a viscosity solution u of

ou 1
Frie §Ck|Du|curv(u), (20.20)

where ¢, = % if k is the uniform measure on unit disk in R? and cy, is the con-
stant specified in Lemma 15.2 otherwise. Incidentally, this proves the existence
of a (unique) viscosity solution to the curvature equation.

Proof. We know by Theorems 14.7 and 15.3 that the weighted median is uni-
formly consistent with (20.20). Bounds for the result of the iterated filter (T5,)™
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applied to +L|x| and —L|x| have been computed in Lemma 20.5, so that the as-
sumption of Lemma 20.3 is true. In addition, we know that Medy, is monotone,
satisfies the local comparison principle (19.17), commutes with translations and
the addition of constants. Thus, we can apply Lemma 20.3 which asserts that
a subsequence of the approximate solutions u;, converges uniformly on compact
sets of RT x RM to a function w. In addition, by Proposition 19.14, v is a
viscosity solution of (20.20). Since by Theorem 19.17, this solution is unique,
we deduce that the whole sequence uj converges to u. We have thus proved
both existence of a viscosity solution for the mean curvature motion and the
convergence of the iterated median filters. O

20.5 Convergence of iterated affine-invariant op-
erators to affine-invariant curvature motion

In this section we consider any affine invariant contrast invariant filter associated
with an affine invariant, 1-localizable structuring set B. Let

ISpu(x) = inf  sup wu(y) and STpu(x)= sup inf u(y),
Beh3BYEX+B pendpYEXHB

and let T} denote one to the operators ISy, SIy, or SIyIS,. We recall that
we have defined wuy, the approximate solutions generated by T} with an initial
function ug € F, by

up(x, (n 4+ 1)h) = Thup(x,nh), un(x,0) = up(x).

Theorem 20.7. Let B an affine invariant, 1-localizable structuring set such that
czg > 0 and that every B € B contains 0. Then the sequence {up} converges,
when h — 0, uniformly on compact sets of Rt x R? to the unique viscosity
solution u of
0
= = sl Dulg(eurv(u),

where
(rt/2)Y3 if T, =18,
g(r) = (r=/2)'% if Ty = SIy, (20.21)
(r/2V3 if Ty = SIyISy,
and cg = cg.

By Barles-Souganidis principle, Theorem 20.7 essentially is a consequence of
Lemma ?? and Theorem 77, which state a consistency result for the schemes
SIn, ISh, SILISy. In order to achieve the proof of Theorem 20.7, we need to
check that the assumptions of Lemma 20.3 are satisfied.

Lemma 20.8. Consider any radial nondecreasing function v(x) = v(|]x]) =
v(r) > 0. Then for nh <t,

0 < ((I54)™0)(0) < v(at + 2av/t).
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ah

ah]JZ

Figure 20.4: Illustration of the proof of the inequality (?7?).

Proof. (SI)™v is easily shown to be radial and nondecreasing, like v. Since B
is localizable, it can be assumed to contain, by Lemma ?7, a square with area
a?. Set x = (r,0). Since B is affine invariant, B;, = h?B contains a rectangle
Ry, with sides parallel to the axes, the side parallel to the z-axis having length
ah and the other one a2hz. Then

ISpv(x) < sup v(y).
X+Rp

Thus "
ISpv(x) < v((r + %)2 +a2h)?) (20.22)

We set for conciseness fy(r) = ((r + %) + a?h)z and 7,41 (r) = fa(ra),
ro = r. Since I.Spv is a radial nondecreasing function, we can replace v by ISxv
in (20.22). By the monotonicity of ISy, we obtain

(Trv)(r) < v(ra(r)) (20.23)
In addition, since (12 + 5)% <r+ 2175 for all r,e > 0, we have for h < 1
1 1
fu(r) < (r* +ahr+a*h + Za2h2)% < (r*+2a*h+ahr)? <r+ 2—(2a2h +ahr),
r
which yields
a’h
fun(r) <r+ah+ —. (20.24)
T
Thus rp11 = frn(re) < rn+ah+ a:—nh <r,+ah+ "i—h, because r, is an increasing

sequence. Finally, r, <r 4+ n(ah + %h) and, by (20.23),

(Sv)(r) <o(r+n(ah + aQTh))
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Let us assume that nh < t. Then

(SI0)(r) < v(r + (a + “7)15).

Considering that the minimum value of r — 7+ (a4 %Q)t is attained at r = av/t
and that » — (ISp)™v(r) is nondecreasing, we obtain for nh < ¢,

0 < (IS570)(0) < v(2aV1 + at).

Corollary 20.9. The operators Tp, = 1Sy, SIn, IS,S1y all satisfy
—v(at + 2av/t) < (T7)(0) < v(at + 2aV/)
for every continuous radial nonincreasing function v > 0.

Proof. We claim that SIyv = v. By Lemma 7?7, for every ¢, By contains a
rectangle whose side parallel to the x axis has length . Thus

SITpv(x) > yei)?_if_’th(y) =u(r— %) —v(x) as e — 0.
Since every B € B contains 0, we also have SI,v(x) < v(x), which proves the
claim.

Since I Syv is a radial nondecreasing continuous function like v, we also have
SI(ISpv) = ISyv and by iterating and using Lemma 20.8,

((SILISK)™v)(0) = ((ISK)™)v(0) < v(at + 2aV/t).
We also have by the same lemma,
((STnISk)™(—v))(0) = —((ISRLSTH)"v)(0) = —((IS)™v)(0) > —v(at + 2av/t.

Finally, (SI5)"v = —(ISh)™(—v), which yields the same inequalities for (S1p)"v(0)
as for (I.S,)"v(0). O

Figures 20.5 and 20.6 illustrate numerical results showing that affine-invariant
filters really are affine invariant. A finite difference scheme is used to compute
the action of the PDE in Figure 20.5. Figure 20.6 illustrates the same invariance
using an iterated. inf-sup operator.

of Theorem 20.7. By Lemma 7?7, Theorem ?? and Theorem ??7 the oper-
ators T}, are consistent with their corresponding partial differential equations
% = cg|Du|g(curv(u)), and satisfy a uniform local maximum principle. Be-
ing contrast invariant, they commute with the addition of constants. Thus, by
Proposition 19.14, if a sequence of approximate uniformly continuous solutions
up,, converges uniformly on every compact set to a function wu, then w is a vis-
cosity solution of (19.14).

By Lemmas 20.3 and 20.8, the approximate solutions uj are equicontinuous on
every compact set of Rt x RY and therefore have subsequences which converge
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@@

¢ @

Figure 20.5: Affine invariance of (AMSS). We check the affine invariance of
the affine and morphological scale space (AMSS). A simple shape (top-left) is
smoothed using a finite differences discretization of (AMSS) followed by thresh-
olding (bottom-left). We apply an affine transform, with determinant equal to 1,
on the same shape (top-right), then the same smoothing process (middle-right),
and finally the inverse of the affine transform (down-right). The final results of
both processes are experimentally equal.

¢ ¢

Figure 20.6: Checking the invariance of an affine-invariant inf-sup operator. The
images are the final outcomes of the same comparison process shown in Figure
20.5, with T replaced with an affine-invariant inf-sup operator. The structuring
set B is an approximately affine-invariant set of 49 ellipses, all with same area.
The inf-sup computation is costly and proves to be less affine invariant than the
one obtained by a finite difference scheme. This is due to grid effects.

uniformly to a function u on every compact subset of RT x RY. Thus, u is a
viscosity solution. In addition, we know that a viscosity solution of (20.21) is
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unique (Theorem 19.17). Thus the limit w does not depend on the particular
considered subsequence and the whole sequence uy converges to u. So we have
proven both the existence of a viscosity solution for the affine invariant equa-
tions and the convergence of uj to this solution. O

20.6 Exercises

Exercise 20.5. Let g: R — R be continuous and nondecreasing and set
9:(5) = [ els =)o)+ ety
R

where the support of . is in [—¢, €], ¥e is C*, 1:(s) > 0, and [ ¥ (t) dt = 1. Show
that g. is C*°, that g.(s) > ¢, and that g. — g uniformly on compact subsets of R as
e—0. m

20.7 Comments and references

The existence and uniqueness theory for the viscosity solutions of mean cur-
vature motion and the relations of these solutions with other kinds of solu-
tions (classical, variational) was developed independently by Evans and Spruck
[99, 100, 101, 102] and by Chen, Gigo, and Goto [70, 71]. We do not follow
their existence proofs, but rather the elegant numerical approximation schemes
invented by Merriman, Bence, and Osher [203] and the subsequent convergence
proof to the viscosity solution by Barles and Georgelin [36]. Other proofs of
the convergence of the iterated Gaussian median filter toward the mean cur-
vature equation are given in [97] using semigroups and by Ishii [142]. Finally,
we note the importance of iterated median filters for denoising applications [23]
and [156].
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Chapter 21

Scale Spaces and Partial
Differential Equations

This chapter and the next one are devoted to an axiomatic development of image
smoothing. Our approach is based on the notion of a scale space:

Definition 21.1. A scale space is a family of image (function) operators {T;},
t € RY, defined on F.

Although this concept is completely abstract, it is clearly based on work
presented in previous chapters. One can think of an operator T3 belonging to
a scale space as the asymptotic limit of iterated filters, and in fact, the main
purpose for developing this abstract theory is to classify and model the possi-
ble asymptotic behaviors of iterated filters. The program proceeds as follows:
We first introduce several properties that smoothing operators are reasonably
expected to have. These properties will be recognized as abstractions of results
about iterated filters that we have already encountered; in particular, the func-
tion F' that has played such an important role in relating iterated operators
to differential equations appears in Definition 21.6. At this stage, we will have
formally identified scale spaces with the operator mapping wug to w(t), where
u(t,x) is a solution of a parabolic partial differential equation

% = F(D*u, Du,u, x,t).

The next step is to define the now-familiar invariants for scale spaces, one at
a time, and then deduce properties that F' must have based on the assumed
invariants of {T;}. This will lead, for example, to a complete characterization
of the function F for a linear scale space as the Laplacian.

The chapter contains seven figures that illustrate some of the concepts. Fig-
ures 21.4, 21.5, 21.6, and 21.7 are placed at the end of the chapter. Figure
21.4 illustrates numerically that linear smoothing is not contrast invariant. On
the other hand, Figure 21.5 shows experimentally that the scale space AMSS
is contrast invariant. The significance of contrast invariance for smoothing T-
junctions is illustrated in Figure 21.6. Figure 21.7 illustrates one of the most
important twentieth century discoveries about human vision and compares it
with computer vision.

279



280 CHAPTER 21. SCALE SPACES AND PDE’S

21.1 Basic assumptions about scale spaces

In our context, the operators T; are smoothing operators and the functions u
are images. Thus, given an image ug, Tiug = u(t,-) is the image ug smoothed
at scale ¢. It is natural to abstract the idea that an image smoothed at scale ¢
can be obtained from the image smoothed at scale s, s < ¢, without having to
“go back” to the original image ug. This concept is illustrated in Figure 21.1
and formulated in the next definition.

Definition 21.2. A scale space {1} is said to be pyramidal if there is another
family of operators {Typni} : F — F, h > 0, called transition operators, such
that

Tivn = Tt+h,tTt and Ty =1,

where I denotes the identity operator.

We will sometimes denote the transition operators by {Ts,t}, 0<t<s.
Then Ty =T, T}, h = s —t, and T}y = I. Most, but not all, results are about
pyramidal scale spaces. An important exception is Lemma 21.21, which is a key
result in our program.

A strong version of “pyramidal” is the semigroup property. Recall that we
have already encountered this idea in Chapter 9 in connection with a dilation
or an erosion generated by a convex set.

Definition 21.3. A scale space {T;} is said to be recursive if To = I and

TsTy =Tsyy  forall s,teR.

Note that if {T};} is recursive, then T} can be obtained by iterating T}/, n
times. Another intuitive concept is that of “locality.” The thought that the
action of a smoothing operator on a function v at x would be sensitive to what
the function did far from x just does not make sense. This means that we want
the action of the transition operators to depend essentially on the values of u(y)
for y near x. Furthermore, we have had ample opportunity in earlier chapters to
see the technical importance of locality. The related property of being monotonic
is also intuitively and technically important. We combine these notions is the
next definition.

Definition 21.4. A scale space {T}} satisfies a local comparison principle if
the following implications are true: For all uw and v in the domain of definition,
u(y) < v(y) fory in some neighborhood of x implies that

Titnu(x) < Typpv(x) +o(h)  for all sufficiently small h.
If u(y) < v(y) for ally € RN, then

Tignu(x) < Tippv(x)  forallx € RY and all h > 0.

Our goal is to establish a classification of scale spaces. To do this, we need an
assumption stating that a smooth image evolves smoothly with the scale space.
From what we have seen in previous chapters, it should not be surprising that
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it is sufficient to assume this kind of property for quadratic functions. Now,
quadratic functions are not allowed to us, as they do not belong to F. Now,
there are functions in F which coincide locally with every quadratic functions
and this is enough for our scopes.

Definition 21.5. We say that u is a “quadratic function around x” if it belongs
to F and if for all y in some B(x,r), r > 0, one has

u(y) = 5 (A(y —x),y —x) + {0,y — %) +¢,

N~

where A = D?*u(x) is an N x N matriz, p = Du(x) is a vector in RY, and
¢ =u(x) is a constant.

From the semigroup point of view, the next assumption implies the existence
of an infinitesimal generator for the semigroup 7;.

u(0,x) local
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The scale-space visual pvramid

Figure 21.1: The visual pyramid of scale space. Perception is thought of as
a flow of images passing through transition operators 7; ;. These operators
receive an image previously analyzed at scale s and deliver an image analyzed
at a larger scale t. The scale t = 0 corresponds to the original percept. In this
simple model, the perception process is irreversible: There is no feedback from
coarse scales to fine scales.

Definition 21.6. A scale space {T;} is said to be regular if there exists a
function

F: (Aupaxacut) = F(Aapuxacut)
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that is continuous with respect to A and such that for every quadratic function
u around X,

Titnu(x) — u(x) _

. F(D?*u(x), Du(x),x,u(x),t) as h— 0. (21.1)

It is useful to write (21.1) as Tiqpu(x) — u(x) = hF(4,p,x,c,t) + o(h).
Then, replacing t with ¢ — h shows that

Tt,t—hu(x) - U(X) = hF(A7p7 X, ¢, [ h) + O(h) (212)
Then, if F' is continuous in ¢,

Ty i—nu(x) — u(x)
h

— F(A,p,x,¢c,t) as h— 0. (21.3)

We encountered the notion of causality in section ??. The idea was quite
simple, if not precise: As scale increases, no new features should be introduced
by the smoothing operators. The image at scale ¢’ > ¢ should be simpler than
the image at scale ¢t. Since we will constantly be considering scale spaces that
are pyramidal and regular, and that satisfy the local comparison principal, it
will be convenient to give these scale spaces a name. The causality entails a
further property for F':

Definition 21.7. A scale space {T}} is said to be causal if it is pyramidal and
regular, and if it satisfies the local comparison principle.

Lemma 21.8. If the scale space {T}} is causal, then the function F is nonde-
creasing with respect to its first argument, that is, if A < B, where A and B are
symmetric matrices, then

F(A,p,ce,x,t) < F(B,p, ¢, x,t). (21.4)

Proof. Let A and B be any N x N symmetric matrices with A < B, and let
p be any N-dimensional vector. Consider the quadratic functions Q4 and Qp
around x defined by

Qaly) = e (pyy =) + 5 (Aly = x),y — )

1
Qp(y) =c+ Py —x) + 5 (B(y = x),y —x).
Then for fixed x and all y in a neighborhood of x, Qa(y) < Qp(y). Using
the local comparison principle, we conclude that Tiip,:Qa(Xx) < Titn :Qp(X).
Noting that Q4(x) = @p(x) = ¢ and using the regularity of {T}};cr+, we see

that
lim Tt+h,tQA(X) - QA(X) < lim Tt+h,tQB(X) - QB(X),
h—0 h h—0 h
which is the inequality F(A,p, ¢, x,t) < F(B,p, ¢, x,t). O

We will see in the next section that the causality assumption implies that
the scale space is governed by a PDE.
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21.2 Causal scale spaces are governed by PDEs

The next result, Theorem 21.9, should be no surprise. It just says that for causal
scale spaces, the regularity condition, which is defined in terms of quadratic
forms, transfers directly to functions w that are C2. This is a fundamental,
although easily established, step in our program. Once we have established
Theorem 17.8, we are ready to introduce invariants: Postulate that the scale
space has certain invariance properties and conclude that F' must have certain
properties. This will tell us that causal scale spaces with certain invariances will
be governed by a general class of PDEs.

Theorem 21.9. Assume that the scale space {T}} is causal and that u is C* at
x. Then there exists a function F such that for all x € RV,
Tian ) ~u(x) _

F(D*u(x), Du(x),u(x),x,t) as h— 0. (21.5)
Proof. Since we have assumed that u is C? at x, we can expand u hear X as
1
uly) = u(x) + (Du(x),y = x) + Z{D*u(x)(y = %),y = x) + o(jx = y|*).
For € > 0, define the quadratic functions Q% and Q~ around x by

QH(y) = ulx) + (Dulx),y = %) + 5(DPu(x)(y = %),y = x) + 3ely = %),y = %)

Q™ (y) = ulx) + (Dulx),y = %) + S(D*ulx)(y = %),y = X) = 3ely = %),y =)
For sufficiently small |y — x|,

Q™ (y) <uly) < Q" (y).

Use the facts that the scale space {T;} is pyramidal (so the transition operators
exist) and that it satisfies the local comparison principle to deduce that

TintQ (%) — o(h) < Tyypnu(x) < Tipn QT (x) + o(h).
Since Q™ (x) = u(x) = QT (x), we have
Tin,t Q™ (x) = Q7 (x) —o(h) < Ty u(x) —u(x) < Tippn, QT (x) = QT (x) +o(h).

Now divide by h and let it tend to zero. Since {T}} is regular we have the
following limits:

lim Tipnt Q™ (x) — Q7 (%) < liminf Tyynpu(x) — u(x) < limsup Tynu(x) — u(x)
h—0 h h—0 h h—0 h
< lim Tyyn QF(x) — QJF(X)'
h—0 h

Thus,

Titn tu(x) — u(x)

F(D*u(x) — eI, Du(x),u(x), x,t) <liminf

h—0 h
<lim sup Tupnul(x) — ulx)
h—0 h

<F(D*u(x) + eI, Du(x), u(x), x, t).
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Part of the regularity assumption is that F' is continuous in its first argument,
so letting € tend to zero shows that

lim Titnru(x) — u(x)
h—0 h

= F(D*u(x), Du(x), u(x),x,t). O
O

This is about all we can conclude concerning the function F; to deduce
more about F, we must assume more about the scale space. Most, but not
all, of these assumptions will be that the scale space is invariant under some
group of operations. Some of these invariants, like affine invariance, are rather
special. The first one we consider is, however, an invariance we naturally expect
all smoothing operators to have: Smoothing should not alter constants and
smoothing should commute with the addition of constants.

Definition 21.10. A pyramidal scale space {T}} is said to be invariant under
grey level translations (or commutes with the addition of constants) if

Tt+h,t[0] (X) = 0 and Tt+h_¢(u + O)(X) = Tt+h’tu(X) + C (216)

for all w, all constants C, and all x € RN .

If Tiip e is a linear filter defined by Tiyp:u = ¢ * u, then this axiom is
equivalent to the condition [ ¢(x)dx = 1.

Proposition 21.11. Let {T}} be a causal scale space that is invariant un-
der grey level translations. Then its associated function F : (A,p,c,x,t) —
F(A,p,e,x,t) does not depend on c. Furthermore, F(0,0,¢,x,t) = 0.

Proof. Consider a quadratic function around x, u(y) = (1/2)(A(y — x),y —
x) + (p,y — X) + ¢, and let C be an arbitrary real number. By the regularity
assumption

Tiint(u+O)(x) — (u+ O)(x)
h

— F(A,p,c+C,x,t) as h—0.

Using the grey level translation invariance and regularity again,

Tonp(u+ C)x) = (u+ O)(x) _ Tegngu(x) +C—ulx) =C P
h h

(A7p’ C7 X’ t)

as h — 0. These last two limits imply that F(A,p,c+ C,x,t) = F(A,p, ¢, x,1),
so F does not depend on ¢. If A =0 and p =0, then Tj4p ((u)(x) — (u)(x) =
¢c—c=0and F(0,0,¢,x,t) =0. O

From now on, we assume that the scale space is causal and invariant under

grey level translations. We will thus suppress ¢ and write F'(A,p, ¢, x,t) =
F(A p,x,t).
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21.3 Scale spaces yield viscosity solutions

We are going to prove a result that connects a causal scale space {T;} with a
viscosity solution of the PDE associated with {7;}. In fact, we will prove that
Tiug is a viscosity solution of the equation

ou

a(t,x) = F(D*u(x), Du(x),x,1), (21.7)

where F' is the function associated with {T;} by regularity (Definition 21.6).

Theorem 21.12. Assume that a scale space {Ti} is causal and commutes with
grey level translations; assume also that F' is continuous in t. Then the function
u defined by u(t,x) = Tiuo(x) is a viscosity solution of (21.7).

Proof. We will show that u is a viscosity subsolution; the proof that it is also a
viscosity supersolution is a similar argument with the inequalities going in the
opposite direction.

Assume that ¢ is C* and that (¢,x) € (0,+00) x RY is a point at which
the function u — ¢ has a strict local maximum. The point (¢,x) is fixed, so we
will denote the variable by (s,y). We need to show that

%(t — F(D?
5t ,X) (D?p(t,x), Dp(t,x),x,t) < 0. (21.8)
(Note that we would usually consider two cases: (1) Dp(t,x) # 0; (2) Dp(t,x) =
0 and D?p(t,x) = 0. Since F(0,0,%,t) = 0 by Proposition 21.11, it is sufficient
to prove (21.8).)

On the basis of Lemma 19.5, we assume that ¢ is of the form ¢(s,y) =
f(y) + g(s). Since the operators commute with the addition of constants, we
may also assume that u(t,x) = o(t,x) = f(x) + g(t). Of course, both f and
g are C*°. Thus, for (s,y) in some neighborhood of (¢,x), we have u(s,y) <
o(s,y) = f(y) + g(s). In particular, we have

u(t —h,y) < f(y) +g(t —h)

for all sufficiently small A~ > 0. Since the operators T;:_, satisfy the local
comparison principle and commute with the addition of constants, we have

Ty pu(t — b )() < Ty f) + gt — B).
By definition of the transition operators, T —pu(t — b, -)(x) = u(t, x) = f(x)+
g(t). Thus, we see that
g(t) —g(t —h) <Tipnf(x) — f(x),
which by (21.2) we can write as
9(t) = g(t — h) < hF(D*f(x), Df(x),x,t — h) + o(h).

Divide by h, use the fact the F' is continuous in ¢, let h tend to zero, and
conclude that
g'(t) < F(D*f(x), Df(x),x,1).

Since d¢ /0t = ¢', D?>¢ = D*f, and Dy = D, this proves the result. O
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21.4 Scale space invariants and implications for
F

We have already seen the implication for F' of assuming that a scale space {T}}
is invariant under the addition of constants (Proposition 21.11). This section is
devoted to continuing this program: Assume an invariant for {7;} and deduce
its implication for F'.

21.4.1 Translation, rotation, and reflection

These invariants concern the underlying space RY, and they are easily defined.
Translation invariance for operators was defined in Definition 7.10 using the
translation operator 7z: Tzu(x) = u(x — z) for all x,z € RV.

Definition 21.13. A pyramidal scale space {T:} is said to be translation in-
variant if

Tysnitz = 12Tiene for allz € RN >0, and h > 0. (21.9)

Proposition 21.14. Assume that {T;} is a causal, translation invariant scale
space. Then its associated function F does not depend on x.

Proof. Consider two quadratic functions around 0 and x respectively defined
by
1 1
u(y) = 5{Ay,y) +{py)+ec and mxu(y) = {Aly —x),y %) +(p,y —x) +¢
By the regularity assumption,
TtJrh,tu(O) - u(O) = hF(A,p, 07 ¢, t) + O(h’)a (2110)

Titnmxu(x) — xu(x) = hF(A,p,x,¢,t) + o(h). (21.11)

By translation invariance,
TH_}L)thU(X) — Tx’u(X) = Tth_‘_h)t’U/(X) — Txu(x) = Tt_‘_hytu(O) — U(O)

Thus we see from (21.10) and (21.11) that hF(A,p,0,¢,t) = hF(A4,p,x,¢,t) +
o(h). Divide both sides by h and let h — 0 to see that

F(A p,x,c,t)=F(A,p,0,c,t). O
O

This takes care of translations; rotations and reflections are combined in the
group of linear isometries. If P is a linear isometry of RY, then the function
Pu is defined by Pu(x) = u(Px).

Definition 21.15. A pyramidal scale space {Ti} is said to be Euclidean invari-
ant (or isotropic) if
PTt+h7t = Tt.l’_h)tp (2112)

for all linear isometries P of RN, all t >0, and all h > 0.
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We denote the group of linear isometries of RY by Ox = O(RY). Any
transform P € Op can be represented uniquely by an N x N orthogonal matrix
P, assuming an orthonormal basis. We do not make a distinction between
the operator P and the matrix P. If P € Oy, then recall that its transpose
P’ € Oy, and PP’ = I. Recall also that given a symmetric matrix A there is
always a P € O such that PAP' is diagonal. Euclidean invariance is illustrated
in Figure 21.2.

Lemma 21.16. If a translation invariant causal scale space {T;} is isotropic,
then for every R € Oy,

F(RAR',Rp,t) = F(A,p,t), (21.13)

where F is the function associated with {T}} by regularity.

Proof. Consider a quadratic function around 0, u(y) = (1/2)(4y,y) + (p,y)
and let F' be the function associated with {T;}. We know that the value of F'
is determined by the action of T;yj ¢ on u at ¢, that is,

TtJrh,tu(X) - U(X) = hF(A,p, t) + O(h)

In particular,

hm Tt+h,tu(0) — U(O) —F

lim - (A,p,1). (21.14)

Let R be any element of Oy. Then

1
(ARy, Ry) + (p, Ry) = §<R’ARy, y) + (R'p,y).

N | =

u(Ry) =
Thus we know immediately that
Tyona(uo R)(x) — u(Rx) = hF(R'AR, R'p,) + ofh),

where u o R denotes the function defined by uo R(y) = u(Ry). The assumption
that {T}} is isotropic means that Ti1p ¢(u o R)(x) = Ty+n,u(Rx), so

Titnt(uo R)(x) — u(Rx) = Tiqp u(Rx) — u(Rx).
From this we conclude that

lim Tigni(uo R)(x) — u(x) — lim Titnu(Rx) — u(Rx)
h—0 h h—0 h

= F(R'AR, R'p,t).
By letting x = 0 in these limits, we conclude from (21.14) that
F(A,p,t) = F(R'AR, R'p,1).

Replacing R with R’ completes the proof. O
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Figure 21.2: An isotropic filter and a nonisotropic filter. The left frame contains
simple shapes that can be deduced from each other by rotations. The center
image is the closing of the left image by a horizontal rectangle of size 6 x 2
pixels. This nonisotropic filter produces different results, depending on the
shapes orientations. The right image is the closing of the left image by a circle
of radius 4 pixels, which has the same area, up to the pixel precision, as the
rectangle used in the center image. This filter is isotropic; thus, as one can see,
the resulting shapes can be deduced from each other by rotations.

21.4.2 Contrast invariance
Definition 21.17. A pyramidal scale space {T;} is said to be contrast invariant
if
go Tt+h,t = Tt+h,t °g
for any nondecreasing continuous function g : R — R.
An immediate consequence of this definition is that a contrast invariant scale
space commutes with the addition of constants, that is, it satisfies Definition

21.10. To see this, just take g(s) = 0 and g(s) = s + C. Thus, in the next
lemma, the function F' does not depend on c.

Lemma 21.18. If a translation invariant causal scale space {T;} is contrast
invariant, then its associated function F satisfies the following condition:

F(uA+ \p @ p, up,t) = pF (A, p,t), (21.15)

where A is any symmetric N X N matrix, p is any N -dimensional vector, \ is
any real number, and p is any real number greater than or equal to zero.

Proof. Recall that p ® p denotes the N x N matrix whose entries are p;p;,
i,j €{1,2,...,N}. Given C? functions u and g, we have these two applications
of the chain rule:

D(g(u)) = ¢'(u)Du, and D?*(g(u)) = ¢'(u)D?*u+ ¢’ (u)Du @ Du. (21.16)
Choose any quadratic function around 0 of the form
u(y) = (1/2)(4y,y) + (p, y)-

We know from the assumptions and equations (21.16), plus the relations u(0) =
0, Du(0) = p, and D?u(0) = A, that

Ti1n,t9(u)(0) — g(0) = hF(g'(0)A + ¢"(0)p @ p, ' (0)p, t) + o(h).
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Since {T}} is contrast invariant, Tiyp +g(uw)(0) = g(Titp,:u(0)), so
9(Ternu(0)) — g(0) = hF(g'(0)A+ g"(0)p @ p, g'(0)p, t) + o(h).
From regularity, we have
Titp,u(0) — u(0) = hEF(A, p,t) + o(h),
so we can write g(Ti1p :u(0)) = g(hF(A,p,t) + o(h)). Thus for small enough h,
9(Tinau(0)) = g(0) + g'(0)(hF(A, p, 1) + o(h)) + o(h)
and
g (O)IF(A,p,t) + g'(0)o(h)) + o(h) = hF(g'(0)A + g"(0)p @ p, ' (0)p, 1) + o(h).
Dividing this by h and letting h — 0 shows that
9 (0)F(A,p,t) = F(g'(0)A+¢g"(0)p @ p,g'(0)p, 1),

or, since we can choose a C? contrast change g with arbitrary values for ¢’(0) > 0
and ¢”(0) € R,
pF (A, p,t) = F(uA + Ap & p, up, ).

21.4.3 Scale and affine invariance

The main purpose of this section is to establish a normalized link between scale
(t) and space (x). If T} is a causal scale space and h : Rt — R is a C?
increasing function, it is easily seen that S; = Tj,(;) also is a causal scale space
(see Exercise 21.1.) So there is no special link on the scale, unless we give
a further specification. This specification will be given by a scale invariance
axiom.

Scale invariance means intuitively that the result of applying a scale space
{T}} must be independent of the size of the analyzed features. This is very
important for analyzing natural images, since the same object can be captured
at very different distances and therefore at very different scales (see Figure 21.3).

Scale invariance is the object of Definitions ?? and 21.10. The main re-
sult is Lemma 21.21 which gives a standard normalization: Scale can be taken
proportional to space.

This result can be somewhat secluded from the rest of the invariance analysis,
as we will prove it for arbitrary families of function operators {T;}, t > 0, not
even pyramidal. We shall just assume that the mapping ¢ : [0,00) +— T} is
one-to-one.

The changes of scale on an image can be made by a zoom, in which case
the zooming factor A gives a scale parameter. In the case of an affine transform
A, the square root of the determinant of A also will play the role of a scale
parameter. By zoom we mean a map x — Ax, A > 0, generating an image
transform Hyu(x) = u(Ax).
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Definition 21.19. A family of operators {T;} is said to be scale invariant if
there exists a rescaling function t' : (t,\) — t'(t,\), defined for all X > 0 and
t > 0, such that

H\Ty = T, H,. (21.17)

It {T}} is pyramidal, then
H)\Tt/,s’ = Tt,sH)\; (2118)

where t' = t'(t,\) and s’ = t'(s,\). In addition, the function t' is assumed to
be differentiable with respect to t and X\, and the function ¢ defined by ¢(t) =
(Ot JON)(t,1) is assumed to be continuous and positive for t > 0.

This definition implies, in particular, that ¢’ is continuous in ¢ and A. Con-
dition (21.18) implies (21.17). It will have the advantage of making our classi-
fication of scale-invariant scale spaces easier. Of course, we could not impose
the condition ¢' = ¢, since the scale of smoothing and the scale of the image are
covariant, as can be appreciated by considering the heat equation.

The assumption that (9¢'/OM)(t,1) > 0 can be interpreted by considering the
relation H)Ty = T;H) when the scale A increases before the analysis by T3, that
is, when the size of the image is reduced before analysis. Then the corresponding
scale before reduction is increased. Informally, we can say that the scale t of
analysis increases with the size of the picture. It is easy to determine the
function ¢’ for several classical scale spaces (Exercise 21.5) and to check that it
satisfies the previous requirements.

The next definition (axiom) introduces the scale space invariance under any
orthographic projection of a planar shape. We write as usual Au(x) = u(A4x).

Definition 21.20. A family of operators {T;} is said to be affine invariant if it
is scale invariant and if the following conditions hold: The associated function
t' can be extended to a function t' : (t, A) — t'(t, A), where t > 0 and A is any
linear mapping A : RY — RN with det(A) # 0, such that t'(t,\) = t'(t, \I) and
such that

AT! = TA. (21.19)

If {T}} is pyramidal, the transition operators Ty s satisfy the commutation rela-
tion
ATy o =Ty A (21.20)

for all 0 < s <t, where t' =1t'(t,A) and s’ =t'(s, A).

This property means that the result of applying the scale space {T}} to a
image is covariant with the distance and orientation in space of the analyzed
planar image (see the introduction of Chapter ??.) The fact that the function
t' can be different for each scale space may seem mysterious. We will “fix”
this in the next lemma by showing that we can, “up to a rescaling” assume
that scale-invariant scale spaces have all the same scale-space function, namely
t' = M\t

Lemma 21.21. [Scale normalization/Assume that the mapping t — Ty, t €
[0,00), is one-to-one and that To = I.
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Figure 21.3: A multiscale world. This series of images is an experiment to show
the relative perception of objects seen at different distances. Each photograph,
after the first one, was taken by stepping forward to produce a snapshot from
a distance closer than the one before. The rectangle in each image outlines
the part of the object that appears in the next image. Clearly, as one gets
closer to the subject, the visual aspect changes and new structures appear.
Thus, computing primitives in an image is always a scale-dependent task, and
it depends on the distance to objects. When we look at an object from a certain
distance, we do not perceive the very fine structure: For instance, leaves cannot
be seen in the two first photographs because we are too far from the trees. Nor
do we see them in the last two, since we are now too close. Multiscale smoothing
of a digital image tries to emulate and actually improve this and phenomenon,
due to an optical blur, by defining a smoothing at different scales. The role of
this multiscale smoothing is to eliminate the finer structures at a scale t, but
minimally modify the image at scales above t.

(i) If the family of operators {T;} is scale invariant, then there exists an
increasing differentiable function o : [0,00) — [0,00) such that t'(t,\) =
oY (o(t)X). If the operators Sy are defined by S; = T,—1(y), then

t'(t,\) =tA (21.21)

for the rescaled analysis {S;}.

(1) If the family {T}} is affine invariant, then the function t'; (¢, B) — t'(t, B)
depends only on t and |detB|, in particular, t'(t, B) = t'(t,|detB|"/N),
and t' is increasing with respect to t. In addition, there exists an increas-
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ing differentiable function o from [0,00) to [0,00) such that t'(t,B) =
o~ Yo (t)|det B|Y/N). If we set Sy = T,-1(yy, then

t'(t, B) = t|detB|*/N (21.22)
for the rescaled analysis {S¢}.

Proof. We will prove (i7) and then show how this proof can be reduced to a
proof of ().

Step 1: We prove that
t'(t, AB) = t'(t'(t, A), B) (21.23)
for any linear transforms A and B with nonzero determinants. To see this, write
ABTy(s,.aB) = TtAB = ATy (4, 4) B = ABTy (11(1,4),B)-

Since the determinant of AB does not vanish, we have Ty apy = Ty (1/(+,4),B)>
and since ¢ — T} is one-to-one, we have (21.23).

Step 2: The function ¢’ is increasing with respect to t.

We begin by proving that ¢ — t'(¢, A) is one-to-one for any A with detA # 0. If
this were not the case, then there would be some A, detA # 0, and some s and
t, s # t, such that t/(s, A) = #/(¢, A). This implies that

TSA - ATt/(S,A) - ATt/(t,A) - TtA

Since detA # 0, this means that Ty = T}, and since t — T} is one-to-one, we
have s = t. Thus ¢’ is one-to-one. By hypothesis, To = I, and since ATy (o 4) =
ToA = A, we see that ¢/(0,A) = 0 for all A. By definition, ¢’ is continuous
and nonnegative. Since t' — ¢/(t, A) is one-to-one and since ¢'(0, A) = 0, it is
a homeomorphism of [0, 00) onto [0, 00) for every A with nonzero determinant.
Thus t’ is increasing in t.

Step 3: For every orthogonal matrix R,
t'(t,R) = t. (21.24)

To prove that, define t; = ¢/(¢, R) and ¢,41 = t'(tn, R). From (21.23), t, =
t'(t, R™). There are two cases to reject: (1) t1 < ¢; (2) t1 > ¢. In case (1),
the fact that ¢’ is strictly increasing in ¢ implies that the sequence t,, is strictly
decreasing. Similarly, in case (2), the sequence t,, is strictly increasing. Since
the set of orthogonal matrices is compact, there is a subsequence ny and an
orthogonal matrix P such that R™ — P as k — oo. Let my = ngy+1 —ng. Then
R™: — [ as k — oo. Since ¢’ is continuous, limy_, o t'(t, R™*) — ¢'(¢,I) = t.
In case (1), we have ¢t = limy_.o t'(t, R™*) < t, a contradiction. In case (2) we
have t = limy_. ¢/ (¢, R™*) > ¢, a contradiction again.

Step 4: For all transforms B that have nonzero determinants,
t'(t, B) = t'(t, |det B|'/N). (21.25)

This part of the proof is pure matrix theory. Let B be any N x N nonsingular
matrix (linear transform of RY). The B can be written as B = R; DRy, where
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Ry and R, are orthogonal and D is diagonal. Furthermore, d;; = A\; > 0 and
the \; are, up to a sign, the eigenvalues of B. As a consequence, using (21.23)
and (21.24), we see that

t'(t,B) =t'(t, D).

The matrix D can be represented as D = A(A)Re A(A2) Ry - RNA(AN) RN,
where the mapping A()\;) is defined by (x1,z32,...,2n5) — (Niz1,2Z2,...,ZN)
and R; is the orthogonal mapping that interchanges z; and z;. Repeated use of
(21.23) and (21.24) and the fact that A(A)A(A2) - A(An) = A(M1 A2+ AN)
shows that

t'(t,D) =t'(t, AAi X2+ An)).

Now write (A Ag--- )\N)l/N = )\ and consider the matrix A\I. As we have done
above, we can write A\l = A(\)Ro AN Ry -+ RvA(M\)Ry'. Then using (21.23)
and (21.24) again, we see that

(@t N =t (8, ANY)) =t (t, AMi Az AN)),
and we conclude that
t'(t,B) =t'(t,D) =t'(t, AM A2 -+ An)) = t/(t, M]).

By definition, t'(¢, A\I) = (¢, A), where we have used the same notation for the
function ' : (¢t,A) — t/(¢,\) and its extension t’ : (¢, \I) — t'(¢t,\I). So we
obtain (21.25).

Step 5: There is an increasing differentiable function ¢ that satisfies the equa-
tion #'(t,\) = o~ (o (t)\), or equivalently, o(t'(t,\)) = o(t)\.
Differentiating the last equation with respect to A and then setting A = 1, shows
that

o’ = o, (21.26)

S0 it is reasonable to define o by

U(t):exp</lt%>.

Since by assumption ¢ is continuous and ¢(s) > 0 for s > 0, o is clearly
increasing and differentiable. It remains to show that t'(t,\) = o~ 1(a(t)\).
From equations (21.23) and (21.24), we know that (¢, uv) = ¢/(¢'(t, u), v)
and t'(¢,1) = t for all positive u and v. Differentiating both sides of the first
equation with respect to p and then setting 4 = 1 and v = X shows that
ot’ ot’ ot’
A= (t,\) = —(t, )= (¢, 1). 21.27
() = SN I (21.27)
By Definition 17.18, the function ¢ given by ¢(t) = (9t'/0M)(¢,1) is continuous
and positive for ¢ > 0. We have shown that ' is strictly increasing, thus the
right-hand side of (21.27) is nonnegative. This implies that
ot
—(t,A) > 0. 21.28
) > (21.28)
If '(t,\) = o~ (o (t))\) is going to be true, then it is also true if we replace
A with \/o(t), which is the equation t'(t, \/o(t)) = o~ 1()\). This prompts us to
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examine the function g defined by g(¢t, \) = (¢, A/o(t)). When we differentiate
g with respect to t, we will see that this derivative is zero:

dg . ot U’(t) ot
5 (LA = oo (1M a(t) - =T 5 (LA (D)
= %(t, Ao(t) — Z((f)) %(t’ Ao(t)¢(t) (using (21.27))

=0 (using o'¢ = o).

Thus, g does not depend on ¢, and we know from (21.28) that g in nondecreas-
ing. Since g is also differentiable, we conclude that g(¢t,\) = B(\), where 3 is
differentiable and nondecreasing. By replacing A with Ao (t), we have

£(t,\) = BAa(t)). (21.29)

By differentiating both sides of this equation with respect to A and then letting
A =1, we see that ¢(t) = o(t)5'(o(t)) = &(t)o’ (¢t)3'(o(¢t)). Dividing both sides
by ¢(t) shows that

9p(a(t))

——=(t) = 1.
5 (1)
Integrating this relation from zero to t yields the equation 5(o(t)) = t+5(c(0)).
Since #'(0,\) = 0, B(c(0)) = 0 by (21.29), and we conclude that 3 = o~ 1.

Step 6: To complete the proof of (ii), we must show that the operators .S;
by S = T,-1(; are affine invariant with #'(¢,A\) = M. Thus let B be any

nonsingular linear mapping and let A = |detB|*/". Then
S¢B = Tg—l(t)B = BTt/(gfl(t),A) = BTU—I()\U(U—I(t))) = BTU—I()\t) = BS)¢.

The proof of (i) is just the “image” of the proof of (ii) under the obvious
mappings B — |detB|'/N and AI — H,, which entail #'(t, B) s t'(t, |det B|'/YV),
and so on. g

Lemma 21.22. If a translation invariant causal scale space {Ti} is affine in-
variant, then, after the appropriate renormalization, its associated function sat-
isfies the following condition:

F(BAB', Bp,t) = |detB|*N F (A, p, |detB|*/Nt) (21.30)

for any nonsingular linear map B. If a translation invariant causal scale space
{T:} is scale invariant, then, after the appropriate renormalization, its associ-
ated function satisfies for any p > 0

F(u? A, pp,t) = pF (A, p, pit). (21.31)

Proof. Recall that we have made the blanket assumption that causal spaces
are invariant under the addition of constants. Thus, we assume that F' does
not depend on ¢ or x. Assume that B is a linear map and that A = |detB|*/V.
We also assume that the scale space {T;} is normalized so that Ty1p B =
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BTxt4n),at- Let u be a quadratic function around 0, u(y) = (1/2)(Ay,y) +
(p,y). Then

Ty ,t[u(By)](0) = Taggn)aet(BO) = T(t4-n),2e1(0).

Since u(B'y) = (1/2)(BAB’y,y) + (Bp,y) around 0 and by the regularity of

{Tt}u
Toonalu(B'y)|(0) = hF(BAB', Bp,1) + ofh).

Also by regularity
Tx(t+n),2euw(0) = ARE(A, p, At) + 0(Ah).

Thus we have hF(BAB’, Bp,t) + o(h) = AhF(A, p, At) + o(Ah). Dividing by h
and letting h — 0 proves the first part of the lemma. To prove the second part,
just replace B with pl in the proof of the first part. O

21.5 Axiomatic approach to linear scale space

We are going to use previous results from this chapter, in particularly Theo-
rem 21.9; to characterize the heat equation du/0t = Awu as the unique scale
space that is both linear and isotropic. A consequence for image processing is
that linear smoothing and contrast-invariance are incompatible. (Recall that we
showed in Section 3.1.1 that the heat equation was not contrast invariant. This
is illustrated numerically in Figure 21.4.) At some level, this explains the coex-
istence of at least two different schools of image processing: contrast-invariant
mathematical morphology on the one hand, and classical linear scale space on
the other, which is essentially convolution with the Gaussian (Theorem 2.3).

Theorem 21.23. Let {T}} be a translation-invariant, causal, isotropic and
linear scale space on F. Then F(D?u,Du,t) = c(t)Au, where c(t) > 0. If,
in addition, F is assumed to be continuous in t, then up to a rescaling t' = h(t),
the function u(t,x) = Tyug(X) is a viscosity solution of the heat equation

%(f,x) = Au(t,x), (t,x) € [0,00) x RY. (21.32)

Proof. Since the scale space is translation invariant, F' does not depend on x
(Proposition 21.14), and since the scale space commutes with the addition of
constants, F' does not depend on ¢ (Proposition 21.11). Thus, F(4,p,x,¢,t) =
F(A,p,t). We know from Theorem 21.9 that Ty, qu(x)—u(x) = hF(D?u(x), Du(x), t)+
o(h) for any u € C*(RY). Since Tyyp is linear, we have Tyyp ((ru + sv) =

rTiyn s+ 8Ty v for any u,v € C? (RN) and r, s € R. This and Theorem 17.8

imply that

F(D?(ru + sv), D(ru + sv),t) = rF(D*u, Du,t) + sF(D?v, Dv,t),

which means that F' is linear in the argument w. (In what follows, we keep
t fixed, and for convenience we write F(A,p) rather than F(A,p,t).) We can
choose any values for D?u, D?*v, Du, and Dv. Thus we have

F(rA+sA ,rp+sp’)=rF(A,p)+sF(A'p)
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where A and A’ are arbitrary symmetric matrices and p and p’ are arbitrary
vectors. From this, we see that F(A,p) = F(A,0) + F(0,p). Now define F;
and Fy by Fi(p) = F(0,p) and F»(A) = F(A,0); Fy and Fy are clearly linear.
Using the assumption that the operators are isotropic 7} 5, we see from Lemma
7?7 that

Fi(p) + Fy(A) = Fi(Rp) + Fo(RAR'),

where R is any linear isometry of RYV. Taking A = 0, this implies that Fy (Rp) =
Fi(p) for any linear isometry R. Since F} is linear, this implies that Fy is a
constant. Since by Proposition 21.11 F(0,0,t) = 0, we conclude that F;(p) = 0.
This proves that F(A) = F(RAR'), where A is an arbitrary N x N symmetric
matrix and R is an arbitrary linear isometry.

Given any symmetric matrix A, there is a linear isometry R such that RAR’
is diagonal whenever the coordinate system is orthogonal. Furthermore, any two
diagonalizations differ only in the arrangement of the diagonal entries, which are
the N eigenvalues of A, and any arrangement of these entries can be achieved by
some linear isometry. This means that the value of F'(A) depends only on some
symmetric function f of the eigenvalues A1, Ag,... Ay of A. That means that
F(A) = F(f(M,A2,...AN)), where f is a symmetric function of its arguments.
Since F is also linear, we have

F(f(T)\l,T)\g, e T‘)\N)) = TF(f()\l, /\27 .. )\N))

Since the only linear symmetric function of IV variables is, up to a multiplicative
constant, the linear function, we see that

F(A) = ctrace(A)

for some constant c¢. Since F' is nondecreasing in A (Lemma 21.8), ¢ is nonneg-
ative. We conclude that F(D?u, Du) = cAu. Remember that this argument
has been made with a fixed ¢ that was not written. Thus, our real conclusion is
that F(D?u, Du,t) = c(t)Au, where c is a nonnegative function of ¢.

If we assume that F' is continuous in ¢, then ¢ — ¢(t) is continuous. Then
by Theorem 21.12, u(t,x) = Tyuo(x) is a viscosity solution of

ou
T (t,x) = c(t)Ault, x).

Finally, if we rescale using the function ¢ — ¢’ defined by 9t'0t(t) = c(t), we
have the heat equation du/0t' = Auw. O

21.6 Exercises

Exercise 21.1. Let T; be a causal scale space (Definition 21.7) and h : Rt — R a
C? increasing function. Prove that that S; = Th () also is a causal scale space. Assume
that T is scale invariant and let ¢'(, \) its rescaling function. Compute ¢’ for the new
scale space S;. m

Exercise 21.2. Consider the extrema killer 7; defined in section 7.4, where ¢t denotes
the area threshold. Show that the family {7} is pyramidal and satisfies the global
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comparison principle, but that it does not satisfy the local comparison principle. Show
that the family is, however, regular at ¢ = 0 and, more precisely, that

F(A,p,0) =0 ifp#0.

Check the other invariance properties of the extrema killer : prove in particular that
it is affine invariant and compute ¢'(¢, ) (Definition ??). m

Exercise 21.3. Let g be an integrable continuous function and for v € F, Tu = g*u.
Prove that T is translation invariant and isotropic. =

Exercise 21.4. Define {T;} by Tyuo = gi*uo, where g¢(x) = 739(%). Prove that {T}}
is scale invariant (Definition ??) and compute the function ¢'(¢, ). Same questions if
we set g¢(x) = %g(%) ™

Exercise 21.5. Check that Definition 7?7 is valid for the classical scale spaces we al-
ready know: For the morphological operators, dilation and erosion, show that ¢'(¢, \) =
At, no matter what the structuring element B is. Prove that these operators are
not affine invariant. For the heat equation and mean curvature motion, check that
t'(t,N) =)\t =

21.7 Comments and references

The presentation in this chapter and the next one follows essentially the work
of L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel in [11], [9], and [10].
Their stated objective was to “... describe all multiscale causal, local, stable and
shape preserving smoothing operators. This classification contains the classical
‘morphological’ operators, and some new ones.” This axiomatic approach is
presented in several survey papers, with increasingly simple sets of axioms:
Lions [184]; Alvarez and Morel [14]; Guichard, Lopez, and Morel [131]; and
Guichard’s doctoral thesis [130], which was an early version of this book.

Linear scale space. Scale space theory was founded (in the linear frame-
work) by Witkin [289], Marr [198], and Koenderink. An earlier development
of linear scale space has been traced to Japan in [282, 283]. Many works by
Florack, ter Haar Romeny, Koenderink, and Viergever focus on the compu-
tation of partial derivatives of any order of an image and their use in image
analysis [111, 112, 113, 115]. The concept of causality, used by all of these
authors is crucial; it has been reinterpreted in this chapter as the combination
of two requirements: a pyramidal structure and a comparison principle. De
Giorgi founded his mathematical theory of barriers for geometric motions on
similar principles [124]. There are many axiomatic characterizations of linear
scale space in terms of causality, invariants, and conservation properties. We
mention particularly the early work by Babaud, Witkin, Baudin, and Duda
[28] and Hummel [150]. A slight relaxation of the initial axioms led Pauwels
and others to discover other possible linear scale spaces, which, however, are
less local [228]. There have also been several attempts to define nonlinear scale
spaces, which are understood as nonlinear invariant families of smoothing op-
erators. In mathematical morphology, we mention work by Chen [68], Toet
[270, 271], and Jackway [158]; Jackway emphasized the scale space properties
of multiscale erosions and dilations. After the publication of [11] by Alvarez,
Guichard, Lions, and Morel, several different axiomatic approaches have been
proposed for nonlinear scale spaces. Weickert insists on grey level conservation,
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which excludes all of the mathematical morphology operators, and proposes a
line of conservative parabolic nonlinear PDEs [279, 280]. The axiomatic presen-
tation of Olver, Sapiro, and Tannenbaum [220] deduces the various scale spaces
as invariant heat flows. See also [217]; the book [267] contains miscellaneous
contributions to geometric diffusion.

Extensions. Caselles, Coll, and Morel have questioned the very soundness
of applying any of the proposed scale spaces to natural images [59]. They
argue following the Kanisza psychophysical theory that occlusions generate T-
junctions in images and that these T-junctions should be detected before any
smoothing is applied (see Figure 21.6.) In [60], the same authors propose the
set of level lines of the image, the so-called topographical map, as an alternative
multiscale structure for describing images. In another direction, Geraets and
others proposed a generalization of scale space to discrete point sets [121].

Contrast invariance. The Wertheimer principle, which states that human
visual perception is independent of changes in illumination, was enunciated
in 1923 [287]. Contrast invariance appears in mathematical morphology in
the work of Serra [255]. Koenderink and van Doorn emphasized this require-
ment and introduced photometric invariants [173]. Florack and others studied
contrast-invariant differential operators in [114]. Romeny and others construct
third-order contrast-invariant operators to detect T-junctions [269]. See also
[234]. The significance of contrast invariance for smoothing T-junctions is illus-
trated in Figure 21.6.

Rotation and scale invariance. One of the first discussions of rotation-
invariant image operators was given by Beaudet in [38]. See also Lenz [181]
for work on rotation-invariant operators. Scale-invariant shape representation
is discussed by Baldwin, Geiger, and Hummel in [29]. Alvarez, Gousseau, and
Morel use numerical experiments on natural images to confirm their scale inva-
riance [7].

Affine invariance. Affine invariants are viewed as approximate projective
invariants by Chang in [73]. The importance of affine invariance for three-
dimensional object recognition is discussed in [29] and [181]. Work by Forsyth,
Munday, and Zisserman has been fundamental and has launched wide-ranging
discussion of this theme [116, 209, 210]. Further contributions to the use and
computation of affine and projective differential invariants in image processing
can be found in [41], [244], [274], and [285].
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Figure 21.4: The heat equation is not contrast invariant. First row: original
image. Second row: Two different contrast changes have been applied to this
image. Third row: A convolution by a Gaussian is applied to both images of the
second row. Fourth row: The inverse contrast change is applied to the images
of the third row. If the linear scale space were contrast invariant, these images
should be equal. This is not the case, since the difference (displayed in the fifth
row) is not null.
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Figure 21.5: Contrast invariance of the affine morphological scale space (AMSS).
First row: original image. Second row: two contrast changes applied to the
original. Third row : AMSS applied to both images of the second row, by a
finite difference scheme. Fourth row: inverse contrast change applied to the
filtered images. A visual check shows that they are almost identical. Bottom
image: numerical check by taking the difference of the images in the fourth row.
Compare this with the same experiment performed with the linear scale space,
Figure 21.4.
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Figure 21.6: Same geometric figures, different evolutions under smoothing. 1st
row: The four figures have T-junctions that differ in the way grey levels are
distributed among the three regions. In the first two figures, the grey levels
are monotone in, say, the clockwise direction. This means that they differ
by a monotone contrast change. The same is true for the second two figures.
However, the first and third figures differ by a nonmonotone contrast change.
2nd row: result of a smoothing by the AMSS model. We see that two different
evolutions are possible: If the regions of the image keep the same order of grey
levels, then the geometric evolution is identical. If, instead, a nonmonotone
contrast change has been applied, the evolutions are geometrically different.
3rd row: result of a smoothing by the linear scale space. All four T-junctions
give different evolutions. The evolution depends on the gray-level values of the
three level sets, rather than depending only on their order.

4rd row: quantization of the 3rd row to display the shapes of some level lines.
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Figure 21.7: Hyperdiscrimination of textures by nonlinear scale space. Accord-
ing to the Julesz theory of textons, human perception can discriminate different
textures if their average behavior in terms of “texton” density is different. As
shown in its mathematical formalization, proposed by C. Lopez, some of the
texton densities can be interpreted as densities of the positive and negative
parts of the image curvature at different scales. In this remarkable experiment,
C. Lopez proved that one of the simplest contrast-invariant scale spaces beats
by far the human discrimination performance. From left to right and top to
bottom: 1-an original texture pair that is preattentively undiscriminable. The
central square of the image consists of rotated “10’s” and the rest of the image
of rotated “S’s.” These patterns are different, but have the same number of
bars, angles, and so forth. 2-curvature motion applied to the original up to
some scale 3-negative part of the curvature at the same scale 4-positive part of
the curvature at the same scale 5-multichannel segmentation of the multi-image
made of the curvatures 6-negative part of the curvature at scale 0. As seen in
2, 3, 4 and 5, this nonlinear scale space easily discriminates between the two

textures.



Chapter 22

The Contrast-Invariant and
Affine-Invariant Scale
Spaces

This chapter is a direct continuation of Chapter 21. We are going to characterize,
up to a multiplicative constant, all of the contrast-invariant scale spaces as
curvature evolution equations. In the interest of simplicity and clarity, we will
first prove the result in two dimensions. The computations are more intuitive
in this case, and they are easily displayed in detail. Then we shall obtain the
(AMSS) equation as the unique contrast invariant, affine invariant self-dual scale
space. This result is then generalized to any dimension in section ??, where we
find again a unique contrast and affine invariant self-dual scale space. This result
also yields an impossibility : no further invariance requirement is possible. In
particular, a causal, contrast and projective invariant scale-space is impossible.

22.1 The two-dimensional case

We will show that if a scale space {T}} is causal, isometric, and contrast invari-
ant, then the associated PDE is of the form

% = |Du|G(curv(u),t). (22.1)
This does not tell us much about G, so the question is, What additional assump-
tions must be made to have a more specific characterization of G? One answer
is this: If we assume that {T;} is affine invariant and that T3(—u) = —Tiu
(which we call reverse contrast invariance or self-duality), then there is only
one equation that satisfies all of these conditions, namely, the so-called affine
morphological scale space (AMSS),

Ju

ot

We are led by Theorem 21.9 to study scale spaces defined by PDEs of the
form

= | Du(curv(u))*/3.

% = F(D*u, Du,u,x,t), u(0)= uo,

303
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where ug is the original image, u(¢,-) is the image smoothed at scale ¢, and
F(A,p, e, x,t) is the function associated with {T;}. In the two-dimensional case,
A is a 2 x 2 symmetric matrix, p is a two-dimensional vector, ¢ is a constant, x
is a point in the plane, and t € RT is the scale. We will be using the following
results from Chapter 21:

o If {T}} is translation invariant, then F does not depend on x (Proposition
21.14).

o It {7T;} commutes with the addition of constants, then F' does not depend on
¢ (Proposition 21.11).

o If {T}} is isotropic, then F(RAR’', Rp,t) = F(A,p,t) for every R € O,
(Lemma ?7).

o It {T}} is contrast invariant, then F(uA + A(p ® p), up,t) = uF (A, p,t), for
any real numbers A and u, u > 0, any 2 X 2 symmetric matrix A, and any
two-dimensional vector p (Lemma 21.18). Recall that the tensor product p®p
is just the symmetric matrix {p;p;}, ¢,7 € {1,2}:

2
P1 pip2
Kp= .
PP [p1p2 p%]

Relations F(RAR', Rp,t) = F(A,p,t) and F(uA+ A(p®p), up,t) = uF (A, p,t)
will be used to show that F' depends on two real functions a12 and ass of A and
p. These functions are defined by considering the rotation represented by the

matrix )
Rp _ |: n p2:| )
lp| |=P2 P

R, has been chosen to map the unit vector p/|p| onto the unit vector e; = (1,0):
Rpp = |ples. (22.2)

The functions a;;, i,j € {1, 2}, are defined by

1 ;_lain  aie
L AR, = [&u e (22.3)

A straightforward computation shows that

1 A(p,p*)

a2 = W((p% —p3)aiz + pip2(asz — a11)) = F (22.4)
N 1 Alp*,p*
oo = W(aupi — 2a12p1p2 + agepi) = % (22.5)

We should keep in mind that A represents D?u and p represents Du so these
results and the calculations that follow, while purely algebraic, have interpreta-
tions in differential geometry. In particular,

D
digo(D?*u, Du) = div(ﬁ) = curv(u),
D 1
a12(D%*u, Du) = div(lD—uul> = anticurv(u).
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Both differential operators are contrast invariant (see Exercise 22.2, while a11
is not: We know that it is related to the Haralick edge detector. This gives the
meaning of the next lemma.

Lemma 22.1. If F satisfies the relations
F(RAR', Rp,t) = F(A,p1), (22.6)
F(uA+ Np ®@p), pp,t) = pF (A, p,t), (22.7)
then there is a function G of three real variables such that, for p # 0,

F(A,p,t) = |p|G(aiz, az2,t). (22.8)

Proof. We first use (22.7) with u = 1/|p|. Thus,

A P

F(A,p.) = plF (S + Mp @ p). £.t),

| |

where A is any real number. Next, we apply (22.6) with R = R,:
A ’ p

A
_ |p|F(Rp(H)R; + AR, (p® )R, €1, t).
It is easily checked that
pl* 0
Ry(p®@p)R), = { R

Thus, by (22.3),

an + Apl* a
F(Ap.1) = |p|F< Ll o t)
a2 a22
Since A is arbitrary and since p # 0, F' depends only on @12 and ass. To finish,
we can define G by

G(a12,a92,t) = F< {~0 (}12] ,61,t>. O
12 Qa22

Lemma 22.2. The function G depends only on ass and t.

Proof. We will use the fact established in Lemma 21.8 that F' is nondecreasing
with respect to its first argument and the assumption in Definition 21.6 that F'
is continuous in this argument. We will also use the result of Lemma 22.1. The
intuitive argument here is that as2(A,p) is nondecreasing function of A, while
a12(A, p) is not (see Exercise 22.2.)
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Consider two symmetric matrices A and B such that A > B. In analogy
with (22.3), we write

1 bii bia
—RpBR, = |* ~ . 22.9
p] T L’w ba2 (22.9)
Then _ _
1 ai; — b a2 — b
—R,(A— B)R, = {fl S T2 ~12} . 22.10
|p| 2 )Ry a12 — b1z a2 — bao ( )

By assumption, the symmetric matrix A — B is such that A — B > 0. This
property is invariant under rotation, in particular, under the mapping A — B +—
R,(A — B)R,,. Hence, A— B > 0 if and only if R,(A — B)R}, > 0. This means
that A > B if and only if

(@11 — b11)2? + 2(a12 — bi2)wy + (g2 — baz)y® > 0 (22.11)
for all real numbers z and y, and this is true if and only if
(G171 — b11) (G2 — bag) > (@12 — b12)2. (22.12)

Fix A and choose an arbitrary l~712,~l~)12 # ai2. Choose any real number bag such
that Gog —baa = & > 0. Now select by1 = by1(€) so that (22.12) is satisfied. Then
we have

r [?11 ?12] ent| > F [b1~1(5) i b1z ] ent]=F LO i b12 ] ent).
a1z a22 bis a9 — € bia Q92 — ¢
Indeed, the value on the right-hand side of the inequality is independent of

b11(e) (Lemma 22.1). Now let & tend to zero. By the continuity of F' in its first
argument, we conclude that

([ 2o, )
aiz @22 bia Q92
This shows that R
G(a12, a2,t) > G(b12, Gz, 1).
A similar argument shows that

G(b1a, G2, t) > G(ara, Gz, t).

We conclude that G(a12,aa2,t) does not depend on aj2, and hence that G is a
function of only s and t¢. O

We summarize these last results in the following theorem.

Theorem 22.3. If the two-dimensional scale space {T;} is causal, isometric,
and contrast invariant, then its associated PDE has the form

% = |Du|G(curv(u),t), (22.13)

where G is continuous and nondecreasing in its first variable.
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We are now going to introduce scale and affine invariance. We are still
working in two dimensions.

Theorem 22.4. Assume that the scale space {T}} is causal, isometric, and
contrast invariant. In addition, assume that it is scale invariant and that it is
normalized according to Lemma 21.21. Then its associated PDE has the form

1o}

8—1; = |Du|B(tcurv(u)), (22.14)
where (8 is continuous and nondecreasing.

If the scale space {T;} is affine invariant and normalized according to Lemma
21.21, then the associated PDE has the form

1o}

8—1; = |Du|B(tcurv(u)), (22.15)
where B(s) = Cs'/3 if s > 0 and B(s) = —D|s|'/3 if s < 0, for two nonnegative
constants C and D. Conversely, this equation defines an affine-invariant scale
space.

Proof. By Lemma 77, if a causal scale space is affine invariant, then, after
appropriate renormalization (Lemma 21.21), its associated function satisfies

F(BAB', Bp,t) = |detB|*/2F(A, p, |det B|*/*t) (22.16)

for any linear map B. If we let B = cI, ¢ > 0, then F(c?4,cp,t) = cF(A,p,ct).
Since F(A,p,t) = |p|G(az2(A4,p),t), this implies that

clp|Gasz(c® A, cp), t) = c|p|G(aza(A, p), ct),

and since
? A(ept, ept)

|Cp|3 = C&QQ(Avp)a

&22 (C2A, Cp) =

we see that
G(az2(A,p),ct) = G(caz(A,p),t).

Since this equation is true for all A, p # 0, ¢ > 0, and t > 0, G(cs,t) = G(s,ct)
for any s and any positive ¢ and ¢. This implies that

G(s,t) = G(st, 1) = B(st),

where ( is continuous and nondecreasing. This proves the first part of the
theorem.

We now assume that the scale space is affine invariant. To identify the power
1/3, we need to exploit the affine invariance. We shall do it by “stretching
and shrinking” along the x and y axes, that is, by using the transformation
represented by

A0
ORI
First note that

2
Aayy a2

r_
BAB = [ a1z A 2ag

] and Bp = (Ap1,p2/N).
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Then we see from (22.5) that

a11p3 — 2a12p1p2 + azop?

sz (BAB', Bp) =
22 ) (AP} + A=2p3)3/2

(22.17)

We know that F(A,p,t) = |p|G(tazz2(A,p,t)). This and the affine-invariance
relation (22.16) show that

| Bp|B(tase(BAB', Bp)) = |p|B(tazz(A,p)). (22.18)

If we let p; = 1, po = 0, and asz = 1, then from (22.17) and (22.18) it follows
that

INB(s/X°) = B(s).

The first thing to notice is that $(0) = 0, which is consistent with (and a
consequence of) the fact that F/(0,0,¢) = 0. On the other hand, nothing we
have assumed precludes G(s) = 0 for all s > 0. However, in case §(a) > 0 for
some a > 0, we can select A > 0 so A\* = s/a, and we have

B(s) = a=3B(a)s'/? = Cs5.
A similar argument shows that either 5(s) = 0 for all s <0, or
B(s) = bl~/*B0)[s]'/* = —Dls|.
O

In general, 5(1) # —pB(—1), that is, C # D. For example, if D = 0 and
C > 0, then we have a pure affine erosion (shapes shrink); if C' = 0, then we
have a pure affine dilation (shapes expand).

Corollary 22.5. If, in addition to the assumptions of Theorem 22.4, the scale
space is reverse contrast invariant, which means that Tyypt 0 g = g0 Tiyny

for continuous nonincreasing g, or that it is self-dual, T(u) = —T(—u), then
D=C.
Proof. The reverse contrast invariance is equivalent to T'(u) = —T(u) plus

the contrast invariance. The proof is an obvious adaptation of the proof of
Lemma 21.18. If the scale space {T}} is reverse contrast invariant, then equation
(17.16) is true for negative (as well as positive) yu, and we have F(—A, —p,t) =
—F(A,p,t). This then implies that 8(—1) = —3(1). O

22.2 Contrast-invariant scale space equations in
N dimensions

We are going to extend the results of Theorem 22.4 to N dimensions, so we shall
make the same assumptions about the scale space {T};}: It is causal, it commutes
with the addition of constants, and it is translation invariant. Our immediate
aim is to deduce the general form of F' in N dimensions from the assumption
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that {7} is contrast invariant and isotropic. In the interest of notation, we will
suppress t in the following discussion.

We know from Lemma 21.18 that the function F associated with a contrast-
invariant scale space {T}} satisfies the relation

F(pA+ Mp @p), up) = pF' (A, p) (22.19)

for all A € R, all x> 0, any N x N symmetric matrix A € SV, and any vector
p € RY. By taking A\ = 0, this shows that F' is positively homogeneous in (4, p):

F(pA, pp) = pF (A, p). (22.20)

In particular, F'(0,0) = 0, which we also know from Proposition 21.11.
If we take p = 1, then (22.19) becomes F(A + A(p ® p),p) = F(A,p). If
N =1, this means that F' depends only on p € R, and we conclude that

F(l)p ifp=0,

: (22.21)
—F(-1)p ifp<o.

HAM—{

A more interesting situation occurs if N > 2, as we have already seen in case
N = 2. From now on we assume that N > 2.

We need to introduce some notation. For p € RY, p # 0, consider the
linear operator defined by the matrix Q, = In — (1/[p]*)(p ® p). It is easy to
verify that @, is the projection of RY onto the hyperplane p* (also denoted by
(Rp)1). Let A be an N x N symmetric matrix and consider the matrix Q,AQ,.
Since @p is symmetric, it is clear that Qp,AQ, is also symmetric. It is also
clear that ¢ € (Rp)® implies that Q,AQ,q € (Rp)* and that ¢ € Rp implies
that Q,AQpq = 0. Since Q,AQ), is symmetric, it has N real eigenvalues, one
of which we have just seen to be zero. Let p1,us...,un—1 denote the N — 1
other eigenvalues. These are the eigenvalues of @, AQ), restricted to (Rp)*. If
A = D?u and p = Du, and if we define k; = p;/|p|, 1 <i < N — 1, then the &;
are the principal curvatures of the level hypersurface of u (Definition 11.19). If
N = 2, then by Definition 11.14, k1 = (1/|p|)trace(Q,AQ,) = curv(uw).

Theorem 22.6 (Giga, Goto []). Let {T:} be a contrast-invariant scale space
and assume that N > 2. Then the associated function F satisfies the following
relation: For all A € SN and all p € RN, p # 0,

Proof. We begin by fixing p € RV, p # 0 and selecting an orthogonal co-
ordinate system such that p = |p|(0,...,0,1). Then p ® p = |p|*(6nidn;),
1 <i,j < N. If we write B= A+ \(p ® p), then b;; = a;; + Ap|*(Onidn;)-
This means that b;; = a;; except for ¢ = N and j = N, in which case
byvn = ann +A|p|?. Since F(A+A(p®p),p) = F(A,p), this means that F(A, p)
does not depend on ay . We use this fact, combined with the assumption that
F is nondecreasing in its first variable, to complete the proof.

Note that, with the coordinate system we have chosen, Q,AQ), is just the
matrix A with the last column and last row replaced with zeros: If C' = Q,AQ),,
then ¢;; = a4 for 1 < 4,5 < N—-1and ¢; = 0if i = N orif j = N.
Now let M = a3, + --- +a y_, and consider I. = eI + (M/e — &)(dni0n;),
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1 1,7 < N. Thus, I, is an N x N diagonal matrix D, where d;; = ¢ for
1<i<N-—1and dvy = M/e. One can easily verify that Q,AQ, < A+ I,
and that A < Q,AQ), + I for small € > 0. Then we have

INIA

F(A,p) < F(QpAQ, + I.,p) < F(A+2I,p).

As we let ¢ — 0, the entries in the matrix A 4 2/, tend to a;; except the entry
ann + 2M /e, which tends to +00. But F is independent of the value of its
(N, N)-entry, and F' is continuous in its first variable. Thus,

F(A + 2Iaap) - F(A,p) and F(QpAQp + Iaup) - F(QpAqup)- O

Corollary 22.7. Let {T}} be a contrast-invariant scale space and assume that
N > 2. If {T;} is also isometric, then

F(A,p,t) = |p|G(k1,...,6N-1,1) (22.23)

forallAe SN, pcR, p#0, where G is a continuous function on RN~ that is
symmetric in the N —1 variables k1, ...,kNn—1 and is nondecreasing with respect
to each ki, 1 <1< N —1.

Proof. By Lemma ?7, the function F' associated with the scale space satisfies
F(RAR',Rp) = F(A,p) (22.24)

forall A € SV, p € RV, p # 0, and R € Oy. (Recall that Oy denotes the
group of linear isometries of RV (section 17.4.1).)

Fix p # 0 and let R be any element of the subgroup OX; of Oy that leaves
p fixed, that is, Rp = p. Since Q,AQ, € S, we know from (22.24) that

F(RQPAQpRla Rp) = F(RQPAQpRl,p) = F(Q;DAQpap)'

By Theorem 18.5, F(QpAQp,p) = F(A, p). These two relations tell us that
F(RQpAQpR/vp) = F(A,p)

for all R € OF,. This means that the value of F(A,p) depends only on p and the
eigenvalues of Q,AQ,. Indeed, using the same coordinate system used in the
proof of Theorem 18.5 based on p = [p|(0, ..., 1), there is always an R € O%; so
that RQ,AQ,R’ is diagonal with entries p1, p2, ..., un—1,0, where the u; are
the eigenvalues of Q,AQ, restricted to (Rp)L. Furthermore, we can choose R
so that the p; appear in any order. Thus, there is a function G such that

F(A,p) = G1(p1, p2, - -, UN=1,D);

(31 is continuous and symmetric in the u;, and G; is nondecreasing in each p;.
(These last statements follow from the fact that F' is continuous and nonde-
creasing in its first variable.)

Now take R € Oy and let ¢ = Rp (p is still fixed). Then |p| = |q|. Fur-
thermore, given any ¢ € R such that |p| = |q|, there is an R € Oy such that
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Rp = ¢. It is easy to verify that R(p®p) = q¢®p, and since (¢®p)’ = p®gq, that
(p®@p)R =p®gq. Thus, R(p ® p)R’ = q ® ¢, which implies that RQ), = Q,R.
Consequently,
QRAR'Q, = RQ,AQ, R’
and this means that Q,RAR'Q, and Q,AQ, have the same eigenvalues. Using
(22.24) again, we see that F(RQ,AQ,R’, Rp) = F(QpAQ,,p), and since Rp =
q,
F(RQ;DAQ;DR/v Q) = F(Q;DAQpap)-

Since QuRAR'Q, and Q,AQ, have the same eigenvalues, this implies that

F(A,p) = Gi(p, p2y - -, in—1,0) = G1(f1, p2, - -, UN—-1,Q)

whenever |p| = |¢|. This means that F' depends only on the modulus of p,
and therefore we can write F(A,p) = Gi(u1,p2,--.,4n—1,|p|). Since F is
homogeneous,

Gi(ppns ppas - - o5 v —1, plpl) = pG1(p, pos - - v -1, |pl)

for 1 > 0. If we take p = |p| =1, then

F(A,p) = |p|G1(pr/Ipl, p2/1p)s - - - env—1/Ipl, 1)-

Defining G by G(k1,ka,...,kn-1) = G1(p1/Ipl, pe/|pl,- - s pun—1/|p|, 1), where
k; = pi/|p|, completes the proof. O

22.3 Affine-invariant scale spaces for N > 2

There is a function Hy in the following theorem that is defined on the set of N
integers {—N+1+42k |0 <k < N —1}. We will see in the proof of the theorem
that Hy is nondecreasing and that it vanishes except at the points —(N — 1)
and N — 1. It will also be shown that Hy(N — 1) > 0. There is not enough
information to determine the value of Hy (N — 1); however, to avoid the trivial
case F =0, we assume that Hy(N — 1) > 0.

Theorem 22.8. Assume that the scale space {T:} is contrast invariant and
affine invariant. Assume also that Tiy(—u) = —Ti(u) and that {Ti} has been
normalized in accordance with Lemma 21.21. Then the PDE associated with

du v Y =
o = [Dult T I =T Hy (Y sen(e)), (22.25)
i=1 i=1

where the k; are the principal curvatures of the level hypersurface of u, sgn(k;)
denotes the sign of ki, and Hy is such that Hy(N — 1) > 0, Hy(N — 1) =
—HNn(—=(N—=1)), and H(n) =0 for all =(N —1) <n < N —1. In other words,
Hy is equal to zero if all the k; do not have the same sign.

Proof. We begin with the result of Corollary 18.6: Since {73} is contrast in-
variant and isometric, its associated function F' is of the form

F(Aupat) = |p|G("<‘717KJ27' "7"<‘./N—17t)7
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and G is symmetric with respect to the ;. If p # 0, then k; = p;/|p|, where
the u;, 1 <4 < N —1 are the eigenvalues of A restricted to the hyperplane p*
orthogonal to p. To simplify the proof, we prefer to use the more general form
of F' that appeared in the proof of Corollary 18.6, namely,

F(Avpat):Gl(:“la,“?a'"a,uN717|p|5t)' (2226)

Since the restriction of A to the hyperplane p= is represented by a symmetric
matrix, we can choose orthonormal vectors ey, . . ., eny—1 such that p; = A(e;, €;),
1 <1 < N — 1. Each vector ¢; is orthogonal to p, so we obtain an orthonormal
basis for RY by including the vector ey = p/|p|. We now define some special
linear affine transformations of RY: Let B;, for 1 < i < N — 1, be the linear
transform defined by

Bi(e1,....€i....en) = (e1,...,Bei,...,3 ten),
where 8 € R, 8 # 0. Clearly, |B;| = 1. We are now going to apply the result of

Lemma ?? with B = B;. This says that F(A,p,t) = F(B1AB}, Bip,t), and in
view of the representation (22.26), this means that

F(A7p,t) = Gl(ﬁ2ﬂluﬂ2u e 7NN—176_1|p|7t)'
Assume for the moment that u; # 0 and take 3 = |u1|~/2. Then
F(Aapv t) = Gl(sgn(:ul)a M2, .- UN—1, |:u1|1/2|p|7t)

Repeat this argument with B = B; for i = 2 to i = N — 1. The result is that

N-1
F(A,p,t) = Gy (sgn(un), ... sgn(un—1), lol T lmal/%,0),  @2.27)
i=1

assuming that pu; #£ 0, 1 <i < N — 1. We return again to Lemma 17.21, which
is based on the results of Lemma 17.20, and note that

F(u*A, pp,t) = pF (A, p, put)
for p > 0 implies that

N-1

G (sgn(). - sen(on—)palpli™ = TT lual 2, t)
=1
N—-1
= G (sgn(m),---,sgn(uzvfl)vlpl 11 Iuill/Q,ut)-
=1
We deduce that
N-—1
p Gy (Sgn(/u% —sen(un )N ol T Iui|1/2,u‘1t)
=1
N-—1

= G (sen(u), . sen(un 1), ol Tl /2¢).
=1
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By taking p =t, we see that

N-1

F(Aapv t) = t71G1 (Sgn(:ul)a e aSgn(:U’Nfl)a tN|p| H |IU“L'|1/27 1)7
i=1
and we write
N-1
F(A,p,t) = t7'Ga (1] T Il /2 sen(mn). ... sgn(un 1) )
i=1

At this point we use the fact that {T;} is contrast invariant, and so we have
Flo™A,a " p,t) = a 'F(A,p,t)
for all & > 0. Thus,

N-1
tF(Aapv t) = QGQ (ailtN|p| H |Ofl,ui|1/2,sgn(,u1), cee 7Sgn(:U’N71))'

=1

By taking a = (tV|p| [T, [1i]/2)2/ V=1 the function F is reduced to the
following form:

=2

—1
1

lpi| "1 G2(1, sgn(p1), - - ., sgn(pun—1)

F(A,p,t) = t~F1 |p| 73

z
L
¥
=

_1
|~ |pi| M5 Hy (sgn(pa ), - - - sgn(pn—1).

i

2

I
s

Since k; = p;/|p|, we finally have

N-1

F(A,p,t) = [plt¥ [T Ieil ™ Hi(sen(ka),... senlkn—1).  (22.28)
=1

The derivation of this representation of F' was based on the assumption that
none of the eigenvalues p; were zero. If there were p; = 0, we could have
perturbed A by replacing these eigenvalues with € > 0, done the derivation with
positive eigenvalues, and then let ¢ tend to zero in (22.28).

We must now deal with the function H;, or more precisely, the functions
Hy, for there is a different function for each value of N > 2. First note that
H; must be symmetric in its N — 1 variables: F' is invariant under any rotation
that leaves p fixed, and we can always find an element of OF; that produces any
given permutation of the u;, and thus of the x;. If some x; happens to be zero,
we can set Hi(sgn(k1),...,sgn(ky—1)) = 0. Another way to do this is to define
sgn(0) = 0 and say that H;(sgn(x1),...,sgn(ky—1)) = 0 if any of its N — 1
variables is zero. Thus the only interesting situation is in case all of the k; are
nonzero. Then by the invariance of H; under elements of OX,, it is clear that
H, depends only on the number of variables equal to one and the number of
variables equal to minus one. In other words, H; is a function of Zf\;l sgn(k;):

Hy(sgn(ky),...,sgn(kn-1)) = Hy ( NZ_l sgn(m)),
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where we have written Hy to stress the fact that the functions depend on the
dimension N. Hpy is defined on the N integers {—-N +1+2k | 0 < k <
N — 1}, but we no information about its range. We do, however, have one last
invariant to call on, and that is the assumption that T;(u) = —T;(—u). This
translates into the relation F(—A, —p,t) = —F (A, p,t), which in turn implies
that Hy(n) = —Hpy(—n). Finally, we know that Hy must be nondecreasing
based on the fact that F' is nondecreasing in its first variable, A. In summary,

N-1 N—-1
F(A,p,t) = plt 550 TT Ial ™7 Ha (Y sen(sn)), (22.29)
=1 =1

where Hy is a nondecreasing function defined on the set {—N + 142k | 0 <
k< N—1} and Hy(n) = —Hy(—n). We are now going to consider three cases.

The case N= 2.
Here we have N — 1 =1, and (22.29) reads
F(A,p,t) = t"%|pl|s1|'® Ha(sgn(1))-

The value of H(1) is not determined, although it must be positive to avoid
the trivial case F' = 0 and to ensure that Hy(—1) = —Hz(1) and that Hy is
nondecreasing. Thus, up to a positive (multiplicative) constant F(A,p,t) =

t1/3|p|sgn(k1)|k1|*/3, which we have been writing as F(A, p,t) = t'/3|p|(k1)'/3,
with the convention that r'/3 = (r/|r|)|r|'/3. This can also be written as
1/3
L (pt pt 1 LoL/3
F(Avpat):t1/3|p| A IER) :t/g A p,p
o\l “4ee)
If A = D?u and p = Du, then the associated scale space equation if
0
8—1‘ = 13| Du| (curv(u)) /3.

The case N= 3.
The PDE we obtain in this case is
Ou 1/2 1/4
5 = ¢ 1Dullruke| /" Hs(sgn(kn) + sgn(kz)),
where x; and ko are the principal curvatures of the level surface of u. Their
product is the Gaussian curvature of the level surface of u, and to highlight this
we write the equation as

% = tY2|Du||G(u)|*/* Hs(sgn(k1) + sgn(rkz)). (22.30)

Since sgn (k1) + sgn(x2) takes only the values —2,0,2, and since H3(—2) =
—H3(—2), we are concerned with only two parameters: H3(2) = b and H3(0) =
a. We know that H3(—2) < H3(0) < H3(2), or —b < a < b. Hence, b > 0
and |a|] < b. We are now going to show that a = 0 by using the fact that F
is increasing with respect to its first variable. We do this by choosing special
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values for the pair (k1,k2). For example, take (—1,«a) and (o, ), @ > 0. The
value of F' for the first pair is less than or equal to the value of F for the second:

04H3 (O) S a2H3(2).

Letting « tend to zero shows that H3(0) < 0. Making a similar argument with
the pairs (—a, @) and (a, @), shows that H3(0) > 0. Thus H3(0) = 0, which
means that the left-hand side of (22.30) is zero if the two principal curvatures
have opposite signs. Consequently, up to a positive multiplicative constant,
equation (22.30) is

0

Ou s )21 Du Gy (22.31)
where 1 stands for sup{0,z}. This equation describes the unique multiscale
analysis in three dimensions that is both affine invariant and contrast invariant
and satisfies the condition T} (u) = —T(—u).

The case N> 3.

The only remaining task is to prove that Hy has the properties stated in
the theorem. This is done by using arguments similar to those use for the three-
dimensional case: By taking particular values for the x; and by using the fact
that F is nondecreasing, one shows that Hy(N — 3) = 0. Then since Hy is
nondecreasing and since Hy(n) = —Hpy(—n), it follows that Hy(n) = 0 except
forn =N —1and n = —(IN — 1). The details are left as an exercise. O

Exercise 22.1. Fill in the details for the last part of the proof. m

22.4 Exercises

Exercise 22.2. The aim of the exercise is to give a geometric interpretation of
anticurv(u) and to help interpreting the proofs of Lemmas 22.1 and lemma 22.2. We
refer to the definitions of a;;, ¢ = 1,2 given in Formulas (22.4)-(22.5).

1) Show that anticurv(u)(x) = a12(D?u(x), Du(x)) is the curvature of the gradient
line of u through the point x. The gradient lines are the curves that are tangent to
the gradient of u at every point. They form a system of curves that are orthogonal to
the level lines of w.

2) Show that @i2(D?*u, Du) and G22(D?u, Du) are contrast invariant differential
operators. More precisely, show that if u is C? and g a C? contrast change with
g’ > 0, then these operators are invariant when we replace u by g(u). Prove that a1
is not contrast invariant.

3) Question 2) explains why a1 is ruled out by the contrast invariant requirement,
but not why @12 must also be ruled out for a causal scale space. Prove that a22(A, p)
is a nondecreasing function of A, while a12(A,p) is not. m

22.5 Comments and references

Axiomatics. In this chapter, we have followed an axiomatic presentation of
scale spaces developed in [11], which is a simplified version of the original given
in [130]. Other axioms for affine scale space have been proposed by Olver,
Sapiro, and Tannenbaum [221, 222].
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Curvature motion. The first complete mathematical study on the motion of
a surface by its mean curvature is the book by Brakke [44]. The main question in
this field is, How regular is a surface that has been smoothed by mean curvature?
Huisken proved that a convex surface smoothed by mean curvature was trans-
formed into a sphere before vanishing to a point [147]. This result generalizes to
higher dimensions a result by Gage about curve evolution [119]. The question
of whether or not a surface smoothed by curvature motion ended in a sphere
was first introduced by Firey for Gaussian curvature motion [108]. Osher and
Sethian developed the first numerical codes for mean curvature motion, where
topological changes of the surface could be dealt with efficiently [224]. Yuille
observed that the Koenderink—van Doorn dynamic shape algorithm could create
singularities is a dumb-bell shaped surface [291]: The “handle” part ultimately
evolved into a thin filament that broke, creating singularities. (See the figures
in Chapter 2, particularly Figure 2.9.) This behavior contradicts causality, one
of the main axioms of scales space: Smoothing a shape should not create new
features. Koenderink comments on this creation of singularities in [172]. The
corresponding mathematical study of this phenomenon is due to Grayson [129].
Bounds on the gradient for the mean curvature equation are given by Barles
in [35]. A general survey of singularity formation by mean curvature motion is
given by Angenent in [20]. Altschuler, Angenent, and Giga prove the smooth-
ness of the evolution of rotationally symmetric hypersurfaces and estimate the
number of singular points [6]. More about regularity and singularities related to
mean curvature flow can be found in [96, 22, 148, 155]. Ishii and Souganidis de-
veloped a theory of viscosity solutions for general curvature equations, including
any power function of the curvature or the Gaussian curvature [157]. Particular
mention must be made about the work by Caselles and Sbert on the properties
of scale spaces in three dimensions [66]. They prove that the dumb-bell is not
“pinched oftf” by the affine scale space, but they exhibit examples of other sur-
faces where singularities may appear. Chow proved that in RY, a motion by the
N-th root of the Gauss curvature deforms strictly convex surfaces into spheres
[74, 75]. This result is analogue to the result by Huisken for mean curvature
motion mentioned above.

Extensions of affine scale space in two dimensions. Several authors have
attempted to extend the affine scale space in two dimensions to a projective-
invariant scale space. The results of this chapter have clearly shown that a mul-
tiscale analysis that is both local and causal cannot be projective invariant. An
affine-invariant scale space must have the form given in equation (22.25), which
is completely determined up to a multiplicative constant. Thus, by requiring
affine invariance, we have exhausted all degrees of freedom in the choice of the
PDE. The way around this is to relax one or more of the other requirements,
but not one of the invariants in the projective group. Faugeras and Keriven
[105, 106, 107, 104] and Bruckstein and Shaked [48] give up the maximum
principle. They then derive higher order PDEs that can hardly be considered
smoothing operators. Establishing existence proofs and numerical simulations
of this projective curve scale space are open problems. (See also Olver, Sapiro,
and Tannenbaum [219].) Dibos does not give up locality or causality, and she is
able to simulate her scale space numerically. This scale space no longer depends
on a single scale parameter, but rather on two parameters. Geraets and others
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propose affine-invariant scale spaces for discrete sets with applications to object
recognition [121, 122]. One of the first attempts to use the AMSS model for
affine-invariant shape recognition was given by Cohignac, Lopez and Morel [76].
A more complete and sophisticated attempt, which performs image comparison
by applying the affine scale space to all level lines of each image, is found in
[186]. Alvarez and Morales used the affine scale space for corner and T-junction
detection in digital images [13].



318 CHAPTER 22. CONTRAST INVARIANT AFFINE SCALE SPACES



Chapter 23

Monotone image operators:
“nonflat” morphology

23.1 General form of monotone operator.

Theorem 23.1. Let T be a monotone function operator defined of F, invariant by
translation and commuting with the addition of constant. There exists a family IF' of
functions of F such that

Tu(x) = ;gg}}g%mw - flx-y)

Proof We choose IF = {f € F,Tf(0) > 0} Then,

Tu(x) > A< Ve>0, Tu(x) > A —e¢

SVe>0, 7 x(T(u—A+¢€)0)>0

& Ve>0, T(r—x(u—A+¢€))(0) >0

&SVe>0, 7x(u—A+e) el
& Ve>0,JvelF, iI}lIfu(y)—/\—l—e—v(y—x) >0

(= is true by simply choosing v = u — A 4+ €. The converse implication is true
due to the monotony of the operator T' and definition of IF' which imply that if

u>vand v € IF then u € IF.)

< Ve>0, supinfu(y) —A+e—v(y—x) >0
velF Y

< sup infu(y) —v(y —x) > A
veF Y

319
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23.2 Asymptotic behavior of monotone opera-
tors

The aim of this section is to study the asymptotic behavior of a monotone
operator. More precisely we assume to have a base of functions [F' and an
operator T' defined by

T(u)(x) = fig]g yselgN u(y +x) — f(y)-

We want first to define a local version of it T}, and then to estimate Th(u) — u
when h tends to 0.

23.2.1 The rescaling issue

As we have seen until now, the scale is related to the space by the following
consideration: assume that v and v are two functions such that v(x) = u(2x).
(u corresponds somehow to a zoom of v). If we want to smooth the two images
similarly we have to change the scale of the filter. For contrast invariant filter,
this is quite straightforward, the scale is directly and uniquely linked to the size
of the structuring elements. E.g. if the filter is the median filter on a disk. The
size of the disk (the scale) has to be chosen two times bigger for u than for
v. For such filters, the down-scaling corresponds to a spatial shrinkage of the
structuring elements.

For linear filter, (think the mean value to be simpler) the scaling was also
straightforward. Indeed, the mean value on w has to performed on a neighbor-
hood two times larger than for v. But in that case, this does not only mean a
spatial shrinkage ! Indeed the kernel of the mean value on a disk of radius h
centered in 0 is given by

gn(x) =z for x| <h
=0 otherwise

That is that the structuring element is scaled also in amplitude. Here the
amplitude-scaling factor h~2 is so that f R 9n = 1 which was a assumption made
for a linear smoothing.

As for the linear filter, at this point we can guess that an amplitude-scaling
factor might be needed for a general monotone filter. So that the structuring
elements, that is the functions of IF' will be scaled as f(x) — h” f(x), where 3 is
a real number which will be discussed later. (To be noted that is all that follow
h? could be replace by a function of 3).

We therefore define the scaled operator T}, associated to 1" by

Ty(u)(x) = inf sup u(x+y)—hPf(y/h). (23.1)
fer ngN
23.2.2 Legendre Fenchel transform

Definition 23.2. Let f be a function from RY into R, we denote the Legendre
conjugate of f by f* : RY — IR defined by

f(p) = sup (p-x — f(x))

XeR
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Let us note that if f is convex then the legendre transform is finite for every
D.

23.2.3 Asymptotic theorem, first order case

Lemma 23.3. Let f be a function satisfying the following conditions:

3C > 0 and a > max(f, 1) such that l‘im inf @ > Cand f(0) <0 (23.2)

X|—oo |x|* T
Then, for any C' and bounded function w, if 3 < 2:

ysl;gN(u(x Ly) = B2 f(y/h)) — u(x) = hP f* (B P Du(x)) + O(hQ(lf%))

A interesting particular case is when g = 1:

sup (u(x +y) = hf(y/h)) = u(x) = hf" (Du(x)) + O(h*)
yeRN

Proof Without loss of generality we can choose x = 0 and u(x) = 0 so that
we are looking for an estimate of

sup (u(z) — h” f(z/h))
Ze RN

when h tends to 0. Setting y = z/h, we have,

sup (u(z) —h’f(z/h)) = sup (u(hy) —h"f(y))
Zc RN YeRN

Let us first prove that we can discard from the preceding sup the y that goes
too fast toward co as h tends to 0. We consider the subset Sy of RN of the y
such that

u(hy) = h? f(y) = u(0) — h°£(0) > 0.

We obviously have

sup (u(hy) = h7f(y)) = sup (u(hy) — b’ f(y)).
YeRN yesn

Since u is bounded, we have Yy € Sy, f(y) < Cih™? for some constant C;
depending only on ||ul|e. Assume that there exists y; € S tending to oo as
h tends to zero. For h small enough, condition (23.2) gives f(y;) > Cly,|%,
which combined with the preceding inequality yields |y,| < Coh~?/®. Such a
bound holds if y, € S}, is bounded, so that we have

Yy € Sh, ly| < Coh =P/

As consequence, Yy € Sj, we have |hy| = o(1) and we can do an expansion
of u around 0, so that

sup (u(hy) —h’f(y)) = sup (hDu(0).y — K’ f(y) + O(h*|y|*))
YeRN YeSn

We can now find finer bound for the set S} repeating the same argument.
Vy € Sy we have,
hp.y — 17 f(y) + O(h?y*) > 0
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which yields
lp| = h°~ 1 f(y)/|y| + O(hlyl)

Assume that y, € Sh, satisfying the preceding inequation, tends to oo when h
tends to 0, then by (23.2), we obtain |y,| = O(h_%). Once again, if y,, is
bounded this estimate holds. So we have

sup (u(hy) —hPf(y)) = b’ (sup (h'Ppy — f(y) + O(hQ(lf%)*ﬁ)))
YeRN yesy,

= 17( sup (W~"py = f(y)) + O(W*(=550)) = (£ (W' ~7p)) + O(n*(~+=1))
yYERN

It is easily checked that O(hz(lf%)) = o(h?) for all B < 2. O

Theorem 23.4. Let IF be a family of functions, all satisfying the condition (23.2)
with a constant C non dependant on the choice of a function within the family. Let T}
be the rescaled operator associated with the family /F' and with a rescaling parameter
B equal to 1. Then for all C' and bounded function u we have:

M = Hi(Du(x)) + o(1)

where

Hi(p) = Jgg]g [ (p)

23.2.4 Second order case - some heuristics.

Theorem 23.4 gives the first order possible behavior of a non-flat monotone
operator. Question occurs on what happens if this first order term is 0, that is
if Hi(p) =0 for all p. In that case, it is necessary to push the expansion to the
second order:

We have with p = Du(0) and A = D?u(0)/2,

sup u(hy) —hPf(y) = sup hp.y +h?Ay.y — b7 f(y) + O(|hy|®)
yeRN YeRN

Since this last expression is increasing with respect to A it is then expected
that the left side of the equality converges when h tends to 0, to some function
F(A,p) where F is non decreasing with respect to A. As consequence, among
second order operator only elliptic operator can be obtained as the asymptotical
limit of a general monotone operator.

23.3 Application to image enhancement: Kramer’s
operators and the Rudin-Osher shock filter

In [176], Kramer defines a filter for sharpening blurred images. The filter re-
places the gray level value at a point by either the minimum or the maximum
of the gray level values in a neighborhood. This choice depending on which is
the closiest to the current value.
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In [?], Rudin and Osher proposes to shapen blurred images by applying the
following equation:
% _ sgn(au)D
2 = sgn(Aw)| Dl

As, we will see in the following section, this two filters are asymptotically
the same in 1D, but differs in 2D. The first one yields to the Canny differential
operator for edge detection (sign of D"(Du, Du)), while the second explicitely
uses the sign of the laplacian.

23.3.1 The Kramer operator.

This filter can be seen as a conditional erosion or dilation and an easy link can
be made with the “shock filters” [?]. A finer version of it, is proposed in [?] and
proceed as follow: Let g(x) = x2/2, and F'* = {g}. Set T} the rescaled, (with
B = 1), non-flat operator associated with the structuring elements set ™ and
T, its dual operator. We have

(T7u)() = sup ufy) — ha((x —y)/m) = sup u(y) ~ Z2 3
YeRN YeRN

Tru)(x) = inf h h) = inf x—y)*

( hU)(X)—yIEI}RNU(Y)— a((x—y)/ )—yler;RNU(y)Jr o

The Shock filter T}, is then defined by
(T u)(x) i (T w) (%) — u(x) < u(x) = (T, u)(x)

(Thu)(x) = (T, w)(x)  if (T u)(x) —u(x) > u(x) — (T u)(x)  (23.3)

u(x) otherwise

The figure 77 illustrates the action of such an operator. In order to un-
derstand mathematically the action of T}, let us examine its asymptotical be-
haviour. The following exercise proposes to apply Theorem 23.4 to get the
asymptotic of T}f and T, . It will however not permit to conclude for 7}, this
is done in the next proposition.

Exercise 23.1. 1. Check that Vu and Vx:
T, u(x) < u(x) < Tj u(x)
2. Using Lemma 23.3 Show that ¢*(p) = ¢(p) and that Vx where u is C*:
(T3 u) (%) — u(x) = h|Du(x)|*/2 + O(h*) and
(T, u)(x) — u(x) = —h|Du(x)|*/2 + O(h?)
So that (Thu)() )
. hu)(x) —u(x) 2
Jim H = £[Du(x)|"/2
At this step, we remark that the differences (T, u)(x) —u(x) and u(x) — (T}, u) are

equal at the first order, and therefore the choice will be made based on second order
estimates on .

Proposition 23.5. Let T}, be the “Kramer” operator (given by 23.3), one has for any
function v € C3,
(Thu) —u 1

. _1 2 2
}lLliI}) ey = 2sgn(D u(Du, Du)) |Du(x)|
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Figure 23.1: Shock Filter implemented by using non flat morphogical filters.
Top, left :original image, right: blurred image using Heat Equation, Middle-left:
two iterations of the kramer filter, Middle-right: two iterations of the Rudin-
Osher filter. The scale parameter is chosen such that the parabola passes the
range of the image at a distance of 6 pixels. Down: zoom version of a detail,
left: original image, middle: kramer filter, right: Rudin-Osher filter. We see a
tendancy of this last to smooth shapes toward circles.
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Proof According to Exercise 23.1, one has to push the asymptotic of T,j and
T, to the second order. We have

2 2

Ty (u)(x) = S, uly) = % and Ty (w)(x) = inf u(y) + (x ;hy)

Since T,j and T, are translation invariant, we can limit our study at x = 0.
Moreover, since u is bounded, we can limit the sup to the y € B(0,h). If u is
C? at point 0, we can set u(y) = u(0) + p.y + A(y,y) + o(y)? So that,

T )0 -u©) = sup u@)-2Lw@) = sup (pyrAly,y)- T som)?

Y€B(0,h) 2h yeB(0,h) 2h
Set Qn(y) = 2hp.y + (2hA — Id)(y,y), so that we have

Tw= sup (Qn(y)/(2h))+ o(h)?
YEB(0,h)

For h small enough Bj, = Id — 2hA is positive and inversible. Therefore, the
sup of @, over the y exists, and is achieved for y;, such that

2hp + 2By, = 0=y, = —hB~'(p)

Thus,
T,F (u)(0) — u(0) = g(m —2hA)"H(p,p) + o(h?) = g(ld + 2hA)(p,p) + o(h?)
We conclude that

7} (0)(0) — u(0) = o |pf? + h*A(p, p) + o(1?) (23.4)
Similarly,

Ty (u)(0) — u(0) = S1pl> ~ W A(p, p) + o) (23.5)
From these two last equalities we deduce that
(T 0() ~109) = (16 = (T () = F(D*u(0) (Dut), Du) + f1%)
We therefore have

T () (%) — u(x) = |Du(x)|? sgn( Du(x) (Du(x), Du(x)) ) + o(h)
O

Let us remark that if « is a 1D function, then sgn(D"(Du, Du)) coincides
with the sign of the laplacian. That is that the Kramer operator corresponds,
in 1D, asymptoticaly the Rudin Osher shock filter.
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23.3.2 The Rudin Osher Shock Filter.

Let us simply define a scheme that yields asymptoticaly the Rudin Osher shock
filter equation.

Let By, be a disk of radius h centered at 0. Let Mean be the mean value on
the disk Bj. We define the operator T} by:

Thu(x) minyep,u(x +y) if Mean(u)(x) > u(x)
= mazyep,u(x+y) if Mean(u)(x) < u(x)

= u(x) otherwise
Exercise 23.2. Prove that

}Lin}) Thu — u = sgn(Au)|Du]

23.4 Can we approximate a parabolic PDE by
the iterations of a monotone image opera-
tor 7

23.4.1 Approximation of first order equation.

Let us address the converse of theorem 23.4: being given the function G is
it possible to construct a scaled familly of structuring elements such that the
associated scale space T}, satisfies

Thu — u = hG(Du) + O(h?)?

As we shall see, the main difficulty stands in the localization of the struc-
turing elements when the scale tends to 0. In all the following, we work with
the scaling parameter § equal to 1.

Theorem 23.6. Let G be a convex function, such that G* satisfies condition 23.2,
then choosing IF', = {hG*(x/h)} one has for the operator T} associated to IF'j, and
for any function u € C®, (Thu — u)(x) = hG(Du(x)) + O(h?)

Proof This is a imediat consequence of Lemma 23.3 and of the fact that if
a function G is convex then G** = (G. An example of such function G is
G(x) = |x|% O

When G is non convex, then exhibiting a function M such that M* = G is

non straighforward. It is better to consider G as the infimum of a familly of
convex functions {gq} 4.
Theorem 23.7. Let G be a function being the infimum of a familly of convex
functions {gq}q, such that for all ¢, g; satisfies the condition 23.2, then choosing
Iy, = {hg;(x/h)} one has for the operator T} associated to JF';, and for any function
u € C3, (Thu — u)(x) = hG(Du(x)) + O(h?)

Note also that for negative function G, the same result work by switching
the sup and the inf in the definition of the operator Tj.
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Proof The proof of Theorem 23.7 is a straighforward consequence of Theorem
23.4. O

Examples of functions G that fit the hypothesis of the theorem 23.7 are the
positive and Lipschitz functions. Indeed, if G is K-Lipschitz then setting for
q € RV,

94(x) = G(q) + K[x — q|

We obviously have G(x) = in f,c rvgq(x). And,

sy J pa—Glq) iflp| <K
9q (p) = { +00 otherwise

So that g;(p) satisfies the condition 23.2.

Remark 23.1. However, the hypotheses of Theorem 23.7 do not permit to
construct any function G. The main issue is in fact the condition 23.2, which
localizes the filter when h > 0 tends to 0, in the theorem 23.4.

Frédéric Cao proposes in [53] a way to avoid such an issue for any positive
l.s.c function G. His idea is to define a two scales family of structuring elements.

He first set
_J Gl ifp=q
94(p) = { +o0o  otherwise
It is then obvious that G(p) = infycpny gq(p). He then set fy(x) = (g5)(x) =
—G(q) + qx and Fy, = {fyn,q € RN} where, for a a €]1/2,1],

Fan(x) = —hG(q) + gx if x € B(0,h%)
a:h Tl 4o elsewhere

The familly IF'y, is not a rescaling of the familly IF1. There is indeed, two
scales: the explicit one h, and an implicit one, h® since the functions of IF', are
truncated outside a ball of radius h™. This truncature localizes the corresponding
operator Ty, and makes the result of theorem 28.4 true, even if the functions of
IFy, do not satisfy the condition 23.2.

23.4.2 Approximation of some second order equation.

Let us start with a simple remark. Set f,(x) = ¢x, Vx in B(0,h) and f,(x) =
400 otherwise. By an imediat consequence of the Taylor expansion we have

g =Du(0) & sup u(x) - fy(x) = O(h?)
XeRN

q # Du(0) & sup u(x) — fq(x) > C(q,u)h

XeRN

This indicates that a way to get second order operator is to choose the familly
of functions IF so that Vf € IF and Vg € IRY one has f +¢x € IF.

The Heat Equation as the asymptotic of a non-flat morphological
operator.
Lemma 23.8. Let A be in SM(IRY) (set of the N x N symmetric matrices). Then,

Tr(A)=N inf sup (A - Q)(x,x) (23.7)
QESM(RN), Tr(Q)=0 X,|X|=1
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Proof We know that, since A and @ are symmetric, supy jx|=1(4—Q)(x, x) is

the largest eigenvalue of A—(Q. As consequence VQ € SM(IRY), Nsupx |x)=1(A—
Q)(x,x) > Tr(A—Q)="Tr(A). Thus

inf su A— X, X ZTTA,
QGSM(R2)’TT(Q):OX,|XF:1( Q)( ) ( )

Choosing ) diagonalizable in the same base that diagonalizes A, and denoting
by A\ <... <Ay (resp. q1, ..., qn) the eigenvalues of A, (resp. of @), we have

sup (A —Q)(x,x) =max{A\ +q1, .., AN +qn}

X, [X|=1
So that
QesMURLTr(@)=0 Xj)‘in:l(A - Q)(x,%)
< inf max{\1 +q1, ... AN Fan} = (A + ... + An)/N

{q1,.-,qn },q1+...4+qn=0

Lemma 23.9. We set for p € R™, Q € SM(IR"), and h > 0,

fror(x) =px+Q(x,x) ifxe€ B(0,h)
= —00 otherwise

We then set IFy, = {fp.q.n;with @ € SM(IRY); Tr(Q) = 0 and p € R™} which is to

say that IF'j, is made of the truncature around zero of all quadratic forms whose trace
is zero. With T (u)(x) = infrer, supycpy u(x +y) — f(y), one has for any u € C3,

T () (%) — u(x) = %fﬁAu(x) +o(h?)

Proof We make the proof at point x = 0, we set A = %DQU(O). We have

Th(u)(0) —u(0) = inf sup u(y)—u(0) —py — ,
n(w)(0) — u(0) PR QESI R T (@)=0 yeml (¥) — u(0) — py — Q(y,y)

=inf sup wu(hy)—u(0)— hpy — th(% y)

P.QyeB(0,1)
=inf sup h(Du(0) —p)y — h*(A — Q)(y,y) + o(h?)
P.QyeB(0,1)
1
= M sup (A= Q)(y,y) = h*Tr(4
QGSM(IRN);TT(Q):OyeB(%J)( Q)y.y) = (A)



Chapter 24

Movie Scale-spaces.

This chapter is concerned with the axiomatic characterization of the multiscale
analyses {7} };>0 of movies. We shall formalize a movie as a bounded function
ug(z,y,0) defined on IR, where x and y are the spatial variables and 6 the time
variable. We note x = (x,y, 6).

As in the preceding chapters, we assume that T} is causal (Definition ?7),
Translation invariant (Definition ??) and invariant by grey level transla-
tion (Definition ?7?). Therefore, as shown in Chapter ??, there exists T} s such
that T; = T 5T, for all t > s > 0. And,

(Tern,ew — u)/h)(x) — F(D*u(x), Du(x),t)

as h tends to 01 for all © and x where u is C?. The properties of F' are the
same as in chapter ??, that is, F'(A, p,t) is nondecreasing with respect to its
first argument, F(A, p,t) is continuous at all points where p # 0. But, now F'
has ten scalar arguments.

Finally, we assume that the equation

0

8—1; = F(D*u, Du,t)

a unique viscosity solution u(x, y, 8, t), (this will of course be checked a posteriori
for the models we derive).

24.1 Geometrical axioms for the movie scale-
space.

Let us first define the geometrical axioms for the multiscale analysis of movies.
All axioms considered in chapter ?? make sense, but we need to specify them
in order to take into account the special role of time (). (For example, we shall
not consider invariance by spatio-temporal rotations as an essential property...)
This will change a little the assumptions on geometrical invariance. As usual we
will denote for any affine operator C of IR?, by Cu the function Cu(x) = u(Cx).

The first property states that the analysis be invariant under all linear trans-
forms of the spatial plane IR? x {0}. That is, when we apply the same affine
transform on each image of the movie.
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Definition 24.1. We shall say that a movie scale-space T; is affine invariant if, for

any linear map B of the form
b 0
d 0
0 1

there exists ¢' (¢, B) such that B(Ty ., gyu) = Ty(Bu), and B(Ty (1, B¢/ (s,B)t) = Tt,s(Bu).

o0 Q

We also state a weaker property than the affine invariance, by restricting the
invariance to the rotations of the two first coordinates, and the homotheties.

Definition 24.2. We shall say that a movie scale-space T} is euclidean invariant if

for any linear map
acos(b) —asin(b) 0
A= asin(b) acos(d) 0
0 0 1

there exists a scale ¢'(t, A) such that A(Ty s, ayu) = Ti(Au) and ATyt 4),¢(s, a)0) =
Tt,s(A’UJ)

Note that the ¢’ is the same for the two definitions 24.1 and 24.2. Tt establishs
the link between the space dimension and the scale. Since in the following either
the affine or the Euclidean invariance will be considered, we shall always have
this link. We now establish the link between time and scale, by considering the
homotheties with respect to time 6. ( We accelerate or decelerate uniformly the
movie.)

Definition 24.3. For any e in IRT we define by S. the linear map Se(z,y,0) =
(z,y,e0) We shall say that a movie scale-space T} is time scale invariant if there
exists t” (¢, e) such that

Se(Tt”(t,e)U) = Tt(Seu) and Se(Tt”(t,e),t”(s,e)U) - Tt,s(SeU)

Of course, the function ¢/ can be different from the function ¢’ of definitions 24.1 and
24.2.

Now, we want to state the scale invariance, as done in chapter ??. We begin
by noticing that the combination of the affine (or Euclidean) invariance and
the time scale invariance implies invariance with respect to homotheties of IR3.
That is, setting Hy = AId, we have for some function 7(¢, \) :

H>\ (TT(t_)\)u) = Tt(H)\u)

So, for scale invariance we could impose that the function 7 is differentiable
with respect to A and that d7/0A(t,1) is continuous and positive. Now, we
prefer to obtain the scale-invariance assumption by using the affine and time
scale invariances.

Lemma ?? implies that ¢’ is a function only of ¢ and of the determinant of B.
Then, setting A = det(B), we assume that t'(¢, \) is differentiable with respect
to A at A = 1, and that the function g(t) = %(t, 1) is continuous for ¢ > 0. We
assume the same thing for the time: We assume that t”(¢,¢e) is differentiable
with respect to e at e = 1, and that h(t) = %L;,(t, 1) is continuous. For the
scale normalization we must impose in addition that at least one of g(t) or h(t)
is positive for ¢ > 0. If we assume g(t) > 0, then the scale normalization is
established with respect to spatial variables. And, by an easy adaptation of
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Lemma ??, we deduce that we can normalize the relation between ¢, B and t’
so that )
t' = (det(B))zt (24.1)

Thus the affine invariance is reduced to the property :
F(BA'B, Bp,t) = |det(B)|2 F(A, p, t|det(B)|?) (24.2)

If now we assume h(t) > 0, then the scale normalization is established with
respect to time. And then time scale invariance is reduced to

F(S.ASe, Sep,t) = eF(A,p, et) (24.3)

Of course, since these assumptions imply a re-normalisation, we can not assume
both. In the following, we shall assume that at least one of the two conditions
is achieved. We then state the regular scale invariance axiom :
Definition 24.4. We shall say that a scale-space T} satisfying the Affine or Euclidean
invariance and the time-scale invariance is scale-invariant if

(i) ¥'(t,A) is differentiable with respect to A at A = 1, and g(t) = 2L (¢,1) is
continuous for ¢ > 0

(ii) t”(t,e) is differentiable with respect to e at e = 1, and h(t) = Z-(t,1) is
continuous for ¢ > 0.

(iii) One of the function g or h is positive, and the other one is continuous at ¢t = 0.

(iv) t — Tt is injective.

(where ¢ and t" are these defined in 24.1 or 24.2 and 24.3).

For the last “geometrical axiom” we assume that the analysis is invariant
under “travelling” : a motion of a whole single picture with constant velocity v
does not alter the analysis. We denote by B, the galilean translation operator,

Bv:(vz,vy)u(xa Y, 9) = u(:c - 1)19, y—- vy9, 9)
In fact B, is an affine operator,

1 0 —u,
Bv:(vw,vy) = 0 1 —’Uy
0 0 1

Definition 24.5. We shall say that a movie scale-space is Galilean invariant if for
any v and t, there exists t*(¢, By) such that

Bv (Tt* U) = Tt (Bvu)7 and Bv (Tt*(t,u),t*(s,v)u) = Tt,S(Bv’UJ)

t*(¢t, B—v) = t*(t, Bv), and t* is nondecreasing with respect to t.

The second part means that reversing time should not alter the analysis.
Let us simplify the definition. By using Lemma ?7?(i), we have

£ (£*(t, Bu), By) = t* (t*(t, B,), B_y) = t*(t, ByB_y,) = t*(t, Id) = t.

Repeating the argument of the step (ii) of the proof of the Lemma ??, we deduce
from this relation that ¢*(¢, B(v)) = t. Thus the Galilean invariance reduces to
the simpler relation (to which we give the same name)

By(Tiu) = Ty(Byu) < F('By,AB,,' B,p,t) = F(A,p,t)  VAin $° p € R’
(24.4)
Finally, we state the morphological property, (as in definition ?7?):
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Definition 24.6. We shall say that a movie scale-space is contrast invariant if for
any monotone and continuous function h from IR into IR, Tih(u) = h(Tiu)

We have seen in lemma 77 that this implies
F(uA+ XAp ®@ p, up, t) = uF (A, p,t), (24.5)

for every real values A, u, every symmetric matrix A and every three-dimensional
vector p.

24.2 Optical flow and properties for a movie scale-
space.

The aim of this section is not to do a exhaustive list of the techniques for optical
flow estimation, but from general considerations we will remark that lot of
methods involve a step of smoothing, which could be modelized by a scale-space.
In parallel, we will notice that the contrast and the Galilean invariances are not
only compatible but somehow justified by the aim of estimating an optical flow.
This will make more clear what motivated the choice of the properties stated in
the preceding section.

The notion of optical flow has been introduced in the studies of human
preattentive perception of motion. The optical flow associates with each point
of the movie, a vector representing the optical velocity of this point. We shall
denote by v the optical flow vector (v = (vy,v,) is in IR? ), and by v the vector
(vg, vy, 1). So that if Af is the time interval between two frames, x + v(x)Ad
denotes the point x shifted by v(x) in the next frame.

The classical definition involves a conservation assumption, which generally
is that the points move with a constant gray level (u : the gray level value).
From a discrete point of view, we are looking for v(x) such that ([?,?, 7,7, 7],...)

u(x + v(x)A0) = u(x) + o(A) (24.6)

< Duv=0 (24.7)

This leads us to compare the gray level value from one frame to the next and to
associate the points which have the same intensity. Considering that the single
value u(x) is not a reliable information because of the many perturbation in
capturing the image, the images are often smoothed before doing this matching.
Of course, it would be possible to use an image scale-space, that is to smooth
each frame independently. But, we might probably do better by smoothing the
whole movie, with interactions between the different frames. Following the idea
of Marr, Hildreth, Koenderink, and Witkin many authors proposed to use the
convolution by the 3D Gaussian function G; (the 3D heat equation). And, then
they check :

(Gyxu)(x + v(x)AO) = (G * u)(x) (24.8)

where * denotes the convolution operator. The main problem of this formulation
is that it is not equivalent for two movies v and @ representing the same object
with different constant velocity. For example, consider that the movie @ is an
accelerated version of u, @(x,y,0) = u(x,y,20) = u(Ax). Set vy (resp. vz) the
velocity at the point x in the movie u (resp. at the point Ax in the movie a).
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We have vy = 2vy. Now, after the smoothing, using the formula (24.8), vo must
satisty
(Ge*xu(A))(x + vaAl) = (G * u(A))(x) (24.9)

And, we easily see that since in general (G xu(A.)) # (Gt *u)(A.), after a such
smoothing we shall not always obtain with formula (24.8), vo = 2v;. Indeed, in
the two cases, the smoothing is not done in the same way : because this linear
smoothing is not Galilean invariant. Therefore a such smoothing implies some
perturbation into the estimation of the velocities.

Adelson and Bergen [3], and Heeger [?] propose in order to avoid such prob-
lem, to design “oriented smoothing”. Such an approach yields more Galilean
invariance, even if, of course, we cannot exactly recover all the directions. (It
would involve an infinite number of filters !)

Let us note also that the equation (24.6) is contrast invariant. Indeed one
can apply a change of contrast for the entire movie : change v into 4 = g(u),
where g is strictly monotonous function from IR into IR, then the equation (24.6)
with @ is strictly equivalent to the equation with u :

u(x + v(x)A0) = u(x) & (9(u))(x + v(x)Ad) = (9(u))(x)

for any strictly monotonous change of contrast g.

It is important that this property be conserved after a smoothing of the movie
u. Once more if we apply the linear smoothing defined by the convolution by
the 3D Gaussian kernel, we lost this property. Indeed

(Ge*xu)(x + v(x)A0) = (G * u)(x) is not equivalent to

(G * (9(u))(x + v(X)A0) = (G * (9(u)))(x)

except for some specific change of contrast, or kind of motion. In order to keep
the equivalence after smoothing it is necessary that the scale-space be contrast
invariant as it has been defined in the preceding section.

As well known, the conservation law (24.7) only gives the component of
the optical flow in the direction of the spatial gradient. The other component
remains indeterminated. The usual approach to determine the optical flow then
involves balance between the conservation law and some smoothing constraint
on the flow. Since it is not our subject here, we refer to the papers of Barron
and al [?], Snyder [?], Nagel [?], Nagel and Enkelmann [?]...

First, we can remark that most of the approaches involve derivatives of the
intensity of the movie, that by itself can justify the fact to smooth the movie
before.

Secondly, the question occurs to know whether of not it is possible to smooth
the movie so that resulting trajectories (this needs to be defined, but at least
say the level surfaces, since due to conservation law trajectories are embedded
within them) will be smoothed as well.

In conclusion, optical flow approaches often lead back to the problem of the
definition of a smoothing. And we do not know a priori how much we have
to smooth : the degree of smoothing is a free scale parameter. This indicates
that a multi-scale analysis must be applied. In addition we have seen that
the conservation law justifies the contrast and the Galilean invariances for the
scale-space.
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24.3 The axioms lead to an equation.
We are now going to introduce some useful notation.

1. We denote by Vu = (%, g—;‘, 0) the spatial gradient of the movie u(x, y, 9).
When Vu # 0, we associate with Du = (g—;, g—Z, %) the two normal

vectors e* and e® defined by

S T S S Y0 g YE TR T
_|Vu|( ay’ax’) © _|Vu||Du|(8a:8t9’8y897 ((8x) +(8:1:

When Vu is not equal to zero, {Du,e*,e*} is an orthonormal basis of
IR3?. To be noted that el is spatial, that is it does not have a temporal
component.

2. Again when Vu # 0, we then define
Iy = (D%u)(et, el), Iy = (D%u)(et, ), I's = (D%u)(e®,e?).

Then I'y is the second derivative of u in the direction Dut, T's in the
direction of Du*, and T'y the cross derivative in both directions.

3. Then, the spatial curvature curv(u) is given by

Iy
curv(u) = Vul’

4. The gaussian curvature G(u) is given by

I3 —I2

At last, we introduce the “apparent acceleration”, as a normalized ratius
between the gaussian curvature and the spatial curvature : given by

G(u) |[Dult _

_ (1

[Vl

(T — ?—jmw

l =
accel(u) curv(u) |[Vul*

Theorem 24.7. Let a multiscale analysis T; be causal (as defined in theorem ?77),
translation, Euclidean, Galilean, and constrast invariant. Then, there exists a function
F' such that T} is governed by the equation

ou

i |Vu| F(curv(u), accel(u),t) (24.10)
(for the exact meaning of “governed by”, we refer to the theorem ?77.)

If in addition, T} is affine, time-scale and time invariant then the only possible

scale-space equations are

ou

Frie [Vu| curv(u)% (sgn(curv(u))accel(u)?)* (24.11)

(AMG)

for some ¢ €]0, 1], or

(¢ =0) % = |Vu|curv(u)3 (24.12)
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(g=0) % = |Vu|curv(u)% (sgn(accel(u)curv(u))™ (24.13)

ou +

(¢g=1) Fri |Vulsgn(curv(w))(sgn(curv(u))accel(u)) (24.14)

In the above formulae, we use the convention that the power preserves the
sign, that is a? = |a|%sgn(a). And we set 2T = sup(0, z).

Remark. Before begining with the proof of the theorem, let us notice that
the terms appearing in equation (24.11) are not defined everywhere. Indeed, we
can write curv(u) only when |Vu| # 0, and accel(u) only when Vu # 0 and
'y # 0 (then curv(u) # 0). So, we must specify what happens when one of
these conditions does not hold. Equation (24.11) is equivalent to

9] —8q 1244
S5 = [Vul ST (04D — 1) [ Dul

By continuity, when I'; tends to zero, we set % =0.
The case Vu = 0 is more problematic. We distinguish three cases :

e If ¢ < 1/4, the right hand side ot the equation is continuous and we obtain,
when Vu tends to zero, % =0.

e In the case ¢ = 1/4, which is a limit case, Vu does not appear in the

equation. Now, the definitions of I'y, T's,... depend on the direction of
Vu. We have in this case
ou

= |Du|? (T Ty — T2)3+

where, (I'1T'3 —T'3) is the determinant of D?u restricted to the orthogonal
plan to Du. If |Du| # 0, this determinant is defined independently of

the T;, and the formulation makes sense. Now, if |Du| tends to 0, by

ES ou __
continuity we have g7 = 0.

e At last, if ¢ > 1/4, Equation (24.11) has singularities since the right hand
side of this equation may tend to infinity when Vu tends to zero.

Let us now set the obtained relation between space, time and scale.

Corollary 24.8. Let A be an affine transform of the coordinates

(

and let p = v/ad — be. Then, the multiscale analysis defined by equation (24.11) satifies
A(Tru) = Ty (Au) with

o0 Q

b 0
d 0 for any a, b, ¢, d, e € IR
0 e

(A1) = (p* T2y (24.15)

We see in relation (24.15), that q is a parameter which represents the re-
spective weights between space variables and time variables in the equation. For
example, by taking ¢ = 0, we remove the time dependance in the equation and
we obtain the purely spatial affine and constrast invariant scale-space (or a slight
variant). On the other side by taking ¢ = 1, we remove the space dependance of
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the scale : we obtain the equation (24.14). At last, by taking ¢ = %, we impose
an homogeneous dependance in time and space. T = pez t = (det(A)2) ¢t In
that case, by formulating the equation with G(u) the gaussian curvature of u,
we obtain
gu _ |Du|(G(u)t)7 (24.16)

ot
which is the unique contrast and 3D affine invariant scale-space as described in
chapter 77.

Let us before begining the proof of the theorem give a hint on the kind of
smoothing the equation (24.11) should do on a movie. Let us decompose this
equation into two parts

u _ [Vu| curv(u +

i

ypower. (sgn(curv(u))accel (u)Poe )

The first term curv(u)P°¢™ is roughly a term of spatial diffusion, and then
tends to remove objects when ¢ — oo. It’s quite close from the diffusion term
of affine and contrast invariant scale-space of static images.

The second term accel(u)... can be seen as the speed of this spatial diffusion.
The bigger is accel, faster the spatial diffusion is executed. As we shall see in
the following the differential operator accel can be interpreted as some kind of
acceleration of objects in the movie. So, we can conclude that the equation
will smooth (and then remove ) faster the object with big acceleration, than
object with low acceleration. Therefore we can expect that this will produce a
discrimination between trajectories (smooth and unsmooth).

Proof of Theorem 24.7 The proof is essentially based on algebraic calcu-
lations. Its main ingredient is that the terms |Vul3curv(u) and |Du|*G(u) =
|Vul*curv(u)accel (u) are affine covariant of degree 2,2,0 and 2,2,2, with respect
to the coordinates (x,y, 6).

Since the proof is quite long and technical, we refer to [11]. O

24.4 Optical low and apparent acceleration.

In this section, we shall give to accel(u) a cinematic interpretation as an “ap-
parent acceleration”. As pointed before, the conservation law related to the
optical flow fixes only the component of the flow in the direction of the spatial
gradient.

First, we shall see that the model (24.11) and the definition of accel(u)
can be associated with a special choice for the other component the apparent
velocity. This choice corresponds to the a priori assumption that only objects
in translation are observed. In other terms, accel(u) gives the correct estimate
of the acceleration of objects when they are in translation motion. Secondly,
we will establish a formula that provides an estimation of accel without any
calculating of the apparent velocity.

In all this section, we work only at points where Vu # 0.
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What are the possible velocities 7 We define the optical flow ¢(x,y, 6) as
a function from IR? into IR? representing the velocity of the point (z,y) at time
0. As before, we add a third component to the flow, which will always be equal
to 1: v(z,y,0) = (U(z,y,0),1). We denote by W the set of “possible” velocity
vectors

W= {v=(#1) for all 7 in R?} (24.17)
Assuming the conservation law, the optical flow is a vector of W which is
orthogonal to Du, therefore when Du # 0, it belongs to the set V :

V={v,= %(u@‘ —et), forallpc R} (24.18)

All v,, have their component in the direction of Vu fixed to — I@ZI
free parameter p left. It corresponds to the component of the velocity vector in
the spatial direction orthogonal to Vu, that is by definition : e*. In the next
paragraph, we define u so that accel(u) is an apparent acceleration.

Definition 24.9. Definition of the “velocity vector”. When Vu and curv(u) # 0,
we define the “velocity vector”: Vby

. We have one

_ | Dul

I R
= |Vu|( e e’) (24.19)

I

Then, if we set v; = (V.Vu)/|Vu| (resp. va = (V.et)/|et]|), the component
of V in the direction (resp. orthogonal direction) of the spatial gradient Vu, we
have:

Ug _ |Dul Iy

I N

(24.20)
Proposition 24.10. Let ;7; be an orthonormal basis of the image plane. Con-
sider a picture in translation motion with velocity 7 = (v*,vY) : u(z,y,0) = w(z —
f09 v*(0)df,y — _f09 vY(0)d0). Then, at every points such that Vu # 0 and curv(u) # 0,
¥ satisfies the explicit formula

(0,1)=V

In other terms, the definition (24.9) of the flow V is exact for any translation
motion.

The definition of the optical flow that fixes one component of the flow cor-
responds to say that points move on their space-time level surface (gray-level
does not change). Fixing the other component as we do with the definition 24.9
is to make the choice of a travelling direction on the space-time level surface.
With the definition 24.9, we choose the direction which does not change the
orientation of the spatial gradient.

Of course, in general, the velocity vector V is not equal to the real velocity
for others motions than the translations, but we shall consider it, for any type
of movement. In others words we make for a point a choice of trajectory along
the the iso-surface it belongs.

We shall now look for simpler expressions and interpretation of accel(u). The
next proposition shows that first, accel can be seen as an apparent acceleration
and second as a curvature in space-time of our choice of trajectories along iso-
surface.
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level line an unit of time
after

level line

Figure 24.1: According to the optical flow definition, all above drawn velocity
vectors are possible, since they allow the moving point to remain on the same
level surface. One possibility to get rid of this ambiguity is choose as velocity
the direction which does not change the orientation of the spatial gradient.

Proposition 24.11. 1. accel as an apparent acceleration. For all points such that
Vu # 0 and curv(u) # 0, let V = (vg, vy, 1) be the velocity vector defined as above
(24.9), and v1 its component in the direction of the spatial gradient.

= —((Dv1).V) = —=(D(V.Vu).V) (24.21)

This formula' shows that accel(u) is the acceleration in the direction of —Vu.
As v1 the component of the velocity in the spatial gradient direction is called the
“apparent” velocity, accel(u) can be called the “apparent acceleration”.

2. Let V be the “velocity vector” defined in Definition 24.19, then

accel(u) = % (24.22)

Proof of proposition 24.11 The proof is just some simple calculations. [

Discretization of the apparent acceleration. We shall prove some equali-

ties allowing a robust computation of the term accel(u). As we have seen before,
the “possible velocity” vectors are in VW. They also must be orthogonal to the
gradient of the movie Du, and therefore lie in ¥V We will first obtain a formula
for accel(u) that involves a minization over the vectors of V, and secondly we
will extend this minimization over the vectors of W.

Lemma 24.12. Whenever the spatial gradient Vu and the spatial curvature curv(u)
are not equal to zero,

|Vl (sgn(curv(u)) accel(u))t = minvev|(D*u)(v,v)| (24.23)

1We denote by % the variation of f along the trajectory of the considered point ( =

((Df).V) where V is the velocity of the point). This is generally different from % which is
the partial variation of f with respect to 6.
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Proof Let us recall that the set V is the set of the vectors

| D
V= W(#QL —e”)
We have
2 | Dul® 2
(D u)vy.vy) = W(Flﬂ —2T2pu+T'5) = P(p),

where P(u) is a polynomial of degree 2 in p. When |Vu| and curv(u), (and
therefore I'1) are not equal to zero the extremum of P(u) is reached when p =
I';/T'1, that is when v, = V. Thus the extremum value of P(u) is |Vulaccel(u),
by proposition 24.11. We obtain

extyey(D*u)(v,v) = |Vulaccel (u),

where by extycy we denote the finite extremal value in V.

Assume first that curv(u) and accel(u) have the same sign. This implies
that the second order coefficient and the extremum of the polynomial have the
same sign. Thus the expression (D?u)(v,v) has the same sign for all v € V.
This yields |Vu|(sgn(curv(u)) accel(u)) = minyey|(D?u) (v, v)|.

If now, curv(u) and accel (u) have opposite signs then |Vul|(sgn(curv(u)) accel(u))™ =
0. And P(p) is equal to zero for at least one vector v of V. Thus, for this vector,
|(D?u)(v,v)| = 0, and minyey|(D?u)(v,v)| = 0. So (?7?) is still satisfied. O

From a numerical viewpoint, the minimization on the set of vectors V is not
easy. Indeed, first, the direction of the gradient of the movie is quite unstable
because A#, the time interval between two images, can be large.

We will restrict W to the vectors that stand in a ball B(0, R) for an arbitrary
R that can be chosen large enough. In others words, we will only consider
bounded possible velocities, which is not a real restriction in pratice.

Lemma 24.13. Let Vu and curv(u) be not equal to zero, and u be C?, then the
expression

|u(x — vAO) — u(x)| + |u(x + vAO) — u(x)])) (24.24)

. 1
mmVEw(m(

converges towards |Vu|(sgn(curv(u)) accel(u))t when Af tends to zero.

Proof Due to the fact that v € W are assumed to be bounded, we have that
vA#f tends to 0 as A6 tends to 0. As consequence, we can restrict the proof to
the case where u is a quadratic form without loss of generality.

So, let u be a quadratic form : u(x) = %A(x, x) + p.x + ¢, and define

F(v,h) = (Ju(x = vh) = u(x)| + |u(x + vh) — u(x)])/h?
We have v 1 v 1
F(v,h) = | — % + AW,V + |pT + 5AV,V) (24.25)

Let w € V be a vector which minimizes the min in (24.23), w € V then w.p = 0),
thus (24.25) becomes
F(w, h) = [A(w, w)|
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Therefore

%iir%)(minvEWF(v, h)) < F(w, h) = |Vu|(sgn(curv(u)) accel(u))t  (24.26)

Moreover minyewF (v, h) exists for every h and is bounded. We denote by vy,
a vector of W such that F'(vy, h) = minyewF (v, h). Since F (v, h) is bounded
and F(vp, h) > 2|(p.vi)/h|, we necessarly have

[(p-vi)| = O(h) (24.27)

Let decompose v, into two vectors : vy, = Vf; + hv,jlE such that vf; is orthogonal
to p, and (24.27) leads that |vf| is bounded when h tends to zero. As before,
we have

F(v, h) > [A(v, vi)| = [A((vis +v5), (vie + viD))| >
|A(vﬁ, vﬁ) + 2hA(Vﬁ, vf) + h2A(Vf, avf)|

Since |vi| is bounded, we get limy_o F/(vy, h) > |A(vi, viH)| Now, vi is in V

then |A(vii, vir)| > minvey|A(v,v)|, so

lim (minvewF (v, h)) = lim F(vy, h)

h—0 h—0
> minvey|A(v, v)| = |Vu|(sgn(curv(u)) accel(u))™ (24.28)
(24.26) and (24.28) conclude the proof of the proposition. O

In addition to a quantization problem, if we wish to recover an “acceleration”
interpretation of the term “accel” we need somehow to make appearing in the
formulation of accel the velocities before and after the considered point.

Lemma 24.14. Let u be C?, Vu and curv(u) not zero, then
minvew (Ju(x — vAO) — u(x)| + |u(x + vA) — u(x)|) = (24.29)
minv, v,ew ([u(x —vpA0) —u(x)| + [u(x +vaAf) —u(x)| + Ab|Vu.(vy —va)|) +0(A6%)

Proof First, we remark by taking v, = v, that the first part is larger than
the second part of the expression.

(Ju(x — vph) — u(x)| + [u(x + voh) — u(x)| + h|Vu.(vp — v4)|)

| — h(Du.vy) + 5 (D?u)(vy, vp)| + |h(Du.vy) + 5 (D?u)(va, va)|

+h|Du.(vy — va)|) + o(h?)
2
%(l(DQU)(Vb, V)| +[(D*u)(Va, va)l) + o(h?)
> minvew(|(D*u)(v,v)]) + o(h?)
= minvew ([u(x — vh) — u(x)| + [u(x + vh) — u(x)|) + o(h?)

by Proposition 24.13. O

Y
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Interpretation. We deduce from all of these propositions an explicit formula
for the apparent acceleration

|Vul|(sgn(curv(u)) accel(u))™ = (24.30)

. 1
mmvb)vaey\;m (|lu(x—vpAd)—u(x)|+|u(x+v, A)—u(x)|+ A Vu.(ve—vy)|)+o(1)

Of course for numerical experiments, we shall not compute the minimum for
all vectors in W, but only for the vectors on the grid. We have two differents
parts in the second term : The first part is the variations of the grey level value
of the point x, for candidate velocity vectors : vj, between § — Af and 6 (velocity
before 6), and v,, between 6 and 6+ Af (velocity after 8). These variations must
be as small as possible, because a point is not supposed to change its grey level
value during its motion. The second part is nothing but the “acceleration”, or
the difference between v and v, in the direction of the spatial gradient |Vul.

24.5 Destruction of the non-smooth trajectories.

Since trajectories are included into the spatio-temporal gray-level surfaces (level
surfaces), it is interesting to look at the evolution of such surfaces. According
to the equation, the surfaces move (in scale) at each point with a speed in
the direction of Vu given by curv(u)% (sgn(curv(u))accel(u)?)™. (We do not
consider the case where ¢ = 0 that corresponds to a pure spatial smoothing).

Therefore any level surfaces that corresponds to an uniform motion does not
move in scale (it is a steady state for the equation AMG). Such surfaces are
straight in one direction of the space-time.

We see also that parts of the surfaces where the curvature and the operator
accel have opposite signs do not move as well. Then if we take example of a
uniform circle under acceleration, the level surface corresponding to the circle
moves only in one of its side.

More geometrically the smoothing can only occur at points where the level
surface is strictly convex or strictly concave. We can give an intuitive hint of why
the smoothing is stopped on saddle points. This property of the model AMG,
comes directly from the contrast invariance and the causality. They imply a
independent and continuous motion of level surfaces that makes that two level
surfaces can not cross them-selves. Now as shown in the picture 24.5, we can
bound non-convex and non-concave part of surfaces by straight surfaces that
have no evolution, and then easily see why such parts does not move.

As a consequence, we can not expect from a such modelization to obtain a
smoothing of the trajectories. Non-smooth trajectories are not really smoothed
by the model but are simply destroyed. Let us take an example. In figure 24.5,
we display a oscillatory trajectory (in gray). The limit of a smoothing of this
trajectory should be a straight trajectory. Now using the same argument as in
the preceding paragraph the gray surface can not cross the white surface which
has no evolution. Therefore the gray surface can not become straight, because
it should have to cross the white one. A such trajectory is shrunk by the AMG
model and disappears at a finite scale of smoothing (see figure 24.5).

We conclude that the assumptions we made for our model are incompatible
with the notion of smoothing trajectories. Indeed non-straight trajectories are
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= Acceleration direction.

On thisline, accel =0

because the spacial gradient is
curv <0 orthogonal to the acceleration.
accel<0
—.
Direction of the
spatial gradient.
accel and curv have opposit ¢ accel and curv have same
signs : no smoothing : signs : smoothing

Figure 24.2: The AMG model erodes a circle in acceleration only on one side.
Indeed, when the curvature and the acceleration have opposite signs, the evo-
lution in scale is zero. (see the AMG equation).

y Yy
X X

The smoothing at point X0 can not The smoothing can not also deplace

deplace the level surface, in -x thelevel surface, in x direction.

direction.

Figure 24.3: Saddle points of level surfaces remain steady by the AMG model.
Indeed, our scale-space can be seen as a motion in scale of gray level-surfaces
(isophotes). The level-surfaces that are straight in time correspond to a uniform
translation and are not changed by the smoothing. Therefore, the two thin
cylindric level-surfaces drawn left and right in the figures above do not move
in scale. Now, by the inclusion principle, two level surfaces can never cross
during the evolution in scale. Since, as displayed in the picture, it is possible to
squeeze any surface saddle point between two such steady cylinders, it follows
that saddle points do not move in scale as well. This property is readable in the
scale space equation : at saddle points, the positive part of the product of the
curvature and of the acceleration is zero.
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Figure 24.4: The level-surface in gray cannot become straight : it would have to
cross the white level-surface which is invariant by the scale space. Now, during
the smoothing process, the level-surface in gray will be eroded on its convex
part, and will eventually disappear at a fixed scale : it cannot converge to any
steady surface since all of them are straight in time. Thus, trajectories that are
contained in the grey level surface end being removed from the movie.

not more and more smoothed, but are more and more removed. And by conse-
quence a small perturbation in a straight trajectory might imply a destruction
of this trajectory although it would have been kept without the perturbation.

24.6 Conclusion.

We have seen that there exists an unique affine, contrast and Galilean invariant
scale-space for movies, the AMG. This model does a spatial smoothing with a
speed depending on the spatial curvature and an apparent acceleration. The
larger is the acceleration the larger is the speed of smoothing. Therefore, as
shown on the experiments it has a strong denoising property since the noise
does not generally generate regular trajectories.

Now we have seen that the properties asked to the scale-space are compatible
with the definition of the optical flow. In the sense that the definition of the
optical flow satisfies as well the contrast, the affine, and the Galilean invariance.
But, the contrast invariance added to the causality (that defines the scale-space)
is incompatible with the notion of smoothing trajectories. In others terms, non-
smooth level-surfaces (on which are contained the trajectories by definition of
the optical flow) are more shrunk than smoothed. In fact the AMG model as
to be seen as a riddle that progressively remove non-smooth trajectories.

References.

The Optical Flow: The problem of estimating dense velocities field from
image sequence is a entire research topic by itself. Since it is not the main point
of this book we refer to some articles dealing with that subject: [?, ?, 7, 3,
?,?7,?,17, 7, ?7]... The aperture problem of the optical flow - that is its non
uniqueness- has appeared very early and has been often adressed by e.g. some
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Figure 24.5: The affine, morphological, galilean (AMG) model used for image
sequence restoration (extraction of coherent trajectories). Above : three succes-
sive images extracted from a synthetic sequence, made of salt and pepper noise,
plus some squares placed at random locations. In addition, a little black square
in uniform motion has been added in the whole sequence. Bottom : resulting
images at calibrated scale 500p (scale at which a spatio-temporal sphere of 500
pixels disapears by AMG). Ouly the little black square remains, as it has a
coherent motion.

smoothness constraint on the flow it self, see e.g. [?, 7, ?, ?] or in some cases
by an implicit smoothing of image sequences see e.g. [3]...

Smoothing images sequences: Explicit smoothing of image sequences, for
the purpose of estimating the optical flow or for other purposes has first appeared
as a direct extension of the 2D smoothing to the 3D. That is no specific rule
was given to the time. In that sense most all 2D filters can be adapted to
N-dimensional data, and in particular the images sequences.

In [3], it is implicitely proposed to tune the sequence filtering to few different
orientations in space-time. All designed filters give different answers, answers
that were used as basis of the optical flow estimates. Even if it was impossible
to use a filter for all spatio-temporal directions, the idea to orient the filtering
in the direction of the (unknown) motion was there.

In [11] the basic principles explained in this chapter were proposed. In par-
ticular the ”Galilean Invariance”. Surprisingly, these formal principles yield an
anisotropic diffusion oriented, for each point, in the direction of the (unknown)
optical flow [11, ?]... Several other works have introduced other smoothings
depending on its aim and where the time plays a specific rule. In [?] the author
formalizes a smoothing compatible with the aim of estimating depth from an
image sequence. In [?] and one could find adaptations of the 2D linear smooth-
ing theory to an anisotropic diffusion in the direction of an estimated optical
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Figure 24.6: AMG model (Affine, Morphological, Galilean) used for image se-
quence “denoising”. Above : three successive images extracted from a sequence.
Second row : resulting images at calibrated scale 100 pixels (scale at which a
spatiotemporal sphere of 100 pixels disapears). Third row : Some noise has
been added to the original sequence (25% of the pixels are corrupted). Bottom
: resulting images at scale 100.
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flow.



Chapter 25

A snake from A to Z...

25.1 An active contour model

Boundaries of objects perceived against a different background induce some dis-
continuities in the gray level, resulting in high gradient. Let us call contour
a closed Jordan curve located mostly at high gradient points. The aim of the
active contour methods is to find such contours, starting from an initial curve,
usually sketched by hand. The curve moves numerically from its original lo-
cation until it reaches a position where it maximizes the image contrast. We
do not call as usual the image ug because our main focus is not on the “ana-
lyzed” image but on the “analyzing image” describing the snake motion. This
last image will be called u(¢,x) and the analyzed image will be called I(x). The
boundary detection problem can be formulated as an optimization problem. We
shall treat it in 2D but the 3D case has exactly the same formalism. Of course,
then, “curve” has to be replaced by “surface”. Let us choose a function g from
IR? into IR representing for each point x a penalty for the curve to pass by the
point x. Ideally, g has to be chosen small when the magnitude of the image
gradient is large. We shall set for example

9(x) = 0?/(0* + |DI(x)*) (25.1)

on the image domain, where o2 is the estimated variance of the noise and texture
around the object. For convenience we shall extend I and g outside this domain
to R2, but assume that g(x) is zero for x > R large enough. Thus, given an
image I, and an initial curve Cy = (xo(s)),s € [0, L(Co)], we want to find a
curve C' = (x(s)), s € [0, L(C')] that minimizes the energy

L
E(C):/O g(x(s))ds (25.2)

around xXg, where s is an arc length parameter and L = L(C') the length of the
curve C.

In the following, we will assume g to be twice differentiable with respect to
x. In order to achieve this in practice, I is previously smoothed by the heat
equation and DI is therefore replaced in (25.1) by G * DI = D(G x I) where G
is a gaussian with small variance. In that way g becomes C* (see Proposition
1.5.)

347
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Let us refresh some differential notation on curves. We denote by x(z) a

parameterization of a curve C on a fixed interval [0, 1]. Recall that 7(z) = li:%

is the tangent unit vector to the curve and n(z) = 7(z)* the unit normal. Notice
that if v is a vector, then we can decompose it on the mobile frame (7(z),n(z))
as

v = (v.T)T + (v.n)n. (25.3)

Calling s(z) a length parameter on the curve, defined up to a constant by

s'(z) = |x/(2)|, one has 7(s) = é:gi% and

orT
B = Kk(x(2)), (25.4)

which is the curvature vector. Thus, differentiating the tangent vector with
respect to z yields

M /_a—T_a—T%—nxz x'(z
(|X/(Z)|> =5, = 359, = FEE)X ()] (25.5)

Proposition 25.1. Let C(t) = x(t, ) be a curve resulting from the gradient
descent of the energy (25.2), starting from C(0). Assume that C(t) is C*. Then
C(t) satisfies the following equation

0x

5 = ~(Pg(x)-n)n) + g(x)x(x) (25.6)
and x(0,s) = xo(s) that is (C(0) = Cp)

Proof. We shall first change the parameterization of the curve C' so that its

length is no longer a parameter of the energy. We parameterize the curve with

z € [0,1]. We have ds = |x'(z)|dz, where ' denotes the derivative with respect
to z. Thus

1
E(C) = / o(x(2))|x/(2)|d=

Consider any C? perturbation of the curve x(z), which we call dC and denote
its parameterization by dx(z). By |dC| we mean the C? sup-norm of dx(z) on
[0,1]. By an easy differentiation,

1
E(C+dC)—-E(C) = /0 Dg(x(2)).dx(z)|x'(2)|d=z

x/(2)

[ gl TS (s + ofaC.

Integrating by parts the last integral, we therefore have by (25.5),

1
E(C+dC)—-E(C) = /0 Dg(x(2)).dx(2)|x'(z)|d=

- / (Dy(x(2))X(2))
1
- / g(x(2))R(x(2))-dx(2)[x(2))dz + o(|dC]).
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Using (25.3) with v = Dg(x(2)), the two first integrals can be merged and we
obtain
E(C+dC)—-E(C) =
1

1
| (Dutx)mmax@)x (2l = [ glo2)rx() dx(@l ()]dz +o(dC).

0
Let us denote the intrinsic scalar product between two vectorial functions f and
h defined on the curve x(z) by

(f.9)= /O f(x(2))g(x(2))[x'(2)|d=
Thus,
E(C +dC) — E(C) = (dC, ((Dg(x(z)) m)n — g(x(2))kx(2)))) + o(|dC])
We therefore have
VE(C) = (Dg(x(2))-n)n — g(x(2))k(x(2))-

As a consequence the gradient descent for a curve C' = (x(z)) following the
steepest gradient descent can be described by the equation %—f = —VE(C),

that is it
xét, 2) = —(Dg(x(t, z)).n)n + g(x(2))k(x(2)).

From this equation we can deduce the normal motion

ox(t, z)
ot

= —(Dg(x(t, z)) m)n + g(x(2))(k(x(2)) n)n.

This last evolution is obtained from the former one by projecting % on the
normal line Rn(¢, z). Indeed, in order to describe the geometric evolution of a
curve we only need to give the motion of each one of its points in the direction
normal to its tangent. A last simplification is now obtained when for each ¢, we
choose to reparametrize the curve by an arc-length parameter s. In such a case
K(x(t,s)) = %27}2((@ s) is normal to the curve. Thus we can simply write

ox(t, s)
ot

= —(Dg(x(t, S)).l’l(t, S))l’l(f, 8) + g(X(t, S))H(X(f, S)) =

0%x

—(Dg(x(t, s)).n(t, s))n(t, s) + g(x(t, s))@(

or, if we omit the variables:

x oy
% = —(Dg(x)n)n + g(x)k(x) = —=(Dg(x).n)n + g(x)g?

tu 8)7

O

Unfortunately, we cannot be sure that such an evolution yields a regular
curve for all ¢. In fact, it is in general false, since topological changes for the
curve can occur, which imply the appearance of infinite curvatures (see Figure
25.4.)

By a straightforward adaptation of the proof of Proposition 12.7 one im-
mediately obtains a formal link between the snake curve motion and an image
motion.
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Proposition 25.2. Assume that a function (t,x) — u(t,x) is C? in a neigh-
borhood of (to,%o) and that Du(to,xo) # 0. Then u satisfies the snake equation

%(t,x) = g(x)curv(u)(t,x)|Dul|(t, x) + Dg(x).Du(t,x) (25.7)

in a neighborhood of (to,x0) if and only if the normal flow (Definition 12.6)
of the level lines of u passing in this neighborhood satisfies the intrinsic snake
equation,

%(my) = g(y)k(t,y) — (Dg(y)-n(t,y))n(t,y)), (25.8)

where k(t,x(t,y)) denotes the curvature vector of the level line of u(t) passing
by x(t,y) and n(t,y) one of its unit normals.

Exercise 25.1. By imitating the proof of Corollary 12.7, prove Proposition 25.2.
[

25.2 Study of the snake equation

We study in this section the equation (25.7), which we can abbreviate as

% = g|Du|curv(u) + Dg.Du (25.9)

and shall call the snake equation.

Admissibility of the equation and uniqueness of solutions. Let us set
F(A,p,x) = g(x)A(p*,p") + Dg(x).p

Equation (25.9) can be obviously written as

0

6—1; = F(D?u, Du,x)

It is easy checked that F' is admissible (see Definition 19.1). As a consequence
Theorem 19.17 ensures uniqueness of viscosity solutions of the equation (25.9)
for any Lipschitz initial condition uy.

Exercise 25.2. Check that F'(A, p,x) is admissible. =

Existence of solutions by approximation. Let us now construct an ap-
proximation scheme to the solution of Equation (25.9). It is possible to construct
a family of structuring elements having as asymptotic behavior the right hand
term of the equation (25.9). However, this term being a sum of two simple oper-
ators, it is simpler to associate with each one of these operators a simple family
of structuring elements and to alternate their corresponding filters. Note that,
due to the presence of g(x) and Dg(x), the equation is not invariant by trans-
lation. As a consequence, the families of structuring elements will depend on x.
This situation is new. We will need conditions ensuring that inf-sup operators
with space-varying sets of structuring elements preserve Lipschitz constants.
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Lemma 25.3. Let B C B(0,1) and B(x) = g(x)B be a space varying struc-
turing element such that g(x) is M-Lipschitz. Consider the associated space-
varying dilation Tu(x) = supgepx) u(x + 2). Then if u(x) is a L-Lipschitz
function, Tw is a LM -Lipschitz function. The same result works with an inf
instead of a sup.

Proof. For every z € B, x and y one has
u(x +9(x)z) < u(x+g(y)z) + Ll(9(x) — 9(y))z| < u(x+g(y)z) + LM[x —y|.

Taking the sup on B on both sides,

Tu(x) = sup u(x + g(x)z) < Tuly) + LM|x —yl.

Using this and the analogous inequality interchanging x and y one gets the an-
nounced result. O

Corollary 25.4. Let IB be a family of structuring elements B such that B C
B(0,1) and g(x) a M-Lipschitz function. Let

Tu(x) = BlrelfB yesgl(l)IZ)B u(x+y).

Then if w is L-Lipschitz, Tw is LM-Lipschitz. The same result is true with a
sup inf instead of an inf sup.

Proof. This follows from Lemma 25.3 and the fact that an arbitrary infimum
of L-Lipschitz functions also is Lipschitz with the same constant (see exercise
25.3.) O

Exercise 25.3. Prove that if (u;):cr is a family of L-Lipschitz functions such that
|u;(0)] < C is bounded independently of i, then then u(x) = inf;er ui(x) and v(x) =
sup;c; v(x) also are L-Lipschitz.

L]

Let us now define the space-varying structuring elements naturally associ-
ated with the snake equation.

Approximation of —DgDu. We consider the family made of a single
element:

By (x) = {{hDg(x)}}

By Taylor formula we then have, for each point where u is C?:

(Spu)(x) = inf supu(x+y)=u(x+ hDg)
BGB}L(X) yGB

= u(x) + hDg(x).Du(x) + O(x, h?),

where O(x, h?) converges uniformly on every compact set K where u is C?. We
can rewrite the last relation

(Spu)(x) — u(x) = hDg(x).Du(x) + O(x, h?). (25.10)
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Approximation of g|Dulcurv(u). We consider the structuring elements
of the median filter (See Chapter 10):

B}, (x) = {B| B C B(0,1/6g(x)h) and meas(B) > 3rg(x)h)}.
Set
(Spu)(x) = BESHI;&X) Jnf, u(x+y).

Thanks to Theorem 14.7, we have for any u : R? — R which is C?:
(7) On every compact set K C {x | Du(x) # 0},
Spu(x) = u(x) + hg(x)|Du(x)|curv(u)(x) + O(x, h%), (25.11)

where |O(x,h2)| < Cxh? for some constant C that depends only on u
and K.

(ii) On every compact set K in R?,
|Shu(x) — u(x)| < Crh (25.12)

where the constant Cx depends only on u and K.

Alternating the two filters. We now consider T}, = S35}, the alternate
filter whose iteration should mimic the snake equation. Using (25.10), (25.11)
and (25.12), Lemma 18.5 ensures that for any compact set K where | Du(x)| # 0,

(Thu)(x) — u(x) = h(g(x) Du(x)ecurv(u)(x) + Dg(x) Du(x)) + O(x, h?)
and for x in any compact set K:
(Thu)(x) —u(x) = O(x, h),

where in both cases the convergence of O(x,h) is uniform on K. As a conse-
quence the filter T}, is uniformly consistent (see Definition 19.15) with the PDE
(25.9).

Exercise 25.4. Check carefully that in the above argument, Lemma 18.5 applies. =

Construction of the approximate solutions. We consider a L-Lipschitz
initial function ug. We then define uy, (¢, x) for every h > 0 by

Vne N, wup(nh,x)= (T)uo)(x).
From now on we shall assume that

Dg(x) and /6g(x) are 1-Lipschitz and bounded by 1. (25.13)

By Corollary 25.4, the 1-Lipschitz assumptions on g and 4/6¢(x) ensure that
(Th)™up is L-Lipschitz for every n. All of these bounds can be achieved by
simple scaling, namely multiplying g by a small enough constant.
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Uniform continuity in ¢ of the approximate solutions.

Lemma 25.5. The approzimate solutions of the snake equation up(nh,x) =
(T{uo)(x) are uniformly continuous in t. More precisely:

Vi, ¥n | nh <t,  —(LvV2t+ Lt) < Tpu—u < +(LV2t + Lt).

Proof. Let us bound the operator T}, by two isotropic and translation invariant
operators. For every L-Lipschitz function u, one has

u(x) — Lh|Dg| < (Spu)(x) = u(x + hDg) < u(x) + Lh|Dyg|
u(x) — Lh < (Shu)(x) < u(x) + Lh
Then due to the fact that S} (u+c¢) = S} (u) + ¢ for any constant ¢, we also have
(Shu) — Lh < Thu = Sy, Spu < (Spu) + Lh (25.14)

Let us consider v(y) = L|x — y|. The family ZBI\/G(](—X)h of structuring ele-

ments of the filter S}, is made of the subsets of the disk of center 0 and radius

. 12 . .
V6g9(x)h < Vh. Tt is easy to check that for any B € BB 6a00h satisfying
|B| > 3wg(x)h, there exists B’ € ZB'\/E satisfying [B| > Z, such that

inf v(x —y) = inf v(x—y).

yeB yeB
Thus,
(SHv)(x) = sup inf v(x—y)< sup inf v(x—y).
" BEB /e yeB BeB! VB
This yields
Vx, (Shv)(x) < (Mpv)(x) (25.15)

where M), denotes the median filter on the ball B(0,v/h), as defined in Chapter
10. Similarly, for w(y) = —L|x — y|, we have

vx, (Myw)(x) < (Shw)(x) (25.16)
We deduce from (25.15), (25.16) and (25.14) the inequalities
(Thv)(x) < (Mgpv)(x) + Lh (Mgpw)(x) — Lh < (Thw)(x) (25.17)
By monotonicity of T}, and of the median operator, we thus have for all n € IV,
and for all x € IR?,
(Ty0)(x) < (Mpo)(x) +nLh  (Mjw)(x) - nLh < (Trw)(x)  (25.18)
Now, since uq is L-Lipschitz, one has

u(x) — Lx —y| < u(y) <u(x) - Lix -yl
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Thus
u(x) + (Tyw)(x) < (Tu)(x) < u(x) + (Th'v)(x)

Using (25.18), we obtain
(Mjjw)(x) —nLh < (Tj'u)(x) = u(x) < (Mjv)(x) +nLh
Lemma 20.5 tells us that for A small enough and for nh < ¢, one has
(Mjv)(x) < LV2t.
An analogous inequality obviously holds for w, so that for A small enough
Vt,Vnsnh <t — (LV2t+ Lt) < Tfu — u < +(LV2t + Lt)

O

Exercise 25.5. Give all details for the proof of the property used in the above proof:
For any B € BI\/W satisfying |B| > 3mg(x)h, there exists B’ € IB ;- satisfying

|B| > Z, such that infycpv(x —y) = infyep v(x —y). =
Convergence of the approximate solutions

Theorem 25.6. Let g be a C? function which is zero outside a ball B(0, R) and
satisfies the bounds (25.13). Then for every Lipschitz function uy € F, there
exists a unique viscosity solution u(t,x) of the snake equation

ou

5 = F(D?u, Du,x) = g|Dulcurv(u) + Dg.Du u(0,x) = up(x).

In addition, u(t,x) is Lipschitz in x and holderian in t and when h tends to 0
and nh — t, (Tuo)(x) converges towards u(t,x) uniformly on compact sets of
R* x R2.

Proof. The operator T}, is monotone and local (and therefore satisfies the uni-
form local comparison principle.) It is uniformly consistent with the PDE (25.9)
and commutes with the addition of constants. By Corollary 25.4 and Lemma
25.5, its associated approximate solutions h — wuy(t,x) are L-Lipschitz in x
and uniformly Holderian in ¢ for any initial Lipschitz function ug. Thus, using
Ascoli-Arzela theorem, there is a sub-sequence of the sequence h — wuj which
is uniformly converging on every compact set towards a function u(¢,x). By
Proposition (19.14), this implies that u is a viscosity solution of (25.9). In other
words, we get the existence of a viscosity solution for any initial Lipschitz func-
tion ug. Since this solution is unique, all subsequences of uj converge to the
same function u and therefore the whole sequence up, converges to u. O

25.3 Back to shape evolution

We now consider the operator T; which associates to any Lipschitz function
up in F the unique viscosity solution wu(t,.) of (25.9) with initial condition wuy.
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T} is clearly a monotone operator as limit of monotone operators. According
to Proposition 20.2, T} is also contrast invariant. Let us check that it also is
standard monotone. We have assumed that g is zero outside a ball B(0, R).
It is a straightforward deduction that T uo(x) = uo(x) for every x with norm
larger than R. Since T}'ug converges uniformly to Tiug on compact sets as
nh — t and n — oo, we still have Tyup(x) = uo(x) outside B(0, R) and therefore
Tiup(o0) = ugp(00). Thus Trug belongs to F and T; is standard monotone.
Exercise 25.6. Check in detail the above two statements, that 7T} is monotone and
contrast invariant. The second statement can be proven as indicated by using Propo-
sition 20.2, but also directly by using the contrast invariance of the iterated operators
Ty which converge to Ty as nh —t. m

Proposition 25.7. By direct application of the level set extension theorem 7.19,
the monotone and contrast invariant image operator Ty, defined for any initial
Lipschitz function ug in F, defines a unique set operator T; on defined on the
set L of the compact sets of Sn. Then Ty is monotone, Ty and Ty satisfy the
commutation with thresholds Te(X\u) = X\ (Tyu) for all X € R, Ty is the stack
filter associated with Ty and Ty is upper semicontinuous on L. In addition, since
T; is standard, so is T;.

Exercise 25.7. Theorem 7.19 applies to an operator T" defined on F. Now, we have
defined T} on the Lipschitz functions of F only. In order to show that this is not a
problem, prove first that any function uo in F can be approximated uniformly by a
sequence of functions u, which are ¢! and Lipschitz. Then show that that Tiu, is a
Cauchy sequence for the uniform convergence and conclude that 77 can be extended
into a contrast invariant standard monotone operator on all of 7. =

The snake algorithm

Let us now see how we can the above results to define a curve evolution.
Consider a closed curve C' = x(s) surrounding a compact set K of IR?. We
define the generalized “curve” evolution of C' by the following algorithm:

Step 1 Construct a Lipschitz function ug so that:

[ ] Xo’uo =K

® g is Lipschitz.

Such a function u can be obtained by considering the signed distance
function to the set K defined by u(x) = dist(x, K) if x € K and u(x) =
max(—dist(x, K),—1) if x € K°.

Step 2 Compute the viscosity solution u(t,x) of equation (25.9) with initial
condition ug. We know one way to do it, by computing up(nh,x) =
(T5uo)(x).

Step 3 Set K (t) = Xyu(t,.) and C(t) = K(t) N K(¢t)c. (C(t) is the topological
boundary of K (t).)

According to all preceding considerations, this algorithm defines for any curve
C and for any ¢t > 0 a unique set of points C(t). The evolution of C(t) is
independent from the choice of the initial function uy and corresponds to a
generalization of the curve evolution PDE(25.6). The preceding algorithm sat-
isfies the shape inclusion principle: If initially C7 and Cs are two curves such
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that C7 surrounds Co, which means Ky C K; then Ci(t) surrounds Ca(t) :
Kg(t) C Kl(t).

However, C(t) is not necessarily a curve of IR?. It simply is the boundary of
a set K (t). It is therefore difficult to check if the initial geodesic snake energy
estimated on C(¢) is decreasing. This problem is open! We have defined a very
robust and weak evolution of curves and the initial C' needs not be even a curve.
Any set of curves or more generally any closed set can be taken as initial datum.
The very good point of this generalized curve evolution is that it allows C(¢) to
break into pieces surrounding separated shapes, as illustrated in Figure 25.4.

25.4 Implementation by finite difference scheme

As usual, the approximation of the process by iterated inf sup filter is not quite
satisfactory, because these filters fail to be consistent with the equation at small
scales, as pointed out for the median filter. Before proposing another way to
simulate the snake equation, some heuristic comments of the snake equation
behavior will be useful.
% = g|Du|curv(u) + Dg.Du

The first term is the well known mean curvature motion. As we have seen,
it tends to shrink the level lines towards points. The speed of this motion is
related to the amplitude of g. On an edge, g is small, but not zero. Thus, the
motion is slowed down, but does not stop.

The second term is the erosion term. It tends to move the level lines of
u downwards for g, that is, towards the edges of I (see figure 25.1), creating
therefore shocks for u around edges since level lines of u converge to them on
both sides. Contrarily to the first term, this term is not active on flat regions
for g. Even worse, due to noise, little gradients for I will induce a non negligible
variation of amplitude of g, resulting in non negligible Dg term with random
direction. In others words, on flat regions, one can expect to observe random
perturbations of the shape of the evolving contour.

g(x) u(x)

X

Figure 25.1: Convection term of the active contour equation. The convection
term of the active contour equation tends to create around minima of g. Indeed,
the level lines of u are moved in the direction opposite to the gradient of g.

More precisely, we have:
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Figure 25.2: A difficulty : the local minima of the active contour energy. Left
image: assume that ¢ is null on the shape (drawn in bold) and that the initial
contour is the line #0. From the initial line to the contour of the shape, the in-
termediate state #1 consisting of the convex hull of the polygon shows a smaller
energy than the intermediate state #2 (drawn on the right). This illustrates
the difficulties arising with the snake equation when we wish to land the active
contour onto concave parts of the desired contour.

e near an edge: There is a risk that the curvature term pushes the level
line over the edge, since it tends to shrink the curve. The second term
instead moves the level line towards the edge. Thus the effects of both
terms can be opposed. Modifications should be made in the equation to
ensure that the second term always wins.

e far from an edge: The first term moves the level line fast, since g(x)
is high. The second term attracts the level line towards tiny edges of the
image, thus creating little shocks. Here again, modifications should be
made in the equation to let the second term win.

Even if the equation does not show any parameter weighting the two terms,
a weight between them is in fact hidden in the choice of the function g. Finding
a function g that makes the correct equilibrium both near an edge and far from
an edge is somehow complex and case sensitive.

Assuming such an equilibrium could be found, relying on the single (weighted)
mean curvature motion to shrink the level line is not a good idea. Indeed, a
weighted mean curvature motion will never help transforming a convex level
line into a general non-convex one. If we start with a circle, it is impossible to
recover (e.g.) a star, as illustrated in Figure 25.2.

To cope with this problem, we shall add an extra term to the equation. This
term is a classical erosion with the same weight as the curvature motion. In the
experiments we therefore considered the modified snake equation

0

8—1; = g|Dul(curv(u) — 1) + Dg.Du. (25.19)
This new term is added under the assumption that the initial contour C(0)
has been drawn on the outside of the shape and that the initial function wg
is positive inside the contour. Then the term —1 tends to erode the contour.
If instead the initial contour was drawn inside the shape, then the new term



358 CHAPTER 25. A SNAKE FROM A TO Z...

should be +1. By an obvious adaptation of the proof of proposition 77 one sees
that the associated curve evolution is

%(t, s) = g(x(t,s))k(x(t, 5)) — (Dg(x(t, s)).n(x(t,s))).n(x(t,s))). (25.20)

Returning to the snake equation, our finite difference scheme will the follow-
ing:

u' T (x) = (%) + dt(g(x) (B (u") (%) + M 5(u") (x) — 20" (x)))
Fdt(u" (x + Dg(x)) — u"(x)),

where Fyu(x) = infycp(o,1) u(x+y) denotes the erosion by the unit ball B(0, 1)
and M\/g is the median filter on the ball B(0, V6. The scheme is not con-
trast invariant, but is maximum decreasing and minimum increasing, provided
29(x) + 1] < 1.

Exercise 25.8. Prove the last statement, that the above scheme is maximum de-
creasing and minimum increasing, provided |2¢g(x) + 1| < 1. Prove that the scheme is

consistent, in the sense that if the pixel size h tends to zero then the second member
of the equation tends to the second member of the modified snake equation 25.19. m

Figure 25.3 illustrates the extraction of the bird shape on a textured back-
ground. This experiment illustrates well the complexity of the figure-background
problem: the shape of the bird body has a quickly changing color from the white
head to its dark tail. The background being uniform grey, there is no unique
level line surrounding the whole shape. In fact, the gradient of the contour
of the bird vanishes at many points. The fact that we “see” this contour is a
classical illusion, called subjective contour. To uncover the illusion, the reader
should scan small parts of the shape contour by using a white sheet with a
small hole. Then he or she will realize that the contour seen globally has no
complete numerical local evidence. This observation implies that no classical
edge detection device would give out the whole contour. This can be checked
by applying a Canny edge detector to the shape. To some extent, the snake
method manages instead to surround the body shape. All the same, there is
a risk that, because of the erosion term, the active contour goes through the
subjective contour. If instead the curvature term is too strong, it can stop the
contour before it reaches a concave corner of the shape. These facts explain the
obvious inaccuracy and irregularity of the found contour.

25.5 Exercises

Exercise 25.9. In the whole exercise u(t,x) and x(t) are supposed as smooth as
needed to make the computations. Our aim is to interpret the equation

ou

— = Dg.D 25.21

5 g.Du (25.21)
as a motion of the level lines of u towards the minima of g. Let us consider a point
x(t) on a level line of u(t,x) with level A and denote by x’(¢) the motion vector of x(t)
in the direction normal to the level line. We know that x(t) obeys the normal flow
equation (12.4). Deduce from this equation and (25.21) that x(¢) moves downwards
in the landscape given by g, that is g(x(t)) is a non-increasing function of t. m
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Figure 25.3: Silhouette of a bird by active contour. Left: original image, middle:
initial contour, right: final contour (steady state of the snake equation). The
contours of the bird body are partly subjective. The snake evolution manages

to some extent to find them, but tends to indent the subjective contours and to
round to the concave corners of the shape.

e e

Figure 25.4: Active contour with topological change. Top, left: original image,
middle: initial contour, right: intermediate state. Down, left and middle: suc-
cessive intermediate states, down-right: final contour (steady state). This ex-
periment shows that the level lines of  which bound the evolving contour cannot
be classical solutions of the modified curve evolution equation (25.20). Indeed,
the motion generates singularities when the contour splits. The generalized
evolution provided by the viscosity solution of the snake equation yields more
flexibility and allows an evolving curve to split. Original image is ” Vue d’esprit
37 by courtesy of e-on software.
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Exercise 25.10. Construction of another inf-sup scheme converging towards the vis-
cosity solution of the equation (25.9). Consider the family of structuring elements

Br(x) ={B | B C B(x+ hDg(x), \/6g(x)h) and meas(B) > 3mwg(x)h}.

and the operator
Thu(x) = Bienﬂgh )Srlel% u(x+y)
1. Interpret the operator T}, as a shifted median filter.
2. Show that T}, is uniformly consistent with equation (25.9).

3. Show that the iteration of T}, converges towards a viscosity solution of (25.9).
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