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Abstract Following their success in image processing (see Chapter ??),
neighborhood filters have been extended to 3D surface processing. This adap-
tation is not straightforward. It has led to several variants for surfaces de-
pending on whether the surface is defined as a mesh, or as a raw data set
point. The image grey level in the bilateral similarity measure is replaced
by a geometric information such as the normal or the curvature. The first
section of this chapter reviews the variants of 3D mesh bilateral filters and
compares them to the simplest possible isotropic filter, the mean curvature
motion.

In a second part, this chapter reviews applications of the bilateral filter to
a data composed of a sparse depth map (or of depth clues), and of the image
on which they have been computed. Such sparse depth clues can be obtained
by stereo vision or by psychophysical techniques. The underlying assumption
to these applications is that pixels with similar intensity around a region are
likely to have similar depths. Therefore, when diffusing depth information
with a bilateral filter based on locality and color similarity, the discontinuities
in depth are assured to be consistent with the color discontinuities, which is
generally a desirable property. In the reviewed applications, this ends up with
the reconstruction of a dense perceptual depth map from the joint data of an
image and of depth cues.
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The above abstract is enough of an introduction, and our plan follows
from it. Section 0.1 reviews bilateral filters applied to 3D data set points,
often organized in a triangulation (a mesh). It ends up with comparative
simulations illustrating the advantage of bilateral filters on isotropic filtering.
Section 0.2 considers the various cases where in an image depth values or
depth cues are available, and shows that the bilateral filter used as a diffusion
tool makes a good job of restoring a dense depth map.

0.1 Bilateral filters processing of meshed 3D sur-
faces

This section proceeds by first examining the various adaptations of bilateral
filtering on meshes (triangulated 3D surfaces) and discussing their imple-
mentation, which can depend on the surface triangulation. Then it will be
shown that the main bilateral filter is actually consistent on smooth surfaces
with the mean curvature motion (although it behaves differently on edges).
Finally several comparative experiments on synthetic and real meshes will
be performed. Since a common notation is needed for all methods, we begin
with a small glossary and notation summary to which the reader may refer
in this section.

Glossary and notation
• M : the mesh, namely a set of triangles
• v current mesh vertex to be denoised
• p ∈ N (v) neighborhood of the vertex made of other vertices p

• nv, np, etc. normals at vertex v or point s, etc.
• w1(||p − v||), w2(< nv, p − v >), etc.: 1D centered Gaussians with

various variances, used as weighting functions applied to the distance
of neighbors to the current vertex and to the distance along the normal
direction at v.

• Hv, Hp, etc. curvatures at v, p, etc.
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• f triangle of a mesh
• af area of triangle f

• cf barycenter of the triangle f

• nf normal to triangle f

• Πf projection on the plane of triangle f

• V voxel containing points of the data set point
• s′, v′, p′, n′v processed versions of s, v, p, nv, ...

Main adaptations proposed for meshes

The neighborhood filter or sigma filter is attributed to J.S. Lee [Lee83] in 1983
but goes back to L. Yaroslavsky and the Sovietic image processing theory
(see the book summarizing these works [Yar85]) in 2D image analysis. A
recent variant names it bilateral filter ([TM98]). The bilateral filter denoises
a pixel by using a weighted mean of its similar neighbors gray levels. In the
original article the similarity measure was the difference of pixel gray levels
yielding for a pixel v of an image I with neighborhood N (v):

Î(v) =

∑
p∈N (v) w1(‖p− v‖)w2(|I(v)− I(p)|)I(p)∑

p∈N (v) w1(‖p− v‖)w2(|I(v)− I(p)|)

where w1 et w2 are decreasing functions on R+ (e.g. Gaussian). Thus Î(v)
is an average of pixel values for pixels that are similar in position, but also
in value. Hence the “bilaterality”. Filtering without losing the sharp features

is as critical for surfaces as it is for images, and a first adaptation of the
bilateral filter to surface meshes was proposed in [FDCO03]. Consider a
meshed surface M with known normals nv at each vertex position v. Let
N (v) be the 1-ring neighborhood of v (ie the set of vertices sharing an edge
with v). Then the filtered position of v writes v′ = v + δv~n(v), where:

δv =

∑
p∈N (v) w1(‖p− v‖)w2(< nv, p− v >) < nv, p− v >∑

p∈N (v) w1(‖p− v‖)w2(< nv, p− v >)|) (1)

In a nutshell, this means that the normal component of the vertex v is
replaced by an weighted average of the normal components of its neighboring
points which also are close to the plane tangent to the surface at v. The
distance to the tangent plane takes for meshes the role that was taken for
images by the distance between grey levels. If v belongs to a sharp edge, then
the only points close to the tangent plane at v are the points on the edge.
Thus, the edge sharpness will not be smoothed away. One of the drawbacks
of the above filter is clearly the use of a mesh-dependent neighborhood. Yet,
this is easily fixed by defining an intrinsic Euclidean neighborhood.

Another adaptation of the 2D bilateral filter to surface meshes is intro-
duced in [JDD03]. This approach considers the bilateral filtering problem as
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a robust estimation problem for the vertex position. A set of surface predic-
tors are linked to the meshM: for each triangle f the position estimator Πf

projects a point to the plane defined by f . Let af be the surface area and
cf be the center of f then for each vertex v, the denoised vertex is

v′ =
1

C(v)

∑

f∈M
Πf (v)afw1(‖cf − v‖)w2(‖Πf (v)− v‖) (2)

where C(v) =
∑

f∈M afw1(‖cf − v‖)w2(‖Πf (v)− v‖) is the weight normal-
izing factor and w1 and w2 are two Gaussians.

Thus, w1(||cf − v||) is a weight which is small if the triangle f is close
to v. Thus, this term is the classic locality-in-space term of the bilateral.
Similarly, w2(‖Πf (v) − v‖) measures how far the projection of v onto the
plane of the triangle is from v. This weight favors the triangles f whose
plane is coherent with v.

The projection on the tangent planes operator Πf depending on the nor-
mal to f , the normals must be robustly estimated. Normals, being first
order derivatives, are more subject to noise than vertex positions. Hence
the method starts by denoising the normal field. To do so, the mesh is first
smoothed by using the same formula as above without the influence weight
w2 and with Πf (v) = cf , namely an updated position

v′ =
1

C(v)

∑

f∈M
cfafw1(‖cf − v‖)

where C(v) =
∑

f∈M afw1(‖cf − v‖). The normal for each face in the
denoised mesh is then computed and assigned to the corresponding face of
the original noisy mesh. It is with this robust normal field that the bilateral
filter of equation (2) is applied in a second step. The bilateral filter is not
iterated in this method.

In [Wan06], meshes feature-insensitively sampled are denoised using a
related bilateral approach. (By feature-insensitively we mean that the mesh
sampling is independent of the features of the underlying surface, like (e.g.)
a uniform sampling.) The algorithm proceeds as follows: it detects the shape
geometry (namely sharp-regions), denoises the points and finally optimizes
the mesh by removing thin triangles. The bilateral filter is defined in a
manner similar to [JDD03]. Let v be a mesh vertex, N (v) the set of triangles
within a given range of v and nf , af , cf the normal, area and center of a
facet f (a triangle). Denote by Πf (v) the projection of v onto the plane of
f , then the denoised vertex is defined by

v′ =
1

C(v)

∑

f∈N (v)

Πf (v)afw1(‖cf − v‖)w2(‖Πf (v)− v‖)

where C(v) =
∑

f∈N (v) afw1(‖cf − v‖)w2(‖Πf (v)− v‖) (weight normal-
izing factor).
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The first step is to detect sharp regions. Several steps of bilateral filtering
(as defined in [JDD03]) are applied, then a smoothness index is computed
by measuring the infimum of angles between normals of faces adjacent to v.
By thresholding this measurement, the sharp vertices are selected. Triangles
whose three vertices are sharp and whose size does not increase during the
bilateral iterations are marked as sharp. This detection done, points are
restored to their original positions. Then the bilateral filtering formula is
applied to sharp vertices only, and the geometry sharpness is encoded into
a Hermite data collection containing normals, centers and areas of filtered
triangles. Points are then restored to their original position. Each sharp
vertex is moved using the bilateral filtering over the neighboring stored data
units, and thin vertices are removed from the mesh (these last two steps are
iterated a certain number of times). Finally a post-filtering step consists in
applying one step of bilateral filtering on all non sharp edges.

In [WYC06] a two-steps denoising method combines the fuzzy C-means
clustering method (see [Dun73]) with a bilateral filtering approach. Fuzzy
C-means is a clustering technique that allows a piece of data to belong to
two different clusters. Each point p gets a parameter µp,k which measures
the degree of membership of p to a cluster k. Let mp be the number of points
in the spherical neighborhood S of a point p. If mp < threshold the point is
deleted. Otherwise a fuzzy C-means clustering center cp is associated with
p. The normal at point cp is computed as the normal to the regression plane
of the data set in a spherical neighborhood of p. Fleishman’s bilateral filter
[FDCO03] is used to filter ci which yields the denoised point. This hybrid and
complex method is doubly bilateral. Indeed, the previous C-means clustering
selects an adapted neighborhood for each data set point and replaces it by
an average which is by itself the result of a first bilateral filter in the wide
sense of neighborhood filter. Indeed, the used neighborhood for each point
depends on the point. The second part of the method therefore applies a
second classical bilateral method to a cloud that has been filtered by a first
bilateral filter.

The bilateral filtering idea was also used as a part of a surface recon-
struction process. In [MF04], for example, a method for reducing position
and sampling noise in point cloud data while reconstructing the surface is
proposed. A 3D geometric bilateral filter method for edge-preserving and
data reduction is introduced. Starting from a point cloud, the points are
classified in an octree, the voxel centers are filtered, representative surface
points are defined and the mesh is finally reconstructed. A key point is that
the denoising depends on the voxel decomposition. Indeed, the filter outputs
a result for each voxel. For a voxel V , call v its centroid with normal nv.
Let w1 and u2 be two functions weighting respectively the distance between
a point p position and the centroid location and δ(p, v) = 〈np, nv〉 be the
scalar product of the normal at p normal and the normal at the centroid.
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Then the output of the filter for voxel V is

v′ =
1

C(v)

∑

p∈V

w1(‖p− v‖)u2(δ(p, v))p

where C(v) =
∑

p∈V w1(‖p− v‖)u2(δ(p, v)). Here w1 is typically a Gaussian
and u2 is an increasing function on [0, 1]. But this filter proves unable to
recover sharp edges, so a modification is introduced: prior to any filtering
for each voxel V , points of V are projected onto a sphere centered at the
centroid v. Each mapped point is given a normal ñp which has direction
p− v and is normalized. The geometric filtering is reduced to:

v′ =
1

C(v)

∑

p∈V

u2(δ(ñp, nv))p with C(v) =
∑

p∈V

u2(δ(ñp, nv)).

Although only the similarity of normals is taken into account in the above
formula, the filter is bilateral because the average is localized in the voxel.

In [LYY+05], the bilateral filter is interpreted as the association to each
vertex v of a weighted average

v′ =

∑
p∈N (v) w1(‖p− v‖)w2(‖Πp(v)− v‖)Πp(v)∑

p∈N (v) w1(‖p− v‖)w2(‖Πp(v)− v‖)

where Πp(v) a predictor which defines a “denoised position of v due to p”,
namely the projection of v on the plane passing by p and having the normal
nv. The used bilateral predictor coming from [FDCO03] is Πp(v) = v+((p−
v) · np)np. In [JDD03], the used predictor was Πp(v) = v + ((p − v) · np)np

which is the projection of v on the tangent plane passing by p. With this
last predictor the corners are less smoothed out, yet there is a tangential
drift due to the fact that the motion is not in the normal direction nv but
in a averaged directions of the np for p ∈ N (v). Therefore a new predictor
is introduced:

Πp(v) = v +
(p− v) · np

nv · np
nv

This predictor tends to preserve better the edges than all other bilateral
filters.

The question of choosing automatically the parameters for the bilateral
filter was raised in [HW05]. It was proposed to choose adaptive parameters.
The adaptive bilateral normal smoothing procedure process starts by search-
ing for the set of triangles (Ti)i whose barycenters are within a given distance
of a center triangle T . (But this keeps a distance parameter anyway.) Then
the influence weight parameter σs is computed as the standard deviation of
the distance between normals ‖n(Ti)−n(T )‖. The spatial weight parameter
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is estimated using a minimum length descriptor criterion (for various scales).
The estimated parameters are then used to get the smoothed normal. This
result is then used for rebuilding the mesh using the smoothed normals using
the method described in [OBS02].

The bilateral filtering of meshes proving an efficient denoising method
preserving sharp features, the idea of a trilateral filtering is a natural ex-
tension taking into account still more geometric information. For example
[CT05] proposes an extension to oriented meshes of the trilateral image filter.
It is a 2-pass filter: a first pass filters the normals and a second pass filters
the vertex positions. Starting from an oriented mesh, a first pass denoised
bilaterally the vertices normals using the following update

n′v =
1

C(nv)

∑

p∈N (v)

npw1(‖p− v‖)w2(‖np − nv‖)

where C(nv) =
∑

p∈N (v) w1(‖p−v‖)w2(‖np−nv‖). Then, an adaptive neigh-
borhood N (v) is found by iteratively adding faces near v until the normals
nf of face f differ too much from n′v. A function measuring the similarity
between normals is built using a given threshold R,

f(v, f) = 1 if ‖n′v − nf‖ < R; 0 otherwise.

The trilateral filter for normals filters a difference between normals. De-
fine n∆(f) = nf − n′v. Then the trilaterally filtered normal nv is

n′′v = n′v +
1

C(v)

∑

f∈N (v)

n∆(f)w1(‖cf − v‖)w2(n∆(f))f(v, f)

where C(v) =
∑

f∈N (v) w1(‖cf − v‖)w2(n∆(f))f(v, f). Finally, the same
trilateral filter can be applied to vertices. Call Pv the plane passing through
v and orthogonal to n′v. Call c̃f the projection of cf onto Pv and c∆(f) =
‖c̃f − cf‖. Then the trilateral filter for vertices, using the trilaterally filtered
normal n′′v writes

v′ = v + n′′v
1

C(v)

∑

p∈N (v)

c∆(f)w1(‖c̃f − v‖)w2(n∆(f))f(v, f)

where C(v) =
∑

p∈N (v) w1(‖c̃f −v‖)w2(c∆(f))f(v, f) The results are similar
to [JDD03] though slightly better. They are comparable to the results of
[FDCO03] since both methods use the distance to the tangent plane as a
similarity between points.

In [WZZY08] the authors proposed a trilateral filter with slightly different
principles. A geometric intensity of each sampled point is first defined as
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depending of the neighborhood of the point

δ(p) =

∑
q∈N (p) wpq < np, q − p >∑

q∈N (p) wpq

with
wpq = w1(‖q − p‖)w2(‖ < np, q − p > ‖)wh(‖Hq −Hp‖).

This type of filter is a trilateral filter, which means that it depends on
three variables: distance between the point p and its neighbors q, distance
along the normal np between the point p and its neighbors q, and the differ-
ence of their mean curvatures Hp and Hq)

At each point, a local grid is built on the local tangent plane (obtained by
local covariance analysis), at each point of this grid, the geometry intensity is
defined by interpolation. Thus, neighborhoods of same geometry are defined
for each pair of distinct points and the similarity can be computed as a
decreasing function of the L2 distance between these neighborhoods.

Since the goal is to denoise one point with similar points, the algorithm
proposes to cluster the points into various classes by the mean shift algo-
rithm. To denoise a point, only points of the same class are used. This gives a
denoised geometry intensity δ′i and the final denoised position p′ = p+δ(p)np.

More recently the NL-means ([BCM05]) method which proved very pow-
erful in image denoising was adapted to meshes and point clouds in [YBS06].
Recall that for an image I(x), the NL-means filter computes a filtered value
J(x) as J(x) = 1

C(x)

∫
Ω w(x, y)I(y)dy, an adaptive average with weights

w(x, y) = exp− 1
h2

∫
Ga(|t|)|I(x− t)− I(y − t)|2dt and C(x) =

∫
Ω w(x, y)dy.

Here Ga is a gaussian or a compactly supported function, so that it defines
a patch. Thus, the denoised point is a mean of pixel values with weights
measuring the local image similarity of patches around other pixels with the
patch around the current pixel.

Consider now the adaptation to a meshM. Let Ωσ(x) = {y ∈M| |x−
y| ≤ 2σ}. The smoothing is done by changing x at each step: xn+1 =
xn+k(xn)nn

x with nx the normal toM at x. Let Sy be the surface associated
to node y. The following definitions are directly adapted from the image case
(we adopt here a continous formalism for clarity):

k(x) =
1

C(x)

∫

Ωσ2

w(x, y)I(y)dSy

C(x) =
∫

Ωσ2

w(x, y)dSy

I(y) =< nx, y − x >



10 CONTENTS

w(x, y) = exp−D(x, y)
h2

The problem is to define the similarity kernel D. Let σ2 > σ3 be the half
radius of the comparison domain: σ3 is the half radius of the neighborhood
to define the geometric similarity between two points. σ2 is the half radius
of the domain where similar points are looked for. The local tangent plane
at y is parameterized by t1 et t2. For all z of Ωσ2(y) the translation t is
defined as t = −(< t1, z − y >,< t2, z − y >).

A local approximation by RBF functions is built: Fx(u, v) = p(u, v) +∑
w∈Ωσ3 (x) λwψ(

√
u2 + v2).

RBF coefficients λω are found by a linear system resolution. And the
similarity kernel finally yields:

D(x, y) =
∫

Ωσ3(y)
Gσ3(|t|)|Fx(uz, vz)− I(y − t)|2dt

with I(x− t) =< nx, z − x > et Gσ a gaussian kernel.
Thus each node is compared with nodes in a limited domain around it

and the weighted mean over all these nodes yields the denoised position.
This results in a better feature preserving mesh denoising method, but at
the cost of a considerably higher computation time.

To improve the computation time when denoising datas using neighbor-
hood filters, Gaussian kd-trees were introduced in [AGDL09]. The method
proposed was designed to compute efficiently a class of n-dimensional filers
which replace a value by a linear combination of other values. The basic
idea is to consider those filters as nearest neighbors search in a higher di-
mensional space, for example (r, g, b, x, y) in case of a 2D color image and
of a bilateral filter. To accelerate this neighbor search, a Gaussian k-d tree
is introduced. The non local means filter in its naive implementation has a
O(n2f2) complexity. To apply Gaussian k-d tree, the position of a pixel is
set to be the patch and the value is set to be the color value of the pixel. A
simple PCA on patches helps to capture the dimensions that best describe
the patches. The authors also applied the Gaussian k-d tree to perform 3D
NL-means on meshes or point clouds. To produce a meaningful value to
describe geometry, they use the idea of spin images; At each point sample,
a regression plane can be estimated and the coordinates of the point in this
coordinate system are used as values; the position of the patch is set to be a
couple of values (namely the spin image which is a histogram of cylindrical
coordinates).

Summary of 3D mesh bilateral filters The filters we reviewed in this
section are almost all defined for meshes. Yet, with very little effort almost
all of them can be adapted to unstructured point clouds by simply redefining
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the neighborhoods as the set of points within a given distance from the center
point (spherical neighborhood). We have examined several classic variants
of bilateral filters, but their main principle is to perform an average of neigh-
boring vertices pondered by the distance of these vertices to an estimated
tangent plane of the current vertex. This distance takes the role played by
the grey level in image bilateral filters. This distance can be implemented
in several ways by either projecting the current vertex to the neighboring
triangles, or by projecting the neighboring vertices on the current triangle,
or by using an estimate of the normal at the current vertex which has been
itself previously filtered. An interesting and simple possibility is to directly
combine distance of vertices and of their normals or even distances of ver-
tices, normals, and curvatures (but this requires a previous smoothing to get
denoised normals and curvatures). Notice that position, normal and cur-
vature characterize the shape of cloud in a larger neighborhood. Thus at
this point the obvious generalization of bilateral filters is NL-means, which
directly compares point-wise the shape of the neighborhood of a vertex with
the overall shape of the neighborhoods of others before performing an average
of the most similar neighborhoods to deliver a filtered neighborhood.

Sticking to the simplicity of comparisons and to the essentials of bilateral
filter, we shall be contented in the comparative section to illustrate the gains
of the bilateral filter with respect to a (good) implementation of its unilateral
counterpart, the mean curvature motion, performed by projection of each
vertex on a local regression plane. The remainder of this section is divided
as follows: section 0.1.1 presents experiments and comparisons on artificial
shapes, and section 0.1.2 present results on some real shapes.

0.1.1 Experiments on artificial shapes

In the following experiments, we will compare the denoising of the bilateral
filter as introduced in [FDCO03] with the mean curvature motion. Recall
that [FDCO03] defined the update of a point as:

δv =

∑
p∈N (v) w1(‖p− v‖)w2(< nv, p− v >) < nv, p− v >∑

p∈N (v) w1(‖p− v‖)w2(< nv, p− v >)|)
(see first section, equation 1 for notations). The mean curvature motion
used here is the projection on the regression plane: a vertex v with normal
nv and spherical neighborhood N (v) is projected on the regression plane of
N (v). In [DMMSL09], this operator was shown to be an approximation of
the mean curvature motion:

∂v

∂t
= Hnv

Let us first observe the effects of bilateral denoising on some artificial shapes.
A 5 unit side-long cube is created with added gaussian noise with standard
deviation 0.02 (fig 1).
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Figure 1: A noisy cube with gaussian noise

(a) 1 bilateral iteration (b) 2 bilateral iterations

(c) 5 bilateral iterations (d) 1 MCM iteration

(e) 2 MCM iterations (f) 5 MCM iterations

Figure 2: Bilateral and MCM iterations on the cube corner. Notice how the
sharpness is much better preserved by the bilateral filter than by the mean
curvature equation.
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The experiments of fig 2(a, b, c) show the denoising power of the bilateral
filter in term of preserving edges and should be compared with the standard
mean curvature motion filter (fig 2 d, e f), the comparison is particularly
interesting in the corner areas. The bilateral filter implies an anisotropic
curvature motion leading to a diffusion only in smooth parts while preserv-
ing the sharp areas. Let us now see how those filters perform in case of a
sharp edge. An estimation of the noise for each of the denoising methods is
shown on tabular 3. These numbers tend to prove that Mean Curvature Mo-
tion, although it smoothes well the noisy flat parts also smoothes away the
sharpness whereas the bilateral filter tends to preserve the sharp edges bet-
ter. With few iterations the noisy parts are smoothed out, which decreases
the root mean square error, then when iterating the operator, the sharpness
tends to be smoothed, which increases the RMSE again. This phenomenon
is of course far quicker with the mean curvature motion since this filter does
not preserve the edge at all.

Input Iteration 1 Iteration 2 Iteration 5
RMSE (bilateral) 0.01 0.0031 0.0019 0.0035
RMSE (mcm) 0.01 0.0051 0.0085 0.0164

Figure 3: Noise estimation for the Sharp edge denoising

0.1.2 Experiments on real shapes

This section runs some experiments on a real shape, namely Michelangelo’s
David. The experiments were run on the point cloud. At each step an
interpolating mesh was built for visualization.

(a) Initial noisy David (b) Bilateral denoising (c) MCM
Figure 4: Denoising of the David (back)
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(a) Original of the David (b) Noisy David

(c) Bilateral denoising (d) MCM
Figure 5: Denoising of the David’s face

(a) Iteration 1 (b) Iteration 2

Figure 6: Iterating the bilateral filter on the David (back)
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(a) Bilateral Filtering (b) MCM

Figure 7: Detail of the David

(a) Initial scan (b) Bilateral Denoising (c) MCM

Figure 8: Denoising of a screw nut driver scan.

(a) Initial fragment

(b) Bilateral Denoising

(c) MCM

Figure 9: Denoising of fragment ’31u’ of Stanford Forma Urbis Romae

On fig 5, denoising artefacts created by the bilateral filter can be seen.
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They appear as oscillations (on David’s cheek for example). These artifacts
can be explained by the fact that the bilateral filter enhances structures.
Added noise structures can be randomly enhanced by the bilateral filter.
On fig 4, we can see that some noise remain after one iteration of bilateral
denoising. We therefore iterate the bilateral filter with same parameters.
Then, obviously, the remaining noise disappears at the cost of some sharpness
loss (see fig 6). This can also be seen on a fragment of the Stanford Forma
Urbis Romae Project fig 9 and on a noisy simple scan of a screw nut driver.
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0.2 Depth-oriented applications

This section focuses on the applications of the bilateral filter and its gener-
alized version to depth-oriented image processing tasks. The common idea
to all these applications is of constraining the diffusion of depth informa-
tion to the intensity similarity between pixels. The underlying assumption
is that pixels with similar intensity around a region are likely to have simi-
lar depths. Therefore, when diffusing depth information basing on intensity
similarity, the discontinuities in depth are assured to be consistent with the
color discontinuities, which is often a desirable property [GP87, KS91].

The remainder of this section is organized as follows. Section 0.2.1 re-
views the applications of the bilateral filter to stereo matching algorithms,
while section 0.2.2 describes an application to the resolution enhancement of
range images. Section 0.2.3 review applications to the estimation of depth
in single images.

0.2.1 Bilateral filter for improving the depth map provided
by stereo matching algorithms

Stereo matching algorithms address the problem of recovering the depth
map of 3D scene from two images captured from different viewpoints. This
is achieved by finding a set of points in one image which can be identified
as the same points in the other image. In fact, the knowledge of the point-
to-point correspondences permits to compute the relative disparities, which
are directly related to the distance of the object normal to the image plane.
The search of correspondences is usually based on a similarity measure be-
tween pixels belonging to two different images of the same scene. Due to the
presence of noise and repetitive texture, these correspondences are extremely
difficult to find without global reasoning. In addition, occluded and texture-
less regions are inherently ambiguous since the relative disparity cannot be
found reliably by image matching alone.

In applications demanding accurate disparities such as structure recon-
struction or multiview video coding, stereo matching algorithms provide a
sparse disparity map. Improvements can be obtained through filtering or
interpolation, for instance by using median or morphological filters. How-
ever, their ability to do so is limited. In [YC04], the authors have proposed
a post-processing step to improve dense depth maps produced by any stereo
matching algorithm. The proposed method consists in applying an iterated
bilateral filter, which diffuses the depth values by relying on the gradient
of the original image instead of that of the depth image. This allows to
incorporate edge information into the depth map, assuring discontinuities in
depth to be consistent with intensities discontinuities.

In [YK06], the color-weighted correlation idea underlying the bilateral fil-
ter has been exploited to reduce the ambiguity of the correspondence search
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problem. Classically, this problem has been addressed by area-based meth-
ods relying on the use of local support windows. In this approach, all pixels
in a support window are assumed to have similar depth in the scene and,
therefore, similar disparities. Accordingly, pixels in homogeneous regions
get assigned the disparities inferred from the disparities of neighboring pix-
els. However, when the support windows are located in correspondence of
depth discontinuities, the same disparity is assigned to pixels having dif-
ferent depths, resulting in a foreground-fattening phenomenon. To obtain
accurate results, an appropriate support window should be selected for each
pixel adaptively. This problem is addressed in [YK06] by weighting the pix-
els in a given support window taking into account their color similarity and
geometric proximity to the reference pixel. The similarity measure between
two pixels is then computed using the support-weights in the support win-
dows of both pixels, allowing to incorporate the edge information into the
disparity map. Experimental results show that the use of adaptive support-
weights produces noise-removed accurate piecewise smooth disparity maps
while preserving depth discontinuities.

The idea of exploiting the color-weighted correlation to reduce the am-
biguity of the correspondence problem has been implemented in a parallel
architecture [YWY+06] [WLG+06], allowing its use in real-time applications
and integrated in more complex stereo systems [YWY+06] [WLG+06], which
nowadays achieve the top rank in the Middlebury benchmark [SS].

The interpolation of disparity maps and in particular of Digital Elevation
Models (DEMs) has been considered in several recent works. [FLA+06] pro-
poses to interpolate unknown areas by constraining a diffusion anisotropic
process to the geometry imposed by a reference image, and coupling the
process with a data fitting term which tries to adjust the reconstructed sur-
face to the known data. More recently, [FC09] has proposed a new inter-
polation method which defines a geodesic neighborhood and fits an affine
model at each point. The geodesic distance is used to find the set of points
that are used to interpolate a piecewise affine model in the current sample.
This interpolation is refined by merging the obtained affine patches with a
Mumford-Shah like algorithm. The a contrario methodology has been used
in a merging procedure. In the urban context, [LDZPD08] uses a dictionary
of complex building models to fit the disparity map. However, the applica-
bility of such a method is less evident because of the initial delineation of
buildings by a rectangle fitting.

The bilateral filter averages the pixel colors, based on both their geo-
metric closeness and their photometric similarity, preferring of course near
values to distant values in space and color. [Yoo06] have used it to weight
the correlation windows before the stereo correspondence search. We shall
illustrate this process with experiments from [Neu]. Let q be a point in I.
Consider Lq ⊂ I the subimage where the weight is learned. For each p ∈ Lq

the weight due to color similarity and proximity are computed:
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color similarity: We consider the color distance

dc(uq, up) =
(
(Ru(q)−Ru(p))2 + (Gu(q)−Gu(p))2 + (Bu(q)−Bu(p))2

)1/2
,

where Ru,Gu and Bu are the red, green and blue channels of u. Then
the weight corresponding to the color similarity between p and q is

wc(p, q) = exp

(
−dc(uq, up)

2

h2
1

)
.

proximity: We consider the Euclidean distance between the points posi-
tions in the image plane

d(q, p) =
(
(q1 − p1)2 + (q2 − p2)2

)1/2
,

where p = (p1, p2) and q = (q1, q2). Then the weight corresponding to
proximity is

wd(p, q) = exp

(
−d(q, p)2

h2
2

)
.

Therefore, the total associated weight between the two points q and p is

W (p, q) =
1
Zq

wc(p, q)wd(p, q) =
1
Zq

exp

(
−

(
dc(uq, up)2

h2
1

+
d(q, p)2

h2
2

))
,

where Zq is the normalizing factor Zq =
∑

p∈Lq

wc(p, q)wd(p, q) . The interpo-

lated disparity map µI is computed via an iterative schema

µI(q, k) =
∑

p∈Lq

W (p, q)µI(p, k − 1) ,

where k is the current iteration and the initialization µI(·, 0) = µM (·).
Figures 10 and 11 show the interpolated Middlebury results (100% den-

sity). The experiments demonstrate that, starting from a disparity map
which is very sparse near image boundaries, the bilateral diffusion process
can recover a reasonable depth map.

0.2.2 Bilateral filter for enhancing the resolution of low-quality
range images

In [YYDN07], the authors have proposed a post-processing step to enhance
the resolution of low-quality range images. Contrary to intensity images,
each pixel of a range image expresses the distance between a known reference
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Figure 10: Tsukuba and Venus results. For each couple of images: stereo pair
of images, output of a sparse algorithm retaining only sure points, points (in
red in the .pdf file) are the rejected correspondences, interpolated version of
these results, ground truth and signed error between the interpolated image
and the ground truth.
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Figure 11: Teddy and Cones results. For each couple of images: stereo pair
of images, output of a sparse algorithm retaining only sure points, points (in
red in the .pdf file) are the rejected correspondences, interpolated version of
these results, ground truth and signed error between the interpolated image
and the ground truth.
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frame and a visible point in the scene. Range images are acquired by range
sensors that, when acquired at video rate, are either very expensive or very
limited in terms of resolution. To increase the resolution of low-quality range
images acquired at video rate, the authors of [YYDN07] have proposed a
post-processing step relying on an iterated bilateral filter. The filter diffuses
the depth values of the low-quality range image, steering the diffusion by
the color information provided by a registered high-quality camera image.
The input range image z0 is first up-sampled to the same size of the camera
image and then used as the initial depth map hypothesis according to which
an initial cost volume is built, c0. An iterative process is then applied that
consists in first performing a bilateral filter on each slide of the current cost
volume ci and then in generating a new depth map hypothesis zi+1 based on
the filtered cost volume. At each filtering step, an aggregated cost volume
is computed for each pixel based on the cost volume of the pixels in its
neighborhood, which is defined based on the color similarity. The new depth
map hypothesis zi+1 is then obtained by first selecting the depth hypothesis
having the minimal cost volume and then by applying a sub-pixel estimation
using a quadratic polynomial interpolation.

0.2.3 Bilateral filter for the global integration of local depth
information

In [DMS08], an iterated neighborhood filter has been proposed as a depth
diffusion mechanism to globally integrate a set of initial local depth hypoth-
esis derived from different monocular depth cues.

With this strategy, the occlusion boundaries and the relative distances
from the viewpoint of depicted objects are simultaneously recovered from
local depth information without the need of any explicit segmentation and
possible conflicting depth relationships are automatically solved by the dif-
fusion process itself.

Once monocular depth cues are detected, each region involved in a depth
relationship is marked by one or few points, called source points (see Figure
12 (a)). Source points marking the regions closer to the viewpoint are called
Foreground Source Points (FSPs), whereas source points marking the regions
more distant to the viewpoint are called Background Source Points (BSPs).
The depth image z is initialized by assigning value 1 to FSPs and value 0
to BSPs. The rest of the image is initialized with value zero (see Figure
12 (b)). The diffusion process is applied to the depth image z by using
the gradient of the original image u rather than that of the depth image to
define the neighborhood. By diffusing the depth information using the gray
level (color) gradient of the original image instead of that of the depth map
itself, the edge information is incorporated into the depth map, assuring that
discontinuities in depth are consistent with gray level (color) discontinuities.
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(a) (b)

(c) (d)

Figure 12: Example of depth diffusion by using equation (3). (a) Gray
level image, where BSPs and FSPs are marked in blue and red respectively.
(b) Depth image, where points corresponding to FSPs are initialized with a
positive value (marked in white) and the rest of the image with value zero.
(c) and (d) Depth images after an increasing number of iterations of the
DDF.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Example of depth diffusion by using equation 5. (a) Depth image,
where FSPs have been initialized with a positive value (marked in gray)
and the rest of the image with value zero. (b), (c), (d), (e), (f), and (g)
depth images corresponding to an increasing number of iterations. After
each iteration, the depth difference between corresponding FSPs and BSPs
is forced to be at least equal to the initial depth difference ∆, by adding ∆
to FSPs when the difference between corresponding FSPs and BSPs is less
than ∆.(h) Final depth image.
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The depth diffusion filter (DDF) proposed in [DMS08] is

DDFh,ρz(x) =
1

C(x)

∫

Bρ(x)
z(y)e

−|u(x)−u(y)|2
h2 dy, (3)

where Bρ(x) is a ball of center x and radius ρ, h is the filtering parameter
which controls the decay of the exponential function, and

C(x) =
∫

Bρ(x)
e
−|u(x)−u(y)|2

h2 dy (4)

is the normalization factor. We set ρ = 1 and h = 10.
Equation (3) is applied iteratively until the stability is attained. After

each iteration, the values of FSPs and BSPs are modified in order to hold at
least the initial depth gradient. In practice, when the difference between the
values of a FSP and the corresponding BSP become less than 1, the value 1
is added to the value of the FSP. This constraint corresponds to Neumann
internal boundary conditions which are understood as a pre-specified jump
on the c Dz

Dn as the boundary is crossed, where c is a positive constant and
n is the normal to the boundary. This allows one to handle simple sorting
when objects are located in multiple layers. Figure 12 is an example of the
diffusion through the DDF. As can be sensed looking at Figures 12 (c) and
(d), by taking an average of the depth values in a neighborhood, a very
large number of iterations would be needed to attain the stability. To make
the diffusion process faster, the following equation is used to initialize the
process

DDFh,ρz(x) = sup
Bρ(x)

z(y)e
−|u(x)−u(y)|2

h2 dy, (5)

while equation (3) is used only in the last iterations (see Figure 13).
In the case of occlusion there is also a depth order between the two re-

gions separated respectively by the stem of the T. However, occlusion does
not carry any information about the partial order between the objects re-
spectively in partial occlusion and the background. This depth order can
be inferred by other cues, such as convexity. When information about this
partial order is present, the depth gradient between one of the BSPs and the
FSPs increases. This is the reason for which force source points are forced
to hold "at least" the initial depth gradient.

Experimental results on real images (see Fig. 14) have proved that this
simple formulation turns out to be very effective for the integration of sev-
eral monocular depth cue such as occlusion, transparency, convexity, visual
completion (both a-modal and modal) and self-occlusion. In particular, con-
tradictory information given by conflicting depth cues is dealt with correctly
by the bilateral diffusion mechanism, which permits two regions to invert
harmoniously their depths, in full agreement with the phenomenology.
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(a) (b) (c)

Figure 14: (a) Original image. (b) Local depth cues are represented through
vectors that point to the region closer to the viewpoint. (c) Depth image.
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For each experiment on Fig. 14 are shown four images: the original image
(Fig. 14(a)); the image where the initial depth gradient at depth cue points
is represented through vectors pointing to the region closer to the viewpoint
(red vectors arise from T-junctions, green vectors arise from local convexity
and each of them represents the point having the biggest curvature value
of the connected components obtained by thresholding the curvature) (see
Fig.14 (b)); the depth image obtained by performing the bilateral diffusion
method (see 14 (c)). The depth map is rendered through gray level values
(high values indicate regions that are close to the camera). On the first
and the second rows of Figure 14 there are examples of indoor scenes, for
which a proper solution is obtained. Instead, on the third row there is
an example of outdoor scene involving a conflict. The T-junction detected
on the back of the horse is due to a reflectance discontinuity and its local
depth interpretation is incorrect. However, on the depth map, the shape
of the horse appear clearly on the foreground since the diffusion process
allowed to overcome the local inconsistency. In the last row there is an
example involving self-occlusion: occluding contours have different depth
relationships at different points along its continuum. However, the bilateral
diffusion method performs well also in this ambiguous situation.
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