
THE EXTENSION OF A MONOTONE SET OPERATOR TO AN
UPPER SEMICONTINUOUS SET OPERATOR

The purpose is to present a simple way to extend a translation-invariant mono-
tone set operator T to an operator T that is upper semicontinuous (u.s.c.) on the
compact subsets of T

N . Here are the basic assumptions and notation:

(1) T is monotone and translation invariant.
(2) T ∅ = ∅, T T

N = T
N .

(3) L denotes the family of compact subsets of T
N .

(4) The set of structuring elements of T relative to L is denoted by B and defined
by B = {X | 0 ∈ T X, X ∈ L}.

Definition 1. For X ∈ L,

T X =
⋂
µ<0

T Xµ(−d(· , X)),

where d(· , X) is the distance function of X.

1. General Results

The first result states that T is indeed an extension of T .

Result 1. T X ⊂ T X.

Proof. X = X0(−d(· , X)) =
⋂

µ<0 Xµ(−d(· , X)), and it is always true that

T X = T
( ⋂

µ<0

Xµ(−d(· , X))
)

⊂
⋂
µ<0

T Xµ(−d(· , X)) = T X. �

Result 2. Let B denote all compact sets of the form B =
⋂

n Bn, where (Bn) is a
descending sequence in B. Then B is the structuring set for T relative to L.

Proof. Let B
′ = {X | 0 ∈ T X, X ∈ L}. If

0 ∈ T X =
⋂
µ<0

T Xµ(−d(· , X)),

then 0 ∈ T Xµ(−d(· , X)) for all µ < 0. This means that all of the sets Xµ(−d(· , X))
are in B, and so X ∈ B. Hence, B

′ ⊂ B.
Now assume that B ∈ B and that Bn ↓ B for some descending sequence (Bn) in

B. By definition

T B =
⋂
µ<0

T Xµ(−d(· , B)).

Since d is continuous, B ⊂ (Xµ(−d(· , B)))◦ for all µ < 0, where X◦ denotes the
interior of X. Since Bn ↓ B, this implies that for each µ < 0,

Bn ⊂ (Xµ(−d(· , B)))◦ ⊂ Xµ(−d(· , B))

for all sufficiently large n. As a consequence, 0 ∈ T Xµ(−d(· , B)) for all µ < 0.
Thus, 0 ∈ T B, and B ∈ B

′. �
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The proof used this fact: If compact sets Bn are nonempty and Bn ↓ B, then
given any neighborhood O of B, Bn ⊂ O for all sufficiently large n. This property
of descending sequences of nonempty compact sets is at the heart of many of the
following arguments.

The next result plays a central role in our development. It says that B, which was
defined in terms of descending sequences in B, is closed under descending sequences.
In other words, taking descending sequences in B adds no sets that were not already
obtained by taking descending sequences in B. It is this result that allows us to
avoid using the Hausdorff metric directly.

Result 3. If Cn ↓ C, where Cn ∈ B, then there is a sequence Bn ∈ B such that
Bn ↓ C.

Proof. Assume that Cn ↓ C, where Cn ∈ B. For each n, by the definition of
B, we can find a set An ∈ B such that Cn ⊂ An and An ⊂ D1/n(Cn), where
Dε(X) = {y | |x − y| ≤ ε for some x ∈ X}. Now define En =

⋃
k≥0 An+k. The En

form a descending sequence in B. Let E =
⋂

n En. We wish to show that E = C.
Since Cn ⊂ An for all n, and since An ⊂ En, C ⊂ E.

Since Cn ↓ C, given any ε > 0, there is an N = N(ε) such that Cn ⊂ Dε(C) for
all n ≥ N . This implies that

An ⊂ D1/n(Cn) ⊂ D(1/n)+ε(C)

for all n ≥ N . If m > n, Am ⊂ D(1/m)+ε(C) ⊂ D(1/n)+ε(C). This implies that
En ⊂ D(1/n)+ε(C) for all n ≥ N , which in turn implies that E ⊂ Dε(C). Since ε
was arbitrary, we see that E ⊂ C. �
Result 4. T is upper semicontinuous on L.

Proof. Assume that Xn is a descending sequence of nonempty compact sets in T
N

and that X =
⋂

n Xn. Assume that x ∈
⋂

n T Xn. We must show that there is a
B ∈ B such that x + B ⊂ X.

The assumption that x ∈
⋂

n T Xn implies that for each n there is a set An ∈ B

such that x + An ⊂ Xn. Since the sequence Xn is descending, m > n implies that
x + Am ⊂ Xn. Thus, x +

⋃
k≥0 An+k ⊂ Xn. Since both sides of this inclusion are

descending, it follows that x +
⋂

n

⋃
k≥0 An+k ⊂ X. We showed in the Result 3

that
⋂

n

⋃
k≥0 An+k was in B, so this proves that T is upper semicontinuous. �

So far, we have only considered the operators T and T to be defined on compact
sets, but, in fact, nothing prevents extending their domain of definition to all subsets
of T

N by the rule that says x ∈ T X if and only if there is a B ∈ B such that
x + B ⊂ X. The next two results say something more about how the operators T
and T are related.

Result 5. If X is open, then T X = T X and T X is open.

Proof. Assume that X is open. By definition, x ∈ T X if and only if there is a
B ∈ B such that x + B ⊂ X. This means that X − x is a neighborhood of the
compact set B. Thus, if Bn ↓ B, then Bn ⊂ X − x for all sufficiently large n. This
implies that x ∈ T X. Since T X ⊂ T X, this proves that T X = T X.

Now suppose that x + B ⊂ X, that is, x ∈ T X. Then the compact set B is in
the open set X − x. This implies that the distance between T

N \ X − x and B is
positive. Thus, there is an ε > 0 such that B + y ∈ X − x for all |y| < ε. Written
another way, this says that x + y + B ⊂ X for all |y| < ε, which in turn means
that x + y ∈ T X for all |y| < ε. Hence, T X is open. �

Result 6. If X is compact, then T X is compact.
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Proof. Assume that xn → x, xn ∈ T X. We must show that x ∈ T X. Since
xn ∈ T X, for each n there is a set An ∈ B such that xn + An ⊂ X. If we
write this as An ⊂ X − xn, then

⋃
k≥0 An+k ⊂

⋃
k≥0(X − xn+k). Given ε > 0,

there is an N = N(ε) such that |x − xn| ≤ ε for all n ≥ N . This implies that⋃
k≥0(X − xn+k) ⊂

⋃
|x−y|≤ε(X − y) for all n ≥ N . The set on the right-hand

of this inclusion is Dε(X) − x. Since
⋃

k≥0 An+k ⊂
⋃

k≥0(X − xn+k), this implies
that

⋂
n

⋃
k≥0 An+k ⊂ Dε(X) − x, or that x +

⋂
n

⋃
k≥0 An+k ⊂ Dε(X). Since ε

was arbitrary, x + ∩n

⋃
k≥0 An+k ⊂ X. The set

⋂
n

⋃
k≥0 An+k is in B by Result 2.

Thus, x ∈ T X, which proves that T X is compact. �

Result 7. T is u.s.c. on L if and only if B is closed under descending sequences.

Proof. The proof of Result 4 shows that T is u.s.c. on L if B is closed under
descending sequences. Assume that B =

⋂
Bn, where Bn ∈ B. If T is u.s.c. on

L, then T B =
⋂

n T Bn. Since 0 ∈ T Bn for all n, 0 ∈ T B, which proves that
B ∈ B. �

We are now going to shift attention from the set operators to their associated
function operators. Thus, for u : T

N → R, we define T and T by

Tu(x) = sup{λ | x ∈ T Xλu} and Tu(x) = sup{λ | x ∈ T Xλu}.

Result 8. If u is continuous, then Tu = Tu.

Proof. Without loss of generality, we may assume that u maps T
N onto [0, 1]. With

this assumption, Xλu = ∅ for λ > 1, Xλu = T
N for λ ≤ 0, and Xνu ⊂ (Xµu)◦ for

µ < ν ≤ 1, where X◦ denotes the interior of X. This last relation implies that⋂
µ<λ T (Xµu)◦ =

⋂
µ<λ T Xµu and that

⋂
µ<λ T (Xµu)◦ =

⋂
µ<λ T Xµu. Since T

and T agree on open sets,
⋂

µ<λ T Xµu =
⋂

µ<λ T Xµu. This implies that Tu and
Tu have the same level sets: XλTu =

⋂
µ<λ T Xµu =

⋂
µ<λ T Xµu = XλTu. Since

they have the same level sets, Tu = Tu for u continuous. �

Result 9. If u is upper semicontinuous, then Tu is upper semicontinuous.

Proof. By the definition of upper semicountinuity, Xλu is closed and hence compact.
Then by Result 6, T Xλu is compact. Hence,

⋂
µ<λ T Xµu = XλTu is compact,

which means that Tu is upper semicontinuous. �

Result 10. If u is continuous, then Tu is continuous.

Proof. Without loss of generality, we assume that u maps T
N onto [0, 1]. Result 9

states that u is upper semicontinuous. Thus, to show that Tu is continuous, it is
sufficient to show that {x | Tu(x) > λ} =

⋃
µ>λ XµTu is open. The fact that T is

u.s.c. on compact sets implies that XµTu = T Xµu for u continuous. This reduces
the task to showing that

⋃
µ>λ T Xµu is open.

Since u is continuous, we know that Xµu ⊂ (Xνu)◦ ⊂ Xνu for ν < µ ≤ 1, and
hence that T Xµu ⊂ T (Xνu)◦ ⊂ T Xνu. If x ∈

⋃
µ>λ T Xµu, then x ∈ T Xµu for

some µ, where λ < µ ≤ 1. Then for any ν, λ < ν < µ, we have the inclusions

x ∈ T Xµu ⊂ T (Xνu)◦ ⊂ T Xνu.

The set T (Xνu)◦ is open, hence, T (Xνu)◦ ⊂ (T Xνu)◦, and this means that x is an
interior point of T Xνu. The conclusion is that

⋃
µ>λ T Xµu is open, and hence that

Tu is continuous. �

Result 11. The operator T is the Evans–Spruck extension of the operator T .
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Proof. Let T ′ denote the Evans–Spruck extension of T . Since both T and T ′ are
u.s.c. on L, it is always true that T Xλu = XλTu and T ′Xλu = XλT ′u whenever u is
continuous. Since the three operators T , T ′, and T agree on continuous functions,
we see that T Xλu = T ′Xλu for u continuous. This, in turn, implies that T X = T ′X
for any X ∈ L. �

Result 12. If T ′ is an u.s.c. extension of T and if Tu = T ′u for u continuous,
then T ′ = T .

Proof. The proof is exactly the same as the proof of the last result. �

Result 13. If T ′ is an u.c.s. extension of T and if T X ⊂ T ′X ⊂ T X, then
T ′X = T X for X compact.

Proof. The inclusions T X ⊂ T ′X ⊂ T X imply that B ⊂ B
′ ⊂ B. Result 7 states

that B
′ is closed under descending sequences. This implies by Result 3 that B ⊂ B

′.
Hence, B

′ = B, and T ′ and T agree on compact set. �

2. Examples and Applications

Example 1. Let T ◦ denote the set operator defined by T ◦X = X◦, and restrict
the domain of definition of T ◦ to L. The family of structuring elements for T ◦,
B = {X | 0 ∈ T ◦X = X◦, X ∈ L}, is the family of all compact sets X such that
0 ∈ X◦. Clearly, {0} ∈ B, and this means that T ◦ = I, the identity set operator.

Example 2. Let Ta denote the small component killer restricted to L. By defini-
tion,

TaX =
⋃

|Xi|≥a

Xi,

where the Xi are the connected components of X and |X| denotes the measure of X.
Then the family of structuring elements for Ta can be characterized as follows: B

consists of the compact sets X that have a finite number of connected components
with measure greater then or equal to a. If Bn ↓ B and the Bn are connected
compact sets with measure greater than or equal to a, then B is a connected set
and measure(B) ≥ a. It follows that B is closed under descending sequences, and
hence that Ta is u.s.c.

Example 3. Let E be the erosion operator defined by the set B, that is,

EX = {x | x + B ⊂ X}.

Then the structuring elements B for E restricted to the compact sets is just the set
of all compacts sets that contain B. Clearly, the closure of B, denoted by B, is in
B, and B = B. Thus, E restricted to L is u.s.c. on L. In this case, B contains a
minimal element, and E restricted to L is generated by B.

Example 4. Let D be the dilation operator defined by the set B, that is,

DX = {y | y = x + b,x ∈ X, b ∈ B}.

Then the structuring elements for D restricted to L is the family of sets B defined
by

B = {X | X ∈ L, −b ∈ X for some b ∈ B}.

In this case, B is not necessarily closed under descending sequences, but it is easy
to see that

B = {X | X ∈ L, −b ∈ X for some b ∈ B}.

The family B
∗ = {{b} | b ∈ B} also generates the extension D, and it is minimal

in the sense that if B
′ generates D then B

∗ ⊂ B
′.
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Example 5. Let Mk denote the median filter based on the weight function k.
Then Mk restricted to L is defined by

MkX = {x | |X − x|k ≥ 1/2}.

Then B = {B | B ∈ L, |B|k ≥ 1/2}. Thanks to M. Lebesgue, this family is clearly
closed under descending sequences, and thus Mk is u.s.c. on L.

3. A Final Question

As the examples show, a set operator can be defined directly in terms of its
structuring elements as in Example 3, or it can be defined in other terms, in which
case the structuring elements must be determined. Suppose that T is defined in
terms of a family of sets B without specifying any specific domain for T . The
question that arises is, How are the elements of B related to the elements of the
structuring set of T restricted to L? Let BT denote the structuring set of T
restricted to L. Then BT = {X | X ∈ L, B ⊂ X}. There is a “smaller” family
B

∗ = {B | B ∈ B} that also generates T restricted to L. We saw an instance of
this in Example 3.

4. Comments

I believe that this development can also be done in the following context:
(a) The underlying space is R

N .
(b) The only functions that appear are continuous whose level sets are compact.
(c) T is defined on the compact subsets of R

N , T ∅ = ∅, and T R
N = R

N .
The problem I have with T

N comes later when we wish to consider Jordan
curves. There are at least two kinds of Jordan curves on T

2, and the ones we wish
to consider are that ones that can be continuously deformed to a point. I guess all
is OK if one only considers curves that are inside the fundamental square in R

2.
Result 12 says that an u.s.c. extension T ′ of T is unique if we require that T

and T ′ agree on continuous functions. Result 13 says that T is the minimal u.s.c.
extension of T satisfying the condition T X ⊂ T ′X for X ∈ L. There is, however,
not necessarily a maximal extension for which T X ⊂ T ′X for X ∈ L. For example,
by adding more sets of the form {c} to the family B

∗ in Example 4, you always get
a proper u.s.c. extension of T .


