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Abstract

Multiscale signal analysis has been used since the early 1990s as a powerful tool for
image processing. Nonlinear PDEs and multiscale morphological filters can be used to
create nonlinear operators that have advantages over linear operators, notably preserving
important features such as edges in images. In this report, we present the nonlinear
Hamilton-Jacobi PDEs commonly used as filters for images, then morphological tools
suitable for replacing Hamilton-Jacobi PDEs in linear cases. From this point on, the report
tries to adapt the techniques used in linear cases to find morphological operators suitable
for PDE replacement in the nonlinear general case. Finally experimental applications
of the new nonlinear morphological operators in image processing are shown on actual
images.



Introduction

In image processing important problems such as image smoothing, detecting events
(e.g. edges, peaks) or removing noises from an image often require analysing a signal

at multiple spatial or intensity scales. Until now, most of these problems have been
addressed using linear filters ([2]). There is however, a variety of nonlinear filters such
as openings and closings that could be used providing some advantages over linear filters,
notably leaving the edges unchanged.

Most nonlinear filters are based on a PDE whose role is to link scale shifting to spatial
shifting ([3], [4], [5]). For this purpose, Hamilton-Jacobi PDEs are a very productive tool.
They are nonlinear differential equations of type

∂F

∂t
= V (F (x, y, t)) · ‖∇F‖

with V a function depending on the solution. Because of this dependence, V gives the
PDE an adaptative characteristic.

It has been shown that solving the case V constant, namely the linear case of Hamilton-
Jacobi PDEs, has the same effect as applying some morphological operators to a function
([2]). Hence, one can think solving Hamilton-Jacobi PDEs in the general nonlinear case
also has the effect of other morphological operators.

In this report, the purpose of the first part is to show precisely what effect Hamilton-
Jacobi PDEs have in several special cases of V and some of their applications to image
processing. Then, in the second part, a selective set of already existing tools for mathe-
matical morphology is presented. The third part is devoted to establishing how to use the
morphological tools studied in the second part to create nonlinear morphological filters
having the same effect as some nonlinear cases of Hamilton Jacobi PDEs. In the last part,
the results of experimental applications of morphological filters to images are gathered,
more precisely we try to remove a Poisson noise from an image.

1



Part 1

Halmiton-Jacobi PDEs and image
processing

Hamilton-Jacobi PDEs are nonlinear differential equations of type ([2], [3], [4])

∂F

∂t
= V (F (x, y, t)) · ‖∇F‖

with V a function depending on the solution.

This part will show precisely what effect those equations have in special cases of V .
The first two cases (V = 1 and V = −1) are especially important as they match the basic
morphological operators further explained in part two. The next three cases are examples
of Hamilton-Jacobi PDEs used in image processing.

1.1 V = 1 : Dilation
Let f : Rd → R be a function representing some d-dimensional signal, and g : B → R a

structuring function with compact support B ∈ Rd. It is assumed that g is non negative
and concave. The dilation of a function f by g is defined by

(f ⊕ g)(x) = sup{f(x− v) + g(v) | v ∈ B} , x ∈ Rd

Given a parameter s, from g a dilation at level s is constructed by substituting to B and
g :

• sB = {sb | b ∈ B}, s ≥ 0;

• gs(x) = sg(x/s), s > 0.

A dilation at level s will therefore be written as follows:

δ(x, s) = (f ⊕ gs)(x) = sup
v∈sB
{f(x− v) + sg(v/s)}

With the special case of flat morphology g : B → {0} (studied in detail in part 2):

δ(x, s) = (f ⊕ gs)(x) = sup
v∈sB
{f(x− v)}
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We notice that
∂δ

∂s
(x, s) = lim

r↓0

δ(x, s+ r)− δ(x, s)
r

Since B is convex, sB ⊕ rB = (s + r)B. Consequently, δ(x, s + r) = δ(x, s) ⊕ gr(x), and
we may conclude that

∂δ

∂s
(x, s) = lim

r↓0

supv∈rB{δ(x− v, s) + rg(v/r)} − δ(x, s)
r

1-dimensional flat dilation Let us assume that the function f is C1 on an interval
[x0 −∆s, x0 + ∆s] then a first-order Taylor formula shows that

∂δ

∂s
(x, s) =

∣∣∣∣∂δ∂x(x, s)

∣∣∣∣
With the condition: δ(x, 0) = f(x), the PDE for the dilation at level s is defined in every
such point. It is the V = 1 case of Hamilton-Jacobi PDE.
To deal with the other points, we introduce the following sup-derivative:

M(f)(x) = sup
t∈[x−∆s,x+∆s]

(
lim
r↓0

sup{f(x+ v) | |v| ≤ r} − f(x)

r

)

Example On Fig.1.1 is shown a function f in black and the solution of the PDE at
level ∆s in red, which is the dilation of f by a flat element of size 2×∆s.

The discrete version of the PDE: δ(s + ∆s, x) = δ(s, x) + ∆s(f ′(x)) implies that on
the points x0 where the derivative of f is continuous on an interval [x0−∆s, x0 +∆s], the
flat parts of f are unchanged and the parts where f is a non flat line are translated. On
the other points (the blue zones), the function keeps the properties of its higher points.

Figure 1.1: Dilation of a function by a flat structuring element

2-dimensional flat dilation The same process is applied and results in the equation:
∂δ

∂t
= sptfB(δx, δy)

with the support function

sptfB(x, y) = sup
(a,b)∈B

(ax+ by)
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Examples

• If B is a disk ({(v, u) | |v|+ |u| ≤ 1}),
∂δ
∂s

(x, y, s) =

√∣∣ ∂δ
∂x

∣∣2 +
∣∣∣ ∂δ∂y ∣∣∣2;

• if B is a square ({(v, u) | |v|, |u| ≤ 1}),
∂δ
∂s

(x, y, s) =
∣∣ ∂δ
∂x

∣∣+
∣∣∣ ∂δ∂y ∣∣∣;

1.2 V = −1 : Erosion
Erosions work the same way as dilations.

The erosion of a function f by g is defined by

(f 	 g)(x) = inf{f(x+ v)− g(v) | v ∈ B} , x ∈ Rd

Giving at level s:

ε(x, s) = (f 	 gs)(x) = infv∈sB{f(x+ v)− sg(v/s)}

With the special case of flat morphology g : B → {0} (studied in detail in part 2):

ε(x, s) = (f 	 gs)(x) = infv∈sB{f(x+ v)}

For a 1-dimensional flat erosion, the equation in any point where the derivative is contin-
uous on the correct interval is

∂ε

∂s
(x, s) = −

∣∣∣∣∂ε∂x(x, s)

∣∣∣∣
and for a 2-dimensional flat erosion

∂δ

∂t
= −sptfB(δx, δy)

.

1.3 V = Sgn(f − u) : Leveling
The process is the one described in [6], [7] and [8].

Let f be a 1-dimensional signal and g a reference signal. Our goal is to create a leveled
signal ψ(f, g). For that purpose, we use the particular case of Hamilton-Jacobi PDEs

ut(x, t) = sgn(f(x)− u(x, t)) |ux(x, t)| and u(x, 0) = g(x)

For each t and x such that u(x, t) < f(x), the PDE is the one of a dilation that leaves
extremal points (where u = f) unchanged. When x and t are such that u(x, t) > f(x),
the PDE now produces an erosion.

Example The result on a function is shown on Fig.1.2
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(a) (b)

Figure 1.2: Evolution of 1-dimension leveling PDE on a function taken from [6]. (a)
Reference signal (dash line), marker (thin solid line) and leveling (thick solid line). (b)
Marker and 5 of its evolutions through time.

(a) Original image (b) Reference image (c) Final image

Figure 1.3: Evolution of 1-dimension leveling PDE on an image taken from [6]

Example On an image represented by a function or R2 in R, the PDE will create flat
zones and leave edges unchanged. See Fig.1.3

1.4 V = −Sgn(Fξξ) : Shock Filters
The idea is close to the leveling process. The main difference lies in the use of f own

derivatives as a marker instead of a function u. The process is described in detail in [9].
The PDE for shock filters is

Ft(x, t) = −sgn(Fξξ) ‖∇F (x, t)‖ and u(F, 0) = f(x)

where Fξξ is the directional derivative of F in the direction ξ = ∇F
‖∇F‖ .

Example of shock filters on the x 7→ sin(x) function

F : x 7→ sin(x)

x [0, π] [π, 2π]
F : x 7→ sin(x) + −
F” : x 7→ −sin(x) − +

5



(a) x 7→ sin(x)

(b) sin with level sets (see Part 2 for complete definition)

(c) PDE acting on the function

(d) Final function

Figure 1.4: Shock Filters on the sin function

Hence:

• On [0, π], ∂F
∂t

=
∣∣∂F
∂x

∣∣, a dilation is done;

• On [π, 2π], ∂F
∂t

= −
∣∣∂F
∂x

∣∣, an erosion is done.

The result is shown on Fig.1.4.

1.5 V = div
(
∇u
|∇u|

)
: Curvature

The idea behind image processing using curvature is explained in [10]. It consists in
applying the PDE

∂u

∂t
= div

(
∇u
|∇u|

)
|∇u| and u(0, x) = u0(x)
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The term div
(
∇u
|∇u|

)
|∇u| is a term of decreasing diffusion: u is diffused in a direction

orthogonal to ∇u. The result is a smoothed version of u on each side of its edges leaving
the edges themselves unchanged.

Example The curvature method applied to an image is shown on Fig.1.5

(a) Original image (b) Modified image

Figure 1.5: Modified image by a curvature method taken from [10]
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Part 2

Morphological operator - dilation and
erosion

2.1 Morphological operator: definition
A morphological operator ([1]) is any operator defined on a complete lattice. By lattice

is meant any set L on which a partial order such that every finite subset of L contains a
lower bound and an upper bound is defined. If the property is true for every subset and
not only for every finite subset then the lattice is called complete.

Examples Let S be a set. The set formed by all subsets of S with the inclusion relation
as the partial ordering relation is a complete lattice. Given a subset of S, the upper bound
is the union of all elements in the subset and the lower bound is the intersection of the
same elements.

Another example is the set of greyscale images, where a greyscale image is represented
by a function defined on a bounded subset of R2 and taking its values in a bounded
subset of R+ (or, alternatively, defined on a bounded subset of N2 and taking its values
in a bounded subset of N), with the partial ordering inferred by the natural order on R+

(or N). The upper bound and lower bound are obtained by taking the union of all local
upper bounds and lower bounds for each point.

2.2 Morphological dilation and erosion
A particular type of morphological operators are morphological dilations and erosions

([1]). They are the basis of many image processing methods, and should therefore be
closely explained.

Let X be a subset of R2 to be dilated or eroded by a structuring element B ⊆ R2. In
order to understand the notion intuitively, the structuring element in this section will be
the unit ball. The dilation and the erosion are illustrated on Fig.2.1.

• The dilation of X by B is obtained by taking the union of all points included in
the unit ball placed successively in such a way that its center covers all elements in
X. In other words, the dilation of X by B is formed by X and a surrounding area
created by sliding the ball on the limits of X.
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(a) X (b) Dilation of X by B (c) Erosion of X by B

Figure 2.1: Erosion and dilation in R2

• The erosion of X by B is obtained by keeping the points x of X such that the unit
ball centered in x is entirely included in X. In other words, the erosion of X by B
is the set X trimmed by a band corresponding to the unit ball sliding beneath the
limits of X.

Formally those notions may be written:

• Dilation of X by B, also called Minkowski sum:

X ⊕B =
⋃
b∈B

Xb

• Erosion of X by B, also called Minkowski difference:

X 	B =
⋂
b∈B

X−b

Where Xb is the set X translated by the vector b: Xb = {x+ b | x ∈ X}

We should note at this point that dilations and erosions are translation invariant and
are increasing operators.

2.3 Flat morphology
Flat morphology consists in applying the same morphological operator to an indexed

family of sets, for example the level sets of a function or the greyscales of an image. The
morphological operator used will mostly be a dilation or an erosion.

To begin with, the notion of level set of a function should be introduced. Let L be a
complete lattice and F : E → L a function. There are two ways to define the level sets
of F :

• X(F, s) = {x ∈ E | F (x) ≥ s};

• Y (F, s) = {x ∈ E | F (x) > s}.

X(F, s) and Y (F, s) define the part of E for which the function is above a certain value
s. Their difference lies in whether the points of the function itself should be included or
not. See Fig.2.2 for an illustration of a function and its level sets.

9



(a) y = F (x) (b) Level sets of F

Figure 2.2: Level sets of F

For a given function F , we now apply a constant dilation (or erosion) to its level sets
to create a dilated (or eroded) function from F . The same can be done with a greyscale
image by applying a constant dilation (or erosion) to the sets formed by the level sets of
the function (R2 → R+ or N2 → N) representing the image.

Example A dilation δ applied to the function F level sets is shown on Fig.2.3

(a) Level sets of F (b) Dilation of F by δ

Figure 2.3: Dilation of F by δ

Example Applied to a greyscale image, dilation and erosion have the effect shown on
Fig.2.4

(a) Lena (b) Dilated Lena (c) Eroded Lena

Figure 2.4: Dilation and erosion of Lena by a square structuring element

When applying flat morphology to functions and images, we obtain the same results as
resolving the Hamilton-Jacobi PDE special cases of V = 1 and V = −1.

10



Part 3

Adaptative morphology

3.1 With an ordinary family of morphological opera-
tors

Let L be a complete lattice and F : E → L a function. Adaptative morphology is
defined by Heijmans in [1] for a decreasing family (ψs)s∈L of increasing operators (for all
s ≤ s′ ∈ L, ψs′ ≤ ψs and for all s ∈ L, ψs is an increasing operator). It consists in
applying for each s ∈ L the operator ψs to the level set X(F, s) of F , then reconstructing
the function whose level sets are ψs(X(F, s)).

We know for sure that we will be able to do this reconstruction because the images of
stacked level sets by a decreasing family of operators are also stacked, which means that
those images are still the level sets of a properly defined function.

Example We show in Fig.3.1 the transformation of F by an adaptative morphology
using a family (δs)s∈L such that δs is a dilation by a ball whose radius gets smaller as s
increases.

(a) Level sets of F (b) Adaptative di-
lation applied on
F

Figure 3.1: Adaptative dilation on F

Here lies one of the main goals of our internship: extending the notion of adaptative
morphology to any family (ψs)s∈L of morphological operators. It implies as a first step
that we should be able to apply the operator ψs to X(F, s) for each s and still obtain a
properly defined function. Unfortunately, as the family (ψs) is not decreasing any more,
the transformed sets ψs(X(F, s)) may not remain stacked, as it is enhanced in Fig.3.2.
Hence, the reconstruction of a function is not immediate.
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(a) Level sets of F (b) Transformed level
sets of F

Figure 3.2: Adaptative morphology on F

Two solutions to this problem are graphically described on Fig.3.3 : sup-envelope and
inf-envelope. Intuitively, the sup-envelope acts as water falling in a fountain, following
the borders delimited by the extremities of the transformed level sets. The inf-envelope
is inferred by the same idea applied to the opposite function −F . Our first result is the
formal definition of these envelopes:

Let (Z(s))s∈L be a family of subsets of E.

• The sup-envelope is defined by

F :

{
E → T
x 7→ sup{s ∈ L | x ∈ Z(s)}

• The inf-envelope is defined by

F :

{
E → T
x 7→ inf{s ∈ L | x /∈ Z(s)}

For Z(s) = ψs(X(F, s)), we obtain the construction of the sup- and inf-envelope of the
transformation of F as described on Fig.3.3.

(a) Transformed level
sets of F

(b) Sup-envelope (c) Inf-envelope

Figure 3.3: Adaptative morphology on F

3.2 With families exclusively containing dilations or
erosions

Now that adaptative morphology is defined for any family of operators, let us prove
that some properties over the operators, namely being an erosion or a dilation, are still
true after applying adaptative morphology.

12



Let L, M be complete lattices, ε an operator from L to M, and δ an operator from
M to L. The pair (ε, δ) is called an adjunction between L andM if

∀X ∈ L, ∀Y ∈M, δ(X) ≤ X ⇔ Y ≤ ε(X)

Moreover, adjunctions are narrowly linked to dilations and erosions. Indeed, if the
pair (ε, δ) is an adjunction, then ε must be an erosion and δ a dilation. But here dilations
and erosions are to be understood in the broader sense of algebraic dilations and algebraic
erosions.

An algebraic dilation is any operator such that taking the upper bound of a family is
a distributive operation (δ(

∨
i∈I Yi)=

∨
i∈I δ(Yi)) and an algebraic erosion is any operator

such that taking the lower bound of a family is a distributive operation
(ε(
∧
i∈I Yi)=

∧
i∈I ε(Yi)).

Morphological dilations are algebraic dilations as they are distributive over the union.
The same can be said of morphological erosions for the intersection.

The morphological operators εδ and δε are then called openings and closings.

Let (εs, δs)s∈R be a family of adjunctions on R2. Let us define Σ and ∆, two morpho-
logical operators such that for any function F from a compact subset of R2 to R, Σ(F )
is the inf-envelope of the level sets of F eroded by the family (εs)s∈L and ∆(F ) is the
sup-envelope of the level sets of F dilated by the family (δs)s∈L :

• Σ :
{
C(R2,R)→ C(R2,R)
F 7→ Σ(F ) : x 7→ ∧{s ∈ R | x /∈ εsX(F, s)}

• ∆:
{
C(R2,R)→ C(R2,R)
F 7→ ∆(F ) : x 7→ ∨{s ∈ R | x ∈ δsY (F, s)}

Strict and large level sets in the definition of Σ and ∆ are chosen in a way that makes
the following property true and C(R2,R) is the subset formed by all functions of F(R2,R)
with compact support.

Theorem (Σ,∆) is an adjunction on C(R2,R).

Proof Let us prove that

∀F,G ∈ C(R2,R) , ∆(F ) ≤ G⇐⇒ F ≤ Σ(G)

Forward

Let F,G ∈ C(R2,R).

13



As ∀y ∈ R2, ∆(F )(y) ≤ G(y),

then ∨{s | y ∈ δsY (F, s)} ≤ G(y),

so ∀s ∈ T , y ∈ δsY (F, s) =⇒ s ≤ G(y).

We deduce δsY (F, s) ⊆ {y | G(y) ≥ s},
and by adjunction Y (F, s) ⊆ εs({y | G(y) ≥ s}),
which means Y (F, s) ⊆ εs(X(G, s)).

Then, as we have the following relation on the complementaries:

εs(X(G, s))c ⊆ Y (F, s)c

We deduce for the inferior bounds that ∀x,

∧{s | x ∈ εs(X(G, s))c}︸ ︷︷ ︸
Σ(G)(x)

≥ ∧{s | x ∈ Y (F, s)c}︸ ︷︷ ︸
F (x)

Eventually, we obtain:
Σ(G) ≥ F

Backward

Let F,G ∈ C(R2,R).

As ∀x ∈ R2 F (x) ≤ Σ(G)(x),

then F (x) ≤ ∧{s | y /∈ εsX(G, s)},
so ∀s ∈ T , x /∈ εsX(G, s) =⇒ F (x) ≤ s.

We deduce εs(X(G, s))c ⊆ {x | F (x) ≤ s}.

Moreover, as we obtain the following relation on the complementaries:

{x | F (x) ≤ s}c ⊆ εs(X(G, s))

so
δs({x | F (x) > s}) ⊆ X(G, s)

Consequently, on the superior bounds we have the following :

∨{s | x ∈ δsY (F, s)}︸ ︷︷ ︸
∆(F )(x)

≤ ∨{s | x ∈ X(G, s)}︸ ︷︷ ︸
G(x)

We finally deduce:
∆(F ) ≤ G

�

14



3.3 Adaptation of the definitions in Z
As our goal was to implement the transformation, we had to make sure that the proof

of the adjunction property was also true for any function F from a compact support
of Z2 to Z. Unfortunately, the operators sup (respectively inf) in R and in Z do not
correspond: indeed, if n ∈ Z then sup{s ∈ R |s < n} = n and sup{s ∈ Z |s < n} = n− 1.
Consequently, the proof is not correct in Z. Therefore, the definitions of Σ and ∆ had to
be modified to fit in Z.

Let (εs, δs)s∈Z be a family of adjunctions on Z2, if

• Σ :
{
C(Z2,Z)→ C(Z2,Z)
F 7→ Σ(F ) : x 7→ ∧{s ∈ Z | x /∈ εs+1Y (F, s)}

• ∆:
{
C(Z2,Z)→ C(Z2,Z)
F 7→ ∆(F ) : x 7→ ∨{s ∈ Z | x ∈ δsX(F, s)}

then

Theorem (Σ,∆) is an adjunction on C(Z2,Z).

Proof Let us prove that

∀F,G ∈ C(Z2,Z) , ∆(F ) ≤ G⇐⇒ F ≤ Σ(G)

We may notice that the following definitions are equivalent:

• Σ(F )(x) :


= ∧{s ∈ Z| x /∈ εs+1X(F − 1, s)}
= ∧{s ∈ Z| x /∈ εs+1Y (F, s)}
= ∧{s ∈ Z| x /∈ εsY (F − 1, s)} − 1

• ∆(F )(x) :

{
= ∨{s ∈ Z|x ∈ δsY (F + 1, s)}
= ∨{s ∈ Z|x ∈ δsX(F, s)}

The proof below is very similar to the one using operators on R2. It aims at
justifying the change of definitions of ∆ and Σ in order to keep the adjunction
property true.

Forward

Let F,G ∈ C(Z2,Z).
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As ∀y ∈ Z2 ∆(F )(y) ≤ G(y),

then ∨{s | y ∈ δsY (F + 1, s)} ≤ G(y),

so ∀s ∈ Z, y ∈ δsY (F + 1, s) =⇒ s ≤ G(y).

We deduce Y (F + 1, s) ⊆ εs({y | G(y) ≥ s}),
and by adjunction Y (F, s) ⊆ εs({y | G(y) ≥ s}),
which means Y (F + 1, s) ⊆ εs(X(G, s)).

Then, as we have the following relation on the complementaries:

εs(X(G, s))c ⊆ Y (F + 1, s)c

Then, on the inferior bounds ∀x, it is successively true that

∧{s | x ∈ εs(X(G, s))c} ≥ ∧{s | x ∈ Y (F + 1, s)c}

∧{s | x /∈ εs(X(G− 1, s− 1))} ≥ ∧{s |F (x) + 1 ≤ s}

∧{s+ 1 | x /∈ εs+1(X(G− 1, s))} ≥ ∧{s+ 1 |F (x) ≤ s}

∧{s | x /∈ εs+1(X(G− 1, s))}︸ ︷︷ ︸
Σ(G)(x)

+1 ≥ ∧{s |F (x) ≤ s}︸ ︷︷ ︸
F (x)

+1

Eventually, we obtain:

Σ(G) ≥ F

Backward

Let F,G ∈ C(Z2,Z).

As ∀x ∈ Z2 F (x) ≤ Σ(G)(x),

then F (x) ≤ ∧{s | y /∈ εs+1X(G− 1, s)},
so ∀s ∈ Z, x /∈ εs+1X(G− 1, s) =⇒ F (x) ≤ s.

We deduce εs+1(X(G− 1, s))c ⊆ {x | F (x) ≤ s},

Consequently, we have the following relation on the complementaries:

{x | F (x) ≤ s}c ⊆ εs+1(X(G− 1, s))

δs+1({x | F (x) > s}) ⊆ X(G− 1, s)

Then, on the superior bounds, it is successively true that

∨{s | x ∈ δs+1Y (F, s)} ≤ ∨{s | x ∈ X(G− 1, s)}

∨{s | x ∈ δs+1Y (F + 1, s+ 1)} ≤ ∨{s |G(x)− 1 ≥ s}
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∨{s− 1 | x ∈ δsY (F + 1, s)} ≤ ∨{s− 1 |G(x) ≥ s}

∨{s | x ∈ δsY (F + 1, s)}︸ ︷︷ ︸
∆(F )(x)

−1 ≤ ∨{s |G(x) ≥ s}︸ ︷︷ ︸
G(x)

−1

We eventually obtain:
∆(F ) ≤ G

�
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Part 4

Experimental applications

The following applications illustrate how adaptative morphology can be efficiently used
to process images instead of Hamilton-Jacobi PDEs. We first show how adaptative oper-
ators work on images for various structuring elements, then we illustrate two applications
of adaptative closings and openings and finally we present an idea of how to remove noises
from images using adaptative morphology.

4.1 Effect of diverse dilations and erosions on images
In this section, a set of semi-flat morphological operators applied to images are shown

to illustrate the effect they may have. The classical Lena is used as reference image for
all transformations, but its greylevels are reduced to 128.

Structuring element decreasing with intensity

A square structuring element of size 11− (2floor((s− 1)/20) + 1)) for s ≤ 101, where
s is the level, is used. The inferred closing is applied to Lena in Fig.4.1, the result is a
smoothed version of Lena while edges are preserved.

Structuring element maximal in the middle

A square structuring element of size 4 if s > 50 and 3 if s > 100, where s is the level,
is used. In Fig.4.2, we can see that the erosion inferred improves details, for example the
feather in the hat.
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(a) Structuring
element

(b) Adaptative dila-
tion

(c) Adaptative erosion (d) Adaptative closing

Figure 4.1: Smoothing by adaptative closing

(a) Structuring
element

(b) Adaptative dila-
tion

(c) Adaptative closing (d) Adaptative erosion

Figure 4.2: Adaptative morphology with a structuring element maximal in the middle

Structuring element increasing with intensity

A square structuring element of size 2 ∗ s − 99 if s > 100 is used. As can be seen in
Fig.4.3, these transformations are the ones that give the best results : the erosion in (c)
improves the contrast in the image, resulting in an image with a level of detail closer to
the unreduced Lena (Fig.2.4), while the closing has the effect of a leveling operation as
defined in Part 4.3.

(a) Structuring
element

(b) Adaptative dila-
tion

(c) Adaptative closing (d) Adaptative erosion

Figure 4.3: Adaptative morphology with a structuring element increasing with intensity

Contrast decreasing

In this final example Fig.4.4, four square structuring elements of size 2 ∗ floor(s/40),
2 ∗ floor(s/60), 2 ∗ floor(s/80) and 2 ∗ floor(s/100) are used successively to decrease the
contrast in Lena by erosion.
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(a) 2 ∗ floor(s/40) (b) 2 ∗ floor(s/60) (c) 2 ∗ floor(s/80) (d) 2 ∗ floor(s/100)

(e) Structuring ele-
ment

Figure 4.4: Contrast decreasing

4.2 Illustration of possible applications of semi-flat mor-
phology

4.2.1 Connection of thin lines by semi-flat dilation

As defined in [11], semi-flat dilations and erosions of type 1,

δv1(f) =
∨
h

hδM−h[X(f, h)]

εv1(f) =
∨
h

hεM−h[X(f, h)]

where M is the maximum luminance and δh, εh are the flat dilation and erosion by a disk
or radius h, are such that (εv1, δv1) is an adjunction. Therefore, εv1δv1 and δv1εv1 produce
openings and closings.

Fig.4.5 illustrates the behavior of a semi-flat dilation of type 1 and its use for reconnect-
ing thin contours lines. The semi-flat operator preserves high intensities while dilating
points of lowest intensity. The result is that crest lines of the original image are preserved
while holes are filled.

4.2.2 Image simplification by semi-flat filtering

As defined in [11], semi-flat dilations and erosions of type 2,

δv2(f) =
∨
h

hδh[X(f, h)]

εv2(f) =
∨
h

hεh[X(f, h)]
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(a) Original image (b) Result of a stan-
dard dilation

(c) Result of a semi-
flat dilation δv1 of
same maximal size

Figure 4.5: Connection of thin lines by semi-flat dilation taken from [11]

where M is the maximum luminance and δh, εh are the flat dilation and erosion by a disk
or radius h, are such that (εv2, δv2) is an adjunction. Therefore, εv2δv2 and δv2εv2 produce
openings and closings.

Semi-flat (ASFs) are defined in [11]. They consist of multiscale semi-flat openings and
closings

ASF v2
rec(f) =

∨
h

·Rec[X(f, h)|φhγh...φ1γ1(X(f, h))]

where Rec(A|B) is a binary reconstruction filter yielding A if A ∩B 6= ∅, else ∅.
Fig.4.6 shows such a semi-flat reconstruction ASF of type 2, which performs a lumi-

nance adaptive reconstruction ASF at each level. It preserves the shapes that are close
to the reference sample (here a Mahalanobis distance map) while simplifying the rest of
the image. The original image in Fig.4.6 is color, and its processing is based on a total
ordering of the color vectors (by computation of the Mahalanobis distance [12] combined
with a lexicographic cascade [13]). The simplified color images are obtained by filtering
the graylevel distance map.

(a) Original image (b) Mahalanobis dis-
tance map (the refer-
ence is a daisy)

(c) standard alternat-
ing sequential filters
by reconstruction (of
same size)

(d) semi-flat alternat-
ing sequential filters
by reconstruction (of
same size)

Figure 4.6: Image simplification by semi-flat filtering taken from [11]
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4.3 Idea of an application to remove a Poisson noise
The purpose is to remove a noise by applying adaptative filters γφ or φγ where γ is an

opening and φ a closing. To remove a noise increasing with the intensity, a filter should
act more on the points of high intensity and less on the point of low intensity so that
adaptative morphology seems to be an appropriate tool.

We first added a poisson noise to an image by adding, for each pixel of intensity I,
I ∗ u where u is a randomly chosen number following a poisson distribution. The original
image, the poisson noise I ∗ u and the combination of the two are shown in Fig.4.7.

(a) Original image (b) Poisson noise I ∗ u (c) Modified image

Figure 4.7: Poisson noise added to a floral background

Unfortunately, the idea did not give sufficient results in the due amount of time. As we
can see in Fig.4.8, all the details are removed.

(a) Modified image (b) Opening then closing (c) Closing then opening

Figure 4.8: Morphological openings and closings using a square structuring element of
size 0 when I < 11, 2 when 10 < I ≤ 120 and 3 when 120 < I
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Conclusion

The various applications illustrated in the fourth part have shown how morphological
operators shrewdly chosen to fit in nonlinear adaptative morphology can be effectivly
used in image processing. In fact, a wide range of possible applications of those operators
exists. Other applications could involve:

• removing noises other than Poisson distributed noises (e.g. the speckle noise as
proposed by the GIPSA-lab in Grenoble),

• smoothing an image and removing elements of small amplitude in intensity to em-
phasize usefull events in an image,

• increasing image contrast.

To continue the work begun with this internship, other applications of adaptative mor-
phology should be tried. Also, more efficient algorithms to apply nonlinear morphological
operators and to reconstruct sup and inf envelope should be found.
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Appendix A

Matlab codes

Main

1 clc
2 clear all
3 close all
4
5 % image to be treated
6 image=[pwd,’\lenna2.jpg’];
7 ext=’jpg’;
8
9 %image acquisition
10 t=imread(image,ext);
11 % 256 to 128 gray levels conversion;
12 % calculation time decrease
13 t=t/2;
14 affiche(t);
15
16 s_max=128; % max threshold for gray levels
17
18 %%% Application of a semi-flat dilation %%%
19 t2=X(t,s_max); % the image is "cut" in its level sets
20 % the family of dilations is applied to the family of level sets
21 t3=dilatation_semi_plate(t2);
22 t4=env_sup(t3)-1;
23 % Sup-envelope reconstruction
24 % 1 is substracted since the value returned by the sup-envelope is given by
25 % the data array indexes, and calling the function X (in t2) creates a gap
26 % for each level between the threshold value and the array index.
27
28 affiche(t4)
29
30 %%% Application of the adjunct semi-flat erosion %%%
31 t5=Y(t4,s_max); % the image is "cut" in its strict level sets
32 t6=erosion_semi_plate(t5);
33 % the family of adjunct erosions is applied
34 % to the family of level sets
35 t7=env_inf(t6)-1; % Inf-envelope reconstruction
36 affiche(t7)
37
38 %%% Application of a semi-flat erosion to the original image %%%
39 t8=Y(t,s_max);
40 t9=erosion_semi_plate(t8);
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41 t10=env_inf(t9)-1;
43
45 affiche(t10)
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X-type level sets

1 function [niv]=X(F,s_max)
2 % F: array of size haut*larg
3 % where haut*larg is the image size
4 % F(i,j) is the gray level of the image at the point (i,j)
5 % s_max: number of gray levels
6
7 % niv: array of size haut*larg*(s_max+1)
8 % niv(i,j,s)=1 if the point (i,j) is in the level set s-1
9 % (in the broad sense)
10 % niv(i,j,s)=0 otherwise
11 % This index shifting is necessary to stock the level set 0
12
13 [haut,larg]=size(F);
14
15 niv=zeros(haut,larg,s_max+1);
16
17 for s=1:s_max+1
18 [i,j]=find(F(:,:)>=(s-1));
19 % in accordance with the formal definition of broad level sets
20 for k=1:length(i)
21 niv(i(k),j(k),s)=1;
22 end
23 end

Y -type level sets

24 function [niv]=Y(F,s_max)
25
26 % F: array of size haut*larg
27 % where haut*larg is the image size
28 % F(i,j) is the gray level of the image at the point (i,j)
29 % s_max: number of gray levels
30
31 % niv: array of size haut*larg*(s_max+1)
32 % niv(i,j,s)=1 if the point (i,j) is in the level set s-1
33 % (in the strict sense)
34 % niv(i,j,s)=0 otherwise
35 % This index shifting is necessary to stock the level set 0
36
37 [haut,larg]=size(F);
38
39 niv=zeros(haut,larg,s_max+1);
40
41
42 for s=1:s_max+1
43 [i,j]=find(F(:,:)>(s-1));
44 % in accordance with the formal definition of strict level sets
45 for k=1:length(i)
46 niv(i(k),j(k),s)=1;
47 end
48 end
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Flat dilations

1 function[tab]=dilatation_plate(ens_niv)
2
3
4 % ens_niv: array of size haut*larg*s_max
5 % where haut*larg is the image size
6 % s_max: number of gray levels
7 % ens_niv(i,j,s)=1 if the point (i,j) is in the level set s
8 % ens_niv(i,j,s)=0 otherwise
9
10 % tab is an array of same size as ens_niv
11 % tab(:,:,s) contains the dilation of ens_niv(:,:s)
12 % using SE as the structuring element
13 % As it is a flat dilation, SE is independent of s
14
15 SE=strel(’square’,3);
16 %structuring element : square of size 3*3
17
18 [haut,larg,s_max]=size(ens_niv);
19
20 for s=1:s_max
21 tab(:,:,s)=imdilate(ens_niv(:,:,s),SE)
22 % imdilate is an already defined dilation in Matlab
23 end

Flat erosions

26 function[tab]=erosion_plate(ens_niv)
27
28 % ens_niv: array of size haut*larg*s_max
29 % where haut*larg is the image size
30 % s_max is the number of gray levels
31 % ens_niv(i,j,s)=1 if the point (i,j) is in the level set s
32 % ens_niv(i,j,s)=0 otherwise
33
34 % tab is an array of same size as ens_niv
35 % tab(:,:,s) contains the erosion of ens_niv(:,:s)
36 % using SE as the structuring element
37 % As it is a flat erosion, SE is independent of s
38
39 SE=strel(’square’,3);
40 % structuring element: square of size 3*3
41
42 [haut,larg,s_max]=size(ens_niv);
43
44 for s=1:s_max
45 tab(:,:,s)=imerode(ens_niv(:,:,s),SE);
46 % imerode is an already defined erosion in Matlab
47 end
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Semi-flat dilations

1 function[tab]=dilatation_semi_plate(ens_niv)
2
3 % ens_niv: array of size haut*larg*s_max
4 % where haut*larg is the image size
5 % s_max is the number of gray levels
6 % ens_niv(i,j,s)=1 if the point (i,j) is in the level set s
7 % ens_niv(i,j,s)=0 otherwise
8
9 % tab is an array of same size as ens_niv
10 % tab(:,:,s) contains the dilattion de ens_niv(:,:s)
11 % using SE as the structuring element
12 % As it is a semi-flat dilation, SE is independent of s
13
14 % In this example, the dilation applied to the level set s is:
15 % the identity if s>102;
16 % the dilation by a square structuring element, of size 11-(2*floor((s-1)/20)+1)
17
18 [haut,larg,s_max]=size(ens_niv);
19 for s=1:s_max
20 if s<=101
21
22 SE=strel(’square’,11-(2*floor((s-1)/20)+1));
23 %square structuring element of size 11-(2*floor((s-1)/20)+1
24 tab(:,:,s)=imdilate(ens_niv(:,:,s),SE);
25 end
26 end

Semi-flat erosions

29 function[tab]=erosion_semi_plate(ens_niv)
30
31 % ens_niv: array of size haut*larg*s_max
32 % where haut*larg is the image size
33 % s_max is the number of gray levels
34 % ens_niv(i,j,s)=1 if the point (i,j) is in the level set s
35 % ens_niv(i,j,s)=0 otherwise
36
37 % tab is an array of same dimension as ens_niv
38 % tab(:,:,s) contains the erosion of ens_niv(:,:s)
39 % using SE as the structuring element
40 % As it is a semi-flat erosion, SE is independent of s
41
42 % In this example, the erosion applied to the level set s is :
43 % the identity if s>102;
44 % the erosion by a square structuring element of size 11-(2*floor((s-1)/20)+1)
45
46 [haut,larg,s_max]=size(ens_niv);
47 for s=1:s_max
48 if s<=101
49
50 SE=strel(’square’,11-(2*floor((s-1)/20)+1));
51 % square structuring element of size 11-(2*floor((s-1)/20)+1)
52 tab(:,:,s)=imerode(ens_niv(:,:,s),SE);
53 end
54 end
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Sup-envelope

1 function [F]= env_sup(Z)
2
3 % Z: array of size haut*larg*s_max
4 % where haut*larg is the size of the image
5 % s_max is the number of gray levels
6 % (Z(s))_s is a family of subsets of
7 % [0,haut]x[0,larg]
8 % Z(i,j,s)=1 if the point (i,j) is in the level set Z(s)
9 % Z(i,j,s)=0 otherwise
10
11 % F is an array of size haut*larg
12 % F(i,j) contains the value of the sup-envelope of the family (Z(s))_s in the
13 % point (i,j)
14
15 [haut,larg,s_max]=size(Z);
16 Z(:,:,2:(s_max+1))=Z;
17 Z(:,:,1)=ones(haut,larg);
18 % a full level is added at the bottom so that calling "find"
19 % is sure to end, even when there exists a pixel that
20 % is in no Z(s) (-1 is returned)
21 for i=1:haut
22 for j=1:larg
23 F(i,j)=find(Z(i,j,:)==1, 1, ’last’ )-1;
24 % formula according to the sup-envelope definition
25 % reason for the presence of -1 : calling "find" returns the lowest index s such
26 % that Z(i,j,s)=1
27 % As a full level was added, the value that
28 % corresponds in the initial Z is (s-1)
29 end
30 end

Inf-envelope

32 function [F]= env_inf(Z)
33
34 % Z: array of size haut*larg*s_max
35 % where haut*larg is the size of the image
36 % s_max is the number of gray levels
37 % The family (Z(s))_s is a family os subsets of
38 % [0,haut]x[0,larg]
39 % Z(i,j,s)=1 if the point (i,j) is in Z(s)
40 % Z(i,j,s)=0 otherwise
41
42 % F is an array of size haut*larg
43 % F(i,j) contains the value of the inf-enveloppe of the family (Z(s))_s in the
44 % point (i,j)
45
46 [haut,larg,s_max]=size(Z);
47 Z(:,:,s_max+1)=zeros(haut,larg);
48 % a full level is added at the top so that calling "find" is sure to end
49 % even when there exists a pixel that is in
50 % every Z(s) (s_max+1 is returned)
51 for i=1:haut
52 for j=1:larg
53 F(i,j)=find(Z(i,j,:)==0, 1);
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54 % formula according to the inf-envelope definition
55 end
56 end

Print for images

1 function [] =affiche(t)
2 % t: array of size haut*larg : the image size
3 % t(i,j) contains the gray level of the image in the point (i,j
4
5 % this function prints the image contained in t in a graphic window
6 % with adequate parameters
7
8 figure
9 clf
10 [haut,larg]=size(t);
11 colormap(’gray’)
12 imagesc(t);
13 axis equal;
14 xlim([1,larg]);
15 ylim([1,haut]);
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