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How to try it

A prototype of noise clinic is currently on line at
http://dev.ipol.im/~colom/ipol_demo/noise_clinic/
(username: demo, password: demo).
Other algorithms at Image Processing on Line http://www.ipol.im/:
DCT-denoising
TV-denoising
K-SVD
NL-means
NL-Bayes
Soon: PLE, BLS-GSM
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Noise curves

Figure: Noise curves after denoising for image Bears, 3 first scales.
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Noise curves

Figure: Noise curves after denoising for image Frog, 3 first scales.
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Noise curves

Figure: Noise curves after denoising for image Old Picture, 3 first scales.
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Noise curves

Figure: Noise curves after denoising for image Marilyn 1, 3 first scales.
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Noise curves

Figure: Noise curves after denoising for image Marilyn 2, 3 first scales.
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An example of test image with wrong noise estimation
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Noise curves

Figure: Noise curves after denoising for image Singer, 3 first scales.
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Figure: Comparison setting coefficient c = 1.0, c = 3.0, c = 4.0.
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Poisson noise
Example of noise curve: raw image
Transforming signal-dependent noise into white Gaussian noise
Example: noise curve before/after the Anscombe transformation
Why multiscale noise evaluation?
Complete chain: from the raw to the final JPEG image

Noise model, and how it becomes complex from raw to JPEG
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Poisson noise
Example of noise curve: raw image
Transforming signal-dependent noise into white Gaussian noise
Example: noise curve before/after the Anscombe transformation
Why multiscale noise evaluation?
Complete chain: from the raw to the final JPEG image

Photon emission can be modelled with a random Poisson
distribution due to the physical nature of light.

P(N = k) =
e−λt(λt)k

k!

where k is the number of photons counted by the CCD, λ the
expected number of photons/time unit.

If N is large enough, N ∼ N (λt, λt).
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Poisson noise
Example of noise curve: raw image
Transforming signal-dependent noise into white Gaussian noise
Example: noise curve before/after the Anscombe transformation
Why multiscale noise evaluation?
Complete chain: from the raw to the final JPEG image

Figure: Left: Canon EOS 30D, ISO 1600, t=1/30s image. Right: noise curve
of the raw image obtained with the Ponomarenko et al. algorithm.

Miguel Colom, Marc Lebrun, Jean-Michel Morel The noise clinic



Noise clinic: some good and bad patients
Multiscale signal-dependent noise model

Noise estimation methods for scale and signal dependent noise
Multiscale algorithm

Non local Bayesisan denoising
Denoising recipes illustrated by DCT

References

Poisson noise
Example of noise curve: raw image
Transforming signal-dependent noise into white Gaussian noise
Example: noise curve before/after the Anscombe transformation
Why multiscale noise evaluation?
Complete chain: from the raw to the final JPEG image

Most of the denoising algorithms only deal with uniform Gaussian
noise.

But raw images follow a Poisson distribution where the variance is
proportional to the intensity.

Solution: use a Variance Stabilizing Transformation:

Anscombe transformation [1] (⇒ σ2 ≈ 1).

u 7→ 2

√
u +

3

8

(forward)

v 7→
(v

2

)2

− 3

8

(inverse)

Miguel Colom, Marc Lebrun, Jean-Michel Morel The noise clinic



Noise clinic: some good and bad patients
Multiscale signal-dependent noise model

Noise estimation methods for scale and signal dependent noise
Multiscale algorithm

Non local Bayesisan denoising
Denoising recipes illustrated by DCT

References

Poisson noise
Example of noise curve: raw image
Transforming signal-dependent noise into white Gaussian noise
Example: noise curve before/after the Anscombe transformation
Why multiscale noise evaluation?
Complete chain: from the raw to the final JPEG image

Figure: Up: without and with the Anscombe tranformation. Down: detailed
view with the Anscombe transformation.
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Poisson noise
Example of noise curve: raw image
Transforming signal-dependent noise into white Gaussian noise
Example: noise curve before/after the Anscombe transformation
Why multiscale noise evaluation?
Complete chain: from the raw to the final JPEG image

Figure: Typical JPEG noise curves at scales S0, S1, S2 and S3..
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Poisson noise
Example of noise curve: raw image
Transforming signal-dependent noise into white Gaussian noise
Example: noise curve before/after the Anscombe transformation
Why multiscale noise evaluation?
Complete chain: from the raw to the final JPEG image

Figure: Effect of the complete IP pipeline for ISO 1600, t=1/30s, Canon EOS
30D: raw image, demosaicing, white balance, gamma correction and JPEG
compression using photograph of a calibration pattern.
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

Noise estimation methods
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

General principles (for white noise first)

Block-based methods.

Get a estimation of the variance of data (noise+signal) inside each
block using only the high frequencies of the block spectrum. The
DCT1 works quite well.

Consider blocks whose variance is under a low quantile (typically
0.5%): keep only those blocks whose variance is explained mostly by
the noise.

Get the final estimation by combining the blocks in the low quantile.
Typically, computing their median or using the MAD2 estimator.
Learn on noise the correction factor.

1Discrete Cosine Transform.
2Median of Absolute Deviations.
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

Ponomarenko at al. noise estimation method

Uses 8× 8 overlapping blocks.

Sort the blocks by the variance of the lower frequency DCT
coefficients of the block. Keep the lower (0.5%) quantile,

The variance of the noise is estimated on the medium and high
frequency coefficients of the blocks of this lower quantile.

The median value of these variances gives the final variance
estimation.
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

Noise estimation algorithm #2: Percentile method

The image is high-passed by convolving it with a filter based on
the DCT with support 7× 7 to get rid of deterministic tendencies.

Compute the variance of all 21× 21 overlapping blocks

To discard those blocks whose variance is explained by the signal
and not by the noise consider only the small (0.5%) quantile.

The median of variances of this set gives the final variance
estimation.
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

Figure: Validation of the Ponomarenko et al. (left) and the Percentile methods
(right) with a raw image with ISO 1250 and exposure time t=1/30s.
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

Figure: Validation of the Ponomarenko et al. (left) and the Percentile methods
(right) with a raw image with ISO 1250 and exposure time t=1/400s.
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

Figure: Validation of the Ponomarenko et al. (left) and the Percentile methods
(right) with a raw image with ISO 1600 and exposure time t=1/250s.
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Noise estimation: slide on general principle (high frequency transform, use low quantile)
Noise estimation algorithm #1: Ponomarenko et al
Noise estimation algorithm #2: Percentile method
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT
Validation of the noise estimation methods with the GT

Figure: Validation of the Ponomarenko et al. (left) and the Percentile methods
(right) with a raw image with ISO 1600 and exposure time t=1/640s.
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Multiscale denoising module
Conecting several multiscale modules

Multiscale denoising: principles

signal dependent noise estimated at each scale

zoom down followed by Anscombe transform to whiten the noise at
each scale

denoising performed at each scale, bottom-up (coarse to fine)

Useful even for white noise: the denoising performance extends to
very low frequencies
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Multiscale denoising module
Conecting several multiscale modules
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Multiscale denoising module
Conecting several multiscale modules
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More on the denoising algorithm:
Non local Bayesian denoising
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Bayesian denoising in two slides

patch noise model P(P̃|P) = c · e−
‖P̃−P‖2

2σ2

Bayes’ rule P(P|P̃) = P(P̃|P)P(P)

P(P̃)

assume we got a patch Gaussian model P(Q) = c .e−
(Q−P)t C−1

P
(Q−P)

2

hence the variational problem

max
P

P(P|P̃) ⇔ max
P

P(P̃|P)P(P)

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)t C−1

P
(P−P)

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1

P (P − P).

An empirical covariance matrix CP̃ can be obtained for the patches

Q̃ similar to P̃. P and the noise n being independent,
CP̃ = CP + σ2I; EQ̃ = P
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maxP P(P|P̃)⇔ minP
‖P−P̃‖2

σ2 + (P − P̃)t(CP̃ − σ2I)−1(P − P̃)

one step estimation P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃), where empirically:

CP̃'
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃ − P̃

)(
Q̃ − P̃

)t

, P̃' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃.

Iteration (“oracle estimation”): P̂2 = P̃
1

+ CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
)

where

CP̂1
' 1

#P(P̂1)− 1

∑
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1
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All Bayesian or Bayesian-like methods

Method Denoising principle Patches size Aggr. Oracle Colour
DCT transform threshold one 8 yes yes yes
NL-Means average neighborhood 3 yes yes no
NL-Bayes Bayes neighborhood 3-7 yes yes yes
PLOW Bayes, 15 clusters image 11 yes yes yes
Shotgun Bayes 1010 patches 3-20 yes no no
EPLL Bayes, 200 clusters 2.1010 patches 8 yes yes yes
BLS-GSM Bayes in GSM Image 3 yes no no
K-SVD sparse dictionary Image 8 yes yes yes
BM3D transform threshold neighborhood 8-12 yes yes yes
PLE Bayes, 19 clusters Image 8 yes yes yes

See: “Secrets of image denoising cuisine” M. Lebrun, M. Colom, A.
Buades, J.M.M., Acta Numerica, 2012
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Conclusions in a nutshell:

all methods except NL-means and Shotgun find an orthogonal or
sparse basis for each patch.

the final estimate is obtained by Wiener filter: applying optimal
multiplicative coefficients to the coordinates of the patch on the
basis

this is equivalent to Bayesian MMSE assuming that this basis gives a
Gaussian model for the patch

coefficient thresholding (DCT) or averaging (NL-means) is
suboptimal. By making them Bayesian, DCT thresholding becomes
a DCT Wiener filter, and NL-means becomes NL-Bayes

the mentioned methods differ only by the way the Gaussian mixture
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All Bayesian or Bayesian-like methods, references

DCT denoising: G. Sapiro and G. Yu, IPOL 2011.

NL-Bayes: A. Buades, M. Lebrun, J.M.M., IPOL 2012.

PLOW: P. Chatterjee and P. Milanfar, TIP 2011.

Shotgun: A. Levin and B. Nadler, CVPR 2011.

EPLL: D. Zoran and Y. Weiss, ICCV 2011.

BLS-GSM: J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli, TIP

2003.

KSVD: M. Elad, M. Aharon, TIP 2006.

BM3D: K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, TIP 2007.

PLE: G. Yu, G. Sapiro, and S. Mallat, TIP 2010.
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Results of denoising a pure noise image (σ = 30).

Method PSNR RMSE

NL-Bayes 45.45 1.36
BM3D 45.03 1.43

NL-means 41.45 2.16
TV denoising 41.06 2.26

DCT denoising 40.91 2.30
K-SVD 38.44 3.05
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PSNR table for σ = 20, 30 and 40

σ = 20

NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising

33.45 33.22 32.61 32.25 31.98 32.20

σ = 30

31.37 31.17 30.31 30.48 29.77 29.83

σ = 40

30.15 29.71 28.94 28.90 28.25 28.05
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Figure: Original, noisy, DCT sliding window, BLS-GSM



Figure: Original, noisy, NL-means, K-SVD



Figure: Original, noisy, BM3D and Non-local Bayes.
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Ideal Bayesian method: Shotgun NL-means (A. Levin, B.
Nadler 2011)

P(P̃ | P) =
1

(2πσ2)
κ2

2

e−
||P−P̃||2

2σ2 , (1)

Given a noisy patch P̃ its optimal estimator for the Bayesian minimum
squared error (MMSE) is by Bayes’ formula

P̂ = E[P | P̃] =

∫
P(P | P̃)PdP =

∫
P(P̃ | P)

P(P̃)
P(P)PdP. (2)

Using a huge set of M natural patches,
P(P)dP ' 1

M and P(P̃) ' 1
M

∑
i P(P̃ | Pi ). Thus

P̂ '
1
M

∑
i P(P̃ | Pi )Pi

1
M

∑
i P(P̃ | Pi )

.
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Shotgun NL-means

Input: Noisy image ũ, its patches P̃

Input: Very large set of M = 210 patches Pi extracted from a large
set of noiseless natural images (20000)

Output: Denoised image û.

for all patches P̃ extracted from ũ: Compute the MMSE
denoised estimate of P̃

P̂ '
∑M

i=1 P(P̃ | Pi )Pi∑M
i=1 P(P̃ | Pi )

where P(P̃ | Pi ) is known from the Gaussian noise distribution.

(Aggregation) : for each pixel j of u, compute the denoised version
ûj as the average of all values P̂(j) for all patches containing j.
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Input: Very large set of M = 210 patches Pi extracted from a large
set of noiseless natural images (20000)

Output: Denoised image û.
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Denoising recipes illustrated by DCT
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Noise reduction, generic recipes

Aggregation of estimates (of patches containing a given pixel)

Iteration and oracle filters: use first step result as oracle for second
step

Color: convert (R,G ,B) into (Y ,U,V ).
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Tricks improving denoising performance

Figure: Original, noisy (σ = 25), sliding DCT thresholding filter, incremental
use of a YoUoVo colour system, uniform aggregation, variance based
aggregation and iteration with the “oracle” given by the first step.
Corresponding PSNRs : 26.85, 27.33, 30.65, 30.73, 31.25.
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DCT denoising algorithm, step 1

Cancels DCT coefficients lower than 3σ. Applied independently to each
YoUoVo component.

Input: noisy image ũ, σ noise standard deviation, κ = 8: size of
patches, h = 3σ: threshold parameter.

For each noisy patch: P̃: Compute the DCT transform of P̃.

Cancel coefficients of P̃ with magnitude lower than h = 3σ.

Compute the inverse DCT transform obtaining P̂.

Compute the aggregation weight
wP̃ = 1/#{number of non-zero DCT coefficients}.
for each pixel i: (aggregation) average all values at i of all denoised
patches Q̂ containing i, weighted by wQ̃ .
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DCT denoising algorithm, step 2

A Wiener filter is applied in the “oracle” second step.

Input: noisy image ũ, σ noise standard deviation, prefiltered image
û1 for “oracle” estimation.

For each pixel i:

Take reference patches P̃ and P1 around i in ũ and û1.

Compute the DCT transforms of P̃ and P1.

Modify DCT coefficients of P̃ as P̃(i) = P̃(i) P1(i)2

P1(i)2+σ2 .

Compute the inverse DCT transform obtaining P̂.

Aggregation: wP̃ = 1/#{number of non-zero DCT coefficients};
Average all values at i of all denoised patches Q̂ containing i,
weighted by wQ̃ .
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DCT denoising algorithm, step 2

A Wiener filter is applied in the “oracle” second step.

Input: noisy image ũ, σ noise standard deviation, prefiltered image
û1 for “oracle” estimation.

For each pixel i:

Take reference patches P̃ and P1 around i in ũ and û1.

Compute the DCT transforms of P̃ and P1.

Modify DCT coefficients of P̃ as P̃(i) = P̃(i) P1(i)2

P1(i)2+σ2 .

Compute the inverse DCT transform obtaining P̂.

Aggregation: wP̃ = 1/#{number of non-zero DCT coefficients};
Average all values at i of all denoised patches Q̂ containing i,
weighted by wQ̃ .
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Compute the DCT transforms of P̃ and P1.

Modify DCT coefficients of P̃ as P̃(i) = P̃(i) P1(i)2

P1(i)2+σ2 .

Compute the inverse DCT transform obtaining P̂.

Aggregation: wP̃ = 1/#{number of non-zero DCT coefficients};
Average all values at i of all denoised patches Q̂ containing i,
weighted by wQ̃ .

Miguel Colom, Marc Lebrun, Jean-Michel Morel The noise clinic



Noise clinic: some good and bad patients
Multiscale signal-dependent noise model

Noise estimation methods for scale and signal dependent noise
Multiscale algorithm

Non local Bayesisan denoising
Denoising recipes illustrated by DCT

References

F. J. Anscombe.
The transformation of Poisson, binomial and negative-binomial data.
Biometrika, 35(3):246–254, 1948.

P. Milanfar.
A tour of modern image filtering.
Invited feature article to IEEE Signal Processing Magazine (preprint
at http://users. soe. ucsc. edu/ milanfar/publications/), 2011.

N. N. Ponomarenko, V. V. Lukin, M. S. Zriakhov, A. Kaarna, and
J. T. Astola.
An automatic approach to lossy compression of AVIRIS images.
IEEE International Geoscience and Remote Sensing Symposium,
2007.

Miguel Colom, Marc Lebrun, Jean-Michel Morel The noise clinic


	Noise clinic: some good and bad patients
	Multiscale signal-dependent noise model
	
	
	
	
	
	

	Noise estimation methods for scale and signal dependent noise
	
	
	
	
	
	
	

	Multiscale algorithm
	
	

	Non local Bayesisan denoising
	Denoising recipes illustrated by DCT
	References

