TD Exercices supplémentaires Hilbert - Approximation polynômiale

Notation : On note \mathbf{P}_n l'ensemble des polynômes à coefficients réels de degré $\leq n$ et $\mathbf{P} = \bigcup_n \mathbf{P}_n$.

Exercice 1 Polynôme de meilleure approximation

Soit E un espave vectoriel normé réel qui contient P_n .

1) Montrer que $\forall f \in E$, il existe au moins un polynôme $p_n \in \mathbf{P}_n$ tel que $\|f-p_n\| = \inf_{q \in \mathbf{P}_n} \|f-q\|$. Donner des exemples d'espaces E dans lesquels on est sûr que $p_n \to f$.

Définition: p_n est appelé polynôme de meilleure approximation (p.m.a.) de f. 2) Soit $E = L^1(-1,1)$ et soit f(x) = sign(x), vérifier que $p_0(x) = \alpha \in [-1,1]$ réalise la meilleure approximation de f dans \mathbf{P}_0 , donc il n'y a pas toujours unicité de p_n .

Exercice 2 Cas hilbertien - Polynômes orthogonaux

Soit (a,b) un intervalle quelconque de \mathbb{R} . Soit $\omega:]a,b[\to \mathbb{R}$ une fonction "poids" c'est-à-dire continue, strictement positive, et telle que $\forall n \in \mathbb{N}, \ x \mapsto x^n \omega(x) \in L^1(a,b)$.

On pose $L^2_{\omega} = \{f : f\sqrt{\omega} \in L^2(a,b)\}$ que l'on munit de $(f,g) = \int_a^b fg\omega dx$.

- 1) Vérifier que $\mathbf{P} \subset L^2_{\omega}$ et que L^2_{ω} est un espace de Hilbert.
- 2) Montrer qu'il existe une unique suite de polynômes $(P_n)_n$ telle que $P_0 \equiv 1$, $\forall n \geq 1$, $dP_n = n$, P_n est unitaire et $\forall q \in \mathbf{P}_{n-1}$, $(P_n, q) = 0$.
- 3) Vérifier que $\forall f \in L^2_{\omega}$, $\exists ! \ q_n \in \mathbf{P}_n$ tel que $||f q_n|| = d(f, \mathbf{P}_n)$. Donner son expression en fonction de f et des P_n .

Remarque : q_n est le polynôme de meilleure approximation de f dans L^2_{ω} .

4) On suppose que l'intervalle (a,b) est borné. Montrer que $\mathbf P$ est dense dans L^2_ω (attention, le poids n'est pas forcément défini au bord de l'intervalle). En déduire que la suite de polynômes orthogonaux $(P_n)_n$ constitue une famille totale de L^2_ω . Soit $f \in L^2_\omega$ et soit $(q_n)_n$ sa suite de p.m.a. dans L^2_ω , vérifier que $q_n \to f$ dans L^2_ω .

Remarque : Tous les polynômes orthogonaux "connus" forment des familles totales des espaces L^2_ω correspondant.

5) Un exemple où cela ne "marche" pas. Soit $\omega(x)=x^{-\log x}$, vérifier que ω est un poids sur $(0,+\infty)$. Soit $f(x)=\sin(2\pi\log x)$. Montrer que $f\in L^2_\omega(0,+\infty)$ et que $\forall n\in \mathbf{N},$ $(x^n,f)=0$. En déduire que la suite de polynômes orthogonaux $(P_n)_n$ associée à ω n'est pas totale dans ce $L^2_\omega(0,+\infty)$.

Corrigé:

Exercice 1

1) Soit $f \in E$ et soit $(P_k)_k \subset \mathbf{P}_n$ une suite minimisante i.e. $\lim_k \|f - P_k\| = d(f, \mathbf{P}_n)$. Alors $(P_k)_k$ est bornée car $\|P_k\| \le \|f - P_k\| + \|f\|$. Or $(\mathbf{P}_n, \|\|)$ est un e.v.n. de dimension finie donc il existe une sous-suite $(P_{kl})_{kl}$ convergente dans \mathbf{P}_n vers un polynôme P_n . Alors $\lim_l \|f - P_{kl}\| = \|f - P_n\| = d(f, \mathbf{P}_n)$.

Si les polynômes sont denses dans E alors $\lim_n \|f - P_n\| = 0$. C'est le cas de $E = \mathcal{C}[a,b]$ (Weierstrass), $E = L^p(a,b)$ pour $1 \le p < \infty$ et $|b-a| < \infty$.

2) Soit
$$f(x) = sign(x)$$
 alors $\forall \alpha \in \mathbb{R}, ||f - \alpha||_1 = |1 + \alpha| + |1 - \alpha|$.

Si
$$|\alpha| \le 1$$
 alors $||f - \alpha||_1 = 2$ et si $|\alpha| > 1$, $||f - \alpha||_1 > 2$.

Exercice 2

1) Par définition de ω , $\mathbf{P} \subset L^2_{\omega}$. Ensuite, on a bien un produit scalaire. Vérifions la complétude : Soit $(f_n)_n$ une suite de Cauchy dans L^2_{ω} alors $(f_n\sqrt{\omega})_n$ est de Cauchy dans L^2 complet donc $\exists g \in L^2$ telle que $f_n\sqrt{\omega} \longrightarrow g$ dans L^2 . Alors $\frac{g}{\sqrt{\omega}} \in L^2_{\omega}$ et

$$||f_n\sqrt{\omega} - g||_2 = ||f_n - \frac{g}{\sqrt{\omega}}||_{L^2_{\omega}} \longrightarrow 0.$$

2) Par le procédé d'orthogonalisation de Schmidt appliqué à la base canonique $1, x, ..., x^n$ de \mathbf{P}_n , on a :

$$P_0(x) = 1$$
 et $P_n(x) = x^n - \sum_{i=0}^{n-1} \frac{(x^n, P_i)}{\|P_i\|^2} P_i$

d'où l'existence. Enfin, par construction $(P_n, q) = 0$, $\forall q \in \mathbf{P}_{n-1}$. Ce qui assure l'unicité.

3) Par le théorème de projection : $\forall f \in L^2_\omega$, $\exists ! q_n \in \mathbf{P}_n$ tel que $||f - q_n|| = d(f, \mathbf{P}_n)$. De plus, q_n est caractérisé par $q_n \in \mathbf{P}_n$ et $(f - q_n, q) = 0$, $\forall q \in \mathbf{P}_n$.

Si $q_n = \sum_{i=0}^n \alpha_i P_i$, alors $\alpha_i \|P_i\|^2 = (q_n, P_i) = (f, P_i)$, d'où

$$q_n = \sum_{i=0}^{n} \frac{(f, P_i)}{\|P_i\|^2} P_i.$$

4) On suppose que l'intervalle (a,b) est borné. Soit $f\in L^2_\omega$ alors $f\sqrt{\omega}\in L^2(a,b)$ et $\forall \varepsilon>0, \exists g_\varepsilon\in \mathcal{C}_c(]a,b[)$ telle que

$$\|f\sqrt{\omega} - g_{\varepsilon}\|_{L^{2}} = \|f - \frac{g_{\varepsilon}}{\sqrt{\omega}}\|_{L^{2}_{\omega}} \le \varepsilon.$$

Or, $\frac{g_{\varepsilon}}{\sqrt{\omega}} \in \mathcal{C}_c(]a,b[) \subset \mathcal{C}([a,b])$. Comme $\overline{\mathbf{P}} = \mathcal{C}([a,b])$ (théorème de Weierstrass), $\exists P \in \mathbf{P}$ tel que $\|\frac{g_{\varepsilon}}{\sqrt{\omega}} - P\|_{\infty} \leq \varepsilon$. Alors,

$$\|P - \frac{g_{\varepsilon}}{\sqrt{\omega}}\|_{L^{2}_{\omega}}^{2} \le \|\frac{g_{\varepsilon}}{\sqrt{\omega}} - P\|_{\infty}^{2} \|\omega\|_{1}.$$

On en déduit que

$$||f - P||_{L^{2}_{\omega}} \leq ||f - \frac{g_{\varepsilon}}{\sqrt{\omega}}||_{L^{2}_{\omega}} + ||\frac{g_{\varepsilon}}{\sqrt{\omega}} - P||_{L^{2}_{\omega}},$$

$$\leq \varepsilon (1 + \sqrt{||\omega||_{1}}).$$

Donc **P** est dense dans $L^2_{\omega}(a,b)$. D'où la famille $(P_n)_n$ est totale dans $L^2_{\omega}(a,b)$ et $\|f-q_n\|_{L^2_{\omega}}\longrightarrow 0$.

Remarque : la famille $(\frac{P_n}{\|P_n\|_{L^2_\omega}})_n$ est une base hilbertienne de L^2_ω dans ce cas.

5) Il suffit de voir que $\forall n, \int_0^\infty x^n w(x) dx < \infty$. On pose $u = \log x$ alors

$$\int_0^\infty x^n w(x) dx = \int_{\mathbb{R}} e^{(n+1)u} e^{-u^2} du < \infty.$$

Avec le même changement de variable, on montre que $f \in L^2_w(0,+\infty)$, et $\forall n \geq 0$,

$$\int_0^\infty x^n f(x) w(x) dx = \int_{\mathbb{R}} e^{(n+1)u} e^{-u^2} \sin(2\pi u) du,$$

$$= e^{\left(\frac{n+1}{2}\right)^2} \int_{\mathbb{R}} \sin(2\pi u) e^{-(u-\frac{n+1}{2})^2} du,$$

$$= (-1)^{n+1} e^{\left(\frac{n+1}{2}\right)^2} \int_{\mathbb{R}} \sin(2\pi u) e^{-u^2} du = 0,$$

car la fonction intégrée est impaire. Donc $(f,p)=0, \forall p\in \mathbf{P}$. Si \mathbf{P} est dense dans $L^2_w(0,+\infty)$, on en déduit que $f\equiv 0$ ce qui est absurde.