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1 The main result

Let T be a positive number, T ∈ IR, and let us consider a degenerate parabolic
equation of the form

ut = F (t, x, D2u) in Q = (0, T ]× IRn. (1)

We list the assumptions on F = F (t, x, X) which are necessary for the result
given in Theorem 3.1.

(F1) F : Q× Sn → IR is continuous.

(F2) F is degenerate elliptic, i.e.,

F (t, x, X) 6 F (t, x, X + Y ) ∀Y > 0.

(F3) For every R > 0

cR = sup{|F (t, x, X)| : ||X|| 6 R, (t, x,X) ∈ Q× Sn} < ∞.

(F4) Suppose that
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with µ, ν, ω > 0. Then it holds:

F (t, y,−Y )− F (t, x, X) > −m(ν||x− y||2),
for some modulus m independent of t, x, y,X, Y, µ, ν, ω.

Then, the main result we will prove is the following

Theorem 1.1 Suppose that F satisfies (F1)-(F4). Let u and v be respectively, sub
and supersolutions of (1). Assume that
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(i) u(t, x) 6 K(||x|| + 1), v(t, x) > −K(||x|| + 1) for some K > 0 independent of
(t, x) ∈ Q.

(ii) u(0, x) − v(0, y) 6 K||x − y|| for all (x, y) ∈ IRn × IRn, for some K > 0
independent of (x, y).

Then there is a modulus m such that

u(t, x)− v(t, y) 6 m(||x− y||) on U = (0, T ]× IRn × IRn. (3)

In particular u 6 v on Q.

2 Preliminary results

In this section we give a list of results necessary to prove Theorem 1.1. We shall
give the proof of some of them. In the other cases, we will refer to [3].

Proposition 1 Suppose F satisfies (F1)-(F3). Let u and v be, respectively, viscosity
sub and supersolutions of (1) in Q. Assume that u and v satisfy (i) and (ii). Then
for K ′ > K, there is a constant M = M(K ′, F ) > 0 such that

u(x, t)− v(y, t) 6 K ′||x− y||+ M(1 + t) on U = IRn × IRn × (0, T ]. (4)

Proof. We set
w(x, y, t, s) = u(x, t)− v(y, s),

φ(x, y, t) = K ′(||x− y||2 + 1)1/2 + M(1 + t).

We will prove that

w(x, y, t, t) 6 φ(x, y, t) (5)

for (x, y, t) ∈ U and M sufficiently large.
Let {gR}R>0 be a family of non-negative C2 functions, satisfying

(g1) gR(x) = 0 for ||x|| < R,

(g2) gR(x)
||x|| → 1 as ||x|| → ∞,

(g3) G = sup{||∇gR(x)||+ ||D2gR(x)|| : x ∈ IRn, R > 0} is finite.

We set ϕ = φ + 2K ′gR. By (i) and (g2), we have that for R1 sufficiently large,

w(x, y, t, s)− ϕ(x, y, t) < 0 if ||x||2 + ||y||2 > R2
1, 0 6 t, s 6 T. (6)

By (ii), we see that

w(x, y, 0, 0)− ϕ(x, y, 0) < 0 (x, y) ∈ IRn × IRn. (7)
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Now, we consider for δ > 0, sufficiently small,

Ψ(x, y, t, s) = ϕ(x, y, t) +
(t− s)2

δ

and suppose that (4) were false, i.e., there exists (x̄, ȳ, t̄) ∈ U such that w(x̄, ȳ, t̄, t̄) >
φ(x̄, ȳ, t̄). For R sufficiently large,

w(x̄, ȳ, t̄, t̄)−Ψ(x̄, ȳ, t̄, t̄) > 0.

It follows that

sup
V̄

(w −Ψ) > 0 (8)

with V = U × (0, T ]. By (6)− (8) and since w is upper semicontinuous, we observe
that w −Ψ attains a maximum over V̄ at a point (x̂, ŷ, t̂, ŝ) ∈ V . This implies that

(∂tΨ,∇xΨ, D2
xΨ)(x̂, ŷ, t̂, ŝ) ∈ P2,+

Q u(x̂, t̂),

(−∂sΨ,−∇xyΨ,−D2
yΨ)(x̂, ŷ, t̂, ŝ) ∈ P2,+

Q v(ŷ, ŝ),

Since u and v are, respectively, viscosity sub and supersolutions of (1), we see that

∂tΨ + F (x̂, t̂, D2
xϕ) 6 0 (9)

−∂sΨ + F (ŷ, ŝ,−D2
yϕ) > 0. (10)

By (g3) and the definition of φ, we have that ||D2ϕ|| 6 N , with N = N(K ′, G).
Subtracting (9) from (10) and by using (F3), we obtain

∂tΨ + ∂sΨ 6 2cN .

By the other hand, ∂tΨ = ∂tϕ + 2
δ
(t − s), ∂sΨ = −2

δ
(t − s) and ∂tϕ = M , which

implies M 6 2cN . If M is taken larger than 2cN , we have a contradiction and (5) is
proved. Finally, to estimate (4), we replace M by M + K ′ and it follows from (5).
¤

For ε, δ, γ > 0 we set

Φ(x, y, t) = w(x, y, t)−Ψ(x, y, t),

w(x, y, t) = u(x, t)− v(y, t),

Ψ(x, y, t) =
||x− y||4

4ε
+ B(x, y, t),

B(x, y, t) = δ(||x||2 + ||y||2) +
γ

T − t
.

The next proposition is the same as Proposition 2.4 in [3] and we refer to it for
the proof.
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Proposition 2 Suppose that u and v satisfy (4) and that

α = lim
θ↓0

sup{w(x, y, t) : ||x− y|| < θ, (x, y, t) ∈ Ū} > 0. (11)

Then there are positive constants δ0 and γ0 such that

sup
Ū

Φ(x, y, t) >
α

2
(12)

holds for all 0 < δ < δ0, 0 < γ < γ0, ε > 0.

The next proposition follows in the same manner as Proposition 2.5 of [3].

Proposition 3 Let u, v, δ0, γ0 be as in Proposition 2. Suppose that w is upper semi-
continuous in Ū .

(i) Φ attains a maximum over Ū at (x̂, ŷ, t̂) ∈ Ū with t̂ < T .

(ii) ||x̂− ŷ|| is bounded as a function of 0 < ε < 1, 0 < δ < δ0, 0 < γ < γ0.

(iii) δx̂ and δŷ tend to zero as δ → 0; the convergence is uniform in 0 < ε < 1 and
0 < γ < γ0. In particular, for fixed δ > 0, x̂ and ŷ are bounded on 0 < ε < 1,
0 < γ < γ0.

(iv) ||x̂− ŷ|| tends to zero as ε → 0; the convergence is uniform in 0 < δ < δ0 and
0 < γ < γ0.

Proposition 4 Assume the hypotheses of Proposition 3 hold. Suppose that hypoth-
esis (ii) of Theorem 1.1 holds for u and v. Then there is ε0 > 0 such that Φ attains a
maximum over Ū at an interior point (x̂, ŷ, t̂) ∈ IRn× IRn× (0, T ) for all 0 < ε < ε0,
0 < δ < δ0 and 0 < γ < γ0.

Proof. Suppose that the conclusion is false. Since t̂ < T , by Proposition 3, there
exits sequences {εi} with εi → 0, {δi} ⊂ (0, δ0) and {γi} ⊂ (0, γ0) such that (x̂i, ŷi, 0)
is a maximum of Φ for ε = εi, δ = δi and γ = γi. By (4) and (ii) of Theorem 1.1 we
see

α

2
6 Φ(x̂i, ŷi, 0) 6 u(x̂i, 0)− v(ŷi, 0) 6 K||x̂i − ŷi||

Since εi → 0, applying Proposition 3 (iv) yields ||x̂i − ŷi|| → 0 which leads to a
contradiction since α > 0. ¤

The next proposition follows in the same manner as Proposition 4.4 of [3].

Proposition 5 Suppose that u and v satisfy (4) and that expression (11) holds. Let
(x̂, ŷ, t̂) be as in Proposition 3. Then

lim
ε↓0

lim
δ,γ↓0

||x̂− ŷ||4
ε

= 0 (13)

holds.
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3 Proof of Theorem 1.1

The basic idea of the proof of Theorem 1.1 is similar to that of Proposition 1. Here
Ishii’s idea plays an important role. We use the following Lemma proved in [2].

Lemma 1 ([2]) Let ui be an upper semicontinuous function with ui < ∞ in IRN
i ×

(0, T ) for i = 1, 2, . . . , k. Let w be a function in IRN × (0, T ) given by

w(x, t) = u1(x, t) + · · ·+ uk(x, t)

for x = (x1, . . . , xk) ∈ IRN , where N = N1 + · · · + Nk. For s ∈ (0, T ), z ∈ IRN

suppose that
(τ, p, A) ∈ P2,+w(z, s)

Assume that there exists ω > 0 such that for every M > 0

σi 6 C whenever (σi, qi, Yi) ∈ P2,+ui(xi, t),

||xi − zi||+ |s− t| < ω and |ui(xi, t)|+ ||qi||+ ||Yi|| 6 M (i = 1, . . . , k),

with some CC(M). Then for each λ > 0 there exists (τi, Xi) ∈ IR× SNi such that

(τi, pi, Xi) ∈ P̄2,+ui(zi, s) i = 1, . . . , k,

−
(

1

λ
+ ||A||

)
I 6




X1 . . . O
...

...
O . . . Xk


 6 A + λA2

and
τ1 + · · ·+ τk = τ,

where I denotes the identity matrix and p = (p1, . . . , pk).

Proof of Theorem 1.1
We may assume that equation (1) has a form

ut + u = F (x, t, u, D2u) (14)

with the property

(F5’) r → F (x, t, r,X) is nonincreasing for all (x, t, x, X) ∈ IRn×(0, T )×IR×Sn,

(stronger than (F5)) if we replace u (resp. v) by eλtu (resp. eλtv) with sufficiently
large λ. The other assumptions on F are unaltered by this transformation and also
hold for (14).
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We argue by a contradiction. Suppose that (3) were false, then α in (11) were
positive and by Proposition 1, we can apply all the conclusions of Propositions 2-
5 to Φ defined above. Proposition 4 says that Φ attains a maximum over Ū at
(x̂, ŷ, t̂) ∈ IRn × IRn × (0, T ) for small ε, δ, γ. In particular

w(x, y, t) 6 w(x̂, ŷ, t̂) + Ψ(x, y, t)−Ψ(x̂, ŷ, t̂) in U.

Expanding Ψ at (x̂, ŷ, t̂) yields

(Ψt,∇Ψ, A)(x̂, ŷ, t̂) ∈ P2,+w(x̂, ŷ, t̂) with D2Ψ(x̂, ŷ, t̂) 6 A. (15)

Applying Lemma 1 with u1 = u, u2 = −v, s = t̂ and z = (x̂, ŷ), we conclude that
for each λ > 0 there are (τ1, X) and (τ2, Y ) ∈ IR× Sn such that

(τ1,∇xΨ̂, X) ∈ P̄2,+u(x̂, t̂),

(−τ2,−∇yΨ̂,−Y ) ∈ P̄2,−v(ŷ, t̂),

Ψ̂t = τ1 + τ2,

(16)

−
(

1

λ
+ ||A||

)
I 6

(
X O
O Y

)
6 A + λA2, (17)

where Ψ̂t = Ψt(x̂, ŷ, t̂), ∇xΨ̂ = ∇xΨ(x̂, ŷ, t̂), etc. Since u and v are, respectively,
sub- and supersolutions of (14), it follows from (16) that

τ1 + û− F (x̂, t̂, û, X) 6 0, −τ2 + v̂ − F (ŷ, t̂, v̂,−Y ) > 0

subtracting yields

Ψ̂t + û− v̂ + F (ŷ, t̂, v̂,−Y )− F (x̂, t̂, û, X) 6 0.

By the monotonicity property (F5’), using Ψ̂t > γT−2 and by the fact that our
assumption implies û− v̂ > α/2, the last inequality becomes

α

2
+ F (ŷ, t̂, û,−Y )− F (x̂, t̂, û, X) < 0. (18)

Differentiating Ψ and denoting by η = x̂− ŷ, we have

Ψ̂x =
||η||2η

ε
+ 2δx̂, Ψ̂y = −||η||

2η

ε
+ 2δŷ, (19)

and
(

Ψ̂xx Ψ̂xy

Ψ̂yx Ψ̂yy

)
= 1

ε
(||η||2 + 2η ⊗ η)

(
I −I
−I I

)
+ 2δ

(
I O
O I

)

6 3
ε
||η||2

(
I −I
I −I

)
+ 2δ

(
I O
O I

)
= A

(20)
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With the choice of this matrice A, (17) becomes

−µ

(
I O
O I

)
6

(
X O
O Y

)
6 ν

(
I −I
−I I

)
+ ω

(
I O
O I

)
(21)

with

µ = λ−1 +
6||η||2

ε
+ 2δ,

ν = (
3

ε
+

18λ

ε2
||η||2 +

12δλ

ε
)||η||2

and
ω = 4δ2λ + 2δ.

We will study the inequality (18). Fix ε, γ such that 0 < ε < ε0, 0 < γ < γ0 as
in Proposition 2 and 4. From (21) and by applying (F4), (18) becomes

α

2
−m(ν||x̂− ŷ||2) < 0 (22)

We let δ → 0 and divide the situation into two cases depending on the behavior of
η as δ → 0.

Case 1. η = x̂ − ŷ → 0 as δ → 0. First, we observe that ν → 0. Then by
applying limits in (22) we obtain

α

2
< 0

which contradicts α > 0.
Case 2. η = x̂− ŷ → a 6= 0 for some subsequence δj → 0. If we take λ = ε

||η||2 ,
we have

ν||x̂− ŷ||2 =
21||x̂− ŷ||4

ε
+ 12δ||x̂− ŷ||2.

Letting δj → 0 in (22), it follows

α

2
−m(21

||a||4
ε

) < 0. (23)

By Proposition 5, after letting γ → 0, we see

||a||4
ε

→ 0 as ε → 0.

Then, from (23), we obtain α
2

< 0, which is a contradiction. ¤
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