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1 Introduction

Image denoising is the first step of any image processing chain. If the digital image were completely
noise-free, we would have access to an infinity amount of information. Thus, every means to
increase the signal to noise ratio must be explored. Early studies applied linear Wiener filters
equivalent to a frequency reduction of the Fourier transform. These filters are more efficient when
applied locally on the DCT (Yaroslavsky et al. [19], [18]). More recently studies proposed non-
linear variational methods like the total variation minimization, Rudin et al. [17]. Still more
recently several methods have gone back to the idea of a Wiener filtering but with other linear
transforms, and propose thresholding the wavelet transform, Donoho et al. [8]. In 2005 have
appeared the so-called patch-based methods. The Nonlocal-means method, Buades et al. [2], [3]
seems to be one of the first of this kind, followed by other many. Patch-based denoising methods
have been understood as parsimonious but redundant representations on patches dictionaries,
as proposed by Elad et al. [10], Mairal et al. [14], [15], Yu et al. [20]. This parsimonious
decomposition method has become a paradigm for all images restoration tools, including also
de-blurring or in-painting.

The BM3D method (Dabov et al. [6]) is probably the most efficient patch-based current
method. It merges the local DCT thresholding-based method and the non-local means method
based on patches comparison. Indeed, BM3D creates a 3D block with all patches similar to a
reference patch, on which a 3D transform thresholding is applied.

A more recent NL-means variant shares with BM3D the idea of applying a transform threshold
to the 3D block. This method, due to Zhang et al. [21], replaces the DCT by an adaptive local
linear transform, the principal component analysis (PCA). The method proceeds in two identical
steps which can only be distinguished by the noise parameter that is used. Like BM3D the method
creates an array of vectors with all patches similar to a reference patch. A linear minimum mean
square error (LMMSE) method is applied on the obtained coefficients before applying the inverse
transform. Unlike for BM3D, only the estimate obtained for the reference pixel is kept. The
second step attempts to remove the noise left by the first step. A similar enhancement for the
BM3D method replacing the DCT by a local PCA on similar blocks (with adaptive shape) has also
been considered in [7]. Nevertheless, according to this paper, the performance gain with respect
to BM3D is very modest.

Nevertheless, there is another way of thinking about denoising, based on the Bayesian approach.
These Bayesian approaches have been proposed as early as 1972 in [16]. Being first parametric
and limited to rather restrictive Markov random field models [11], the Bayesian method has also
expanded recently to non-parametric methods. The seed for the recent non parametric estimation
methods is a now famous algorithm to synthesize textures from examples [9]. The underlying
Markovian assumption is that, in a textured image, the stochastic model for a given pixel i can
predicted from a local image neighbourhood P of i, which we shall call “patch”.

As we will see in this paper, the Bayesian approach can be merged with Fourier methods like
BM3D, in a new method called NL-Bayes. A natural extension of this method, called NL-PCA
in the following, can be seen as we described it as a fusion of BM3D and TSID, where NL-PCA
begins and ends like BM3D, the only change being the use of the PCA instead of the DCT or
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Bi-orthogonal spline wavelet.
Since the link with BM3D is very important, the algorithm description will follow closely the

one used in BM3D. Each step of the NL-Bayes algorithm is realized in three parts: a) finding the
image patches similar to a given image patch and grouping then in a 3D block; b) Collaborative
Filtering; then c) aggregation. The collaborative filtering is realized in two parts: a) applying the
Bayes’ formula on the 3D block; and b) repositioning the 3D block. This 3D filtering filters jointly
a group of 2D image blocks. Since these filtered patches overlap, many estimates are obtained
which need to be combined for each pixel. Aggregation is a particular averaging procedure used
to take advantage of this redundancy.

The paper is organized as follows. We introduce the Bayes’ theory in Section 2. The developed
image denoising algorithm is described in Section 3. The detailed study of its parameters and
variance can be found in Section 5. Experimental results and comparison to several state-of-the-
art denoising algorithm is given in Section 6 and Section 7 contains relevant conclusions.

A complete presentation of the theory underlying Nonlocal Bayes, and a discussion of all related
algorithms, is done in the companion paper [4], submitted to SIIMS.

2 Theory

This section presents a short derivation of the main formulas used in the algorithm. For a detailed
analysis, see [4]. Given u the noiseless ideal image and ũ the noisy image corrupted with Gaussian
noise of standard deviation σ so that

ũ = u+ n, (1)

the conditional distribution P(ũ | u) reads

P(ũ | u) =
1

(2πσ2)
N
2
e−
||u−ũ||2

2σ2 , (2)

where N is the total number of pixels in the image. Given a noiseless patch P of u with dimension
k × k but seen as a column vector, and P̃ an observed noisy version of P , the same model gives
by the independence of noise pixel values:

P(P̃ | P ) = c.e−
‖P̃−P‖2

2σ2 (3)

where P and P̃ are considered as vectors with k2 components and ‖P‖ denotes the Euclidean
norm of P . Knowing P̃ , our goal is to deduce P by maximizing P(P | P̃ ). Using Bayes’ rule, we
can compute this last conditional probability as

P(P | P̃ ) =
P(P̃ | P )P(P )

P(P̃ )
. (4)

P̃ being observed, this formula could be used to deduce the patch P maximizing the right term,
viewed as a function of P . This is unfortunately not possible, unless we have a probability model
for P . We shall now discuss how to proceed when all observed patches are noisy. Assume that the
patches Q similar to P follow a Gaussian model with covariance matrix CP and mean P . This
means that

P(Q) = c.e−
(Q−P )tC−1

P
(Q−P )

2 (5)

From (2) and (4) we obtain for each observed P̃ the following equivalence of problems:

max
P

P(P | P̃ ) ⇔ max
P

P(P̃ | P )P(P )

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P )tC−1

P
(P−P )

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P )tC−1

P (P − P )
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where CP denotes the covariance matrix of the patches similar to P and P the expectation of the
patches similar to P . Nevertheless, this expression is not satisfactory, the noiseless patch P and
the patches similar to P not being observable. Since we are observing the noisy version P̃ , the
patch-based algorithms can at least compute the patches Q̃ similar to P̃ . An empirical covariance
matrix can therefore be obtained with enough such observable samples Q̃. In theory we have
from(1), P and n being independent,

CP̃ = CP + σ2I; EQ̃ = P . (6)

Notice that these relations assume that we searched for patches similar to P̃ in a neighbourhood
large enough to include all patches similar to P , but not too large either, because otherwise it can
contain outliers. Thus a safe strategy is to search similar patches in a distance slightly larger than
the plausible distance caused by noise. If the above estimates are correct, the MAP (maximum
a posteriori estimation) problem finally boils down by (6) to the following feasible minimization
problem:

max
P

P(P | P̃ )⇔ min
P

‖P − P̃‖2

σ2
+ (P − P̃ )t(CP̃ − σ

2I)−1(P − P̃ ).

Differentiating this quadratic function with respect to P and equating to zero yields

P − P̃ + σ2(CP̃ − σ
2I)−1(P − P̃ ) = 0.

Taking into account that I + σ2(CP̃ − σ2I)−1 = (CP̃ − σ2I)−1CP̃ , this yields

(CP̃ − σ
2I)−1CP̃P = P̃ + σ2(CP̃ − σ

2I)−1P̃ .

and therefore

P = C−1

P̃
(CP̃ − σ

2I)P̃ + σ2C−1

P̃
P̃

= P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃ )

Thus a restored patch Pbasic can be obtained from the observed patch P̃ by the one step
estimation

Pbasic = P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃ ). (7)

In a second step, where all patches have been denoised at the first step, all the denoised patches
can be used again to obtain an estimation Cbasic

P̃
for CP , the covariance of the cluster containing

P , and P̃
basic

a new estimation of P̃ , the average of patches similar to P̃ . Indeed, the patch
similarity is better estimated with the denoised patches. Then it follows from (6) and (7) that we
can obtain a second better denoised patch,

Pfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic
P̃

+ σ2I
]−1

(P̃ − P̃
basic

) (8)

The way of computing CP̃ and P̃ will be discussed in the section 3.

3 Implementation

3.1 Reminder of BM3D

The algorithm developed in this paper is very similar to BM3D and also has two successive steps.
In order to use this similarity as much as possible our notation and exposition order will be as
close as possible to those used in [?]. Here is a brief overview of BM3D:
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1. Step 1: first denoising
Loop on the image. We denote by P̃ the reference current noisy patch.

(a) Grouping: Stacking up similar patches to the reference one, using a similarity threshold
applied to the distance between patches in order to build the 3D block P(P̃ );

(b) Collaborative Filtering: A 3D linear transform is applied to the 3D block, then a hard
thresholding is applied to the coefficients, and finally the inverse 3D transform is applied.
A weight is associated with the whole 3D block, depending to its sparsity;

(c) Aggregation: A first basic estimate of the denoised image is obtained by doing a weighted
aggregation of every estimate obtained in the preceding step for each pixel. This basic
estimate will be denoted by ubasic.

2. Step 2: second denoising step using the result of the first as “oracle”

(a) Grouping: The distance between patches is computed on the basic estimate. Two 3D
blocks are formed :

• Pbasic(Pbasic) by stacking up patches from the basic estimation ubasic and,
• Pbasic(P̃ ) by stacking up patches in the same order from the original noisy image
ũ.

(b) Collaborative Filtering: A 3D transform is applied on both 3D blocks, followed by a
Wiener filtering of the group Pbasic(P̃ ) using the empirical oracular coefficients ob-
tained from the group Pbasic(Pbasic), and finally by the inverse 3D transform. A
weight is computed for the whole 3D block. It depends on the norm of the empirical
Wiener coefficients;

(c) Aggregation: A final estimate of the denoised image is obtained by using a weighted
aggregation of every estimate obtained for each pixel. This final estimate will be denoted
by ufinal.

3.2 Comparison of the structure of NL-Bayes with BM3D

All algorithms will be described for color images. They can also be applied on grey level images;
the changes in that case will be indicated. Like BM3D, NL-Bayes is applied in two successive
steps, the result of the first one serving as oracle for the second one:

1. the first step provides a basic estimate ubasic by using (7) during the collaborative filtering.
Parameters in this step are denoted by the exponent 1 ;

2. the second step is based both on the original noisy image ũ and on the basic estimate
obtained during the first step ubasic in order to apply (8) during the collaborative filtering.
Parameters in this step are denoted by the exponent 2 .

The following table allows to compare steps between BM3D and NL-Bayes for color images.
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Step 1
BM3D NL-Bayes

Preprocessing Transformation to the Y0U0V0 color space Transformation to the Y0U0V0 color space
Scanning step between two patches p1 = 3 p1 = 1

Processing already used patches Yes No
Grouping

Distance between patches Channel Y0 Channel Y0

Normalized quadratic distance Normalized quadratic distance
Similarity threshold Fixed, tabulated according to σ -

Patches kept N1 best N1 best
Patches ordered No No

3D groups formed One for each channel Y0, U0 et V0 one for each channel Y0, U0 et V0

Collaborative Filtering
3D transform 2D Bior1.5 on each patch followed by -

1D Hadamard transform along the
third dimension

Filter Hard thresholding on the coefficients Bayesian, based on (11)
of the DCT

Weighting Depending on the number of non-zero -
coefficients after Hard thresholding

Aggregation Identical part
Post processing - Transform to the RGB color space

Step 2
BM3D NL-Bayes

Step between two patches p2 = 3 p2 = 1
Process of an already used patch Yes No

Grouping
Distance Channel Y0 of ubasic All channels of ubasic

Normalized quadratic distance Normalized quadratic distance
Similarity threshold fixed, tabulated according to the σ Adaptive according to the distance

of the N2-th best patch
Patches kept N1 best All

Patches ordered No No
3D groups formed Two for each channel Two

Collaborative Filtering
3D transform 2D DCT then 1D Hadamard -

transform on both groups
Filter Wiener filter using ubasic as oracle Bayesian, based on (14)

Weighting Depending on the norm of the -
empirical Wiener coefficients

Aggregation Identical part
Post processing Transformation to the RGB color space -

3.3 The first step of the NL-Bayes

Only for the first step, the noisy image ũ in the usual RGB color space is converted in a different
color space where the independent denoising of each channel will not create noticeable color arti-
facts. Most algorithms use the Y UV system which separates the geometric and chromatic parts
of the image. As for BM3D, it is a linear transform multiplying the RGB vector by the matrix

YoUoVo =

 1
3

1
3

1
3

1
2 0 − 1

2
1
4 − 1

2
1
4
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We wrote the matrix above without normalization for readability, but the matrix is normalized
to become orthonormal. In that way, σ still is the value of the standard deviation of the noise on
each channel Y0, U0 and V0. The transform increases the SNR of the geometric component, the Y0

component being an average of the three colors. The geometric component is perceptually more
important than the chromatic ones, and the presence of less noise permits a better performance
of the algorithm in this component. The components U0 and V0 are differences of channels, which
cancel or attenuate the signal. Thus a higher noise reduction on the chromatic components U0

and V0 is possible, due to their observable regularity. We denote by P̃ the current reference patch
with size k1 × k1 (seen as a column vector) of the noisy image ũ.

1. Grouping:
The original noisy image ũ is searched in a P̃ -centered n1 × n1 neighbourhood for patches
Q̃ similar to the reference patch P̃ . The normalized quadratic distance between each patch
Q̃ of the neighbourhood and the reference patch P̃ is computed as

d2
(
P̃ , Q̃

)
=
‖P̃ − Q̃‖22

(k1)2 .

This distance is computed on the luminance channel Y0 only. All patches Q̃ of the neigh-
bourhood are sorted according to their distance to the reference patch P̃ , and the N1 closest
patches to P̃ are kept. Then three sets of similar patches -one for each channel- are built:
PY0(P̃ ), PU0(P̃ ) and PV0(P̃ ). But the sets of similar patches for the chromatic channels are
built with patches whose index are the same as for Q̃ ∈ PY0(P̃ ), and in the same order.
After this step, the same procedure is applied on each channel, but separately. For a sake
of simplicity, the distinction between channels will not be done any more, and we will work
for a generic channel.

2. Collaborative Filtering:
Let P(P̃ ) be the set of patches Q̃ similar to the reference patch P̃ obtained at the grouping
step. We start by detecting if P̃ belongs to a homogeneous area by processing the square of
the standard deviation of P(P̃ ):

σ2
P̃

=
M1

M1 − 1

 1
M1

∑
Q̃∈P(P̃ )

∑
x∈Q̃

(
Q̃(x)

)2

−

 1
M1

∑
Q̃∈P(P̃ )

∑
x∈Q̃

Q̃(x)

2
 (9)

where M1 = N1(k1)2. Since a huge number (M1) of realizations of the variable u(i) is taken
into account, in a homogeneous area this random variable should be very concentrated
around its mean. Thus, fixing a threshold γ close to 1,
• if σP̃ ≤ γσ, we can assume that with high probability P̃ belongs to a homogeneous

area. In this case, the better result that can be obtained for the group is the average.
Therefore, the estimate of all patches in the set of similar patches P(P̃ ) is

∀Q̃ ∈ P(P̃ ),∀x ∈ Qbasic, Qbasic(x) =
1
M1

∑
Q̃∈P(P̃ )

∑
y∈Q̃

Q̃(y)

• else, P̃ is assumed to contain some signal, for which a Gaussian model is built. By the
law of large numbers we have

CP̃ '
1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)t
, P̃ ' 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃. (10)

Once CP̃ and P̃ have been computed, (7) yields an estimate for every patch in the set
of similar patches,

∀Q̃ ∈ P(P̃ ), Qbasic = P̃ +
[
CP̃ − β1σ

2I
]
C−1

P̃

(
Q̃− P̃

)
. (11)
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where β1 is a parameter of conservative attenuation close to 1.
3. Aggregation:

When the collaborative filtering is achieved, an estimate is associated with every used patch.
This yields a variable number of estimates for each pixel. To take advantage of these mul-
tiple estimates an aggregation must be done. Contrarily to BM3D, this aggregation is not
weighted. The final estimate after this first step is given by

ubasic(x) =

∑
P̃

∑
Q̃∈P(P̃ )

χQ̃(x)Qbasic(x)

∑
P̃

∑
Q̃∈P(P̃ )

χQ̃(x)

with χQ̃(x) = 1 if and only if x ∈ Q̃, 0 otherwise.

Remark: For practical purposes, this computation is simplified by using two buffers ν and
δ, where respectively the numerator and the denominator are kept in memory

∀Q̃ ∈ P(P̃ ),∀x ∈ Q̃,
{

ν(x) = ν(x) +Qbasic(x)
δ(x) = δ(x) + 1

Thus the final estimate is simply obtained by dividing both buffers element-by-element.

4. Acceleration: To speed up the algorithm, each patch that has been used (and therefore de-
noised at least once) in a 3D group is no more considered as reference patch P̃ . Nevertheless,
it may be denoised several times, being potentially chosen in other groups.

Once ubasic
Y0

, ubasic
U0

and ubasic
V0

have been obtained, inverting the color transform yields back ubasic,
the first estimate of the image in the RGB color space.

3.4 Second step of NL-Bayes

In this second step of the algorithm a basic estimate ubasic of the denoised image is available.
The second step follows exactly the same scheme as the first, but performs a Wiener filter of the
original noisy image ũ, using as oracle the basic estimate ubasic.

1. Grouping:
The patch matching is processed on the basic estimate only. But this time the distance
involves all channels, which are assumedly denoised by the first step:

∀Qbasic, d2(Pbasic, Qbasic) =
1
Nc

Nc∑
c=1

‖Pbasic
c −Qbasic

c ‖22
(k2)2

(12)

where Nc denotes the number of channels in the image. As a difference with the first step
where only N1 patches were kept, here a threshold τ is used to obtain a set of similar patches

Pbasic(Pbasic) = {Qbasic : d2(Pbasic, Qbasic) ≤ τ},

with
• τ = max (τ0, dN2);
• τ0 is a fixed parameter;
• dN2 is the distance between the reference patch and its N2-th best similar patches,

sorted by their distance to P2.

Thus, using τ , many more similar patches can be picked in homogeneous areas. A second
set of similar patches from the noisy image ũ is built

Pbasic(P̃ ) = {Q̃ : d2(Pbasic, Qbasic) ≤ τ},

by stacking up patches together in the same order as Pbasic(P̃ ).
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2. Collaborative Filtering:
Once 3D-blocks are built the collaborative filtering is applied. Then by the law of large
numbers,

Cbasic
P ' 1

#Pbasic(Pbasic)− 1

∑
Qbasic∈Pbasic(Pbasic)

(
Qbasic − P̃

basic
)(

Qbasic − P̃
basic

)t
,

P̃
basic

' 1
#Pbasic(P̃ )

∑
Q̃∈Pbasic(P̃ )

Q̃.

(13)

Once Cbasic
P̃

and P̃
basic

are computed, (8) yields an estimate for every patch in the set of
similar patches

∀Q̃ ∈ Pbasic(P̃ ), Qfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic
P̃

+ β2σ
2I
]−1

(
Q̃− P̃

basic
)

(14)

3. Aggregation:
When the collaborative filtering is achieved, an estimate is associated with every used patch
and therefore a variable number of estimates for every pixel. Once again, contrarily to
BM3D, this aggregation is not weighted. The final estimate after this second step is given
by

ufinal(x) =

∑
P̃

∑
Q̃∈Pbasic(P̃ )

χQ̃(x)Qfinal(x)

∑
P̃

∑
Q̃∈Pbasic(P̃ )

χQ̃(x)

with χQ̃(x) = 1 if and only if x ∈ Q̃, 0 otherwise.

Remark: For practical purposes, this computation is simplified by using two buffers ν and
δ, where respectively the numerator and the denominator are kept in memory

∀Q̃ ∈ Pbasic(P̃ ),∀x ∈ Q̃,
{

ν(x) = ν(x) +Qfinal(x)
δ(x) = δ(x) + 1

Thus the final estimate is simply obtained by dividing both buffers element-by-element.
Once again, in order to speed up the algorithm, each patch used once in a 3D group is no
more processed as reference patch. It can be used anyway several times as secondary patch
in other 3D blocks.

3.5 NL-PCA: a particular case of NL-Bayes

From this Bayesian approach on which NL-Bayes is based, another algorithm can be formulated,
which we shall call NL-PCA. The idea is to compute a Principal Component Analysis (PCA) on the
3D group P(P̃ ). This idea was first proposed in [21] and is also studied in detail in [5]. NL-PCA is
obtained by replacing in BM3D the fixed linear transform (DCT, bi-orthogonal spline wavelet) by
a learnt basis for each patch, obtained by PCA on the patches of the 3D block. Indeed, applying
a PCA to the 3D group amounts to diagonalize its covariance matrix, and the eigenvectors give
the adaptive basis. In continuation, the collaborative filtering and the aggregation parts can be
applied exactly like in BM3D.The algorithm developed in [5] is very close to the first step of the
NL-PCA algorithm described hereafter. This article will be described and commented more in
detail in section 8.
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Diagonalizing the covariance matrix CP̃ , denoting the associated isometry by R1 and denoting
by S1(j) the squares of the associated eigenvalues, the restoration formula (7) becomes on the
eigenfunction basis: (

R1(Pbasic − P̃ )
)
j

=
S1(j)− σ2

S1(j)

(
R1(P̃ − P̃ )

)
j
.

The only (classic) variation with respect to this estimate is that CP̃ should be positive semi-
definite. Thus S1(j)− σ2 is replaced in the above formula by

(
S1(j)− σ2

)+ and, instead of −σ2,
a more conservative attenuation is applied, −β2σ2 where an empirical β slightly larger than 1
accounts for the error of model. A still more conservative estimate is applied for large noises
(typically if σ ≤ 40), where the estimate becomes

(
R1(Pbasic − P̃ )

)
j

=


(
R1(P̃ − P̃ )

)
j

if S1(j) ≥ β2σ2

0 otherwise.

In the same way, in the second step, diagonalizing Cbasic
P̃

and denoting the associated isometry by
R2 and the squares of the associated eigenvalues by S2(j), the restoration formula (8) becomes,
without any alteration to the model,(

R2(Pfinal − P̃
basic

)
)
j

=
S2(j)

S2(j) + σ2

(
R2(P̃ − P̃

basic
)
j

which retrieves exactly a classical Wiener filter based on the PCA of Pbasic(P̃ ).

4 Influence of the parameters on the performance of NL-
Bayes

The results shown hereunder are the result of the previously described algorithm applied to noise-
less images to which a simulated white noise has been added. Many images have been tested, but
for a sake of simplicity only one result for each σ will be shown. To evaluate quantitatively the
denoising results, two classics measurements will be used :

• The Root Mean Square Error (RMSE) between the reference image (noiseless) uR and the
denoised image uD. The RMSE is computed by

RMSE =

√√√√√
∑
x∈X

(uR(x)− uD(x))2

|X|
;

and the smaller the RMSE, the better the denoising.

• the Peak Signal to Noise Ratio (PSNR) evaluated in decibels (dB) by

PSNR = 20 log10

(
255

RMSE

)
;

and the larger the PSNR, the better the denoising.

The question is: how to select the right values for the various parameters in the algorithm as
described previously, and to evaluate their influence on the final result? The parameters of the
method are::
• k1, k2: size of patches;
• N1, N2: maximum number of similar patches kept;
• n1, n2: search window size;
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• γ: used to determine if a patch belongs to an homogeneous area;
• β1, β2: coefficient used during the collaborative filtering;
• τ0: minimum threshold to determine similar patches during the second step.

It would be impossible to try all combinations of all parameters. Thus, the principle of the study
is to assign to all parameters an optimal or robust value, while only one is varied. The parameters
will therefore fixed in the following way:

• k1 and k2 as in 4.1;
• N1 and N2 as in 4.6;
• the homogeneous area trick is always used on the first step;
• n1 = 5 ∗ k1;
• n2 = 5 ∗ k2;
• γ = 1.05;
• β1 = 1.0;

• β2 =
{

1.2 if σ < 50
1.0 otherwise. ;

• τ0 = 4.

4.1 Influence of the size of the patches k1 and k2

The size of the patches influences the result, but unlike BM3D, NL-Bayes gives its best results for
significantly smaller patch sizes. This fact may be the most surprising result of this comparison.

σ = 2
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 46.03 1.27 45.96 1.28 45.88 1.30
5 46.03 1.27 45.92 1.29 45.83 1.30
7 46.00 1.28 45.89 1.29 45.78 1.31

σ = 5
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 39.89 2.58 39.83 2.60 39.75 2.62
5 39.89 2.58 39.77 2.62 39.68 2.65
7 39.87 2.59 39.73 2.63 39.61 2.67

σ = 10
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 35.38 4.34 35.34 4.36 35.27 4.40
5 35.39 4.34 35.29 4.39 35.20 4.43
7 35.36 4.35 35.24 4.41 35.11 4.48

σ = 20
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 31.16 7.06 31.20 7.02 31.15 7.06
5 31.20 7.02 31.14 7.07 31.08 7.12
7 31.16 7.06 31.10 7.10 30.99 7.20

σ = 30
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 28.81 9.25 28.92 9.13 28.90 9.15
5 28.90 9.15 28.89 9.16 28.85 9.21
7 28.85 9.21 28.85 9.21 28.76 9.30

σ = 40
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 27.18 11.16 27.33 10.97 27.34 10.95
5 27.33 10.97 27.36 10.93 27.34 10.95
7 27.31 10.99 27.35 10.94 27.28 11.03

σ = 60
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 24.90 14.51 25.30 13.85 25.38 13.73
5 25.27 13.90 25.46 13.60 25.47 13.58
7 25.26 13.92 25.45 13.62 25.44 13.63

σ = 80
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 23.15 17.74 23.74 16.58 23.94 16.20
5 23.78 16.50 24.02 16.05 24.08 15.94
7 23.83 16.41 24.09 15.92 24.10 15.91
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σ = 100
k2 3 5 7
k1 PSNR RMSE PSNR RMSE PSNR RMSE

3 21.79 20.75 22.62 18.86 22.88 18.30
5 22.65 18.79 22.98 18.09 23.06 17.93
7 22.75 18.58 23.06 17.93 23.11 17.83

In bold the best result for a given σ.

Unsurprisingly, from the examination of the above set of tables follows that the size of patches
must increase with the noise value. According to these results, the following optimal values will
be chosen for the size of patches:

σ 0 ≤ σ < 20 20 ≤ σ < 50 50 ≤ σ < 70 70 ≤ σ
k1 3 5 7 7
k2 3 3 5 7

4.2 Influence of γ

The parameter γ is used to determine if a set of similar patches belongs to a homogeneous area
as defined in (9). This parameter needs to be determined carefully, because if its value is too big,
small details in the image may be lost. If instead its value is too small, homogeneous area will
not be denoised enough and artifacts can become conspicuous in these regions. Thus, although
the PSNR gain is moderate, the visual impact of this step is important. The comparison table
follows.

γ = 0.95 γ = 1.0 γ = 1.05 γ = 1.1
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.00 1.28 45.99 1.28 46.00 1.28 46.00 1.28
5 39.88 2.58 39.89 2.58 39.89 2.58 39.89 2.58
10 35.38 4.34 35.38 4.34 35.38 4.34 35.37 4.35
20 31.20 7.02 31.23 7.00 31.24 6.99 31.23 7.00
30 28.83 9.22 28.90 9.15 28.91 9.14 28.92 9.13
40 27.25 11.07 27.35 10.94 27.38 10.90 27.37 10.91
60 25.33 13.80 25.44 13.68 25.45 13.61 25.40 13.69
80 24.12 15.86 24.20 15.72 24.16 15.79 24.04 16.01
100 23.15 17.75 23.23 17.58 23.19 17.65 22.99 18.08

In bold best result for a given σ.

One can deduce from the above table that small variations on γ lead to significant variations
for high noise. According to this study, γ can be fixed to 1.05, whatever the value of noise.

4.3 Influence of β1

This parameter is used in (11) and influences the filtering during the first step. The theoretical
value is β1 = 1.0, but a study of its influence needs to be done to learn its best empirical value.

β1 = 0.8 β1 = 0.9 β1 = 1.0 β1 = 1.1 β1 = 1.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.92 1.29 45.98 1.28 46.01 1.28 46.02 1.27 46.03 1.27
5 39.71 2.64 39.80 2.61 39.85 2.59 39.88 2.59 39.86 2.59
10 35.22 4.42 35.34 4.36 35.39 4.33 35.40 4.33 35.37 4.35
20 30.96 7.22 31.12 7.08 31.20 7.02 31.18 7.03 31.09 7.11
30 28.64 9.43 28.85 9.21 28.92 9.13 28.89 9.16 28.75 9.31
40 27.07 11.30 27.27 11.05 27.34 10.95 27.30 11.01 27.13 11.22
60 25.07 14.23 25.38 13.72 25.46 13.59 25.36 13.75 25.08 14.21
80 23.80 16.45 24.13 15.94 24.19 15.73 24.08 15.93 23.78 16.50
100 22.85 18.37 23.09 17.86 23.12 17.80 23.00 18.06 22.70 18.67
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In bold best result for a given σ.

The theoretical value is confirmed by this study. Thus β1 is fixed to 1.0, whatever the value of
the noise.

4.4 Influence of β2

This parameter is used in (14) influences the filtering during the first step. The theoretical value
is β2 = 1.0, but a study of its influence needs to be done to learn its best empirical value.

β2 = 0.8 β2 = 0.9 β2 = 1.0 β2 = 1.1 β2 = 1.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.91 1.29 45.95 1.28 45.98 1.28 46.00 1.28 46.01 1.27
5 39.75 2.62 39.79 2.61 39.82 2.60 39.84 2.60 39.86 2.59
10 35.30 4.38 35.34 4.36 35.36 4.35 35.38 4.34 35.39 4.33
20 31.13 7.08 31.17 7.05 31.19 7.03 31.19 7.03 31.20 7.02
30 28.85 9.20 28.87 9.18 28.89 9.16 28.90 9.15 28.89 9.16
40 27.27 11.04 27.28 11.02 27.31 10.99 27.30 11.00 27.30 11.00
60 25.48 13.57 25.49 13.56 25.47 13.58 25.46 13.59 25.45 13.61
80 24.16 15.79 24.17 15.77 24.16 15.79 24.15 15.82 24.12 15.86
100 23.12 17.80 23.12 17.81 23.10 17.84 23.09 17.87 23.07 17.91

In bold best result for a given σ.

Here again the theoretical value seems to work well, but a slight gain can be obtained if β2 is
tabulated according to σ. The chosen value for β2 will be 1.2 if σ < 50, 1.0 otherwise.

4.5 Influence of the size of the search window n1 and n2

The size of the search window influences the grouping part of the algorithm. Since the total
number of patches Q̃ contained in the neighbourhood which needs to be sorted is proportional
to the size of the search window, the computational time of the algorithm increases with n1 and
n2. We would therefore like to minimize these numbers. Nevertheless, if the size of the search
window is too small, the “similar” patches will not be that similar to the reference patch P̃ . Thus
it is necessary to find a good compromise between a good PSNR and a relatively small size for
the search window. Moreover, the size of the search window is intuitively dependant on the size
of patches k1 and k2. This is why n1 and n2 will be determined as a factor of k1 and k2, i.e.
n1 = αk1 and n2 = αk2. For this comparison, the others parameters are fixed as usual.

α = 3 α = 4 α = 5 α = 6 α = 7
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.95 1.28 46.00 1.28 46.01 1.28 46.02 1.27 46.01 1.28
5 39.74 2.63 39.82 2.60 39.84 2.59 39.86 2.59 39.86 2.59
10 35.19 4.43 35.33 4.37 35.36 4.35 35.40 4.33 35.41 5.32
20 30.98 7.20 31.17 7.05 31.23 6.99 31.30 6.94 31.32 6.93
30 28.63 9.44 28.85 9.20 28.92 9.13 28.99 9.06 29.02 9.02
40 27.05 11.33 27.30 11.00 27.38 10.90 27.46 10.80 27.50 10.75
60 25.13 14.12 25.34 13.79 25.42 13.66 25.52 13.51 25.55 13.46
80 23.85 16.37 24.09 15.93 24.18 15.77 24.25 15.63 24.28 15.57
100 22.85 18.35 23.04 17.97 23.13 17.79 23.19 17.67 23.23 17.57

In bold best result for a given σ.

It follows from the comparison table that increasing the size of the search window improves the
result by finding more similar patches. Accordingly the parameters are fixed to:
• n1 = 7k1;
• n2 = 7k2.
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4.6 Influence of the minimal number of closest neighbours, N1 and N2

As we have to invert a matrix in (11) and (14), a minimal number of similar patches is needed.
Otherwise this matrix will not been invertible. Thus, N1 andN2 have to be determined empirically.
Moreover, they depend on the noisy image. For this reason, only the final chosen values are given
here

N1 =

 30 if k1 = 3
60 if k1 = 5
90 if k1 = 7

; N2 =

 30 if k2 = 3
60 if k2 = 5
90 if k2 = 7

.

4.7 Influence of τ0

This parameter is used only in the second step, to fix the minimum threshold between two similar
patches. Indeed in the second step we got an estimate ubasic and the distances between patches
are better estimated on ubasic than on ũ. Thus, in homogeneous areas we can allow for many more
similar patches than n2. The parameter τ0 is voluntarily kept small, because otherwise patches
which differ significantly from the reference patch would be considered similar.

τ0 = 0 τ0 = 2 τ0 = 4 τ0 = 8 τ0 = 16
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.99 1.28 46.01 1.27 46.00 1.28 45.94 1.29 45.81 1.30
5 39.88 2.58 39.93 2.57 39.91 2.58 39.85 2.59 39.68 2.64
10 35.36 4.35 35.44 4.31 35.45 4.30 35.39 4.34 35.21 4.42
20 31.17 7.05 31.28 6.96 31.29 6.95 31.25 6.99 31.08 7.12
30 28.82 9.23 29.01 9.03 29.02 9.02 29.03 9.02 28.89 9.16
40 27.18 11.16 27.40 10.87 27.44 10.82 27.46 10.80 27.34 10.95
60 25.43 13.64 25.55 13.46 25.58 13.42 25.54 13.47 25.44 13.64
80 24.08 15.94 24.18 15.75 24.21 15.71 24.17 15.78 24.00 16.10
100 23.16 17.72 23.28 17.48 23.33 17.37 23.31 17.42 23.08 17.88

In bold best result for a given σ.

Using the minimum threshold with a small value (τ0 = 2 or 4) is always better than (τ0 = 0).
Moreover, as expected, a too large value (τ0 = 16) gives really worse results. According to this
comparison, we shall set τ0 = 4.

4.8 Summary table of the best parameters

Here is the summary table with the final chosen values for all parameters, depending on the value
of the noise:

σ 0 ≤ σ < 20 20 ≤ σ < 50 50 ≤ σ < 70 70 ≤ σ
k1 3 5 7 7
k2 3 3 5 7
γ 1.05
β1 1.0
β2 1.2 1.0
n1 21 35 49 49
n2 21 21 35 49
N1 30 60 90 90
N2 30 30 60 90
τ0 4

5 A detailed study of possible variants

This part discusses several sound variants for each step of the algorithm. It gives experimental
evidence that the choices taken in the algorithm are the best in terms of PSNR.
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5.1 Grouping

5.1.1 Color space transform

The Y0U0V0 space will be compared to RBB, for both steps. When RGB is chosen in the
algorithm,
• the distance is computed on all channels like in (12);
• the collaborative filtering is done on each channel separately;
• N1 is increased to avoid having a non-invertible matrix.

Step 1 / Step 2 RGB / RGB Y0U0V0 / RGB RGB / Y0U0V0 Y0U0V0 / Y0U0V0

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.10 1.26 46.04 1.27 45.83 1.30 45.80 1.31
5 39.89 2.58 39.86 2.59 39.66 2.65 39.64 2.66
10 35.39 4.33 35.42 4.32 35.22 4.42 35.25 4.41
20 31.10 7.10 31.30 6.94 31.00 7.19 31.18 7.03
30 28.73 9.33 28.93 9.11 28.65 9.41 28.85 9.20
40 27.23 11.08 27.47 10.78 27.18 11.15 27.43 10.84
60 23.87 16.34 25.54 13.48 23.82 16.43 25.52 13.50
80 22.96 18.13 24.24 15.66 22.92 18.23 24.24 15.65
100 22.14 19.93 23.24 17.56 22.10 20.02 23.25 17.54

In bold the best PSNR for a given σ. In italic results with a lot of non-inversible matrix in the first step.

Despite the fact that N1 has been increased in the case where RGB is chosen for the first step, in
practice the matrix CP̃ is often not invertible. This explains why the result is that bad for high
values of the noise when RGB is chosen for the first step.

5.2 Collaborative Filtering

5.2.1 The homogeneous area criterion

One of the innovations in NL-Bayes is the detection of the homogeneous areas in the first step. In
order to show its relevance, here are some results with and without this criterion, in both steps:

Step 1 / Step 2 No / No Yes / No No / Yes Yes / Yes
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.04 1.27 46.04 1.27 46.04 1.27 46.04 1.27
5 39.89 2.58 39.90 2.57 39.88 2.58 39.89 2.58
10 35.36 4.35 35.39 4.33 35.37 4.34 35.35 4.35
20 31.05 7.14 31.27 6.96 31.29 6.95 31.26 6.98
30 28.68 9.38 29.01 9.04 29.01 9.04 28.97 9.08
40 27.05 11.32 27.48 10.78 27.47 10.79 27.42 10.85
60 25.39 13.70 25.58 13.41 25.55 13.45 25.45 13.62
80 24.14 15.83 24.26 15.62 24.16 15.80 23.98 16.12
100 23.09 17.86 23.27 17.49 23.15 17.73 22.93 18.20

In bold the best PSNR for a given σ.

One can see that the homogeneity detection is useful for medium and high values of noise. On an
image with many homogeneous areas, the application of this detection avoids artifacts, as one can
see on the following image for a medium value of noise: 20.
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Original image Noisy image σ = 30

No / No | PSNR = 33.93 / RMSE = 5.13 Yes / No | PSNR = 38.82 / RMSE = 2.92

No / Yes | PSNR = 38.69 / RMSE = 2.96 Yes / Yes | PSNR = 38.36 / RMSE = 3.08

5.2.2 Diagonalizing the covariance matrix

As presented in section 3.5, CP̃ and Cbasic
P̃

can be diagonalized with the use of a PCA on the 3D
block P(P̃ ) and Pbasic(P̃ ), which leads to an algorithm which we called NL-PCA. The principal
difference between NL-PCA and NL-Bayes is in the collaborative filtering part, as detailed in 3.5.
All the rest is exactly the same. Here is presented the difference between NL-PCA and NL-Bayes
on three (noiseless) images, to which noise was added. The images are displayed below.
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Dice Flowers

Traffic

Dice Flowers Traffic
NL-PCA NL-Bayes NL-PCA NL-Bayes NL-PCA NL-Bayes

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 48.85 0.92 49.08 0.90 47.59 1.06 47.77 1.04 45.00 1.43 45.25 1.39
5 45.84 1.30 45.92 1.29 43.35 1.73 43.41 1.72 39.42 2.73 39.59 2.67
10 43.17 1.77 43.31 1.74 39.66 2.65 39.83 2.60 35.40 4.33 35.49 4.29
20 40.68 2.36 40.56 2.39 36.33 3.89 36.42 3.85 31.28 6.96 31.48 6.80
30 38.83 2.92 38.81 2.92 34.16 5.00 34.20 4.97 29.20 8.84 29.34 8.70
40 37.35 3.46 37.35 3.46 32.52 6.03 32.59 5.98 27.80 10.39 27.87 10.30
60 35.60 4.23 35.62 4.22 30.72 7.42 30.84 7.32 25.77 13.12 26.01 12.77
80 34.53 4.79 34.60 4.75 29.28 8.76 29.47 8.57 24.62 14.98 24.75 14.76
100 33.46 5.41 33.48 5.40 28.15 9.98 28.26 9.85 23.76 16.54 23.85 16.37

The table shows that NL-Bayes is slightly better than NL-PCA. Nevertheless, the results of NL-
PCA could be improved by adapting the parameters, and adding a weight to the aggregation part,
like BM3D does. Indeed the value of N1 and N2 is not adapted to NL-PCA: this parameter has
large values to avoid non-invertible matrices, but the PCA can be hedged if patches in P(P̃ ) are
not that similar. Moreover, β1 and β2 need to be adapted too. NL-Bayes is faster than NL-PCA
by an average factor of 50%, due to the fact that there is only one matrix inversion, and not a
PCA.

5.2.3 Ideal Wiener and upper bounds for the performance

There is a significantly PSNR improvement by using the second step, because the covariance
matrix is better estimated. To judge the contribution of this second step better, it is possible to
compare it with an ideal Wiener filter, which is obtained when the original noise-free image is
taken as oracle reference, i.e. as the output of the first step. This ideal Wiener filter is the best

16



possible estimate for the second step of this algorithm. It is therefore interesting to see how far
we stand from this ideal estimate with the current one:

Algorithm Ideal Wiener
σ PSNR RMSE PSNR RMSE

2 45.98 1.28 47.40 1.09
5 39.89 2.58 41.50 2.15
10 35.45 4.30 37.28 3.49
20 31.26 6.97 33.42 5.44
30 28.96 9.09 31.42 6.85
40 27.46 10.81 30.13 7.95
60 25.58 13.41 27.97 10.19
80 24.29 15.57 26.66 11.85
100 23.25 17.55 25.80 13.08

Of course, the Wiener filter using the noise-free image as oracle is better than the filter using the
basic estimate obtained after the first step. One can see that there is a large room for improvement
for this first step, of 2 to 3 dBs. The images below compare the visual performance for different
values of the noise.
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Original image Noisy image (σ = 10)

NL-Bayes (σ = 10) Ideal Wiener (σ = 10)
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Original image Noisy image (σ = 30)

NL-Bayes (σ = 30) Ideal Wiener (σ = 30)
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Original image Noisy image (σ = 80)

NL-Bayes (σ = 80) Ideal Wiener (σ = 80)

5.3 The “paste” option

To speed up the algorithm, a paste trick has been used. Whenever a patch Q̃ ∈ P(P̃ ) has an
estimate, it is no more processed as a reference patch. One could fear that this trick produces
artifacts and has an impact on the PSNR. To check that, we will compare for both steps this paste
option, denoted by “paste” in the following, and another trick used in BM3D. This other trick,
denoted by “step” divides approximately the number of processed reference patches by nine, by
taking a 3 pixels scanning step row and column.
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Step 1 / Step 2 Step / Step Paste / Step Step / Paste Paste / Paste
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.99 1.28 46.00 1.28 46.03 1.27 46.03 1.27
5 39.81 2.61 39.84 2.59 39.87 2.59 39.87 2.59
10 35.33 4.36 35.40 4.33 35.41 4.32 35.43 4.31
20 31.25 6.98 31.27 6.96 31.30 6.94 31.31 6.93
30 28.97 9.08 28.98 9.06 29.01 9.03 29.02 9.02
40 27.35 10.94 27.39 10.89 27.40 10.87 27.43 10.84
60 25.47 13.58 25.52 13.51 25.51 13.53 25.53 13.48
80 24.16 15.79 24.22 15.68 24.20 15.73 24.24 15.66
100 23.24 17.55 23.28 17.47 23.26 17.52 23.27 17.50

In bold the best PSNR for a given σ.

There no significant loss in PSNR by using both acceleration tricks. The fact that the use of the
“paste” option improves things could be explained by the fact that in a area with many details,
patches are very different in a very small area. Then almost every patch will be treated as a
reference patch, while with the “step” trick only 1 patch out of 9 will be treated, and then very
small details will be processed worse. The use of this “paste” trick speeds up a bit more the
algorithm than the “step” trick, by almost 30%, depending on the percentage of homogeneous
areas in the noisy image.

5.4 Influence of the second step

Using a second step to obtain a better covariance matrix improves a lot the final result, as we can
see in the following table:

First step Second step
σ PSNR RMSE PSNR RMSE

2 45.65 1.33 46.03 1.27
5 39.41 2.73 39.88 2.58
10 34.84 4.62 35.45 4.30
20 30.47 7.64 31.24 6.99
30 28.15 9.97 28.99 9.06
40 26.58 11.95 27.46 10.80
60 24.15 15.80 25.50 13.53
80 22.87 18.32 24.25 15.64
100 21.92 20.43 23.27 17.51

6 Comparison with several classic and recent methods

In order to evaluate the real capacity of NL-Bayes, a fair and precise comparison with other state-
of-the-art methods had to be done. The other considered methods were. For all of them, reliable
software can be found. The four first methods have public and commented implementations at
Image Processing On Line [?], [12], [13], [1]. Thus, the experiments below can be verified on line
for five of the compared algorithms.
• BM3D;
• DCT denoising;
• NL-means;
• K-SVD;
• BM3D-SAPCA (only for grey level images);
• BLS-GSM.

The following study has been led on the following noise-free color images (σreal << 1). All
algorithms have been processed on the same noisy images obtained from noiseless images (saved
in real values and not sampled on [0, 255])):
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Alley Computer

Dice Flowers

Girl Traffic

Trees Valldemossa
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6.1 Comparative table

6.1.1 Color Images

σ = 2
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 45.39 44.95 44.54 41.22 42.79 -
Computer 45.88 45.21 44.55 44.80 44.07 44.69

Dice 49.07 48.85 48.48 48.03 48.52 48.59
Flowers 47.77 47.30 47.14 47.32 46.41 47.12

Girl 47.64 47.38 46.94 47.24 46.95 47.14
Traffic 45.26 44.58 44.22 43.52 43.58 44.15
Trees 43.51 43.08 42.89 37.46 42.23 -

Valldemossa 45.14 44.71 44.42 38.96 43.34 44.41
Mean 46.21 45.76 45.40 43.57 44.74 -

σ = 5
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 39.35 38.96 38.29 38.42 37.28 -
Computer 40.73 39.98 38.98 39.58 38.99 39.30

Dice 45.95 45.81 45.06 45.29 45.11 45.21
Flowers 43.39 43.00 42.58 43.11 42.10 42.76

Girl 44.23 44.05 43.36 43.57 43.48 43.70
Traffic 39.59 38.67 38.09 38.78 37.61 38.10
Trees 36.67 36.09 35.66 35.57 34.69 -

Valldemossa 38.77 38.35 37.89 37.91 35.97 38.02
Mean 41.08 40.61 39.99 40.28 39.40 -

σ = 10
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 35.12 34.83 33.92 34.31 33.59 -
Computer 36.98 36.26 35.00 35.76 35.54 35.47

Dice 43.32 43.05 41.84 41.72 41.97 42.21
Flowers 39.82 39.48 38.61 39.35 38.46 39.10

Girl 41.72 41.45 40.35 40.31 40.48 41.14
Traffic 35.47 34.56 33.76 34.72 33.98 33.92
Trees 31.89 31.25 30.68 31.05 29.56 -

Valldemossa 34.14 33.79 33.17 33.31 32.13 33.41
Mean 37.31 36.83 35.92 36.32 35.71 -

σ = 20
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 31.37 31.21 30.13 30.55 29.94 -
Computer 33.27 32.69 31.08 31.94 31.61 31.89

Dice 40.55 39.94 37.94 37.30 38.20 39.00
Flowers 36.33 35.86 34.41 35.28 34.38 35.34

Girl 39.10 38.72 36.74 36.42 36.92 38.49
Traffic 31.49 30.83 29.79 30.70 30.11 30.14
Trees 27.51 26.91 26.15 26.87 26.35 -

Valldemossa 29.86 29.59 28.69 29.08 28.44 29.17
Mean 33.68 33.22 31.87 32.27 31.99 -
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σ = 30
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 29.37 29.34 28.20 28.60 27.82 -
Computer 31.12 30.70 28.75 29.88 29.24 29.90

Dice 38.80 37.95 34.69 36.44 36.85 37.05
Flowers 34.22 33.77 31.98 33.58 32.26 33.19

Girl 37.32 36.98 33.73 35.40 35.55 36.91
Traffic 29.35 28.85 27.64 28.59 27.71 28.20
Trees 25.22 24.67 23.81 24.53 23.78 -

Valldemossa 27.53 27.30 26.34 26.79 25.87 26.97
Mean 31.62 31.19 29.39 30.48 29.89 -

σ = 40
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 28.05 28.07 26.89 27.27 26.47 -
Computer 29.50 29.12 26.92 28.22 27.52 28.52

Dice 37.26 36.35 32.42 34.60 35.16 35.50
Flowers 32.63 32.11 30.23 31.92 30.51 31.68

Girl 36.05 35.70 31.26 33.81 34.13 35.61
Traffic 27.86 27.46 26.14 27.14 26.20 26.93
Trees 23.67 23.18 22.30 23.06 22.40 -

Valldemossa 26.02 25.80 24.88 25.32 24.44 25.50
Mean 30.13 29.72 27.63 28.92 28.35 -

σ = 60
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 26.37 26.40 25.49 25.66 24.66 -
Computer 27.52 27.04 25.57 26.28 25.26 26.68

Dice 35.71 34.09 32.08 32.94 33.26 33.61
Flowers 30.80 29.94 28.81 30.04 28.27 29.70

Girl 34.71 33.71 31.94 32.53 32.61 34.08
Traffic 25.98 25.75 24.74 25.36 24.27 25.26
Trees 21.78 21.19 20.68 21.27 20.45 -

Valldemossa 24.12 23.87 23.05 23.40 22.40 23.69
Mean 28.37 27.75 26.55 27.19 26.40 -

σ = 80
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 25.22 25.39 24.47 24.50 23.39 -
Computer 25.97 25.88 24.16 24.91 23.68 25.41

Dice 34.57 32.37 30.04 31.04 31.38 32.16
Flowers 29.41 28.53 27.27 28.47 26.58 28.29

Girl 33.64 32.20 29.83 30.83 31.10 32.93
Traffic 24.70 24.68 23.53 24.13 22.94 24.19
Trees 20.58 20.43 19.70 20.17 19.30 -

Valldemossa 22.83 22.87 21.96 22.20 21.09 22.54
Mean 27.11 26.54 25.12 25.78 24.93 -

24



σ = 100
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 24.42 24.37 23.63 23.59 22.52 -
Computer 24.87 24.40 23.08 23.85 22.55 24.48

Dice 33.42 30.42 28.53 29.52 29.91 31.06
Flowers 28.20 27.04 26.09 27.29 25.43 27.23

Girl 32.73 30.56 28.13 29.43 30.07 32.02
Traffic 23.84 23.53 22.69 23.20 21.96 23.41
Trees 19.82 19.48 19.03 19.38 18.56 -

Valldemossa 21.91 21.91 21.18 21.24 20.08 21.72
Mean 26.15 25.21 24.05 24.69 23.88 -

According to the results, one can observe that the comparative performance of the methods is
quite independent of the noise value. The summary table below shows a mean of the scores over
all test images.

Methods NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM

Mean 33.52 32.98 31.77 32.17 31.70 -

6.1.2 Grey level images

For grey level images, the size of patches needs to be increased for both steps in NL-Bayes. Then
k1 and k2 are set to 5 for small values of noise, instead of 3. The other parameters are identical
to the color case.

σ = 2
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM BM3D-SAPCA

Alley 43.49 43.27 42.90 43.08 42.58 43.01 43.49
Computer 45.02 44.65 44.24 44.45 44.01 44.06 44.98

Dice 49.43 49.73 49.28 48.79 48.47 49.31 49.91
Flowers 47.79 48.15 48.18 47.69 46.04 48.10 48.38

Girl 47.81 47.95 47.44 47.19 46.95 47.59 48.11
Traffic 44.28 44.00 43.78 43.81 43.53 43.48 44.28
Trees 42.72 42.51 42.43 42.44 42.27 42.42 42.65

Valldemossa 43.86 43.66 43.54 43.49 43.29 43.31 43.83
Mean 45.55 45.49 45.22 45.12 44.64 45.16 45.70

σ = 5
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM BM3D-SAPCA

Alley 37.10 36.83 36.15 36.57 36.32 36.47 37.12
Computer 39.23 38.73 37.89 38.24 38.01 38.05 39.25

Dice 45.37 45.69 45.00 42.75 43.39 45.03 46.13
Flowers 42.27 42.83 42.56 41.64 40.33 42.76 43.03

Girl 43.46 43.54 42.87 41.63 42.07 43.23 43.78
Traffic 37.87 37.48 37.03 37.18 36.73 37.00 37.89
Trees 35.36 35.06 34.77 34.99 34.46 35.00 35.29

Valldemossa 36.85 36.59 36.23 36.32 35.74 36.26 36.80
Mean 39.69 39.59 39.06 38.66 38.38 39.22 39.91

25



σ = 10
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM BM3D-SAPCA

Alley 32.93 32.72 31.90 32.35 32.23 32.28 33.00
Computer 35.11 34.60 33.31 33.80 33.73 33.87 35.19

Dice 42.45 42.45 41.47 37.58 38.99 41.65 43.07
Flowers 38.42 38.85 38.25 36.74 35.95 38.68 38.97

Girl 40.65 40.61 39.64 37.09 38.01 40.21 40.87
Traffic 33.30 32.95 32.16 32.50 32.40 32.42 33.36
Trees 30.22 29.84 29.21 29.76 29.54 29.77 30.14

Valldemossa 31.98 31.69 30.97 31.29 31.18 31.30 31.90
Mean 35.63 35.47 34.61 33.89 34.00 35.02 35.81

σ = 20
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM BM3D-SAPCA

Alley 29.42 29.34 28.47 28.47 28.71 28.84 29.57
Computer 31.09 30.86 29.21 29.40 30.03 30.10 31.36

Dice 39.58 39.02 37.60 31.97 36.88 38.17 39.58
Flowers 34.65 34.91 33.83 31.62 32.84 34.71 34.94

Girl 37.80 37.72 36.19 31.88 35.74 37.36 37.99
Traffic 29.27 29.07 28.17 28.30 28.51 28.53 29.36
Trees 25.78 25.34 24.50 25.30 25.23 25.22 25.55

Valldemossa 27.68 27.41 26.56 26.90 27.07 27.03 27.59
Mean 31.91 31.71 30.57 29.23 30.63 31.24 31.99

σ = 30
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM BM3D-SAPCA

Alley 27.60 27.63 26.78 26.97 26.73 27.15 27.86
Computer 28.88 28.74 27.04 27.79 27.68 28.00 29.10

Dice 37.84 37.03 35.22 32.70 34.23 36.25 37.27
Flowers 32.59 32.64 31.30 31.07 30.40 32.57 32.72

Girl 36.10 35.80 34.11 32.31 33.39 35.69 36.03
Traffic 27.20 27.13 26.27 26.69 26.38 26.56 27.33
Trees 23.55 23.21 22.45 23.15 23.08 23.08 23.27

Valldemossa 25.54 25.32 24.53 24.98 24.90 25.02 25.49
Mean 29.91 29.69 28.46 28.21 28.35 29.29 29.88

σ = 40
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM BM3D-SAPCA

Alley 26.36 26.55 25.69 25.65 25.51 26.02 26.65
Computer 27.38 27.27 25.60 26.20 26.10 26.64 27.70

Dice 36.26 35.41 33.26 30.42 33.70 34.74 35.46
Flowers 31.01 31.03 29.59 29.17 28.83 30.94 31.10

Girl 34.81 34.47 32.38 30.19 32.67 34.40 34.28
Traffic 25.82 25.86 25.06 25.31 24.89 25.34 26.03
Trees 22.20 21.99 21.30 21.89 21.66 21.84 21.99

Valldemossa 24.21 24.08 23.35 23.67 23.53 23.72 24.14
Mean 28.51 28.33 27.03 26.56 27.11 27.95 28.42
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σ = 60
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 24.91 25.07 24.32 24.35 23.73 24.63
Computer 25.46 25.39 23.88 24.59 23.88 24.88

Dice 34.47 33.16 31.97 29.73 31.88 32.67
Flowers 28.92 28.83 28.14 27.83 26.71 29.03

Girl 33.30 32.45 31.72 29.66 31.21 32.79
Traffic 24.19 24.31 23.46 23.82 23.11 23.83
Trees 20.64 20.57 19.95 20.42 19.96 20.43

Valldemossa 22.60 22.52 21.72 22.12 21.61 22.15
Mean 26.81 26.54 25.64 25.32 25.26 26.30

σ = 80
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 23.74 24.02 23.39 23.14 22.66
Computer 23.98 24.08 22.71 23.21 22.47 23.69

Dice 33.09 31.21 30.16 27.35 29.92 31.23
Flowers 27.40 27.31 26.62 26.30 25.26 27.63

Girl 32.18 30.99 30.27 27.70 30.02 31.64
Traffic 23.08 23.25 22.53 22.66 21.92 22.84
Trees 19.75 19.80 19.26 19.64 19.10 19.63

Valldemossa 21.47 21.49 20.84 21.01 20.45 21.17
Mean 25.59 25.27 24.47 23.88 23.98

σ = 100
NL-Bayes BM3D DCT denoising K-SVD NL-Means BLS-GSM

Alley 22.97 23.06 22.71 22.14 21.84
Computer 22.89 22.86 21.88 22.17 21.35 22.81

Dice 31.57 29.14 28.84 25.53 28.44 30.16
Flowers 26.31 26.09 25.59 25.02 24.17 26.56

Girl 31.07 29.24 28.95 26.16 28.73 30.71
Traffic 22.25 22.36 21.79 21.70 20.99 22.11
Trees 19.00 19.17 18.79 19.07 18.51 19.11

Valldemossa 20.61 20.66 20.18 20.17 19.51 20.46
Mean 24.58 24.07 23.59 22.75 22.94

According to the above results, one can observe again that the comparative performance of the
methods is quite independent of the noise value. Here is a summary table showing a mean of the
PSNR scores over all test images :

Methods NL-Bayes BM3D DCT denoising K-SVD NL-means BLS-GSM BM3D-SAPCA

Mean 32.02 31.79 30.96 30.40 30.59 ??? ???

One can conclude that NL-Bayes is not the best denoising algorithm for grey level images. Indeed,
for slight values of the noise, BM3D-SAPCA performs better in terms of PSNR, and also visually.
Having shape adaptive patches definitely improves the performance. Edges appear more “straight”
with BM3D-SAPCA than with NL-Bayes, as one can see on the next image. Nevertheless, for
medium and large values of the noise, due to its inherent artifacts, BM3D-SAPCA has slightly less
convincing results. Using the homogeneous area criterion in grey level images with three times
less samples than in color images) blurs the result of NL-Bayes. This criterion should therefore
be refined for grey level images.
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Original image Noisy image, σ = 30

NL-Bayes BM3D-SAPCA
The better visual results with BM3D-SAPCA seem to be due to the adaptive shapes and to the
larger patch size (8 × 8 against 5 × 5). Nonetheless, NL-Bayes is simpler than BM3D-SAPCA.
Indeed BM3D-SAPCA employs image patches (neighbourhoods) which can have data-adaptive
shape. The PCA bases are obtained by eigenvalue decomposition of empirical second-moment ma-
trices that are estimated from groups of similar adaptive-shape neighbourhoods. The anisotropic
shape-adaptive patches are obtained using the 8-directional LPA-ICI techniques. The principal
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steps of this algorithm are:
1. Obtain adaptive-shape neighbourhood centered at the current pixel using the 8-directional

LPA-ICI;
2. Find patches similar to the reference patch using block-matching, and extract an adaptive-

shape neighbourhood from each of these matched blocks using the shape obtained in Step
1;

3. Determine the transform to be applied on the adaptive-shape neighbourhoods (depending
on the number of similar blocks), which can be eigenvectors of a second-moment matrix, or
a shape-adaptive DCT;

4. Form a 3-D array by stacking together the adaptive-shape neighbourhoods with highest
similarity to the reference one;

5. Apply the transform obtained in Step 3 on each of the grouped adaptive-shape neighbour-
hoods. Subsequently, apply a 1-D orthogonal transform (e.g., Haar wavelet decomposition)
along the third dimension of the 3-D group;

6. Perform shrinkage (hard-thresholding or empirical Wiener filtering) on the 3-D spectrum;
7. Invert the 3-D transform of Step 5 to obtain estimates for all of the grouped adaptive-shape

neighbourhoods;
8. Return the obtained estimates to their original locations using weighted averaging in case of

overlapping.

In terms of complexity, NL-Bayes is faster than BM3D-SAPCA. Comparative experiments on a
normal PC show that NL-Bayes takes between 4 and 32 seconds (depending on the value of sigma)
and BM3D-SAPCA needs about 15 minutes for the same image.

6.2 Images

In addition to the PSNR/RMSE results, it is really interesting to compare visually all methods,
especially to remark (and regret) the inherent and characteristic artifacts of each one.

6.2.1 σ = 10

We shall start with a relatively low noise, in order to show each method to its best :

Original noise-free image Noisy image, σ = 10
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NL-Bayes BM3D

DCT denoising K-SVD

NL-means BLS-GSM
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6.2.2 σ = 20

Original noise-free image Noisy image, σ = 20

NL-Bayes BM3D
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DCT denoising K-SVD

NL-means BLS-GSM
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6.2.3 σ = 30

Original noise-free image Noisy image, σ = 30

NL-Bayes BM3D
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DCT denoising K-SVD

NL-means BLS-GSM
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6.2.4 σ = 40

Original noise-free image Noisy image, σ = 40

NL-Bayes BM3D
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DCT denoising K-SVD

NL-means BLS-GSM
The noise standard deviation limit beyond which artifacts appear with all methods is σ = 40.

This is the limit between moderate noise where we get visually acceptable results, and high noise
where no method gives visually acceptable results.

6.2.5 σ = 80

Above σ = 40, inherent and characteristic artifacts become obvious. These limitations are impor-
tant to explore. They opens up the question of denoising high noise.
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Original noise-free image Noisy image, σ = 80

NL-Bayes BM3D

DCT denoising K-SVD

37



NL-means BLS-GSM

7 Conclusion

This detailed study carried out on NL-Bayes had led us to the following conclusions:
• According that we work on very small size of patches, this method is really fast for small

and medium noise, even more thanks to the trick that used patches are no more processed
again as reference patches;

• The main elements which allow for real improvements of the results are:
– working in the Y0U0V0 space color for the first step;
– making a second step with the result of the first step as “oracle”;
– aggregating the estimates. This aggregation is improved significantly by working with

a 3D group and by keeping all estimates obtained of the similar 2D-patches like BM3D;

– using the homogeneous area criteria to remove almost all artifacts in homogeneous area.

• Nevertheless, there is still room for improvement, by, perhaps:
– using a multi-scale approach to remove low frequency noise;
– using a more complex model than the Gaussian patch model.

8 Bibliography analysis

8.1 Comments about “Image denoising with patch based PCA: local
versus global” [5]

The use of the PCA (Principal Component Analysis) has been treated in details in [5]. This
article proposes to use a PCA to learn an orthonormal basis adapted locally or globally to the
image. The interesting part in this article is the confrontation of global versus local PCA. Indeed,
a first simple approach is to learn the PCA over the whole image, and then to denoise patches
by applying a Hard Thresholding on the coefficient of the patch on the new learned orthonormal
basis. This works quite well, but for patches which present a rare structure, the denoising is
not optimal, because this structure is under-represented in the whole image. Thus, to adapt the
method to every kind of structure, even the rarest, the solution is to learn the PCA more locally,
on small windows around the current patch. Nevertheless, working on a small windows, there is a
risk of not finding enough patches to learn an unbiased PCA.

Another interesting point of this article is that it shows the first eigenvectors and the last ones of
each PCA. One can easily see that the first eigenvectors describe the orientation of the gradient of
the patches, whereas the last ones present only noise. This illustrates experimentally how canceling
the coefficients of the last eigenvectors (those with the lowest corresponding eigenvalues) allows
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to remove the noise in the image without affecting structure or details. Despite this interesting
study, one can finger-point some defaults of this article. In fact, its PSNR results are worse than
BM3D and the algorithm is slower. These defaults are partly due to the fact that this paper does
not use all tricks that improve the denoising performance: only gray-level images are treated, no
second oracular step is applied. The size of the patches can probably be reduced. Nevertheless, the
algorithm applies a uniform aggregation. A puzzling result of their study is that applying an hard
thresholding gives better results than a Wiener filtering. But a second step would demonstrate
that with the right oracle given by the first step, the Wiener filter is in fact better, being optimal
in theory. Regrettably only small noise values σ ∈ [5, 20] have been tested.

8.2 Analysis and comments about TSID

This part considers the original method described in [21]. As this algorithm is really close to
NL-PCA, it will be compared to it stepwise, and for this purpose the same notation is adopted.

8.2.1 Implementation

The algorithm is divided in two separate steps. Contrarily to NL-PCA, these steps are identical,
except for the used value of σ which is upgraded after the first step. Thus, only one step will
be described. This algorithm was originally developed for gray level images. In the following we
therefore examine the application to gray level images. The image is scanned pixel per pixel. Let
us denote by P̃ the current reference patch which size is k1× k1 (with k1 = 5) and xr the current
central pixel of P̃ . The loop on the image is done on xr. Like for NL-PCA and BM3D, each step
is divided into 3 parts:

1. Grouping: Similar patches Q̃ are found by block-matching with the same distance as the
one used for NL-Bayes. A patch is considered similar if its distance to P̃ is below a fixed
threshold, depending on σ. Moreover, to stabilize the process of the PCA on the obtained
3D-block, a minimum number (denoted by NP ) of similar patches is requested. In this case
the NP best patches obtained during block-matching are used.

2. Collaborative Filtering: When the set of similar patches has been obtained, a matrix is
built, containing all similar patches seen as vectors. Then, as for NL-PCA, the columns of
the matrix are first centered around their common center of mass. After that, a singular
value decomposition (SVD) of the centered matrix is obtained. Then, a LMMSE (Wiener
filter) is applied to the new coefficients, and the patch is finally reconstructed with these
new coefficients on the PCA.

3. Getting the estimate: The principal difference with NL-PCA, is that only the estimate of
the central pixel of the reference patch xr is kept, which clearly decreases the PSNR, no
aggregation step being possible.

8.2.2 Extending to color images

In BM3D the extension to color images is done by using a color space different from the RGB one
(typically Y0U0V0); the grouping part is done only on the Y0 channel and the rest of the algorithm
is performed independently on the three channels. For TSID instead this extension is done in the
simplest way; the whole algorithm is applied independently on the three channels R, G and B.
This is another point that could have been very easily improved, but was not envisaged by the
authors.

8.2.3 Comparisons between TSID and NL-PCA

Here are some comparative results in terms of PSNR for TSID and NL-PCA with color images
and grey level images.
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NL-PCA TSID
σ PSNR RMSE PSNR RMSE

2 45.29 1.39 44.06 1.60
5 40.84 2.31 39.09 2.83
10 37.30 3.48 35.72 4.17
20 33.35 5.48 32.07 6.35
30 30.74 7.40 29.70 8.35
40 28.86 9.19 27.92 10.24
60 27.57 10.66 25.55 13.46
80 25.97 12.83 23.93 16.21
100 24.72 14.81 22.87 18.32

NL-PCA TSID
σ PSNR RMSE PSNR RMSE

2 46.03 1.27 43.76 1.65
5 39.84 2.60 36.97 3.61
10 35.28 4.39 32.18 6.27
20 30.92 7.25 28.03 10.11
30 28.61 9.46 25.94 12.87
40 27.08 11.29 24.59 15.03
60 24.94 14.43 22.74 18.59
80 23.63 16.78 21.45 21.57
100 22.60 18.90 20.48 24.14

Grey level images Color images

9 Glossary

Subscripts of variables in bold are semantic subscripts.

9.1 Parameters

Marc: je le ferais lorsqu’on sera sûr que les notations de la partie théorique et
implémentation seront figés.

9.2 Notations

Marc: je le ferais lorsqu’on sera sûr que les notations de la partie théorique et
implémentation seront figés.
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