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Introduction

This book addresses the problem of low-level image analysis and, as such, is
a contribution to image processing and imaging science. While the material
touches on several aspects of image analysis—and peripherally on other parts
of image processing—the main subject is image smoothing using partial differ-
ential equations (PDEs). The rational for a book devoted to smoothing is the
assumption that a digital image must be smoothed before reliable features can
be extracted.

The purpose of this introduction is to establish some of the language, conven-
tions, and assumptions that are used throughout the book, to review part of the
history of PDEs in image processing, and to introduce notation and background
material.

I.1 Images

Since the objects of our study are ultimately digital images, we begin by defining
what we mean by “digital image” and by describing some of the ways these
images are obtained and some current assumptions about the “original images”
from which the digital images are derived.

Most of the images dealt with will be natural images, that is, images from
nature (people, landscapes, cityscapes, etc.). We include medical images and
astronomical images, and we do not exclude drawings, paintings, and other man-
made images. All of the images we consider will be grayscale images. Thus,
mathematically, an image is a real-valued function u defined on some subset Ω
of the plane R2. The value u(x), x = (x, y) ∈ Ω, represents the gray level of the
image at the point x. If u is a digital image, then its domain of definition is a
finite grid with evenly spaced points. It is often square with 2n×2n points. The
gray levels u(x) are typically coded with the integers 0–255, where 0 represents
black and 255 represents white. If h is the distance between grid lines, then
the squares with sides of length h centered at the points u(x) are called pixels,
where “pix” is slang for “picture” and “el” stands for “element.”

The mathematical development in this book proceeds along two parallel
lines. The first is theoretical and deals with images u that belong to function
spaces, generally spaces of continuous functions that are defined on domains of
R2. The second line concerns numerical algorithms, and for this the images are
digital images. To understand the relations between the digital and continuous
images, it is useful to consider some examples of how images are obtained and
some of the assumptions we make about the processes and the images. Perhaps
the simplest example is that of taking a picture of a natural scene with a dig-

1
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2 Introduction

ital camera. The scene—call it S—is focused at the focal plane of the camera
forming a representation of S that we denote by uf . When we take the picture,
the image uf is sampled, or captured, by an array of charged coupled devices
(CCDs) producing the digital image ud. This image, ud, is the only representa-
tion of S that is directly available to us; the image uf is not directly available
to us. Even more elusive is the completely hypothetical image that we call uS .
This is the representation of S that would be formed at the focal plane of an
ideal camera having perfect optics. A variation on this example is to capture
uf on film as the image up. Then up can be sampled (scanned) to produce a
digital image ud. For example, before the advent of CCDs, astronomical images
were captured on Schmidt plates. Many of these plates have been scanned re-
cently, and the digital images have been made available to astronomers via the
Internet.

Aspects of the photographic example could be recast for medical imaging.
Although photography plays an important role in medicine, images for diagnos-
tic use are often obtained using other kinds of radiation. X-rays are perhaps
closest to our photographic example. In this case, there is an image correspond-
ing to up that can be scanned to produce a digital image ud. Other medical
imaging processes, such as scintigraphy and nuclear magnetic resonance, are
more complicated, but these processes yield digital images. The images ex-
amined by the experts are often “negatives” produced from an original digital
images. Irrespective of the process, digital images captured by some technology
all have one characteristic in common: They are all noisy.

One way to relate the different representations of S, is to write

ud = TuS + n,

where T is a hypothetical operator representing some technology and n is noise.
In the case of photography, we might write this in two steps,

{
uf = P ∗ uS + n1,

ud = Ruf + n2,

where P represents the optics and R represents the sampling. This is a use-
ful model in optical astronomy, since astronomers have considerable knowledge
about the operators P and R and about the noises n1 and n2. Similarly, experts
in other technologies know a great deal about the processes and noise sources.
Noise and pixels are illustrated in Figure I.1

In the photographic example, the image uf is a smoothed version of uS .
Furthermore, Ruf (x) is not exactly uf (x) but rather an average of values of uf

in a small neighborhood of x, which is to say that the operator R does some
smoothing. Thus, in this example, ud is sampled from a smoothed version of S.
We are going to assume that this is the case for the digital images considered
in the book, except for digital images that are artificially generated. This is
realistic, since all of the processes T that we can imagine for capturing images,
smooth the original photon flux. In fact, this is more of an observation about
technology than it is an assumption. We are also going to assume that, for any
technology considered, the sampling rate used to produce ud is high enough
so that ud is a “good” representation of the smoothed version of S, call it uf ,
from which it was derived. Here, “good” means that the parallel development
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I.2. IMAGE PROCESSING 3

in the book mentioned above make sense; it means that, from a practical point
of view, the theoretical development that uses smooth functions to model the
images uf is indeed related to the algorithmic development that uses the digital
images ud. We will say more about smoothing and sampling in section I.2.

Figure I.1: A noisy image magnified to show the pixels.

It is widely assumed that the underlying “real image” uS is either a mea-
sure or, for more optimistic authors, a function that has strong discontinuities.
Rudin in 1987 [158] and De Giorgi and Ambrosio in 1988 [74] proposed inde-
pendently the space BV (R2) of functions with bounded variation as the correct
function space for modeling the images uS . A function f is in BV (R2) if its
partial derivatives ∂f/∂x and ∂f/∂y, taken as distributions, are Radon mea-
sures with finite total mass. BV (R2) looked at first well adapted to modeling
digital images because it contains functions having step discontinuities. In fact,
the characteristic functions of smooth domains in R2 belong to BV (R2). How-
ever, in 1999, Alvarez, Gousseau, and Morel used a statistical device on digital
images ud to estimate how the corresponding images uS oscillate [3]. They de-
duced by geometric-measure arguments, that the uS have, in fact, unbounded
variation. We may therefore accept the idea that these high-resolution images
contain very strong oscillations. Although the images uf are smoothed versions
of the uS , and hence the oscillations have been averaged, common sense tells us
that they also have large derivatives at transitions between different observed
objects, that is, on the apparent contours of physical objects. Furthermore, we
expect that these large derivatives (along with noise) are passed to the digital
images ud.

I.2 Image processing

For the convenience of exposition, we divide image processing into separate
disciplines. These are distinguished not so much by their techniques, which
often overlap, as they are by their goals. We will briefly describe two of these
areas: compression and restoration. The third area, image analysis, is the main
subject of the book and will be discussed in more detail.
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4 Introduction

Image compression

Compression is based on the discrete nature of digital images, and it is motivated
by economic necessity: Each form of storage and transmission has an associated
cost, and hence one wishes to represent an image with the least number of bits
that is compatible with end usage. There are two kinds of compression: lossless
compression and lossy compression. Lossless compression algorithms are used
to compress digital files where the decompressed file must agree bit-by-bit with
the original file. Perhaps the best known example of lossless compression is
the zip format. Lossless algorithms can be used on any digital file, including
digital images. These algorithms take advantage of the structure of the file it-
self and have nothing to do with what the file represents. On the other hand,
lossy compression algorithms take advantage of redundancies in natural images
and subtleties of the human visual system. Done correctly, one can throw away
information contained in an image without impairing its usefulness. The goal
is to develop algorithms that provide high compression factors without objec-
tionable visible alterations. Naturally, what is visually objectionable depends
on how the decompressed image is used. This is nicely illustrated with our
photographic example. Suppose that we capture the image uf at our camera’s
highest resolution. If we are going to send ud over the Internet to a publisher
to be printed in a high-quality publication, then we want no loss of information
and will probably send the entire file in the zip format. If, however, we just want
the publisher to have a quick look at the image, then we would probably send ud

compressed as a .jpg file, using the Joint Photographic Expert Group (JPEG)
standard for still image compression. This kind of compression is illustrated in
Figure I.2.

Figure I.2: Compression. Left to right: the original image and its increasingly
compressed versions. The compression factors are roughly 7, 10, and 25. Up
too a 10 factor, alterations are hardly visible.

Image restoration

A second area is restoration or denoising. Restoring digital images is much like
restoring dirty or damaged paintings or photographs. Beginning with a digital
image that contains blurs or other perturbations (all of which may be considered
as noise), one wishes to produce a better version of the image; one wishes to
enhance aspects of the image that have been attenuated or degraded. Image
restoration plays an important role in law enforcement and legal proceedings.
For example, surveillance cameras generally produce rather poor images that
must often be denoised and enhanced as needed. Image restoration is also
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I.2. IMAGE PROCESSING 5

important in science. When the Hubble Space Telescope was first launched in
1990, and until it was repaired in 1993, the images it returned were all blurred
due to a spherical aberration in the telescope’s primary mirror. Elaborate (and
costly) algorithms were developed to restore these poor images, and indeed
useful images were obtained during this period. Restoration is illustrated in
Figure I.3 with an artificial example. The image on the left has been ostensibly
destroyed by introducing random-valued pixels amounting to 75% of the total
pixel count. Nevertheless, the image can be significantly restored, and a restored
version is shown on the right, by using a Vincent and Serra operator which we
will study in Chapter ??, the “area opening”.

Figure I.3: Denoising. Left: an image with up to 75% of its pixels contaminated
by simulated noise. Right: a denoised version by the Vincent-Serra algorithm
(area opening).

Image analysis

A third area of image processing is low-level image analysis, and since this is the
main topic of the book, it is important to explain what we mean by “low-level”
and “analysis.” “Analysis” is widely used in mathematics, with various shades
of meaning. Our use of “analyze,” and thus of “analysis,” is very close to its
common meaning, which is to decompose a whole into its constituent parts, to
study the parts, and to study their relation to the whole. For our purposes, the
constituent parts are, for the most part, the “edges” and “shapes” in an image.
These objects, which are often called features, are things that we could, for a
given image, point to and outline, although for a complex natural image this
would be a tedious process. The goal of image analysis is to create algorithms
that do this automatically.

The term “low-level” comes from the study of human vision and means ex-
tracting reliable, local geometric information from an image. At the same time,
we would like the information to be minimal but rich enough to characterize
the image. The goal here is not compression, although some of the techniques
may provide a compressed representation of the image. Our goal is rather to
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6 Introduction

answer questions like, Does a feature extracted from image A exist in image
B? We are also interested in comparing features extracted from an image with
features stored in a database. As an example, consider the level set at the left
of Figure I.4. It consists of major features (roughly, the seven appendages) and
noise. The noise, which is highly variable, prevents us from comparing the im-
age directly with other images having similar shapes. Thus we ask for a sketchy
version, where, however, all essential features are kept. The images on the right
are such a sketchy versions, where most of the spurious details (or noise) have
disappeared, but the main structures are maintained. These sketchy versions
may lead to concise invariant encoding of the shape. Notice how the number of
inflexion points of the shape has decreased in the simplification process. This
is an example of what we mean by image analysis. The aim is not denoising or
compression. The aim is to construct an invariant code that puts in evidence
the “main parts” of an image (in this case, the appendages) and that facilitates
fast recognition in a large database of shapes.

Figure I.4: Analysis of a shape. The original scanned shape is on the left.
Simplified versions are to the right.

Edge detection and scale space

Since the earliest work in the 1960s, one of the goals of image analysis has
been to locate the strong discontinuities in an image. This search is called edge
detection, and it derives from early research that involved working with images
of cubes. This seemingly simple goal turned out to be exceedingly difficult.
Here is what David Marr wrote about the problem in the early 1980s ([129], p.
16):

The first great revelation was that the problems are difficult. Of
course, these days this fact is a commonplace. But in the 1960s
almost no one realized that machine vision was difficult. The field
had to go through the same experience as the machine translation
field did in its fiascoes of the 1950s before it was at last realized
that here were some problems that had to be taken seriously. The
reason for this misconception is that we humans are ourselves so
good at vision. The notion of a feature detector was well established
by Barlow and by Hubel and Wiesel, and the idea that extracting
edges and lines from images might be at all difficult simply did not
occur to those who had not tried to do it. It turned out to be an
elusive problem: Edges that are of critical importance from a three-
dimensional point of view often cannot be found at all by looking
at the intensity changes in an image. Any kind of textured image
gives a multitude of noisy edge segments; variations in reflectance
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I.2. IMAGE PROCESSING 7

and illumination cause no end of trouble; and even if an edge has a
clear existence at one point, it is as likely as not to fade out quite
soon, appearing only in patches along its length in the image. The
common and almost despairing feeling of the early investigators like
B.K.P. Horn and T.O. Binford was that practically anything could
happen in an image and furthermore that practically everything did.

The point we wish to emphasize is that textures and noise (which are often
lumped together in image analysis) produce unwanted edges. The challenge was
to separate the “true edges” from the noise. For example, one did not want to
extract all of the small edges in a textured wall paper; one wanted the outline
of the wall. The response was to blur out the textures and noise in a way that
left the “true edges” intact, and then to extract these features. More formally,
image analysis was reformulated as two processes: smoothing followed by edge
detection. At the same time, a new doctrine, the scale space, was proposed.
Scale space means that instead of speaking of features of an image at a given
location, we speak of them at a given location and at a given scale, where
the scale quantifies the amount of smoothing performed on the image before
computing the features. We will see in experiments that “edges at scale 4” and
“edges at scale 7” are different outputs of an edge detector.

Three requirements for image smoothing operators

We have advertised that this book is about image analysis, which we have just
defined to be smoothing followed by edge detection, or feature extraction. In
fact, the text focuses on smoothing and particularly on discussing and answer-
ing the question, What kind of smoothing should be used? To approach this
problem, we need to introduce three concepts associated with image analysis op-
erators. These concepts will be used to narrow the field of smoothing operators.
We introduce them informally at first; more precise meanings will follow.

Localization

The first notion is localization. Roughly speaking, to say that an operator T
is localized means it essentially uses information from a small neighborhood of
x to compute the output Tu(x). Recall that the sampling operator R in the
photographic example was well localized. As another example, consider the
classic Gaussian smoothing operators Gt defined by

Gtu(x) = Gt ∗ u(x) =
∫

R2
Gt(y)u(x− y) dy,

where Gt(x) = (1/4πt)e−|x|
2/4t. If t > 0 is small, then the Gaussian Gt is

well localized around zero and Gtu(x) is essentially an average of the values of
u(x) in a small neighborhood of x. The importance of localization is related
to the occlusion problem: Most optical images consist of a superposition of
different objects that partially obscure one another. It is clear that we must
avoid confusing them in the analysis, as would, for example, Gt if t is large. It
is for reasons like this that we want the analysis to be as local as possible.
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We will prove in Chapter 1 under rather general conditions that u(t,x) =
Gt ∗ u0(x) is the unique solution of the heat equation

∂u

∂t
= ∆u

with initial value u0. Thus, we can say that smoothing u0 with the Gaussian
Gt is equivalent to applying the heat equation to u0. We will see that the heat
equation is possibly the worst candidate in our search for the ideal smoothing
operator, since, except for small t, it is poorly localized and produces a very
blurred image.

Iteration

One might conjecture that a way around this problem with the heat equation
would be to replace Gt with a more suitable positive kernel. This is not the
case, but it does serve to introduce the second concept, which is iteration. We
will show in Chapter 2 that under reasonable assumptions and appropriate
rescalings, iterating a convolution with a positive kernel leads to the Gaussian,
and thus directly back to the heat equation. There is, however, a different
point of view that leads to useful smoothing operators: Instead of looking for
a different kernel, look for other PDEs that provide smoothing. This program
leads to a class of nonlinear PDEs, where the Laplacian in the heat equation is
replaced by various nonlinear operators. We will see that for these operators it
is generally better, from the localization point of view, to iterate a well localized
operator than to apply it directly at a large scale. This, of course, is just not
true for the heat equation; if you iterate n times the convolution Gt ∗ u you
get exactly Gnt ∗ u. This is a good place to point out that if we are dealing
with smoothing, localization, and iteration, then we are talking about parabolic
PDEs. This announcement is heuristic, and the object of the book is to formalize
and to make precise the necessity and the role of several PDEs in image analysis.

Invariance

Our last concept is invariance. Invariance requirements play a central role in
image analysis because the objects to be recognized must be recognized un-
der varying conditions of illumination (contrast invariance) and from different
points of view (projective invariance). Contrast invariance is one of the central
requirements of the theory of image analysis called mathematical morphology
(see, for example, Matheron [133] or Serra [168]). This theory involves a num-
ber of contrast-invariant image analysis operators, including dilations, erosions,
median filters, openings, and closings. We are going to use this theory by at-
tempting to localize as much as possible these morphomath operators to exploit
their behavior at small scales. We will then iterate these operators. This will
lead to the proof that several geometric PDEs, namely, the curvature motions,
are asymptotically related to certain morphomath operators in much the same
way that linear smoothing is related to the heat equation. Thus, through these
PDEs, one is able to combine the scale space doctrine and mathematical mor-
phology. In particular, affine-invariant morphomath operators, which seemed at
first to be computationally impractical, turn out to yield in their local iterated
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Figure I.5: Shannon theory and sampling. Left to right: original image;
smoothed image; sampled version of the original image; sampled version of the
smoothed image. This illustrates the famous Shannon-Nyquist law that an im-
age must be smoothed before sampling in order to avoid the aliasing artifacts.

version a very affordable PDE, the so called affine morphological scale space
(AMSS) equation.

Shannon’s sampling theory

We mentioned in section I.1 that most of the digital images ud that come to
us in practice have been sampled from a smoothed version, call it uf , of the
“real image” uS . This was basically a comment about the technology. Another
comment (or assumption) was that the sampling rate was high enough to capture
all of the information in uf that is needed in practice. What we mean by this
is that the representations of uf that we reconstruct from ud show no signs
that uf was undersampled. This is an empirical statement; we will comment on
the theory in a moment, but first we wish to illustrate in Figure I.5 what can
happen if an image is undersampled.

We call the original image on the left Victor. Notice that Victor’s sweater
contains a striped pattern, which has a spatial frequency that is high relative
to other aspects of the picture. If we attempt to reduce the size of Victor
by simply sampling, for example, by taking one pixel in sixteen in a square
pattern, we obtain a new image (the third panel) in which the sampling has
created new and unstable patterns. Notice how new stripes have been created
with a frequency and direction that has nothing to do with the original. This
is called aliasing, and it is caused by high spatial frequencies being projected
onto lower frequencies, which creates new patterns. If this had been a video
instead of being a still photo, these newly created patterns would move and
flicker in a totally uncontrolled way. This kind of moving pattern often appears
in recent commercial DVDs. They have simply not been sampled at a high
enough rate. The second panel in Figure I.5 is a version of Victor that has been
smoothed enough so that we no longer see the stripes in the sweater. This image
is sampled the same way—every fourth pixel horizontally and vertically—and
appears in panel four. It is not a good image, but there are no longer the kinds
of artifacts that appear in the third image. To compare the images we have
magnified the sampled versions by a factor of four. This example also shows
that simply subsampling an image is a poor way to compress it.

This pragmatic discussion and the experiment have their theoretical counter-
part, namely, Shannon’s theory of sampling. Briefly, Shannon’s theorem, in the
two-dimensional case, states that for an image to be accurately reconstructed
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10 Introduction

from samples, the image must be bandlimited, which means that it contains no
spatial frequencies greater than some bound λ, and the sampling rate must be
higher than a factor of λ. Some implications of these statements are that the im-
age u must be infinitely differentiable, that its domain of definition is all of R2,
and that there must be an infinite number of samples to accurately reconstruct
u. Furthermore, in Shannon’s theory, the image u is reconstructed as an infinite
series of trigonometric functions. Note that this is very different from what was
done in Figure I.5. So what does this have to do with the problems addressed in
this book? What does this have to do with, say, a hypothesized uS in BV (R2)
that is definitely not bandlimited? Our answer, which may smack of smoke and
mirrors, is that we always are working in two parallel worlds, the theoretical
one and the practical one based on numerical computations, and that these two
worlds live together in harmony at a certain scale. Here is an example of what
we mean: Suppose that u is not a bandlimited image. To sample it properly we
would first have to smooth it with a bandlimited kernel. Suppose that instead
we smooth it with the Gaussian Gt, which is not bandlimited. Theoretically
this is wrong, but practically, the spectrum of Gt, which is Gt itself, decays
exponentially. If |x|2/4t is sufficiently large, then Gt(x) appears as zero in com-
putations, and thus it is “essentially” bandlimited. Arguments like this could
be made for other situations, but the important point for the reader to keep in
mind is that the parallel developments, theory and practice, make sense in the
limit.

In the next section, we present a survey of most of the PDEs that have
been proposed for image analysis. This provides an informal account of the
mathematics that will be developed in detail in the following chapters.

We wish to end this section with a mild disclaimer, and for this we take
a page from Theory of Games and Economic Behavior by John von Neumann
and Oskar Morgenstern where they comment on their theory of a zero-sum
two-person game [184] p. 147:

We are trying to find a satisfactory theory,—at this stage for
the zero-sum two-person game. Consequently we are not arguing
deductively from the firm basis of an existing theory—which has
already stood all reasonable tests—but we are searching for such a
theory.. . . This consists in imagining that we have a satisfactory the-
ory of a certain desired type, trying to picture the consequences of
this imaginary intellectual situation, and then drawing conclusions
from this as to what the hypothetical theory must be like in detail.
If this process is applied successfully, it may narrow the possibilities
for the hypothetical theory of the type in question to such an extent
that only one possibility is left,—i.e. that the theory is determined,
discovered by this device. Of course, it can happen that the applica-
tion is even more “successful,” and that it narrows the possibilities
down to nothing—i.e. that it demonstrates that a consistent theory
of the kind desired is inconceivable.

We take much the same philosophical position, and here is our variation on
the von Neumann–Morgenstern statement: We do not suggest that what will
be developed here is a necessary future for image analysis. However, if image
analysis requires a smoothing theory, then here is how it should be done, and
here is the proof that there is no other way to do it. This statement does not
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I.3. PDES AND IMAGE PROCESSING 11

exclude the possibility of other theories, based on different principles, or even
the impossibility of making any theory.

I.3 PDEs and image processing

We have argued that smoothing—suppressing high spatial frequencies—is a nec-
essary part of image processing in at least two situations: An image needs to
be smoothed before features can be extracted, and images must be smoothed
before they are sampled. We have also mentioned that, while smoothing with
the Gaussian is not a good candidate for the first situation (we will see that it
is not contrast invariant, and it is not well localized except for small t), it is not
unreasonable to use it numerically in the second situation, since it does a good
job of suppressing high frequencies. These smoothing requirements and the fact
that the Gaussian is the fundamental solution of the heat equation mean that
the heat equation appears completely naturally in image processing, and indeed
it is the first PDE to enter the picture in Chapters 1 and 2. Smoothing with
the heat equation is illustrated in Figure I.6.

Figure I.6: Heat equation and smoothing. The original image is on the left; the
heat equation has been applied at some scale, and the resulting blurred image
is on the right.

There is another path hinted at in section I.1 that leads to the Gaussian
and thus to the heat equation. Suppose that k is any positive kernel such
that k(x) = k(|x|) and such that k is localized in the sense that k(x) → 0
sufficiently rapidly as |x| → ∞. If k is normalized properly and if we write
kh(x) = (1/h)k(x/h1/2), then

kh ∗ u0(x)− u0(x)
h

→ ∆u0(x)

as h → 0 whenever the image u0 is sufficiently smooth. We write this as

kh ∗ u0(x)− u0(x) = h∆u0(x) + o(h). (I.1)

Now let u(t,x) denote the solution of the heat equation

∂u

∂t
= ∆u, u(0,x) = u0(x).

If u0 is sufficiently smooth, then we can write

u(t, x)− u(0, x) = t∆u0(x) + o(t). (I.2)
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12 Introduction

The reverse heat equation

Equations (I.1) and (I.2) suggest that blurring u0 with a kernel kh for small h
is equivalent to applying the heat equation to u0 at some small scale t. This is
true, and it will be made precise in Chapter 2. These equations also lead to an-
other idea: We read in the paper [116] by Lindenbaum, Fischer, and Bruckstein
that Kovasznay and Joseph [109] introduced in 1955 the notion that a slightly
blurred image could be deblurred by subtracting a small amount of its Lapla-
cian. Numerically, this amounts to subtracting a fraction λ of the Laplacian of
the observed image from itself:

urestored = uobserved − λ∆uobserved.

Dennis Gabor, who received the Nobel prize in 1971 for his invention of
optical holography, studied this process and determined that the best value of λ
was the one that doubled the steepest slope in the image [116]. Empirically, one
can start with a small value of λ and repeat the process until a good image is
obtained; with further repetitions the process blows up. Indeed, this process is
just applying the reverse heat equation to the observed image, and the reverse
heat equation is notoriously ill-posed. On the other hand, the Kovasznay–
Joseph–Gabor method is efficient for sufficiently small λ and can be successfully
applied to most images obtained from optical devices. This process is illustrated
in Figure I.7. A few iterations can enhance the image (second panel), but the
inverse heat equation finally blows up (third panel).

Figure I.7: Kovasznay–Joseph–Gabor deblurring. Left to right: original image;
three iterations of the algorithm; ten iterations of the algorithm.

Figure I.8 shows that same experiment applied to an image of Victor that
has been numerically blurred. Again, the process blows up, but it yields a
significant improvement at some scales.

We have now seen the heat equation used in two senses, each with a different
objective. In both cases, we have noted drawbacks. In the first instance, the
heat equation (or Gaussian) was used to smooth an image, but as we have
mentioned, this operator is not contrast invariant, and thus is not appropriate
for any theory of image analysis that requires contrast-invariant operators. This
does not mean that the Gaussian should be dismissed; it only means that it is
not appropriate for our version of image analysis. To meet our objectives, we
will replace the Laplacian, which is a linear isotropic operator, with nonlinear,
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I.3. PDES AND IMAGE PROCESSING 13

Figure I.8: Kovasznay–Joseph–Gabor deblurring. This is the same deblurring
experiment as in Figure I.7, but it is applied to a much more blurred image.

nonisotropic smoothing operators. This will bring us to the central theme of
the book: appropriate smoothing for a possible theory of image analysis.

In the second instance, the heat equation is run backward (the inverse heat
equation) with the objective of restoring a blurred image. As we have seen,
this is successful to some extent, but the drawback is that it is an unstable
process. The practical problem is more complex than the fact that the inverse
heat equation is not well posed. In the absence of noise, the best way to deblurr
a slightly blurred image is to use the inverse heat equation. However, in the
presence of noise, this isotropic operator acts equally in all direction, and while
it enhances the definition of edges, the edges become jagged due to the noise.
This observation led Gabor to try to improve matters by using more directional
operators in place of the Laplacian. Gabor was concerned with image restora-
tion, but his ideas will appear later in our story in connection with smoothing.
(For an account of Gabor’s work see [116].)

Shock filters

The objective for running the heat equation backward is image restoration,
and although restoration is not the main subject of the book, we are going to
pause here to describe two ways to improve the stability of the inverse heat
equation. Image restoration is an extremely important area of image process-
ing, and the techniques we describe illustrate another use of PDEs in image
processing. There are indeed stable ways to “reverse” the heat equation. More
precisely, there are “inverse diffusions” that deblurr an image and reach a steady
state. The first example, due to Rudin in 1987 [158] and Osher and Rudin in
1990 [145] is a pseudoinverse for the heat equation, where the propagation term
|Du| = |(ux, uy)| is controlled by the sign of the Laplacian:

∂u

∂t
= −sign(∆u)|Du|. (I.3)

This equation is called a shock filter. We will see later that this operator prop-
agates the level lines of an image with a constant speed and in the same direc-
tion as the reverse heat equation would propagate these lines; hence it acts as
a pseudoinverse for the heat equation. This motion enhances the definition of
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14 Introduction

the contours and thus sharpens the image. Equation (I.3) is similar to a classic
nonlinear filter introduced by Kramer in the seventies [110]. Kramer’s filter can
be interpreted in terms of a PDE using the same kinds of heuristic arguments
that have been used to derive the heat equation. This equation is

∂u

∂t
= −sign(D2u(Du, Du))|Du|, (I.4)

where the Laplacian has been replaced by

D2u(Du,Du) = uxx(ux)2 + 2uxyuxuy + uyy(uy)2. (I.5)

We will see in Chapter 2 that D2u(Du, Du)/|Du|2 is the second derivative of u in
the direction of its gradient Du, and we will interpret the differential operator
(I.5) as Haralick’s edge detector. Kramer’s equation yields a slightly better
version of a shock filter. The actions of these filters are illustrated in Figure I.9.
The image on the left is a blurred image of Victor. The next image has been
deblurred using the Rudin–Osher shock filter. This is a pseudoinverse of the
heat equation that attains a steady state. The third image has been deblurred
using Kramer’s improved shock filter, which also attains steady state. The
fourth image was deblurred using the Rudin–Osher–Fatemi restoration scheme,
which is described below [159].

Figure I.9: Deblurring with shock filters and a variational method. Left to
right: blurred image; Rudin–Osher shock filter; Kramer’s improved shock filter;
Rudin–Osher–Fatemi restoration method.

The deblurring algorithms (I.3) and (I.4) work to the extent that, experimen-
tally, they attain steady states and do not blow up. However, a third deblurring
method, the Rudin–Osher–Fatemi algorithm, is definitely better. It poses the
deblurring problem as an inverse problem. It is very efficient when the observed
image u0 is of the form k ∗ u + n, where k is known and where the statistics of
the noise n are also known. Given the observed image u0, one tries to find a
restored version u such that k ∗ u is as close as possible to u0 and such that the
oscillation of u is nonetheless bounded. This is done by finding u that minimizes
the functional ∫ (|Du(x)|+ λ(k ∗ u(x)− u0(x))2

)
dx. (I.6)

The parameter λ controls the oscillation in the restored version u. If λ is large,
the restored version will closely satisfy the equation k ∗ u = u0, but it may be
very oscillatory. If instead λ is small, the solution is smooth but inaccurate.
This parameter can be computed in principle as a Lagrange multiplier. The
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obtained restoration can be remarkable. The best result we can obtain with
the blurred Victor is shown in the fourth panel of Figure I.9. This scheme was
selected by the French Space Agency (CNES) after a benchmark for satellite
image deblurring, and it is currently being used by the CNES for satellite image
restoration. This total variation restoration method also has fast wavelet packets
versions.

From the heat equation to wavelets

The observation by Kovasznay, Joseph, and Gabor (and undoubtedly others)
that the difference between a smoothed image and the original image is related
to the Laplacian of the original image is also the departure of one of the paths
that lead to wavelet theory. Here, very briefly, is the idea: If we convolve an
image with an appropriate smoothing kernel and then take the difference, we
obtain a new image related to the Laplacian of the original image (see equation
(I.1)). This new “Laplacian image” turns out to be faded with respect to the
original, and if one retains only the values greater than some threshold, the
image is often sparse. This is illustrated in Figure I.10. The last panel on the
right shows in black the values of this Laplacian image of Victor that differ
significantly from zero. Here, and in most natural images, this representation
is sparse and thus useful for compression. This experiment simulates the first
step of a well-known algorithm due to Burt and Adelson.

In 1983, Burt and Adelson developed a compression algorithm called the
Laplacian pyramid based on this idea [26]. Their algorithm consists of iterating
two operations: a convolution followed by subsampling. After each convolution,
one keeps only the difference kn ∗un−un, where n is used here to indicate that
each step takes place at a different scale due to the subsampling. The image
is then coded by the (finite) sequence of these differences. These differences
resemble the Laplacian of un, hence the name “Laplacian pyramid.” An impor-
tant aspect of this algorithm is that the discrete kernels kn, which are low-pass
filters, are all the same kernel k; the index n merely indicates that k is adjusted
for the scale of the space where the subsampled image un lives. Ironically, the
smoothing function cannot be the Gaussian, since the requirements for recon-
structing the image from its coded version rule out the Gaussian. Burt and
Adelson’s algorithm turned out to be one of the key steps that led to multireso-
lution analyses and wavelets. Burt and Adelson were interested in compression,
and, indeed, the differences kn ∗ un − un tend to be sparse for natural images.
On the other hand, we are interested in image analysis, and for us, the Burt
and Adelson algorithm has the drawback that it is not translation invariant or
isotropic because of the multiscale subsampling.

Back to edge detection

Early research in computer vision focused on edge detection as a main tool for
image representation and analysis. It was assumed that the apparent contours of
objects, and also the boundaries of the facets of objects, produce step disconti-
nuities, while inside these boundaries, the image oscillates mildly. The apparent
contour points, or edges points, were to be computed as points where the gra-
dient is in some sense largest. Two ways were proposed to do this: Marr and
Hildreth proposed computing the points where ∆u crosses zero, the now-famous
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Figure I.10: The Laplacian pyramid of Burt and Adelson. Left to right: the orig-
inal image; the image blurred by Gaussian convolution; the difference between
the original image and the blurred version, which approximates the Laplacian
of the original image; the points where this Laplacian image is large.

zero-crossings [130]. A significant improvement was made by Harakick who de-
fined the boundaries, or edges, of an image as those points where |Du| attains
a local maximum along the gradient lines [81]. Two years later, Canny imple-
mented Haralick’s detector in an algorithm that consists of Gaussian smoothing
followed by computing the (edge) points where D2u(Du,Du) = 0 and |Du| is
above some threshold [28]. We refer to this algorithm as the Haralick–Canny
edge detector. The fourth panel in Figure I.11 displays what happens when
we smooth the image with the Gaussian (the heat equation) and then compute
the points where D2u(Du, Du) = 0 and |Du| is above some threshold. If this
computation is done on the raw image (first panel), then ”edges” show up every-
where (second panel) because the raw image is a highly oscillatory function and
contains a very dense set of inflexion points. After applying the heat equation
and letting it evolve to some scale (third panel), we see that the Haralick–Canny
edge detector is able to extract some meaningful structure.

Figure I.11: Heat equation and Haralick’s edge detector. Left to right: original
image; edge points found in the original image using Haralick’s detector; blurred
image; edges found in the blurred image using the Haralick–Canny detector.
The image “edges” are singled out after the image has been smoothed. This
smoothing eliminates tiny oscillations and maintains the big ones.

The Perona-Malik equation

Given certain natural requirements such as isotropy, localization, and scale in-
variance, the heat equation is the only good linear smoothing operator. There
are, however, many nonlinear ways to smooth an image. The first one was pro-
posed by Perona and Malik in 1987 [151, 152]. Roughly, the idea is to smooth
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what needs to be smoothed, namely, the irrelevant homogeneous regions, and
to enhance the boundaries. With this in mind, the diffusion should look like
the heat equation when |Du| is small, but it should act like the inverse heat
equation when |Du| is large. Here is an example of a Perona–Malik equation in
divergence form:

∂u

∂t
= div(g(|Du|)Du), (I.7)

where g(s) = 1/(1+λ2s2). It is easily checked that we have a diffusion equation
when λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. To see this,
consider the second derivative of u in the direction of Du,

uξξ = D2u

(
Du

|Du| ,
Du

|Du|
)

,

and the second derivative of u in the orthogonal direction,

uηη = D2u

(
Du⊥

|Du| ,
Du⊥

|Du|
)

,

where Du = (ux, uy) and Du⊥ = (−uy, ux). The Laplacian can be rewritten in
the intrinsic coordinates (ξ, η) as ∆u = uξξ + uηη. The Perona–Malik equation
then becomes

∂u

∂t
=

1
1 + λ2|Du|2 uηη +

1− λ2|Du|2
(1 + λ2|Du|2)2 uξξ.

The first term in this representation always appears as a one-dimensional diffu-
sion in the direction orthogonal to the gradient, tuned by the size of the gradient.
The nature of the second term depends on the value of the gradient; it can be
either diffusion in the direction Du or diffusion in the direction −Du. This
model indeed mixes the heat equation and the reverse heat equation. Figure
I.12 is used to compare the Perona–Malik equation with the classical heat equa-
tion (illustrated in Figure I.11) in terms of accuracy of the boundaries obtained
by the Haralick–Canny edge detector (see Chapter 3). At a comparable scale of
smoothing, we clearly gain some accuracy in the boundaries and remove more
“spurious” boundaries using this Perona–Malik equation. The representation is
both more sparse and more accurate.

Figure I.12: A Perona–Malik equation and edge detection. This is the same
experiment as in Figure I.11, but here the Perona–Malik equation is used in
place of the heat equation. Notice that the edge map looks slightly better in
this case.
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18 Introduction

The ambitious Perona–Malik model attempts to build into a single operator
the ability to perform two very different tasks, namely, restoration and analysis.
This has its cost: The model contains a “contrast threshold” λ−1 that must
be set manually, and although experimental results have been impressive, the
mathematical existence and uniqueness of solutions are not guaranteed, despite
some partial results by Kichenassamy [101] and Weickert and Benhamouda [186].
There are three parameters involved in the overall smoothing and edge-detecting
scheme: the gradient threshold λ−1 in the equation (3.2), the smoothing scale(s)
t (or the time that equation (3.2) evolves), and the gradient threshold in the
Haralick–Canny detector. We can use the same gradient threshold in both the
Haralick–Canny detector and the Perona–Malik equation, but this still leaves
us with a two-parameter algorithm. Can these parameters be dealt with auto-
matically for an image analysis scheme? This question seems to have no general
answer at present. An interesting attempt based on statistical arguments had
been made, however, by Black et al. [20].

A proliferation of PDE’s

If one believes that some nonlinear diffusion might be a good image analysis
model, why not try them all? This is exactly what has happened during the last
ten years. We can claim with some certainty that almost all possible nonlinear
parabolic equations have been proposed. A few of the proposed models are
even systems of PDEs. The common theme in this proliferation of models is
this: Each attempt fixes one intrinsic diffusion direction and tunes the diffusion
using the size of the gradient or the value of an estimate of the gradient. To keep
the size of this introduction reasonable, we will focus on a few of the simplest
models.

We begin with the Rudin–Osher–Fatemi model [159]. In this model the
BV norm of u,

∫ |Du(x)|dx, is one of the terms in the expression (I.6) that
is minimized to obtain a restored image. It is this term that provides the
smoothing. The gradient descent for

∫ |Du(x)|dx translates into the equation

∂u

∂t
= div

(
Du

|Du|
)

=
1

|Du|uηη.

Written this way, the method appears as a diffusion in the direction orthogonal
to the gradient, tuned by the size of the gradient. Andreu et al. proved that
this equation is well posed in the space BV of functions of bounded variation
[8, 9]. A variant of this model was proposed independently by Alvarez, Lions,
and Morel [5]. In this case, the relevant equation is

∂u

∂t
=

1
|k ∗Du| |Du| div

(
Du

|Du|
)

=
1

|k ∗Du|uηη,

and again the diffusion is in the direction Du⊥ orthogonal to the gradient. Note
that the rate of diffusion depends on the average value k ∗Du of the gradient
in a neighborhood of x, whereas the direction of diffusion, Du⊥(x)/|Du(x)|,
depends on the value of Du(x) at x. The kernel k is usually the Gaussian.
Kimia, Tannenbaum, and Zucker, working in a more general shape-analysis
framework, proposed the simplest equation of our list [104]:

∂u

∂t
= |Du| div

(
Du

|Du|
)

= D2u

(
Du⊥

|Du| ,
Du⊥

|Du|
)

= uηη. (I.8)
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This equation had been proposed earlier in another context by Sethian as a tool
for front-propagation algorithms [172]. This equation is a “pure” diffusion in
the direction orthogonal to the gradient. We call this equation the curvature
equation; this is to distinguish it from other equations that depend on the cur-
vature of u in some other way. These latter will be called curvature equations.
When we refer to the action of the equations, we often write curvature motions
or curvature-dependent motions. (See Chapters 11 and 12.)

The Weickert equation can be viewed as a variant of the curvature equation
[185]. It uses a nonlocal estimate of the direction orthogonal to the gradient
for the diffusion direction. This direction is computed as the direction v of the
eigenvector corresponding to the smallest eigenvalue of k ∗ (Du ⊗ Du), where
(y⊗ y)(x) = (x · y)y. Note that if the convolution kernel is removed, then this
eigenvector is simply Du⊥. So the equation writes

∂u

∂t
= uηη, (I.9)

where η denotes the coordinate in the direction v. The three models just de-
scribed can be interpreted as diffusions in a direction orthogonal to the gradient
(or an estimate of this direction), tuned by the size of the gradient. They are
illustrated in Figure I.13. (The original image is in the first panel of Figure
I.14.)

Carmona and Zhong proposed a diffusion in the direction of the eigenvector
w corresponding to the smallest eigenvalue of D2u [31]. So the equation is
again 2.19, but this time η denotes the coordinate in the direction of w. This is
illustrated in panel three of Figure I.14. Sochen, Kimmel, and Malladi propose
instead a nondegenerate diffusion associated with a minimal surface variational
formulation [174]. Their idea was to make a gradient descent for the area,∫ √

1 + |Du(x)|2 dx, of the graph of u. This leads to the diffusion equation

∂u

∂t
= div

(
Du√

1 + |Du|2
)

.

At points where Du is large this equation behaves like ∂u
∂t = div

(
Du
|Du|

)
,

where we retrieve the Rudin-Osher-Fatemi model of Section I.3. At points where
Du is small we have ∂u

∂t = div(Du) which is the heat equation. This equation
is illustrated in panel four of Figure I.14. Other diffusions have also been con-
sidered. For purposes of interpolation, Caselles, Morel, and Sbert proposed a
diffusion that may be interpreted as the strongest possible image smoothing
[37],

∂u

∂t
= D2u(Du,Du) = |Du|2uξξ.

This equation is not used for preprocessing the image as the others are; rather,
it is a way to interpolate between the level lines of an image with sparse level
lines (Figure I.15). Among the models mentioned, only the curvature motion
proposed by Kimia, Tannenbaum, and Zucker was specifically introduced as a
shape analysis tool. We are going to explain this, but to do so we must say
more about image analysis.
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Figure I.13: Diffusion models I. Left to right: Osher, Sethian 1988: the curva-
ture equation; Rudin, Osher, Fatemi 1992: minimization of the image’s total
variation; Alvarez, Lions, Morel 1992: nonlocal variant of the preceding; We-
ickert 1994: nonlocal variant of the curvature equation. All of these models
diffuse only in the direction orthogonal to the gradient, using a more or less
local estimate of this direction. This explains why the results of the filters are
so similar. However, the Weickert model captures better the texture direction.

Principles of image analysis

There are probably as many ways to approach image analysis as there are uses
of digital images, and today the range of applications covers much of human
activity. Most scientific and technical activities, including particularly medicine,
and even sound analysis (visual sonograms), involve the perceptual analysis of
images. Our goal is to look for fundamental principles that underlie most of
these applications and to develop algorithms that are widely applicable. From
a less lofty point of view, we wish to examine the collection of existing and
potential image operators to determine which among them fit our vision of
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Figure I.14: Diffusion models II. Left to right: original image; Perona–Malik
equation 1987, creating blurry parts separated by sharp edges; Carmona, Zhong
1998 which actually blurs the whole image: diffusion along the least eigenvector
of D2u; Sochen, Kimmel, Malladi 1998: minimization of the image graph area.
This last equation has effects similar to the Perona-Malik model.

Figure I.15: Diffusion models III. Left to right: original image; quantized image
(only 10 levels are kept - 3.32 bits/pixel); the quantized image reinterpolated us-
ing the Caselles–Sbert algorithm 1998. They apply a diffusion on the quantized
image with values on the remaining level lines taken as boundary conditions.

image analysis. Instead of examining an endless list of partial and specific
requirements, we rely on a mathematical shortcut, well known in mechanics,
that consists of stating a short list of invariance requirements. These invariance
requirements will lead to a classification of models and point out the ones that
are the most suitable as image analysis tools. The first invariance requirement
is the Wertheimer principle according to which visual perception (and therefore,
we add, image analysis) should be independent of the image contrast [188]. We
formalize this as follows:

Contrast-invariant classes. Two images u and v are said to be (per-
ceptually) equivalent if there is a continuous increasing function g such that
v = g(u). In this case, u and v are said to belong to the same contrast-invariant
class. (“Increasing” always means “strictly increasing.”)

Contrast invariance requirement. An image analysis operator T must
act directly on the equivalence class. As a consequence, we ask that T (g(u)) =
g(Tu), which means that the image analysis operator commutes with contrast
changes.

The contrast invariance requirement rules out the heat equation and all of the
models described above except the curvature motion (I.8). Contrast invariance
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led Matheron in 1975 to formulate image analysis as set analysis, namely, the
analysis of the level sets of an image. The upper level set of an image u at level
λ is the set

Xλu = {x | u(x) ≥ λ}.
We define in exactly the same way the lower level sets by changing “≥” into
“≤.” The main point to retain here is the global invariance of level sets under
contrast changes. if g is a continuous increasing contrast change, then

Xg(λ)g(u) = Xλu.

According to mathematical morphology, the image analysis doctrine founded
by Matheron and Serra, the essential image shape information is contained in
its level sets. It can be proved (Chapter 5) that an image can be reconstructed,
up to a contrast change, from its set of level sets [133]. Figure I.16 shows an
image and one of its level sets.

Figure I.16: An image and one of its level sets. On the right is level set 140
of the left image. This experiment illustrates Matheron’s thesis that the main
shape information is contained in the level sets of an image. Level sets are
contrast invariant.

The contrast invariance requirement leads to powerful and simple denoising
operators like the so-called extrema killer, or area opening, (Chapter 7) defined
by Vincent in 1993 [183]. This image operator simply removes all connected
components of upper and lower level sets with areas smaller than some fixed
value. This operator is not a PDE; actually it’s much simpler. Its effect is
amazingly good for impulse noise, which includes the local destruction of the
image and spots. The action of the extrema killer is illustrated in Figure I.17.
The original image is in the first panel. In the third panel, the image has been
degraded by adding “salt and pepper” noise to 75% of the pixels. The next
panel shows its restoration using the extrema killer set to remove upper and
lower level sets with areas smaller than 80 pixels. The second panel shows the
result of the same operator applied to the original.

Level lines as a complete contrast invariant representation

In 1996, Caselles, Coll, and Morel further localized the contrast invariance re-
quirement in image analysis. They proposed as the main objects of analysis the
level lines of an image, that is, the boundaries of its level sets [34]. For this
program—and the previous one involving level sets—to make sense, the levels
sets and level lines must have certain topological and analytic properties. Level
sets and isolevel sets {x | u(x) = λ}, which we would like to be the “level lines,”
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Figure I.17: The extrema killer filter. Left to right: original image; extrema
killer applied with area threshold equal 80 pixels; 75% salt and pepper noise
added to the original image; the same filter applied.

can be defined for any image (or function) u, but they will not necessarily be
useful for image analysis. In particular, we cannot directly define useful level
sets and level lines for a digital image ud. What is needed is a representation
of ud for which these concepts make sense. But this is not a problem. By the
assumptions of section I.1, a digital representation ud of a natural image S has
been obtained by suitably sampling a smooth version of S, call it uf , and a
smooth approximation of uf is available to us by interpolation. There are, of
course, different interpolation methods to produce smooth representations of
ud. One can also obtain a useful discontinuous representation by considering
the extension of ud that is constant on each pixel. For an interpolation method
to be useful, the level lines should have certain minimal properties: They should
be composed of a finite number of rectifiable Jordan curves, and they should be
nested. This means that they do not cross, and thus that they form a tree by
inclusion (Section 11.2.)

A study by Kronrod in 1950 shows that if the function u is continuous, then
the isolevels sets {x | u(x) = λ} are nested and thus form a tree when ordered
by inclusion [112]. These isolevel sets are not necessarily curves; they are curves,
however, if u has continuous first derivatives. Monasse proved Kronrod’s result
for lower semicontinuous and upper semicontinuous functions in 2000 [136] (see
also [15]). His result implies that the extension of ud that is constant on each
pixel yields a nested set of Jordan curves bounding the pixels. Thus we have at
least two ways to associate a set of nested Jordan curves with a digital image
ud, depending on how ud is interpolated. Given an interpolation method, we
call this set of nested curves a topographic map of the image.1 By introducing
the topographic map, the search for image smoothing, which had already been
reduced to set smoothing, is further reduced to curve smoothing. Of course, we
require that this smoothing preserves curve inclusion. Level lines of an image
at a fixed level are shown in Figure I.18.

1The use of level lines is also consistent with the “BV assumption” mentioned in section
I.1, according to which the correct function space for modeling images is the space BV of
functions of bounded variation. In this case, the coarea formula can be used to associate a set
of Jordan curves with an image (see [7]) It is, however, in general false for BV functions that
the boundaries of lower and upper level sets form a nested set of curves; these curves may
cross (see again [136].)
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Figure I.18: Level lines of an image. Level lines, defined as the boundaries of
level sets, can be defined to be a nested set of Jordan curves. They provide a
contrast-invariant representation of the image. On the right are the level lines
at level 183 of the left image.

Contrast invariant PDE’s

Chen, Giga, and Goto [41, 42] and Alvarez et al. [4] proved that if one adds con-
trast invariance to the usual isotropic invariance requirement for image process-
ing, then all multiscale image analyses should have a curvature-dependent mo-
tion of the form

∂u

∂t
= F (curv(u), t)|Du|, (I.10)

where F is increasing with respect to its first argument (see chapters ?? and
??). This equation can be interpreted as follows: Consider a point x on a given
level curve C of u at time t. Let n(x) denote the unit vector normal to C at x
and let curv(x) denote its curvature. Then the preceding equation is associated
with the curve motion equation

∂x

∂t
= F (|κ|(x), t)n(x)

that describes how the point x moves in the direction of the normal. The
formula defining curv(u) at a point x is (Chapter 11)

curv(u)(x) =
1

|Du|3 D2u(Du⊥, Du⊥)(x) =
uxxu2

y − 2uxyuxuy + uyyu2
x

(u2
x + u2

y)3/2
(x).

The curvature vector at a point of a C2 curve is the second derivative for a
curve x(s) parameterized by length : κ = d2x/ds2. We refer to Chapter 11
for the detailed definitions and the links between the curvature vector of a level
line of u and curv(u). Not much more can be said at this level of generality
about F . Two specific cases play prominent roles in this subject. The first case
is F (curv(u), t) = curv(u), the curvature equation (I.8). The second case is
F (curv(u), t) = (curv(u))1/3.
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This particular one-third power form for the curvature dependence provides
an important additional invariance, namely, affine invariance. We would like
to have complete projective invariance, but a theorem proved by Alvarez et
al. shows that this is impossible [4] (Chapter ??). The best we can have is
invariance with respect to the so-called Chinese perspective, which preserves
parallelism. Most of these equations, particularly when F is a power of the
curvature, have a viscosity solution in the sense of Crandall and Lions [48].
This was shown in 1995 by Ishii and Souganidis [97]. We refer to Chapters ??
and ?? for all details.

As we have mentioned, contrast-invariant processing can be reduced to level
set processing and, finally, to level curve processing. The equations mentioned
above are indeed equivalent to curve evolution models if existence and regularity
have been established. These results exist for the most important cases, namely,
for F (curv(u), t) = curv(u), called curve shortening, and for F (curv(u), t) =
(curv(u))1/3, known as affine shortening. Grayson proved existence, uniqueness,
and analyticity for the curve shortening equation [77],

∂x

∂t
= curv(x)n(x), (I.11)

NE PAS LAISSER COMMME C’EST : curv n’est pas la meme notation
qu’apres et n’est pas meme defini!

and Angenent, Sapiro, and Tannenbaum proved the same results for the
affine shortening equation [10],

∂x

∂t
= (curv(x))

1
3 n(x). (I.12)

These results are very important for image analysis because they ensure that
the shortening processes do indeed reduce a curve to a more and more sketchy
version of itself.

Affine invariance

An experimental verification of affine invariance for affine shortening is illus-
trated in Figure I.19. The numerical tests were made using a very fast numerical
scheme for the affine shortening designed by Lionel Moisan [135]. The principle
of this algorithm is explained in Chapter ??. Unlike many numerical schemes,
this one is itself affine invariant. Each of the three panels in Figure I.19 contains
three shapes. The first panel shows the action of an affine transformation A:
Call the first shape in the first panel X; then the second shape is A(X) and
the third shape is A−1A(X) = X. The second panel shows that affine short-
ening, S, commutes with A: The shapes are, from left to right, S(X), SA(X),
and A−1SA(X). Since this third shape is the same as the first, we see that
A−1SA(X) = S(X), or that SA(X) = AS(X). The third panel shows the same
experiment with affine shortening replaced with curve shortening. Since the
first and third shapes are different, this illustrates that A does not commute
with curve shortening, and hence that curve shortening is not affine invariant.

Evans and Spruck [61] (also [62, 63, 64]) and Chen, Giga, and Goto [41,
42] proved in 1991 that a continuous function moves by the curvature motion
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Figure I.19: Experimental verification of the affine invariance of the affine short-
ening (AMSS). The first panel contains three shapes, X, A(X), and A−1A(X).
The second panel contains S(X), SA(X), and A−1SA(X). The congruence of
the first and third shapes implies that S and A commute. In the third panel,
the same procedure has been applied using equation (I.11). Here the first and
third shapes are not congruent, which shows that the curve shortening is not
affine invariant, as expected.

(equation (I.10) with F (curv(u), t) = curv(u)) if and only if almost all of its
level curves move by curve shortening (equation (I.11)). The same result is true
for the affine invariant curve evolution (equation (I.10) with F (curv(u), t) =
(curv(u))1/3) and affine shortening (equation (I.12)).

In the case of the curvature motion, this result provides a mathematical
justification for the now-classic Osher–Sethian numerical method for moving
fronts [146]: They associate with some curve or surface C its signed distance
function u(x) = ±d(x, C), and the curve or surface is handled indirectly as the
zero isolevel set of u. Then u is evolved by, say, the curvature motion with a
classic numerical difference scheme. Thus, the evolution of the curve C is dealt
with efficiently and accurately as a by-product of the evolution of u. The point
of view that we adopt is slightly different from that of Osher and Sethian. We
view the image as a generalized distance function to each of its level sets, since
we are interested in all of them.

We show in Figure I.20 how the level lines are simplified by evolving the im-
age numerically using affine invariant curvature motion. For clarity, we display
only sixteen levels of level curves. Notice that the aim here is not subsampling;
we keep the same resolution. Nor is the aim restoration; the processed image
is clearly worse than the original. The aim is invariant simplification leading to
shape recognition.

Figures I.21 and I.22 illustrate the effect of affine curvature motion on the
values of the curvature of an image. In Figure I.21 the sea bird image has been
smoothed by affine curvature motion at calibrated scale 1. In Figure I.22 the
smoothing is stronger at calibrated scale 4. (A calibrated scale t means that at
this scale a disk with radius t disappears.) The absolute values of the curvature
of the smoothed images are shown in the upper-right panels of both figures, with
the convention that the darkest points have the largest curvature. For clarity,
the curvature is shown only at points where the gradient of the image was larger
than 6 in a scale ranging from 0 to 255. Note how the density of points having
large curvature is reduced in the second figure where the smoothing is stronger.
On the other hand, the regions with large curvature are more concentrated with
stronger smoothing. Each degree of smoothing produces a different curvature
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Figure I.20: The affine and morphological scale space (AMSS model). Left to
right: original image; level lines of this image (16 levels only); original image
smoothed using the AMSS equation; level lines of the third image.

map of the original image, and thus curvature motions can be used as a nonlinear
means to compute a ”multiscale” curvature of the original image. The bottom
two panels of the figures show, from left to right, the positive curvature and the
negative curvature.

The snake method

Before proceeding to shape recognition, we mention that a variant of the cur-
vature equation can be used for shape detection. This is a well-known method
of contour detection, initially proposed by Kass, Witkin, and Terzopoulos [100].
Their method was very unstable. A better method is a variant of curvature
motion proposed by Caselles, Catté, Coll, and Dibos [32] and improved simulta-
neously by Caselles, Kimmel, and Sapiro [35] and Malladi, Sethian, and Vemuri
[122]. Here is how it works. The user draws roughly the desired contour in
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Figure I.21: Curvature scale space I. Top, left to right: original sea bird image
smoothed by affine curvature motion at calibrated scale 1; the absolute value
of the curvature. Bottom, left to right: the positive part of the curvature; the
negative part. Compare with Figure I.22, where the calibrated smoothing scale
is 4.

Figure I.22: Curvature scale space II. Top, left to right: original sea bird image
smoothed by affine curvature motion at calibrated scale 4; the absolute value
of the curvature. Bottom, left to right: the positive part of the curvature; the
negative part. Compare with Figure I.21, where the calibrated smoothing scale
is 1.

the image, and the algorithm then finds the best possible contour in terms of
some variational criterion. This method is very useful in medical imaging. The
motion of the contour is a tuned curvature motion that tends to minimize an
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energy function E. Given an original image u0 containing some closed contour
that we wish to approximate, we start with an edge map

g(x) =
1

1 + |Du0(x)|2 ,

that is, a function that vanishes on the edges of the image. The user then
designates the contour of interest by drawing a polygon γ0 roughly following the
desired contour. The geodesic snake algorithm then builds a distance function
v0 to this initial contour, so that γ0 is the zero level set of v0. The energy to be
minimized is

E(γ) =
∫

γ

g(x(s)) ds,

where g is the edge map associated with the original image u0 and s denotes the
parameter measuring the length along γ. The motion of the “analyzing image”
v is governed by

∂v

∂t
(x, t) = g(x)|Dv(x)|curv(v)(x)−Dv(x) ·Dg(x).

This algorithm is illustrated with a medical example in Figure I.23.

Figure I.23: Active contour, or “snake.” Left to right: original image; initial
contour; evolved distance function; final contour.

Shape retrieval

It seems to us that the most obvious application of invariant PDEs is shape
retrieval in large databases. There are thousands of different definitions of
shapes and a multitude of shape recognition algorithms. The real bottleneck
has always been the ability to extract the relevant shapes. The discussion above
points to a brute force strategy: All contrast-invariant local elements, or the
level lines of the image, are candidates to be “shape elements.” Of course,
this notion of shape element suggests the contours of some object, but there
is no way to give a simple geometric definition of objects. We must give up
the hope of jumping from the geometry to the common sense world. We may
instead simply ask the question, Given two images, can we retrieve all the level
lines that are similar in both images? This would give a factual, a posteriori,
definition of shapes. They would be defined as pieces of level lines common to
two different images, irrespective of their relationships to real physical objects.

Of course, this brute force strategy would be impossible without the initial
invariant filtering (AMSS). It is doable only if the level lines have been sig-
nificantly simplified. This simplification entails the possibility of compressed
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invariant encoding. In Figure I.24, we present an experiment due to Lisani et
al. [118]. Two images of a desk and the backs of chairs, viewed from different
angles, are shown in the first two panels. All of the pieces of level lines in the two
images that found a match in the other image are shown in the last two panels.
Notice that several of these matches are doubled. Indeed, there are two similar
chairs in each image. This brings to mind a Gestalt law that states that human
perception tends to group similar shapes. We now see the numerical necessity
of this perceptual grouping: A preliminary self-matching of each image, with
grouping of similar shapes, must be performed before we can compare it with
other images.

This concludes our overview of the use of PDEs in image analysis. The rest
of the book is devoted to filling in the mathematical details that support most
of the results mentioned in this introduction. We have tried to prove all of the
mathematical statements, assuming only two or three years of mathematical
training at the university level. Thus, for most of the PDEs addressed, and
for all of the relevant ones, we prove the existence and uniqueness of solutions.
We also develop invariant, monotone approximation schemes. This has been
technically possible by combining tools from the recent, and remarkably sim-
ple, theory of viscosity solutions with the Matheron formalism for monotone
set and function operators. Thus, the really necessary mathematical knowledge
amounts to elementary differential calculus, linear algebra, and some results
from the theory of Lebesgue integration, which are used in the chapters on the
heat equation. Mathematical statements are not introduced as art for art’s
sake; all of the results are directed at proving the correctness of a model, of
its properties, or of the associated numerical schemes. Numerical experiments,
with detailed comments, are described throughout the text. They provide an
independent development that is parallel to the central theoretical development.
Most image processing algorithms mentioned in the text are accessible in the
public software MegaWave. MegaWave was developed jointly by several uni-
versity research groups in France, Spain and America, and it is available at
http://www.cmla.ens-cachan.fr.

I.4 Notation and background material

RN denotes the real N -dimensional Euclidian space. If x ∈ RN and N > 2,
we write x = (x1, x2, . . . , xN ); if N = 2, we usually write x = (x, y). For
x, y ∈ RN , we denote their scalar product by x · y = x1y1 + x2y2 + · · ·+ xNyN

and write
|x| = (x · x)1/2 = (x2

1 + x2
2 + · · ·+ x2

N )1/2.

Let Ω be an open set in RN , and let n ∈ N be a fixed integer. Cn(Ω) denotes
the set of real-valued functions f : Ω → R that have continuous derivatives of
all orders up to and including n. f ∈ C∞(Ω) means that f has continuous
derivatives of all orders; f ∈ C(Ω) = C0(Ω) means that f is continuous on Ω.
We will often write “f is Cn” as shorthand for f ∈ Cn(Ω), and we often omit
the domain Ω if there is no chance of confusion.

We use multi-indices of the form α = (α1, α2, . . . , αN ) ∈ NN as shorthand
in several cases. For x ∈ RN , we write xα and |x|α for xα1

1 xα2
2 · · ·xαN

N and
|x1|α1 |x2|α2 · · · |xN |αN , respectively. For f ∈ Cn(Ω), we abbreviate the partial
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Figure I.24: A shape parser based on level lines. The two left images are of a
desk and the backs of chairs viewed from different angles. In the far left panel,
one level line has been selected (in white). In the second panel we show, also
in white, all matching pieces of level lines. The match is ambiguous, as must
be expected when the same object is repeated in the scene. In the two panels
on the right, we display all the matching pairs of pieces of level lines (in white).
The non matching parts of the same level lines are shown in black. Usually,
recognized shape elements are pieces of level lines, seldom whole level lines. See
[]

derivatives of f by writing

∂αf =
∂|α|f

∂xα1
1 ∂xα2

2 · · · ∂xαN

N

,

where |α| = α1 + α2 + · · ·+ αN and |α| ≤ n.
We also write the partial derivatives of f(x) = f(x1, x2, . . . , xN ) as fi =

∂f/∂xi, fij = ∂2f/∂xi∂xj , and so on. In the two-dimensional case f(x) =
f(x, y), we usually write ∂f/∂x = fx, ∂f/∂y = fy, ∂2f/∂x∂y = fxy, and so on.

The gradient of f is denoted by Df . Thus, if f(x) = f(x1, x2, . . . , xN ),

Df = (f1, f2, . . . , fN ),

and
Df = (fx, fy)

in case N = 2. The Laplacian of f is denoted by ∆f . Thus ∆f = f11 + f22 +
· · ·+ fNN in general, and ∆f = fxx + fyy if N = 2.
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We will often use the symbols O, o, and ε. They are defined as follows. We
assume that h is a real variable that tends to a limit h0 that can be finite or
infinite. We assume that g is a positive function of h and that f is any other
function of h. Then f = O(g) means that there is a constant C > 0 such
that |f(h)| < Cg(h) for all values of h. The expression f = o(g) means that
f(h)/g(h) → 0 as h → h0. We occasionally will use ε to denote a function of h
that tends to zero as h → 0. Thus, f(h) = o(h) can be written equivalently as
f(h) = hε(h).

Taylor’s formula

An N -dimensional form of Taylor’s formula is used several times in the book.
We will first state it and then explain the notation. Assume that f ∈ Cn(Ω)
for some open set Ω ∈ RN , that x, y ∈ Ω, and that the segment joining x and
x + y is also in Ω. Then

f(x+y) = f(x)+
1
1!

Df(x)y(1) +
1
2!

D2f(x)y(2) + · · ·+ 1
n!

Dnf(x)y(n) +o(|y|n).

This has been written compactly to resemble the one-dimensional case, but
the price to be paid is to explain the meaning of Dpf(x)y(p). We have already
seen special cases of this expression in section I.3, for example, D2u(Du, Du)
in equation (I.4). The expression Dpf(x)y(p) is

Dpf(x)y(p) = Dpf(x)(y, y, . . . , y︸ ︷︷ ︸
p terms

) =
∑

(i1,i2,...,ip)

∂pf

∂xi1∂xi2 · · · ∂xip

(x)yi1yi2 · · · yip ,

where the sum is taken over all Np different vectors (i1, i2, . . . , ip), ij = 1, 2, . . . , N .
Notice that Df(x)y(1) is just

∑N
j=1 fjyj = Df(x) · y, which is how we usually

write it.

The implicit function theorem

Consider a real-valued C1 function f defined on an open set Ω in RN . For
ease of notation we write z = (x, y), where x = (x1, . . . , xN−1) and y = xN .
Assume that f(z0) = 0 for a point z0 ∈ Ω and that fy(x0) 6= 0. Then there is a
neighborhood M = M(x0) and a neighborhood N = N(y0) such that for every
x ∈ M there is exactly one y ∈ N such that f(x, y) = 0. The function y = ϕ(x)
is C1 on M and y0 = ϕ(x0). Furthermore, if f ∈ Cn(Ω), then ϕ ∈ Cn(M).

Lebesgue integration

The Lebesgue integral, which first appeared in 1901 and is thus over a hun-
dred years old, has become the workhorse of analysis. It plays a role in chapters
1 and 2 and appears briefly in other parts of the book. One does not need a
profound understanding of abstract measure theory and integration to follow
the arguments. One should, however, be familiar with a few key results and be
comfortable with the basic manipulations of the integral. With this in mind,
we restate some of these fundamentals.

The functions and sets in this book are always measurable. Thus we dispense
in general with phrases like “let f be a measurable function.” We denote by
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M the set Lebesgue measurable subsets of RN . Since we shall sometimes need
to complete RN by a point at infinity, ∞, we still denote by M the measurable
sets of SN = RN ∩ {∞} and take measure({∞}) = 0. A function f defined on
a subset A of RN is integrable, if

∫

A

|f(x)| dx < +∞.

The Banach space of all integrable function defined on A is denoted as usual
by L1(A); we write ‖f‖L1(A) =

∫
A
|f(x)| dx to denote the norm of f in L1(A).

The most important applications in the book are the two cases A = RN and
A = [−1, 1]N . Here are two results that we use in chapters 1 and 2. We state
them not in the most general form, but rather in the simplest form suitable for
our work.

A density theorem for L1(RN)

If f is in L1(RN ), then there exists a sequence of continuous functions {gn},
each of which has compact support, such that gn → f in L1(RN ), that is,
‖gn − f‖ → 0 as n → +∞. This result is true for L1([−1, 1]N ), in which case
the gn are continuous on [−1, 1]N .

Fubini’s theorem

Suppose that f is a measurable function defined on A × B ∈ RN × RN .
Fubini’s theorem states that

∫

A×B

|f(z)| dz =
∫

A

∫

B

|f(x, y)|dxdy =
∫

B

∫

A

|f(x, y)| dy dx,

where we have written z = (x, y). It further states, that if any one of the
integrals is finite, then

∫

A×B

f(z) dz =
∫

B

∫

A

f(x, y) dxdy =
∫

A

∫

B

f(x, y) dy dx.

Lebesgue’s dominated convergence theorem

If a sequence of functions {fn} is such that fn(x) → f(x) for almost every
x ∈ RN as n → +∞, and if there is an integrable function g such that |fn(x)| ≤
g(x) almost everywhere, then

∫

RN

fn(x) dx →
∫

RN

f(x) dx.

We often use the following direct consequence: if An is a decreasing sequence
of measurable sets with bounded measure then measure(An) 7→ measure(A). To
prove this, apply Lebesgue’s theorem to the characteristic functions of An and
A, 1An and 1A.

We also use the following result, which is a direct consequence of the domi-
nated convergence theorem.
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Interchanging differentiation and integration

Suppose that a function f defined on (t0, t1) × RN , where (t0, t1) is any
interval of R, is such that t 7→ f(t, x) is continuously differentiable (for almost
every x ∈ RN ) on some interval [a, b] ⊂ (t0, t1). If there exists an integrable
function g such that for all t ∈ [a, b]

∣∣∣∣
∂f

∂t
(t,x)

∣∣∣∣ ≤ g(x) almost everywhere,

then the integral I(t) =
∫
RN f(t, x) dx is differentiable for t ∈ (a, b) and

dI

dt
(t) =

∫

RN

∂f

∂t
(t,x) dx.

A brief but comprehensive discussion of the Lebesgue integral can be found in
the classic textbook by Walter Rudin [160].

I.4.1 A framework for sets and images

We start by fixing a simple and handy functional framework for images and
sets, which will be maintained throughout the book. Until now, we have been
vague about the domain of definition of an image. On one hand, a real digital
image is defined on a finite grid. On the other hand, standard interpolation
methods give a continuous representation defined on a finite domain of RN ,
usually a rectangle. Now, it is convenient to have images defined on all of RN ,
but it is not convenient to extend them by making them zero outside their
original domains of definition because that would make them discontinuous. So
an usual way is to extend them into a continuous function tending to a constant
at infinity. One way to do that is illustrated in Figure I.25. First, an extension
to a wider domain is performed by reflection across the domain’s boundary and
periodization. Then, it is easy to let the function fade at infinity or to make
it compactly supported. This also means that we fix a value at infinity for u,
which we denote by u(∞). We denote the topological completion of RN by this
infinity point by SN = RN ∪{∞}, which can also be denoted RN . Let us justify
the notation.

Proposition 0.1. Consider the sphere SN = {z ∈ RN+1, ||z|| = 1}. Then the
mapping T : RN ∪ {∞} → SN defined by

T (x) =
(

2x

1 + x2
,

x2 − 1
x2 + 1

)

is a homeomorphism (that is, a continuous bijection with continuous inverse.)

This is easily checked (Exercise 1.4).

Definition 0.2. We denote by F the set of continuous functions on SN , which
can be identified with the set of continuous functions on RN tending to some
constant at infinity. The natural norm of F is

‖u‖F = sup
x∈RN

|u(x)|. (I.13)
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Figure I.25: Image extension by symmetry, followed by periodization. Then the
image can be extended continuously to the rest of the plane into a function which
is constant for x large. The purpose of these successive extensions of u to all of
RN is to facilitate the definition of certain operations on u, such as convolution
with smoothing kernels, and, at the same time, to preserve the continuity of
u. This method of extending a function is widely used in image processing;
in particular, it is used in most compression and transmission standards. For
instance, the discrete cosine transform (DCT) applied to the initial data u,
restricted to [0, 1]N , is easily interpreted as an application of the FFT to the
symmetric extension of u.

We say that an image u in F is C1, if the function u is C1 at each point x ∈ RN .
We define in the same way the C2,... C∞ functions of F .

Definition 0.3. We say that a function u defined on RN is uniformly contin-
uous if for every x, y,

|u(x + y)− u(x)| ≤ ε(|y|),

for some function ε called modulus of continuity of u, satisfying lims→0 ε(s) = 0.

Continuous functions on a compact set are uniformly continuous, so func-
tions of F are uniformly continuous. We shall often consider the level sets of
functions in F , which simply are compact sets of SN .
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Definition 0.4. We denote by L the set of all compact sets of SN .

These sets are easy to characterize:

Proposition 0.5. The elements of L are of three kinds:

• compact subsets of RN

• F ∪ {∞}, where F is a compact set of RN .

• F ∪ {∞}, where F is an unbounded closed subset of RN

Proof. Indeed, B ∩RN is a closed set of RN and is therefore either a bounded
compact set or an unbounded closed set of RN . In the latter case, B must
contain ∞.
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Chapter 1

The Heat Equation

The heat equation is the prototype of all the PDEs used in image analysis.
There are strong reasons for that and it is the aim of this chapter to explain
some of them. Some more will be given in Chapter ??. Our first section is ded-
icated to a simple example of linear smoothing illustrating the relation between
linear smoothing and the Laplacian. In the next section, we prove the existence
and uniqueness of its solutions, which incidentally establishes the equivalence
between the convolution with a Gaussian and the heat equation.

1.1 Linear smoothing and the Laplacian

Consider a continuous and bounded function u0 defined on R2. If we wish to
smooth u0, then the simplest way to do so without favoring a particular direction
is to replace u0(x) with the average of the values of u0 in a disk D(x, h) of radius
h centered at x. This means that we replace u0(x) with

Mhu0(x) =
1

πh2

∫

D(x,h)

u0(y) dy =
1

πh2

∫

D(0,h)

u0(x + y) dy. (1.1)

Although the operator Mh is quite simple, it exhibits important charac-
teristics of a general linear isotropic smoothing operator. For example, it is
localizable: As h becomes small, Mh becomes more localized, that is, Mhu0(x)
depends only on the values of u0(x) in a small neighborhood of x. Smoothing
an image by averaging over a small symmetric area is illustrated in Figure 1.1.

Our objective is to point out the relation between the action of Mh and the
action of the Laplacian, or the heat equation. To do so, we assume enough
regularity for u0, namely that it is C2. We shall actually prove in Theorem 2.2
that under that condition

Mhu0(x) = u0(x) +
h2

8
∆u0(x) + h2ε(x, h), (1.2)

where ε(x, h) tends to 0 when h → 0. As we have seen in the introduction, (1.2)
provides the theoretical basis for deblurring an image by subtracting a small
amount of its Laplacian. It also suggests that Mh acts as one step forward in
the heat equation starting with initial condition u0,

∂u

∂t
(t,x) =

1
8
∆u(t,x), u(0,x) = u0(x). (1.3)

39
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40 CHAPTER 1. THE HEAT EQUATION

Figure 1.1: Local averaging algorithm. Left to right: original image; result of
replacing the grey level at each pixel by the average of the grey levels over the
neighboring pixels. The shape of the neighborhood is shown by the black spot
displayed in the upper right-hand corner.

Figure 1.2: The Gaussian in two dimensions.

This statement is made more precise in Exercise 1.3. Equation (1.2) actually
suggests that if we let n → +∞ and at the same time require that nh2 → t,
then

(Mn
h u0)(x) → u(t, x) (1.4)

where u(t, x) is a solution of (1.3).
This heuristics justifies the need for a thorough analysis of the heat equation.

The next chapter will prove that (1.4) is true under fairly general conditions.
In the next section, we shall prove that the heat equation has a unique solution
for a given continuous initial condition u0, and that this solution at time t is
equal to the convolution Gt ∗ u0, where Gt is the Gaussian (Figure 1.2). The
effect on level lines of smoothing with the Gaussian is shown in Figure 1.4.
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1.2 Existence and uniqueness of solutions of the
heat equation

Definition 1.1. We say that a function g defined on RN belongs to the Schwartz
class S if g ∈ C∞(RN ) and if for each pair of multi-indices α, β there is a
constant C such that

|x|β |∂αg(x)| ≤ C.

Proposition 1.2. If g ∈ S, then g ∈ L1(RN ), that is,
∫
RN |g(x)|dx < +∞.

For each pair of multi-indices α, β, the function xβ∂αg also belongs to S, and
∂αg is uniformly continuous on RN .

Proof. The second statement follows from the Leibnitz rule for differentiating
a product. (A complete proof by induction is tedious but not profound.) By the
definition of S, there is a constant C such that |x|N+2|g(x)| ≤ C. Thus there is
another C such that |g(x)| ≤ C/(1 + |x|N+2); since C/(1 + |x|N+2) ∈ L1(RN ),
g ∈ L1(RN ). Finally, note that |∂αg(x)| → 0 as |x| → ∞. But any continuous
function on RN that tends to zero at infinity is uniformly continuous.

Proposition 1.3 (The Gaussian and the heat equation). For all t > 0,
the function x 7→ Gt(x) = (1/(4πt)N/2)e−|x|

2/4t belongs to S and satisfies the
heat equation

∂Gt

∂t
−∆Gt = 0.

Proof. It is sufficient to prove the first statement for the function g(x) = e−|x|
2
.

An induction argument shows that ∂αg(x) = Pα(x)e−|x|
2
, where Pα(x) is a

polynomial of degree |α| in the variables x1, x2, . . . , xN . The fact that, for every
k ∈ N, xke−x2 → 0 as |x| → +∞ finishes the proof. Differentiation shows that
Gt satisfies the heat equation.

Exercise 1.1. Check that Gt is solution of the heat equation.

Linear image filtering is mainly done by convolving an image u with a positive
integrable kernel g. This means that the smoothed image is given by the function
g ∗ u defined as

g ∗ u(x) =
∫

RN

g(x− y)u(y) dy =
∫

RN

g(y)u(x− y) dy.

Note that the convolution, when it makes sense, is translation invariant. This
means that g ∗ u(x− z) = gz ∗ u(x), where gz(x) = g(x− z). (Linear filtering
with the Gaussian at several scales is illustrated in Figure 1.3.) The next result
establishes properties of the convolution that we need for our treatment of the
heat equation.

Proposition 1.4. Assume that u ∈ F and that g ∈ L1(RN ). Then the function
g ∗ u belongs to F and satisfies the inequality

‖g ∗ u‖F ≤ ‖g‖L1(RN )‖u‖F . (1.5)
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42 CHAPTER 1. THE HEAT EQUATION

Figure 1.3: Convolution with Gaussian kernels (heat equation). Displayed from
top-left to bottom-right are the original image and the results of convolutions
with Gaussians of increasing variance. A grey level representation of the convo-
lution kernel is put on the right of each convolved image to give an idea of the
size of the involved neighborhood.

Proof.

|g ∗ u(x)| ≤
∫

RN

|g(x− y)||u(y)|dy ≤ ‖u‖F
∫

RN

|g(x− y)| dy = ‖u‖F‖g‖L1
RN

.

Exercise 1.2. Verify that g ∗ u indeed is continuous and tends to u(∞) at infinity :
this a direct application of Lebesgue Theorem.

We are now going to focus on kernels that, like the Gaussian, belong to S.

Proposition 1.5. If u ∈ F and g ∈ S, then g ∗ u ∈ C∞(RN ) ∩ F and

∂α(g ∗ u) = (∂αg) ∗ u (1.6)

for every multi-index α.

Proof. Since g ∈ S, g ∈ L1(RN ), as is ∂αg for any multi-index α (Proposition
1.2). Thus by Proposition 1.4, g ∗u belongs to F . To prove (1.6), it is sufficient
to prove it for α = (1, 0, . . . , 0). Indeed, we know that ∂αg is in S if g is
in S, so the general case follows from the case α = (1, 0, . . . , 0) by induction.
Letting e1 = (1, 0, . . . , 0) and using Taylor’s formula with Lagrange’s form for
the remainder, we can write

g ∗ u(x + he1)− g ∗ u(x) =
∫

RN

(g(x + he1 − y)− g(x− y))u(y) dy

=
∫

RN

(g(y + he1)− g(y))u(x− y) dy

= h

∫

RN

∂g

∂x1
(y)u(x− y) dy

+
h2

2

∫

RN

∂2g

∂x2
1

(y + θ(y)he1)u(x− y) dy,

(1.7)
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where 0 ≤ θ(y) ≤ 1. To complete the proof, we wish to have a bound on the
last integral that is independent of x ∈ C. This last integral is of the form
f ∗ u, where f is defined by f(y) = (∂2g/∂x2

1)(y + θ(y)he1). Since g ∈ S,
∂g/∂x1 ∈ S, and from this it is a simple computation to show that f decays
rapidly at infinity. Having done this, Proposition 1.4 applies, and we deduce
that g ∗ u is differentiable in x1 and that ∂(g ∗ u)/∂x1 = (∂g/∂x1) ∗ u.

Proposition 1.6. Assume that g decreases rapidly at infinity, that g(x) ≥ 0 for
all x ∈ RN , and that

∫
RN g(x) dx = 1 and set, for t > 0, gt(x) = (1/tN )g(x/t).

Then: If u0 ∈ F , gt ∗ u0 converges to u0 uniformly as t → 0. In addition, we
have a maximum principle :

inf
x∈C

u0(x) ≤ gt ∗ u0(x) ≤ sup
x∈C

u0(x). (1.8)

Proof. Note first that gt is normalized so that
∫

RN

gt(y) dy = 1. (1.9)

Next, since g decreases rapidly at infinity, a quick computation shows that, for
any η > 0, ∫

|y|≥η

gt(y) dy → 0 as t → 0. (1.10)

Using (1.9), we have

gt ∗ u0(x)− u0(x) =
∫

RN

gt(y)(u0(x− y)− u0(x)) dy. (1.11)

As already mentioned, u0 ∈ F is uniformly continuous. Thus, for any ε > 0,
there is an η = η(ε) > 0 such that |u0(x− y)− u0(x)| ≤ ε when |y| ≤ η. Using
this inequality, we have

|gt ∗ u0(x)− u0(x)| ≤
∫

|y|<η

gt(y)|u0(x− y)− u0(x)| dy

+
∫

|y|≥η

gt(y)|u0(x− y)− u0(x)|dy

≤ε

∫

|y|<η

gt(y) dy + 2‖u‖L∞(C)

∫

|y|≥η

gt(y) dy.

Since
∫
|y|<η

gt(y) dy ≤ 1 and
∫
|y|≥η

gt(y) dy → 0 as t → 0, we conclude that
gt ∗ u tends to u0 uniformly in x as t → 0. Relation (1.8) is an immediate
consequence of the assumption that gt(x) ≥ 0 and equation (1.9).

Lemma 1.7. Let u0 ∈ F and u(t,x) = (Gt ∗ u0)(x). Then for every t0 > 0,
u(t, x) → u0(∞) uniformly for t ≤ t0 as x →∞.

Proof. By assumption,

∀ε > 0, ∃R, |x| ≥ R ⇒ |u0(x)− u0(∞)| < ε. (1.12)
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As a direct consequence of Lebesgue’s theorem,

∀ε > 0, ∃r(ε), r ≥ r(ε) ⇒
∫

|y|≥r

Gt0(y)dy < ε. (1.13)

By using
∫

Gt(y)dy = 1, we have

|u(t, x)−u(∞)| ≤
∫

|y|≤r

Gt(y)|u0(x−y)−u0(y)|dy+
∫

|y|≥r

Gt(y)|u0(x−y)−u0(y)|dy.

(1.14)
Using (1.13), the second term in (1.14) is bound from above for r ≥ r(ε) and
t ≤ t0 by

(2 sup |u0|)
∫

|y|≥r

Gt0(y) ≤ (2 sup |u0|)ε.

Fix therefore r ≥ r(ε). Then using
∫

Gt = 1, the first term in (1.14) is bound
by ε by (1.12) for |x| ≥ R + r.

Lemma 1.8. Let u0 ∈ F and Gt the gaussian. Then

(∂Gt/∂t) ∗ u0 = ∂(Gt ∗ u0)/∂t.

Proof. Proposition 1.5 does not apply directly, since it applies to the spatial
partial derivatives of Gt but not to the derivative with respect to t. Observe,
however, that a slight modification of the proof of this proposition does the job:
Replace g with Gt and x1 with t. Then the crux of the matter is to notice that,
given an interval 0 < t0 < t1, there is a rapidly decreasing function f such that
|(∂2Gt/∂t2)(t + θ(t)h,y)| ≤ f(y) uniformly for t ∈ [t0, t1], where f depends on
t0 and t1 but not on h. Then Proposition 1.4 applies, and the last integral in
equation (1.7) is uniformly bounded.

All of the tools are in place to state and prove the main theorem of this
chapter.

Theorem 1.9 (Existence and uniqueness of solutions of the heat equa-
tion). Assume that u0 ∈ F and define for t > 0 and x ∈ RN , u(t,x) =
(Gt ∗ u0)(x), u(t,∞) = u0(∞) and u(0, x) = u0(x). Then

(i) u is C∞ and bounded on (0,+∞)× RN ;

(ii) x → u(t,x) belongs to F for every t ≥ 0;

(iii) for any t0 ≥ 0, u(t,x) tends uniformly for t ≤ t0 to u(∞) as x →∞;

(iv) u(t, x) tends uniformly to u(0, x) as t → 0;

(v) u(t,x) satisfies the heat equation with initial value u0;

∂u

∂t
= ∆u and u(0, x) = u0(x); (1.15)

(vi) More specifically,
sup

x∈RN , t≥0

|u(t,x)| ≤ ‖u0‖F . (1.16)
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Conversely, given u0 ∈ F , u(t,x) = (Gt ∗ u0)(x) is the only C2 bounded
solution u of (1.15) that satisfies properties (ii)-(v).

Proof. Let us prove properties (i)-(vi). For each t > 0, Gt ∈ S, so by Proposi-
tion 1.5 and Lemma 1.8,

∂u

∂t
−∆u = u ∗

(
∂Gt

∂t
−∆Gt

)
. (1.17)

Proposition 1.5 also tells us that u(t, ·) ∈ C∞(RN ) ∩ F for each t > 0. The
right-hand side of (1.17) is zero by Proposition 1.3, and the fact that |u(t,x)−
u0(x)| → 0 uniformly as t → 0 follows from Proposition 1.6. The inequal-
ity (1.16) is a direct application of Proposition 1.4. Relation (iii) comes from
Lemma 1.7.

Uniqueness proof. If both v and w are solutions of the heat equation with the
same initial condition u0 ∈ F , then u = v − w is in F and satisfies (1.15) with
the initial condition u0(x) = 0 for all x ∈ RN . Also, by the assumptions of (ii),
u is bounded on [0, +∞) × RN and is C2 on (0, +∞) × RN . We wish to show
that u(t,x) = 0 for all t > 0 and all x ∈ RN . Assume that this is not the case.
Then there is some point (t, x) where u(t, x) 6= 0. Assume that u(t, x) > 0, by
changing u to −u if necessary.

We now consider the function uε defined by uε(t, x) = e−εtu(t, x). This
function tends to zero uniformly in x as t → 0 and as t → +∞. It also tends
uniformly to zero for each t ≤ t0 when x →∞. These conditions imply that uε

attains its supremum at some point (t0,x0) ∈ (0, +∞) × RN , and this means
that ∆uε(t0, x0) = e−εt∆u(t0, x0) ≤ 0 and (∂uε/∂t)(t0,x0) = 0. Here is the
payoff: Using the fact that u is a solution of the heat equation, we have the
following relations:

0 =
∂uε

∂t
(t0,x0) = −εuε(t0, x0) + e−εt ∂u

∂t
(t0,x0)

= −εuε(t0, x0) + e−εt∆u(t0,x0) ≤ −εuε(t0, x0) < 0.

This contradiction completes the uniqueness proof.

1.3 Exercises

Exercise 1.3. The aim of this exercise is to prove relation (1.2) and its consequence:
A local average is equivalent to one step forward of the heat equation. Theorem 2.2
yields actually a more general statement.

1) Expanding u0 around the point x using Taylor’s formula, write

u0(x + y) = u0(x) + Du0(x) · y +
1

2
D2u0(x)(y, y) + o(|y|2). (1.18)

Expand the various terms using the coordinates (x, y) of x.

2) Apply Mh to both sides of this expansion and deduce relation (1.2).

3) Assume u0 ∈ F and consider the solution u(t, x) of the heat equation (1.3) Then,
for fixed t0 > 0 and x, apply Mh to the function ut0 : x → u(t0, x) and write equation
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Figure 1.4: Level lines and the heat equation. Top, left to right: original
410×270 grey level image; level lines of original image for levels at multiples
of 12. Bottom, left to right: original image smoothed by the heat equation
(convolution with the Gaussian). The standard deviation of the Gaussian is 4,
which means that its spatial range is comparable to a disk of radius 4. The
image gets blurred by the convolution, which averages grey level values and
removes all sharp edges. This can be appreciated on the right, where we have
displayed all level lines for levels at multiples of 12. Note how some level lines
on the boundaries of the image have split into parallel level lines that have
drifted away from each other. The image has become smooth, but it is losing
its structure.

(1.2) for ut0 . Using that u(t, x) is a solution of the heat equation and its Taylor
expansion between t0 and t0 + h, deduce that

Mhu(t0, x) = u(t0 + h2, x) + h2ε(t0, x, h). (1.19)

Exercise 1.4. Consider the sphere SN = {z ∈ RN+1, ||z|| = 1}. Prove that the
mapping T : RN ∪ {∞} → SN defined in Proposition 0.1 by

T (x) =

�
2x

1 + x2
,

x2 − 1

x2 + 1

�
, T (∞) = (0, 1).

is a homeomorphism.

Exercise 1.5. A natural norm for F ∩ C1 is

‖u‖F∩C1 = sup
x∈RN

|u(x)|+ |Du(x)|. (1.20)

Prove that F ∩ C1 is complete, namely that if un → u for the preceding norm, then
u(x) tends to a constant and Du(x) tends to zero as |x| tends to infinity.

Exercise 1.6. Let u0 be a continuous function defined on RN having the property
that there exist a constant C > 0 and an integer k such that

|u0(x)| ≤ C(1 + |x|k)
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for all x ∈ RN . Show that the function u defined by u(t, x) = Gt ∗ u0(x) is well
defined and C∞ on (0,∞)×RN and that it is a classical solution of the heat equation.
Hints: Everything follows from the fact that the Gaussian and all of its derivatives
decay exponentially at infinity.

Exercise 1.7. We want to prove the general principle that any linear, translation
invariant and continuous operator T is a convolution, that is Tu = g∗u for some kernel
g. This is one of the fundamental principles of both mechanics and signal processing,
and it has many generalizations that depend on the domain, range, and continuity
properties of T . For instance, assume that T is translation invariant (commutes with
translations) and is continuous from L2(RN ) into L∞(RN )∩C(RN ). Show that Tu =
g ∗ u, where the convolution kernel g is in L2(RN ). This is a direct consequence of
Riesz theorem, which states that every bounded linear functional on L2(RN ) has the
form f 7→ R

RN f(x)g(x) dx for some g ∈ L2(RN ). Show that if u ≥ 0 (u(x) ≥ 0 for all
x) implies Tu ≥ 0, then g ≥ 0.

1.4 Comments and references

The heat equation. One should not conclude from Theorem 1.9 that the
solutions of the heat equation are always unique. The assumption in (ii) that
the solution was bounded is crucial. In fact, without this assumption, there
are solutions u that grow so fast that gu is not in L1(RN ) for g ∈ S (see, for
example, [180, page 217]). The existence and uniqueness proof of Theorem 1.9
is classic and can be found in most textbooks on partial differential equations,
such as Evans [60], Taylor [180], or Brezis [24].

Convolution. The heat equation—its solutions and their uniqueness—has
been the main topic in this chapter, but to approach this, we have studied
several aspects of the convolution, such as the continuity property (1.5). We
also noted that the convolution commutes with translation. Conversely, as a
general principle, any linear, translation invariant and continuous operator T
is a convolution, that is, Tu = g ∗ u for some kernel g. This is a direct con-
sequence of a result discovered independently by F. Riesz and M. Fréchet in
1907 (see [156, page 61] and exercise 1.7). Since we want smoothing to be
translation invariant and continuous in some topology, this means that linear
smoothing operators—which are called filters in the context of signal and image
processing—are described by their convolution kernels. The Gaussian serves as
a model for linear filters because it is the only one whose shape is stable under
iteration. Other positive filters change their shape when iterated. This fact will
be made precise in the next chapter where we show that a large class of iterated
linear filters behaves asymptotically as a convolution with the Gaussian.

Smoothing and the Laplacian. One of the first tools proposed in the early
days of image processing in the 1960s came, not surprisingly, directly from signal
processing. The idea was to restore an image by averaging the gray levels locally
(see, for example, [75] and [85]). The observation that the difference between
an image and its local average is proportional to the Laplacian of the image
has proved to be one of the most fruitful contributions to image processing. As
noted in the Introduction, this method for deblurring an image was introduced
by Kovasznay and Joseph in 1955 [109], and it was studied and optimized by
Gabor in 1965 [70] (information taken from [116]). (See also [93] and [94].) Burt
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and Adelson based their Laplacian pyramid algorithm on this idea, and this was
one of the results that led to multiresolution analysis and wavelets [26].
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Chapter 2

Iterated Linear Filters and
the Heat Equation

The title of this chapter is self-explanatory. The next section fixes fairly general
conditions so that the difference of a smoothed image and the original be pro-
portional to the Laplacian. The second section proves the main result, namely
the convergence of iterated linear filters to the heat equation. So the choice
of a smoothing convolution kernel is somewhat forced : Iterating the convolu-
tion with a smoothing kernel is asymptotically equivalent to the convolution
with a Gauss function. This result is known in Probability as the central limit
theorem, where it has a quite different interpretation. In image processing, it
justifies the prominent role of Gaussian filtering. A last section is devoted to
linear directional filters and their associated differential operators.

2.1 Smoothing and the Laplacian

There are minimal requirements on the smoothing kernels g which we state in
the next definition.

Definition 2.1. We say that a real-valued kernel g ∈ L1(RN ) is Laplacian
consistent if it satisfies the following moment conditions:

(i)
∫
RN g(x) dx = 1.

( ii) For i = 1, 2, . . . , N ,
∫
RN xig(x) dx = 0.

( iii) For each pair i, j = 1, 2, . . . , N , i 6= j,
∫
RN xixjg(x) dx = 0.

( iv) For i = 1, 2, . . . , N ,
∫
RN x2

i g(x) dx = σ, where σ > 0.

(v)
∫
RN |x|3|g(x)| dx < +∞.

Note that we do not assume that g ≥ 0; in fact, many important filters used
in signal and image processing are not positive. However, condition (i) implies
that g is “on average” positive. A discussion of the necessity of the requirements
(i)− (v) is performed in Exercise 2.4.

49
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50CHAPTER 2. ITERATED LINEAR FILTERS AND THE HEAT EQUATION

Figure 2.1: The rescalings gt(x) = (1/t2)g(x/t) of a kernel for t=4, 3, and 2.

We say that a function g is radial if g(x) = g(|x|), x ∈ RN . This is equivalent
to saying that g is invariant under all rotations around the origin in RN . As
pointed out in Exercise 2.3, any radial function g ∈ L1(RN ) can be rescaled to
be Laplacian consistent if it decays fast enough at infinity and if

∫
RN x2

i g(x) dx
and

∫
RN g(x) dx have the same sign.

We consider rescalings of a kernel g defined by

gh(x) =
1

hN/2
g
( x

h1/2

)
(2.1)

for h > 0 (see Figure 2.1). Notice that this rescaling differs slightly from the
one used in Section 1.2. We have used the factor h1/2 here because it agrees
with the factor t1/2 in the Gaussian. We denote the convolution of g with itself
n times by gn∗. The main result of this section concerns the behavior of gn∗

h as
n → +∞ and h → 0.
Exercise 2.1. Prove the following two statements:

(i) gh is Laplacian consistent if and only it g is Laplacian consistent.

(ii) If g ∈ L1(RN ), then (gh)n∗ = (gn∗)h.

Our first result concerns the behavior of gh as h → 0. This will establish a
more general and precise form of equation (1.2).

Theorem 2.2. If g is Laplacian consistent, then for every u ∈ F ∩ C3,

gh ∗ u(x)− u(x) = h
σ

2
∆u(x) + ε(h,x) (2.2)

where |ε(h, x)| ≤ Ch3/2.

Proof. We use condition (i), the definition of gh, and rescaling inside the inte-
gral to see that

gh ∗ u(x)− u(x) =
∫

RN

1
hN/2

g
( x

h1/2

)(
u(x− y)− u(x)

)
dy

=
∫

RN

g(z)
(
u(x− h1/2z)− u(x)

)
dz.

Using Taylor’s formula with the Lagrange remainder, we have

u(x− h1/2z)− u(x) = −h1/2Du(x) · z +
h

2
D2u(x)(z, z)

−1
6
h3/2D3u(x− h1/2θz)(z, z, z),
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where θ = θ(x, z, h) ∈ [0, 1]. By condition (ii),
∫
RN g(z)Du(x) · z dz = 0; by

conditions (iii) and (iv),
∫
RN g(z)D2u(x)(z,z) dz = σ∆u(x). Thus,

gh ∗ u(x)− u(x) = h
σ

2
∆u(x)− 1

6
h3/2

∫

RN

g(z)D3u(x− h1/2θz)(z, z, z) dz.

We denote the error term by ε(h,x). Then we have the following estimate:

|ε(h, x)| ≤1
6
h3/2

∫

RN

|g(z)D3u(x− h1/2θz)(z, z,z)| dz

≤1
6
h3/2N3/2 sup

α,x
|∂αu(x)|

∫

RN

|z|3|g(z)| dz,

where the supremum is taken over all vectors α = (α1, α2, · · · , αN ), αj ∈
{1, 2, 3}, such that |α| = 3 and over all x ∈ RN .

The preceding theorem shows a direct relation between smoothing with a
Laplacian-consistent kernel and the heat equation. It also shows why we require
σ to be positive: If it is not positive, the kernel is associated with the inverse
heat equation (see Exercise 2.4.)

2.2 The convergence theorem

The result of the next theorem is illustrated in Figure 2.2.

Theorem 2.3. Let g be a nonnegative Laplacian-consistent kernel with σ = 2
and define gh by (2.1). Write Thu0 = gh∗u0 for u0 ∈ F , and let u(t, ·) = Gt∗u0

be the solution of the heat equation (1.15). Then, for each t > 0,

(Tn
h u0)(x) → u(t,x) uniformly in x as n → +∞ and nh → t. (2.3)

Proof. Let us start with some preliminaries. We have (gh ∗ u0)(∞) = u0(∞)
and therefore Tn

h u0(∞) = u0(∞). The norm in F is ||u||F = supx∈SN
|u(x)| =

supx∈RN |u(x)|. The first order of business is to say precisely what is meant
by the asymptotic limit (2.3): Given t > 0 and given ε > 0, there exists an
n0 = n0(t, ε) and a δ = δ(t, ε) such that ‖Tn

h u0 − u(t, ·)‖F ≤ ε if n > n0 and
|nh − t| ≤ δ. This is what we must prove. We will first prove the result when
h = t/n. We will then show that the result is true when h is suitably close to
t/n.

We begin with comments about the notation. By Exercise 2.1, (Th)n =
(Tn)h, so there is no ambiguity in writing Tn

h . We will be applying Tn
h to the

solution u of the heat equation, which is C∞ on (0, +∞)×RN . In this situation,
t is considered to be a parameter, and we write Tn

h u(t,x) as shorthand for
Tn

h u(t, ·)(x). Throughout the proof, we will be dealing with error terms that we
write as O(hr). These terms invariably depend on h, t, and x. However, in all
cases, given a closed interval [t1, t2] ⊂ (0,+∞), there will be a constant C such
that |O(hr)| ≤ Chr uniformly for t ∈ [t1, t2] and x ∈ RN . Finally, keep in mind
that all functions of x tend to u0(∞) as x →∞.

We wish to fix an interval [t1, t2], but since this depends on the point t in
(2.3) and on ε, we must first choose these numbers. Thus, choose τ > 0 and
keep it fixed. This will be the “t” in (2.3). Next, choose ε > 0. Here are the
conditions we wish t1 and t2 to satisfy:
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Figure 2.2: Iterated linear smoothing converges to the heat equation. In this
experiment with one-dimensional functions, it can be appreciated how fast an
iterated convolution of a positive kernel converges to a Gaussian. On the left
are displayed nine iterations of the convolution of the characteristic function
of an interval with itself, with appropriate rescalings. On the right, the same
experiment is repeated with a much more irregular kernel. The convergence is
almost as fast as the first case.

(1) t1 is small enough so ‖u(t1, ·) − u0‖F < ε. (This is possible by Theorem
1.9.)

(2) t1 is small enough so ‖u(t1 + τ, ·)−u(τ, ·)‖F < ε. (Again, by Theorem 1.9.)

(3) t2 is large enough so t1 + τ < t2.

There is no problem meeting these conditions, so we fix the interval [t1, t2] ⊂
(0,+∞).

Step 1, main argument : proof that

lim
n→+∞
nh=τ

Tn
h u(t1, x) = u(t1 + τ, x), (2.4)

where the convergence is uniform for x ∈ RN .
We can use Theorem 2.2 to write

Thu(t,x)− u(t,x) = h∆u(t,x) + O(h3/2), (2.5)

where t ∈ [t1, t2]. That the error function is bounded uniformly by Ch3/2 on
[t1, t2] × RN follows from the fact that supα,t,x |∂αu(t,x)| is finite for (t,x) ∈
[t1, t2] × RN (see the proof of Theorem 2.2). Since u is a solution of the heat
equation, we also have

u(t + h,x)− u(t,x) = h∆u(t,x) + O(h2). (2.6)

This time the error term is bounded uniformly by Ch2 on [t1, t2]×RN because
u is C∞ on (0,+∞)× RN . By subtracting (2.6) from (2.5) we see that

Thu(t,x) = u(t + h, x) + O(h3/2). (2.7)

This shows that applying Th to a solution of the heat equation at time t advances
the solution to time t + h, plus an error term.

So far we have not used the assumption that g is nonnegative. Thus, (2.7)
is true for any Laplacian-consistent kernel g with σ = 2. However, we now wish
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to apply the linear operator Th to both sides of equation (2.7), and in doing so
we do not want the error term to increase. Since g ≥ 0, this is not a problem:

|ThO(h3/2)| ≤
∫

RN

|O(h3/2)|gh(x− y) dy ≤
∫

RN

Ch3/2gh(x− y) dy = Ch3/2.

With this in hand, we can apply Th to both sides of (2.7) and obtain

T 2
hu(t,x) = Thu(t + h, x) + O(h3/2). (2.8)

If we write equation (2.7) with t + h in place of t and substitute the expression
for Thu(t + h,x) in equation (2.8), we have

T 2
hu(t,x) = u(t + 2h, x) + 2O(h3/2). (2.9)

We can iterate this process and get

Tn
h u(t,x) = u(t + nh, x) + nO(h3/2) (2.10)

with the same constant C in the estimate |O(h3/2)| ≤ Ch3/2 as long as t+nh ∈
[t1, t2]. To ensure that this happens, we take t = t1 and h = τ/n. Then

Tn
h u(t1, x) = u(t1 + τ, x) + O

(( τ

n

)1/2)
(2.11)

and we obtain (2.4). If we could take t1 = 0, this would end the proof. This
is not possible because all of the O terms were based on a fixed interval [t1, t2].
However, we have taken t1 small enough to finish the proof .

Step 2 : getting rid of t1.
Since

∫
RN g(x) dx = 1, ‖gh‖L1(RN ) = 1, and thus

‖gn∗
h ∗ v‖F ≤ ‖v‖F .

If we take v = u(t1, ·)− u0, then this inequality and condition (1) imply that

‖Tn
h u(t1, ·)− Tn

h u0‖F < ε. (2.12)

Relations (2.12) and (2.11) imply that

‖Tn
h u0 − u(t1 + τ, ·)‖F < 2ε. (2.13)

This inequality and condition (2) show that

‖Tn
h u0 − u(τ, ·)‖F < 3ε (2.14)

for n > n0 and h = τ/n. This proves the theorem in the case h = τ/n.

Conclusion. It is a simple matter to obtain the more general result. Again,
by Theorem 1.10, there is a δ = δ(τ, ε) such that |nh − τ | < δ implies that
‖u(nh, ·) − u(τ, ·)‖F < ε and that nh ∈ [t1, t2] (by condition (3)). Combining
this with (2.14) shows that

‖Tn
h u0 − u(nh, ·)‖F < 4ε

if n > n0 and |nh− τ | < δ, and this completes the proof.
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2.3 Directional averages and directional heat equa-
tions

In this section, we list easy extensions of Theorem 2.2. They analyze local
averaging processes which take averages at each point in a singular neighbor-
hood made of a segment. In that way, we will make appear several nonlinear
generalizations of the Laplacian which will accompany us throughout the book.
Consider a C2 function from RN into R and a vector z ∈ RN with |z| = 1. We
wish to compute the mean value of u along a segment of the line through x
parallel to the vector z. To do this, we define the operator T z

h , h ∈ [−1, 1], by

T z
h u(x) =

1
2h

∫ h

−h

u(x + sz) ds.

This operator is the directional counterpart of the isotropic operator Mh defined
by equation (1.1). We use Taylor’s formula to expand u at the point x along
the line through x parallel to the vector z:

u(x + sz) = u(x) + sDu(x) · z +
s2

2
D2u(x)(z, z) + o(s2). (2.15)

By averaging both sides of (2.15) over s ∈ [−h, h], we obtain the next result.

Proposition 2.4.

T z
h u(x) = u(x) +

h2

6
D2u(x)(z, z) + o(h2).

Proposition 2.4 is similar to to Theorem 2.2, and it suggests that iterations
of the operator T z

h are associated with the directional heat equation

∂u

∂t
(t,x) =

1
6
D2u(t,x)(z, z) (2.16)

in the same way that the iterations of the operator Th in Theorem 2.3 are
associated with the ordinary heat equation. If z is fixed, then the operator T z

h

and equation (2.16) act on u along each line in RN parallel to z separately;
there is no “cross talk” between lines. Exercise 2.5 formalizes and clarifies
these comments when z is fixed. However, Proposition 2.4 is true when z is a
function of x. This means that we are able to approximate the directional second
derivative by taking directional averages where z varies from point to point.
The main choices considered in the book are z = Du/|Du| and z = Du⊥/|Du|,
where Du = (ux, uy) and Du⊥ = (−uy, ux). Then by Proposition 2.4 we have
the following limiting relations:

• Average in the direction of the gradient. By choosing z = Du/|Du|,

1
|Du|2 D2u(Du, Du) = 6 lim

h→0

T
Du/|Du|
h u− u

h2
.

We will interpret this differential operator as Haralick’s edge detector in sec-
tion 3.1.
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• Average in the direction orthogonal to the gradient. By choosing z = Du/|Du⊥|,

1
|Du|2 D2u(Du⊥, Du⊥) = 6 lim

h→0

T
Du⊥/|Du|
h u− u

h2
.

This differential operator appears as the second term of the curvature equa-
tion. (See Chapter 12.)

Although we have not written them as such, the limits are pointwise in both
cases.

2.4 Exercises

Exercise 2.2. We will denote the characteristic function of a set A ⊂ RN by 1A. Thus,
1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. Consider the kernel g = (1/π)1D(0,1),
where D(0, 1) is the disk of radius one centered at zero. In this case, g is a radial
function and it is clearly Laplacian consistent. For N = 2, let A = [−1/2, 1/2] ×
[−1/2, 1/2]. Then g = 1A is not radial. Show that it is, however, Laplacian consistent.
If we take B = [−1, 1]×[−1/2, 1/2], then g = (1/2)1B is no longer Laplacian consistent
because it does not satisfy condition (iv). Show that this kernel does, however, satisfy
a relation similar to (2.2).

Exercise 2.3. The aim of the exercise is to prove roughly that radial functions with
fast decay are Laplacian consistent. Assume g ∈ L1(RN ) is radial with finite first sec-
ond moments,

R
RN |x|k|g(x)| dx < +∞, k = 0, 1, 2, 3 and such that

R
RN x2

i g(x) dx > 0.
Show that g satisfies conditions (ii) and (iii) of Definition 2.1 and that, for suitably
chosen a, b ∈ R, the rescaled function x 7→ ag(x/b) satisfies conditions (i) and (iv),
where σ can be taken to be an arbitrary positive number.

Exercise 2.4. The aim of the exercise is to illustrate by simple examples what happens
to the iterated filter gn∗, n ∈ N when g does not satisfy some of the requirements of
the Laplacian consistency (Definition 2.1). We recall the notation (2.1), gh(x) =

1

hN/2 g
�

x

h1/2

�
.

1) Take on R, g(x) = 1 on [−1, 1], g(x) = 0 otherwise. Which one of the assumptions
(i) − (v) is not satisfied in Definition 2.1 ? Compute gn∗

1
n
∗ u, where u = 1 on R.

Conclude : the iterated filter blows up.

2) Take on R, g(x) = 1 on [0, 1], g(x) = 0 otherwise. Which one of the assumptions
(i) − (v) is not satisfied in Definition 2.1 ? Compute gn∗ ∗ u, where u = 1 on R.
Conclude : the iterated filter “drifts”.

3) Assume that the assumptions (i) − (v) hold, except (iii). By a simple adaptation
of its proof, draw a more general form of Theorem 2.2.

4) Perform the same analysis as in 3) when all assumptions hold but (iv).

5) Take the case of dimension N = 1 and assume that (i) hold but (ii) does not hold.

Set gh(x) = 1
h

g
�

x
h

�
and give a version of Theorem 2.2 in that case (make an order 1

Taylor expansion of u).

Exercise 2.5. Let z be a fixed vector in RN with |z| = 1 and let u0 be in F . Define
a one-dimensional kernel g by g(s) = 1

2
1[−1,1](s).

(i) Show that g is Laplacian consistent. Compute the variance σ of g.



“JMMBookOct04”
23/10/2006
page 56

i

i

i

i

i

i

i

i

56CHAPTER 2. ITERATED LINEAR FILTERS AND THE HEAT EQUATION

(ii) Show that

u(t, x) =

Z

R
u0(x + sz)Gt(s) ds

is a solution of the directional heat equation

∂u

∂t
(t, x) = D2u(t, x)(z, z), u(0, x) = u0(x). (2.17)

Give an example to show that u(t, ·) is not necessarily C2. This being the case,
how does one interpret the right-hand side of (2.17)?

(iii) Let gh(s) = (6h)−1/2g(s/(6h)−1/2) and Thu(x) =
R
R u(x + sz)gh(s) ds. By

applying Theorem 2.3 for N = 1, show that, for each t > 0,

T n
h u0 → u(t, ·) in F as n → +∞ and nh → t. (2.18)

Exercise 2.6. The Weickert equation can be viewed as a variant of the curvature equa-
tion [185]. It uses a nonlocal estimate of the direction orthogonal to the gradient for
the diffusion direction. This direction is computed as the direction v of the eigenvector
corresponding to the smallest eigenvalue of k∗(Du⊗Du), where (y⊗y)(x) = (x ·y)y.
Prove that if the convolution kernel is removed, then this eigenvector is simply Du⊥.
So the equation writes

∂u

∂t
= uηη, (2.19)

where η denotes the coordinate in the direction v.

Exercise 2.7. Suppose that u ∈ C2(R). Assuming that u′(x) 6= 0, show that

u′′(x) = lim
h→0

1

h2

�
max

s∈[−h,h]
u(x + s) + min

s∈[−h,h]
u(x + s)− 2u(x)

�
. (2.20)

What is the value of the right-hand side of (2.20) if u′(x) = 0?
Now consider u ∈ C2(R2). We wish to establish an algorithm similar to (2.20) to

compute the second derivative of u in the direction of the gradient Du = (ux, uy). For
this to make sense, we must assume that Du(x) 6= 0. With these assumptions, we
know from (2.20) that

uξξ(x) =
∂2v

∂ξ2
(x, 0) = lim

h→0

1

h2

�
max

s∈[−h,h]
u(x+sz)+ min

s∈[−h,h]
u(x+sz)−2u(x)

�
, (2.21)

where v(x, ξ) = u(x + ξz) and z = Du/|Du|. The second part of the exercise is to
prove that, in fact,

uξξ(x) = lim
h→0

1

h2

�
max

y∈D(0,h)
u(x + y) + min

y∈D(0,h)
u(x + y)− 2u(x)

�
, (2.22)

where D(0, h) is the disk of radius h centered at the origin. Intuitively, (2.22) follows
from (2.21) because the gradient indicates the direction of maximal change in u(x), so
in the limit as h → 0, taking max and min in the direction of the gradient is equivalent
to taking max and min in the disk. The point of the exercise is to formalize this.

2.5 Comments and references

Asymptotics. Our proof that iterated and rescaled convolutions of a Laplacian-
consistent kernel tend asymptotically to the Gaussian is a version of the De
Moivre–Laplace formula, or the central limit theorem, adapted to image process-
ing [23]. This result is particularly relevant to image analysis, since it implies
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that iterated linear smoothing leads inevitably to convolution with the Gaussian,
or equivalently, to the application of the heat equation. We do not wish to imply,
however, that the Gaussian is the only important kernel for image processing.
The Gaussian plays a significant role in our form of image analysis, but there
are other kernels that, because of their spectral and algebraic properties, have
equally important roles in other aspects of signal and image processing. This
is particularly true for wavelet theory which combines recursive filtering and
sub-sampling.

Directional diffusion. Directional diffusion has a long history that began
when Hubel and Wiesel showed the existence of direction-sensitive cells in the
visual areas of the neocortex [91]. There has been an explosion of publication on
directional linear filters, beginning, for example, with influential papers such as
that by Daugman [51]. We note again that Gabor’s contribution to directional
filtering is described in [116].
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Chapter 3

Linear Scale Space and
Edge Detection

The general analysis framework in which an image is associated with smoothed
versions of itself at several scales is called scale space. Following the results
of Chapter 2, a linear scale space must be performed by applying the heat
equation to the image. The main aim of this smoothing is to find out edges in
the image. We shall first explain this doctrine. In the second section, we discuss
experiments and several serious objections to such an image representation.

3.1 The edge detection doctrine

One of the uses of linear theory in two dimensions is edge detection. The as-
sumption of the edge detection doctrine is that relevant information is contained
in the traces produced in an image by the apparent contours of physical objects.
If a black object is photographed against a white background, then one expects
the silhouette of the object in the image to be bounded by a closed curve across
which the light intensity u0 varies strongly. We call this curve an edge. At
first glance, it would seem that this edge could be detected by computing the
gradient Du0, since at a point x on the edge, |Du0(x)| should be large and
Du(x) should point in a direction normal to the boundary of the silhouette. It
would therefore appear that finding edges amounts to computing the gradient
of u0 and determining the points where the gradient is large. This conclusion is
unrealistic for two reasons:

(a) There may be many points where the gradient is large due to small oscilla-
tions in the image that are not related to real objects. Recall that digital
images are always noisy, and thus there is no reason to assume the existence
or computability of a gradient.

(b) The points where the gradient exceeds a given threshold are likely to form
regions and not curves.

As we emphasized in the Introduction, objection (a) is dealt with by smooth-
ing the image. We associate with the image u0 smoothed versions u(t, ·), where
the scale parameter t indicates the amount of smoothing. In the classical linear
theory, this smoothing is done by convolving u0 with the Gaussian Gt.
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One way that objection (b) has been approached is by redefining edge points.
Instead of just saying an edge point is a point x where |Du0(x)| exceeds a
threshold, one requires the gradient to satisfy a maximal property. We illustrate
this in one dimension. Suppose that u ∈ C2(R) and consider the points where
|u′(x)| attains a local maximum. At some of these points, the second derivative
u′′ changes sign, that is, sign(u′′(x− h)) 6= sign(u′′(x + h)) for sufficiently small
h. These are the points where u′′ crosses zero, and they are taken to be the edge
points. Note that this criterion avoids classifying a point x as an edge point if
the gradient is constant in an interval around x. Marr and Hildreth generalized
this idea to two dimensions by replacing u′′ with the Laplacian ∆u, which is
the only isotropic linear differential operator of order two that generalizes u′′

[130]. Haralick’s edge detector is different but in the same spirit [81]. Haralick
gives up linearity and defines edge points as those points where the gradient
has a local maximum in the direction of the gradient. In other words, an edge
point x satisfies g′(0) = 0, where g(t) = |Du(x+tDu(x)|/|Du(x)|. This implies
that D2u(x)(Du(x), Du(x)) = 0 (see Exercise 3.2). We are now going to state
these two algorithms formally. They are illustrated in Figures 3.2 and 3.3,
respectively.

Algorithm 3.1 (Edge detection: Marr–Hildreth zero-crossings).

(1) Create the multiscale images u(t, ·) = Gt ∗ u0 for increasing values of t.

(2) At each scale t, compute all the points where Du 6= 0 and ∆u changes
sign. These points are called zero-crossings of the Laplacian, or simply
zero-crossings.

(3) (Optional) Eliminate the zero-crossings where the gradient is below some
prefixed threshold.

(4) track back from large scales to fine scales the “main edges” detected at large
scales.

Algorithm 3.2 (Edge detection: The Haralick–Canny edge detector).

(1) As before, create the multiscale images u(t, ·) = Gt ∗u0 for increasing values
of t.

(2) At each scale t, find all points x where Du(x) 6= 0 and D2u(x)(z,z) crosses
zero, z = Du/|Du|. At such points, the function s 7→ u(x + sz) changes
from concave to convex, or conversely, as s passes through zero.

(3) At each scale t, fix a threshold θ(t) and retain as edge points at scale t only
those points found above that satisfy |Du(x)| > θ(t). The backtracking
step across scales is the same as for Marr–Hildreth.

In practice, edges are computed for a finite number of dyadic scales, t = 2n,
n ∈ Z.

3.1.1 Discussion and critique

The Haralick–Canny edge detector is generally preferred for its accuracy to the
Marr–Hildreth algorithm. Their use and characteristics are, however, essentially
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Figure 3.1: A three-dimensional representation of the Laplacian of the Gaussian.
This convolution kernel, which is a wavelet, is used to estimate the Laplacian
of an image at different scales of linear smoothing.

the same. There are also many variations—attempted improvements—of the
algorithms we have described, and the following discussion adapts easily to these
related edge detection schemes. The first thing to notice is that, by Proposition
1.5, u(t, ·) = Gt ∗ u0 is a C∞ function for each t > 0 if u0 ∈ F . Thus we can
indeed compute second order differential operators applied to u(t, ·) = Gt ∗ u0,
t > 0. In the case of linear operators like the Laplacian or the gradient, the task
is facilitated by the formula proved in the mentioned proposition. For example,
we have ∆u(t,x) = ∆(Gt ∗ u0)(x) = (∆Gt) ∗ u0(x), where in dimension two
(Figure 3.1),

∆Gt(x) =
|x|2 − 4t

16πt3
e−|x|

2/4t.

In the same way, Haralick’s edge detector makes sense, because u is C∞, at
all points where Du(x) 6= 0. If Du(x) = 0, then x cannot be an edge point,
since u is “flat” there. Thus, thanks to the filtering, there is no theoretical
problem with computing edge points. There are, however, practical objections
to these methods, which we will now discuss.

Linear scale space

The first serious problems are associated with the addition of an extra dimen-
sion: Having many images u(t, ·) at different scales t confounds our understand-
ing of the image and adds to the cost of computation. We no longer have an
absolute definition of an edge. We can only speak of edges at a certain scale.
Conceivably, a way around this problem would be to track edges across scales.
In fact, it has been observed in experiments that the “main edges” persist under
convolution as t increases, but they lose much of their spatial accuracy. On the
other hand, filtering with a sharp low-pass filter, that is, with t small, keeps
these edges in their proper positions, but eventually, as t becomes very small,
even these main edges can be lost in the crowd of spurious edge signals due to
noise and texture. The scale space theory of Witkin proposes to identify the
main edges at some scale t and then to track them backward as t decreases [190].
In theory, it would seem that this method could give an accurate location of the
main edges. In practice, any implementation of these ideas is computationally
costly due to the problems involved with multiple thresholdings and following
edges across scales. In fact, tracking edges across scales is incompatible with
having thresholds for the gradients, since such thresholds may remove edges at
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Figure 3.2: Zero-crossings of the Laplacian at different scales. This figure il-
lustrates the original scale space theory as developed by David Marr [129]. To
extract more global structure, the image is convolved with Gaussians whose
variances are powers of two. One computes the Laplacian of the smoothed
image and displays the lines along which this Laplacian changes sign: the zero-
crossings of the Laplacian. According to Marr, these zero-crossings represent
the “raw primal sketch” of the image, or the essential information on which
further vision algorithms should be based. Above, left to right: the results of
smoothing and the associated Gaussian kernels at scales 1, 2, and 4. Below,
left to right: the zero-crossings of the Laplacian and the corresponding kernels,
which are the Laplacians of the Gaussians used above.

certain scales and not at others. The conclusion is that one should trace all
zero-crossings across scales without considering whether they are true edges or
not. This makes matching edges across scales very difficult. For example, ex-
periments show that zero-crossings of sharp edges that are sparse at small scales
are no longer sparse at large scales. (Figure 3.4 shows how zero-crossings can
be created by linear smoothing.) The Haralick–Canny detector suffers from the
same problems, as is well demonstrated by experiments.

Other problems with linear scale space are illustrated in Figures 3.5 and
3.6. Figure 3.5 illustrates how linear smoothing can create new gray levels and
new extrema. Figure 3.6 shows that linear scale space does not maintain the
inclusion between objects. The shape inclusion principal will be discussed in
Chapter 21.

We must conclude that the work on linear edge detection has been an at-
tempt to build a theory that has not succeeded. After more than thirty years
of activity, it has become clear that no robust technology can be based on these
ideas. Since edge detection algorithms depend on multiple thresholds on the
gradient, followed by “filling-the-holes” algorithms, there can be no scientific
agreement on the identification of edge points in a given image. In short, the
problems associated with linear smoothing followed by edge detection have not
been resolved by the idea of chasing edges across scales.
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Figure 3.3: Canny’s edge detector. These images illustrate the Canny edge
detector. Left column: result of the Canny filter without the threshold on the
gradient. Middle column: result with a visually “optimal” scale and an image-
dependent threshold (from top to bottom: 15, 0.5, 0.6). Right column: result
with a fixed gradient threshold equal to 0.7. Note that such an edge detection
theory depends on no fewer than two parameters that must be fixed by the user:
smoothing scale and gradient threshold .

Figure 3.4: Zero-crossings of the Laplacian of a synthetic image. Left to right:
the original image; the image linearly smoothed by convolution with a Gaussian;
the sign of the Laplacian of the filtered image (the gray color corresponds to
values close to 0, black to clear-cut negative values, white to clear-cut positive
values); the zero-crossings of the Laplacian. This experiment clearly shows a
drawback of the Laplacian as edge detector.

Contrast invariance

As already mentioned in the Introduction, a central theme of the book is that
the use of contrast-invariant operators will solve some of the technical prob-
lems associated with linear smoothing and other linear image operators. The
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(a) (b) (c)

Figure 3.5: The heat equation creates structure. This experiment shows that
linear scale space can create new structures and thus increase the complexity of
an image. Left to right: The original synthetic image (a) contains three gray
levels. The black disk is a regional and absolute minimum. The “white” ring
around the black disk is a regional and absolute maximum. The outer gray ring
has a gray value between the other two and is a regional minimum. The second
image (b) shows what happens when (a) is smoothed with the heat equation:
New local extrema have appeared. Image (c) illustrates the action on (a) of a
contrast-invariant local filter, the iterated median filter, which is introduced in
Chapter 10.

development of these ideas starts in Chapter 3.
Recall from section I.3 that an (image) operator u 7→ Tu is contrast invariant

if T commutes with all nondecreasing functions g, that is, if

g(Tu) = T (g(u)). (3.1)

If image analysis is to be robust, it must be invariant under changes in lighting
that produce contrast changes. It must also be invariant under the nonlinear
response of the sensors used to capture an image. These, and perhaps other,
contrast changes are modeled by g. If g is strictly increasing, then relation (3.1)
ensures that the filtered image Tu = g−1(T (g(u))) does not depend on g. A
problem with linear theory is that linear smoothing, that is, convolution, is not
generally contrast invariant:

g(k ∗ u) 6= k ∗ (g(u)).

In the same way, the operator Tt that maps u0 into the solution of the heat
equation, u(t, ·) is not generally contrast invariant. In fact, if g is C2, then

∂(g(u))
∂t

= g′(u)
∂u

∂t
and

∆(g(u)) = g′(u)∆u + g′′(u)|Du|2.
Exercise 3.1. Prove this last relation. Prove that if g(s) = as + b then g(u) satisfies
the heat equation if u does.
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Figure 3.6: Violation of the inclusion by the linear scale space. Top, left: an
image that contains a black disk enclosed by a white disk. Top, right: At
a certain scale, the black and white circles mix together. Bottom, left: The
boundaries of the two circles. Bottom, right: After smoothing with a certain
value of t, the inclusion that existed for very small t in no longer preserved. We
display the level lines of the image at levels multiples of 16.

3.2 Exercises

Exercise 3.2. Define an edge point x in a smooth image u as a point x at which g(t)
attains a maximum, where

g(t) = |Du

�
x + t

Du(x)

|Du(x)|
�
|.

Prove by differentiating g(t) that edge points satisfy D2u(x)(Du(x), Du(x)) = 0

Exercise 3.3. Construct simple functions u, g, and k such that g(k ∗ u) 6= k ∗ (g(u)).

Exercise 3.4. Consider the Perona–Malik equation in divergence form:

∂u

∂t
= div(g(|Du|)Du), (3.2)

where g(s) = 1/(1+λ2s2). It is easily checked that we have a diffusion equation when
λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. To see this, consider
the second derivative of u in the direction of Du,

uξξ = D2u

�
Du

|Du| ,
Du

|Du|
�

,
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and the second derivative of u in the orthogonal direction,

uηη = D2u

�
Du⊥

|Du| ,
Du⊥

|Du|
�

,

where Du = (ux, uy) and Du⊥ = (−uy, ux). The Laplacian can be rewritten in the
intrinsic coordinates (ξ, η) as ∆u = uξξ + uηη. Prove that the Perona–Malik equation
then becomes

∂u

∂t
=

1

1 + λ2|Du|2 uηη +
1− λ2|Du|2

(1 + λ2|Du|2)2 uξξ.

Interpret the local behavior of the equation as a heat equation or a reverse heat
equation according to the size of |Du| compared to λ−1.

3.3 Comments and references

Scale space. The term “scale space” was introduced by Witkin in 1983. He
suggested tracking the zero-crossings of the Laplacian of the smoothed image
across scales [190]. Yuille and Poggio proved that these zero-crossings can be
tracked for one-dimensional signals [193]. Hummel and Moniot [92, 95] and
Yuille and Poggio [194] analyzed the conjectures of Marr and Witkin according
to which an image is completely recoverable from its zero-crossings at different
scales. Mallat formulated Marr’s conjecture as an algorithm in the context of
wavelet analysis. He replaced the Gaussian with a two-dimensional cubic spline,
and he used both the zero-crossings of the smoothed images and the nonzero
values of the gradients at these points to reconstruct the image. This algorithm
works well in practice, and the conjecture was that these zero-crossings and
the values of the gradients determined the image. A counterexample given by
Meyer shows that this is not the case. Perfect reconstruction is possible in the
one-dimensional case for signals with compact support if the smoothing kernel is
the Tukey window, k(x) = 1 + cos x for |x| ≤ π and zero elsewhere. An account
of the Mallat conjecture and these examples can be found in [98]. Koenderink
presents a general and insightful theory of image scale space in [107].

Gaussian smoothing and edge detection. The use of Gaussian filtering
in image analysis is so pervasive that it is impossible to point to a “first paper.”
It is, however, safe to say that David Marr’s famous book, Vision [129], and the
original paper by Hildreth and Marr [130] have had an immeasurable impact
on edge detection and image processing in general. The term “edge detection”
appeared as early as 1959 in connection with television transmission [99]. The
idea that the computation of derivatives of an image necessitates a previous
smoothing has been extensively developed by the Dutch school of image analysis
[21, 69]. See also the books by Florack [68], Lindeberg [115], and Romeny [181],
and the paper [65]. Haralick’s edge detector [81], as implemented by Canny
[28], is probably the best known image analysis operator. A year after Canny’s
1986 paper, Deriche published a recursive implementation of Canny’s criteria
for edge detection [55].



“JMMBookOct04”
23/10/2006
page 67

i

i

i

i

i

i

i

i

Chapter 4

Four Algorithms to Smooth
a Shape

In this short but important chapter, we discuss algorithms whose aim it is
to smooth shapes. Shape must be understood as a rough data which can be
extracted from an image, either a subset of the plane, or the curve surrounding it.
Shape smoothing is directed at the elimination of spurious, often noisy, details.
The smoothed shape can then be reduced to a compact and robust code for
recognition. The choice of the right smoothing will make us busy throughout
the book. A good part of the solution stems from the four algorithms we describe
and their progress towards more robustness, more invariance and more locality.
What we mean by such qualities will be progressively formalized. We will discuss
two algorithms which directly smooth sets, and two which smooth Jordan curves.
One of the aims of the book is actually to prove that both approaches, different
though they are, eventually yield the very same process, namely a curvature
motion.

4.1 Dynamic shape

In 1986, Koenderink and van Doorn defined a shape in RN to be a closed subset
X of RN [108]. They then proposed to smooth the shape by applying the heat
equation ∂u/∂t −∆u = 0 directly to 1X , the characteristic function of X. Of
course, the solution Gt∗1X is not a characteristic function. The authors defined
the evolved shape at scale t to be

Xt = {x | u(t,x) ≥ 1/2}.

The value 1/2 is chosen so the following simple requirement is satisfied: Suppose
that X is the half-plane X = {(x, y) | (x, y) ∈ R2, x ≥ 0}. The requirement is
that this half plane doesn’t move,

X = Xt = {(x, y) | Gt ∗ 1X(x, y) ≥ λ},

and this is true only if λ = 1/2. There are at least two problems with dynamic
shape evolution for image analysis. The first concerns nonlocal interactions, as
illustrated in Figure 4.1. Here we have two disks that are near one another.

67
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68 CHAPTER 4. FOUR ALGORITHMS TO SMOOTH A SHAPE

Figure 4.1: Nonlocal interactions in the dynamic shape method. Left to right:
Two close disks interact as the scale increases. This creates a new, qualitatively
different, shape. The change of topology, at the scale where the two disks
merge into one shape, also entails the appearance of a singularity (a cusp) on
the shape(s) boundaries.

The evolution of the union of both disks, considered as a single shape, is quite
different from the evolution of the disks separately. A related problem, also
illustrated in Figure 4.1, is the creation of singularities. Note how a singularity
in orientation and the curvature of the boundary of the shape develops at the
point where the two disks touch. Figure 4.2 further illustrates the problems
associated with the dynamic shape method.

4.2 Curve evolution using the heat equation

We consider shapes in R2 whose boundaries can be represented by a finite num-
ber of simple closed rectifiable Jordan curves. Thus, each curve we consider can
be represented by a continuous mapping f : [0, 1] → R2 such that f is one-to-one
on (0, 1) and f(0) = f(1), and each curve has a finite length. We also assume
that these curves do not intersect each other. We will focus on smoothing one
of these Jordan curves, which we call C0. We assume that C0 is parameterized
by s ∈ [0, L], where L is the length of the curve. Thus, C0 is represented as
x0(s) = (x(s), y(s)), where s is the length of the curve between x0(0) and x0(s).

At first glance, it might seem reasonable to smooth C0 by smoothing the
coordinate functions x and y separately. If this is done linearly, we have seen
from Theorem 2.3 that the process is asymptotic to smoothing with the heat
equation. Thus, one is led naturally to consider the vector heat equation

∂x

∂t
(t, s) =

∂2x

∂s2
(t, s) (4.1)

with initial condition x(0, s) = x0(s). If x(t, s) = (x(t, s), y(t, s)) is the solution
of (4.1), then we know from Proposition 1.9 that

inf
s∈[0,L]

x0(s) ≤ x(t, s) ≤ sup
s∈[0,L]

x0(s),

inf
s∈[0,L]

y0(s) ≤ y(t, s) ≤ sup
s∈[0,L]

y0(s),

for s ∈ [0, L] and t ∈ [0, +∞). Thus, the evolved curves Ct remain in the
rectangle that held C0. Also, we know from Proposition 1.5 that the coordinate
functions x(t, ·) and y(t, ·) are C∞ for t > 0. There are, however, at least two
reasons that argue against smoothing curves this way:
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Figure 4.2: Nonlocal behavior of shapes with the dynamic shape method. This
image displays the smoothing of two irregular shapes by the dynamic shape
method (Koenderink–van Doorn). Top left: initial image, made of two irregular
shapes. From left to right, top to bottom: dynamic shape smoothing with
increasing Gaussian variance. Notice how the shapes merge more and more.
We do not have a separate analysis of each shape but rather a “joint analysis”
of the two shapes. The way the shapes merge is of course sensitive to the initial
distance between the shapes. Compare with Figure 4.4.

(1) When t > 0, s is no longer a length parameter for the evolved curve Ct.

(2) Although x(t, ·) and y(t, ·) are C∞ for t > 0, this does not imply that the
curves Ct have similar smoothness properties. In fact, it can be seen from
Figure 4.3 that it is possible for an evolved curve to cross itself and it is
possible for it to develop singularities.

How is this last mentioned phenomenon possible ? It turns out that one can
parameterize a curve with corners or cusps with a very smooth parameterization:
see Exercise 4.1.

In image processing, we say that a process that introduces new features,
such as described in item (2) above, is not causal. (This informal definition
should not be confused with the use of “causality,” as it is used, for example,
when speaking about filters: A filter F is said to be causal, or realizable, if the
equality of two signals s0 and s1 up to time t0 implies that Fs0(t) = Fs1(t) for
the same period.)

4.3 Restoring locality and causality

Our main objective is to redefine the smoothing processes so they are local and
do not create new singularities. This can be done by alternating a small-scale
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"A"
 "B"


"C"
 "D"


Figure 4.3: Curve evolution by the heat equation. The coordinates of the curves
are parameterized by the arc length and then smoothed as real functions of the
length using the heat equation. From A to D: the coordinates are smoothed
with an increasing scale. Each coordinate function therefore is C∞; the evolving
curve can, however, develop self-crossings (as in C) or singularities (as in D).

linear convolution with a natural renormalization process.

4.3.1 Localizing the dynamic shape method

In the case of dynamic shape analysis, we define an alternate dynamic shape
algorithm as follows:

Algorithm 4.1 (The Merriman–Bence–Osher algorithm).

(1) Convolve the characteristic function of the initial shape X0 with Gh, where
h is small.

(2) Define X1 = {x | Gh ∗ 1X0 ≥ 1/2}.
(3) Set X0 = X1 and go back to (1).

This is an iterated dynamic shape algorithm. The dynamic shape method
itself is an example of a median filter, which will be defined in Chapter 10. The
Merriman–Bence–Osher algorithm is thus an iterated median filter (see Figure
4.4). We will see in Chapters 13 and 14 that median filters have asymptotic
properties that are similar to those expressed in Theorem 2.3. In the case of
median filters, the associated partial differential equation will be a curvature
motion equation (defined in Chapter 12).
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Figure 4.4: The Merriman–Bence–Osher shape smoothing method is a localized
and iterated version of the dynamic shape method. A convolution of the binary
image with small-sized Gaussians is alternated with mid-level thresholding. It
uses the same initial data (top, left) as in Figure 4.2. From left to right, top
to bottom: smoothing with increasing scales. Notice that the shapes remain
separate. In fact, their is no interaction between the evolving shapes. Each one
evolves as if the other did not exist.

4.3.2 Renormalized heat equation for curves

In 1992, Mackworth and Mokhtarian noticed the loss of causality when the heat
equation was applied to curves [120]. Their method to restore causality looks,
at least formally, like the remedy given for the nonlocalization of the dynamic
shape method. Instead of applying the heat equation for relatively long times
(or, equivalently, convolving the curve x with the Gaussian Gt for large t), they
use the following algorithm:

Algorithm 4.2 (Renormalized heat equation for curves).

(1) Convolve the initial curve x0, parameterized by its length parameter s0 ∈
[0, L0], with the Gaussian Gh, where h is small.

(2) Let Ln denote the length of the curve xn obtained after n iterations and let
sn denote its length parameter. For n ≥ 1, write x̃n+1(sn) = Gh ∗ xn(sn).
Then reparameterize x̃n+1 by its length parameter sn+1 ∈ [0, Ln+1], and
denote it by xn+1.

(3) Iterate.

This algorithm is illustrated in Figure 4.5. It should be compared with
Figure 4.3.
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"A"
 "B"


"C"
 "D"


Figure 4.5: Curve evolution by the renormalized heat equation (Mackworth–
Mokhtarian). After each smoothing step, the coordinates of the curve are repa-
rameterized by the arc length of the smoothed curve. From A to D: the curve is
smoothed with an increasing scale. Note that, in contrast with the linear heat
equation (Figure 4.3), the evolving curve shows no singularities and does not
cross itself.

Theorem 4.1. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L]. Then for small h,

Gh ∗ x(s)− x(s) = h
∂2x

∂s2
+ o(h). (4.2)

This theorem is easily checked, see Exercise 4.2
In view of (4.2) and what we have seen regarding asymptotic limits in The-

orem 2.3 and Exercise 2.5, it is reasonable to conjecture that, in the asymptotic
limit, Algorithm 4.2 will yield the solution of following evolution equation:

∂x

∂t
=

∂2x

∂s2
, (4.3)

where x0 = x(0, ·). It is important to note that (4.3) is not the heat equa-
tion (4.1). Indeed, from Algorithm 4.2 we see that s must denote the length
parameter of the evolved curve x(t, ·) at time t. In fact ∂2x/∂s2 has a geo-
metric interpretation as a curvature vector. We will study this nonlinear curve
evolution equation in Chapter 12.

4.4 Exercises

Exercise 4.1. Construct a C∞ mapping f : [0, 1] → R2 such that the image of [0, 1]
is a square. This shows that a curve can have a C∞ parameterization without being
smooth.
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Exercise 4.2. Prove Theorem 4.1. If x is a C3 function of s, then the result follows
directly from Theorem 2.2. The result holds, however, for a C2 curve.

4.5 Comments and references

Dynamic shape, curve evolution, and restoring causality. Our account
of the dynamic shape method is based on the well-known paper by Koenderink
and van Doorn in which they introduced this notion [108]. The curve evolution
by the heat equation is from the first 1986 version of curve analysis proposed
by Mackworth and Mokhtarian [119]. See also the paper by Horn and Weldon
[88]. There were model errors in the 1986 paper [119] that were corrected by
the authors in their 1992 paper [120]. There, they also proposed the correct
intrinsic equation. However, this 1992 paper contains several inexact statements
about the properties of the intrinsic equation. The correct theorems and proofs
can be found in a paper by Grayson written in 1987 [77]. The algorithm that
restores causality and locality to the dynamic shape method was discovered by
Merriman, Bence, and Osher, who devised this algorithm for a totally different
reason: They were looking for a clever numerical implementation of the mean
curvature equation [134].

Topological change under smoothing. We have included several figures
that illustrate how essential topological properties of an image change when the
image is smoothed with the Gaussian. Damon has made a complete analysis of
the topological behavior of critical points of an image under Gaussian smoothing
[49]. This analysis had been sketched in [192].
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Contrast-Invariant Image
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Chapter 5

Contrast-Invariant Classes
of Functions and Their
Level Sets

This chapter is about one of the major technological contributions of mathe-
matical morphology, namely the representation of images by their upper level
sets. As we shall see in this chapter, this leads to a handy contrast invariant
representation of images.

Definition 5.1. Let u ∈ F . The level set of u at level 0 ≤ λ ≤ 1 is denoted by
Xλu and defined by

Xλu = {x | u(x) ≥ λ}.

Strictly speaking, we have called level sets what should more properly be
called upper level sets. Several level sets of a digital image are shown in Figure
5.1 and all of the level sets of a synthetic image are illustrated in Figure 5.2.
The reconstruction of an image from its level sets is illustrated in Figure 5.3.
Two important properties of the level sets of a function follow directly from the
definition. The first is that the level sets provide a complete description of the
function. Indeed, we can reconstruct u from its level sets Xλu by the formula

u(x) = sup{λ | x ∈ Xλu}.

This formula is called superposition principle as u is being reconstructed by
“superposing” its level sets.
Exercise 5.1. Prove the superposition principle.

The second important property is that level sets of a function are globally
invariant under contrast changes. We say that two functions u and v have the
same level sets globally if for every λ there is µ such that Xµv = Xλu, and
conversely. Now suppose that a contrast change g : R → R is continuous and
increasing. Then it is not difficult to show that v = g(u) and u have the same
level sets globally.
Exercise 5.2. Check this last statement for any function u and any continuous in-
creasing contrast change g.

77
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78 CHAPTER 5. CONTRAST-INVARIANCE AND LEVEL SETS

Figure 5.1: Level sets of a digital image. Left to right, top to bottom: We first
show an image with range of gray levels from 0 to 255. Then we show eight level
sets in decreasing order from λ = 225 to λ = 50, where the grayscale step is 25.
Notice how essential features of the shapes are contained in the boundaries of
level sets, the level lines. Each level set (which appears as white) is contained
in the next one, as guaranteed by Proposition 5.2.

Conversely, we shall prove that if the level sets of a function v ∈ F are level
sets of u, then there is a continuous contrast change g such that v = g(u). This
justifies the attention we will dedicate to level sets, as they turn out to contain
all of the contrast invariant information about u.

5.1 From an image to its level sets and back

In the next proposition, for a sake of generality, we consider bounded measurable
functions on SN , not just functions in F .

Proposition 5.2. Let Xλ denote the level sets Xλu of a bounded measurable
function u : SN → R. Then the sets Xλ satisfy the following two structural
properties:

(i) If λ > µ, then Xλ ⊂ Xµ. In addition, there are two real numbers λmax ≥
λmin so that Xλ = SN for λ < λmin, Xλ = ∅ for λ > λmax.

(ii) Xλ =
⋂

µ<λ Xµ for every λ ∈ R.

Conversely, if (Xλ)λ∈R is a family of sets of M that satisfies (i) and (ii), then
the level sets of the function u defined by superposition principle,

u(x) = sup{λ | x ∈ Xλ} (5.1)
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Figure 5.2: A simple synthetic image and all of its level sets (in white) with
decreasing levels, from left to right and from top to bottom.

satisfy Xλu = Xλ for all λ ∈ R and λmin ≤ u ≤ λmax.

Proof. The first part of Relation (i) follows directly from the definition of upper
level sets. The second part of (i) works with λmin = inf u and λmax = sup u.
The relation (ii) follows from the equivalence u(x) ≥ λ ⇔ u(x) ≥ µ for every
µ < λ.

Conversely, take a family of subsets (Xλ)λ∈R satisfying (i) and (ii) and define
u by the superposition principle. Let us show that Xλ = Xλu. Take first x ∈ Xλ.
Then it follows from the definition of u that u(x) ≥ λ, and hence x ∈ Xλu.
Thus, Xλ ⊂ Xλu. Conversely, let x ∈ Xλu. Then u(x) = sup{ν | x ∈ Xν} ≥ λ.
Consider any µ < λ. Then there exists a µ′ such that µ < µ′ ≤ sup{ν | x ∈ Xν}
and x ∈ Xµ′ . It follows from (i) that x ∈ Xµ. Since µ was any number less
that λ, we conclude by using (ii) that x ∈ ⋂

µ<λ Xµ = Xλ. It is easily checked
that λmin ≤ u ≤ λmax.

Exercise 5.3. Check the last statement of the preceding proof, that λmin ≤ u ≤ λmax.

5.2 Contrast changes and level sets

Practical aspects of contrast changes are illustrated in Figures 5.4, 5.5, 5.6,
and 5.7, which illustrate how insensitive our perception of images is to contrast
changes, even when they are flat on some interval. When this happens, some
information on the image is even lost, as several grey levels melt together.

Definition 5.3. Any nondecreasing continuous surjection g : R → R will be
called a contrast change.

Exercise 5.4. Remark that g(s) → ±∞ as s → ±∞. Check that if u ∈ F and g is a
contrast change, then g(u) ∈ F .

In case g is increasing, g has an inverse contrast change g−1. In case g is flat
on some interval, we shall be happy with a pseudo-inverse for g.
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Figure 5.3: Reconstruction of an image from its level sets: an illustration of
Proposition 3.2. We use four different subsets of the image’s level sets to give
four reconstructions. Top, left: all level sets; top, right: all level sets whose gray
level is a multiple of 8; bottom, left: multiples of 16; bottom, right: multiples of
32. Notice the relative stability of the image shape content under these drastic
quantizations of the gray levels.

Definition 5.4. The pseudo-inverse of any contrast change g : R→ R is defined
by

g(−1)(λ) = inf{r ∈ R | g(r) ≥ λ}.

Exercise 5.5. Check that g−1 is finite on R and tends to ±∞ as s → ±∞. Give an
example of g such that g−1 is not continuous.

Exercise 5.6. Compute and draw g(−1) for the function g(s) = max(0, s). Notice
that such a function is ruled out by our conditions at infinity for contrast changes.

Lemma 5.5. Let g : R → R be a contrast change. Then for every λ ∈ R,
g(g(−1))(λ) = λ and

g(s) ≥ λ if and only if s ≥ g(−1)(λ). (5.2)

Proof. The first relation follows immediately from the continuity of g. If g(s) ≥
λ, then s ≥ g(−1)(λ) by the definition of g(−1)(λ). Conversely, if s ≥ g(−1)(λ),
then g(s) ≥ g(g(−1)(λ)) = λ and thus g(s) ≥ λ.

Theorem 5.6. Let u ∈ F and g be a contrast change. Then any level set of
g(u) is a level set of u. More precisely, for λ ∈ R,

Xλg(u) = Xg(−1)(λ)u. (5.3)
Proof. The proof is read directly from Lemma 5.5 by taking s = u.

The next result is a converse statement to Theorem 5.6.
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Figure 5.4: The histogram of the image Bird. For each i ∈ {0, 1, . . . , 255}, we
display (above, right) the function h(i) = Card {x | u(x) = i}. The function
below is given by g(i) = Card {x | u(x) ≤ i}, an integral of h. It provides
an indication about the overall contrast of the image and about the contrast
change imposed by the sensors. The pseudo inverse function g(−1) can be used
as a contrast change to create an image g(−1)(u) with a flat histogram.

Theorem 5.7. Let u and v ∈ F such that every level set of v is a level set of
u. Then v = g(u) for some contrast change g.

Proof. One can actually give an explicit formula for g, namely, for every µ ∈
u(SN ),

g(µ) = sup{λ ∈ v(SN ) | Xµu ⊂ Xλv}. (5.4)

For µ /∈ u(SN ), we can easily extend g into an nondecreasing function such that
g(±∞) = ±∞). (Take (e.g.) g piecewise affine). Note that ν > µ implies that
g(ν) ≥ g(µ). Let us first show that inf v ≤ g(µ) ≤ sup v. Set

Λ := {λ | Xµu ⊂ Xλv}.
Λ is not empty because Xinf v = SN and therefore inf v ∈ Λ. Thus g(µ) =
supΛ ≥ inf v. On the other hand Xsup v+εv = ∅ for every ε > 0. Since µ ∈ u(SN ),
Xµu 6= ∅ and therefore g(µ) = supΛ ≤ sup v.

Step 1: Proof that v(x) ≥ g(u(x)). By Proposition 5.2(i) Λ has the form
(−∞, sup Λ) or (−∞, supΛ]. But by Proposition 5.2(ii), Xsup Λv =

⋂
λ<sup Λ Xλv,

and this implies by the definition of Λ that g(µ) = sup Λ ∈ Λ. Thus,

Xµu ⊂ Xg(µ)v. (5.5)

Given x ∈ SN , let µ = u(x) in (5.5). Then,

Xu(x)u ⊂ Xg(u(x))v.

Since x ∈ Xu(x)u, we conclude that x ∈ Xg(u(x))v = {y | v(y) ≥ g(u(x))}.
Step 2: Proof that v(x) ≤ g(u(x)). Given x ∈ SN , we translate the
assumption with λ = v(x) as follows: There exists a µ(x) ∈ R such that

Xv(x)v = {y | u(y) ≥ µ(x)} = Xµ(x)u. (5.6)
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Figure 5.5: Contrast changes and an equivalence class of images. The three
images have exactly the same level sets and level lines, but their level sets are
mapped onto three different gray-level scales. The graphs on the right are the
graphs of the contrast changes u 7→ g(u) that have been applied to the initial
gray levels. The first one is concave; it enhances the darker parts of the image.
The second one is the identity; it leaves the image unaltered. The third one
is convex; it enhances the brighter parts of the image. Software allows one to
manipulate the contrast of an image to obtain the best visualization. From the
image analysis viewpoint, image data should be considered as an equivalence
class under all possible contrast changes.

Since x ∈ Xv(x)v, we know that x ∈ Xµ(x)u. Thus, u(x) ≥ µ(x), and Xu(x)u ⊂
Xµ(x)u = Xv(x)v. This last relation implies by the definition of g that v(x) ≤
g(u(x)).

Step 3: Proof that g is continuous. Recall that the image of a connected
set by a continuous function is connected. Thus u(SN ) is an interval of R
and so is v(SN ). Since g(u) = v, g(u(SN )) = v(SN ) is an interval. Now, a
nondecreasing function is continuous on an interval if and only if its range is
connected. Thus g is continuous on u(SN ) and so is its extension to R.

Exercise 5.7. Prove the last statement in the theorem, namely that “a nondecreasing
function is continuous on an interval if and only if its range is connected”.
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Figure 5.6: The two images (left) have the same set of level sets. The contrast
change that maps the upper image onto the lower image is displayed on the
right. It corresponds to one of the possible g functions whose existence is stated
in Corollary 3.14. The function g may be locally constant on intervals where
the histogram of the upper image is zero (see top, middle graph). Indeed, on
such intervals, the level sets are invariant.

Figure 5.7: The original image (top, left) has a strictly positive histogram (all
gray levels between 0 and 255 are represented). Therefore, if any contrast change
g that is not strictly increasing is applied, then some data will be lost. Every
level set of the transformed image g(u) is a level set of the original image;
however, the original image has more level sets than the transformed image.

Exercise 5.8. By reading carefully the steps 1 and 2 of the proof of Theorem 5.7,
check that this theorem applies with u and v just bounded and measurable on SN .
Then one has still has v = g(u) with g defined in the same way. Of course g is still
nondecreasing but not necessarily continuous. Find a simple example of functions u
and v such that g is not continuous.
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5.3 Exercises

Exercise 5.9. This exercise gives a way to compute the function g such that v = g(u)
defined in the proof of Theorem 5.7 in terms of the repartition functions of u and v.
Let G be a Gauss function defined on RN such that

R
RN G(x)dx = 1. For every

measurable subset of RN , set |A|G :=
R

A
G(x)dx. Let u be a bounded measurable

function on RN . We can associate with u its repartition function hu(λ) := |Xλu|G.
Show that λ → hu(λ) is strictly decreasing. Show that it can have jumps but is left-
continuous, that is hu(λ) = limµ↑λ hu(µ). Define for every non increasing function h a
pseudo inverse by h((−1))(µ) := sup{λ | h(λ) ≤ µ}. Show that h((−1)) is non increasing

and that h((−1)) ◦ h(µ) = µ, h ◦ h(−1)(µ) ≥ µ. Using (5.4) prove that g = h
((−1))
v ◦ hu.

Hint: prove that g(µ) = sup{λ | |Xλu|G ≤ |Xλv|G}.
Exercise 5.10. Check the following statements, used in the proof of Proposition 5.2:

(i) Xλ = SN for λ < λ0 implies that u(x) ≥ λ0, x ∈ SN .

(ii) Xλ = ∅ for λ > λ0 implies that u(x) ≤ λ0, x ∈ SN .

Exercise 5.11. Let u be a real-valued function. If (µn)n∈N is an increasing sequence
that tends to λ, prove that

Xλu =
\

n∈N
Xµnu (5.7)

{x | u(x) > λ} =
[

µ>λ

Xµu. (5.8)

5.4 Comments and references

Contrast invariance and level sets. It was Wertheimer who noticed that
the actual local values of the gray levels in an image could not be relevant in-
formation for the human visual system [188]. Contrast invariance is one of the
fundamental model assumptions in mathematical morphology. The two basic
books on this subject are Matheron [133] and Serra [168, 170]. See also the
fundamental paper by Serra [169]. Ballester et al. defined an “image intersec-
tion” whose principle is to keep all pieces of bilevel sets common to two images
[16]. (A bilevel set is of the form {x | λ ≤ u(x) ≤ µ}.) Monasse and Guichard
recently developed a fast level set transform (FLST) to associate with every
image the inclusion tree of connected components of level sets [137]. They show
that the inclusion trees of connected upper and lower level sets can be fused
into a single inclusion tree; among other applications, this tree can be used for
image registration. See Monasse [136].

Contrast changes. The ability to vary the contrast (to apply a contrast
change) of a digital image is a very useful tool for improving image visualization.
Professional image processing software has this capability, and it is also found
in popular software for manipulating digital images. For more about contrast
changes that preserve level sets, see [36]. Many reference on contrast-invariant
operators are given at the end of Chapter 7.
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Chapter 6

Specifying the contrast of
images

In all of this applicative chapter the images u(x) and v(x) are defined on a
domain which is the union of M pixels. The area of each pixel is equal to 1. The
images are discrete in space and values: they attain values l ∈ L := {= 0, . . . , L}
and they are constant on each pixel of the domain. We shall call such images
discrete images.

Definition 6.1. Let u be a discrete image. We call distribution function of u
the function Hu : L→M := [0,M ] ∩ N defined by

Hu(l) := meas({x | u(x) ≤ l}).

The distribution function, also called cumulative histogram is the integral of
the histogram of the image, the function h(l) = meas({x | u(x) = l}. Figures
5.4, 5.6 and the first line of Figure 6.1. show the histograms of some images and
their cumulative histograms. In fact Figure 5.7 shows first the histogram and
then the modified histogram after a contrast change has been applied. These
experiments illustrate the robustness of image relevant information to contrast
changes and even to the removal of some level sets, when the contrast change is
flat on an interval. Such experiments suggest that one can specify the histogram
of a given image by applying the adequate contrast change. Before proceeding,
we have to define the pseudo-inverses of a discrete function.

Proposition 6.2. Let ϕ : L → M be a nondecreasing function from a finite
set of integer values into another. Define two pseudo-inverse functions for ϕ :

ϕ(−1)(l) := inf{s | ϕ(s) ≥ l} and ϕ((−1))(l) := sup{s | ϕ(s) ≤ l.}

Then one has the following equivalences:

ϕ(s) ≥ l ⇔ s ≥ ϕ(−1)(l), ϕ(s) ≤ l ⇔ s ≤ ϕ((−1))(l). (6.1)

If ϕ is increasing, one also has ϕ(−1) ◦ ϕ(l) = l and ϕ((−1)) ◦ ϕ(l) = l. If ϕ is
surjective, ϕ ◦ ϕ((−1)) ◦ ϕ(l) = l and ϕ ◦ ϕ((−1))(l) = l.

85
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86 CHAPTER 6. SPECIFYING THE CONTRAST OF IMAGES

Proof. The implication ϕ(s) ≥ l ⇒ s ≥ ϕ(−1)(l) is just the definition of ϕ(−1).
The converse implication is due to the fact that the infimum on a a finite set
is attained. Thus ϕ(ϕ(−1)(l)) ≥ l and therefore s ≥ ϕ(−1)(l) ⇒ ϕ(s) ≥ l. The
proof of the second equivalence is similar. The last relations are straightforward
verifications.

Exercise 6.1. Prove the last statements of Proposition 6.2.

Proposition 6.3. Let ϕ be a discrete contrast change and set ũ := ϕ(u). Then

Hũ = Hu ◦ ϕ((−1)).

Proof. By (6.1), ũ ≤ l ⇔ u ≤ ϕ((−1))(l). Thus by the definitions of Hu and
Hũ,

Hũ(l) = meas({x | ũ ≤ l}) = meas({x | u(x) ≤ ϕ((−1))(l)}) = Hu ◦ ϕ((−1))(l).

Let G : L→M := [0, 1, . . . , M ] be any discrete nondecreasing function. Can
we find a contrast change ϕ : L→ L such that the distribution function of ϕ(u),
Hϕ(u) becomes equal to G? Not quite: if for instance u is constant its repartition
function is a one step function and Proposition 6.3implies that Hϕ(u) will also
be a one step function. More generally if u attains k values, then ϕ(u) attains
less than k values. Hence its distribution function is a step function with k + 1
steps. Yet, at least formally, the functional equation Hu ◦ ϕ−1 = G leads to
ϕ = G−1 ◦Hu. We know that we cannot get true inverses but we can involve
pseudo-inverses. Thus, we are led to the following proposition and definition:

Proposition 6.4. Let G : L→ M be a nondecreasing function. We call speci-
fication of u on the distribution G the image

ũ := G(−1) ◦Hu(u).

If Hu is surjective, then the distribution of ũ is G. If G(l) = bM
L c, where blc de-

notes the largest integer smaller than l, then ũ is called the uniform equalization
of u. If v is another discrete image and one takes G = Hv, ũ = H

(−1)
v ◦Hu(u)

is called the specification of u on v.

Proof. Using (6.1), one has

ũ ≤ l ⇔ G(−1) ◦Hu(u) ≤ l ⇔ Hu(u) ≤ G(l) ⇔ u ≤ H(−1)
u ◦G(l).

Thus if Hu is surjective, by Proposition 6.2

Hũ(l) = meas({x | u(x) ≤ H(−1)
u ◦G(l)}) = Hu ◦H(−1)

u ◦G(l) = G(l).

The assumption that Hu is surjective is not realistic since usually u is quan-
tized and has therefore many less values than pixels. However, it was worth
pointing out that when Hu is onto one can attain any specified distribution
function G. Otherwise, the above definitions do the best that can be expected
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and are actually quite efficient. For instance in the “marshland experiment”
(Figure 6.1) the equalized histogram and its cumulative histogram are displayed
on the second row. The cumulative histogram is very close to its goal, the linear
function. The equalized histogram does not look flat but every sliding average
of it will be almost flat. Yet it is quite dangerous to specify the histogram of

Figure 6.1: First row: Image u, the corresponding grey level histogram hu, and
the cumulative histogram Hu. Second row: Equalized image Hu(u), its histogram
and its cumulative histogram. In the discrete case, histogram equalization flat-
tens the histogram as much as possible. We see on this example that image
equalization can be visually harmful. In this marshland image, after equaliza-
tion, the water is no more distinguishable from the vegetation. The third row
shows a zoom on the rectangular zone, before and after equalization.

an image with an arbitrary histogram specification. This fact is illustrated in
Figures 6.1 and 6.2 where a uniform equalization erases existing textures by
making them too flat (Figure 6.1) but also enhances the quantization noise in
low contrasted regions and produces artificial edges or textures (see Figure 6.2).

6.1 Midway equalization

We have seen that if one specifies u on v, then u inherits roughly the histogram
of v, and conversely. It is sometimes more adequate to bring the distributions
functions of u and v towards a distribution which would be “midway” between
both. Midway image equalization means any method giving to a pair of images
the same histogram, while maintaining as much as possible their previous grey
level dynamics. The comparison of two images, in order to extract a mutual
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Figure 6.2: Effect of histogram equalization on the quantization noise. On the
left, the original image. On the right, the same image after histogram equaliza-
tion. The effect of this equalization on the dark areas (the piano, the left part
of the wall), which are low contrasted, is perceptually dramatic. We see many
more details but the quantization noise has been exceedingly amplified.

information, is one of the main themes in computer vision. The pair of images
can be obtained in many ways: they can be a stereo pair, two images of the
same object (a painting for example), multi-channel images of the same region,
images of a movie, etc. This comparison is perceptually greatly improved if
both images have the same grey level dynamics. In addition, a lot of image
comparison algorithms, based on grey level, take as basic assumption that in-
tensities of corresponding points in both images are equal. As it is well known
by experts in stereo vision, this assumption is generally false for stereo pairs and
deviations from this assumption cannot even be modeled by affine transforms
[45]. Consequently, if we want to compare visually and numerically two images,
it is useful to give them first the same dynamic range and luminance. Thus we
wish:

• From two images u and v, construct by contrast changes two images ũ
and ũ, which have the same cumulative histogram.

• This common cumulative histogram h should stand “midway” between
the previous cumulative histograms of u and v, and be as close as possible
to each of them. This treatment must avoid to favor one cumulative
histogram rather than the other.

Proposition 6.5 (and definition). Let u and v be two discrete images. Set

G :=
1
2
(H((−1))

u + H((−1))
v ) (6.2)

We call “midway distribution” of u and v the function

Hu,v := G((−1)) =
[
1
2
(H((−1))

u + H((−1))
v )

]((−1))

and “midway specifications” of u and v the functions ũ := G ◦Hu(u) and ṽ :=
G ◦Hv(v). These functions have G as common distribution.
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Exercise 6.2. Prove that the midway distribution of u and v doesn’t change when u
and v are changed into f(u) and g(v) and f and g are one to one.

Exercise 6.3. Let u and v be two constant images, whose values are a and b. Prove
that their “midway” function is the right one, namely a function w which is constant
and equal to a+b

2
. If we want the “midway” distribution H to be a compromise between

Hu and Hv, the most elementary function that we could imagine is their average, which
amounts to average their histograms as well. However, the following example proves
that this idea is not judicious at all.

Consider two images whose histograms are “crenel” functions on two disjoint in-
tervals, for instance u(x) := ax, v(x) = bx + c. Compute a, b, c in such a way that
hu and hv have disjoint supports. Then compute the specifications of u and v on the
mean distribution G := Hu+Hv

2
. Compare with their specifications on the midway

distribution.

6.2 Experimenting midway equalization on im-
age pairs

Results on a stereo pair

The top of Figure 6.3 shows a pair of aerial images in the region of Toulouse.
Although the angle variation between both views is small, and the photographs
are taken at nearly the same time, we see that the lightning conditions vary
significantly (the radiometric differences can also come from a change in camera
settings). The second line shows the result of the specification of the histogram
of each image on the other one. The third line shows both images after equal-
ization.

If we scan some image details, as illustrated on Figure 6.4, the damages
caused by a direct specification become obvious. Let us specify the darker image
on the brightest one. Then the information loss, due to the reduction of dynamic
range, can be detected in the brightest areas. Look at the roof of the bright
building in the top left corner of the image (first line of Figure 6.4): the chimneys
project horizontal shadows on the roof. In the specified image, these shadows
have almost completely vanished, and we cannot even discern the presence of a
chimney anymore. In the same image after equalization, the shadows are still
entirely recognizable, and their size reduction remains minimal. The second line
of Figure 6.4 illustrates the same phenomenon, observed in the bottom center
of the image. The structure present at the bottom of the image has completely
disappeared after specification and remains visible after midway equalization.
These examples show how visual information can be lost by specification and
how midway algorithms reduce significantly this loss.

Multi-Channel images

The top of Figure 6.5 shows two pieces of multi-channel images of Toulouse. The
first one is extracted from the blue channel, and the other one from the infrared
channel. The second and third line of the same figure show the same images after
midway equalization. The multichannel images have the peculiarity to present
contrast inversions : for instance, the trees appear to be darker than the church
in the blue channel, and are naturally brighter than the church in the infrared
channel. The midway equalization being limited to increasing contrast changes,
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90 CHAPTER 6. SPECIFYING THE CONTRAST OF IMAGES

Figure 6.3: Stereo pair: two pieces of aerial images of a region of Toulouse. Same
images after specification of their histograms on each other (left: the histogram
of the first image has been specified on the second, and right: the histogram
of the second image has been specified on the first). Stereo pair after midway
equalization.
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Figure 6.4: Two extracts of the stereo pair shown on Figure 6.3. For each line,
from left to right: in the original image, in the specified one, in the original
image after midway equalization.

it obviously cannot handle these contrast inversions. In spite of these contrast
inversions, the results remain visually good, which underlines the robustness of
the method gives globally a good equalization.

Photographs of the same painting

The top of Figure 6.6 shows two different snapshots of the same painting, Le
Radeau de la Méduse1, by Théodore Géricault (small web public versions). The
second one is brighter and seems to be damaged at the bottom left. The second
line shows the same couple after midway equalization. Finally, the last line of
Figure 6.6 shows the difference between both images after equalization. We see
clear differences around the edges, due to the fact that the original images are
not completely similar from the geometric point of view.

1Muse du Louvre, Paris.
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Figure 6.5: First line: two images of Toulouse (blue and infrared channel).
Second line: same images after midway equalization.
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6.2.1 Movie equalization

One can define a midway distribution to an arbitrary number of images. This
is extremely useful for the removal of flicker in old movies. Flicker has multiple
causes, physical, chemical or numerical. The overall contrast of successive im-
ages of the same scene in a movie oscillates, some images being dark and others
bright. Our main assumption is that image level sets are globally preserved from
one image to the next, even if their level evolves. This leads to the adoption
of a movie equalization method preserving globally all level sets of each image.
We deduce from Theorem 5.7 in the previous chapter that the correction must
be a global contrast change on each image. Thus the only left problem is to
specify a common cumulative histogram (and therefore a common histogram)
to all images of a given movie scene. Noticing that the definition of G in (6.2)
for two images simply derives from a mean, its generalization is easy. Let us
denote u(t,x) the movie (now a discrete time variable has been added) and by
Ht the distribution function of x → u(t, x) at time t. Since flicker is localized
in time, the idea is to define a time dependent distribution function Kh

t which
will the “midway” distribution of the distributions in an interval [t − h, t + h].
Of course the linear scale space theory of Chapter 2 applies here. The ideal
average is gaussian. Hence the following definition.

Definition 6.6. Let u(t,x) be a movie. Consider a discrete version of the 1-D
gaussian Gh(t) = 1

(4πh)
1
2
e−

t2
4h . We call “midway gaussian distribution at scale

h” of the movie u(x, t) the time dependent distribution

G(t, l) :=
∫

Gh(t− s)(H((−1))
s )(l)ds. (6.3)

The implementation and experimentation is easy. We simply show in Figure
6.7 three images of Chaplin’ s film His New Job, taken at equal intervals of time.
This extract of the film suffers from a severe real flicker. This flicker is corrected
at the scale where, after gaussian midway equalization, the image mean becomes
nearly constant through the sequence. The effects of this equalization are usually
excellent. They are easily extended to color movies by processing each channel
independently.

6.3 Comments and references

Histogram specification As we have seen histogram specification [76] can
be judicious if both images have the same kind of dynamic range. For the same
reason as in equalization, this method can also product contouring artifacts.
The midway theory is essentially based on Julie Delons’ PhD and papers [53],
[54] where she defines two midway histogram interpolation methods. One of
them, the square root method involves the definition of a square root of any
nondecreasing function g, namely a function g such that f ◦f = g. Assume that
u and v come from the same image (this intermediate image is unknown), up
to two contrast changes f and f−1. The function f is unknown, but satisfies
formally the equality Hu ◦ f = Hv ◦ f−1. Thus

Hu
−1 ◦Hv = f ◦ f.
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94 CHAPTER 6. SPECIFYING THE CONTRAST OF IMAGES

Figure 6.6: Two shots of the Radeau de la Méduse, by Géricault. The same
images after midway equalization. Image of the difference between both images
after equalization. The boundaries appearing in the difference are mainly due
to the small geometric distortions between the initial images.
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Figure 6.7: (a) Three images of Chaplin’ s film His New Job, taken at equal
intervals of time. This extract of the film suffers from a severe real flicker. (b)
Same images after the Scale-Time Equalization at scale s = 100. The flicker
observed before has globally decreased. (c) Evolution of the mean of the current
frame in time and at three different scales. The most oscillating line is the mean
of the original sequence. The second one is the mean at scale s = 10. The last
one, almost constant, corresponds to the large scale s = 1000. As expected the
mean function is smoothed by the heat equation.
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96 CHAPTER 6. SPECIFYING THE CONTRAST OF IMAGES

It follows that the general method consists in building an increasing function f
such that f ◦ f = Hu

−1 ◦Hv and replacing v by f(v) and u by f−1(u). This led
Delon [?] to call this new histogram midway method, the “square root” equaliza-
tion. The midway interpolation developed in this chapter uses mainly J. Delon’s
second definition of the midway distribution as the harmonic mean of the dis-
tribution functions of both images. This definition is preferable to the square
root. Indeed, both definitions yield very similar results but the harmonic mean
extends easily to an arbitrary number of images and in particular to movies
[54]. The Cox, Roy and Hingorani algorithm defined in [45] performs a midway
equalization. They called their algorithm “Dynamic histogram warping” and
its aim is to give a common distribution (and therefore a common histogram)
to a pair of images. Although their method is presented as a dynamic algo-
rithm, there is a very simple underlying formula, which is the harmonic mean
of cumulative histograms discovered by Delon [53].
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Chapter 7

Contrast-Invariant
Monotone Operators

A function operator T is monotone if u ≥ v ⇒ Tu ≥ Tv. A set operator
T is monotone if X ⊂ Y implies T X ⊂ T Y . We are mainly interested in
monotone function operators, since they are nonlinear generalizations of linear
smoothing using a nonnegative convolution kernel. We have already argued that
for image analysis to be robust, the operators must also be contrast invariant.
The overall theme here will be to develop the equivalence between monotone
contrast-invariant function operators and monotone set operators. This equiva-
lence is based on one of the fundamentals of mathematical morphology described
in Chapter 5: A real-valued function is completely described by its level sets.

This allows one to process an image u by processing separately its level sets
by some monotone set operator T and defining the processed image by the
superposition principle

Tu = sup{λ, x ∈ T (Xλu)}.
Such an operator is called in digital technology a stack filter, since it processes
an image as a stack of level sets. Conversely, we shall associate with any contrast
invariant monotone function operator T a monotone set operator by setting

T (Xλu) = Xλ(Tu).

This allows one to define a set operator on all sets X which satisfy X = Xλu
for some u. Such a construction is called a level set extension of T .

Several questions arise, which will be all answered positively once the func-
tional framework is fixed: Are stack filters contrast invariant? Conversely, is
any monotone contrast invariant operator a stack filter? Is any monotone set
operator the level set extension of its stack filter?

In Section 7.1 we shall make definitions precise and give some remarkable
conservative properties of contrast invariant monotone operators. Section 7.2 is
devoted to stack filters and shows that they are monotone and contrast invariant.
Section 7.3 defines the level set extension and shows the converse statement: Any
contrast invariant monotone operator is a stack filter. Section 7.4 applies this
construction to a remarkable denoising stack filter due to Vincent and Serra,
the area opening.

97
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98 CHAPTER 7. CONTRAST-INVARIANT MONOTONE OPERATORS

7.1 Contrast-invariance

7.1.1 Set monotone operators

We will be mostly dealing with function operators T defined on F and set
operators T defined on L, but sometimes also defined on M. We denote by
D(T ) the domain of T . Now, all set operators we shall consider in practice are
defined first on subsets of RN .

Definition 7.1. Let T a monotone operator defined on a set of subsets of RN .
We call standard extension of T to SN the operator, still denoted by T , defined
by

T (X) = T (X \ {∞}) ∪ (X ∩ {∞}).

In other terms if X doesn’t contain ∞, T (X) is already defined and if X
contains ∞, T (X) contains it too. Thus a standard extension satisfies ∞ ∈
T X ⇔ ∞ ∈ X. Let us examine the case where T is initially defined on C, the
set of all closed subsets of RN . There are only two kinds of sets in L, namely

• compact sets of RN

• sets of the form X = C ∪ {∞}, where C is a closed set of RN .

Thus the standard extension of T extends T to L, the set of all closed (and
therefore compact) subsets of SN . All of the usual monotone set operators used
in shape analysis satisfy a small list of standard properties which it is best to
fix now. Their meaning will come obvious in examples.

Definition 7.2. We say that a set operator T defined on its domain D(T ) = L
or M, is standard monotone if

• X ⊂ Y =⇒ T X ⊂ T Y ;

• ∞ ∈ T X ⇐⇒∞ ∈ X;

• T (∅) = ∅, T (SN ) = SN ;

• T (X) is bounded in RN if X is;

• T (X)c is bounded in RN if Xc is.

Definition 7.3. Let T be a monotone set operator on its domain D(T ). We
call dual domain the set

D(T̃ ) := {X ⊂ SN | Xc ∈ D(T )}.

We call dual of T the operator X → (T (Xc))c, defined on D(T̃ ).

Proposition 7.4. T is a standard monotone operator if and only if T̃ is.
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7.1.2 Monotone function operators

Function operators are usually defined on F , that is, continuous functions hav-
ing some limit at infinity, u(∞). We shall always assume that this limit is
preserved by T , that is, Tu(∞) = u(∞). Think that images are usually com-
pactly supported. Thus u(∞) is the “color of the frame” for a photograph.
There is no use in changing this color.

Definition 7.5. We say that a function operator T : F → F is standard
monotone if for all u, v ∈ F ,

u ≥ v =⇒ Tu ≥ Tv; Tu(∞) = u(∞). (7.1)

Recall from Chapter 5 that any nondecreasing continuous surjection g : R→
R is called a contrast change.

Definition 7.6. A function operator T : F → F is said to be contrast invariant
if for every u ∈ F and every contrast change g,

g(Tu) = Tg(u). (7.2)

Checking contrast invariance with increasing contrast changes will make our
life simpler.

Lemma 7.7. A monotone operator is contrast invariant if and only if it com-
mutes with strictly increasing contrast changes.

Proof. Let g be a contrast change. We can find strictly increasing continuous
functions gn and hn : R → R such that gn(s) → g(s), hn(s) → g(s) for all s
and gn ≤ g ≤ hn (see Exercise 7.8.) Thus, by using the commutation of T with
increasing contrast changes, we have

T (g(u)) ≥ T (gn(u)) = gn(Tu) → g(Tu) and

T (g(u)) ≤ T (hn(u)) = hn(Tu) → g(Tu),

which yields T (g(u)) = g(Tu).

We have indicated several times the importance of image operators being
contrast invariant. In practice, image operators are also translation invariant.
For x ∈ RN we are going to use the notation τx to denote the translation
operator for both sets and functions: For X ∈ M, τxX = {x + y | y ∈ X},
and for u ∈ F , τxu is defined by τxu(y) = u(y − x). Since elements of L
can contain ∞, we specify that ∞± x = ∞ when x ∈ RN . This implies that
τxu(∞) = u(∞).

Definition 7.8. A set operator T is said to be translation invariant if its do-
main is translation invariant and if for all X ∈ D(T ) and x ∈ RN ,

τxT X = T τxX.

A function operator T is said to be translation invariant if for all u ∈ F and
x ∈ RN ,

τxTu = Tτxu.
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We say that a function operator T commutes with the addition of constants
if u ∈ F and c ∈ R imply T (u + c) = Tu + c. Contrast-invariant operators
clearly commute with the addition of constants: Consider the contrast change
defined by g(s) = s + c.

Lemma 7.9. Let T be a translation-invariant monotone function operator on
F that commutes with the addition of constants. If u ∈ F is L-Lipschitz on RN ,
namely |u(x)− u(y)| ≤ K|x− y| for all x, y in RN , then so is Tu.

Proof. For any x ∈ RN , y ∈ RN , and z ∈ SN , we have

u(y + z)−K|x− y| ≤ u(x + z) ≤ u(y + z) + K|x− y|. (7.3)

These inequalities work for z = ∞ because u(y + ∞) = u(x + ∞) = u(∞).
Consider x and y fixed and the terms in (7.3) to be functions of z ∈ SN .
Since T is monotone, we can apply T to the functions in (7.3) and preserve the
inequalities. If we do this and evaluate the result at z = 0, we have

T (u(y + ·)−K|x− y|)(0) ≤ Tu(x + ·)(0) ≤ T (u(y + ·) + K|x− y|)(0).

Now use the fact that T commutes with the addition of constants to obtain

T (u(y + ·)(0)−K|x− y| ≤ Tu(x + ·)(0) ≤ T (u(y + ·)(0) + K|x− y|.

Next, use the translation invariance of T to write

Tu(y)−K|x− y| ≤ Tu(x) ≤ Tu(y) + K|x− y|,

which is the announced result.

By considering again the proof of Lemma 7.9 and the definition of uniform
continuity (Definition 0.3), one obtains the following generalization.

Corollary 7.10. Assume that T is a translation-invariant monotone operator
on F that commutes with the addition of constants. Then Tu is uniformly
continuous on RN .

Exercise 7.1. Prove corollary 7.10.

7.2 Stack filters

Definition 7.11. We say that a function operator T is obtained from a monotone
set operator T as a stack filter if

Tu(x) = sup{λ | x ∈ T Xλu} (7.4)

for every x ∈ SN .
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The relation (7.4) has practical implications. It means that Tu can be com-
puted by applying T separately to each characteristic function of the level sets
Xλu. This leads to the following stack filter algorithm.

u

Xλu → T Xλu
↗ ↘

...
↘ ↗

Xµu → T Xµu

Tu(x) = sup{λ | x ∈ T Xλu}.

The image u is decomposed into the stack of level sets. Each level set is
processed independently by the monotone operator T . This yields a new stack
of sets T (Xλu) and Formula (7.4) always defines a function Tu. Now, this
construction will make sense only if

Xλ(Tu) = T (Xλu). (7.5)

Definition 7.12. When (7.5) holds, we say that the operator T “commutes
with thresholds”.

Of course, this commutation can hold only if T sends L into itself. A further
condition which turns out to be necessary is introduced in the next definition.

Definition 7.13. We say that a monotone set operator T : L → L is upper
semicontinuous if for every sequence of compact sets Xn ∈ D(T ) such that
Xn+1 ⊂ Xn, we have

T (
⋂
n

Xn) =
⋂
n

T (Xn). (7.6)

Exercise 7.2. Show that a monotone operator T : T → L is upper semicontinuous
if and only if it satisfies, for every family (Xλ)λ∈R ⊂ L such that Xλ ⊂ X◦

µ for λ > µ,
the relation T (

T
λ Xλ) =

T
λ T (Xλ).

Exercise 7.3. Show that a monotone operator on L is upper semicontinuous if and
only if it satisfies (7.6) for every sequence of compact sets Xn such that Xn+1 ⊂ X◦

n.
Hint: Since SN is the unit sphere in RN+1, one can endow it with the euclidian distance
d in RN+1. Given a nondecreasing sequence Yn in L, set Xn = {x, d(x, Yn) ≤ 1

n
}.

Then apply (7.6) to Xn and check that
T

n Xn =
T

n Yn.

Theorem 7.14. Let T : L →M be a translation invariant standard monotone
set operator. Then the associated stack filter T is translation invariant, contrast
invariant and standard monotone from F into itself. If, in addition, T is upper
semicontinuous, then T commutes with thresholds.

Proof that T is monotone. One has

u ≤ v ⇔ (∀λ, Xλu ⊂ Xλv).

Since T is monotone, we deduce that

∀λ, T (Xλu) ⊂ T (Xλv)

which by (7.4) implies Tu ≤ Tv.
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Proof that T is contrast invariant.
By Lemma 7.7 we can take g strictly increasing and therefore a bijection from
R to R. We notice that :
For λ > g(sup u), Xλg(u) = ∅ and therefore T (Xλg(u)) = ∅.
For λ < g(inf u), Xλg(u) = SN and therefore T (Xλg(u)) = SN .
Thus using (7.4) we can restrict the range of λ in the definition of T (g(u))(x) :

T (g(u))(x) = sup{λ, g(inf u) ≤ λ ≤ g(sup u), x ∈ T (Xλg(u))}

= sup{g(µ), x ∈ T (Xg(µ)g(u))}

= sup{g(µ), x ∈ T (Xµu)} = g(Tu(x)).

Proof that Tu belongs to F .
T is by construction translation invariant. By Corollary 7.10, Tu is uniformly
continuous on RN . Let us prove that Tu(x) → u(∞) as x → ∞. We notice
that for λ > u(∞), Xλu is bounded. Since T is standard monotone T (Xλu) is
bounded too. Now, by (7.4), Tu(x) ≤ λ if x ∈ T (Xλu)c. This last condition
is satisfied if x is large enough and we deduce that lim supx→∞ Tu(x) ≤ u(∞).
In the same way notice that (Xλu)c is bounded if λ < u(∞). So by the same
argument, we also get lim infx→∞ Tu(x) ≥ u(∞). T being standard, it is easily
checked using (7.4) that Tu(∞) = u(∞). Thus, Tu is continuous on SN .

Proof that T commutes with thresholds, when T is upper semicon-
tinuous.
Let us show that the sets Yλ = T (Xλu) satisfy the properties (i) and (ii) in
Proposition 5.2. By the monotonicity of T , Yλ ⊂ Yµ for λ > µ. Since T (∅) = ∅,
we have

Yλ = T (Xλu) = T (∅) = ∅

for λ > max u and, in the same way Yλ = SN for λ < min u. So Tu has the
same bounds as u. This proves Property (i). As for Property (ii), we have for
every λ

Yλ = T (Xλu) = T (
⋂

µ<λ

Xµu) =
⋂

µ<λ

T (Xµu) =
⋂

µ<λ

Yµ.

So by applying the converse statement of Proposition 5.2, we deduce that

Xλ(Tu) = T (Xλu).

Exercise 7.4. Check that Tu(∞) = u(∞), as claimed in the former proof.

The upper semicontinuity of T is necessary to ensure the commutation with
thresholds. See Exercise 7.17. The assumption that T sends bounded sets of RN

on bounded sets of RN and complementary sets of bounded sets onto comple-
mentary sets of bounded sets also is necessary to ensure that Tu is continuous
at ∞: see Exercise 7.12.
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7.3 The level set extension

Our aim here is to associate a standard monotone set operator T from L to L
with any contrast invariant standard monotone function operator T , in such a
way that the whole machinery works, namely both operators satisfy the com-
mutation with threshold property T (Xλu) = Xλ(Tu) and T is the stack filter
of T .

Lemma 7.15. Let u ≤ 0 and v ≤ 0 ∈ F and assume that X0u = X0v (6= ∅).
Then there is a contrast change h such that h(0) = 0 and u ≥ h(v).

Proof. Define

h̃(r) =





min{u(x) | x ∈ Xrv} if min v ≤ r ≤ 0;
r if r > 0;
min u−min v + r if r ≤ min v.

Notice that h̃(0) = 0 and that h̃ is nondecreasing. The following relation holds
for all x ∈ RN by the definition of h̃ and because u(x) belongs to the set
{u(y) | v(y) ≥ v(x)}:

u(x) ≥ min{u(y) | v(y) ≥ v(x)} = h̃(v(x)).

We now use the compactness in SN of the level sets of v to show that h̃ is
continuous at zero. Let (rk)k∈N be an arbitrary increasing sequence tending to
zero. Choose xk ∈ Xrk

v such that h̃(rk) = u(xk). This is possible because u is
continuous and the Xrk

v are compact and nonempty. Since h̃ is nondecreasing,
h̃(rk) → h̃−(0).

Let x be any accumulation point of the set {xk}k∈N. Since the Xrk
v are

compact, all the accumulation points of the set {xk}k∈N are contained in X0v =⋂
k∈N Xrk

v. This means that u(x) = 0. But lim u(xk) = u(x) by the continuity
of u, and we conclude that h̃−(0) = 0. At this point h̃ satisfies the announced
requirements for h, except that it is not always continuous for all r < 0. This is
easily fixed by choosing a continuous nondecreasing function h such that h̃ ≥ h
and h(0) = 0. One way to do this is to take h(r) = (1/|r|) ∫ r

2r
h̃(s) ds for r < 0.

Then u(x) ≥ h̃(v(x)) ≥ h(v(x)) as announced.

Exercise 7.5. Prove that h(r) = (1/|r|) R r

2r
h̃(s) ds is indeed continuous for r ≤ 0

and that h̃ ≥ h. Find examples of functions u and v defined on S1 for which h̃ is not
continuous.

Definition 7.16 (and proposition (Evans-Spruck)). 1 Given a contrast
invariant monotone operator T on F , we call level set extension of T the set
operator defined in the following way : for any X ∈ L, take u ≤ 0 such that
X0u = X and set

T (X) = X0T (u).

This definition is valid as T (X) does not depend upon the particular choice of
u.

1What we are doing here is related to the scheme originally introduced by Osher and
Sethian as a numerical method for front propagation [146]. We briefly described their work
in the Introduction (see page 26).
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Proof. The proof follows directly from Lemma 7.15: Take u and v ∈ F such
that X0u = X0v. Let h be a contrast change such that h(0) = 0 and u ≥ h(v).
Since T is monotone and contrast invariant, Tu ≤ 0 and Tu ≥ Th(v) = h(Tv).
Using the fact that h(0) = 0, we see that Tv(x) = 0 implies that Tu(x) = 0. By
interchanging the roles of u and v we see that Tu(x) = 0 implies that Tv(x) = 0
and conclude that X0Tu = X0Tv.

Exercise 7.6. Definition 7.16 would’nt be complete if we did not prove that for any
X ∈ L we can find u ≤ 0 in F such that X0u = X. Hint: Since SN is the unit sphere
in RN+1, one can endow it with the euclidian distance d in RN+1. Use the distance
function d(x, X) to define u. This distance function is continuous: see exercise 7.14.

Theorem 7.17 (Evans–Spruck). Let T be a contrast-invariant monotone
operator on F and T its level set extension on L. Then T is monotone, T and
T satisfy the commutation with thresholds T Xλu = XλTu for all λ ∈ R, T is the
stack filter associated with T and T is upper semicontinuous on L. In addition,
if T is standard, then so is T .

Proof. Commutation with thresholds: Given u and λ, let g be a continuous
contrast change such that g(s) = min(s, λ) − λ on the range of u, which is a
compact interval of R. We then have X0g(u) = Xλu. Using this relation, the
level set extension and the contrast invariance of T ,

T (Xλu) = T (X0g(u)) = X0(T (g(u))) = X0(g(Tu)) = Xλ(Tu).

Proof of the stack filter property: This is an immediate consequence of the
superposition principle and the commutation with thresholds :

Tu(x) = sup{λ | x ∈ XλTu} = sup{λ | x ∈ T (Xλu)}.

Proof that T is upper semicontinuous on L: By the result of Exercise
7.3, it is enough to consider a sequence (Xn)n≥1 in L such that Xn+1 ⊂ X◦

n.
By Lemma 7.18 below there is a function u ∈ F such that X1− 1

n
u = Xn and

X1u =
⋂

n Xn. Finally, using twice the just proven commutation of thresholds,

T (
⋂
n

Xn) = T (X1u) = X1(Tu) =
⋂
n

X1− 1
n
Tu =

⋂
n

T (X1− 1
n
u) =

⋂
n

T (Xn).

Proof that T is standard if T is: Recall that T is standard if Tu(∞) = u(∞).
By using the commutation with thresholds, all of the standard properties for T
are straightforward. For instance, taking some u ∈ F ,

T (∅) = T (Xmax u+1u) = Xmax u+1Tu = ∅.
Indeed, by the monotonicity and the contrast invariance, u ≤ C ⇒ Tu ≤ C.
In the same way, let X ∈ L and u a function such that X0u = X. If X is
bounded, then u(∞) < 0, so that Tu(∞) = u(∞) < 0. Thus T (X) = X0Tu is
bounded. If Xc = {x | u(x) < 0} is bounded, then Tu(∞) = u(∞) ≥ 0. Thus
T (X)c = (X0Tu)c is bounded. Finally by the commutation with thresholds,

∞ ∈ X ⇔ u(∞) ≥ 0 ⇔ Tu(∞) ≥ 0 ⇔∞ ∈ X0(Tu) = T (X).



“JMMBookOct04”
23/10/2006
page 105

i

i

i

i

i

i

i

i

7.4. APPLICATION: THE EXTREMA KILLER 105

Lemma 7.18. Let (Xn)n≥1 be a sequence in L such that Xn+1 ⊂ X◦
n. There

is a function u ∈ F such that X1− 1
n
u = Xn for n ≥ 1 and X1u =

⋂
n≥1 Xn.

Proof. Let us use the euclidian distance d of RN+1 restricted to SN considered
as a subset of RN+1. Set u(x) = 1 if x ∈ ⋂

n Xn,

u(x) = (1− 1
n

)
d(x, Xn+1)

d(x, Xc
n) + d(x, Xn+1)

+ (1− 1
n + 1

)
d(x, Xc

n)
d(x, Xc

n) + d(x, Xn+1)

for x ∈ Xn \Xn+1 and n ≥ 1, u(x) = − sup(−1, d(x, X1)) if x /∈ X1. It is easily
checked that u belongs in F and satisfies the announced properties.

7.4 Application: the extrema killer

This section is devoted to the study of operators that remove “peaks,” or ex-
treme values, from an image. Such peaks are often created by impulse noise,
that is, local destruction of pixel values and their replacement by a random
value. Old movies present this kind of noise and it also occurs by transmission
failure in satellite imaging. The operators we study are called area opening, or
extrema killer operators, and they have been shown to be very effective at re-
moving this kind of noise. The action of these operators is illustrated in Figures
7.1 and 7.2.

The following definitions are standard, but we include them here for com-
pleteness.

Definition 7.19. Consider a closed subset X of SN . X is disconnected if it
cannot be written as X = (A ∩X) ∪ (B ∩X), where A and B are disjoint open
sets and both A ∩ X and B ∩ X are not empty. X is connected if it is not
disconnected. The connected component of x in X, denoted by cc(x, X), is the
maximal connected subset of X that contains x.

We wish to define a denoising operator on L ; since some sets therein contain
∞, we need an extension of the Lebesgue measure on RN to SN . This is
immediately fixed by setting meas({∞}) = +∞. The only property of this
extended measure that we need to check is following:

Lemma 7.20. if Yn is a nonincreasing sequence of compact sets of SN , then
meas(∩nYn) = limn meas(Yn).

Proof. If the compact sets Yn do not eventually contain ∞, then they are
bounded in RN for n large and the result just follows from Lebesgue theorem.
If instead the sets Yn all contain ∞, then ∩nYn contains it too and all sets have
infinite measure.

Definition 7.21. Let a > 0 a scale parameter and denote for every X ∈ L
by Xi its connected components, so that X =

⋃
i Xi. We call small component

killer the operator on L which removes from X all connected components with
area stricly less than a :

TaX =
⋃

meas (Xi)≥a

Xi. (7.7)
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Theoretically, X can have an uncountable number of components; take, for
example, the Cantor set. However, X can have only a countable number of
components with positive measure. The assumption meas({∞}) = +∞ implies
that all connected components of X containing ∞ stay in TaX. We are going
to prove that the small component killer is upper semicontinuous and this uses
some elementary topological lemmas.

Lemma 7.22. Consider an arbitrary nonincreasing sequence of nonempty com-
pact sets (Yn)n∈N of SN and its limit Y =

⋂
n∈N Yn. Then Y is not empty and

compact. In addition, for any open set Z that contains Y , there is an index n0

such that Yn ⊂ Z for all n ≥ n0.

Proof. The first property is a classical property of compact sets. Assume by
contradiction that the second property is not true. Then Yn ∩ (SN \ Z) 6= ∅
infinitely often. This implies that (Yn∩(SN \Z))n∈N is a nonincreasing sequence
of nonempty compact sets. But this means that Y ∩ (SN \ Z) 6= ∅, which is a
contradiction.

Lemma 7.23. Let (Yn)n∈N be a nonincreasing sequence of nonempty compact
subsets of SN and consider the intersection Y =

⋂
n∈N Yn. If the Yn are con-

nected, then Y is connected.

Proof. We know that Y is not empty and compact. Suppose, by contradiction,
that Y is not connected. Then we can represent Y by Y = (Y ∩Z1)∪ (Y ∩Z2),
where Z1 and Z2 are disjoint open sets, Y ∩ Z1 6= ∅, and Y ∩ Z1 6= ∅. Since
Y ⊂ Z1 ∪ Z2, by Lemma 7.22 there exists an n0 such that Yn ⊂ Z1 ∪ Z2 for all
n ≥ n0, and for these n we have

Yn = Yn ∩ (Z1 ∪ Z2) = (Yn ∩ Z1) ∪ (Yn ∩ Z2).

Furthermore, Yn ∩ Z1 6= ∅ and Yn ∩ Z1 6= ∅. This contradicts the fact that the
Yn are connected.

Exercise 7.7. Show that Ta is idempotent: Ta
2X = TaX and that it is a contraction

mapping: TaX ⊂ X.

With the extrema killer we have a prime example of a theory that begins
with a set operator Ta defined on L.

Lemma 7.24. The small component killer Ta is upper semicontinuous on L.

Proof. We first prove that Ta is monotone. Thus, assume X ⊂ Y . Then for
every x ∈ X, cc(x, X) ⊂ cc(x, Y ). If meas (cc(x, X)) ≥ a, then meas (cc(x, Y )) ≥
a, and we conclude that TaX ⊂ TaY . Now let (Xn)n be any nonincreasing se-
quence of nonempty compact sets and X = ∩nXn. We wish to show that
TaX =

⋂
n TaXn. By monotonicity of Ta,

TaX ⊂
⋂
n

Ta(Xn).

Let us show the converse inclusion. Let x ∈ ∩nTa(Xn). Then Yn := cc(x, Xn)
has measure larger than a for all n. In addition if m < n then Yn ⊂ Ym. By
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Figure 7.1: Extrema killer: maxima killer followed by minima killer. The ex-
trema killer removes all connected components of upper and lower level sets
with area less than some threshold, which here equals 20 pixels. Notice how
texture disappears in the second image. All other features seem preserved. On
the second row, we see for both the original and the processed image the level
lines at 16 equally spaced levels. The level lines on the right hand side are a
subset of the level lines of the left hand. All level lines surrounding extremal
regions with area smaller than 20 have been removed and the other ones are
untouched.

Lemmas 7.22 and 7.23, Y := ∩nYn is a connected compact set that contains
x. In addition by Lemma 7.20, measure(Y) = limn measure(Yn) ≥ a. Since
Y = ∩nYn ⊂ ∩nXn = X, we have cc(x, X) ⊇ Y and therefore x ∈ Ta(X).

We can now build a stack filter from Ta.

Definition 7.25 (and proposition). The stack filter Ta of Ta is called a max-
ima killer. Both operators Ta and Ta satisfy the commutation with thresholds.
As a consequence, no connected component of a level set of Tau has measure
less than a. Furthermore, Ta is standard monotone, translation and contrast
invariant from F into F .
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Proof. We just have to check that all assumptions of Theorem 7.14 are satisfied.
Ta is obviously translation invariant, monotone and is upper semicontinuous by
Lemma 7.24. It satisfies Ta(∅) = ∅, Ta(SN ) = SN . Ta(E) is compact if E is.
Indeed, it is the union of a finite set of compact connected components. If E is
bounded in RN , then so is TaE ⊂ E. (TaE)c is bounded in SN if Ec is. Indeed,
if Ec is bounded, then E has a connected component Y containing B(0, R)c for
some R > 0. This connected component has infinite measure. Then Ta(E) still
contains Y and Ta(E)c is contained in B(0, R). By construction, ∞ belongs to
TaX if and only if it belongs to X. Thus, Ta is standard monotone.

A maxima killer Ta cuts off the maxima of continuous functions, but it does
nothing for the minima. We can immediately define a minima killer T−a as the
dual operator of Ta,

T−a u = −Ta(−u).

A good denoising process is to alternate Ta and T−a , as illustrated in Figures
7.1 and 7.2 . We note, however, that Ta and T−a do not necessarily commute,
as is shown in Exercise 7.13.

7.5 Exercises

Exercise 7.8. Let g : R → R be a contrast change. Construct increasing contrast
changes gn and hn such that gn(s) → g(s), hn(s) → g(s) for all s and gn ≤ g ≤ hn.
Hint : define first an increasing continuous function f(s) on R such that f(−∞) = 0
and f(+∞) = 1

n
.

Exercise 7.9. Let u : RN → R. Show that τxXλu = Xλτxu, x ∈ RN .

Exercise 7.10. Prove that a monotone translation invariant operator T from L to L
satisfies one of the three possibilities : T ({∞}) = {∞}, T ({∞}) = SN or T ({∞}) = ∅.

Exercise 7.11. Let T be a monotone operator on F commuting with the addition of
constants. Prove the following statements:

(i) Tu = c for every constant function u : SN → c.

(ii) u ≥ c implies Tu ≥ c, and u ≤ c implies Tu ≤ c.

(iii) supx∈RN |Tu(x)− Tv(x)| ≤ supx∈RN |u(x)− v(x)|.
(Hint: Write − sup |u(x)− v(x)| ≤ u(x)− v(x) ≤ sup |u(x)− v(x)|.)

Exercise 7.12.

1) In dimension 1, consider the set operator defined on L by T X = [inf X,∞] if
inf(X ∩ R) ∈ R, T X = S1 if inf(X ∩ R) = −∞, T ({∞}) = {∞}, T (∅) = ∅. Check
that T satisfies all assumptions of Theorem 7.14 except one. Compute the stack filter
associated with T and show that it satisfies all conclusions of the mentioned theorem
except one : Tu does not belong to F and more specifically Tu(x) is not continuous
at ∞.

2) Consider the function operator on F , Tu(x) = supx∈SN
u(x). Check that T is

monotone, contrast invariant, and sends F to F . Compute the level set extension T
of T .

Exercise 7.13. Let N = 1 and take u(x) = sin x for |x| ≤ 2π, u(x) = 0 otherwise.
Compute Tau and T−a u and show that they commute on u if a ≤ π and do not commute
if a > π. Following the same idea, construct a function u ∈ F in dimension two such
that TaT−a u 6= T−a Tau.
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Exercise 7.14. Let X be a closed subset of a metric space endowed with a distance
d and consider the distance function to X,

d(y) = d(y, X) = inf
x∈X

d(x, y).

Show that d is 1-Lipschitz, that is, |d(x, X)− d(y, X)| ≤ d(x, y).

Exercise 7.15. In the following questions, we explain the necessity of the assump-
tions T (∅) = ∅, T (SN ) = SN for defining useful set and function monotone operators.

1) Set T (X) = X0 for all X ∈ L, where X0 6= ∅ is a fixed set. Check that the
associated stack filter satisfies Tu(x) = +∞ if x ∈ X0, Tu(x) = −∞ otherwise.

3) Let T be a monotone set operator, without further assumption. Show that its
associated stack filter T commutes with all contrast changes.

Exercise 7.16. Take an operator T satisfying the same assumptions as in Theorem
7.14, but defined on M and apply the arguments of the proof of Theorem 7.14. Check
that the stack filter associated with T is a contrast invariant, translation invariant
monotone operator on the set of all bounded measurable functions, L∞(RN ). If in
addition T is upper semicontinuous on M, then the commutation with thresholds
holds.

Exercise 7.17. The upper semicontinuity is necessary to ensure that a monotone
set operator defines a function operator such that the commutation with thresholds
Xλ(Tu) = T (Xλ(u)) holds for every λ. Let us choose for example the following set
operator T ,

T (X) = X if meas(X) > a and T (X) = ∅ otherwise .

(We use the Lebesgue measure on RN , with the completion meas({∞}) = 0)

1) Prove that T is standard monotone.

2) Let u be the function from S1 into S1 defined by u(x) = max(−|x|,−2a) for some
a > 0, with u(∞) = −2a. Check that u belongs to F . Then, applying the stack filter
T of T , check that

T (u)(x) = sup{λ, x ∈ T (Xλu)} = max(min(−|x|,−a/2),−2a).

3) Deduce that X−a/2T (u) = [−a/2, a/2], X−a/2u = [−a/2, a/2] and therefore

T (X−a/2u) = ∅ 6= X−a/2T (u),

which means that T does not commute with thresholds.

Exercise 7.18. Like in the preceding exercise, we consider here contrast invariant
operators defined on all measurable bounded functions of RN . The aim of the exercise
is to show that such operators send images with finite range into images with finite
range. More precisely, denote by R(u) = u(RN ) the range of u. Then we shall prove
that for every u, R(Tu) ⊂ Ru. In particular, if R(u) is finite, then the range of Tu
is a finite subset of Ru. If u is binary, Tu is, etc. This shows that contrast invariant
operators preserve sharp contrasts. A binary image is transformed into a binary image.
So contrast invariant operators create no blur, as opposed to linear operators, which
always create new intermediate grey levels.

1) Consider

g(s) = s +
1

2
d(s, Ru)
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Figure 7.2: Extrema killer: maxima killer followed by minima killer. Above,
left: original image. Above, right: image after extrema killer removed connected
components of 20 pixels or less. Below: level lines (levels of multiples of 16) of
the image before and after the application of the extrema killer.

where d(s, X) denotes the distance from s to X, that is, d(s, X) = infx∈X |s−x|. Show
that g is a contrast change satisfying g(s) = s for s ∈ Ru and g(s) > s otherwise.

2) Check that g(s) = s if and only if s ∈ Ru. In particular, g(u) = u. Deduce from
this and from the contrast invariance of T that for every x ∈ RN , Tu(x) is a fixed
point of g. Conclude.

7.6 Comments and references

Contrast invariance and stack filters. Image operators that commute with
thresholds have been popular because, among other reasons, they are easily
implemented in hardware (VLSI). This led to very simple patents being awarded
in signal and image processing as late as 1987 [46]. These operators have been
given four different names, although operators are equivalent: stack filters [27,
83, 187]; threshold decomposition [86]; rank filters [40, 102, 189]; and order filters
[179]. The best known of these are the sup, inf, and median operators. The
implementation of the last named has received much attention because of its
remarkable denoising properties [67, 144, 191].

Maragos and Shafer [126, 127] and Maragos and Ziff [128] introduced the
functional notation and established the link between stack filters and the Math-
eron formalism in “flat” mathematical morphology. The complete equivalence
between contrast-invariant operators and stack filters, as developed in this chap-
ter, does not seem to have appeared elsewhere; at least we do not know of other
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references. A related classification of rank filters with elegant and useful gener-
alizations to the so-called neighborhood filters can be found in [102].

The extrema killer. The extrema killer is probably the most efficient de-
noising filter for images degraded by impulse noise, which is manifest by small
spots. In spite of its simplicity, this filter has only recently seen much use. This
is undoubtedly due to the nontrivial computations involved in searching for the
connected components of upper and lower level sets. The first reference to the
extrema killer that we know is [43]. The filter in its generality was defined by
Vincent in [183]. This definition fits into the general theory of connected filters
developed by Salembier and Serra [162]. Masnou defined a variant called the
grain filter that is both contrast invariant and invariant under reverse contrast
changes [132]. Monasse and Guichard developed a fast implementation of this
filter based on the so-called fast level set transform [137].

We will develop in Chapter 19 a theory of scale space that is based on a
family of image smoothing operators Tt, where t is a scale parameter. We note
here that the family (Ta)a∈R+ of extrema killers does not constitute a scale space
because it does not satisfy one of the conditions, namely, what we call the local
comparison principle. That this is so, is the content of Exercise 19.1.
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Chapter 8

Sup-Inf Operators

The main contents of this chapter are two representation theorems: one for
translation-invariant monotone set operators and one for functions operators
that are monotone, contrast invariant, and translation invariant. If T is a func-
tion operator satisfying these three conditions, then it has a “sup-inf” represen-
tation of the form

Tu(x) = sup
B∈B

inf
y∈B

u(x + y),

where B is a family of subsets of M(SN ), the set of all measurable subsets of
SN . This theorem is a nonlinear version of the Riesz theorem that states that
a continuous linear translation-invariant operator from L2(RN ) to C0(RN ) can
be represented as a convolution

Tu(x) =
∫

RN

u(x− y)k(y) dy.

In this case, the kernel k ∈ L2(RN ) is called the impulse response. In the same
way, B is an impulse response for the nonlinear operator.

8.1 Translation-invariant monotone set opera-
tors

Recall that set of M can contain ∞. We have specified that x +∞ = ∞ for
every x ∈ SN . As a consequence, for any subset B of SN , ∞+ B = {∞}.

Definition 8.1. We say that a subset B of M is standard if it is not empty
and satisfies

(i) ∀R > 0, ∃R′ > 0, (x + B ⊂ B(0, R) and B ∈ B) ⇒ x ∈ B(0, R′).

(ii) ∀R > 0, ∃R′ > 0, (x + B ⊂ B(0, R)c and B ∈ B) ⇒ x ∈ B(0, R′)c.

Exercise 8.1. Conditions (i) and (ii) look a bit sophisticated, but are easily satisfied.
Check that Condition (i) is equivalent to

∀R > 0, ∃C > 0, (B ∈ B, and diameter(B) ≤ R) ⇒ B ⊂ B(0, C).

Check that this condition is achieved (e.g.) if all elements of B contain 0. Check that
Condition (ii) is achieved if B contains at least one bounded element B.

113
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Theorem 8.2 (Matheron). Let T be a translation-invariant and standard
monotone set operator. Consider the subset of D(T ), B = {B ∈ D(T ) | 0 ∈
T B}. Then B is standard and

T X = {x ∈ SN | x + B ⊂ X for some B ∈ B}. (8.1)

Conversely, if B is any standard subset of M, then formula (8.1) defines a
translation-invariant standard monotone set operator on M.

Definition 8.3. In Mathematical Morphology, a set B such that (8.1) holds is
called a set of structuring elements of T and B = {X ∈ D(T ) | 0 ∈ T X} is
called the canonical set of structuring elements of T .

Proof of Theorem 8.2.

Proof of (8.1).
Let B = {X ∈ D(T ) | 0 ∈ T X}. Then for any x ∈ RN ,

x ∈ T X
(1)⇐⇒ 0 ∈ T X − x

(2)⇐⇒ 0 ∈ T (X − x)
(3)⇐⇒ X − x ∈ B

(4)⇐⇒ X − x = B for some B ∈ B (5)⇐⇒ x + B ⊂ X for some B ∈ B.

The equivalence (2) follows from the translation invariance of T X; (3) is just
the definition of B; and (4) is a restatement of (3). The implication from left
to right in (5) is obvious. The implication from right to left in (5) is the point
where the monotonicity of T is used: Since B ⊂ X − x, it follows from the
monotonicity of T that X − x ∈ B.
If now x = ∞, since T is standard, then B is not empty (it contains SN ) and
we have

∞ ∈ T X ⇔∞ ∈ X ⇔ ∃B ∈ B, ∞+ B ⊂ X,

because ∞+ SN = {∞}.
Proof that B is standard if T is standard monotone.
Since T (SN ) = SN , B contains SN and is therefore not empty. T sends bounded
sets on bounded sets if and only if there is for every R > 0 some R′ > 0 such
that T (B(0, R)) ⊂ B(0, R′). Using (8.1), this last relation is equivalent to
{x | x + B ⊂ B(0, R)} ⊂ B(0, R′) which is (i). In the same way, T sends
complementary sets of bounded sets on complementary sets of bounded sets if
and only if (ii) holds.

Proof that (8.1) defines a standard monotone set operator if B is stan-
dard.
Using (8.1), it is a straightforward calculation to check that T is monotone and
translation invariant, that T (SN ) = SN , T (∅) = ∅. The equivalence ∞ ∈ T X
if and only if ∞ ∈ X follows from the fact that B is not empty. The argument
of the preceding paragraph already proved that T sends bounded sets onto
bounded sets and complementary sets of bounded sets onto complementary sets
of bounded sets.

In fact, B0 = {X | 0 ∈ T X} is not the only set that can be used to rep-
resent T . A monotone operator T can have many such sets and here is their
characterization.
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Proposition 8.4. Let T be a translation invariant standard monotone set op-
erator and let B0 its canonical set of structuring elements. Then B1 is another
standard set of structuring elements for T if and only if it satisfies

(i) B1 ⊂ B0,

(ii) for all B0 ∈ B0, there is B1 ∈ B1 such that B1 ⊂ B0.

Proof. Assume that T is obtained from some set B1 by (8.1). Then for every
B1 ∈ B1, T B1 = {x | x + B ⊂ B1 for some B ∈ B1}. It follows that 0 ∈ T B1

and therefore B1 ∈ B0. Thus B1 ⊂ B0. In addition, if B0 ∈ B0, then 0 ∈ T B0,
which means that 0 ∈ {x | x + B1 ⊂ B0 for some B1 ∈ B1} that is B1 ⊂ B0 for
some B1 ∈ B1.

Conversely, let B1 satisfy (i) and (ii) and let

T1X = {x | ∃B1 ∈ B1, x + B1 ⊂ X}.
Using (i), one deduces that T1X ⊂ T X for every X and using (ii) yields the
converse inclusion. Thus B1 is a structuring set for T . The fact that B1 is
standard is an obvious check using (i) and (ii).

8.2 The Sup-Inf form

Lemma 8.5. Let T : F → F be a standard monotone function operator, T a
standard monotone translation invariant set operator and B a set of structuring
elements for T . If T and T satisfy the commutation of thresholds T Xλu =
XλTu, then T has the “sup-inf” representation

Tu(x) = sup
B∈B

inf
y∈x+B

u(y). (8.2)

Proof. For u ∈ F , set T̃ u(x) = supB∈B infy∈x+B u(y). We shall derive the
identity T = T̃ from the equivalence

T̃ u(x) ≥ λ ⇐⇒ Tu(x) ≥ λ. (8.3)

Assume first that x ∈ RN . Then

Tu(x) ≥ λ
(1)⇐⇒ Tu(x) ≥ µ for all µ < λ

(2)⇐⇒ x ∈ XµTu for all µ < λ

(3)⇐⇒ x ∈ T Xµu for all µ < λ
(4)⇐⇒ ∃B ∈ B, x + B ⊂ T (Xµu) for all µ < λ

(5)⇐⇒ There is a B ∈ B such that inf
y∈x+B

u(y) ≥ µ for all µ < λ

(6)⇐⇒ sup
B∈B

inf
y∈x+B

u(y) ≥ λ
(7)⇐⇒ T̃ u(x) ≥ λ.

Equivalence (1) is just a statement about real numbers and (2) is the definition
of a level set. It is at (3) that we replace XµTu with T Xµu. Equivalence
(4) follows by the definition of T from B by (8.1). The equivalence (5) is the
definition of the level set Xµu. Equivalence (6) is another statement about real
numbers, and (7) is the definition of T̃ .
Assume now that x = ∞. Since for all B ∈ L, ∞ + B = {∞}, one obtains
T̃ u(∞) = u(∞). Now, by assumption Tu(∞) = u(∞). This completes the proof
of (8.2).
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From the preceding result, we can easily derive a general form for translation
and contrast invariant standard monotone operators.

Theorem 8.6. Let T : F → F be a translation and contrast invariant standard
monotone operator. Then it has a “sup-inf” representation (8.2) with a standard
set of structuring elements.

Proof. By the level set extension (Theorem 7.17), T defines a unique upper
semicontinuous standard monotone set operator T : L 7→ L. T is defined by the
commutation of thresholds, T Xλu = XλTu. By Lemma 8.5, the commutation
with thresholds is enough to ensure that T has the sup-inf representation (8.2)
for any set of structuring elements B of T .

Definition 8.7. As a consequence of the preceding theorem, the canonical set of
structuring elements of T will also be called canonical set of structuring elements
of T .

The next theorem closes the loop.

Theorem 8.8. Given any standard subset B of M, Equation (8.2),

Tu(x) = sup
B∈B

inf
y∈x+B

u(y),

defines a contrast and translation invariant standard monotone function opera-
tor from F into itself.

Proof. By Theorem 7.14, it is enough to prove that T is the stack filter of T ,
the standard monotone set operator associated with B. Let us call T ′ this stack
filter and let us check that Tu(x) ≥ λ ⇔ T ′u(x) ≥ λ.
we have T ′u = sup{λ, x ∈ T (Xλu)}. Thus by (8.1),

T ′u(x) ≥ λ ⇔ ∀µ < λ, ∃B, x + B ⊂ Xµu.

On the other hand,

Tu(x) = sup
B∈B

inf
y∈x+B

u ≥ λ ⇔
∀µ < λ, ∃B ∈ B, inf

y∈x+B
u ≥ µ ⇔

∀µ < λ, ∃B ∈ B, x + B ⊂ Xµu.

Thus, T = T ′.

We end this section by showing that sup-inf operators can also be represented
as inf-sup operators,

Tu(x) = inf
B∈B

sup
y∈x+B

u(y).

This is done, in the mathematical morphology terminology, by “duality”. The
dual operator of a function operator is defined by T̃ u = −T (−u). Notice that
˜̃T = T .
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Proposition 8.9. If T is a standard monotone, translation invariant and con-
trast invariant operator, then so is T̃ . As a consequence, T has a dual “inf-sup”
form

Tu = inf
B∈B̃

sup
y∈x+B

u(y),

where B̃ is any set of structuring elements for T̃

Proof. Setting g̃(s) = −g(−s), it is easily checked that g̃ is a contrast change
if and only if g̃ is. One has by the contrast invariance of T ,

T̃ (g(u)) = −T (−g(u)) = −T (g̃(−u)) = −g̃(T (−u)) = g(−T (−u)) = g(T̃ u).

Thus, T̃ is contrast invariant. The standard monotonicity and translation in-
variance of T̃ are obvious. Finally, if we have T̃ u(x) = supB∈B̃ infy∈x+B u(y),
then

Tu = − sup
B∈B̃

inf
y∈x+B

(−u(y)) = − sup
B∈B̃

(− sup
y∈x+B

u(y)) = inf
B∈B̃

sup
y∈x+B

u(y).

8.3 Locality and isotropy

For linear filters, locality can be defined by the fact that the convolution kernel
is compactly supported. This property is important, as it guarantees that the
smoothed image is obtained by a local average. Morphological filters may need
a locality property for the same reason.

Definition 8.10. We say that a translation invariant function operator T on
F is local if there is some M ≥ 0 such that

(u = u′ on B(0, M)) ⇒ Tu(0) = Tu′(0).

The point 0 plays no special role in the definition. By translation invariance
it is easily deduced from the definition that for x ∈ RN , the values of Tu(x)
only depend upon the restriction of u to B(x,M).

Proposition 8.11. Let T : F → F be a contrast and translation invariant
standard monotone operator and B a set of structuring elements for T . If T is
local, then BM = {B ∈ B | B ⊂ B(0,M)} also is a set of structuring elements
for T . Conversely, if all elements of B are contained in B(0,M), 0 ≤ M , then
T is local.

Proof. We prove the statement with the sup-inf form for T . Since T is local if
and only if T̃ is, the same result will hold for the inf-sup form. So assume that
some local T derives from B in the sup-inf form,

Tu(x) = sup
B∈B

inf
y∈B

u(x + y). (8.4)

Consider the new function uε(x) = u(x) − 1
εd(x, B(0,M)), where we take for

d a distance function on SN , so that uε ∈ F . Take any B ∈ B containing a
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point z /∈ B(0,M) and therefore not belonging to BM . Then infy∈B uε(y) ≤
u(z) − 1

εd(z, B(0,M)) < Tu(0) for ε small enough. So we can discard such
B’s in the computation of Tu(0) by (8.4). Since by the locality assumption
Tu(0) = Tuε(0), we obtain

Tu(0) = Tuε(0) = sup
B∈BM

inf
y∈B

u(y).

By the translation invariance of all all considered operators, this proves the
direct statement. The converse statement is straightforward.

We end this paragraph with a definition and an easy characterization of
isotropic operators in the sup inf form. In the next proposition, we actually
consider a more general setting, namely the invariance of T under some geomet-
ric group of transformations of RN . Since we use to extend the set and function
operators to SN , we shall extend such transforms by setting g(∞) = ∞.

Definition 8.12. Let T (resp T ) be a standard monotone contrast and transla-
tion invariant function operator associated with some set of structuring elements
B (resp. a standard monotone set operator associated with B). We say that B is
invariant under a group G of transformations of SN onto SN if, for all g ∈ G,
B ∈ B implies gB ∈ B. Define the operator Ig on functions u : SN → R by
Igu(x) = u(gx). If, for all g ∈ G, TIg = IgT (resp. T g = gT ), we say that
T (resp. T ) is invariant under G. In particular, we say that T (resp. T ) is
isotropic if it commutes with all linear isometries R of RN , and affine invariant
if it commutes with all linear maps A with determinant 1.

Proposition 8.13. Let G be any group of affine maps : g : RN → RN extended
to SN by setting g(∞) = ∞. If T (resp. T ) is invariant under G and B
is a standard set of structuring elements for T (resp T ), then GB = {gB |
g ∈ G, B ∈ B} is another, G-invariant, standard set of structuring elements.
Conversely, if B is a standard and G-invariant set of structuring elements for
T (resp. T ), then this operator is G-invariant.

Proof. All the verifications are straightforward. The only point to mention is
that the considered groups are made of transforms sending bounded sets onto
bounded sets and complementary sets of bounded sets onto complementary sets
of bounded sets.

Some terminology.
It would be tedious to state theorems on operators on F with such a long list
of requirements as Standard Monotone, Translation and Contrast Invariant,
Isotropic. We shall keep the initials and call such operators SMTCII operators.
All the examples we consider in this book are actually SMTCII operators. Not
all are local, so we will specify it when needed. Operators can be still more
invariant, in fact affine invariant, and we will specify it as well. Since all of these
operators T have an inf-sup or a sup-inf form, we always take for B a standard
structuring set reflecting the properties of T , that is, bounded in B(0,M) when
T is local and invariant by the same group as T . A last thing to specify is this:
We have restricted our analysis to operators defined on F . On the other hand,
their inf-sup form permits to extend them on all measurable functions and we
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shall still denote the resulting operator by T . Tu can then assume the −∞ and
+∞ values. All the same, it is an immediate check to see that this extension
still is monotone and commutes with contrast changes:

Proposition 8.14. Let T be a function operator in the inf-sup or sup-inf form
associated with a standard set of structuring elements B ⊂ M. Then T is
standard monotone and contrast invariant on the set of all bounded measurable
functions of SN .

Prove Proposition 8.14.

Exercise 8.2.

8.4 The who’s who of monotone contrast invari-
ant operators

The aim of this short section is to draw a synthetic picture of an equivalence
chain built up in this chapter and in Chapter 7. We have constructed three
kinds of objects,

• contrast and translation invariant standard monotone function operators
T : F → F ;

• translation invariant standard monotone set operators T defined on L;

• standard sets of structuring elements B.

The results proven so far can be summarized in the following theorem.

Theorem 8.15. Given any of the standard objects T , T and B mentioned above,
one can pass to any other one by using one of the six formulae given below.

B → T, Tu(x) = sup
B∈B

inf
y∈x+B

u(y);

B → T , T X = {x | ∃B ∈ B, x + B ⊂ X};
T → T, Tu(x) = sup{λ | x ∈ T Xλu};
T → T , T (X0u) = X0(Tu);
T → B, B = {B ∈ L | 0 ∈ T B};
T → B, by T → T and T → B.

In addition, B can be bounded in some B(0, M) if and only if T is local; T
or T is G-invariant, for instance isotropic, if and only if it derives from some
G-invariant (isotropic) B. If an operator has the inf-sup or sup-inf form for
some B, it can be extended to all measurable functions on RN into a monotone
and contrast invariant operator.

Proof. Theorem 8.2 yields T → B and B → T ; Theorem 7.14 yields T → T ;
Theorem 8.6 yields T → T → B; Theorem 7.17 yields T → T . The final
statements come from Propositions 8.11, 8.13 and 8.14.
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So we get a full equivalence between all objects, but we have left apart
the commutation with thresholds property. When we define a set operator
T from a function operator T by the level set extension, we know that T :
L → L is upper semicontinuous and that the commutation with thresholds
Xλ(Tu) = T (Xλu) holds. Conversely, if we define a function operator T as
the stack filter of a standard monotone set T , we do not necessarily have the
commutation of thresholds ; this is true only if T is upper semicontinuous on L
(see Theorem 7.14) and this upper semicontinuity property is not always granted
for interesting monotone operators, particularly when they are affine invariant.
Fortunately enough, the commutation with thresholds is “almost” satisfied for
any stack filter as we state in Proposition 8.18 in the next section.

8.4.1 Commutation with thresholds almost everywhere

We always assume the considered sets to belong to M and the considered func-
tions to be Lebesgue measurable. We say that a set X is contained in a set Y
almost everywhere if

measure(X \ Y ) = 0,

where measure denotes the usual Lebesgue measure in RN . We say that X = Y
almost everywhere if X ⊂ Y and Y ⊂ X almost everywhere. We say that two
functions u and v are almost everywhere equal if measure({x, u(x) 6= v(x)}) =
0.

Lemma 8.16. Let (Xλ)λ∈R be a nonincreasing family of sets of M, i.e. Xλ ⊂
Xµ if λ ≥ µ. Then, for almost every λ in R,

Xλ =
⋂

µ<λ

Xµ, almost everywhere (8.5)

Proof. Let us consider an integrable and strictly positive continuous function
h ∈ L1(RN ) (for instance, the gaussian.) Set m(X) =

∫
X

h(x)dx. We notice
that m(X) = 0 if and only if measure(X) = 0. The function λ → m(Xλ) is
nonincreasing. Thus, it has a countable set of jumps. Since every countable set
has zero Lebesgue measure, we deduce that for almost every λ,

lim
µ→λ

m(Xµ) = m(Xλ).

As a consequence, for those λ’s, m(
⋂

µ<λ Xµ \Xλ) = 0, which implies (8.5).

Corollary 8.17. Let (Xλ)λ∈R be a family of measurable subsets of SN such
that Xλ ⊂ Xµ for λ ≥ µ, Xλ = ∅ for λ ≥ λ0, Xλ = SN for λ ≤ µ0. Then the
function u defined on SN by the superposition principle

u(x) = sup{λ | x ∈ Xλ}

is bounded and satisfies for almost every λ, Xλ = Xλu almost everywhere.
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Proof. It is easily checked that µ0 ≤ u ≤ λ0. We have

Xλu = {x | sup{µ,x ∈ Xµ} ≥ λ}
Now, if x ∈ Xλ, we have sup{µ | x ∈ Xµ} ≥ λ which implies x ∈ Xλu.
Thus, Xλ ⊂ Xλu. Conversely, let λ be chosen so that Xλ = ∩µ<λXµ almost
everywhere. This is by Lemma 8.16 true for almost every λ ∈ R. Then if
x ∈ Xλu, we have by definition of u, x ∈ Xµ for every µ < λ. Thus x ∈⋂

µ<λ Xµ. We conclude that Xλu ⊂ ⋂
µ<λ Xµ and therefore Xλu ⊂ Xλ almost

everywhere.

Proposition 8.18. Let T : L → M be a standard monotone set operator and
T its stack filter. If u ∈ F then for almost every level λ ∈ R,

Xλ(Tu) = T (Xλ(u)) almost everywhere.

Proof. Since Tu is obtained from the sets T (Xλu) by superposition principle,
this is an immediate consequence of Corollary 8.17.

8.4.2 Chessboard dilemma and fattening effect

With any standard monotone contrast invariant function operator T we can
associate a stack filter T , and by the above proposition the commutation with
thresholds is true for almost every level. Yet for some levels the commutation
with thresholds may not occur! As follows from the proofs of the preceding
proposition and Lemma 8.16, the levels λ for which commutation does not
occur are those such that measure({x | Xλu = λ} > 0. We call such sets flat
parts of the function u.

As will be illustrated in Figure 8.4.2, Tu can have flat parts even if u had
none. If Tu has a flat part at level λ, by monotonicity for every ε > 0 the sets
T (Xλ−εu) and T (Xλ+εu) differ by a measure larger than the measure of the flat
part. Thus, the set Xλu becomes somewhat ambiguous for the operator T .

Figure 8.4.2 proves that this ambiguity is perceptually sound. In this figure
a standard monotone contrast invariant function operator T has been applied
to a function u defined as the signed distance function to a chessboard. In other
terms, u is negative on black squares, positive on white squares and on the rest
of the image. The level set X0u contains only the line segments separating the
squares and has therefore zero measure. T is the mean curvature motion which
we shall define later in the book. This operator tends to smooth, to round off the
level lines of the image. Hence the ambiguity : are the level lines surrounding
the black squares or are they surrounding the white squares? In other terms, do
we see in a chessboard a set white squares on black background, or conversely?

In fact the mean curvature motion is self dual and therefore takes no decision
in favor of any of the considered interpretations: it rounds off simultaneously
the lines surrounding the black squares and the level lines surrounding the white
squares (second image of Figure 8.4.2). This results in the “fattening” of the
level lines separating white and black, which have the mid-level 128. Hence the
appearance in the second image of a grey zone separating the smoothed out
black and white squares. If we take a level set XεTu of this image with ε < 0
(third image), the fattened set joins the level set and we observe black squares
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Figure 8.1: The chessboard dilemma. Left: a chessboard image. The next
two images are obtained by the level set extension of the curvature motion by
applying a difference scheme implementing the mean curvature motion to the
original image. Notice the expansion of the medium level, 128, who was invisible
in the original image and grows in the second one. This effect is called “fattening
effect”. The third and fourth image show the evolution of level set at level 129
and 127 respectively. This experiment illustrates a dilemma as to whether we
consider the chessboard as black squares on white background, or conversely.
There is fundamental perceptual instability here, that no theory can eliminate.

on white background. Symmetrically if ε > 0 the level set shows white squares
on black background.

8.5 Exercises

Exercise 8.3. It is useful to have a test for B to determine whether or not the oper-
ator T can be expected to be upper semicontinuous on L. Prove that the translation-
invariant monotone operator in Theorem 8.2 defined by a given set B is upper semi-
continuous on L if and only if the following condition holds: If

T
n∈N T Xn 6= ∅, then

there is a B ∈ B such that x + B ⊂ Tn∈NXn, where x ∈ Tn∈N T Xn and (Xn)n∈N is
any nonincreasing sequence in L.

Exercise 8.4. Suppose that B ⊂ L contains exactly one set. Show that T is u.s.c.
Generalize this to the case where B contains a finite number of sets.

Exercise 8.5. Use Theorem 8.6 and Proposition 8.4 to show that the extrema killer
Ta can be represented as a sup-inf function operator with the structuring elements

Ba = {B | B is compact, connected, meas (B) = a, and 0 ∈ B}.

Check that Ba is standard.

Exercise 8.6. Let B = {{x} | x ∈ D(0, 1)}, D(0, 1) = {x | |x| ≤ 1} and consider
the associated set operator T and the associated function operator T , defined on all
measurable sets and functions of RN by formulas (8.1) and (8.2).

1) Check that Tu(x) = supy∈x+D u(y).

2) Let (qn)n∈N be a countable dense set in RN and consider u defined by u(x) = 1−1/n
if x = qn and u(x) = 0 otherwise. Show that T X1u 6= X1Tu. The operator T in this
exercise is one of the classic image operators called a dilation. Check that T commutes
with thresholds when its domain of definition is restricted to F and the domain of T
to L. This example shows that this restriction is useful to get a simple theory.

Exercise 8.7. Show the following property used in the proof of Lemma : if h is a
positive continuous integrable function on RN and if we set m(X) =

R
RN h(x)dx, then

for every measurable set X, m(X) = 0 if and only if measure(X) = 0.
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8.6 Comments and references

The formalism presented in this chapter is due to Matheron [133] in the case
of set operators and to Serra [168] and Maragos [123] in the case of function
operators. Serra’s formalism is actually more general than the one presented
here; it will be developed in Chapter ??, which is about “nonflat” morphology.
Our presentation relating the sup-inf form of the operator directly to contrast
invariance and establishing the full equivalence between sup-inf operators and
contrast-invariant monotone operators is original. The mysterious “set of struc-
turing elements” has received a great deal of attention in the literature. Here
are a few references: on finding the right set of structuring elements [161, 178];
on simplifying them [167]; on decomposing them into simpler ones as one does
with linear filters [147, 195, 196]; on reducing the number [155].
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Chapter 9

Erosions and Dilations

We are going to study in detail two of the simplest operators of mathematical
morphology, the erosions and dilations. In fact, there will be essentially four
operators: two set operators and the two related function operators. These
operators will depend on a scale parameter t. We will also study the underlying
PDEs ∂u/∂t = c|Du|, where c = 1 for dilations and c = −1 for erosions.

9.1 Set and function erosions and dilations

We saw in chapter 8 that every contrast-invariant monotone function operator
has a sup-inf and an inf-sup representation in terms of some set of structuring
elements. This is the point of view we take here, and furthermore, we assume
that the set of structuring elements B has the simplest possible form, namely,
B = {B}. We actually introduce a parameter t scaling the size of B and therefore
consider the two operators of the next definition.

Definition 9.1. For u ∈ F , define DtBu = Dtu by

Dtu(x) = sup
y∈tB

u(x− y), (9.1)

the “dilation of u by tB. In the same way, define EtBu = Etu, the “erosion of
u by −tB”, by

Etu(x) = inf
y∈−tB

u(x− y). (9.2)

These function operators have associated set operators.

Definition 9.2. Let B be a non empty subset of RN and let t ≥ 0 be a scale
parameter. The set operators DtB and EtB are defined on subsets X ∈ M(RN )
by

DtBX = DtX = X + tB = {x | ∃b ∈ B, x− tb ∈ X}, (9.3)

EtB = EtX = {x | x + tB ⊂ X}, (9.4)

and extended to M(SN ) by the standard extension (Definition 7.1.) DtX is
called the dilation of X by B at scale t. EtX is called the erosion of X by B at
scale t.

125
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Exercise 9.1. (Duality formulas.) Show that EtBu = −D−tB(−u) and EtBX =
(D−tBXc)c.

Exercise 9.2. Show that if B is bounded, dilations and erosions are standard monotone
operators. Compute their associated set of structuring elements (Proposition 8.2) and
check that it is standard.

Theorem 9.3. The function erosion by tB is the stack filter of the set erosion
by tB ; the function dilation by tB is the stack filter of the set dilation by tB
and the commutation with thresholds holds. In other terms for u ∈ F and all λ
in R, and calling Dt the dilation by tB,

Dtu(x) = sup{λ | x ∈ DtXλu}, DtXλu = XλDtu; (9.5)

Etu(x) = sup{λ | x ∈ EtXλu}, EtXλu = XλEtu. (9.6)

Proof. We prove the statement for the dilations, the case of the erosions being
just simpler. Consider some X ∈ L and u(x) ≤ 0 a function vanishing on X only.
By the definition 7.16 of the level set extension D̃t of Dt, D̃t(X) = X0Dt(u).
Thus, using (9.3),

x ∈ D̃t(X) ⇔ (Dtu)(x) = 0 ⇔ sup
y∈−tB

u(x− y) = 0 ⇔

∃y ∈ tB, x− y ∈ X ⇔ x ∈ X + tB ⇔ x ∈ Dt(X).

The operators Dt and Et are in a certain sense the inverse of each other. This
is clearly the case, for example, if B = {x0}. Then Dt is just the translation by
tx0, and Et = D−1

t is the translation by −tx0. If B is the open ball centered at
zero with radius one, then DtX is the set of all points whose distance from X
is less than t, or the t-neighborhood of X. When B is symmetric with respect
to zero, the operator DtEt is called an opening at scale t and EtDt is called a
closing at scale t. These names have a topological origin. If B is the open ball
centered at zero with radius one, then the opening at scale t of a set X is the
union of all balls with radius t contained in X. The interior of X is the union
of all open balls contained in X; it is also the largest open set contained in X.
If we call the interior map T ◦X = X◦ the opening, then an opening at scale t
appears as a quantified opening (see Exercise 9.5). The topological statement
“the closure of the complement of X is the complement of the interior of X”
has its counterpart for openings and closings at scale t, as shown in exercise 9.5.
The actions of erosions and dilations are illustrated in Figures 9.2, 9.2, and 9.2;
actions of openings and closings are illustrated in Figures 9.2, 9.2, 9.2, 9.3, and
9.3.

9.2 Multiscale aspects

We say that the family of dilations {Dt | t > 0} associated with a structuring
element B is recursive if DtDs = Dt+s for all s, t > 0, and similarly for the
family {Et | t > 0}. (A recursive family is also called a semigroup.) Being
recursive is a very desirable property for any family of scaled operators used
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Figure 9.1: Dilation of a set. Left to right: A set; its dilation by a ball of radius
20; the difference set.

Figure 9.2: Erosion of a set. Left to right: A set; its erosion by a ball of radius
20; the difference set.

Figure 9.3: Opening of a set as curvature threshold from above. Left to right:
A set X; its opening by a ball of radius 20; the difference set. This opening
transforms X into the union of all balls of radius 20 contained in it. The resulting
operation can be understood as a threshold from above of the curvature of the
set boundary.

for image analysis. Having Dt = (Dt/n)n is useful for practical computations.
{Dt | t > 0} and {Et | t > 0} will be recursive if and only if B is convex, but
before proving this result we need the condition for B to be convex given in the
next lemma. The proof of the next statement is an easy exercise.

Lemma 9.4. B is convex if and only if (s + t)B = sB + tB for all s, t ≥ 0.

Proposition 9.5. The dilations Dt and the erosions Et are recursive if and
only the structuring element B is convex.
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Figure 9.4: Closing of a set as a curvature threshold from below. Left to right:
A set X; its closing by a ball of radius 20; the difference set. The closing of X
is just the opening of Xc. It can be viewed as a threshold from below of the
curvature of the set boundary.

Proof. By the stack filter construction and the level set extension, we see that
the proof of the equivalence can be performed on set dilations. Taking for
simplicity B closed, we have

DtDsX = (X + sB) + tB = X + sB + tB

and
Ds+tX = X + (s + t)B.

If (t + s)B = tB + sB, then clearly DtDsX = Ds+tX. Conversely, if DtDsX =
Ds+tX, then by taking X = {0} we see that (t+s)B = tB+sB. One can deduce
the corresponding equivalence for erosions from the duality formula (exercise
9.1.)

9.3 The PDEs associated with erosions and di-
lations

As indicated in the introduction to the chapter, scaled dilations and erosions
are associated with the equations ∂u/∂t = ±|Du|. To explain this connection,
we begin with a bounded convex set B that contains the origin, and we define
the gauge ‖ · ‖B on RN associated with B by ‖x‖B = supy∈B(x · y). If B is a
ball centered at the origin with radius one, then ‖ · ‖B is the usual Euclidean
norm, which we write simply as | · |.

Proposition 9.6. [Hopf–Lax formula [60, 113]]. Assume that B is a bounded
convex set in RN that contains the origin. Given u0 : RN → R, define u :
R+ × RN → R by u(t, x) = Dtu0(x). Then u satisfies the equation

∂u

∂t
= ‖Du‖−B

at each point (t, x) where u has continuous derivatives in t and x. The same
result hold when Dt is replaced by Et and the equation is replaced with ∂u/∂t =
−‖Du‖−B.
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Figure 9.5: Erosion and dilation of a natural image. First row: a sea bird image
and its level lines for all levels multiple of 12. Second row: an erosion with
radius 4 has been applied. On the right, the resulting level lines where the
circular shape of the structuring element (a disk with radius 4) appears around
each local minimum of the original image. Erosion removes local maxima (in
particular, all small white spots) but expands minima. Thus, all dark spots,
like the eye of the bird, are expanded. Third row: the effect of a dilation with
radius 4 and the resulting level lines. We see how local minima are removed (for
example, the eye of the bird) and how white spots on the tail expand. Here, in
turn, circular level lines appear around all local maxima of the original image.

Proof. We begin by proving the result for Dt at t = 0. Thus assume that u0

is C1 at x. Then

u0(x− y)− u0(x) = −Du0(x) · y + o(|y|),

and we have by applying Dh,

u(h,x)− u(0,x) = sup
y∈hB

(−Du0(x) · y + o(|y|)).
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Figure 9.6: Openings and closings of a natural image. First row: the original
image and its level lines for all levels multiple of 12. Second row: an opening
with radius 4 has been applied. Third row: a closing with radius 4 has been
applied. We can recognize the circular shape of the structuring element in the
level lines displayed on the right.

Since B is bounded, the term o(|y|) is o(|h|) uniformly for y ∈ hB, and we get

u(h,x)− u(0, x) = h sup
z∈B

((−Du0(x) · z) + o(|h|).

We can divide both sides by h and pass to the limit as |h| → 0 to obtain

∂u

∂t
(0,x) = ‖Du0(x)‖−B ,

which is the result for t = 0. For an arbitrary t > 0, we have Dt+h = DtDh =
DhDt, and we can write

u(t + h, x)− u(t, x) = Dhu(t, ·)(x)− u(t,x).

By repeating the argument made for t = 0 with u0 replaced with u(t, ·), we
arrive at the general result. The proof for Et is similar.
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Figure 9.7: Denoising based on openings and closings. First row: scanned
picture of the word “operator” with black dots and a black line added; a dilation
with a 2× 5 rectangle; an erosion with the same structuring element applied to
the middle image. The resulting operator is a closing. Small black structures
are removed by such a process. Second row: the word “operator” with a white
line and white dots inside the letters; erosion with a rectangle 2× 5; a dilation
with the same structuring element applied to the middle image. The resulting
operator is an opening. This time, small white structures are removed.

Exercise 9.3. Prove the above result for Et.

9.4 Exercises

Exercise 9.4. Show that Et(u) = −Dt(−u) if B is symmetric with respect to zero.

Exercise 9.5.

(i) Let B = {x | |x| < 1}. Show that DtEtX is the union of all open balls with
radius t contained in X.

(ii) Let B be any structuring element that is symmetric with respect to zero. Write
Xc = RN \ X. Show that DtX

c = (EtX)c. Use this to show that EtDtX
c =

(DtEtX)c.

Exercise 9.6. Prove that the dilation and erosion associated with B are standard
monotone if and only if B is bounded and if and only if they are local. If B is bounded
and isotropic, prove that they are SMTCII operators.

9.5 Comments and references

Erosions and dilations. Matheron introduced dilations and erosions as use-
ful tools for set and shape analysis in his fundamental book [133]. A full account
of the properties of dilations, erosions, openings, and closings, both as set op-
erators and function operators, can be found in Serra’s books [168, 170]. We
also suggest the introductory paper by Haralick, Sternberg, and Zhuang [82]
and an earlier paper by Nakagawa and Rosenfeld [142]. An axiomatic algebraic
approach to erosions, dilations, openings, and closings has been developed by
Heijmans and Ronse [84, 157]. We did not develop this algebraic point of view
here. The obvious relations among the dilations and erosions of a set and the
distance function have been exploited numerically in [89], [105], and [173]. The
skeleton of a shape can be defined as the set of points where the distance func-
tion to the shape is singular. A numerical procedure for computing the skeleton
this way is proposed in [106].
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Figure 9.8: Examples of denoising based on opening or closing, as in Figure 9.7.
Perturbations made with both black and white lines or dots have been added to
the “operator” image. First column, top to bottom: original perturbed image;
erosion with a 1× 3 rectangle; then dilation with the same structuring element.
(In other words, opening with this rectangle.) Then a dilation is applied with a
rectangle 3× 1, and finally an erosion with the same rectangle. Second column:
The same process is applied, but with erosions and dilations exchanging their
roles. It does not work so well because closing expands white perturbations and
opening expands black perturbations. These operators do not commute. See
Figure ??, where an application of the median filter is more successful.

The PDEs. The connection between the PDEs ∂u/∂t = ±|Du| and multiscale
dilations and erosions comes from the work of Lax, where it is used to give
stable and efficient numerical schemes for solving the equations [113]. Rouy and
Tourin have shown that the distance function to a shape is a viscosity solution
of 1 − |Du| = 0 with the null boundary condition (Dirichlet condition) on the
boundary of the shape. To define efficient numerical schemes for computing the
distance function, they actually implement the evolution equation ∂u/∂t = 1−
|Du| starting from zero and with the null boundary condition on the boundary of
the shape. The fact that the multiscale dilations and erosions can be computed
using the PDEs ∂u/∂t = ±|Du| has been rediscovered or revived, thirty years
after Lax’s work, by several authors: Alvarez et. al. [4], van den Boomgaard
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and Smeulders [182], Maragos [124, 125]. For an implementation using curve
evolution, see [163]. Curiously, the link between erosions, dilations, and their
PDEs seems to have remained unknown or unexploited until 1992. The erosion
and dilation PDEs can be used for shape thinning, which is a popular way to
compute the skeleton. Pasquignon developed an erosion PDE with adaptive
stopping time that allows one to compute directly a skeleton that does not look
like barbed wire [148].
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Chapter 10

Median Filters and
Mathematical Morphology

This entire chapter is devoted to median filters. They are among the most
characteristic and numerically efficient contrast-invariant monotone operators.
The denoising effects of median filters are illustrated in Figures 10.1 and 10.2;
the smoothing effect of a median filter is illustrated in Figure 10.3. They also
are extremely useful in 3D-image or movie denoising.

As usual, there will be two associated operators, a set operator and a function
operator. All of the median operators (or filters) will be defined in terms of a
nonnegative measurable weight function k : RN → [0, +∞) that is normalized:

∫

RN

k(y) dy = 1.

The k-measure of a measurable subset B ⊂ RN is denoted by |B|k and defined
by

|B|k =
∫

B

k(y) dy =
∫

RN

k(y)1B(y) dy.

Clearly, 0 ≤ |B|k ≤ 1. The simplest example for k is given by the function
k = c−1

N (r)1B(0,r), where B(0, r) denotes the ball of radius r centered at the
origin and cN (r) is the Lebesgue measure of B(0, r). Another classical example
to think of is the Gaussian.

10.1 Set and function medians

We first define the set operators, whose form is simpler. We define them on
M(RN ), the set of measurable subsets of RN and then apply the standard
extension to M(SN ) given in Definition 7.1.

Definition 10.1. Let X ∈M(RN ) and let k be a weight function. The median
set of X weighted by k is defined by

MedkX = {x | |X − x|k ≥ 1
2} (10.1)

135
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and its standard extension to M(SN ) by

MedkX = {x | |X − x|k ≥ 1
2} ∪ (X ∩ {∞}). (10.2)

The extension amounts to add ∞ to MedkX if ∞ belongs to X. Note that
we have already encountered the median operator in Section 4.1. Koenderink
and van Doorn defined the dynamic shape of X at scale t to be the set of x such
that Gt∗1X(x) ≥ 1/2. The dynamic shape is, in our terms, a Gaussian-weighted
median filter.

To gain some intuition about median filters, we suggest considering the
weight k defined on R2 by k = (1/πr2)1B(0,r). Then x ∈ R2 belongs to MedkX
if and only if the Lebesgue measure of X∩B(x, r) is greater than or equal to half
the measure of B(0, r). Thus, x ∈ MedkX if points of X are in the majority
around x.

Lemma 10.2. Medk is a standard monotone operator on M.

Proof. Obviously Medk(∅) = ∅ and Medk(SN ) = SN . By definition, ∞ ∈
MedkX ⇔ ∞ ∈ X. If X is bounded, it is a direct application of Lebesgue
theorem that

|X − x|k =
∫

k(y)1X−x(y)dy → 0 as x →∞.

Thus |X−x|k < 1
2 for x large enough and MedkX is therefore bounded. In the

same way, if Xc is bounded |X − x|k → 1 as x →∞ and therefore (MedX)c is
bounded.

Lemma 10.3. We can represent Medk by

MedkX = {x | x + B ⊂ X, for some B ∈ B}, (10.3)

where B = {B | |B|k ≥ 1
2} or B = {B | |B|k = 1

2}.

Proof. By Lemma 10.2, Medk is standard monotone and it is obviously trans-
lation invariant. So we can apply Theorem 8.2. The canonical set of structuring
elements of Medk is

B = {B | 0 ∈MedkB} = {B | |B|k ≥ 1
2
}.

The second set B mentioned in the lemma, which we call now for convenience
B′, is a subset of B such that for every B ∈ B, there is some B′ ∈ B′ such that
B′ ⊂ B. Thus by Proposition 8.4, Medk can be defined from B′.

The next lemma will help defining the function operator Medk associated
with the set operator Medk.

Lemma 10.4. The set operator Medk is monotone, translation invariant and
upper semicontinuous on M.
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Proof. The first two properties are straightforward. Consider a nonincreasing
sequence (Xn)n∈N in M and let us show that

Medk

⋂

n∈N
Xn =

⋂

n∈N
MedkXn.

SinceMedk is monotone, it is always true thatMedk

⋂
n∈NXn ⊂

⋂
n∈NMedkXn.

To prove the other inclusion, assume that x ∈ ⋂
n∈NMedkXn. If x ∈ RN , by the

definition of Medk, |Xn−x| ≥ 1/2 for all n ∈ N. Since Xn−x ↓ ⋂
n∈N(Xn−x),

we deduce from Lebesgue Theorem that |Xn − x|k ↓ |
⋂

n∈N(Xn − x)|k. This
means that |⋂n∈N(Xn − x)|k ≥ 1/2, and hence that x ∈Medk

⋂
n∈N(Xn − x).

If x = ∞, it belongs to MedkXn for all n and therefore to Xn for all n. Thus,
it belongs to

⋂
n∈NXn and therefore to Medk(

⋂
n∈NXn).

Definition 10.5 (and proposition). Define the function operator Medk from
Medk as a stack filter,

Medku(x) = sup{λ | x ∈MedkXλu}.

Then Medk is standard monotone, contrast invariant and translation invariant
from F to F . Medk and Medk commute with thresholds,

XλMedku = MedkXλu. (10.4)

If k is radial, Medk therefore is SMTCII.

Proof. By Lemma 10.4, Medk is upper semicontinuous and by Lemma 10.2 it
is standard monotone. It also is translation invariant. So we can apply Theorem
7.14, which yields all announced properties for Medk.

We get a sup-inf formula for the median as a direct application of Theorem
8.6.

Proposition 10.6. The median operator Medk has the sup-inf representation

Medku(x) = sup
B∈B

inf
y∈x+B

u(y), (10.5)

where B = {B | B ∈M, |B|k = 1/2}.

A median value is a kind of average, but with quite different results, as is
illustrated in Exercise 10.4.

10.2 Self-dual median filters

The median operator Medk, as defined, is not invariant under “reverse contrast,”
that is, it does not satisfy −Medku = Medk(−u) for all u ∈ F . This is clear
from the example in the next exercise. Self-duality is a conservative requirement
which is true for all linear filters. It means that the white and black balance is
respected by the operator. We have seen that dilations favor whites and erosions
favor black colors: These operators are not self-dual.
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Figure 10.1: Example of denoising with a median filter. Left to right: scanned
picture of the word “operator” with perturbations and noise made with black
or white lines and dots; the image after one application of a median filter with
a circular neighborhood of radius 2; the image after a second application of the
same filter. Compare with the denoising using openings and closings (Figure
9.8).

Exercise 10.1. Consider the one-dimensional median filter with k = 1
2
1[−2,−1]∪[1,2].

Let u(x) = −1 if x ≤ −1, u(x) = 1 if x ≥ 1, u(x) = x elsewhere. Check that
Medku(0) 6= −Med(−u)(0).

As we did with erosions and dilations, one can define a dual version of the
median Med−k by

Med−k u = −Medk(−u), so that (10.6)

Med−k u(x) = inf
|B|k≥ 1

2

sup
y∈x+B

u(y). (10.7)

A quite general condition on k is sufficient to guarantee that Medk and Med−k
agree on continuous functions.

Definition 10.7. We say that k is not separable if |B|k ≥ 1/2 and |B′|k ≥ 1/2
imply that B ∩B′ 6= ∅.

Proposition 10.8.

(i) For every measurable function u, Medku ≥ Med−k u.

(ii) Assume that k is not separable. Then for every u ∈ F , Medku = Med−k u
and Medk is self-dual.

Proof. Both operators are translation invariant, so without loss of generality we
may assume that x = 0. To prove (i), let λ = Medku(0) = sup|B|k≥1/2 infy∈B u(y).
Take ε > 0 and consider the level set Xλ+εu. Then infy∈Xλ+ε

u(y) ≥ λ+ε. Thus
|Xλ+εu|k < 1/2, since infy∈B ≤ λ for any set B such that |B| ≥ 1/2. Thence
|(Xλ+εu)c|k ≥ 1/2. By the definition of level sets, supy∈(Xλ+εu)c u(y) ≤ λ + ε.
These two last relations imply that

inf
|B|k≥ 1

2

sup
y∈B

u(y) ≤ λ + ε.

Since ε > 0 was arbitrary, this proves (i).
The assumption that k is not separable implies that for all B and B′ having

k-measure greater than or equal to 1/2, we have infy∈B u(y) ≤ supy∈B′ u(y).
Since u ∈ F is continuous, infy∈B u(y) ≤ supy∈B′ u(y). Since B and B′ were ar-
bitrary except for the conditions |B|k ≥ 1/2 and |B′|k ≥ 1/2, the last inequality
implies that

sup
|B|k≥ 1

2

inf
y∈B

u(y) ≤ inf
|B′|k≥ 1

2

sup
y∈B′

u(y).

From this last inequality and (i), we conclude that Medku = Med−k u.
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Figure 10.2: Denoising based on a median filter. Left: an image altered on
40% of its pixels with salt and pepper noise. Right: the same image after three
iterations of a median filter with a 3× 3 square mask.

10.3 Discrete median filters and the ”usual” me-
dian value

We define a discrete median filter by considering, instead of a function, a uniform
discrete measure k =

∑
i=1,...,N δxi , where δxi denotes the Dirac mass at xi.

We could normalize k, but this is not necessary, as will become clear. Translates
of the points xi create the discrete neighborhood that is used to compute the
median value of a function u at a point x. We denote the set of subsets of
{1, . . . , N} by P(N) and the number of elements in P ∈ P(N) by card(P ).
Since card(P ) = |P |k, we will suppress the k-notation is favor of the more
transparent “card(P ),” but one should remember that the k-measure is still
there. An immediate generalization of the definition of the median filters to the
case where k is such a discrete measure yields

Medu(x) = sup
P∈P(N)

card(P )≥N/2

inf
i∈P

u(x− xi),

Med−u(x) = inf
P∈P(N)

card(P )≥N/2

sup
i∈P

u(x− xi).

When k was continuous, we could replace “|B|k ≥ 1/2” with “|B|k = 1/2,” but
this is not directly possible in the discrete case, since N/2 is not an integer if
N is odd. To fix this, we define the function M by M(N) = N/2 if N is even
and M(N) = (N/2) + (1/2) if N is odd. Now we have

Medu(x) = sup
P∈P(N)

card(P )=M(N)

inf
i∈P

u(x− xi),

Med−u(x) = inf
P∈P(N)

card(P )=M(N)

sup
i∈P

u(x− xi).
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The fact that we can replace “card(P ) ≥ N/2” with “card(P ) = M(N)”
has been argued elsewhere for the continuous case; for the discrete case, it is
a matter of simple combinatorics. Given any x, let yi = u(x − xi). After a
suitable permutation of the i’s, we can order the yi as follows: y1 ≤, · · · ,≤
yM ≤, · · · ≤ yN . Then for N even,

{ inf
i∈P

yi | card(P ) ≥ N/2} = { inf
i∈P

yi | card(P ) = M} = {y1, . . . , yM+1},
{sup

i∈P
yi | card(P ) ≥ N/2} = {sup

i∈P
yi | card(P ) = M} = {yM , . . . , yN},

and Medu(x) = yM+1 ≥ yM = Med−u(x). If N is odd, we have

{ inf
i∈P

yi | card(P ) ≥ N/2} = { inf
i∈P

yi | card(P ) = M} = {y1, . . . , yM},
{sup

i∈P
yi | card(P ) ≥ N/2} = {sup

i∈P
yi | card(P ) = M} = {yM , . . . , yN},

and Medu(x) = Med−u(x) = yM . This shows that Med = Med− if and only if
N is odd. What we see here is the discrete version of Proposition 10.8. When N
is odd, the measure is not separable, since two sets P and P ′ with card(P ) ≥ N/2
and card(P ′) ≥ N/2 always have a nonempty intersection. In general, a median
filter with an odd number of pixels is preferred, since Med = Med− in this case.

This discussion shows that the definition of the discrete median filter Med
corresponds to the usual statistical definition of the median of a set of data: If
the given data consists of the numbers y1 ≤ y2 ≤ · · · ≤ yN and N = 2n+1, them
by definition, the median is yn+1. In case N = 2n, the median is (yn + yn+1)/2.
In both cases, half of the terms are greater than or equal to the median and half
of the terms are less than or equal to the median. The usual median minimizes
the functional

∑N
i=1 |yi − y|. Exercise 10.9 shows how Med and Med− relate to

this functional.
The discrete median filters can also be defined in terms of a nonuniform

measure k that places different weights on the points xi. To see what this does,
assume that the weights are integers ki, so |{xi}|k = ki. Then k has total mass∑N

i=1 ki = K, and the condition card(P ) ≥ N/2 is replaced with |P |k ≥ K/2.
As before, let yi = u(x − xi) and display the data set as y1 ≤ y2 ≤ · · · ≤ yN .
Then Medku(x) = yj , where j is the largest index such that kj +· · ·+kN ≥ N/2.
To see this, transform the original ordered sequence into the expanded ordered
sequence

y1 = · · · = y1︸ ︷︷ ︸
k1 terms

≤ · · · ≤ yi = · · · = yi︸ ︷︷ ︸
ki terms

≤ · · · ≤ yN = · · · = yN︸ ︷︷ ︸
kN terms

. (10.8)

Then by the definition of j, yj ∈ {infi∈P yi | |P |k ≥ K/2}, but yi for i > j is
not in this set. Thus, Medku(x) = yj . Conversely, if Medku(x) = yj , then yj

is the largest member of the set {infi∈P yi | |P |k ≥ K/2}. This implies that
kj + · · ·+ kN ≥ N/2, but that ki + · · ·+ kN < K/2 for i > j.

If K is odd, what we have just done implies that Med−k = Medk, and that
Medku(x) is equal to the ordinary median of the ordered set (10.8). Exercise
10.8 completes this part of the theory.

Finally, we wish to show that the discrete median filter Med can be a cyclic
operator on discrete images. As a simple example, consider the chessboard
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image, where u(i, j) = 255 if i + j is even and u(i, j) = 0 otherwise. When we
apply the median filter that takes the median of the four values surrounding
a pixel and the pixel value, it is clear that the filter “reverses” the chessboard
pattern. Indeed, any white pixel (value 255) is surrounded by four black pixels
(value zero), so the median filter transforms the white pixel into a black pixel.
In the same way, a black pixel is transformed into a white pixel and this can go
for ever.

10.4 Exercises

Exercise 10.2. Check that Medk as defined in Definition 10.1 is monotone and
translation invariant.

Exercise 10.3. Koenderink and van Doorn defined the dynamic shape of X at scale t
to be the set of x such that Gt ∗1X(x) ≥ 1/2. Check that this is a Gaussian-weighted
median filter.

Exercise 10.4. Consider the weighted median filter defined on S1 with k = (1/2)1[−1,1].
Compute Medku for u(x) = 1

1+x2 . Compare the result with the local average M1u(x) =
1
2

R 1

−1
u(x + y)dy. What happens on intervals where u is monotone?

Exercise 10.5. Saying that k is not separable is a fairly weak assumption. It cor-
responds roughly to saying that the support of k cannot be split into two disjoint
connected components each having k-measure 1/2. Show that if k is continuous and
if its support is connected, then it is not separable.

Exercise 10.6. Prove the following inequalities for any measurable function :

sup
|B|k≥ 1

2

inf
y∈x+B

u(y) ≥ sup
|B|k> 1

2

inf
y∈x+B

u(y) ≥ inf
|B|k≥ 1

2

sup
y∈x+B

u(y),

sup
|B|k≥ 1

2

inf
y∈x+B

u(y) ≥ inf
|B|k> 1

2

sup
y∈x+B

u(y) ≥ inf
|B|k≥ 1

2

sup
y∈x+B

u(y).

Exercise 10.7. Median filter on measurable sets and functions. The aim of
the exercise is to study the properties of the median filter extended to the set M of
all measurable sets of SN and all bounded measurable functions (u ∈ L∞(SN )). The
definition of Medk on M is identical to the current definition.

1) Considering the proof of Lemma 10.4, check that it adapts to prove that Medk is
upper semicontinuous on M.

2) Using the result of Exercise 7.16, show that one can define Medk from Medk as a
stack filter and that it is monotone, translation and contrast invariant. In addition,
Medk and Medk still satisfy the commutation with thresholds, XλMedku = MedkXλu.

3) Prove that Medk maps measurable sets into closed sets. Deduce that if u is a
measurable function, then Medku is upper semicontinuous and Med−k u is lower semi-
continuous.

3) Assume that k is not separable. Check that the proof of Proposition 10.8 still applies
to the more general Medk and Med−k , applied to all measurable functions. Deduce that
if k is not separable, then Medku is continuous whenever u is a measurable function.

Exercise 10.8. Let us consider a discrete nonuniform weight distribution k. Check
that Med−k u ≤ Medku. Prove that Med−k u = Medku if and only if there is no subset of
the numbers k1, . . . , kN whose sum is K/2. In particular, if K is odd, then Med−k u =
Medku.
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Exercise 10.9. Variational interpretations of the median and the average
values.
Let arginfmg(m) denote the value of m, if it exists, at which g attains its infimum. Con-
sider N real numbers {xi | i = 1, 2, . . . , N} and denote by Med((xi)i) and Med−((xi)i)
their usual lower and upper median values (we already know that both are equal if N
is odd but can be different if N is even).

(i) Show that

1

N

NX
i=1

xi = arginfm

NX
i=1

(xi −m)2.

(ii) Show that

Med−((xi)i) ≤ arginfm

NX
i=1

|xi −m| ≤ Med((xi)i).

(iii) Let k = 1B , where B is set with Lebesgue measure equal to one. Let MedBu
denote the median value of u in B, defined by MedBu = Medku(0). Consider a
bounded measurable function u defined on B. Show that

Z

B

u(x) dx = arginfm

Z

B

(u(x)−m)2 dx

and that

Med−Bu ≤ arginfm

Z

B

|u(x)−m|dx =
Med−Bu + MedBu

2
≤ MedBu.

(iv) Deduce from the above that the mean value is the best constant approximation
in the L2 norm and that the median is the best constant approximation in the
L1 norm.

10.5 Comments and references

The remarkable denoising properties and numerical efficiency of median filters
for the removal of all kinds of impulse noise in digital images, movies, and video
signals are well known and acclaimed [52, 96, 143, 150, 153]. The last reference
cited as well as the next three all propose simple and efficient implementations
of the median filter [13, 50, 90]. An introduction to weighted median filters can
be found in [25, 191], and information about some generalizations (conditional
median filters, for example) can be found in [11, 114, 177]. The min, max, and
median filters are particular instances of rank order filters; see [47] for a general
presentation of these filters. There are few studies on iterated median filters.
The use of iterated median filters as a scale space is, however, proposed in [17].
The extension of median filtering to multichannel (color) images is problematic,
although there have been some interesting attempts [38, 154].
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Figure 10.3: Smoothing effect of a median filter on level lines. Above, left
to right: original image; all of its level lines (boundaries of level sets) with
levels multiple of 12; level lines at level 100. Below,left to right: result of two
iterations of a median filter with a disk with radius 2; corresponding level lines
(levels multiple of 12); level lines at level 100.
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Chapter 11

Curves and Curvatures

This chapter contains the fundamentals of differential geometry that are used in
the book. Our main aim is to define the orientation and curvatures of a curve
or a surface as the main contrast invariant differential operators we shall deal
with in image and curve smoothing.

11.1 Tangent, normal, and curvature

We summarize in this section the concepts and results about smooth curves that
are needed in this chapter and elsewhere in the book. The curves we considered
will always be plane curves.

Definition 11.1. We call simple arc or Jordan arc the image Γ of a continuous
one-to-one function z : [0, 1] → R2, z(t) = (x(t), y(t)). We say that Γ is a
simple closed curve or Jordan curve if the mapping restricted to (0, 1) is one-
to-one and if z(0) = z(1). If z is continuously differentiable on [0, 1], we define
the arc length of the segment of the curve between z(s0) and z(s1) by

L(z, s0, s1) =
∫ s1

s0

|z′(t)| dt =
∫ s1

s0

√
z′(t) · z′(t) dt. (11.1)

The curves we deal with will always be smooth. Now, we want the definition
of “smoothness” to describe an intrinsic property of Γ rather than a property
of some parameterization z(s) of Γ. If a function z representing Γ is C1, then
the function L in equation (11.1) has a derivative

dL

ds
= |z′(s)|

that is continuous. Nevertheless, the curve itself may not conform to our idea
of being smooth, which at a minimum requires a tangent at every point y ∈ Γ.
For example, the motion of a point on the boundary of a unit disk as it rolls
along the x-axis is described by z(θ) = (θ − sin θ, 1 − cos θ), which is a C∞

function. Nevertheless, the curve has cusps at all multiples of 2π. The problem
is that z′(2kπ) = 0. It is this sort of phenomenon that motivates the definition
of smoothness for curves.

147
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148 CHAPTER 11. CURVES AND CURVATURES

Definition 11.2. We say that a curve Γ admits an arc-length parameterization
s ∈ R 7→ z(s) if the function z is C1 and dL/ds = |z′(s)| = 1 for all s. We
say that Γ is Cm, m ∈ N, m ≥ 1, if the arc-length parameterization z is a Cm

function.

An arc-length parameterization is also called a Euclidean parameterization.
If a Jordan curve has an arc-length parameterization z, then the domain of
definition of z on the real line must be an interval [a, b], where b − a is the
length of Γ, which we denote by l(Γ). In this case, we will always take [0, l(Γ)]
as the domain of definition of z. We identify [0, l(Γ)] algebraically with the
circle group by adding elements of [0, l(Γ)] modulo l(Γ).

Definition 11.3. Assume that Γ is C2 and let s 7→ z(s) be an arc-length
parameterization. The tangent vector τ is defined as τ = dz/ds. The curvature
vector of the curve Γ is defined by κ = d2z/ds2. The normal vector n is defined
by n = τ⊥, where (x, y)⊥ = (−y, x).

One can easily describe all Euclidean parameterizations of a Jordan curve.

Proposition 11.4. Suppose that Γ is a C1 Jordan curve with arc-length pa-
rameterization x : [0, l(Γ)] → Γ. Then any other arc-length parameterization
y : [0, l(Γ)] → Γ is of the form y(s) = x(s + σ) or y(s) = x(−s + σ) for some
σ ∈ [0, l(Γ)].

Proof. Denote by C the interval [0, l(Γ)], defined as an additive subgroup of R
modulo l(Γ). Let x, y : C 7→ Γ be two length preserving parameterizations of
Γ. Then z = x ◦ y−1 is a length preserving bijection of C. Using the parame-
terization of C, this implies z(s) = ±s + σ for some σ ∈ [0, 2π] and the proof is
easily concluded. (See exercise 11.6 for some more details.)

Proposition 11.5. Let Γ be a C2 Jordan curve, and let x and y by any two
arc-length parameterizations of Γ.

(i) If x(s) = y(t), then x′(s) = ±y′(t).

(ii) The vector κ is independent of the choice of arc-length parameterizations
and it is orthogonal to τ = x′.

Proof. By Proposition 11.4, y(s) = x(±s+σ) and (i) follows by differentiation.
This is also geometrically obvious: x′(s) and y′(t) are unit vectors tangent to
Γ at the same point. Thus, they either point in the same direction they point
in opposite directions.

Using any of the above representations and differentiating twice shows that
x′′ = y′′. Since x′ ·x′ = 1, differentiating this expression shows that x′′ ·x′ = 0.
Thus, x′′ and x′ are orthogonal and x′′ and x′⊥ are collinear.

It will be convenient to have a flexible notation for the curvature in the
different contexts we will use it. This is the object of the next definition.
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Definition 11.6 (and notation). Given a C2 curve Γ, which is parameterized
by length as s 7→ x(s) and x = x(s) a point of Γ, we denote in three equivalent
ways the curvature of Γ at x = x(s),

κ(Γ)(x) = κ(x) = κ(x(s)) = κ(s) = x′′(s).

In the first notation, κ is the curvature of the curve Γ at a point x implicitly
supposed to belong Γ. In the second notation, Γ is omitted. In the third notation
a particular parameterization of Γ, x(s), is being used. In the third one, x is
omitted.

The above notations create no ambiguity or contradiction, since by Propo-
sition 11.5 the curvature is independent of the Euclidean parameterization. Of
course, a smooth Jordan curve is locally a graph. More specifically:

Proposition 11.7. A C1 Jordan arc Γ can be represented locally as the graph of
a C1 scalar function f . Conversely, the graph of a C1 function is a C1 Jordan
curve.

Proof. Assume we are given a C1 Jordan arc Γ and an arc-length parameteri-
zation c in a neighborhood of c(s0) ∈ Γ. We assume, without loss of generality,
that s0 = 0 and that c(0) = 0. Then we can establish a local coordinate system
based on the two unit vectors c′(0) and c′(0)⊥, where the x-axis is positive in
the direction of c′(0). If we write c(s) = (x(s), y(s)) in this coordinate system,
then

x(s) = c(s) · c′(0),

y(s) = c(s) · c′(0)⊥.

Since dx/ds(s) = c′(s) ·c′(0), dx/ds(0) = 1. Then the inverse function theorem
implies the existence of a C1 function g and a δ > 0 such that s = g(x) for
|x| < δ. This means that, for |x| < δ, Γ is represented locally by the graph of
the C1 function f , where f(x) = y(g(x)) = c(g(x)) ·c′(0)⊥. To be slightly more
precise, denote the graph of f for |x| < δ by Γf . Since g is one-to-one, Γf is a
homeomorphic image of the open interval (−δ, δ) and Γf ⊂ Γ. If Γ is C2, then
f is C2 and f ′′(0) = c′′(0) · c′(0)⊥.

Conversely, given a C1 function f , we can consider the graph Γf of f in a
neighborhood of the origin. Then Γf is represented by c, where c(x) = (x, f(x)).
We may assume that f(0) = 0 and f ′(0) = 0 (by a translation and rotation if
necessary). The arc-length along Γ is measured by

s(x) =
∫ x

0

√
1 + [f ′(t)]2 dt,

and ds/dx =
√

1 + [f ′(x)]2. This time there is a C1 function h such that
h(s) = x and h′(s) = (1 + [f ′(h(s))]2)1/2. Then Γ is represented by c̃(s) =
(h(s), f(h(s))). Short computations show that |c̃′(s)| = 1. If f is C2, then Γ is
C2 and c̃′′(0) · c̃′(0)⊥ = f ′′(0).

Exercise 11.1. Make the above “short computations”!
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11.2 The level-line structure (or topographic map)
of an image

We saw in Chapter 5 how an image can be represented by its level sets. The
next step, with a view toward shape analysis, is the representation of an image
in terms of its level lines. We rely heavily on the implicit function theorem
to develop this representation. We begin with a two-dimensional version. The
statement here is just a slight variation on the implicit function theorem quoted
in section I.4.

Theorem 11.8. Let u ∈ F be a real-valued C1 function. Assume that Du(x0) 6=
0 at some x0 = (x0, y0). Let i denote the unit vector in the direction (ux, uy),
let j denote the unit vector in the orthogonal direction (−uy, ux), and write
x = x0 + xi + yj. Then there is a disk D(x0, r) and a unique C1 function ϕ,
ϕ : [−r, r] → R, such that if x ∈ D(x0, r), then

u(x, y) = 0 ⇐⇒ x = ϕ(y).

The following corollary is a global version of this local result.

Corollary 11.9. Assume that u ∈ F is C1 and let u−1(λ) = {x | u(x) = λ}
for λ ∈ R. If λ 6= u(∞) and Du(x) 6= 0 for all x ∈ u−1(λ), then u−1(λ) is a
finite union of disjoint Jordan curves.

Proof. From Theorem 11.8 we know that for each point x ∈ u−1(λ) there is an
open disk D(x, r(x)) such that D(x, r(x))∩u−1(λ) is a C1 Jordan arc x(s) and
we can take the endpoints of the arc on ∂D(x, r(x)). Since λ 6= u(∞), u−1(λ)
is compact. Thus there is a finite number of points xi, i = 1, . . . , m, such
that u−1(λ) ⊂ ⋃m

i=1 D(xi, r(xi)). For simplicity write Di = D(xi, r(xi)). This
implies that u−1(λ) is a finite union of Jordan arcs which we can parameterize
by length. The rest of the proof is very intuitive and is left to the reader. I
consists of iteratively gluing the Jordan arcs until they close up into a Jordan
curve.

The next theorem is one of the few results that we are going to quote rather
than prove, as we have done with the implicit function theorem.

Theorem 11.10 (Sard’s theorem). Let u ∈ F ∩ C1. Then for almost every
λ in the range of u, the set u−1(λ) is nonsingular, which means that for all
x ∈ u−1(λ), Du(x) 6= 0.

As a direct consequence of Sard’s Theorem and Corollary 11.9, we obtain:

Corollary 11.11. Let u ∈ F ∩C1. Then for almost every λ in the range of u,
the set u−1(λ) is the union of a finite set of disjoint simple closed C1 curves.

The sole purpose of the next proposition is to convince the reader that the
level lines of a function provide a faithful representation of the function.

Proposition 11.12. Let u ∈ F ∩ C1. Then u can be reconstructed from the
family of all of its level lines at nonsingular levels, along with their levels.
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Figure 11.1: Level lines as representatives of the shapes present in an image.
Left: noisy binary image with two apparent shapes; right: the two longest level
lines.

Figure 11.2: Level lines as a complete representation of the shapes present in an
image. All level lines of the image of a sea bird for levels that are multiples of
12 are displayed. Notice that we do not need a previous smoothing to visualize
the shape structures in an image: It is sufficient to quantize the displayed levels.

Proof. Let G be the closure of the union of the ranges of all level lines of u at
nonsingular levels. If x ∈ G, then there are points xn belonging to level lines
of some levels λn such that xn → x. As a consequence, λn = u(xn) → u(x).
So we get back the value of u(x).
Let now x belong to the open set Gc. Let us first prove that Du(x) = 0. Assume
by contradiction that Du(x) 6= 0. By using the first order Taylor expansion of
u around x, one sees that for all r > 0 the connected range u(B(x, r)) must
contain some interval (u(x) − α(r), u(x) + α(r)) with α(r) → 0 as r → 0. By
Sard’s theorem some of the values in this interval are nonsingular. Thus we can
find nonsingular levels λn → u(x) and points xn → x such that u(xn) = λn.
This implies that x ∈ G and yields a contradiction.
Thus Du(x) = 0 on Gc and u is therefore constant on each connected component
A of Gc. The value of u is then uniquely determined by the value of u on the
boundary of A. This value is known, since ∂A is contained in G.
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x= (y)
ϕ
j 


Du/|Du| = i


Figure 11.3: Intrinsic coordinates. Note that ϕ′′(0) > 0, so b < 0.

11.3 Curvature of the level lines

We continue to work in R2. Consider a real-valued function u that is twice
continuously differentiable in a neighborhood of x0 ∈ R2. Without loss of
generality, we let x0 = 0 and assume that u(0) = 0. (To simplify the notation,
we will often write Du rather than Du(0), and so on.) If the gradient Du =
(ux, uy) 6= 0, then we establish a local coordinate system by letting i = Du/|Du|
and j = Du⊥/|Du|, where Du⊥ = (−uy, ux). Thus, for a point x near 0, we
write x = xi + yj. (See Figure 11.3.)

Since u is C2, we can use Taylor’s formula to express u in this coordinate
system in a neighborhood of 0:

u(x) = px + ax2 + by2 + cxy + O(|x|3), (11.2)

where p = |Du(0)| > 0 and

a =
1
2

∂2u

∂x2
(0) =

1
2
D2u

( Du

|Du| ,
Du

|Du|
)
,

b =
1
2

∂2u

∂y2
(0) =

1
2
D2u

(Du⊥

|Du| ,
Du⊥

|Du|
)
,

c =
∂2u

∂x∂y
(0) = D2u

(Du⊥

|Du| ,
Du

|Du|
)
.

(11.3)

Exercise 11.2. Check the three above formulas.

The implicit function theorem (Theorem 11.8) ensures that in a neighbor-
hood of 0, the set {x | u(x) = 0} is a C2 graph whose equation can be written
x = ϕ(y), where ϕ is a C2 function in a neighborhood N of y = 0. In this neigh-
borhood, we have u(ϕ(y), y) = 0. Differentiating this shows that uxϕ′ + uy = 0
for y ∈ N . Since |Du(0)| = ux(0) and uy(0) = 0 in our coordinate system, we
obtain ϕ′(0) = 0. A second differentiation of uxϕ′ + uy = 0 yields

(uxxϕ′ + uxy)ϕ′ + uxϕ′′ + uyxϕ′ + uyy = 0.

Since ϕ′(0) = 0, we have ϕ′′(0) = −uyy(0)/ux(0). Using the notation of (11.3),
we see that

ϕ(y) = − b

p
y2 + o(y2). (11.4)

Equation (11.4) is the representation of the level line {x | u(x) = u(0)} in
the intrinsic coordinates at 0. Let us set |2b/p| = 1/R. If the curve is a circle,
R is the radius of this circle. More generally R is called radius of the osculatory
circle to the curve. See exercise 11.10.
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We are now going to do another simple computation to determine the cur-
vature vector of the Jordan arc c defined by c(y) = (ϕ(y), y) near y = 0. Recall
that we denote the curvature of a curve c by κ(c) and the value of this function
at a point y by κ(c)(y).) Since c′(y) = (ϕ′(y), 1) and c′′(y) = (ϕ′′(y), 0), at
y = 0, we have c′(0) = (0, 1) and c′′(0) = (ϕ′′(0), 0), so c′′(0) · c′(0) = 0. Using
this and equation (11.10) we see that κ(c)(0) = (ϕ′′(0), 0). We now use (11.4)
and (11.3) to write the last expression as

κ(c)(0) = − 1
|Du|D

2u
(Du⊥

|Du| ,
Du⊥

|Du|
) Du

|Du| (0), (11.5)

where all of the expressions are evaluated at y = 0. This tells us that the vectors
κ(c)(0) and Du(0) are collinear. Equation (11.5) also leads to the following
definition and lemma.

Definition 11.13. Let u be a real-valued function that is C2 in a neighborhood
of a point x ∈ R2 and assume that Du(x) 6= 0. The curvature of u at x, denoted
by curv(u)(x), is the real number defined by

1
|Du|3 D2u(Du⊥, Du⊥)(x) =

uxxu2
y − 2uxyuxuy + uyyu2

x

(u2
x + u2

y)3/2
(x). (11.6)

Exercise 11.3. Check the above identity.

Lemma 11.14. Assume that u : R2 → R is C2 in a neighborhood of a point x0

and assume that Du(x0) 6= 0. Let N = N(x0) be a neighborhood of x0 in which
the level set of u {x | u(x) = u(x0)} is a simple C2 arc, which we still denote
by x = x(s). Then at every point x of this arc,

κ(x) = −curv(u)(x)
Du

|Du| (x), (11.7)

where the relation holds for x ∈ N ∩ {x | u(x) = u(x0)}.

Proof. We essentially proved the lemma when we derived equation (11.5) for
x0 = 0. We need only remark that, given the hypotheses of the lemma, there
is a neighborhood N of x0 such that Du(x) 6= 0 for x ∈ N and such that
{x | u(x) = u(x0)} is a simple C2 arc for x ∈ N . Then the argument we made
to derive (11.5) holds for any point x ∈ N ∩ {x | u(x) = u(x0)}.

The next exercise proposes as a sanity check a verification that the curvature
thus defined is contrast invariant and rotation invariant.

Exercise 11.4. Use equation (11.6) to show that

curv(u) = div
� Du

|Du|
�
. (11.8)

Use this last relation to show that curv(g(u)) = curv(u) if g is any C2 function
g : R → R such that g′(x) > 0 for all x ∈ R. What happens if g′(x) < 0 for all
x ∈ R? Show that curv(U) = curv(u), where U(s, t) = u(x, y) and x = s cos θ− t sin θ,
y = s sin θ + t cos θ.
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Before leaving this section, we wish to emphasize geometric aspects of the
functions we have introduced. Perhaps the most important fact is that the
curvature of a C2 Jordan arc Γ is an intrinsic property of Γ; it does not depend
on the parameterization. If x is a point on Γ, then the curvature vector κ(Γ)(x)
points toward the center of the osculating circle. Furthermore, 1/|κ(Γ)(x)| is
the radius of this circle, so when |κ(Γ)(x)| is large, the osculating circle is small,
and the curve is ”turning a sharp corner.”

If Du(x) 6= 0, then the vector Du(x) points in the direction of greatest
increase, or steepest ascent, of u at x: Following the gradient leads “up hill.”
The function curv(u) does not have such a clear geometric interpretation, and
it is perhaps best thought of in terms of equation (11.7): curv(u)(x) is the
coefficient of −Du(x)/|Du(x)| that yields the curvature vector κ(z)(x), where
z is the level curve through the point x at level u(x). We cannot over emphasize
the importance of the two operators curv and Curv for the theories that follow.
In addition to (11.7), a further relation between these operators is shown in
Proposition 12.9, and it is this result that connects function smoothing with
curve smoothing.

11.4 The principal curvatures of a level surface

We saw in Exercise 11.4 that curv(u) was contrast invariant. This idea will be
generalized to RN by introducing other differential operators that are contrast
invariant. These operators will be functions of the principal curvatures of the
level surfaces of u. For z ∈ RN , z⊥ will denote the hyperplane {y | z · y = 0}
that is orthogonal to z. (There should be no confusion with this notation and
the same notation for z ∈ R2. In R2, z⊥ is a vector orthogonal to z, and the
corresponding “hyperplane” is the line {tz⊥ | t ∈ R}.)

Proposition 11.15. Assume that u : RN → R is C2 in a neighborhood of a
point x0 and assume that Du(x0) 6= 0. Let g : R→ R be a C2 contrast change
such that g′(s) > 0 for all s ∈ R. Then Dg(u(x0)) = g′(u(x0))Du(x0), and
D̃2g(u(x0)) = g′(u(x0))D̃2u(x0), where D̃2u(x0) denotes the restriction of the
quadratic form D2u(x0) to the hyperplane Du(x0)⊥. This means, in particular,
that (1/|Du(x0)|)D̃2u(x0) is invariant under such a contrast change.

Proof. To simplify the notation, we will suppress the argument x0; thus, we
write Du for Du(x0), and so on. We use the notation y⊗y, y ∈ RN , to denote
the linear mapping y ⊗ y : RN → RN defined by (y ⊗ y)(x) = (x · y)y. The
range of y ⊗ y is the one-dimensional space Ry.

An application of the chain rule shows that Dg(u) = g′(u)Du. This im-
plies that Du⊥ = Dg(u)⊥. (Recall that g′(s) > 0 for all s ∈ R.) A second
differentiation shows that

D2g(u) = g′′(u)Du⊗Du + g′(u)D2u.

If y ∈ Du⊥, then (Du⊗Du)(y) = 0 and D2g(u)(y,y) = g′(u)D2u(y, y). This
means that D2g(u) = g′(u)D2u on Du⊥ = Dg(u)⊥, which proves the result.

Exercise 11.5. Taking euclidian coordinates, give the matrix of y ⊗ y. Check the
above differentiations.
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We are now going to define locally the level surface of a smooth function u,
and for this we quote one more version of the implicit function theorem.

Theorem 11.16 (Implicit function theorem). Assume that u : RN → R
is Cm in the neighborhood of x0 and assume that Du(x0) 6= 0. Write x =
x0 +y+zi, where i = Du(x0)/|Du(x0)| and y ∈ Du(x0)⊥. Then there exists a
ball B(x0, ρ) and a unique real-valued Cm function ϕ defined on B(x0, ρ)∩{x |
x = x0 + y, i · y = 0} such that for every x ∈ B(x0, ρ)

u(x) = u(x0) ⇐⇒ ϕ(y) = z.

In other words, the equation ϕ(y) = z describes the set {x | u(x) = u(x0)}
near x0 as the graph of a Cm function ϕ. Thus, locally we have a surface passing
through x0 that we call the level surface of u around x0.

We are going to use Proposition 11.15 and Theorem 11.16, first, to give a
simple intrinsic representation for the level surface of a function u around a
point x0 and, second, to relate the eigenvalues of the quadratic form introduced
in Proposition 11.15 to the curvatures of lines drawn on the level surface of u.

Proposition 11.17. Assume that u : RN → R is C2 in a neighborhood of
x0 ∈ RN and that p = Du(x0) 6= 0. Denote the eigenvalues of the restriction of
the quadratic form D2u(x0) to the hyperplane Du(x0)⊥ by µ1, . . . , µN−1. Let
iN = Du(x0)/|Du(x0)| and select i1, . . . , iN−1 so they form an orthonormal
basis of eigenvectors of the restriction of D2u(x0) to Du(x0)⊥. Write x =
x0 + z, where z = x1i1 + · · · + xN iN = y + xN iN . Then if |z| is sufficiently
small, the function ϕ(y) = xN that solves the equation u(y, ϕ(y)) = u(x0) can
be expressed locally as

xN =
−1
2p

N−1∑

i=1

µix
2
i + o(|y|2).

Proof. Assume, without loss of generality, that x0 = 0 and that u(0) = 0.
Using the notation of Theorem 11.16, we know that, for x ∈ B(0, ρ), u(y, xN ) =
0 if and only if ϕ(y) = xN , and that ϕ is C2 in B(0, ρ). Furthermore, by
differentiating the expression u(y, ϕ(y)) = 0, we see that uxi + uxN

ϕxi = 0,
i = 1, . . . , N − 1 for |x| < ρ. In particular, uxi(0) + uxN

(0)ϕxi(0) = 0. In
the local coordinate system we have chosen, |Du(0)| = |uxN

(0)|, and since
Du(0) 6= 0, we conclude that uxi(0) = 0 for i = 1, . . . , N − 1 and hence that
ϕxi(0) = 0 for i = 1, . . . , N − 1. This means that the local expansion of ϕ has
the form

ϕ(y) =
1
2
D2ϕ(0)(y,y) + o(|y|2).

Now differentiate the relation uxi + uxN
ϕxi = 0 again to obtain

uxixj + uxixN
ϕxj + (uxN xj + uxN xN

ϕxj )ϕxi + uxN
ϕxixj = 0.

Since we have just shown that ϕxi(0) = 0 for i = 1, . . . , N − 1, we see from
this last expression that D̃2u(0) + pD̃2ϕ(0) = 0, where p = uxN (0) and D̃2u(0),
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D̃2ϕ(0) are the restrictions of the quadratic forms D2u(0) and D2ϕ(0) to the
hyperplane Du(0)⊥. Thus we have

xN =
−1
2p

D2u(0)(y,y) + o(|y|2). (11.9)

Recall that y ∈ Du(0)⊥ and that y = x1i1 + · · ·+ xN−1iN−1, where the ii are
an orthonormal basis of eigenvectors of D2(0) restricted to Du(0)⊥. Thus,

xN =
−1
2p

N−1∑

i=1

µix
2
i + o(|y|2),

which is what we wished to prove.

This formula reads
x2 =

−1
2p

µ1x
2
1 + o(|x1|2)

if N = 2, which is just equation (11.4) with different notation. Thus, µ1 =
|Du|curv(u), confirming that µ1 = ∂2u/∂x2

1. We are now going to use our two-
dimensional analysis to give a further interpretation of the eigenvalues µi for
N > 2. We begin by considering the curve Γν defined by the two equations
x = x0 + tν + xN iN and ϕ(tν) = xN , where ν is a unit vector in Du(x0)⊥.
Their solution in the local coordinates is ϕ(tν) = xN , whenever t ∈ R is small.
Thus, Γν is a curve passing by x0, drawn on the level surface of u and projecting
into a straight line of Du⊥. By (11.9) its equation is

xN = ϕ(tν) =
−1

2|Du(x0)|D
2u(x0)(ν, ν)t2 + o(t2),

and its normal at x0 is Du(x0)
|Du(x0)| . Thus the curvature vector of Γν at x0 is

κ(Γν)(x0) =
−1

|Du(x0)|D
2u(x0)(ν, ν)

Du(x0)
|Du(x0)| .

By defining κν = |Du(x0)|−1D2u(x0)(ν, ν), we have

κ(Γν)(x0) = −κν
Du(x0)
|Du(x0)| ,

which has the same form as equation (11.7). So the modulus of κν is equal
to the modulus of the curvature of Γν at x0. This leads us to call principal
curvatures of the level surface of u at x0 the numbers κν obtained by letting
ν = ij , j = 1, . . . , N − 1, where the unit vectors ij are an orthonormal system
of eigenvectors of D2u(x0) restricted to Du(x0)⊥.

Definition 11.18. Let u : R2 → R be C2 at x0, with Du(x0) 6= 0. The principal
curvatures of u at x0 are the real numbers

κj =
µj

|Du(x0)| ,

where µj are the eigenvalues of D2u(x0) restricted to Du(x0)⊥.
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It follows from Proposition 11.15 that the principal curvatures are invariant
under a C2 contrast change g such that g′(s) > 0 for all s ∈ R.

Definition 11.19. The mean curvature of a C2 function u : RN → R at x0 ∈
RN is the sum of the principal curvatures at x0. It is denoted by curv(u)(x0).

Note that this definition agrees with Definition 11.2 when N = 2. The next
result provides another representation for curv(u).

Proposition 11.20. The mean curvature of u is given by

curv(u) = div
( Du

|Du|
)
.

Proof. Represent the matrix D2u in the coordinate system ij , j = 1, . . . , N−1,
and iN = Du(x0)/|Du(x0)|, where the ij , j = 1, . . . , N−1, form a complete set
of eigenvectors of the linear mapping D2u(x0) restricted to Du⊥(x0). Then in
this coordinate system, D2u(x0) has the following form (illustrated for N = 5):

D2u(x0) =




u11 0 0 0 u15

0 u22 0 0 u25

0 0 u33 0 u35

0 0 0 u44 u45

u51 u52 u53 u54 u55




,

where ujk = uxjxk
(x0), and ujj = κj is the eigenvalue associated with ij . Thus,

by definition, we see that

curv(u) =
∆u

|Du| −
1

|Du|D
2u

( Du

|Du| ,
Du

|Du|
)
.

We also have

div
( Du

|Du|
)

=
N∑

j=1

∂

∂xj

( uxj

|Du|
)

=
1

|Du|
N∑

j=1

uxjxj −
1

|Du|3
N∑

j,k=1

uxjxk
uxj uxk

=
∆u

|Du| −
1

|Du|D
2u

( Du

|Du| ,
Du

|Du|
)
.

With this representation, it is clear that the mean curvature has the same
invariance properties as the curvature of a C2 function defined on R2. (See
Exercise 11.4.)

11.5 Exercises

Exercise 11.6. Let Γ by a Jordan arc parameterized by x : [0, 1] → Γ and by
y : [0, 1] → Γ. Show that x = y(f) or x = y(1− f), where f is a continuous, strictly
increasing function that maps [0, 1] onto [0, 1]. Hint: x and y are one-to-one, and
since [0, 1] is compact, they are homeomorphisms. Thus, y−1(x) = f is a one-to-one
continuous mapping of [0, 1] onto itself. As an application, give a proof of Proposition
11.4.
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Exercise 11.7. State and prove an adaptation of Propositions 11.4 and 11.5 to a
Jordan arc.

The curvature vector has been defined in terms of the arc length. Curves,
however, are often naturally defined in terms of other parameters. The next two
exercises develop the differential relations between an arc-length parameteriza-
tion and another parameterization.
Exercise 11.8. Assume that Γ is a C2 Jordan arc or curve. Let s 7→ x(s) be an
arc-length parameterization and let t 7→ y(t) be any other parameterization with the
property that y′(t) 6= 0. Since x and y are one-to-one, we can consider the function
y−1(x) = ϕ. Then x(s) = y(ϕ(s)), where ϕ(s) = t. The inverse function ϕ−1 is given
by

s = ϕ−1(t) =

Z t

t0

p
y′(r) · y′(r) dr,

so we know immediately that ϕ−1 is absolutely continuous with continuous derivative
equal to

p
y′(t) · y′(t). Thus, we also know that ϕ′(s) = |y′(ϕ(s))|−1. Note that we

made a choice above by taking
p

y′(r) · y′(r) to be positive. This is equivalent to
assuming that x′(s) and y′(ϕ(s)) point in the same direction or that ϕ′(s) > 0.

(i) Show that κ(s) = x′′(s) = y′′(ϕ(s))[ϕ′(s)]2 + y′(ϕ(s))ϕ′′(s) and deduce that

ϕ′′(s) = −y′′(ϕ(s))ϕ′(s) · y′(ϕ(s))

|y′(ϕ(s))|3 = −y′′(ϕ(s)) · y′(ϕ(s))

|y′(ϕ(s))|4 .

(ii) Use the results of (i) to show that

κ(s) = x′′(s) =
1

|y′(t)|2
"
y′′(t)−

 
y′′(t) · y′(t)

|y′(t)|

!
y′(t)
|y′(t)|

#
, (11.10)

where ϕ(s) = t. Show that we get the same expression for the right-hand side
of (11.10) with the assumption that ϕ′(s) < 0. This shows that the curvature
vector κ does not depend on the choice of parameter.

(iii) Consider the scalar function κ(y) defined by κ(y)(s) = κ(s) · x′(s)⊥. Use equa-
tion (11.10) to show that

κ(y)(t) =
y′′(t) · [y′(t)]⊥

|y′(t)|3

Note that κ(y) is determined up to a sign that depends on the sign of ϕ′(s);
however, |κ(y)| = |κ| is uniquely determined.

Exercise 11.9. Assume that Γ is a Jordan arc or curve that is represented by a C1

function t 7→ x(t) with the property that x′(t) 6= 0. Prove that Γ is C1.

Exercise 11.10.

(i) Consider the arc-length parameterization of the circle with radius r centered at
the origin given by x(s) = (r cos(s/r), r sin(s/r)). Show that the length of the
curvature vector is 1/r.

(ii) Compute the scalar curvature of the graph of y = (a/2)x2 at x = 0.

Exercise 11.11. Complete the proof of Corollary 11.9.

Exercise 11.12. The kinds of techniques used in this exercise are important for
work in later chapters. The exercise demonstrates that it is possible to bracket a C2

function locally with two functions that are radial and either increasing or decreasing.
We say that a function f is radial and increasing if there exists an increasing function
g : R+ → R such that f(x) = g(|xc − x|2), xc ∈ R2. We say that f is radial and
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decreasing if g is decreasing. Let u : R2 → R be C2 and assume that Du(x0) 6= 0.
We wish to show that for every ε > 0 there exist two C2 radial functions f−ε and f+

ε

(increasing or decreasing, depending on the situation) that satisfy the following four
conditions:

f−ε (x0) = u(x0) = f+
ε (x0), (11.11)

Df−ε (x0) = Du(x0) = Df+
ε (x0), (11.12)

curv(f−ε )(x0) +
2ε

p
= curv(u)(x0) = curvf+

ε (x0)− 2ε

p
, (11.13)

f−ε (x) + o(|x0 − x|2) ≤ u(x) ≤ f+
ε (x) + o(|x0 − x|2). (11.14)

1. Without loss of generality, take x0 = (0, 0), u(0, 0) = 0, and Du(x0) = (p, 0),
p > 0. Then we have the Taylor expansion

u(x) = px + ax2 + by2 + cxy + o(x2 + y2),

where a, b, and c are given in (11.3). Show that for every ε > 0,

px+
�
− c2

ε
+a
�
x2+(b−ε)y2+o(x2+y2) ≤ u(x, y) ≤ px+

�c2

ε
+a
�
x2+(b+ε)y2+o(x2+y2).

2. Let f be a radial function defined by f(x, y) = g((x − xc)
2 + y2), where g :

R+ → R is C2 and either increasing or decreasing. Show by expanding f at (0, 0) that

f(x, y) = g(x2
c)− 2xcg

′(x2
c)x + (2x2

cg
′′(x2

c) + g′(x2
c))x

2 + g′(x2
c)y

2 + o(x2 + y2).

3. The idea is to construct f+
ε and f−ε by matching the coefficients of the expansion

of f with the coefficients of the functions px + (±(c2/ε) + a)x2 + (b± ε)y2. There are
three cases to consider: b < 0, b = 0, and b > 0. Show that in each case it is possible to
find values of xc and functions g so the functions f+

ε and f−ε satisfy the four condition.
Note that both xc and g depend on ε. Discuss the geometry for each case.

Exercise 11.13. By computing explicitly the terms ∂g(u)/∂xi, verify that Dg(u) =
g′(u)Du. Similarly, verify that D2(g(u)) = g′′(u)Du ⊗Du + g′(u)D2u by computing
the second-order terms ∂2g(u)/∂xi∂xj .

11.6 Comments and references

Calculus and differential geometry. The differential calculus of curves and
surfaces used in this chapter can be found in many books, and no doubt most
readers are familiar with this material. Nevertheless, a few references to specific
results may be useful. As a general reference on calculus, and as a specific
reference for the implicit function theorem, we suggest the text by Courant and
John [44]. (The implicit function theorem can be found on page 221 of volume
II.) Elementary results about classical differential geometry can be found in
[176]. A statement and proof of Sard’s theorem can be found in [111].

Level lines. An introduction to the use of level lines in computer vision can be
found in [33]. A complete discussion of the definition of level lines for BV func-
tions can be found in [7]. One can decompose an image into into its level lines
at quantized levels and conversely reconstruct the image from this topographic
map. A fast algorithm, the Fast Level Set Transform (FLST) performing these
algorithms is described in [117]. Its principle is very simple: a) perform the
bilinear interpolation, b) rule out all singular levels where saddle point occur c)
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quantize the other levels, in which the level lines are finite unions of parametric
Jordan curves. The image is then parsed into a set of parametric Jordan curves.
This set is easily ordered in a tree structure, since two Jordan level curves do
not meet. Thus either one surrounds the other one or conversely. The level lines
tree is a shape parser for the image, many level lines surrounding perceptual
shapes or parts of perceptual shapes.

Curvature. It is a well-known mathematical technique to define a set im-
plicitly as the zero set of its distance function. In case the set is a curve, one
can compute its curvature at a point x by computing the curvature curv(u)(x),
where u is a signed distance function of the curve. This yields an intrinsic for-
mula for the curvature that is not dependent on a parameterization of the curve.
The same technique has been applied in recent years as a useful numerical tool.
This started with Barles report on flame propagation [18] and was extended
by Sethian [171] and by Osher and Sethian [146] in a series of papers on the
numerical simulation of the motion of a surface by its mean curvature.
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Chapter 12

The Main Curvature
Equations

The purpose of this chapter is to introduce the curvature motion PDE’s for
Jordan curves and images which are the main object of this book. We refer
to the introduction for a general view of these equations and their relevance
for contrast-invariant image analysis. Our main task is to establish a formal
link between curve evolution and image evolution PDE’s. The basic differential
geometry used in this chapter was thoroughly developed in Chapter 11, which
must therefore be read first.

12.1 The definition of a shape and how it is
recognized

Relevant information in images has been reduced to the image level sets in
Chapter 5. When the image is C1, the boundary of image level sets is a set of
level lines which are Jordan curves by Corollary 11.9. So shape analysis is led
back to the study of these curves which we shall call “elementary shapes”.

Definition 12.1. We call elementary shape any C1 planar Jordan curve.

The many experiments where we display level lines of digital images make
clear enough why a smoothing is necessary to restore their structure. These
experiments also show that we can in no way assimilate these level lines with
our common notion of shape as the silhouette of a physical object in full view.
Indeed, in images of a natural environment, most observed objects are partially
hidden (occluded) by other objects and often deformed by perspective. When
we observe a level line we cannot be sure that it belongs to a single object;
it may be composed of pieces of the boundaries of several objects that are
occluding each other. Shape recognition technology has therefore focused on
local methods, that is, methods that work even if a shape is not in full view
or if the visible part is distorted. As a consequence, image analysis adopts
the following principle: Shape recognition must be based on local features of the
shape’s boundary, in this case local features of the Jordan curve, and not on its

161
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global features. If the boundary has some degree of smoothness, then these local
features are based on the derivatives of the curve, namely the tangent vector, the
curvature, and so on.

Before beginning the technical aspects of this version of shape recognition,
we note that most local recognition methods involve the “salient” points of
a shape, which are the points where the curvature is zero (inflection points)
and points where the curvature has a maximum or minimum (the “corners”
of the shape). These methods reduce a shape to a finite code that consists of
the coordinates of a set of characteristic points, which are mainly corners and
inflection points. Recognition then amounts to comparing these sets of numbers.
The shape recognition programme we sketch here was anticipate in visionary
paper by Attneave [14] and has been very recently fully developed in the works
of José Luis Lisani, Pablo Musé, Frédéric Sur, Yann Gousseau and Frédéric Cao.
[139], [140], [29], [30].

12.2 Multiscale features and scale space

The methods we have just outlined—in fact, all non global computational shape
recognition methods—make the following two basic assumptions, neither of
which is true in practice for the rough shape data:

• The shape is a smooth Jordan curve.

• The boundary has a finite number of inflexion points and points where the
curvature has a local maximum or local minimum and this number can be
made as small as desired by smoothing.

The fact that these conditions can be obtained by properly smoothing a C1

Jordan curve was proven in 1986 by Gage and Hamilton [73] and in 1987 by
Grayson [77]. They showed that it is possible to transform a C1 Jordan curve
into a C∞ Jordan curve by using the so-called intrinsic heat equation. The more
precise statement follows soon.

Before proceeding, we wish to inject a comment about notation. For con-
venience, and unless it would cause ambiguity, we will not make a distinction
between a Jordan curve Γ as a subset of the plane and a function s 7→ x(s)
such that Γ = {x(s)}. As we have already done, we will speak of the Jordan
curve x. Since we will be speaking of families of Jordan curves dependent on
a parameter t > 0, we will most often denote these families by x(t, s), where
the second variable is a parameterization of the Jordan curve. Thus, x(t, s) has
three meanings: a family of Jordan curves, a family of functions that represent
these curves, and a particular point on one of these curves. Notation s we be
usually reserved to an arc-length parameter. Finally, everything we do in this
chapter is local—it takes place in some neighborhood of a given point. This
means we are generally speaking of Jordan arcs rather than Jordan curves.

Definition 12.2. Let x(t, s), t > 0, be a family of C2 Jordan curves and assume
that for each t, s is an arc length parameterization of x(t, s). We say that x(t, s)
satisfies the intrinsic heat equation if

∂x

∂t
(t, s) =

∂2x

∂s2
(t, s) = κ(x)(t, s). (12.1)
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Theorem 12.3 (Grayson). Let x0 be a C1 Jordan curve. By using the in-
trinsic heat equation, it is possible to evolve x0 into a family of Jordan curves
x(t, s) such that x(0, s) = x0(s) and such that for every t > 0, x(t, s) is C∞

(actually analytical) and satisfies the equation (12.1). Furthermore, for every
t > 0, x(t, s) has only a finite number of inflection points and curvature ex-
trema, and the number of these points does not increase with t. For every initial
curve, there is a scale t0 such that the curve x(t, s) is convex for t ≥ t0 and
there is a scale t1 such that the curve x(t, s) is a single point for t ≥ t1.

It is time to say what we mean by “curve scale space”, or “shape scale space.”
We will refer to any process that smooths a Jordan curve and that depends
on a real parameter t. Thus a shape scale space associates with an initial
Jordan curve x(0, s) = x0(s) a family of smooth curves x(t, s). For example,
the intrinsic heat equation eliminates spurious details of the initial shape and
retains simpler, more reliable versions of the shape, and these smoothed shapes
have finite codes. Suppose that we wish to compare two original versions of a
shape x0 and x1 that have been captured under different conditions of noise and
distortions. Comparing these two shapes is simply impossible. If, however, they
are smoothed to the shapes x0(t, ·) and x1(t, ·), then it is possible to compare
the codes of x0(t, ·) and x1(t, ·). A scale space is causal in the terminology of
vision theory if it does not introduce new features. Grayson’s theorem therefore
defines a causal scale space.

12.3 From image motion to curve motion

The intrinsic heat equation is only one example from a large family of nonlinear
equations that move curves with a curvature-dependent speed, that is, ∂x/∂t
is a function of the curvature of the curve x. The only requirement for our
purposes is that the speed is a nondecreasing function of the magnitude of the
curvature |κ(x)|.

Definition 12.4. We say that a C2 function u : R+ × R2 → R satisfies a cur-
vature equation if for some real-valued function g(κ, t), which is nondecreasing
in κ and satisfies g(0, t) = 0,

∂u

∂t
(t, x) = g(curv(u)(t,x), t)|Du|(t,x). (12.2)

Definition 12.5. Let x(t, s) be a family of C2 Jordan curves such that for
every t > 0, s 7→ x(t, s) is an arc-length parameterization. We say that the
functions x(t, s) satisfy a curvature equation if for some real-valued function
g(κ, t) nondecreasing in κ with g(0, t) = 0, they satisfy

∂x

∂t
(t, s) = g(|κ(x)(t, s)|, t)n(t, s), (12.3)

where n is a unit vector in the direction of κ(x).

In the preceding definition, the equation makes sense if κ(x) = 0 since
then the second member is zero. As we shall see, these equations are the only



“JMMBookOct04”
23/10/2006
page 164

i

i

i

i

i

i

i

i

164 CHAPTER 12. THE MAIN CURVATURE EQUATIONS

candidates to be curve or image scale spaces, and one of the main objectives
of this book is to identify which forms for g are particularly relevant for image
analysis. The above definitions are quite restrictive because they require the
curves or images to be C2. A more generally applicable definition of solutions
for these equations will be given in Chapter ?? with the introduction of viscosity
solutions. Our immediate objective is to establish the link between the motion
of an image and the motion of its level lines. This will establish the relation
between equations (12.2) and (12.3).

12.3.1 A link between image and curve evolution

Lemma 12.6. (Definition of the “normal flow”). Suppose that (t,x) 7→
u(t,x) is C2 in a neighborhood T ×U of the point (t0,x0) ∈ R×R2, and assume
that Du(t0, x0) 6= 0. Then there exists an open interval J centered at t0, an
open disk V centered at x0, and a unique C1 function x : J × V → R2 that
satisfy the following properties:

(i) u(t, x(t, y)) = u(t0, y) and x(t0,y) = y for all (t,y) ∈ J × V .

(ii) The vectors (∂x/∂t)(t, y) and Du(t, x(t, y)) are collinear.

In addition, the function x satisfies the following differential equation:

∂x

∂t
(t,y) = −

( 1
|Du|

∂u

∂t

) Du

|Du| (t,x(t,y)). (12.4)

The trajectory t 7→ x(t,y) is called the normal flow starting from (t0, y).

Proof. Differentiating the relation u(t, x(t)) = 0 with respect to t yields ∂u
∂t +

Du.∂x
∂t = 0. By multiplying this equation by the vector Du we see that ∂x

∂t is
collinear to Du if and only if (12.4) holds. Now, this relation defines x(t) as the
solution of an ordinary differential equation, with initial condition x(0) = x̃.
Since u is C2, the second member of (12.4) appears to be a Lipschitz function of
(t,x) provided Du(t, x) 6= 0, which is ensured for (t, x) close enough to (t0, x0).
Thus, by Cauchy-Lipschitz Theorem, there exists an open interval J such that
the O.D.E. (12.4) has a unique solution x(t, x̃) for all x̃ in a neighborhood of
x0 and t ∈ J .

Definition 12.7. Under the conditions of Lemma 12.6, for every t ∈ J we
can parameterize the level line of u(t,x) passing by x(t,x0) by its length s, in
such a way that x(t, 0) = x(t,x0) and ∂

∂sx(t, 0) = Du⊥
|Du| (x(t), 0). In that way,

we get a local parameterization x(t, s) of the level lines of u which is uniquely
associated with u and (t0, x0) in a neighborhood of this point. We call x(t, s)
“normal parameterization of the level lines” around (t0,x0).

Proposition 12.8. Assume that the function (t, x) 7→ u(t, x) is C2 in a neigh-
borhood of (t0, x0) and that Du(t0, x0) 6= 0. Then u satisfies the curvature
motion equation

∂u

∂t
(t,x) = curv(u)(t,x)|Du|(t,x) (12.5)
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in a neighborhood of (t0, x0) if and only if the normal parameterization of the
level lines of u, t 7→ x(t, ·) satisfies the intrinsic heat equation (12.1),

∂x

∂t
(t, s) =

∂2x

∂s2
(t, s) = κ(x)(t, s).

Proof. We shall use Relation (11.7), which establishes the link between curv(u)(x)
and the curvature κ(x) of the level line passing by x. If (12.1) holds, by (12.4),
we get

−(
∂u

∂t

Du

|Du|2 )(t,x(t)) = κ(x(t)).

By (11.7), this yields

(
∂u

∂t

Du

|Du|2 )(t, x(t)) = curv(u)
Du

|Du| ,

which implies the curvature motion equation (12.5). Conversely, substituting in
(12.4) the value of ∂u

∂t given by (12.5) yields

∂x

∂t
= −(curv(u)|Du| Du

|Du|2 )

and using (11.7) we obtain the heat intrinsic equation (12.1), ∂x
∂t (t, s) = κ(x(t)).

The preceding proof is immediately adaptable to all curvature equations :

Proposition 12.9. Assume that the function (t,x) 7→ u(t,x) is C2 in a neigh-
borhood of (t0, x0) and that Du(t0, x0) 6= 0. Let g : R× R+ → R be continuous
and nondecreasing with respect to κ and such that g(−κ, t) = −g(κ, t). Then u
satisfies the curvature motion equation

∂u

∂t
(t,x) = g(curv(u)(t, x), t)|Du|(t,x) (12.6)

in a neighborhood of (t0, x0) if and only if the normal flow t 7→ x(t, ·) satisfies
the curvature equation

∂x

∂t
(t, s) = g(|κ|t, s), t) κ(t, s)

|κ(t, s)| . (12.7)

12.3.2 Introduction to the affine curve and function equa-
tions

There are two curvature equations that are affine invariant and are therefore
particularly well suited for use in shape recognition.

Definition 12.10. The image evolution equation

∂u

∂t
(t,x) = (curv(u)(t, x))1/3|Du(t,x)| (12.8)
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is called affine morphological scale space (AMSS). The curve evolution equation

∂x

∂t
(t, s) = |κ(x(t, s))|1/3n(t, s)

(
=

κ(x(t, s))
|κ(x(t, s))|2/3

)
(12.9)

is called affine scale space (ASS). (For x ∈ R, x1/3 will be defined to be sign(x)|x|1/3.)

It is clear that AMSS and ASS are equivalent in the sense of Proposition 12.9.
As one would expect from the names of these equations, they both have some
sort of affine invariance. This is the subject of the next definition, Exercises
12.2 and 12.3 and the next section.

Definition 12.11. We say that a curvature equation (E) (image evolution equa-
tion) is affine invariant, if for every linear map A with positive determinant,
there is a positive constant c = c(A) such that (t,x) 7→ u(t,x) is a solution of
(E) if and only if (ct, Ax) 7→ u(ct, Ax) is a solution of (E).

12.3.3 The affine scale space as an intrinsic heat equation

Suppose that for each scale t, σ 7→ x(t, σ) is a Jordan arc (or curve) parame-
terized by σ, which is not in general an arc length. As in Chapter 11, we will
denote the curvature of x by κ. We wish to demonstrate a formal equivalence
between the affine scale space,

∂x

∂t
= |κ|1/3n(x), (12.10)

and an “intrinsic heat equation”

∂x

∂t
=

∂2x

∂σ2
, (12.11)

where σ is a special parameterization called affine length. We define an affine
length parameter of a Jordan curve (or arc) to be any parameterization σ 7→ x(σ)
such that

[xσ, xσσ] = 1, (12.12)

where [x, y] = x⊥ · y. If s is an arc-length parameterization, then we have
(Definition 11.3)

τ = xs n = |κ|−1xss

(
=

κ(x)
|κ(x)|

)
. (12.13)

We also have

xσ = xs
∂s

∂σ
and xσσ = xss

( ∂s

∂σ

)2

+ xs
∂2s

∂σ2
. (12.14)

Thus,

[xσ, xσσ] = [xs, xss]
( ∂s

∂σ

)3

,

and if (12.12) holds, then

[xs, xss]
( ∂s

∂σ

)3

= 1.
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Since by (12.13) [xs,xss] = sign([xs, xss])|κ|, we conclude that

∂s

∂σ
= (sign([xs, xss])|κ|)−1/3. (12.15)

Substituting this result in the expression for xσσ shown in (12.14) and writ-
ing xs = τ , we see that

xσσ = |κ|1/3n +
( ∂2s

∂σ2

)
τ .

This tells us that equation (12.11) is equivalent to the following equation:

∂x

∂t
= |κ|1/3n +

( ∂2s

∂σ2

)
τ . (12.16)

Now it turns out that the graphs of the functions x that you get from
one time to another do not depend on the term involving τ ; you could drop
this term and get the same graphs. More precisely, Epstein and Gage [58]
have shown that the tangential component of an equation like (12.16) does not
matter as far as the geometric evolution of the curve is concerned. In fact,
the tangential term just moves points along the curve itself, and the total curve
evolution is determined by the normal term. As a consequence, equation (12.10)
is equivalent to equation (12.11) in any neighborhood that avoids an inflection
point, that is, in any neighborhood where n(x) 6= 0. At an inflection point,
κ = 0, and the two equations give the same result.

12.4 Curvature motion in N dimensions

We consider an evolution (t, x) 7→ u(t,x), where x ∈ RN and u(0, ·) = u0 is an
initial N–dimensional image. Let κi(u)(t, x), i = 1, . . . , N − 1, denote the ith

principal curvature at the point (t,x). By definition 11.19 the mean curvature is
curv(u) =

∑N−1
i=1 κi. We will now define three curvature motion flow equations

in N dimensions.

Mean curvature motion. This equation is a direct translation of equation
(12.5) in N dimensions:

∂u

∂t
= |Du|curv(u).

This says that the motion of a level hypersurface of u in the normal direction
is proportional to its mean curvature.

Gaussian curvature motion for convex functions. We say that a function
is convex if all of its principal curvatures have the same sign. An example of
such a function is the signed distance function to a regular convex shape. The
equation is

∂u

∂t
= |Du|

N−1∏

i=1

κi.

The motion of a level hypersurface is proportional to the product of its principal
curvatures, which is the Gaussian curvature. As we will see in Chapter ??, this
must be modified before it can be applied to a nonconvex function.
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Affine-invariant curvature motion. The equation is

∂u

∂t
= |Du|

∣∣∣
N−1∏

i=1

κi

∣∣∣
1/(N+1)

H
( N−1∑

i=1

sign(κi)
)
,

where H(N − 1) = 1, H(−N + 1) = −1, and H(n) = 0 otherwise. The motion
is similar to Gaussian curvature motion, but the affine invariance requires that
the Gaussian curvature be raised to the power 1/(N + 1). There is no motion
at a point where the principal curvatures have mixed signs. This means that
only concave or convex parts of level surfaces get move by such an equation.

12.5 Exercises

Exercise 12.1. Check that all of the curvature equations (12.2) are contrast invariant.
That is, assuming that g is a real-valued C2 function defined on R and u is C2, show
that the function v defined by v(t, x) = g(u(t, x)) satisfies one of these equations if
and only if u satisfies the same equation.

Exercise 12.2. Assume that (t, x) 7→ u(t, x) is a C2 function and that A is a 2 × 2
matrix with positive determinant, which we denote by |A|. Define the function v by
v(t, x) = u(ct, Ax), where c = |A|−2/3.

(i) Prove that for each point x such that Du(x) 6= 0 one has the relation

curv(v)(x)|Dv(x)|3 = |A|2curv(u)(Ax)|Du(Ax)|3.

(ii) Use (i) to deduce that the AMSS equation (12.8) is affine invariant, that is,
(t, x) 7→ u(t, x) is a solution of AMSS if and only (t, x) 7→ v(t, x) does.

Exercise 12.3. This exercise is to show that the affine scale space (equation (12.9))
is affine invariant. It relies directly on results from Exercise 11.8. Let σ 7→ c(σ) be a
C2 curve, and assume that |c′(σ)| > 0. Then we know from Exercise 11.8 that

κ(c)(σ) =
1

|c′(σ)|2
"
c′′(σ)−

 
c′′(σ) · c′(σ)

|c′(σ)|

!
c′(σ)

|c′(σ)|

#
. (12.17)

Now assume that we have a family of C2 Jordan arcs (t, σ) 7→ c(t, σ). By projecting
both sides of the intrinsic heat equation onto the unit vector c′⊥/|c′| and by using
(12.17), we have the following equation:

∂c

∂t
· c′⊥

|c′| =
c′′ · c′⊥
|c′|3 (12.18)

We say that c satisfies a parametric curvature equation if it satisfies equation (12.18).
In the same spirit, we say that c satisfies a parametric affine equation if for some
constant γ > 0

∂c

∂t
· c′⊥ = γ(c′′ · c′⊥)1/3. (12.19)

(i) Suppose that σ = s, an arc-length parameterization of c. Show that equation
(12.18) can be written as

∂c

∂t
= κ(c) + λτ,

where λ is a real-valued function and τ is the unit tangent vector ∂c/∂s. (See
the remark following equation (12.16).)
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(ii) Let A be a 2 × 2 matrix with positive determinant, and define the curve y by
y(t, σ) = Ac(t, σ). We wish to show that if c satisfies a parametric affine motion,
then so does y. As a first step, show that Ax · (Ay)⊥ = |A|x · y and hence that
A(x⊥) · (Ax)⊥ = |A||x|2 for any x, y ∈ R2.

(iii) Show that if c satisfies equation (12.19), then y satisfies

∂y

∂t
· y′⊥ = γ|A|2/3(y′′ · y′⊥)1/3.

12.6 Comments and references

Our definition of shape. The Italian mathematician Renato Caccioppoli
proposed a theory of sets whose boundaries have finite length (finite Hausdorff
measure). From his theory, it can be deduced that the boundary of a Caccioppoli
set is composed of a countable number of Jordan curves, up to a set with zero
length. This decomposition can even be made unambiguous. In other words,
the set of Jordan curves associated with a given Caccioppoli set is unique and
gives enough information to reconstruct the set [6]. This result justifies our
focus on Jordan curves as the representatives of shapes. (For an account of
the fascinating life of Caccioppoli we suggest a visit to http://www-gap.dcs.st-
and.ac.uk/ history/Mathematicians/Caccioppoli.html.)

The role of curvature in shape analysis. After Attneave’s founding paper
[14], let us mention the thesis by G. J. Agin [1] as being one of the first refer-
ences dealing with the use of curvature for the representation and recognition
of objects in computer vision. The now-classic paper by Asada and Brady [12]
entitled “The curvature primal sketch” introduced the notion of computing a
“multiscale curvature” as a tool for object recognition. (The title is an allusion
to David Marr’s famous “raw primal sketch,” which is a set of geometric prim-
itives extracted from and representing an image.) The Asada–Brady paper led
to a long series of increasingly sophisticated attempts to represent shape from
curvature [56, 57] and to compute curvature correctly [138].

Curve shortening. The mathematical study of the intrinsic heat equation
(or curvature motion in two dimensions) was done is a series of brilliant papers in
differential geometry between 1983 and 1987. We repeat a few of the titles, which
indicate the progress: There was Gage [71] and Gage [72]: “Curve shortening
makes convex curves circular.” Then there was Gage and Hamilton [73]: “The
heat equation shrinking convex plane curves.” In this paper the authors showed
that a plane convex curve became asymptotically close to a shrinking circle.
In 1987 there was the paper by Epstein and Gage [58], and, in the same year,
Grayson removed the convexity condition and finished the job [77]: “The heat
equation shrinks embedded plane curves to round points.” As the reviewer,
U. Pinkall, wrote, “This paper contains the final solution of the long-standing
curve-shortening problem for plane curves.”

The first papers that brought curve shortening (and some variations) to
image analysis were by Kimia, Tannenbaum, and Zucker [103] and by Mack-
worth and Mokhtarian [120]. Curve shortening was introduced as a way to do
a multiscale analysis of curves, which were considered as shapes extracted from
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an image. In the latter paper, curve shortening was proposed as an efficient
numerical tool for multiscale shape analysis.

Affine-invariant curve shortening. Affine-invariant geometry seems to have
been founded by W. Blaschke. His three-volume work “Vorlesungen über Dif-
ferentialgeometrie” (1921–1929) contains definitions of affine length and affine
curvature. Curves with constant affine curvature are discussed in [121]. The
term “affine shortening” and the corresponding curve evolution equation were
introduced by Sapiro and Tannenbaum in [164]. Several mathematical proper-
ties were developed by the same authors in [165] and [166]. Angenent, Sapiro,
and Tannenbaum gave the first existence and uniqueness proof of affine short-
ening in [10] and prove a theorem comparable to Grayson’s theorem : they
prove that a shape eventually becomes convex and thereafter evolves towards
an ellipse before collapsing.

Mean curvature motion. In his famous paper entitled “Shapes of worn
stones,” Firey proposed a model for the natural erosion of stones on a beach [66].
He suggested that the rate of erosion of the surface of a stone was proportional
to the Gaussian curvature of the surface, so that areas with high Gaussian
curvature eroded faster than areas with lower curvature, and he conjectured that
the final shape was a sphere. The first attempt at a mathematical definition
of the mean curvature motion is found in Brakke [22]. Later in the book, we
will discuss the Sethian’s clever numerical implementation of the same equation
[172]. Almgren, Taylor, Wang proposed a more general formulation of mean
curvature motion that is applicable to crystal growth and, in general, to the
evolution of anisotropic solids [2].
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Chapter 13

Asymptotic Behavior of
SMTCII local Operators,
Dimension Two

As we know by Theorem 8.15, a function operator on F is contrast and trans-
lation invariant and standard monotone if and only if it has a sup-inf, or equiv-
alently an inf-sup form

Tu(x) = inf
B∈B

sup
y∈x+B

u(y),

where B is a standard subset of L. In case we require such operators to be
isotropic and local, it is enough to take for B any set of sets invariant by rotation
and contained in some B(0,M) by Proposition 8.11.

We will see, however, that such operators fall into a few classes when we
make them more and more local. To see this, we introduce a scale parameter
0 < h ≤ 1 and define the scaled operators Th by

Thu(x) = inf
B∈B

sup
y∈x+hB

u(y).

We will prove that in the limit, as h tends to zero, the action of Th on smooth
functions is not as varied as one might expect given the possible sets of struc-
turing elements. As an example, we will show that if Th is a scaled median
operator, then

Thu(x)− u(x) = h2C|Du(x)|curv(u)(x) + o(h2),

where the constant C depends only on the function k used to define the median
operator. Thus, the operator |Du|curv(u) plays the same role for the weighted
median filters, as the Laplacian ∆u does for linear operators. In short, we shall
get contrast invariant analogues of Theorem 2.2.

13.1 Asymptotic behavior theorem in R2

A simple real function will describe the asymptotic behavior of any local contrast
invariant filter.

171
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Definition 13.1. Let T be a SMTCII local operator. Consider the real function
H(s), s ∈ R,

H(s) = T [x + sy2](0), (13.1)

where T [x+ sy2] denotes “Tu with u(x, y) = x+ sy2.” H is called the structure
function of T .

Notice that u(x, y) = x + sy2 is not in F , so we use here the extension
described in the introduction. The function H(s) is well defined by the result
of Exercise 8.14.

Proposition 13.2. The structure function of a local SMTCII operator is non-
decreasing, Lipschitz, and satisfies for h > 0,

Th[x + sy2](0) = hT [x + hsy2](0) = hH(hs), (13.2)

Th[x](0) = hT [x](0) = hH(0) (13.3)

Proof. Take T in the inf-sup form with B ⊂ B(0, M), 0 ≤ M < 1.
Since T is monotone, H is a nondecreasing function. Let B ∈ B be one of the

structuring elements that define T and write x + s1y
2 = x + s2y

2 + (s1 − s2)y2.
Then

sup
(x,y)∈B

(x + s1y
2) ≤ sup

(x,y)∈B

(x + s2y
2) + |s2 − s1|M2,

since B is contained in D(0, M). By taking the infimum over B ∈ B of both
sides and using the definition of H, we see that

H(s1)−H(s2) ≤ |s1 − s2|M2.

By interchanging s1 and s2 in this last inequality, we deduce the Lipschitz
relation

|H(s1)−H(s2)| ≤ |s1 − s2|M2. (13.4)

Theorem 13.3. Let T be a local SMTCII operator and Th, 1 ≥ h > 0 its scaled
versions. Call H its structure function. Then, for any C2 function u : R2 → R,

Thu(x)− u(x) = hH(0)|Du(x)|+ o(h2).

Proof. By Propositions 8.9, 8.11 and 8.13, we can take T in the inf-sup form
and assume, for all B in B, that B ⊂ B(0,M) and that B is invariant under
rotations. Set p = |Du(x)|. By a suitable rotation, and since T is isotropic, we
may assume that Du(x) = (|Du(x)|, 0), and the first-order Taylor expansion of
u in a neighborhood of x can be written as

u(x + y) = u(x) + px + O(x, |y|2), (13.5)

where y = (x, y) and |O(x, |y|2)| ≤ C|y|2 for y ∈ D(0,M). Hence,

u(x + hy)− u(x) ≤ phx + Ch2|y|2 and phx ≤ u(x + hy)− u(x) + Ch2|y|2
(13.6)



“JMMBookOct04”
23/10/2006
page 173

i

i

i

i

i

i

i

i

13.1. ASYMPTOTIC BEHAVIOR THEOREM IN R2 173

Figure 13.1: The result of smoothing with an erosion is independent of the
curvature of the level lines. Left: image of a simple shape. Right: difference
of this image and its eroded image. Note that the width of the difference is
constant. By Theorem 13.3, all filters such that H(0) 6= 0 perform such an
erosion, or a dilation.

for all y ∈ D(0,M). Since hB ⊂ D(0, hM), we see from the first inequality of
(13.6) that

sup
y∈B

u(x + hy)− u(x) ≤ sup
y∈B

[phx] + sup
y∈B

Ch2|y|2 = hp sup
y∈B

[x] + CM2h2.

This implies that

Thu(x)− u(x) ≤ hp inf
B∈B

sup
y∈B

[x] + CM2h2

for 0 < h ≤ 1, and since infB∈B supy∈B [x] = T [x](0) = H(0), we see that

Thu(x)− u(x) ≤ hpH(0) + CM2h2.

The same argument applied to the second inequality of (13.6) shows that

hpH(0) ≤ Thu(x)− u(x) + CM2h2,

so |Thu(x)− u(x)− hpH(0)| ≤ CM2h2. Since p = |Du(x)|, we see that

Thu(x)− u(x) = hH(0)|Du(x)|+ O(x, h2),

which proves the result in case p 6= 0.

Interpretation. Theorem 13.3 tells us that the behavior of local contrast
invariant operators Th depends, for small h, completely on the action of T on
the test function u(x, y) = x. Assume H(0) = H(0) 6= 0. When h → 0, T acts
like a dilation by a disk D(0, h) if H(0) > 0 and like an erosion with D(0, h)
if H(0) < 0 (see Proposition 9.6). Thus, if H(0) 6= 0, there is no need to
define T with a complicated set of structuring elements. Asymptotically these
operators are either dilations or erosions, and these can be defined with a single
structuring element, namely, a disk. Exercise 13.4 gives the more general PDE
obtained when T is local but not isotropic.
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13.1.1 The asymptotic behavior of Th when T [x](0) = 0

If H(0) = T [x](0) = 0, then Theorem 13.3 is true but not very interesting. On
the other hand, operators for which T [x](0) = 0 are interesting. If we consider
Tu(x) to be a kind of average of the values of u in a neighborhood of x, then
assuming that T [x](0) = 0 makes sense. This means, however, that we must
consider the next term in the expansion of Thu; to do so we need to assume that
u is C3. This is the content of the next theorem, which is the main theoretical
result of the chapter. The proof is more involved than that of Theorem 13.3,
but at the macro level, they are similar. We start with some precise Taylor
expansion of u.

Lemma 13.4. Let u(y) be C3 around some point x ∈ R2. By using adequate
Euclidean coordinates y = (x, y), we can expand u in a neighborhood of x as

u(x + hy) = u(x) + h(px + ahx2 + bhy2 + chxy) + R(x, hy), (13.7)

where |R(x, hy)| ≤ Ch3 for all x ∈ K, y ∈ D(0,M) and 0 ≤ h ≤ 1.

Proof. Set p = |Du(x)|. We define the local coordinate system by taking x as
origin and Du(x) = (p, 0). Relation (13.7) is nothing but a Taylor expansion
where R can be written as

R(x, hy) =

(∫ 1

0

(1− t)2D3u(x + thy) dt

)
h3y(3).

The announced estimate follows because the function x 7→ ‖D3u(x)‖ is contin-
uous and thus bounded on the compact set K + D(0,M).

Theorem 13.5. Let T be a local SMTCII operator on F whose structure func-
tion H satisfies H(0) = 0. Then for every C3 function u on R2,

(i) On every compact set K ⊂ {x | Du(x) 6= 0},

Thu(x)− u(x) = h|Du(x)|H
(1

2
h curv(u)(x)

)
+ O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant CK that depends only on u
and K.

(ii) On every compact set K in R2,

|Thu(x)− u(x)| ≤ C ′Kh2

where the constant C ′K depends only on u and K.

Proof. We take T in the inf-sup form and B bounded by D(0,M) and isotropic.
Let us use the Taylor expansion (13.7). For 0 < h ≤ 1,

u(x + hy) = u(x) + h(px + ahx2 + bhy2 + chxy) + R(x, hy),

and so for any B ∈ B,

sup
y∈B

u(x + hy) ≤ u(x) + h sup
y∈B

[uh(x, y)] + sup
y∈B

|R(x, hy)|.
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Thus,
Thu(x) ≤ u(x) + hT [uh(x, y)](0) + inf

B∈B
sup
y∈B

|R(x, hy)|, (13.8)

where uh(x, y) = px + ahx2 + bhy2 + chxy and y = (x, y). Now let K be an
arbitrary compact set. From Lemma 13.4 we deduce that

Thu(x) ≤ u(x) + hT [uh(x, y)](0) + Ch3 (13.9)

for all x ∈ K. The same analysis shows that

u(x) ≤ Thu(x) + hT [uh(x, y)](0) + Ch3, (13.10)

and we conclude that

Thu(x)− u(x) = hT [uh(x, y)](0) + O(x, h3) (13.11)

for all x ∈ K where |O(x, h3)| ≤ CKh3. Relation (13.11) reduces the proof to
an analysis of Tuh(0).

Step 1: Estimating Tuh(0). If x ∈ K and y = (x, y) ∈ B, then |y| ≤ M
and

px− h(|a|+ |b|+ |c|)M2 ≤ uh(x, y) ≤ px + h(|a|+ |b|+ |c|)M2.

We write this as

px− hM2

2
‖D2u(x)‖ ≤ uh(x, y) ≤ px +

hM2

2
‖D2u(x)‖.

By assumption T [x](0) = 0 (hence T [px](0) = 0), so after applying T to the
inequalities, we see that

|T [uh(x, y)](0)| ≤ hM2

2
‖D2u(x)‖. (13.12)

This and equation (13.11) show that

|Thu(x)− u(x)| ≤ h2M2

2
‖D2u(x)‖+ CKh3 (13.13)

for x ∈ K and 0 < h ≤ 1. This proves part (ii). Let us now prove (i). We
just recall the meaning of p and b, namely b = (1/2)curv(u)(x)|Du(x)| and
p = |Du(x)|. Those terms are the only terms appearing in the main announced
result (i). So the proof of (i) consists of getting rid of a and c in the asymptotic
expansion (Tuh)(0). This elimination is performed in Steps 2 and 3.

Step 2: First reduction. We now focus on proving (i), and for this we assume
that p = |Du(x)| 6= 0. Define C = (|a| + |b| + |c|)M2. By Step 1, for every
B ∈ B, we see that

sup
y∈B

uh(x, y) ≥ inf
B∈B

sup
y∈B

uh(x, y) = T [uh(x, y)](0) ≥ −Ch.

If y = (x, y) ∈ B and x < −2Ch/p, then

uh(x, y) = px + ahx2 + bhy2 + chxy < −2Ch + h(|a|+ |b|+ |c|)M2 = −Ch.
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Thus, if we let C ′ = 2C/p, then for any B ∈ B we have

sup
y∈B

uh(x, y) = sup
y∈B∩{(x,y)|x≥−C′h}

uh(x, y)

Step 3: Second reduction. Since T [uh(x, y)](0) ≤ Ch (Step 1), it is not nec-
essary to consider sets B for which supy∈B uh(x, y) ≥ Ch. If supy∈B uh(x, y) ≤
Ch, then for all (x, y) ∈ B

px + ahx2 + bhy2 + chxy ≤ Ch,

and hence
x ≤ 1

p
(Ch + (|a|+ |b|+ |c|)M2h) ≤ 2Ch

p
= C ′h.

This means that we can write

T [uh(x, y)](0) = inf
B∈B,B⊂{(x,y)|x≤C′h}

sup
y∈B

uh(x, y), (13.14)

and by the result of Step 2,

T [uh(x, y)](0) = inf
B∈B,B⊂{(x,y)|x≤C′h}

sup
y∈B∩{(x,y)|x≥−C′h}

uh(x, y). (13.15)

This relation is true if we replace uh(x, y) with px + bhy2 and leads directly to
the inequality

T [uh(x, y)](0) ≤ T [px + bhy2](0)
+ h inf

B∈B,B⊂{(x,y)|x≤C′h}
sup

y∈B∩{(x,y)|x≥−C′h}
|ax2 + cxy|

and, by interchanging uh(x, y) and px + bhy2, to the equation

T [uh(x, y)](0) = T [px + bhy2](0) + ε(x, y). (13.16)

The error term is
|ε(x, y)| ≤ h3|a|C ′2 + h2|c|C ′M.

Step 4: Conclusion. We now return to equation (13.11),

Thu(x)− u(x) = hT [uh(x, y)](0) + O(x, h3),

and replace T [uh(x, y)](0) with T [px + bhy2](0) + ε(x, y) to obtain

Thu(x)− u(x) = hT [px + bhy2](0) + hε(x, y) + O(x, h3).

By definition H(s) = T [x + sy2](0), so the last equation can be written as

Thu(x)− u(x) = hpH(bh/p) + hε(x, y) + O(x, h3),

or, by replacing p and b with |Du(x)| and (1/2)curv(u)(x)|Du(x)|, as

Thu(x)− u(x) = h|Du(x)|H
(
h

1
2
curv(u)(x)

)
+ hε(x, y) + O(x, h3). (13.17)
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To finish the proof, we must examine the error term ε to establish a uniform
bound on compact sets where Du(x) 6= 0. Thus, let K be any compact subset
of R2 such that K ⊂ {x | Du(x) 6= 0}. For y ∈ D(0,M) (hence for y ∈ B ∈
B ∈ B), we have |ε(x, y)| ≤ h3|a|C ′2 + h2|c||C ′|M . Now, |a|C ′2 + |c||C ′|M is a
continuous function of Du(x) and D2u(x) at each point x where Du(x) 6= 0.
Since u is C3, all of the functions on the right-hand side of this relation are
continuous on K. Thus there is a constant C ′K that depends only on u and K
such that |ε(x, y)| ≤ h2C ′K . By combining and renaming the constants CK and
C ′K , this completes the proof of (i).

Exercise 13.1. Returning to the meaning in the preceding proof of a, b, c, p and C′

in term of derivatives of u, check that |a|C′2 + |c||C′|M is, as announced, a continuous
function at each point where x 6= 0.

13.2 Median filters and curvature motion in R2

Recall that the median filter, Medk, defined in Chapter 10 can be written by
Proposition 10.6 as

Medku(x) = sup
B∈B

inf
y∈x+B

u(y), (13.18)

where B = {B ∈ M | |B|k = 1/2}. The first example we examine is k =
1D(0,1)/π. This function is not separable in the sense of Definition 10.7. So, by
Proposition 10.8, Medku = Med−k u and the median also has the inf-sup form

Medku(x) = inf
B∈B

sup
y∈x+B

u(y). (13.19)

From Proposition 8.11 follows that the set of structuring elements B′ = {B ∈
B | B ⊂ D(0, 1)} generates the same median filter. Thus we assume in what
follows that B ⊂ D(0, 1). There is one more point that needs to be clarified,
and we relegate it to the next exercise.
Exercise 13.2. The scaled median filter (Medk)h, h < 1, is defined by

(Medk)hu(x) = inf
B∈hB

sup
y∈x+B

u(y). (13.20)

At first glance, it is not clear that this is a median filter, but, in fact, it is: Show that
(Medk)h = Medkh , where kh = 1D(0,h)/πh2.

The actions of median filters and comparisons of these filters with other sim-
ple filters are illustrated in Figures 13.1, 13.2, 13.4, 13.5, and 13.6. Everything
is now in place to investigate the asymptotic behavior of the scaled median filter
Medkh

, which is represented by

Medkh
u(x) = inf

B∈hB
sup

y∈x+B
u(y),

where hB = {B | |B|kh
= 1/2, B ⊂ D(0, h)}. The main result of this section,

Theorem 13.7, gives an infinitesimal interpretation of this filter. We know that
the median is an SMTCII operator, and it is local in our case. The proof of the
next lemma is quite special, having no immediate generalization to RN .

Lemma 13.6.
Medk[x + sy2](0) =

s

3
+ O(|s|3).
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Figure 13.2: Median filter and the curvature of level lines. Smoothing with
a median filter is related to the curvature of the level lines. Left: image of
a simple shape. Right: difference of this image with itself after it has been
smoothed by one iteration of the median filter. We see, in black, the points which
have changed. The width of the difference is proportional to the curvature, as
indicated by Theorem 13.7.

Proof. Represent Medk by Medku(x) = sup{λ | x ∈MedkXλu}. Then

Medk[x + sy2](0) = sup{λ | 0 ∈MedkXλ[x + sy2] }.

By definition, 0 ∈ MedkXλ[x + sy2] if and only if |Xλ[x + sy2]|k ≥ 1/2. This
implies that Medk[x + sy2](0) = m(s), where |Xm(s)[x + sy2]|k = 1/2, and this
is true if and only if the graph of x + sy2 = m(s) divides D(0, 1) into two sets
that have equal area. Of course, we are only considering small s, say |s| ≤ 1/2.
The geometry of this situation is illustrated in Figure 13.3. The signed area
between the y-axis and the parabola P (s) for |y| ≤ 1 is

∫ 1

−1

(m(s)− sy2) dy = 2m(s)− 2s

3
.

Thus, m(s) is the proper value if and only if

m(s)− s

3
= Area(ABE), (13.21)

where ABE denotes the curved triangle bounded by the parabola, the circle,
and the line y = −1. This area could be computed, but it is sufficient to bound
it by Area(ABCD). The length of the base AB is |m(s) − s|, and an easy
computation shows that the length of the height BC is less than (m(s) − s)2.
This and (13.21) imply that

∣∣∣∣∣m(s)− s

3

∣∣∣∣∣ ≤ |m(s)− s|3.

From this we conclude that m(s) = s/3 + O(|s|3), which proves the lemma.

Theorem 13.7. If u : R2 → R is C2, then we have the following expansions:
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P(s)

y = -1

y

m(s)

D(0,1)

0

y = 1

x

AB

C DE

Figure 13.3: When s is small, the parabola P (s) with equation x + sy2 = m
divides D(0, 1) into two components. The median value m(s) of x + sy2 on
D(0, 1) simply is the value m for which these two components have equal area.

(i) On every compact set K ⊂ {x | Du(x) 6= 0},

Medkh
u(x) = u(x) +

1
6
|Du(x)|curv(u)(x)h2 + O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant CK that depends only on u
and K.

(ii) On every compact set K in R2,

|Medkh
u(x)− u(x)| ≤ CKh2

where the constant CK depends only on u and K.

Proof. We have shown (or it is immediate) that the operator Th = Medkh

satisfies all of the hypotheses of Theorem 13.5. In particular, H(0) = Medk[x+
sy2](0) = 0 by Lemma 13.6. Also by Lemma 13.6, H(s) = s/3 + O(|s|3). This
means that we have

H
(1

2
h curv(u)(x)

)
=

1
6
h curv(u)(x) + O(h3 |curv(u)(x)|3).

The first result is now read directly from Theorem 13.5(i). Relation (ii) follows
immediately from Theorem 13.5(ii).

Our second example is called the Catté–Dibos–Koepfler scheme. It involves
another application of Theorem 13.5.

Theorem 13.8. Let B be the set of all line segments of length 2 centered at the
origin of R2. Define the operators SIh and ISh by

SIhu(x) = sup
B∈hB

inf
y∈x+B

u(y) and IShu(x) = inf
B∈hB

sup
y∈x+B

u(y).



“JMMBookOct04”
23/10/2006
page 180

i

i

i

i

i

i

i

i

180CHAPTER 13. ASYMPTOTIC BEHAVIOR OF SMTCII OPERATORS IN R2

If u : R2 → R is C2 and |Du(x)| 6= 0, then

1
2
(ISh + SIh)u(x) = u(x) + h2 1

4
curv(u)(x)|Du(x)|+ O(h3).

Proof. The first step is to compute the action of the operators on u(x, y) =
x + sy2. Define H(s) = IS[x + sy2](0) and write (x, y) = (r cos θ, r sin θ). Then

H(s) = inf
−π

2≤θ≤π
2

sup
−1≤r≤1

(r cos θ + sr2 sin2 θ).

For s ≥ 0 and r ≥ 0, the function r 7→ r cos θ + sr2 sin2 θ is increasing. Hence,

H(s) = inf
−π

2≤θ≤π
2

(cos θ + s sin2 θ) = s

for sufficiently small s, say, s < 1/2. If s ≤ 0, then H(0) = 0, since

0 ≤ sup
−1≤r≤1

(r cos θ + sr2 sin2 θ) ≤ cos θ.

If H−(s) = SI[x + sy2](0), then it is an easy check that H−(s) = −H(−s).
Thus we have

H(s) =

{
s, if s ≥ 0;
0, if s < 0;

and H−(s) =

{
0, if s ≥ 0;
s, if s < 0.

Thus, H(s) + H−(s) = s for all small s. Since H(0) = H−(0) = 0, the conclu-
sions of Theorem 13.5 apply. By applying Theorem 13.5(i) to ISh and SIh and
adding, we have

(ISh + SIh)u(x) = 2u(x) + h(H + H−)
(h

2
curv(u)(x)

)
+ O(h3)

= 2u(x) +
h2

2
curv(u)(x) + O(h3).

Dividing both sides by two gives the result.

Exercise 13.3. Prove the relation H−(s) = −H(−s) used in the above proof.

13.3 Exercises

Exercise 13.4. Assume that T is a local translation and contrast invariant operator,
but not necessarily isotropic. Show that

Thu(x) = u(x) + hT [Du(x) · x](0) + O(h2).

Exercise 13.5. Let B be the set of all rectangles in the plane with length two, width
δ < 1, and centered at the origin. Define the operators ISh and SIh by

IShu(x) = inf
B∈hB

sup
y∈x+B

u(y) and SIhu(x) = sup
B∈hB

inf
y∈x+B

u(y).

(i) Let u : R2 → R be C2. Compute the expansions of IShu(x), SIhu(x), and
(1/2)(ISh + SIh)u(x) in terms of small h > 0.

(ii) Take δ = h and compute the same expansions.

(iii) Take δ = hα and interpret the expansions for α > 0 and for α < 0.
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13.4 Comments and references

Merriman, Bence, and Osher [134] discovered, and gave some heuristic argu-
ments to prove, that a convolution of a shape with a Gaussian followed by
a threshold at 1/2 simulated the mean-curvature motion given by ∂u/∂t =
|Du|curv(u). The consistency of their arguments was checked by Mascarenhas
[131]. Barles and Georgelin [19] and Evans [59] also gave consistency proofs;
in addition, they showed that iterated weighted Gaussian median filtering con-
verges to the mean curvature motion. An extension of this result to any iterated
weighted median filter was given by Ishii in [87]. An interesting attempt to gen-
eralize this result to vector median filters was made Caselles, Sapiro, and Chung
in [38]. Catté, Dibos, and Koepfler [39] related mean curvature motion to the
classic morphological filters whose structuring elements are one-dimensional sets
oriented in all directions (see [141] and [175] regarding these filters.)

The importance of the function H in the main expansion theorem raises
the following question: Given an increasing continuous function H, are there
structuring elements B such that H(s) = infB∈B sup(x,y)∈B(x + sy2)? As we
have seen is this chapter, the function H(s) = s is attained by a median filter.
Pasquignon [149] has studied this question extensively and shown that all of the
functions of the form H(s) = sα are possible using sets of simple structuring
elements.

The presentation of the main results of this chapter is mainly original and
was announced in the tutorials [79] and [80]. An early version of this work
appeared in [78].

Figure 13.4: Fixed point property of the discrete median filter, showing its grid-
dependence. Left: original image. Right: result of 46 iterations of the median
filter with a radius of 2. The resulting image turns out to be a fixed point of
this median filter. This is not in agreement with Theorem 13.7, which shows
that median filters move images by their curvature : The image on the right
clearly has nonzero curvatures! Yet, the discrete median filter that we have
applied here operating on a discrete image is grid-dependent and blind to small
curvatures.
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Figure 13.5: Comparing an iterated median filter and a median filter. Top-left:
original image. Top-middle: 16 iterations of the median filter with a radius 2,
Top-right: one iteration of the same median filter with a radius 8. Below each
image are the level-lines for grey levels equal to multiples of 16. This shows that
iterating a small size median filter provides more accuracy and less shape mixing
than applying a large size median filter. Compare this with the Koenderink–
Van Doorn shape smoothing and the Merriman–Bence–Osher iterated filter in
Chapter 4, in particular Figures 4.2, 4.1, and 4.4.
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Figure 13.6: Consistency of the median filter and of the Catté–Dibos–Koepfler
numerical scheme. Top row: the sea bird image and its level lines for all levels
equal to multiples of 12. Second row: a median filter on a disk with radius 2 has
been iterated twice. Third row: an inf-sup and then a sup-inf filter based on
segments have been applied. On the right: the corresponding level lines of the
results, which, according to the theoretical results (Theorems 13.7 and 13.8),
must have moved at a speed proportional to their curvature. The results are
very close. This yields a cross validation of two very different numerical schemes
that implement curvature-motion based smoothing.
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Chapter 14

Asymptotic Behavior in
Dimension N

We are going to generalize to N dimensions the asymptotic results of Chapter
13. Our aim is to show that the action of any local SMTCII operator, when
properly scaled, is a motion of the N -dimensional image that is controlled by its
principal curvatures. In particular, we will relate the median filter to the mean
curvature of the level surface.

14.1 Asymptotic behavior theorem in RN

Let u : RN → R be C3 and assume that Du(x) 6= 0. Then we denote the
vector whose terms are the N − 1 principal curvatures of the level surface {y |
u(y) = u(x)} that passes through x by κ(u)(x) = κ(u) = (κ2, . . . , κN ). The
terms κi(u)(x)|Du(x)| are then the eigenvalues of the restriction of D2u(x) to
Du(x)⊥. (See Definition 11.18.) For x ∈ RN , we write x = (x, y2, . . . , yN ) =
(x, y), y ∈ RN−1 and in the same way s = (s2, . . . , sN ).

Theorem 14.1. Let T be a local SMTCII operator. Define

H(s) = T [x + s2y
2
2 + · · ·+ sNy2

N ](0). (14.1)

Then for every C3 function u : RN → R,

(i) Thu(x) = u(x) + hH(0)|Du(x)|+ O(x, h2);

(ii) If H(0) = 0, then on every compact set K contained in {x | Du(x) 6= 0}

Thu(x) = u(x) + hH

(
h

1
2
κ(u)(x)

)
|Du(x)|+ O(x, h3)

where |O(x, h3)| ≤ CKh3;

(iii) If H(0) = 0, then on every compact set K ⊂ RN ,

|Thu(x)− u(x)| ≤ CKh2,

where CK denotes some constant that depends only on u and K.

185
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Proof. The proof is the same as the proof of Theorems 13.3 and 13.5. We
simply have to relate the notation used for the N -dimensional case to that used
in the two-dimensional case. We begin by assuming that Du(x) 6= 0. We then
establish the local coordinate system at x defined by i1 = Du(x)/|Du(x) and
i2, . . . , iN , where i2, . . . , iN are the eigenvectors of the restriction of D2u(x)
to the hyperplane Du(x)⊥. Then in a neighborhood of x we can expand u as
follows:

u(x + y) = u(x) + px + ax2 + b2y
2
2 + · · ·+ bNy2

N + (c · y)x + R(x, y), (14.2)

where y = xi1 + y2i2 + · · ·+ yN iN , p = |Du(x)| > 0, and for j = 2, . . . , N ,

a =
1
2

∂2u

∂x2
(x) =

1
2
D2u(x)(i1, i1),

bj =
1
2

∂2u

∂y2
j

(x) =
1
2
D2u(x)(ij , ij),

cj =
∂2u

∂x∂yj
(x) = D2u(x)(i1, ij).

(14.3)

We can also write bj as

bj =
1
2
|Du(x)|κj(u)(x). (14.4)

For the proof of (i), we write u(x + y) = u(x) + px + O(x, |y|2) and just
follow the steps of the proof of Theorem 14.1. The proof of (ii) and (iii) follows,
step by step, the proof of Theorem 13.5. We need only make the following
identifications: cxy ↔ (c·y)x, by2 ↔ b2y

2
2+· · ·+bNy2

N , and curv(u) ↔ κ(u).

14.2 Asymptotic behavior of median filters in
RN

The action of median filtering in three dimensions is illustrated in Figures 14.1
and 14.2. The median filters we consider will be defined in terms of a continuous
weight function k : RN → [0,+∞) that is radial, k(x) = k(|x|), and that is
normalized,

∫
RN k(x) dx = 1. Recall that, by definition,

|B|k =
∫

B

k(x) dx.

We also assume that k is nonseparable, which is the case if {x | k(x) > 0}
is connected. Then by Proposition 10.8, Medku = Med−k u and the median
operator can defined by

Medku(x) = inf
|B|k=1/2

sup
y∈x+B

u(y). (14.5)

Define the scaled weight function kh, 0 < h ≤ 1, by kh(x) = h−Nk(x/h).
Then a change of variable shows that |B|k = 1/2 if and only if |hB|kh

= 1/2,
and this implies that (Medk)h = Medkh

(see Exercise 13.2). Since we consider
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Figure 14.1: Three-dimensional median filter. The original three-dimensional
image (not shown) is of 20 slices of a vertebra. Three successive slices are
displayed in the left column. The next column shows their level lines (multiples
of 20). The third column shows these three slices after one iteration of the
median filter based on the three-dimensional ball of radius two. The resulting
level lines are shown in the last column.

only one weight function at a time, there should be no confusion if we write
Medh for the scaled operator.

We analyzed the asymptotic behavior of a median filter in R2 whose weight
function was the characteristic function of the unit disk in Chapter 13. This
proof can be generalized to RN by taking k to be the normalized characteristic
function of the unit ball. We will go in a different direction by taking smooth
weight functions. Our analysis will not be as general as possible because this
would be needlessly complicated. The k we consider will be smooth (C∞) and
have compact support. This means that the considered median filters are local.
Thus, the results of Theorem 14.1 apply, provided we get an estimate near 0 of
the structure function H of the median filter.

Lemma 14.2. Let k be a nonnegative radial function belonging to the Schwartz
class S. Assume that

∫
RN k(x) dx = 1 and that the support of k is connected

in RN . Then the structure function of Medk H(hb) = Medk[x + h(b2y
2
2 + · · ·+

bNy2
N )](0) can be expressed as

H(hb) = hck

( N∑

j=2

bj

)
+ O(h2),
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where

ck =

∫
RN−1 y2

2k(y) dy∫
RN−1 k(y) dy

,

y = (y2, . . . , yN ), and b = (b2, . . . , bN ).

Proof. Before beginning the proof, note that we have not assumed that k has
compact support, so the result applies to the Gaussian, for example.

We will use the abbreviation b(y,y) = b2y
2
2 + · · ·+ bNy2

N , since b is, in fact,
a diagonal matrix. Our proof is based on an analysis of the function f(λ, h) =
|Xλ(x + hb(y,y))|k. Since Xλ(x + hb(y, y)) = {(x, y) | x + hb(y,y) ≥ λ}, we
can express f as an integral,

f(λ, h) =
∫

RN−1

∫ ∞

λ−hb(y,y)

k(x, y) dxdy.

It follows from the assumption that k is in the Schwartz class that f : R2 →
R is bounded and C∞. Also, for every h ∈ R, limλ→−∞ f(λ, h) = 1 and
limλ→+∞ f(λ, h) = 0. Thus, for every h ∈ R, there is at least one λ such that
f(λ, h) = 1/2. In fact, there is only one such λ; this is a consequence of the
assumption that the k is continuous and that its support is connected, which
implies that it is nonseparable (see Exercise 10.5). To see that λ is unique,
assume that there are λ < λ′ such that f(λ, h) = 1/2 and f(λ′, h) = 1/2. Then
the two sets {(x, y) | x + hb(y, y) ≥ λ′} and {(x, y) | x + hb(y,y) ≤ λ} both
have k-measure 1/2, but their intersection is empty. This contradicts the fact
that k is nonseparable. This means that the relation f(λ, h) = 1/2 defines
implicitly a well-defined function h 7→ λ(h).

Recall that Medk was originally defined in terms of the superposition formula

Medku(x) = sup{λ | x ∈MedkXλu}.

This translates for our case into the relation

Medk[x + hb(y,y)](0) = sup{λ | 0 ∈MedkXλ[x + hb(y,y)]} = λ(h)

because 0 ∈MedkXλ[x + hb(y,y)] if and only if |Xλ[x + hb(y,y)]|k ≥ 1/2.
We are interested in the behavior of h 7→ λ(h) near the origin. The first

thing to note is that λ(0) = 0. To see this, write

f(λ(0), 0) =
∫

RN−1

∫ ∞

λ(0)

k(x, y) dxdy =
1
2
.

Since k is radial, the value λ = 0 solves the equation
∫
RN−1

∫∞
λ

k(x, y) dxdy =
1/2. We have just shown that this equation has a unique solution, so λ(0) = 0.

Now consider the first partial derivatives of f :

∂f

∂λ
(λ, h) = −

∫

RN−1
k
((

(λ− hb(y, y))2 + y · y)1/2
)

dy. (14.6)

∂f

∂h
(λ, h) =

∫

RN−1
b(y,y)k

((
(λ− hb(y, y))2 + y · y)1/2

)
dy. (14.7)
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Figure 14.2: Median filtering of a three-dimensional image. The first image is
a representation of the horizontal slices of a three-dimensional level surface of
the three-dimensional image of a vertebra. Right to left, top to bottom: 1, 2,
5, 10, 20, 30, 60, 100 iterations of a three-dimensional median filter based on a
ball with radius three. This scheme is a possible implementation of the mean
curvature motion, originally proposed as such by Merriman, Bence and Osher.

These functions are C∞ because k is in the Schwartz class; also, (∂f/∂λ)(0, 0) 6=
0. Then by the implicit function theorem, we know that the function h 7→ λ(h)
that satisfies f(λ(h), h) = 1/2 is also C∞ and that

λ′(h)
∂f

∂λ
(λ(h), h) +

∂f

∂h
(λ(h), h) = 0.

Thus, for small h,

λ′(h) = −
∂f
∂h (λ(h), h)
∂f
∂λ (λ(h), h)

,

and, using equations (14.6) and(14.7), we see that

λ′(0) =

∫
RN−1 b(y, y)k

(
(y · y)1/2

)
dy∫

RN−1 k
(
(y · y)1/2

)
dy

.

Now expand λ for small h:

λ(h) = λ(0) + λ′(0)h + O(h2).

Since
∫
RN−1 b(y, y)k

(
(y·y)1/2

)
dy =

( ∑N−1
j=2 bj

) ∫
RN−1 y2

2k
(
(y·y)1/2

)
dy, H(hb) =

λ(h), and λ(0) = 0, this proves the lemma.

Theorem 14.3. Let k be a nonnegative radial function belonging to the Schwartz
class S. Assume that

∫
RN k(y) dy = 1 and that the support of k is compact and

connected. Then for every C3 function u : RN → R:
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(i) On every compact set K ⊂ {x | Du(x) 6= 0},

Medhu(x) = u(x) + h2 1
2
ck

( N∑

i=2

κi(u)(x)
)
|Du(x)|+ O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant that depends only on u and
K.

(ii) On every compact set K ⊂ RN , |Medhu(x) − u(x)| ≤ CKh2 for some
constant CK that depends only on u and K.

Proof. Theorem 14.1 is directly applicable. We know from Lemma 14.2 that
H(0) = 0, so we can read (ii) directly from Theorem 14.1(iii). By Lemma 14.2,

H(hκ(u)) = hck

( N∑

i=2

κi(u)|Du|
)

+ O(h2).

From this and Theorem 14.1(ii), we get

Medhu(x) = u(x) + h2 1
2
ck

( N∑

i=2

κi(u)(x)
)
|Du(x)|+ O(x, h3),

and we know that the estimate is uniform on any compact set K ⊂ {x | Du(x) 6=
0}.

14.3 Exercises : other motions by the principal
curvatures

This section contains several applications of Theorem 14.1 in three dimensions.
A level surface of a C3 function in three dimensions has two principal curvatures,
and this provides an extra degree of freedom for constructing contrast-invariant
operators based on curvature motion. We develop the applications in three
exercises. For each case, we will assume that the principal curvatures κ1 and κ2

are ordered so that κ1 ≤ κ2. In each example, the set of structuring elements
B is constructed from a single set B in R2 by rotating B in all possible ways,
that is, B = {RB | B ∈ R2, R ∈ SO(3)}. For each example we write

SIhu(x) = sup
B∈B

inf
y∈x+hB

u(y)

and
IShu(x) = inf

B∈B
sup

y∈x+hB
u(y),

where 0 < h ≤ 1.
Exercise 14.1. Let B be a segment of length 2 centered at the origin. Our aim is to
show that

IShu = u + h2 1

2
κ+

1 (u)|Du|+ O(h3),

SIhu = u + h2 1

2
κ−2 (u)|Du|+ O(h3).
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This implies

IShu + SIhu = u + h2 1

2
(sign(κ1(u)) + sign(κ2(u)))min(|κ1(u)|, |κ2(u)|) + O(h3).

(i) The first step is to compute H(hb). One way to do this is to write x = r sin φ,
y2 = r cos φ cos θ, y3 = r cos φ cos θ, and use an argument similar to that given in
the proof of Theorem 13.8 to show that, for a fixed θ and small h, the “inf-sup”
of

r sin φ + hb2r
2 cos2 φ cos2 θ + hb3r

2 cos2 φ cos2 θ

always occurs at φ = 0. Then H(hb) = hH(b) and

H(b) = inf
B∈B

sup
y∈B

(b2y
2
2 + b3y

2
3) = inf

θ
sup

0≤r≤1
r2(b2 cos2 θ + b3 sin2 θ).

Deduce that b2 < 0 or b3 < 0 implies H(b) = 0 and that 0 ≤ b2 ≤ b3 implies
H(b) = b2.

(ii) Since H(0) = 0, deduce from Theorem 14.1 that

IShu(x) = u(x) + h2 1

2
κ+

1 (u)(x)|Du(x)|+ O(h3). (14.8)

Exercise 14.2. Let B be the union of two symmetric points (1, 0, 0) and (−1, 0, 0).
Use the techniques of Exercise 11.2 to show that

IShu = u + h2 1

2
min{κ1(u), κ2(u)}|Du|+ O(h3);

SIhu = u + h2 1

2
max{κ1(u), κ2(u)}|Du|+ O(h3);

ISh + SIhu = u + h2 1

2
(κ1(u) + κ2(u))|Du|+ O(h3).

The last formula shows that the operator ISh + SIh involves the mean curvature of u
at x.

Exercise 14.3. Let B consist of two orthogonal segments of length two centered at
the origin.

(i) Show that

IShu = u + h2 1

2

�κ1(u) + κ2(u)

2

�+

|Du|+ O(h3);

SIhu = u + h2 1

2

�κ1(u) + κ2(u)

2

�−
|Du|+ O(h3).

(ii) Show that you can get the mean curvature by simply taking B to be the four end-
points of the orthogonal segments. Check that another possibility for obtaining
the mean curvature is to alternate these operators or to add them.

14.4 Comments and references

The references for this chapter are essentially the same as those for Chapter 13.
The main theorem on the asymptotic behavior of morphological filters was first
stated and proved in [79] and [80]. The examples developed in Exercises 14.1,
14.2, and 14.3 have not been published elsewhere. The consistency of Gaussian
smoothing followed by thresholding and mean-curvature motion was proved in
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increasing mathematical sophistication and generality by Merriman, Bence, and
Osher [134], Mascarenhas [131], Barles and Georgelin [19], and Evans [59]. Our
presentation is slightly more general than the ones cited because we allow any
nonnegative weight function in the Schwartz class. The most general result was
given by Ishii in [87].
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