Partiel du 27/02/2009, durée 2H

NB : Seuls les notes de cours/TD et le polycopié sont autorisés.

Exercice 1 Fonction intégrable et limite en l'infini

Soit $f \in L^1(\mathbf{R})$ une fonction définie partout sur \mathbf{R} et à valeurs réelles.

- 1) On suppose que f(x) admet une limite quand $x \to +\infty$. Montrer que cette limite est nulle.
- 2) On suppose que $f\in\mathcal{C}(\mathbf{R})$. A-t'on $\lim_{x\to+\infty}f(x)=0$? 3) On suppose que f est uniformément continue sur \mathbf{R} .
- a) Montrer que pour $\eta > 0$ quelconque et $(x_n)_n \subset \mathbb{R}$ telle que $\lim_{n \to \infty} x_n = +\infty$, on a

$$\lim_{n \to +\infty} \int_{x_n - \eta}^{x_n + \eta} |f(x)| dx = 0.$$

- b) A-t'on $\lim_{x\to+\infty}f(x)=0$?
 4) On suppose que $f\in\mathcal{C}^1(\mathbb{R})$ avec $f'\in L^1(\mathbb{R})$. A-t'on $\lim_{x\to+\infty}f(x)=0$?

Exercice 2 Espace $L^{\infty}(\mathbb{R})$

On appelle $L^{\infty}(\mathbf{R})$ l'espace des fonctions définies presque partout et telles qu'il existe C > 0 tel que $|f(x)| \le C$ pour presque tout x. On note

$$||f||_{\infty} = \inf \{C > 0 : |f(x)| \le C \text{ p.p.} \}.$$

Enfin, on pose $||f||_{\infty} = +\infty$ si $f \notin L^{\infty}(\mathbf{R})$.

- 1) Montrer qu'on a toujours $|f(x)| \leq ||f||_{\infty}$ p.p.
- 2) Montrer que $||f||_{\infty}$ est bien une norme sur $L^{\infty}(\mathbb{R})$.
- 3) Montrer que l'espace $L^{\infty}(\mathbb{R})$ muni de cette norme est un espace de Banach.

Exercice 3

Soit $f \in L^p(\mathbb{R})$ avec $1 \leq p \leq \infty$. On définit, pour $x \in \mathbb{R}$,

$$g(x) = \int_{x}^{x+1} f(t)dt.$$

1) Si $1 \le p < \infty$, montrer que la fonction g est continue sur **R** et que

$$\lim_{|x| \to \infty} g(x) = 0.$$

2) Si $p = \infty$, que peut-on dire de cette fonction g?

Exercice 4

On dira qu'une suite $(f_n)_n \subset L^1(0,\pi)$ converge faiblement vers $f \in L^1(0,\pi)$ si $\int_0^{\pi} f_n g \to \int_0^{\pi} f g, \forall g \in L^{\infty}(0,\pi).$

- 1) Soit $f_n(x) = \sin(nx)$.
- a) Calculer $||f_n||_{L^1(0,\pi)}$. b) Montrer que $\forall \varphi \in \mathcal{C}^1_c(]0,\pi[), \int_0^\pi f_n \varphi \to 0$. En déduire que $\forall g \in L^\infty(0,\pi)$,
- 2) Comparer la convergence et la convergence faible dans $L^1(0,\pi)$.

Exercice 5

Définition : Soient E et F deux espaces vectoriels normés. Soit $T:E\to F$ une application linéaire continue. On dira que T est compacte si l'image par T de la boule unité fermée de E est d'adhérence compacte dans F.

Soit $1 \leq p \leq \infty$, on considère l'espace $\mathcal{C}^1([0,1])$ que l'on munit de ||u|| = $||u||_p + ||u'||_p$.

- 1) Vérifier que $L^{p}(0,1) \subset L^{1}(0,1)$.
- 2) On note i_p l'application identité $id: (\mathcal{C}^1([0,1]), \| \|) \to (\mathcal{C}([0,1]), \| \|_{\infty})$. Montrer qu'elle est continue.
- 3) Montrer que si p > 1, l'application i_p est compacte.
- 4) Pour p = 1, l'application i_1 est-elle compacte ? (raisonner avec des suites).

Exercice 6

On considère l'espace

$$\mathcal{C}^{1,1}(\mathbf{R}) = \left\{ u \in \mathcal{C}^1(\mathbf{R}) : u, u' \in L^1(\mathbf{R}) \right\},\,$$

que l'on munit de $||u|| = ||u||_1 + ||u'||_1$.

Soit $u \in \mathcal{C}^{1,1}(\mathbb{R})$ et soit $(\varrho_n)_n$ une suite régularisante, c'est-à-dire, $\varrho_n(s) =$ $n\varrho(ns)$ où $\varrho\in\mathcal{C}_c^\infty(\mathbf{R}), \, \varrho\geq 0, \, supp(\varrho)\subset]-1,1[$ et $\int\varrho dt=1.$

- 1) Montrer que $\varrho_n * u \in \mathcal{C}^{1,1}(\mathbb{R})$ et que $(\varrho_n * u)' = \varrho_n * u'$ pour tout n.
- 2) Soit $\zeta \in \mathcal{C}_c^{\infty}(\mathbf{R})$ telle que $\forall x \in \mathbf{R}, 0 \leq \zeta(x) \leq 1$ et $\forall x \in [-1,1], \zeta(x) = 1$.

Enfin, on suppose que $\zeta(x)=0$ pour $|x|\geq 2$. Pour tout entier n>0, on pose $\zeta_n(x)=\zeta(\frac{x}{n})$ et $u_n(x)=\zeta_n(x)(\varrho_n*u(x))$. Vérifier que $u_n\in\mathcal{C}_c^\infty(\mathbb{R})$ et montrer que $u_n\longrightarrow u$ dans $\mathcal{C}^{1,1}(\mathbb{R})$.

Exercice 7

Soit $(f_n)_n$ une suite équiintégrable de fonctions de $L^1(B)$ où B désigne une partie bornée de \mathbb{R} .

On suppose de plus que la suite $(f_n)_n$ converge en mesure vers une certaine fonction f, c'est-à-dire que pour tout $\eta > 0$,

$$\lim_{n \to +\infty} \mu([|f - f_n| \ge \eta]) = 0,$$

où $[|f-f_n|\geq \eta]$ désigne l'ensemble $\{x:|f(x)-f_n(x)|\geq \eta\}$ et μ est la mesure de Lebesgue.

1) Montrer que $\forall \delta > 0, \forall \eta > 0, \exists N \in \mathbb{N}$ tel que $\forall p, q \geq N$,

$$\mu([|f_p - f_q| \ge \eta]) \le \delta.$$

- 2) Montrer que la suite $(f_n)_n$ est de Cauchy dans $L^1(B)$.
- 3) Montrer que $f \in L^1(B)$ et que $f_n \longrightarrow f$ dans $L^1(B)$.

Exercice 8

Soient $1 \le p < q < \infty$ et F l'ensemble

$$F = \{ f \in L^p \cap L^q : ||f||_q \le 1 \}.$$

Montrer que F est femé dans L^p .

Soit $(f_n)_n \subset L^p \cap L^q$ et soit $f \in L^p$. On suppose que $f_n \longrightarrow f$ dans L^p et qu'il existe une constante C > 0 telle que pour tout n, $||f_n||_q \leq C$.

Montrer que pour tout $r \in [p, q[, f \in L^r \text{ et que } f_n \longrightarrow f \text{ dans } L^r.$