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1 Abstract

The problem of camera motion estimation appears in many image processing problems, such as
augmented reality, motion compensation, or estimation of depths in a video scene. The present work
is a study of a camera motion model proposed by C. Jonchéry, which is based on a parametrization of
the camera motion in the pinhole camera model and the estimation of the optical flow between two
consecutive images in a video sequence under the core hypothesis of a uniform depth. Two algorithms
are implemented and compared: Jonchéry’s method and another method that involves the estimation
of the optical flow using Horn-Schunck algorithm. Both sequences presenting simulated motions and
real ones are processed in the tests in order to evaluate the accuracy, robustness and limitations of
Jonchéry’s method.
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2 Context

We consider two consecutive images f and g taken in a video sequence and would like to estimate
the motion of the camera between them.

There are three main categories of methods to estimate such a motion : direct ones, which use
directly the image information without optical flow computations or point tracking, discrete ones,
which track singular points, and differential ones, which compute the optical flow before the motion.
Discrete methods are more accurate with large motions, whereas differential and direct ones are
adapted to smaller motions.
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The method developed by Jonchéry in [2] is a direct method, which is expected to run faster than
differential and discrete ones. A differential method is also implemented as a reference for evaluating
performances of Jonchéry’s model.

3 Model

3.1 Pinhole camera model

We choose to work with the pinhole camera model which considers that map projections are linear
in projective coordinates. In figure 1 1,

• the optical center C corresponds to the camera position

• the image plane R is where the space is projected through the aperture of the camera

• (i, j, k) is an orthonormal coordinate system where k is pointing in the direction orthogonal to
R

• the optical axis is the line (C, k)

• the principal point c is the intersection of the optical axis and the image plane

• the focal length fc is the distance between C and c

• a projection line is a ray starting at C which intersects R

• a real point M = (X, Y, Z) has for projection on R the point m = (x, y) = (CM) ∩R

Figure 1: Pinhole camera model

1image from [2]
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The projection function is defined as

π : R3 → R2

(X, Y, Z) 7→ (x, y)

where x = fc
X
Z

and y = fc
Y
Z

. So two points of R3 whose coordinates are proportional in (C, i, j, k)
share the same image on R, and we cannot determine the depth Z of M if we only know m on a
single image.

We assume that the camera pixels are squares and that (c, i, j) is the pixel coordinate system, so
there is no need to change the coordinates in the camera.

3.2 Motion parameters

Given this model, we want to parametrize camera motions. We consider rigid displacements, defined
as below:

Definition. A rigid displacement is a transformation from R3 to R3 which respects angles and dis-
tances. It is the composition of a rotation and a translation. Their set is the group SE(3).

We denoteD the camera motion between images f and g. We define R =

a1 b1 c1

a2 b2 c2

a3 b3 c3

 ∈ SO3(R)

and t =

t1t2
t3

 such that D = (R, t) ∈ SE (3).

A point M ∈ R3 is projected onto (x, y) ∈ f and then onto (x′, y′) ∈ g.
For a unitary focal length, we have the following equalities, proved in [2]:



x′ =
a1x+ a2y + a3 −

〈
t

Z(x,y)
, R (i)

〉
c1x+ c2y + c3 −

〈
t

Z(x,y)
, R (k)

〉

y′ =
b1x+ b2y + b3 −

〈
t

Z(x,y)
, R (j)

〉
c1x+ c2y + c3 −

〈
t

Z(x,y)
, R (k)

〉
(1)

We denote by Z(x, y) the depth of the point which is projected in (x, y).
For another focal length, it suffices to replace x, x′, y, y′, by x

fc
, x′

fc
, y
fc

, y′

fc
.

Note that for any λ, (λt, λZ) leads to the same system (1). For this reason, we can only estimate
the direction of the translation. From now on, let Z0 be the mean depth of the scene and t̃ = t

Z0
.

Let us parametrize R and t̃ in a comfortable form.
We decompose R in two rotations, R = R2 ◦ R1, where R1 has its axis in the plane (c, i, j) and

leads to a purely projective deformation of f , while R2 has R1(k) for axis and leads to a rotation of
f . Let ∆ ⊂ (C, i, j) be the axis of R1, θ the angle between i and ∆, and α the angle of rotation of
R1. β is the angle of rotation of R2, as illustrated in figure 22.

The normalized translation t̃ is parametrized by A,B,C, where t̃ = (−A,−B,−C) in
(R (i) , R (j) , R (k)). The number C (not to be confused with the optical center) corresponds to a
homothetic transformation of f and A and B to a translation of it.

From now on, we set Θ = (θ, α, β, A,B,C) which codifies the motion D.

2image from [2]
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Figure 2: R and its decomposition

3.3 Optical flow approximation

3.3.1 Hypotheses

First, let us define the swelling between two consecutive images:

Definition. We call swelling related to D = (

a1 b1 c1

a2 b2 c2

a3 b3 c3

 , t) and to the depth function Z the

number

SD,Z = max
(x,y)∈K

| 1

c1x+ c2y + c3 − 〈 t
Z(x,y)

, R(k)〉
|

Now, in order to approximate the optical flow between f and g, we need to do some hypotheses
on the motion.

Hypothesis 1. There exists Smax such that, for every deplacement D and depth function Z we are
working with, we have

SD,Z ≤ Smax

This first hypothesis states that the swelling is bounded. It corresponds to the fact that the
displacement from k to R(k) is very small in an effective camera motion.

The next hypothesis expresses that the displacement of an apparent point is not too big between
the two images.

Hypothesis 2. We assume that

max
(x,y)∈K

max(|x′ − x|, |y′ − y|) ≤ L

2

where K is the set of points (x, y) for which (x′, y′) are defined, and L is the larger dimension of the
images.

In practice, these two hypotheses are always verified because the motion between two images in
a real video sequence is very small.

Finally, we wish to subsitute Z(x, y) by a uniform depth Z0 in the formula (1). In contrast with
the first two hypotheses, the one we are presenting now is really limiting applicationwise.

Hypothesis 3. Let us fix ε > 0. We have
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1.
(

1
Zinf
− 1

Zsup

)
||t||(L+ 1)Smax ≤ 2ε

2. 1
Zinf
− ε
||t||(L+1)Smax

≤ 1
Z0
≤ 1

Zsup
+ ε
||t||(L+1)Smax

where Zinf = inf(x,y)∈K Z(x, y) and Zsup = sup(x,y)∈K Z(x, y).

3.3.2 Approximation

Theorem. Under hypotheses 1, 2, 3 we have

|x′ − x′′| ≤ ε

|y′ − y′′| ≤ ε

where 

x′′ =
a1x+ a2y + a3 −

〈
t
Z0
, R (i)

〉
c1x+ c2y + c3 −

〈
t

Z(x,y)
, R (k)

〉

y′′ =
b1x+ b2y + b3 −

〈
t

Z(x,y)
, R (j)

〉
c1x+ c2y + c3 −

〈
t
Z0
, R (k)

〉
(2)

Given this result, we subsitute Z(x, y) by Z0 in the formula (1) (and still denote the coordinates
(x′, y′)). We express Θ in function of R and t, and after a limited development, we get the following
estimate uΘ of the true optical flow u for a unitary focal length:

(
x′ − x
y′ − y

)
'
(
A− α sin θ
B + α cos θ

)
+

(
−C β
−β −C

)(
x
y

)
+

(
−α sin θ α cos θ 0

0 −α sin θ α cos θ

)x2

xy
y2


This estimate is the core of the algorithm that follows. Its error is controled by the following

theorem.

Theorem. Under hypotheses 1, 2, 3, we have, for every (x, y) in K

||u(x, y)− uΘ(x, y)|| ≤ T (Smax, L, α,A,C) + T (Smax, L, α,B,C) + 2ε

and

T = Smax(L
3 α2

2
+ L2(|Cα|+ |βα|

2
+ |α|3

3
)

+L(α
2

4
(6 + 3|β|+ |C − 1|) + |Aα|+ βC

2
+ β2

4
+ C2

2
+ |β|3

12
)

+|α|(β2

2
+ |β|+ |C|+ |αA|

2
+ 2α2

3
)

+|AC| )

Theses two theorems are proved in [2].
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4 Algorithms

4.1 A differential algorithm

If the optical flow is known, a first idea to compute an approximation of the camera motion is to
minimize over Θ the quantity

E(Θ) :=
∑

(x,y)∈S

(uΘ(x, y)− u(x, y))2

The optical flow u can be computed with any classical method. In this work, we use Horn-Schunck
method. For more details, refer to [1] and [3].

Setting

c1 = A− α sin θ

c2 = B + α cos θ

a1 = −C
a2 = β

q1 = −α sin θ

q2 = α cos θ

the function uΘ is linear in (a1, a2, c1, c2, q1, q2), thus we can use a classical least-squares method: the
function F (x) = xtAx+ b ·x+ c, where A is symmetric positive definite and b a vector, has an unique
minimum x0 = −1

2
A−1b.

4.2 Jonchéry’s algorithm

Jonchéry’s idea is to minimize in mean over Θ the quantity

DFΘ(x, y) = g((x, y) + uΘ(x, y))− f(x, y) + ξ

where ξ is an lighting constant.
To perform this, an incremental least-squares scheme is used. We set

Θ0 = 0

ξ0 = 0

and

Θk+1 = Θk + ∆Θk

ξk+1 = Θk + ∆ξk

By a limited development at first order, we obtain

DFΘk+1,ξ+1 ' r∆Θk,∆ζk := DFΘk,ζk(x, y) +∇g((x, y) + uΘk
(x, y)) · u∆Θk

(x, y) + ∆ζk

To compute the increment (∆Θk,∆ξk), given (Θk, ξk), we minimize over (∆Θk,∆ξk) the quantity∑
(x,y)∈S

r2
∆Θk,∆ζk
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Because r∆Θk,∆ζk is linear in (a1, a2, c1, c2, q1, q2), this can be done once more by a classical least-
squares method. Osborne proved in [4] that such a scheme converges.

We iterate the computation until convergence of (Θk, ξk). But there is no obvious stopping
criterion, because as we observed after some experimentations, the increments begin to oscillate
around zero after enough iterations, with an amplitude that depends on the image and on the
motion. We empirically founded the following criterion: at step N , we stop the iterations if

|
N∑

k=N−5

∆a1k| ≤
|∆a1N −∆a1N−1|

2

The idea is to detect when the increments begin to oscillate.

5 Implementation

We have implemented both algorithms in language C.
To compute the minimum of the least-squares problems, −1

2
A−1b, we used the Choleski decom-

position of a symetric defined positive matrix: A = LtL, where L is upper triangular. After L is
computed, we just have to solve two triangular linear systems.

To avoid border problems, we work only with the center of the image: we define a margin equal
to ten percents of the smaller dimension and we trim each side of the image by a number of pixels
equal to this margin.

To improve the computation time, we subsample images larger than 400 pixels by merging four
adjacent pixels into one.

6 Online Demo

In the demo, both algorithms are executed simultaneously. One can use its own pair of images
or a proposed one. The focal length is to be set to its real value in pixels. If it is unknown, the
half of the width of the images, which corresponds to an angle of view of ninety degrees, should give
satisfying results. The angles are given in radians. If the motion between the two images is unknown,
the motion compensation computed with the parametrized optical flow should give an idea of the
accuracy of the result, even if our algorithm is not an optical flow one.

7 Experimentations

7.1 Images verifing all hypothesis

For images verifing all hypotheses, that is corresponding to small motions with a quasi-constant
depth, both algorithms give correct results, as can be seen in the following examples: baboon3,
vcbox4, yosemite5.

7.2 Images with two depth plans

For images corresponding to scenes with two depth plans, and for this reason which do not verify
the hypothses, both algorithms see only the bigger one, because they minimize in mean, and almost
correctly estimate the motion of the camera.

3http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?01.x=55&01.y=10
4http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?02.x=94&02.y=62
5http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?11.x=21&11.y=53
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In the following examples, we use both algorithms on a complete scene with two depths, and
then only on the first depth plan, and only on the second depth plan: soda can6, soda can (only
foreground)7, soda can (only background)8.

In the three cases, the direction of the translation is nearly the same. Recall that (A,B,C) are
the coordinates of t

Z0
. Numbering the images with only the foreground 1 and the images with only

the background 2, We should have (A1, B1, C1)×Z1 = (A2, B2, C2)×Z2. We don’t know Z1 and Z2,
but as expected, we have B1 > B2.

7.3 Images with a small object in movement

The algorithms are not expected to work for sequences with non static scenes. But both algorithms
work for scenes with a small object in movement, because the minimizations are done in mean, and
for this reason do not see the small objects.

That can be seen in the following example: street9. The camera is translated, filming a road with
a moving car. The translation in correctly estimated: after motion compensation using the results
of the algorithms, everything is perfectly as the right place except the car.

Another example of this phenomenon can be seen in yosemite with clouds10.

7.4 Images with no movement, but lighting change

An interesting limit case if that of sequences captured with a fixed camera, presenting illuminations
variations in time. Both algorithms detect that there is no motion, as showed by the example
fortuny11. The illumination constant in the Jonchéry’s algorithm plays its role.

7.5 Textures

Neither Jonchéry’s algorithm nor the differential one work for textures images (such as a wall with
roughcast), even if the hypotheses (of depth and displacment) are verified, as can be seen in the
following example: wall12.

7.6 Images with many depths

If the scene is made of several large parts of different depths, so that it is not possible to define a
predominant depth, then both algorithms return a false estimation of the camera motion. See the
sequence urban13: the scene is made of cubes at several distance from the camera.

Without a prior estimation of the image depth zones, and a depth-adaptive estimation of the
camera motion, the proposed algorithms are inefficient.

7.7 Comparison between the two algorithms

If hypotheses are satisfied (small motion, quasi-constant depth), both algorithm give satisfying results
and are robust: as an example, in the sequence car the car displacement does not affect the estimation
of the camera motion since it represents a local perturbation in comparison of the global scene motion.

6http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?03.x=78&03.y=92
7http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?04.x=58&04.y=87
8http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?05.x=60&05.y=86
9http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?12.x=108&12.y=50

10http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?12.x=68&12.y=77
11http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?07.x=96&07.y=98
12http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?08.x=30&08.y=91
13http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?09.x=75&09.y=92
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In addition, in our experiments, for examples satisfying hypothesis, both algorithms are of similar
accuracy.

Our analysis of the time computation efficiency of the two algorithms does not reveal the supe-
riority of one or another, whereas Jonchéry’s method is presented in [2] as a fast méthod: see table
1.

Pair of images Jonchéry’s algorithm Differential algorithm
baboon 1,01 0,91

vcbox 4,25 1,32
pepsi-complete 0,60 0,65

street 1,30 0,57
fortuny 2,74 4,57

urban 5,56 4,26
homography 2,24 0,99

pluto 9,70 29,04

Table 1: Running times in seconds

However, Jonchéry’s algorithm can adress larger motions, as can be seen in the following example:
0.08726 radians14. See table 2 15.

θ α β A B C
Expected result any 0 8.726 · 10−2 0 0 0
Jonchéry’s algorithm 2.068 1.550 · 10−4 8.651 · 10−2 3.607 · 10−4 −6.702 · 10−5 7.574 · 10−3

Differential 4.122 8.021 · 10−2 7.964 · 10−2 −7.395 · 10−2 4.501 · 10−2 3.079 · 10−2

Table 2: Result of the algorithms for a rotation of 5 degrees

Last, mention that the filtering step by M-estimator proposed in [2] was not implemented. Its
benefices in terms of robustness remain unknown.

8 Source Code

The following git repository contains the source codes of the two main programs, another one
to compute the motion on a complete camera sequence, and a tool to simulate camera motions:
http://github.com/david64/estimation-mvt-cam16.

14http://dev.ipol.im/~leo/ipol_demo/gl_camera_motion/input_select?19.x=63&19.y=11
15As α is equal to zero, the value of θ does not matter.
16http://github.com/david64/estimation-mvt-cam
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