
Published in Image Processing On Line on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL CC–BY–NC–SA
This article is available online with supplement materials,
implementation, datasets and demonstration at
http://www.ipol.im/pub/algo/gjmr line segment detector

DRAFT

LSD: a Line Segment Detector

Rafael Grompone von Gioi, Jérémie Jakubowicz,
Jean-Michel Morel, Gregory Randall

Abstract

LSD is a linear-time Line Segment Detector giving subpixel accurate results. It is designed
to work on any digital image without parameter tuning. It controls its own number of false
detections: On average, one false alarms is allowed per image [1]. The method is based on Burns,
Hanson, and Riseman method [2], and uses an a contrario validation approach according to the
Desolneux, Moisan, and Morel theory [3, 4]. The version described here includes some further
improvement over the one described in [1].

Source Code

The ANSI C implementation of LSD, version 1.6, is the one which has been peer reviewed and
accepted by IPOL. The code documentation, including the source code, is accessible here.

Supplementary Material

An older version, based on the Megawave2 framework is available here (this version corresponds
better to the algorithm described in [1], and does not include the further improvements described
here and included in the current version). This version, as the previous version 1.5, are non
reviewed material. (Note that the interface changed from version 1.5 to version 1.6.)

1 Introduction

LSD is aimed at detecting locally straight contours on images. This is what we call line segments.
Contours are zones of the image where the gray level is changing fast enough from dark to light or
the opposite. Thus, the gradient and level-lines of the image are key concepts and are illustrated on
figure 1.

The algorithm starts by computing the level-line angle at each pixel to produce a level-line field,
i.e., a unit vector field such that all vectors are tangent to the level line going through their base
point. Then, this field is segmented into connected regions of pixels that share the same level-line
angle up to a certain tolerance τ . These connected regions are called line support regions, see figure 2.

Each line support region (a set of pixels) is a candidate for a line segment. But the corresponding
geometrical object (a rectangle in this case) must be associated with it. The principal inertial axis
of the line support region is used as main rectangle direction; the size of the rectangle is chosen to
cover the full region, see figure 3.

Each rectangle is subject to a validation procedure. The pixels in the rectangle whose level-line
angle corresponds to the angle of the rectangle up to a tolerance τ are called aligned points, see

1

http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.ipol.im/pub/algo/gjmr_line_segment_detector
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/lsd_1.6.zip
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/doc
http://megawave.cmla.ens-cachan.fr/
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/lsd.zip
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/lsd-1.5.zip

Figure 1: Image gradient and level-lines.

Figure 2: Line Support Regions.

Figure 3: Rectangle approximation of line support region.

2

Figure 4: Aligned points.

figure 4. The total number of pixels in the rectangle, n, and its number of aligned points, k, are
counted and used to validate or not the rectangle as a detected line segment.

The validation step is based on the a contrario approach and the Helmholtz principle proposed by
Desolneux, Moisan, and Morel [3, 4]. The so-called Helmholtz principle states that no perception (or
detection) should be produced on an image of noise. Accordingly, the a contrario approach proposes
to define a noise or a contrario model H0 where the desired structure is not present. Then, an event
is validated if the expected number of events as good as the observed one is small on the a contrario
model. In other words, structured events are defined as being rare in the a contrario model.

In the case of line segments, we are interested in the number of aligned points. We consider the
event that a line segment in the a contrario model has as many or more aligned points, as in the
observed line segment. Given an image i and a rectangle r, we will note k(r, i) the number of aligned
points and n(r) the total number of pixels in r. Then, the expected number of events which are as
good as the observed one is

Ntest · PH0 [k(r, I) ≥ k(r, i)] (1)

where the number of tests Ntest is the total number of possible rectangles being considered, PH0 is the
probability on the a contrario model H0 (that is defined below), and I is a random image following
H0. The H0 stochastic model fixes the distribution of the number of aligned points k(r, I), which
only depends on the distribution of the level-line field associated with I. Thus H0 is a noise model
for the image gradient orientation rather than a noise model for the image.

Note that k(r, I) is an abuse of notation as I does not corresponds to an image but to a level-line
field following H0. Nevertheless, there is no contradiction as k(r, I) only depends on the gradient
orientations.

The a contrario model H0 used for line segment detection is therefore defined as a stochastic
model of the level-line field satisfying the following properties:

• {LLA(j)}j∈Pixels is composed of independent random variables

• LLA(j) is uniformly distributed over [0, 2π]

where LLA(j) is the level-line angle at pixel j. Under hypothesis H0, the probability that a pixel on
the a contrario model is an aligned point is

p =
τ

π

and, as a consequence of the independence of the random variables LLA(j), k(r, I) follows a binomial
distribution. Thus, the probability term PH0 [k(r, I) ≥ k(r, i)] is given by

PH0

[
k(r, I) ≥ k(r, i)

]
= B

(
n(r), k(r, i), p

)
3

where B(n, k, p) is the tail of the binomial distribution:

B(n, k, p) =
n∑

j=k

(
n

j

)
pj(1− p)n−j.

The number of tests Ntest corresponds to the total number of rectangles that could show an alignment
at a fixed precision. Notice that the rectangles are oriented, meaning that the order of their starting
and ending points is not arbitrary: it encodes which side of the line segment is darker. Thus, a
rectangle from point A to point B is a different test from the rectangle from point B to point A.
The exhaustive choice is to take all the rectangles starting and ending at image pixels. In a N ×M
image this gives NM ×NM different rectangles. Also,

√
NM different width values are considered

for each one. See figure 5.

Figure 5: Estimation of the number of tests.

The number of rectangles considered is then

(NM)5/2.

The precision p is initially set to the value τ/π; but other values are also tested to cover the relevant
range of values; this is explained in the section “Rectangle Improvement”. We will note γ the number
different p values potentially tried. Each rectangle with each p value is a different test. Thus, the
final number of tests is

(NM)5/2γ.

Finally, we define the Number of False Alarms (NFA) associated with a rectangle r on the image i
as

NFA(r, i) = (NM)5/2γ · b
(
n(r), k(r, i), p

)
.

This corresponds to the expected number of rectangles which have a sufficient number of aligned
points to be as rare as r under H0. When the NFA associated with an image rectangle is large, this
means that such an event is expected on the a contrario model, i.e., common and thus not a relevant
one. On the other hand, when the NFA value is small, the event is rare and probably a meaningful
one. A threshold ε is selected and rectangles with NFA(r, i) ≤ ε are called ε-meaningful rectangles
and are the detections of the algorithm.

4

Theorem 1

EH0

[∑
r∈R

1NFA(r,I)<ε

]
≤ ε

where E is the expectation operator, 1 is the indicator function, R is the set of rectangles considered,
and I is a random image on H0.

The theorem states that the average number of ε-meaningful rectangles under the a contrario
model H0 is less than ε. Thus, the number of detections on noise is controlled by ε and it can be
made as small as desired. In other words, this shows that LSD satisfies the Helmholtz principle.

The proof is given here because it was not given in the original article [1].

Proof We define k̂(r) as

k̂(r) = min

{
n ∈ N, PH0

[
k(r, I) ≥ n

]
≤ ε

(NM)5/2γ

}
.

Then, NFA(r, i) ≤ ε is equivalent to k(r, i) ≥ k̂(r). Now,

EH0

[∑
r∈R

1NFA(r,I)≤ε

]
=
∑
r∈R

PH0

[
NFA(r, I) ≤ ε

]
=
∑
r∈R

PH0

[
k(r, I) ≥ k̂(r)

]
.

But, by definition of k̂(r) we know that

PH0

[
k(r, I) ≥ k̂(r)

]
≤ ε

(NM)5/2γ
.

and using that #R = (NM)5/2γ we get

EH0

[∑
r∈R

1NFA(r,I)≤ε

]
≤
∑
r∈R

ε

(NM)5/2γ
= ε

which concludes the proof. �

Following Desolneux, Moisan, and Morel [3, 4], we set ε = 1 once for all. This corresponds to
accepting on average one false detection per image in the a contrario model, which is reasonable.
Also, the detection result is not sensitive to the value of ε. Indeed, the detection limit (that is the
minimal number of aligned points that could lead to a ε-meaningful rectangle) varies like

√
− log ε.

Setting ε to any reasonable value would produce very similar results.

2 Algorithm

The LSD algorithm takes a gray-level image as input and returns a list of detected line segments.
The algorithm can be described by the following 12 steps that will be described in detail below. The
auxiliary image STATUS has the same size as the scaled image, and is used to keep track of the
pixels already used.

LSD was designed as an automatic image analysis tool. As such it must work without requir-
ing any parameter tuning. The algorithm actually depends on several numbers that determine its
behavior; their values were carefully devised to work on all images. (See their discussion below.)
They are therefore part of LSD’s design, internal parameters, and are not left to the user’s choice.
Changing their values would amount to define a new variant of the algorithm, in the same way as
we could make variants by changing the gradient operator, or by switching from 8-neighborhood to
4-neighborhood on the region growing process.

Each step of the algorithm will be described in the following sections, as well as the design criteria
for setting the six internal parameters: S, Σ, ρ, τ , D, and ε.

5

Scale the input image to scale S using Gaussian sub-sampling (σ = Σ
S
).;1

Compute the gradient magnitude and level-line orientation at each pixel.;2

Build a list of pixels pseudo-ordered according to their image gradient magnitude.;3

Set all pixels in the auxiliary image STATUS to the value NOT USED.;4

Mark the STATUS of pixels whose gradient magnitude is less than ρ to the value USED.;5

foreach pixel P in the list, starting with the ones with the highest gradient magnitude, and6

with STATUS set to NOT USED do
Starting from P as a seed pixel, grow a region R of connected and NOT USED pixels, that7

share the same level-line angle up to a tolerance τ . Mark the STATUS of the pixels in the
region as USED.;
Compute the rectangular approximation for the connected region R of pixels found.;8

If the density of aligned points in the rectangle is less than D, cut the region, until the9

density restriction is satisfied.;
Compute the NFA value for the rectangle found.;10

Try to modify the rectangle to improve the NFA value.;11

If NFA(r) ≤ ε, add the rectangle to the output list.;12

end13

2.1 Image scaling

The result of LSD is different when the image is analyzed at different scales or if the algorithm is
applied to a small part of the image. This is natural, and corresponds to the different details that
one can see if an image is observed from a distance or if attention is paid to a specific part. As a
result of the a contrario validation step, the detections thresholds automatically adapt to the image
size that is directly related to the number of tests term. The scale of analysis is a choice left to the
the user, who can select it by cropping the image. Otherwise LSD processes automatically the entire
image.

The first step of LSD is, nevertheless, to scale the input image to 80% of its size. This scaling
helps to cope with aliasing and quantization artifacts (especially the staircase effect) present in many
images. Blurring the image would produce the same effect but affecting statistics of an image in the
a contrario model: some structures would be detected on a blurred white noise. When correctly
sub-sampled, the white noise statistics are preserved. Note that the a contrario validation is applied
to the scaled image and the N×M image size used in the NFA computation corresponds to an input
image of size 1.25N × 1.25M .

Figure 6 shows two discrete edges at different angles, both presenting the staircase effect. Next to
each image is the result of LSD without using the initial scaling. In the first case the edge is detected
as four horizontal line segments instead of one; in the second case, no line segment is detected.

Figure 6: Discrete edges at two angles and the detections without scaling.

In both cases the result is reasonable, but it does not correspond to what we would expected.

6

Figure 7 shows the result of LSD, using the 80% scaling. Both edges are now detected and with the
right orientation (even if the first one is still fragmented).

Figure 7: Detections using scaling.

The scale factor of 80% (S=0.8), is the smallest image reduction that reasonably solves the
staircase problem while producing almost the same result as a full scale analysis on images without
artifacts. (A 80% scaling means here that the x and y axis are each reduced to 80%; the number of
pixels is thus reduced to 64%.)

The scaling is performed by a Gaussian sub-sampling: the image is filtered with a Gaussian kernel
to avoid aliasing and then sub-sampled. The standard deviation of the Gaussian kernel is determined
by σ = Σ/S, where S is the scaling factor. The value of Σ is set to 0.6, which gives a good balance
between avoiding aliasing and avoiding image blurring.

2.2 Gradient computation

The image gradient is computed at each pixel using a 2x2 mask. Given

. . .
...

... · · ·
· · · i(x, y) i(x + 1, y) · · ·
· · · i(x, y + 1) i(x + 1, y + 1) · · ·
· · · ...

...
. . .

where i(x, y) is the image gray level value at pixel (x, y), the image gradient is computed as

gx(x, y) =
i(x + 1, y) + i(x + 1, y + 1)− i(x, y)− i(x, y + 1)

2
,

gy(x, y) =
i(x, y + 1) + i(x + 1, y + 1)− i(x, y)− i(x + 1, y)

2
.

The level-line angle is computed as

arctan

(
gx(x, y)

−gy(x, y)

)
and the gradient magnitude as

G(x, y) =
√

g2
x(x, y) + g2

y(x, y).

This simple scheme uses the smallest possible mask size in its computation, thus reducing as much
as possible the dependence of the computed gradient values (thus, approaching the theoretical inde-
pendence in the case of a noise image).

The gradient and level-line angles encode the direction of the edge, that is, the angle of the dark
to light transition. Note that a dark to light transition and a light to dark transition are different,

7

having a 180 degree angle difference between the corresponding gradient or level-line angles. This
means that the resulting line segments detected by LSD are oriented and that the order of their
starting and ending points is not arbitrary, since it encodes which side of the line segment is darker.
For example, if the contrast of an image is reverted (changing black for white and white for black)
the result of LSD would be the same but the starting and ending points would be exchanged on
every line segment.

Note that the computed value corresponds to the image gradient at coordinates (x + 0.5, y + 0.5)
and not (x, y). This half-pixel offset is then added to the output rectangles coordinates to produce
coherent results.

In the a contrario model, the level-line field is composed of independent random variables at each
pixel. But the computed level-line field is actually never fully independent even if the image is a white
noise. Indeed, adjacent pixel values are used to compute the gradient and therefore the gradients are
(slightly) dependent. This does not prevent the use of an a contrario approach. Indeed, numerical
simulations have shown that the same threshold deduced for the case of independent level-line field
also controls the number of false detections when computed by the 2x2 mask, see [5].

2.3 Gradient Pseudo-ordering

LSD is a greedy algorithm and the order in which pixels are processed has an impact on the result.
Pixels with high gradient magnitude correspond to the more contrasted edges. In an edge, the
central pixels usually have the highest gradient magnitude. So it makes sense to start looking for
line segments at pixels with the highest gradient magnitude.

Sorting algorithms usually require O(n log n) operations to sort n values. However, a simple pixel
pseudo-ordering is possible in linear-time. To this aim, 1024 bins are created corresponding to equal
gradient magnitude intervals between zero and the largest observed value on the image. Pixels are
classified into the bins according to its gradient magnitude. LSD uses first seed pixels from the bin
of the largest gradient magnitudes; then it takes seed pixels from the second bin, and so on until
exhaustion of all bins. 1024 bins are enough to sort almost strictly the gradient values when the gray
level values are quantized in the integer range [0,255].

2.4 Gradient threshold

Pixels with small gradient magnitude correspond to flat zones or slow gradients. Also, they naturally
present a higher error in the gradient computation due to the quantization of their values. In LSD the
pixels with gradient magnitude smaller than ρ are therefore rejected and not used in the construction
of line-support regions or rectangles.

Assuming a quantization noise n and an ideal image i we observe:

ĩ = i + n ∇ĩ = ∇i +∇n.

We have (see figure 8)

|angle error| ≤ arcsin

(
q

|∇i|

)
,

where q is a bound on |∇n|. The criterion used is to reject pixels where the angle error is larger than
the angle tolerance τ used in the region growing algorithm. That is, we impose |angle error| ≤ τ and
we get

ρ =
q

sin τ
.

The threshold ρ is set using the last expression where q is a bound on the possible error in the
gradient value due to quantization effects [1], and τ is the angle tolerance to be used in the region
growing algorithm.

8

Figure 8: Estimation of the angle error due to quantization noise.

In the usual case, the pixel values are quantized to integer values in {0, 1, . . . , 255}. Thus, the
maximal possible error in the gradient is 2 (when adjacent pixels have quantization errors of one that
do not compensate). Thus, we set q = 2. This value will not, however, give good results if the image
intensity range differs significantly from the [0,255] interval.

2.5 Region Growing

Starting from a pixel in the ordered list of unused pixels, the seed, a region growing algorithm is
applied to form a line-support region. Recursively, the unused neighbors of the pixels already in the
region are tested, and the ones whose level-line angle is equal to the region angle θregion up to a
tolerance τ are added to the region. The initial region angle θregion is the level-line angle of the seed
point, and each time a pixel is added to the region the region angle value is updated to

arctan

(∑
j sin(level-line-anglej)∑
j cos(level-line-anglej)

)

where the index j runs over the pixels in the region. If we associate to each pixel in the region a
unitary vector with its level-line angle, the latter formula corresponds to the angle of the mean vector.
The process is repeated until no other pixel can be added to the region. The following pseudo-code
gives a precise definition:

An 8-connected neighborhood is used, so the neighbors of pixel i(x, y) are i(x−1, y−1), i(x, y−1),
i(x + 1, y − 1), i(x− 1, y), i(x + 1, y), i(x− 1, y + 1), i(x, y + 1), and i(x + 1, y + 1).

The tolerance τ is set to 22.5 degree or π/8 radian, that corresponds to a 45 degree range or 1/8
of the full range of orientations. It was chosen because it is near the largest possible value that still
makes sense to call a pixel ”oriented like the rectangle”. What is important is not the exact value
but the order of magnitude, so it was set to obtain p = 1/8. Figure 9 shows a typical example. On
the left we see a detail of a noisy edge. Next to it is the result of the region growing algorithm for τ
set to 11.25, 22.5, and 45 degree, respectively. The first case is too restrictive and the region is too
small; with 45 degree regions often expand too far from the edge; 22.5 is a good compromise.

Regions that could be obtained with a smaller value are also obtained in this way. In the validation
process, smaller values of the precision p are also tested, so the value of τ only affects the region
growing algorithm and not the validation.

9

The initial point P is added to the Region θregion is set to the level-line angle of pixel P ;1

Sx ← cos(θregion);2

Sy ← sin(θregion);3

foreach For each pixel P in the Region do4

foreach pixel Q neighbor of P and Status(Q) 6= USED do5

if AngleDifference (θregion, level-line-angle(Q)) < τ then6

Add Q to the Region;7

Status(Q)← USED;8

Sx ← Sx + cos(LevelLineAngle(Q));9

Sy ← Sy + sin(LevelLineAngle(Q));10

θregion ← arctan(Sy/Sx);11

end12

end13

end14

Figure 9: Examples of region growing starting at the middle top pixel for three values of the angle
tolerance. From left to right: image; τ = 11.25; τ = 22.5; τ = 45.

10

2.6 Rectangular Approximation

A line segment corresponds to a geometrical event, a rectangle. Before evaluating a line-support
region, the rectangle associated with it must be found. The region of pixels is interpreted as a solid
object and the gradient magnitude of each pixel is used as the “mass” of that point. Then, the center
of mass of the region is selected as the center of the rectangle and the main direction of the rectangle
is set to the first inertia axis of the region. Finally, the width and length of the rectangles are set to
the smallest values that make the rectangle to cover the full line-support region.

The center of the rectangle (cx, cy) is set to

cx =

∑
j∈Region G(j) · x(j)∑

j∈Region G(j)

cy =

∑
j∈Region G(j) · y(j)∑

j∈Region G(j)

where G(j) is the gradient magnitude of pixel j, and the index j runs over the pixels in the region. The
main rectangle’s angle is set to the angle of the eigenvector associated with the smallest eigenvalue
of the matrix

M =

(
mxx mxy

mxy myy

)
with

mxx =

∑
j∈Region G(j) · (x(j)− cx)

2∑
j∈Region G(j)

myy =

∑
j∈Region G(j) · (y(j)− cy)

2∑
j∈Region G(j)

mxy =

∑
j∈Region G(j) · (x(j)− cx)(y(j)− cy)∑

j∈Region G(j)
.

2.7 NFA Computation

A key concept in the validation of a rectangle is that of p-aligned points, namely the pixels in the
rectangle whose level-line angle is equal to the rectangle’s main orientation, up to a tolerance pπ.
The precision p is initially set to the value τ/π, but other values are also tested as is explain in the
section ”Rectangle Improvement”; a total of γ different values for p are tried. The total number of
pixels in the rectangle is denoted by n and the number of p-aligned points is denoted by k (we drop
r and i when they are implicit to simplify the notation). Then, the number of false alarms (NFA)
associated with the rectangle r is

NFA(r) = (NM)5/2γ · b(n, k, p)

where N and M are the number of columns and rows of the image (after scaling), and b(n, k, p) is
the binomial tail b(n, k, p) =

∑n
j=k

(
n
j

)
pj(1− p)n−j.

All in all, for each rectangle being evaluated and given a precision p, the numbers k and n are
counted, and then the NFA value is computed by

NFA(r) = (NM)5/2γ ·
n∑

j=k

(
n

j

)
pj(1− p)n−j.

The rectangles with NFA(r) ≤ ε are validated as detections.

11

Figure 10: Result of LSD for the image on the left for three different ε values: ε = 1, ε = 10−1, and
ε = 10−2.

As stated before, and following Desolneux, Moisan, and Morel [3, 4], we set ε = 1 once for all. Here
we will only show an experiment illustrating the stability of the result relative to ε value. Figure 10
shows the input image and the result of LSD with ε = 1, ε = 10−1, and ε = 10−2, respectively. Only
a few small line segments disappear:

In our implementation, the computation of the binomial tail is performed using the the following
relation to the Gamma function: (

n

k

)
=

Γ(n + 1)

Γ(k + 1) · Γ(n− k + 1)
.

The Gamma function can be efficiently computed. We use the methods by Lanczos and Windschitl
as described on http://www.rskey.org/gamma.htm. To speed up the computations, the sum of the
binomial tail is truncated when the error can be bounded to be less than 10%.

2.8 Aligned Points Density

In some cases, the τ -angle-tolerance method produces a wrong interpretation. This problem can arise
when two straight edges are present in the image forming an angle between them smaller than the
tolerance τ . Figure 11 shows an example of a line-support region found (in gray) and the rectangle
corresponding to it.

Figure 11: A problem that can arise at the regions growing process.

This line-support region could be better interpreted as two thinner rectangles, one longer than
the other, forming an obtuse angle.

In LSD this problem is handled by detecting problematic line-support regions and cutting them
into two smaller regions, hoping to cut the region at the right place to solve the problem. Once a
cut region is accepted, the rectangle associated is recomputed and the algorithm is resumed.

The detection of this “angle problem” is based on the density of aligned points in the rectangle.
When this problem is not present, the rectangle is well adapted to the line-support region and the
density of aligned points is high. On the other hand, when the “angle problem” is present, as can be

12

http://www.rskey.org/gamma.htm

seen on the previous figure, the density of aligned points is low. Also, when a slightly curved edge
is being locally approximated by a sequence of straight edges, the degree of the approximation (how
many line segments are used to cover part of curve) is related to the density of aligned points ; this
means that D also controls how curves are approximated by line segments.

The density of aligned points of a rectangle is computed as the ratio of the number of aligned
points (k in the previous notation) to the area of the rectangle:

d =
k

length(r) · width(r)
.

A threshold D is defined and rectangles should have a density d larger or equal to D to be accepted.
We set D to the value 0.7 (70%) which provides good balance between solving the “angle problem”,
providing smooth approximations to curves, without over-cutting the line segments.

Two methods for cutting the region are actually tried: reduce angle tolerance and reduce region
radius. In both methods, part of the pixels in the region are kept, while the others are re-marked
again as NOT USED, so they can be used again in future line-support regions. We will describe now
these two methods:

2.8.1 Reduce angle tolerance

The first method, reduce angle tolerance, tries to guess a new tolerance τ ′ that adapts well to the
region, and then the region growing algorithm is used again with the same seed but using the newly
estimated tolerance value. When two straight regions that form an obtuse angle are present, this
method is expected to get the tolerance that would get only one of these regions, the one containing
the seed pixel.

If all the pixels in the region were used in the estimation of the tolerance, the new value would
be such that all the pixels would still be accepted. Instead, only the pixels near the seed are used.
Actually, only the pixels whose distance to the seed point is less than the width of the rectangle
initially computed are used. In that way, the size of the neighborhood used in the estimation of τ ′

adapts to the size of the region.
All the pixels in that neighborhood of the seed point are evaluated, and the new tolerance τ ′ is

set to twice the standard deviation of the level-line angles of these pixels. With this new value, the
same region growing algorithm is applied, starting from the same seed point. Before that, all the
pixels on the original regions are set to NOT USED, so the algorithm can use them again, and the
discarded ones are available for further regions.

2.8.2 Reduce region radius

The previous method, reduce angle tolerance, is tried only once, and if the resulting line-support
region fails to satisfy the density criterion a second method is repetitively tried. The idea of this
second method is to gradually remove the pixels that are farther from the seed until the criterion
is satisfied or the region is too small and rejected. This method works best when the line-support
region corresponds to a curve and the region needs to be reduced until the density criterion is satisfied,
usually meaning that a certain degree of approximation to the curve is obtained.

The distance from the seed point to the farther pixel in the region is called the radius of the
region. Each iteration of this method removes the farthest pixels of the region to reduce the region’s
radius to 75% of its value. This process is repeated until the density criterion is satisfied or until
there are not enough pixels in the region to form a meaningful rectangle. This is just a way of
gradually reducing the region until the criterion is satisfied; it could be done one pixel at a time, but
that would make the process slower.

13

2.9 Rectangle Improvement

Before rejecting a line-support region for being not meaningful (NFA > ε), LSD tries some variations
of the rectangle’s configuration initially found with the aim to get a valid one.

The relevant factors tested are the precision p used and the width of the rectangle.
The initial precision used, corresponding to the region growing tolerance τ is large enough so only

testing smaller values makes sense. If the pixels are well aligned, using a finer precision will keep the
same number of aligned points, but a smaller p yields a smaller (and therefore better) NFA.

In a similar way, it only makes sense to try to reduce the rectangle’s width because the initial
width was chosen to cover the whole line-support region. Often, reducing by one pixel the width may
reduce the number of aligned points by only a few units while reducing the total number of pixels
by a number equal to the length of the rectangle, see figure 12. This may decrease significantly the
binomial tail and therefore also the NFA.

Figure 12: A line support region that would produce a rectangle larger than the optimal one.

The rectangle improvement routine of LSD consists of the following steps:
1. try finer precisions 2. try to reduce width 3. try to reduce one side of the rectangle 4. try to

reduce the other side of the rectangle 5. try even finer precisions
If a meaningful rectangle is found (NFA ≤ ε) the improvement routine will stop after the step

that found it.
Step 1 tries the following precision values: p/2, p/4, p/8, p/16, and p/32, where p is the initial

precision value. The value that produces the best NFA (the smallest) value is kept.
Step 2 tries up to five times to reduce the rectangle width by 0.5 pixels. This means that the

tested width values are W , W − 0.5, W − 1, W − 1.5, W − 2, and W − 2.5, where W is the initial
width value. Again, the value that produces the best NFA value is kept.

Step 3 tries five times to reduce only one side of the rectangle by 0.5 pixel. This implies reducing
the width of the rectangle by 0.5 pixels but also moving the center of the rectangle by 0.25 pixels to
maintain the position of the other side of the rectangle. So the tested side displacements are 0.5, 1,
1.5, 2, and 2.5 pixels. As before, the value that produces the best NFA value is kept.

Step 4 does the same thing as step 3 on the other side of the rectangle.
Step 5 tries again to reduce the precision still more. This step tests the precision values p̂/2, p̂/4,

p̂/8, p̂/16, and p̂/32, where p̂ is the precision at the beginning of this step. The value that produces
the best NFA value is kept.

In addition to the initial precision p = τ
π
, five more values are potentially tested in step 1 and

still five more in step 5. Then γ = 11. The range of precisions covered is from p = τ
π

to p = τ
1024π

and is more than enough to consider any relevant case, the finer precision being about 0.02 degree.
Five such steps, attaining a 1 degree precision, would be enough; this refinement, however, works
better sometimes before and sometimes after the width refinement, and there is no serious caveat in
performing both.

2.10 Computational complexity

Performing a Gaussian sub-sampling and computing the image gradient, both can be performed with
a number of operations proportional to the number of pixels in the image. Then, pixels are pseudo-
ordered by a classification into bins, operation that can be done in linear time. The computational

14

time of the line-support region finding algorithm is proportional to the number of visited pixels, and
this number is equal to the total number of pixels in the regions plus the border pixels of each one.
Thus, the number of visited pixels remains proportional to the total number of pixels of the image.
The rest of the processing can be divided into two kind of tasks. The first kind, for example summing
the region mass or counting aligned points, are proportional to the total number of pixels involved
in all regions. The second kind, like computing inertia moments or computing the NFA value from
the number of aligned points, are proportional to the number of regions. Both the total number of
pixels involved and the number of regions are at most equal to the number of pixels. All in all, LSD
has an execution time proportional to the number of pixels in the image.

3 Examples

The following set of examples tries to give an idea of the kind of results obtained with LSD, both
good and bad.

chairs: Figure 13. A good result. The detected line segments correspond to empirically straight
structures in the image. The detection corresponds roughly with the perceptually expected result.

Figure 13: Chairs example.

molecule-lsd: Figure 14. Note that LSD detects locally straight edges, so each black stroke pro-
duces two detections, one for each white to black transition. Also note that there is a minimal length
that a line segment must have, and smaller ones cannot be detected. (For example, the base of the
number ’2’.) This minimal size for detection depends on the image size because the NFA increases
with the image size.

circles: Figure 15. Note that when curves are present, LSD produces short line segments corre-
sponding to curve sections that are locally straight. The result is a polygonal approximation for
curves. When the curvature is too strong LSD of course fails.

noise: Figure 16. LSD was designed to provide a good false detection control. Its false detection
control is based on automatically providing detections thresholds that prevent detections that could
happen by chance on images of noise.

15

Figure 14: LSD molecule example.

Figure 15: Circles example.

16

Figure 16: Noise example.

shadow and noise: Figure 17. A significant part of the visible straight structure in the following
image is not detected. The reasons are the slow gradient in the shadow and the presence of noise.
However, the structure can be detected by LSD at a different scale as is shown on the next example.

Figure 17: Shadow and noise example.

shadow and noise, subsampling: Figure 18. When a Gaussian sub-sampling is applied to the
previous image, the noise is partially removed and the structure is analyzed at the right scale. The
expected line segments are detected.

small: Figure 19. Due to the a contrario framework used by LSD to control the number of false
detection, the result depends on the image size: the number of tests depends on it. As a consequence,
the result of LSD may be locally different if the algorithm is applied to the full image or to a crop of
it. The following image contains a little square just under the detection limit. No detection is thus
produced. The next example, however, shows a crop of this same image and the square is indeed

17

Figure 18: Subsampling of the example on figure 17.

detected. This is the natural behavior of LSD and means that the detail level depends on the size of
the whole data being analyzed. Human perception is similar: small details often go unnoticed unless
attention is drawn to them.

Figure 19: Small example.

small, crop: Figure 20. A crop of the previous example, centered on the square. The square is
now detected.

Figure 20: Crop of the example on figure 19.

sky: Figure 21. Some regions are partially anisotropic and partially straight. Such regions can
produce unexpected detections.

gibbs: Figure 22. Image compression, Gibbs effects are responsible for many unexpected detections.

18

Figure 21: Sky example.

Figure 22: Gibbs example.

19

color: Figure 23. LSD is designed to work on gray-level images. Before applying LSD to a color
image it must be converted to a gray-level image. However, some color edges could be lost in this
conversion. For example, the following image presents a clear edge (left), but after the standard
conversion to a gray-level image (middle) the edge is lost. The reason is that the red value and the
green value are both converted to the same gray value. Thus, LSD will produce no detection (right)
because none is present in the input image to LSD (middle). The edge is lost on the color to gray
image conversion and not by LSD. An extension of LSD to deal with this (relatively rare) event is
possible but was not done in the current implementation.

Figure 23: Color example.

real world scene: Figure 24. All in all, LSD usually produces a reasonable result on real images.

Figure 24: Real world scene example.

20

4 Video

This is an example of applying LSD, frame by frame, to a video: original (43Mb) lsd version (62Mb).

References

[1] Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, Gregory Randall, LSD:
A Fast Line Segment Detector with a False Detection Control, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 32, no. 4, pp. 722-732, April 2010. http:

//doi.ieeecomputersociety.org/10.1109/TPAMI.2008.300 preprint: http://www.cmla.

ens-cachan.fr/fileadmin/Documentation/Prepublications/2008/CMLA2008-15.pdf

[2] J. Brian Burns, Allen R. Hanson, Edward M. Riseman, Extracting Straight Lines, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 4, pp. 425-455, 1986.

[3] Agnès Desolneux, Lionel Moisan, Jean-Michel Morel, Meaningful Alignments, International
Journal of Computer Vision, vol. 40, no. 1, pp. 7-23, 2000. (http://dx.doi.org/10.1023/

A:1026593302236 preprint: http://www.cmla.ens-cachan.fr/fileadmin/Documentation/

Prepublications/1999/CMLA1999-11.ps.gz

[4] Agnès Desolneux, Lionel Moisan, Jean-Michel Morel, From Gestalt Theory to Image Analysis, a
Probabilistic Approach, Springer 2008.

[5] Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, Gregory Randall,
On Straight Line Segment Detection, Journal of Mathematical Imaging and Vision, vol.
32, no. 3, pp. 313-347, November 2008. (http://dx.doi.org/10.1007/s10851-008-0102-5

preprint: http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/

2007/CMLA2007-09.pdf

21

http://www.ipol.im/pub/algo/gjmr_line_segment_detector/data/algo/gjmr_line_segment_detector/video.mov
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/data/algo/gjmr_line_segment_detector/video.lsd.mp4
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.300
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.300
http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2008/CMLA2008-15.pdf
http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2008/CMLA2008-15.pdf
(http://dx.doi.org/10.1023/A:1026593302236)>>
>> endobj
409 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [59.7327 541.3211 154.0043 554.2725]
/Subtype/Link/A<</Type/Action/S/URI/URI((http://dx.doi.org/10.1023/A:1026593302236)>>
>> endobj
410 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [219.0571 541.3211 553.7522 554.2725]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/1999/CMLA1999-11.ps.gz)>>
>> endobj
411 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [59.7327 526.8752 295.9969 539.8266]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/1999/CMLA1999-11.ps.gz)>>
>> endobj
412 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [279.5802 434.7208 553.7522 447.6722]
/Subtype/Link/A<</Type/Action/S/URI/URI((http://dx.doi.org/10.1007/s10851-008-0102-5)>>
>> endobj
413 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [120.6262 420.275 553.7522 433.2264]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf)>>
>> endobj
414 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [59.7327 405.8292 185.2621 418.7806]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf)>>
>> endobj
400 0 obj <<
/D [398 0 R /XYZ 42.5197 799.3701 null]
>> endobj
66 0 obj <<
/D [398 0 R /XYZ 42.5197 799.3701 null]
>> endobj
403 0 obj <<
/D [398 0 R /XYZ 42.5197 709.3576 null]
>> endobj
134 0 obj <<
/D [398 0 R /XYZ 42.5197 714.3389 null]
>> endobj
135 0 obj <<
/D [398 0 R /XYZ 42.5197 629.4904 null]
>> endobj
136 0 obj <<
/D [398 0 R /XYZ 42.5197 590.9682 null]
>> endobj
137 0 obj <<
/D [398 0 R /XYZ 42.5197 522.8902 null]
>> endobj
238 0 obj <<
/D [398 0 R /XYZ 42.5197 484.368 null]
>> endobj
397 0 obj <<
/Font << /F39 100 0 R /F40 103 0 R /F44 126 0 R /F58 289 0 R >>
/ProcSet [/PDF /Text]
>> endobj
291 0 obj <<
/Length1 897
/Length2 2863
/Length3 532
/Length 3478
/Filter /FlateDecode
>>
stream
x��y<����Q�)KDʣ������]4Y��J�1�`4�c,c=��Ǿ�D�!JHjHe+;e�E��9$��:���=��{����<�<������>���������	.�1�O���pM�������W��P�N)
(http://dx.doi.org/10.1023/A:1026593302236)>>
>> endobj
410 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [219.0571 541.3211 553.7522 554.2725]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/1999/CMLA1999-11.ps.gz)>>
>> endobj
411 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [59.7327 526.8752 295.9969 539.8266]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/1999/CMLA1999-11.ps.gz)>>
>> endobj
412 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [279.5802 434.7208 553.7522 447.6722]
/Subtype/Link/A<</Type/Action/S/URI/URI((http://dx.doi.org/10.1007/s10851-008-0102-5)>>
>> endobj
413 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [120.6262 420.275 553.7522 433.2264]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf)>>
>> endobj
414 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [59.7327 405.8292 185.2621 418.7806]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf)>>
>> endobj
400 0 obj <<
/D [398 0 R /XYZ 42.5197 799.3701 null]
>> endobj
66 0 obj <<
/D [398 0 R /XYZ 42.5197 799.3701 null]
>> endobj
403 0 obj <<
/D [398 0 R /XYZ 42.5197 709.3576 null]
>> endobj
134 0 obj <<
/D [398 0 R /XYZ 42.5197 714.3389 null]
>> endobj
135 0 obj <<
/D [398 0 R /XYZ 42.5197 629.4904 null]
>> endobj
136 0 obj <<
/D [398 0 R /XYZ 42.5197 590.9682 null]
>> endobj
137 0 obj <<
/D [398 0 R /XYZ 42.5197 522.8902 null]
>> endobj
238 0 obj <<
/D [398 0 R /XYZ 42.5197 484.368 null]
>> endobj
397 0 obj <<
/Font << /F39 100 0 R /F40 103 0 R /F44 126 0 R /F58 289 0 R >>
/ProcSet [/PDF /Text]
>> endobj
291 0 obj <<
/Length1 897
/Length2 2863
/Length3 532
/Length 3478
/Filter /FlateDecode
>>
stream
x��y<����Q�)KDʣ������]4Y��J�1�`4�c,c=��Ǿ�D�!JHjHe+;e�E��9$��:���=��{����<�<������>���������	.�1�O���pM�������W��P�N
http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/1999/CMLA1999-11.ps.gz
http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/1999/CMLA1999-11.ps.gz
(http://dx.doi.org/10.1007/s10851-008-0102-5)>>
>> endobj
413 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [120.6262 420.275 553.7522 433.2264]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf)>>
>> endobj
414 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [59.7327 405.8292 185.2621 418.7806]
/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf)>>
>> endobj
400 0 obj <<
/D [398 0 R /XYZ 42.5197 799.3701 null]
>> endobj
66 0 obj <<
/D [398 0 R /XYZ 42.5197 799.3701 null]
>> endobj
403 0 obj <<
/D [398 0 R /XYZ 42.5197 709.3576 null]
>> endobj
134 0 obj <<
/D [398 0 R /XYZ 42.5197 714.3389 null]
>> endobj
135 0 obj <<
/D [398 0 R /XYZ 42.5197 629.4904 null]
>> endobj
136 0 obj <<
/D [398 0 R /XYZ 42.5197 590.9682 null]
>> endobj
137 0 obj <<
/D [398 0 R /XYZ 42.5197 522.8902 null]
>> endobj
238 0 obj <<
/D [398 0 R /XYZ 42.5197 484.368 null]
>> endobj
397 0 obj <<
/Font << /F39 100 0 R /F40 103 0 R /F44 126 0 R /F58 289 0 R >>
/ProcSet [/PDF /Text]
>> endobj
291 0 obj <<
/Length1 897
/Length2 2863
/Length3 532
/Length 3478
/Filter /FlateDecode
>>
stream
x��y<����Q�
http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf
http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2007/CMLA2007-09.pdf

	Introduction
	Algorithm
	Image scaling
	Gradient computation
	Gradient Pseudo-ordering
	Gradient threshold
	Region Growing
	Rectangular Approximation
	NFA Computation
	Aligned Points Density
	Reduce angle tolerance
	Reduce region radius

	Rectangle Improvement
	Computational complexity

	Examples
	Video

