
Introduction Energy function Expansion moves Graph Cut Experimental results Conclusion

Stereo Matching Using Graph Cuts
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Introduction

Given two images of the same scene, the goal in stereo is to
compute the depth map of the reference image:

Fig.:(right) Ground truth of the image Tsukuba (the brighter the
closer).
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Disparity (with epipolar constraint)

We will assume that the axis of the two cameras are parallel.
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Disparity (with epipolar constraint)

We will assume that the axis of the two cameras are parallel.

If pixel p in the reference image and
pixel q in the other correspond, then
the vector q − p is called disparity.

The disparity of a point p is inversely proportional to its depth.
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Aim: trying to match each pixel of the reference image with a pixel
of the other image in order to compute its disparity.
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Occlusion

Points which are not visible
from one of the two cameras
are called occluded.

: Stereo Matching Using Graph Cuts



Introduction Energy function Expansion moves Graph Cut Experimental results Conclusion

Reference

[KZ01] V. Kolmogorov and R. Zabih. Computing Visual Corre-
spondence with Occlusions using Graph Cuts. International
Journal of Computer Vision, 2001.
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Energy function

Assignment

• assignment: pair of pixels 〈p, q〉 which may potentially
correspond, i.e. such that:

py = qy and 0 ≤ qx − px ≤ d

• A: the set of assignments

• if a = 〈p, q〉 ∈ A, d(a) := q − p (in terms of vectors)
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Configuration

• A configuration f is a way to match pixels of the two images.

• active assignment: if two pixels p and q correspond, the
assignement 〈p, q〉 ∈ A is called active.

• Let A(f ) be the set of active assignments according to the
configuration f .

• If 〈p, q〉 is active, df (p) = d(〈p, q〉) is the disparity of the
point p.
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Three terms energy function

Let f be a configuration. We define its energy:

E (f ) = Edata(f ) + Eocc(f ) + Esmooth(f )
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Three terms energy function

Let f be a configuration. We define its energy:

E (f ) = Edata(f ) + Eocc(f ) + Esmooth(f )

data term:
Edata(f ) =

∑
a∈A(f )

D(a)
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Three terms energy function

Let f be a configuration. We define its energy:

E (f ) = Edata(f ) + Eocc(f ) + Esmooth(f )

data term:
Edata(f ) =

∑
a∈A(f )

D(a)

where for an assignment a = 〈p, q〉,

D(a) = (I (p)− I (q))2

with I the intensity of the pixel.
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Three terms energy function

Let f be a configuration. We define its energy:

E (f ) = Edata(f ) + Eocc(f ) + Esmooth(f )

occlusion term:
Eocc(f ) =

∑
p occluded

2K
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Three terms energy function

Let f be a configuration. We define its energy:

E (f ) = Edata(f ) + Eocc(f ) + Esmooth(f )

occlusion term:
Eocc(f ) =

∑
p occluded

2K

where 2K is the occlusion penalty.
In [KZ01], K is chosen to be 5λ. λ is a parameter.
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Three terms energy function

Let f be a configuration. We define its energy:

E (f ) = Edata(f ) + Eocc(f ) + Esmooth(f )

smoothness term:

Esmooth(f ) =
∑

(a1,a2)∈N∩A(f )×A(f )c

Va1,a2
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Three terms energy function

Let f be a configuration. We define its energy:

E (f ) = Edata(f ) + Eocc(f ) + Esmooth(f )

smoothness term:

Esmooth(f ) =
∑

(a1,a2)∈N∩A(f )×A(f )c

Va1,a2

• N ⊂ A×A is a neighborhood system on assignments

• (a1, a2) ∈ A(f )× A(f )c means that a1 is active and a2 is not

• In [KZ01], if a1 = 〈p, q〉 and a2 = 〈r , s〉 then

Va1,a2 =

{
3λ if max(|I (p)− I (r)|, |I (q)− I (s)|) < 8
λ otherwise
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Expansion moves

α–expansion move

Let f be a configuration and α ∈ [xmin, xmax]× [ymin, ymax] a
disparity value. f ′ is an α–expansion move if the disparity df ′(p) of
a point p which is not occluded is either df (p) or α.

With an α–expansion move we potentially extend the set of points
with disparity α.
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Expansion moves

α–expansion move

Let f be a configuration and α ∈ [xmin, xmax]× [ymin, ymax] a
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Overview of the algorithm

Aim: Trying to reduce the energy by expansion moves.

Initialisation: Let f ◦ be a configuration.
for each α ∈ [xmin, xmax]× [ymin, ymax]

• realize an α–expansion move f ′

• compute its energy E (f ′)

• if E (f ′) < E (f ◦) then do f ◦ := f ′
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Graph Cut

Aim: Constructing a graph in which a cut C is equivalent to an
expansion move f and the cost of C equals E (f ) plus a constant.

Graph cut

• Let G = {V, E} be a graph with two vertices s and t.

• A cut is a partition (Vs ,Vt) of V, such that s ∈ Vs and
t ∈ Vt .

• The cost of the cut is the sum of the weight of the edges from
a vertex in Vs to a vertex in Vt .
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A minimum cut of a graph is a cut with the minimum cost.

Max–Flow / Min–Cut

Thanks to Ford-Fulkerson algorithm, we are able to compute the
minimum cut of a graph, by computing a maximum flow.
[Ford-Fulkerson62]
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Graph structure

vertices: pl

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}
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Graph structure

vertices: pl
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Graph structure

α–expansion move:

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure
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Graph structure

α–expansion move:

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

uniqueness constraint:

ts

〈p, q〉

< p, r >

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

uniqueness constraint:

∞
ts

〈p, q〉

〈p, r〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

active assignment: data penalty

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

active assignment: data penalty

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}
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Graph structure

active assignment: data penalty

D(a)

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

active assignment: smoothness penalty pl

∈ N

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

active assignment: smoothness penalty pl
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Graph structure

active assignment: smoothness penalty

∈ N

Va1,a2

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

active assignment: smoothness penalty

Va1,a2

ts

〈p, q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

inactive assignment: occlusion penalty

ts

〈p, q〉

〈r , q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Graph structure

inactive assignment: occlusion penalty

ts
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A◦
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Graph structure

inactive assignment: occlusion penalty

ts
2K

〈p, q〉

〈r , q〉

A◦
= {a ∈ A(f ◦) | d(a) 6= α}

Aα
= {a ∈ A | d(a) = α}
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Let us summarize the construction of the edges.

edges weight for

(s, a) Docc(a) a ∈ A◦

(a, t) Docc(a) a ∈ Aα

(a, t) D(a) + Dsmooth(a) a ∈ A◦

(s, a) D(a) a ∈ Aα

(a1, a2) (a2, a1) Va1,a2 {a1, a2} ∈ N , a1, a2 ∈ Ã

(a1, a2) ∞ p ∈ P, a1 ∈ A◦ a2 ∈ Aα,
a1, a2 ∈ Np(f )

(a2, a1) 2K
p ∈ P, a1 ∈ A◦, a2 ∈ Aα,

a1, a2 ∈ Np(f )
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Theorem
C is a cut on G if and only if the corresponding configuration is an
α–expansion move of f ◦.

Theorem
Let C be a cut on G. Then its cost equals the energy of the
corresponding configuration plus a constant.

Theorem
Let C be a minimum cut on G. Then the corresponding
configuration is a configuration that minimizes the energy E .
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Experimental results

Art (Middlebury Benchmark)

(b) Graph Cut (c) Groundtruth
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Portal

(d) Scene (e) Graph Cut
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Dependance on parameters

(f) Scene

(g) Slicing in six (h) Without slicing

: Stereo Matching Using Graph Cuts



Introduction Energy function Expansion moves Graph Cut Experimental results Conclusion

Accomplished work

• Stereovision general concepts

• Kolmogorov & Zabih’s algorithm

• Kolmogorov’s thesis

• Publication of this algorithm on IPOL
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IPOL : www.ipol.im
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