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Preface

Recent years have seen dramatic progress in shape recognition algorithms applied
to ever-growing image databases. They have been applied to image stitching, stereo
vision, image retrieval, image mosaics, solid object recognition and video and web
shape retrieval. More fundamentally, the ability of humans and animals to detect and
recognize shapes is one of the enigmas of perception. Digital images and computer
vision methods open new ways to address this enigma.

Given a dictionary of digitized shapes and a previously unobserved digital image,
the aim of shape recognition algorithms is to know whether some of the shapes in
the dictionary are present in the image. This book describes a complete method that
starts from a query image and an image database and yields a list of the images in
the database containing the query shapes.

Technically speaking there are two main issues. The first is extracting invariant
shape descriptors from digital images. Indeed, a shape can be seen from various
angles and distances and in various lights. A shape can even be partially occluded
by other shapes and still be identifiable. Because the extraction step is so crucial,
three acknowledged shape descriptors, SIFT (Scale-Invariant Feature Transform),
MSER (Maximally Stable Extremal Regions) and LLD (Level Line Descriptor) will
be introduced. 1

The second issue is deciding whether two shape descriptors are identifiable as
the same shape or not. This decision process will derive from a unique paradigm,
called the Helmholtz principle. For each decision a background model is introduced.
Then one decides whether an event of interest (such as the presence of a shape in
the image) has occurred if it has a very low probability of occurring by chance in
the background model. Thus from the statistical viewpoint shape identification goes
back to multiple hypothesis testing.

A shape descriptor is recognized if it is not likely to appear by chance in the back-
ground model. At a higher complexity level, a group of shape descriptors is recog-
nized if its spatial arrangement could not occur just by chance. These two decisions
1 In a recent review paper on affine invariant recognition written by a pool of experts, SIFT

and MSER were actually acclaimed as the best shape descriptors [123].
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rely on simple stochastic geometry and eventually compute a false alarm number
for each shape descriptor. The lower this number, the more secure the identification.
In that way most familiar simple shapes or images can be reliably identified. Many
realistic experiments show false alarm rates ranging from 10−5 to less than 10−300.

All in all these lecture notes prove that many shapes can indeed be identified.
For these shapes one needs no a priori model and no training, just one sample of the
shape and what statisticians call a background model, or a null model. In the case of
shape recognition, the term background is to be taken to the letter. By the Helmholtz
principle a shape is conspicuous if and only if it cannot be generated by the image
background on which it is perceived. The background model is therefore easily learnt
from the image database itself.

The above description should not be taken to suggest that the shape recognition
problem is solved. The methods described only apply to solid shapes and not to
deformable shapes. They only deal with individual shapes and images such as logos
or paintings, and not with wide classes of objects such as all humans, all cats or
all cars. This latter problem is known as categorization and is still widely open to
research.

The authors are indebted to their collaborators for many important comments
and corrections, particularly to Andrés Almansa, Yann Gousseau and Guoshen Yu.
David Mumford and another anonymous referee made valuable comments which
reshaped the book. All experiments were done using the public software MegaWave
(authors: Jacques Froment and Lionel Moisan). The SIFT method is also public and
downloadable.

The present theory was mainly developed at the Centre de Mathématiques et
Leurs Applications, at ENS Cachan, at the Universitat de les Illes Balears and at
IRISA, Rennes. It was partially financed for the past eight years by the Centre Na-
tional d’Etudes Spatiales, the Centre National de la Recherche Scientifique, the Of-
fice of Naval research (grant N00014-97-1-0839) and the Ministère de la Recherche
(project ISII-RNRT), and the Ministerio de Educación y Cultura (project MTM2005-
08567). Special thanks to Bernard Rougé and Wen Masters for their great interest and
support. We are indebted to Nick Chriss for numerous stylistic corrections.
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Introduction

1.1 A Single Principle

Digital images became an object of scientific interest in the seventies of the last cen-
tury. The emerging science dealing with digital images is called Computer Vision.
Computer Vision aims to give wherever possible a mathematical definition of visual
perception. It can be therefore viewed in the realm of perception theory. Images are,
however, a much more affordable object than percepts. Indeed, digital images are
sampled real or vectorial functions defined on a part of the plane, usually a rectan-
gle. They are accessible to all kinds of numerical, geometric, and statistical measure-
ments. In addition, the results of artificial perception algorithms can be confronted
to human perception. This confrontation is both advantageous and dangerous. Ex-
perimental results may easily be misinterpreted during visual inspection. The results
look disappointing when matched with our perception. Obvious objects are often
very hard to find in digital images by an algorithm.

In a recent book by Desolneux et al. [55], a general mathematical principle, the
so called Helmholtz principle, was extensively explored as a way to define all visual
percepts (gestalts) as large deviations from randomness. According to the main the-
sis of these authors one can compute detection thresholds deciding whether a given
geometric structure is present or not in each digital image. Several applications of
this principle have been developed by these authors and others for the detection of
alignments [51], boundaries [52, 35], clusters [54, 33], smooth curves and good con-
tinuations [30, 31], vanishing points [2] and robust point matches through epipolar
constraint [129].

These works make extensive use of a computed function, the so called number
of false alarms (NFA) of a perception. The NFA of a perception is the expected
number of times this perception could have arisen just by chance in the background.
An observed configuration in an image can be numerically defined as a perception if
and only if its NFA is smaller than 1. Experimental evidence has confirmed that the
NFA of many human percepts of geometric figures is actually much smaller than 1,
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typically less than 10−n where n ranges from 10 to 100 and more. See [53] and the
textbook [55].

Thus theory and experiments give a mathematical and experimental basis to the
existence of sure percepts. Their existence had been stated for a long time by phe-
nomenology, in particular the Gestalt theory [96], but without quantitative evidence.

The idea that perceptions are objects unlikely to form just by chance in a back-
ground goes back to Helmholtz [84]. This principle could not be tested until images
became digital and therefore accessible to computational experiments. Before the
above-mentioned works, there had been several attempts to define percepts as excep-
tional events. Stewart [169] proposed to detect planes in a cloud of points by what
he called the MINPRAN method. He computed the probability that MINPRAN will
“hallucinate a fit where there is none”. This probability was computed under the a
contrario assumption that the points were randomly distributed. Lowe [113] pro-
posed a detection framework based on the computation of accidental occurrence.

In other words, we can shift our attention from finding properties with
high prior expectations to those that are sufficiently constrained to be de-
tectable among a realistic distribution of accidentals.[...] Even when we do
not know the ultimate interpretation for some grouping and therefore its
particular a priori expectation, we can judge it to be significant based on the
non-accidentalness criteria.

Later Barlow [17] interpreted the perceptual goals of the neocortex as a search for
suspicious coincidences. In the same spirit, Grimson and Huttenlocher [76, 77] pro-
posed to compute shape recognition thresholds from a null model viewed as the
conspiracy of random.

There is a common sense objection to applying the Helmholtz principle to shape
recognition. Watching the sky, one often sees castles, cats and dogs in the clouds.
Humans have a high capacity for hallucinating familiar generic shapes such as faces
in rich visual environments. Thus the Helmholtz principle is not suited for all sorts
of shapes.

The situation is, however, quite different regarding more specific iconic shapes
such as letters, logos and in general solid shapes. One sees faces in the sky, but
certainly not this or that particular face. It is to be expected that any complex enough
solid shape will be recognizable in the Helmholtz sense: no random arrangement
would be able to reproduce it accurately.

The mathematics to prove this are quite simple. Let S and S ′ be two shapes ob-
served in two different images and which happen to be similar. Denote their (small)
Hausdorff distance after registration by δ = d(S,S ′). Assume we know enough of
the background model to compute the probability Pr(S, δ) = Pr(d(S, Σ) 6 δ) that
some shape in the background, Σ be as similar to S as S ′ is. If this probability is
very small one can deduce that S ′ does not look like S just by chance. Then S and S ′
will be identified as the same shape.

Digital images contain thousands of significant shape elements that constitute
their shape contents. (Several kinds of shape elements, or descriptors will be con-
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sidered in this book.) Controlling the number of wrong matches involves the com-
putation of the probability of a casual match with the background. This probability
should be very small. But also the number of tests, which can be huge, must be under
control.

Definition 1. Let I and I ′ be two images and N , N ′ the number of shape elements
in each. Let S and S ′ be two shape elements extracted from I and I ′ respectively,
lying at distance δ. We call number of false alarms of the match between S and S ′
the number

NFA(S,S ′) = N ·N ′ · Pr(d(S, Σ) 6 δ).

If NFA(S,S ′) is much smaller than 1, one deduces that S ′ could not look like S just
by chance and concludes that S and S ′ have the same shape.
There is an important phenomenological consequence: Shapes can be defined with-
out learning, that is without empirical knowledge. By definition a shape is any part
of an image which has been identified (in the sense of low NFA) at least once in
another image.

From an empirical point of view, there are two kinds of shapes. First, any solid
physical object can be photographed under many views and illuminations. If, by us-
ing the above definition, two snapshots of the same physical object happen to contain
recognizable shape elements, one may say that the object itself is identifiable. These
shape elements will constitute the object signature.

Second, humans build all kinds of standardized objects. Likewise, two different
standard objects can be identified if they stem from the same industrial process. This
also applies to the very numerous iconic planar shapes generated by human visual
communication, in particular characters and logos. In the experimental parts of this
book, we shall study the identifiability of several such iconic shapes: the lower the
NFAs they generate at a given Hausdorff distance, the more recognizable they are.

As a consequence of the present study, one can define solid shapes as equivalence
classes of recognized pairs without reference to empirical knowledge or ground truth.
Thus, one should demonstrate the existence of, say, the Coca-Cola logo just by the
fact that a certain group of shape elements appears in several images with very low
NFA for all pairwise comparisons. Experiments will compare several snapshots of
the same painting or poster, various images extracted from the same movie, or vari-
ous logos of the same firm. The aim in all cases is to single out and group in clusters
all shape elements common to both images. Conversely, the same method gives a
negative answer when two images have no shape in common. In that case the NFA
is above 1, which means that the shape is likely to occur casually in the background.

From the mathematical and numerical point of view, the main challenge in the
whole study is the accurate computation of numbers of false alarms (NFA). This
requires the computation of very small probabilities. Small probabilities cannot be
directly measured from a shape database as frequencies. Thus, a probabilistic model
of the set of all possible shapes should be built. Such a realistic experimental back-
ground model should be made of a large and representative set of all kinds of digital
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images. Unfortunately, there is no available probabilistic model for a large set of
images. It is as hopeless as building a global model of the world. Even if such a
model were available, one would still face the challenge of computing accurately the
probability of very rare events in this world model.

Fortunately enough it is possible to overcome or rather to circumvent these two
obstacles. The only information needed is the probability for a background shape to
be very close to a given query shape. By a geometric independence argument, this
probability will be made into a product of much larger probabilities. These probabil-
ities instead become observable as frequencies in a small image database.

1.2 Shape Invariants and Consequences

1.2.1 Shape Distortions

In order to find the shape invariance classes, it suffices to give a rough typology of the
transformations that affect images but not our recognition of the shapes they contain.
Following Lisani et al. [110], the main classes of perturbations which do not affect
recognition are:

1. Changes in the color and luminance scales (contrast changes). According to
Gestaltists Attneave [13] and Wertheimer [179], shape perception is independent
of the gray level scale or of measured colors.

The concentration of information in contours is illustrated by the
remarkable similar appearance of objects alike in contour and different
otherwise. The “same” triangle, for example, may be either white on
black or green on white. Even more impressive is the familiar fact that
an artist’s sketch, in which lines are substituted for sharp color gradi-
ents, may constitute a readily identifiable representation of a person or
thing. Attneave, 1954.

I stand at the window and see a house, trees, sky.
Theoretically I might say there were 327 brightnesses and nuances of
color. Do I have “327”? No. I have sky, house, and trees. It is impossible
to achieve “327” as such. And yet even though such droll calculation
were possible and implied, say, for the house 120, the trees 90, the sky
117 – I should at least have this arrangement and division of the total,
and not, say, 127 and 100 and 100; or 150 and 177. Wertheimer, 1923.

Refer to Fig. 1.1 designed by E. H. Adelson for a striking illustration of illumi-
nation invariance.

2. Occlusions and background modification. Shape recognition can also be per-
formed in spite of occlusion and varying background, as shown in Fig. 1.2. The
phenomenology of occlusion was thoroughly studied by Kanizsa [96] who ar-
gues that occlusion is always present in every day vision: most objects are par-
tially hidden by others. Human perception must therefore be able to recognize
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Fig. 1.1. Contrast change invariance. In the left hand image, the A and B squares have
exactly the same gray level. This incredible fact is easily checked in the right hand im-
age where A and B are linked by two rectangles with the same gray level. This experi-
ment by E.H. Adelson illustrates the unreliability of brightness perception and the invari-
ance of shape recognition with respect to illumination changes. (Courtesy E.H. Adelson,
http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html)

partial shapes. Conversely, if a shape occludes a background, its recognition is
invariant to changes in the background. This independence of shape recognition
from its background is known in perception psychology as the figure-background
problem (Rubin [154]). The figure-background problem is part of the occlusion
problem. A shape is superimposed on a background, which can be made of var-
ious objects. How can the shape be singled out from that clutter? This poses a
dilemma. Extract the shape and then recognize it or extract it because it has been
recognized?

3. Classical noise and blur, inherent to any perception task and to any image gen-
erated according to Shannon’s theory.

4. Geometrical distortions or deformations. Perspective is deeply incorporated
in human perception. Humans can recognize objects and shapes under perspec-
tive distortion as long as perspective is not too strong. Recognition is also invari-
ant to elastic deformations, always within some limits.

The previous four invariant properties fix requirements a good image representa-
tion should comply with. It will be necessary to formulate a mathematical model for
each of them and to derive a well adapted image representation.

1. a) The local contrast invariance requirement. A digital image is usually de-
fined as a function u(x), where u(x) represents the gray level or luminance
at x. The first task is to extract from the image topological information in-
dependent from the varying and unknown contrast change function of the
optical or biological apparatus. One can model such a contrast change func-
tion as any continuous increasing function g from R+ to R+. The real datum
corresponding to the observed u could be as well any image g(u). This sim-
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Fig. 1.2. Left: According to Kanizsa and his school, shapes can be recognized even when
they undergo several occlusions. Our perception is trained to recognize shapes which are only
seeable in part. Here the occluded cross can be easily recovered. Right: the figure-background
problem. Our perception is adapted to recover a figure on the foreground, independently from
the background

ple argument can lead to select the level sets of the image [162] or its set of
level lines as a complete contrast invariant image description [37]. If u is of
class say C1, then the level lines are the connected components of u−1(λ),
which are C1 curves for almost every λ ∈ R. This is the choice adopted by
the LLD (level line descriptor) and MSER (maximally stable extremal re-
gions) methods. Another way to handle the contrast invariance requirement
is to encode only the direction of the gradient of u, Du

|Du| and not the gradient
Du itself. Indeed, the direction of gradient is normal to the level line and is
not altered by any increasing contrast change. This is the way adopted by
the SIFT method to cope with contrast changes.

b) The concentration of information requirement. Somewhat in contradic-
tion to this contrast invariance principle, the Gestaltist Attneave [13] as-
serted that “Information is concentrated along contours (i.e., regions where
color changes abruptly)”. Indeed not all the level lines are needed to have a
complete shape description. Most of them are due to noise or to tiny illumi-
nation changes. Thus, it makes sense to select only the most contrasted level
lines. That is to say, those along which the gradient of u is large enough.
Such a selection is not invariant to all contrast changes, since it explicitly
uses the gradient value. However, it is still invariant to affine global contrast
changes. Figure 1.3 shows an example of such level lines selection. The se-
lection of the most contrasted level lines will be the subject of Chap. 2. It
will be applied to the LLD and the MSER methods. The SIFT methods ac-
tually weights its gradient orientation histograms by the gradient magnitude
(see Chap. 10).

2. The occlusion and figure-background requirements. Even the best adapted
choice of level lines is not totally suited to describing image parts. Indeed, when
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Fig. 1.3. Top left: original image, 83,759 level lines. Top right: meaningful boundaries (883
level lines). Bottom: reconstruction from the meaningful boundaries. Only 883 boundaries
remain. The structure of the image is preserved and perceptual loss is very weak. The LLD
and MSER methods use these boundaries for building up normalized shape descriptors. See
Chap. 4

a shape A partially occludes a shape B, the level lines of the resulting image
are a concatenation of pieces of the level lines belonging to A and to B. This is
shown with a very simple example in Fig. 1.4. Even if a shape is not occluded,
but simply occludes its own background, there may be no level line surrounding
the whole shape, as shown in Fig. 1.5. These remarks show that whole level lines
are too big and too sensitive to occlusion. In order to overcome this obstacle the
general idea is to build shape recognition on shape elements as local as possible.
The SIFT method takes small image patches. The LLD method splits level lines
into small pieces.

3. The smoothing requirement. It is an easy experiment to check that shapes are
easily recognized in images subject to noise. This means that shape information
is not affected by noise. Noise introduces details which are too fine (in relation
to the essential shape information) to be perceptually relevant in terms of recog-
nition. Quoting Attneave (ibid., 1954):

It appears, then, that when some portion of the visual field contains
a quantity of information grossly in excess of the observer’s percep-
tual capacity, he treats those components of information which do not
have redundant representation somewhat as a statistician treats “error
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Fig. 1.4. Left: oval occluding a cross. Right: the level lines of the resulting image. While the
boundary of the oval can be recovered as a full level line, the boundary of the cross concate-
nates with the oval boundary. Thus recognition cannot be based on complete level lines, but it
can still be based on pieces of level lines, as made by the LLD method

Fig. 1.5. Left: cross on a background with an oval occluding a rectangle. The cross is wholly in
view. All the same, its shape does not appear as a single level line because of the background.
As in Fig. 1.4, one sees that the level lines must be broken into pieces to get clues of each
single shape

variance”, averaging out particulars and abstracting certain statistical
homogeneities.

Hence, a correct image representation, which does not get lost in textural details
and noise requires a previous smoothing. This fact is illustrated by Fig. 1.6. The
object on the right was obtained by smoothing the one on the left. Both objects
differ in their small details. Nevertheless, most people would recognize a black
disk on both sides. Thus most shape recognition methods perform some sort
of smoothing. The SIFT method applies the heat equation (which is not affine
invariant) and the LLD method uses the affine scale space equation.

4. Geometric invariance requirements. Image representations (a set of meaning-
ful level lines, for instance) have to be invariant to weak projective transfor-
mations. Allowing invariance to any projective transformation does not make
sense, since one cannot recognize shapes under strong perspectives. Besides, it
can be shown that all planar curves within a large class can be mapped arbi-
trarily close to a circle by projective transformations. This result was reported
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Fig. 1.6. One can immediately see that both objects are disks with approximately the same
size. The second one is obtained from the first by the affine curvature equation [5]. The main
ideas behind such a curvature equation were anticipated by Attneave, who proposed to smooth
silhouettes by blurring and then enhancing the resulting image to get a smooth silhouette:
“somewhat as if the photograph of the object were blurred and then printed on high-contrast
paper”

by Åström in [12], where it is also shown that given a finite set of m Jordan
curves C1, . . . , Cm, one can find a Jordan curve C and m projective transforma-
tions p1, . . . , pm, such that pi(C) is arbitrarily close to Ci, for all i ∈ {1, . . . ,m}.
Hence, in general, schemes based on projective normalization of Jordan curves
are not possible. Another argument against general projective invariance is that,
despite some interesting attempts [64], there is no practical way to define a pro-
jective invariant local smoothing. From this viewpoint, affine invariant smooth-
ing is the best compromise [5].

1.3 General Overview

The considerations on identification of Sect. 1.1 should not overshadow the other
aspects of shape modeling discussed in Sect. 1.2. It is a general agreement that four
main tasks must be performed properly on digital images to realize shape identifica-
tion: extraction, encoding, recognition, and grouping. We shall review them in turn
and see how they can be performed in a way matching all invariance requirements.

1.3.1 Extraction of Shape Elements

The first task is to define the shape elements to be compared. Indeed, images are not
compared globally, but detail-to-detail and up to several geometric and photometric
perturbations which can alter them drastically. In the huge amount of raw information
contained in a digital image, one therefore has to define the invariant features which
will become shape characteristics. This part of the programme will be accomplished
by carefully translating several psychophysical invariance laws in mathematical and
numerical terms. Following the Gestalt invariance laws proposed by Wertheimer,
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Attneave and Kanizsa [179, 13, 96], Sect. 1.2 has shown that the shape elements
involved in shape recognition must be

1. invariant to contrast changes;
2. independent of the viewpoint, and therefore covariant by a subgroup of the pro-

jective group;
3. insensitive to the noise inherent to any image acquisition device;
4. robust to partial occlusions, and therefore local enough;
5. robust to sub-sampling, which is nothing but a zoom out.

LLD and MSER Descriptors

The invariance and robustness requirements led at least two groups of researchers to
the conclusion that shape elements must be obtained from contrasted enough pieces
of image level lines. Indeed, level lines are contrast invariant, covariant to any image
deformation. The well contrasted level lines are also moderately sensitive to noise.
The MSER method [119] uses the so called Maximally Stable Extremal Regions
whose boundaries are nothing but well contrasted level lines. The LLD method [110,
140, 141] uses well contrasted pieces of level lines. This makes the method more
insensitive to occlusions and other local shape perturbations. In the LLD method
level lines are adequately smoothed by an affine invariant smoothing process. Chap. 2
deals with the extraction of LLD (or MSER) and displays many experiments. The
numerical challenge is to extract as few level lines as possible from an image with
no loss in shape contents.

To summarize, LLDs satisfy the requirements 1-4, but not the zoom invariance 5.
We shall see in Sect. 10.2.2 how to make them zoom-invariant too. Level line affine
smoothing is only addressed briefly in Sect. 3.3. This section explains why the ro-
bustness to noise and the invariance properties single out the affine curve scale space
as the best multiscale representation of a planar curve.

SIFT Descriptors

We shall compare LLD and MSER to SIFT, another popular shape descriptor. SIFT
stands for Scale Invariant Feature Transformation. SIFT descriptors are local image
patches computed by the following steps:

• Simulate by Gaussian convolutions followed by sub-samplings various image
zoom-outs;

• Extract scale and similarity covariant feature points at all zoom factors;
• Build a contrast invariant code of a local patch around each feature point. The

size of the local patch is proportional to its zoom-out scale.

More details will be given in Chap. 10. It is easy to check that SIFT descriptors
satisfy the requirements 1 and 3-5 of Sect. 1.3.1. As for the second requirement,
SIFT descriptors are clearly similarity covariant but not affine covariant.
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These considerations explain why we actually compared two main methods and
did not bring up just one. There is no method making good all five requirements.
It is not even clear that there will ever be one, because some compromise between
the incompatible five requirements must be met. For instance a full affine invariance
increases the size of the shape elements and decreases the locality. Also, affine trans-
formations do not commute with zoom-ins, because affine transformations do not
commute with convolutions.

In summary the LLD method matches all requirements except one and the SIFT
method matches all requirements except one. Fortunately enough we will see first
that both methods eventually lead to comparable results. In fact, the main identifi-
cation tools developed in this book apply to all mentioned recognition methods, as
demonstrated in Chap. 10 and 11.

1.3.2 Shape Element Encoding

After the extraction of shape elements has been performed the second task in view
is the invariant geometric encoding of the shape elements, be them pieces of level
lines or local patches. For the level lines (MSER and LLD), this is a tricky geometric
computational issue. It is treated in Part II. This part describes procedures to locally
encode the level lines to obtain LLDs, namely Level Lines Descriptors. Such local
encoding must be robust with respect to partial occlusions.
The main step in local encoding is the choice of intrinsic local frames and scales
associated with each shape element. Chap. 3 describes a way to compute stable di-
rections for LLDs. These directions are then used in Chap. 4 to extract similarity or
affine covariant shape elements. The local invariant frames permit to build for each
LLD a normalized affine shape representative which can be directly compared to
other shape codes. Such methods eliminating the effect of a similarity or an affine
transformation are called normalization methods. The geometric normalization of
Chap. 4 will prove much more robust than classical moment normalization methods.
A normalization must also be performed for SIFT patches: choice of dominant di-
rections in the patch and similarity invariant and contrast invariant encoding of the
patch. This process is described in Chap. 10.

1.3.3 Recognition of Shape Elements

The third task and the main object of these notes is identification. This step is crucial,
and usually the Achilles’ heel of shape recognition methods. Part III is fundamental,
short though it is. It aims to answer the question: Are two given shape elements
meaningfully alike? The probabilistic modeling of the background model for LLDs
is given in Chap. 5. It is tested in Chap. 6. For the SIFT method, a background model
and the computation of NFAs are developed in Chap. 11.

1.3.4 Grouping

Using at first only local shape elements makes a recognition method robust to par-
tial occlusions. A whole shape is defined as a set of shape elements in a particular
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geometric configuration to each other. The construction of these sets is the object
of Part IV. Very interestingly, the problem can be formulated in terms of data point
clustering. Clustering is one of the main techniques of Pattern Recognition. Chap. 7
focuses on the problems of cluster validation and of stopping rules in hierarchical
clustering methods. These rules are applied to the grouping of shape elements in
Chap. 8 for LLD and 11 for SIFT. Chap. 9 discusses many experiments.

1.3.5 Algorithm Synopsis

In Appendix A are gathered some short tutorials on the references used to write these
lectures. Elements of comparison between the methods presented here and more clas-
sical ones are also developed. RANSAC, Hough transform, and geometric hashing
will be considered. The keynotes can be read independently from the main text.

Since each chapter introduces tools which are all used in the shape recognition
process, it seems useful to give a synopsis of the whole algorithm. Sect. B.1 presents
such a synopsis for LLD, Sect. B.2 does the same for MSER and Sect. B.3 for SIFT.



Part I

Extracting Image boundaries





2

Extracting Meaningful Curves from Images

Summary. The set of level lines of an image (isophotes) or topographic map is a complete
and contrast invariant representation of an image. Level lines are ordered by inclusion in a
tree structure. These two structure properties make level lines excellent candidates to shape
representatives. However, some complexity issues have to be handled: The number of level
lines in eight-bits encoded images of size 512 × 512 is typically 105. Most of them are very
small lines due to noise or micro-texture. So the stable level lines must be selected, namely the
ones that are likely to correspond to image contours. The starting point is the MSER method,
a variant of the Monasse and Guichard Fast Level Set Transform. The MSER selects a set
of level lines which are local extrema of contrast. This method will be put in the Helmholtz
framework, following the a contrario boundary detection algorithm by Desolneux, Moisan
and Morel [52], [55] and two powerful recent variants. The experiments in this chapter will
show that selecting the most meaningful level lines reduces their number by a factor 100
without significant shape contents loss.

A method which selects one out of hundred level lines in the image without significant
information loss is necessarily sophisticated. Sect. 2.1 briefly reviews the level line tree of a
digital image. Sect. 2.2 describes a first way to extract well contrasted level lines, the MSER
method. Sect. 2.3 makes an account of the Desolneux et al. maximal meaningful boundaries
and Sect. 2.4 gives a mathematical justification which was actually missing in the original
theory. Sect. 2.5 is devoted to a multiscale extension which avoids missing boundaries because
of high noise level and Sect. 2.6 deals with the so called “blue sky” effect which can lead to
over-detections in textured parts of the image.

2.1 The Level Lines Tree, or Topographic Map

A gray level digital image ud is a function defined in a rectangular grid that takes
values in a finite set, typically integer values between 0 and 255. Such a datum must
be interpolated to obtain a grid independent representation. According to Shannon’s
theory, this interpolation must be band-limited and is therefore analytical. Simpler
spline interpolation methods can provide interpolates of arbitrary regularity class Ck

for any k ∈ N. All of these interpolates yield for k > 1 level lines with a simple
topological structure.
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The following theorem makes use of the so-called Jordan curves. Let us give a
definition of this notion, which will come back in the sequel.

Definition 2. A Jordan curve is a simple closed curve, i.e. a closed curve that does
not self-intersect.

Theorem 1. Let u be a C1 image in R2. Then, for almost all λ ∈ R and for all
compact domain K ⊂ R2, the set K ∩ ∂(u−1[λ,+∞)) is a finite set of C1 Jordan
curves. These curves called the level lines of u are either closed or meet the boundary
of K at exactly two points.

These facts are easy consequences of the Sard and implicit functions theo-
rems [127]. The topographic map of an image, defined as the set of all of its level
lines, is a complete representation of an image and satisfies two main properties:

• It is invariant with respect to contrast changes. Indeed, if g is an increasing func-
tion from R to R, then u and g(u) have the same level lines (up to a set of levels
with measure 0).

• Level lines do not meet each other and are organized in a tree structure by inclu-
sion.

Numerically, the continuous image is produced by a bilinear interpolation (or-
der 1 spline) and is therefore not C1. Yet it is easily checked that at almost all levels
the level lines are Jordan curves and piecewise C1. So the above-mentionned struc-
ture properties still hold. Among the possible interpolations, the bilinear interpola-
tion presents two advantages: it is the most local of all continuous spline interpola-
tions and does not create new extrema in the image. There is no need to compute the
level lines at too many levels. It is in practice enough to take all levels n + 1

2 where
n goes from 0 to 255. This choice minimizes grid effects, as illustrated in Fig. 2.1.

Fig. 2.1. Left: level lines from the piecewise bilinear interpolated image. The quantization step
for the gray levels is 10 starting from 0. Some grid effect (pixelization) can be seen. Right:
level lines from the piecewise bilinear interpolated image with a gray level quantization step
of 10 starting at gray level 0.5. These level lines show less pixelization effects
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2.2 Matas et al. Maximally Stable Extremal Regions (MSER)

Prior to the use of level lines, shape analysis was performed in Mathematical Mor-
phology by associating with any image a family of binary images obtained by thresh-
olding the image at all levels and taking the upper level connected components of
these binary images. This yields a complete representation of the image by its so
called upper level sets. The (upper) level set of a gray level image u : R2 → R at
level λ is defined by

χλ(u) = {x ∈ R2, u(x) > λ}.

An image can be reconstructed from the whole family of its level sets, by the straight-
forward formula

u(x) = sup{λ ∈ R, x ∈ χλ(u)}.

The level lines are obtainable by simply taking the boundaries of upper level sets. The
tree structure of the topographic map will be extensively used in the sequel to build
an efficient computational representation of the level lines. The MSER method is a
variant of the above principles for shape extraction, which go back to the seventies.
We refer to the bibliographical notes for a detailed genealogy. MSER or Maximally
Stable Extremal Regions are nothing but a selection of the most robust connected
components of upper and lower level sets. This variant was introduced by J. Matas
et al. in [119] in the following terms:

In most images there are regions that can be detected with high repeata-
bility since they possess some distinguishing, invariant and stable property.
We argue that such regions (...) may serve as the elements to be put into
correspondence either in stereo matching or object recognition.

Extremal regions is the name given by the authors to the connected components of
upper or lower level sets. Maximally stable extremal regions, or MSER, are defined
as maximally contrasted regions in the following way. Let Q1, ..., Qi−1, Qi, ... be
a sequence of nested extremal regions, i.e. Qi ⊂ Qi+1 where Qi is defined by a
threshold at level i or, in other terms, Qi is an upper (resp. lower) level set at level i.
An extremal region Qi0 in the list is said to be maximally stable if the area variation
q(i) =: |Qi+1 \Qi−1|/|Qi| has a local minimum at i0, where |Q| denotes the area of
a region |Q|. Clearly the above measure is a measure of contrast along the boundary
∂Qi ofQi. Indeed, assuming that u is C1 and that the gray level increment between i
and i+1 is infinitesimal, the area |Qi+1 \Qi−1| varies least when

∫
∂Qi
|∇u| is max-

imal. It is a straightforward consequence of their definition that the MSER regions
possess the robustness and invariance properties listed in Chap. 1.2. More precisely:

• Invariance to every affine transformation of image intensities;
• Covariance to all image transformations which preserve area up to a multiplica-

tive constant. This includes affine maps;
• Stability, since only extremal regions whose support is virtually unchanged over

a range of thresholds are selected;
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• Multi-scale detection. Since no smoothing is involved, both very fine and very
large structure are detected.

The third property makes MSER fit to undergo an affine normalization permitting
the quick retrieval of similar deformed shapes across several images. Their affine
normalization is described in Chap. 4.

The rest of this chapter describes more precise contrast based level line detection
methods. Indeed, as is obvious from their definition, MSERs obey a local maximum
contrast requirement which can lead to the detection of unreliable regions. Because
of complexity issues, it is crucial to be able to retain all and only the relevant bound-
aries in each image for further shape matching.

2.3 Meaningful Boundaries

This section addresses the problem of selecting the most contrasted level lines in an
image, as in the psychophysical theory of Attneave [13]. This selection involves at
least two measurements, namely the length of the level line and its contrast. Intu-
itively, short and very contrasted level lines should be retained and less contrasted
and longer ones as well. Short and non-contrasted level lines should be ruled out
as unstable and therefore irrelevant. The correct weighting of length and contrast in
the decision is the main object of the Desolneux et al. [52] theory. These authors
proposed an a contrario method according to which a level line is a meaningful
boundary if it could not appear in noise. We shall explain this theory in the next
section and improve it in the rest of the chapter.

2.3.1 Contrasted Boundaries

Let u : R2 → R be a differentiable gray level image1. Contrast at each point is
computed as the norm of the image gradient. In order to detect level lines of u with
unexpectedly high contrast an a contrario hypothesis must be proposed, under which
the observed contrast on the level line will be unlikely. In the a contrario model con-
trast values are random independent identically distributed variables at all level line
samples. The contrast law in this a contrario model is learned from the image, and
approximated by its empirical histogram. So in the a contrario model the gradient
norm follows the law of the positive random variable X defined by

∀µ > 0, Pr(X > µ) =
#{x ∈ Γ, |Du(x)| > µ}
#{x ∈ Γ, |Du(x)| > 0}

, (2.1)

where the symbol # denotes the cardinality of a set, Γ the finite sampling grid and
the gradient Du is computed by a finite difference approximation. In the following,
the inverse repartition function is denoted by
1 If u is a bilinearly interpolated image, then it is Lipschitz continuous and piecewise C1.

Thus its gradient is a L∞ function, defined everywhere except on the mesh linking the
center of pixels, which is a negligible set.
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Hc(µ) = Pr(|Du| > µ).

Definition 3 ([52], [55]). Let Nll be the number of level lines of u. A level line C
with length l is an ε-meaningful boundary if

NFA(C) ≡ NllHc(min
x∈C
|Du(x)|)l/2 < ε, (2.2)

This quantity is called the number of false alarms (NFA) of C.

In (2.2) the number of false alarms or NFA is the product of the number of level
lines by the probability that a random curve Γ containing l

2 independent samples
has its contrast larger than minx∈C |Du(x)| everywhere. If the NFA is too small the
a contrario assumption must be rejected and we get an a contrario detection. Notice
that meaningful boundaries are not invariant with respect to all contrast changes.
Indeed, let g : R → R be a C1 function and v = g(u). Let C be a level line of u
with level λ and µ = minx∈C |Du(x)|. Then C is a level line of v with level g(λ).
Since |Dv| = |g′(u)||Du| the lines change contrast depending on g and can lose or
gain meaningfulness.
An interesting exception occurs with affine contrast changes. If g(s) = as+ b, then
|Dv| = |a| · |Du|. Hence, if a 6= 0, the inverse repartition function of the norm
of |Dv| is H ′(µ) = Hc

(
µ
|a|

)
. Therefore

H ′(min
x∈C
|Dv(x)|) = H ′(|a|min

x∈C
|Du(x)|) = Hc(min

x∈C
|Du(x)|),

and the number of false alarms ofC in v is the same as in u. This proves the following
result.

Lemma 1. Meaningful boundaries are invariant to affine contrast changes.

2.3.2 Maximal Boundaries

As Desolneux et al. [52] saw, meaningful boundaries usually appear in parallel
groups because of the blur inherent to well-sampled images. In order to eliminate
the redundancy of contrasted boundaries, these authors use the inclusion tree struc-
ture described in Sect. 2.1. Using the standard terminology of trees (nodes, branches,
leaves), remember that the nodes of the tree are the level lines of the image. The or-
dering is defined by inclusion. This means that a Jordan level line C1 is the parent
of another one C2 if it surrounds it, and there is no other one surrounding C2 and
surrounded by C1. The leaves of the tree are the level lines which do not surround
other ones.

Definition 4 ([135]). A monotone section of a tree of level lines is a part of a branch
such that each line has a unique child and where the gray level is monotone (no
contrast reversal).
A maximal monotone section is a monotone section which is not strictly included in
another one.
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Definition 5 ([52]). A level line is maximal meaningful if its NFA is minimal in a
maximal monotone section of the level line tree.

Figure 2.2 shows how negligible the information loss is when representing an image
by its maximal meaningful boundaries. They represent roughly one hundredth of all
level lines.

Fig. 2.2. Maximal meaningful boundaries. Top left: original image, 83,759 level lines. Top
right: all meaningful boundaries, 11,505 detections. Bottom: maximal meaningful boundaries;
only 883 boundaries remain, almost no detail is lost

Since maximal meaningful boundaries inherit the tree structure of the tree of level
lines, they can be used to reconstruct an image (see Fig. 2.3).

2.4 A Mathematical Justification of Meaningful Contrasted
Boundaries

In this section Def. 3 is discussed. It will be shown that this definition does not
prevent meaningful level lines from containing parts with low contrast. A simple
cleaning rule will be derived to remove these parts.
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Fig. 2.3. Left: original image, 99,829 level lines. Right: reconstruction from the 394 maximal
meaningful boundaries. The gray level is constant and equal to the average image gray level
in each connected component of the complementary of these level lines. Notice how the main
shape features are preserved, while textures are removed. This simplification and reconstruc-
tion algorithm is obtained from a pruning of the tree of level lines. Salembier and Serra [155]
call such operators connected operators

2.4.1 Interpretation of the Number of False Alarms

The following classical lemma will be used several times in this book.

Lemma 2. Let X be a real random variable. Let F (x) = Pr(X 6 x) be the repar-
tition function of X . Then, for all t ∈ (0, 1)

Pr(F (X) < t) 6 t.

In the same way, let H(x) = Pr(X > x). Then for all t ∈ [0, 1],

Pr(H(X) < t) 6 t.

Proof. Let us define the pseudo-inverse

F−1(t) = inf{s, F (s) > t}. (2.3)

Because of the convention in its definition, F is right-continuous. Hence

F ◦ F−1(t) > t.

Moreover, for all x ∈ R,

F (x) < t⇔ x < F−1(t). (2.4)

Indeed, let us first assume that F (x) < t. If x > F−1(t), then, since F is nonde-
creasing, we have F (x) > F ◦F−1(t) > t, which is a contradiction. Conversely, let
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us assume x < F−1(t). Then, F (x) > t would contradict the definition of F−1(t).
This proves the equivalence. Hence,

Pr(F (X) < t) = Pr(X < F−1(t)) by (2.4)
= Pr(∃y, y < F−1(t), X 6 y)
= sup

y<F−1(t)

F (y)

6 t again by (2.4).

The third equality is a basic convergence theorem of measure theory. Note that the
last inequality is not strict, because of the passage to the limit. The second part of the
lemma is proved in the same way by introducing H−1(t) = sup{s, H(s) > t}. The
proof is left to the reader. ut

Let us remark that if F is continuous and increasing, F−1 is really the inverse of F
and the lemma then yields an equality, and means that F (X) is a uniform variable
in (0, 1).

The A Contrario Model

Let us assume that X is a real random variable described by the inverse repartition
function H(µ) = Pr(X > µ). Assume that u is a random image such that the values
of |Du| at each point in the sample grid are independent, and follow the same law
as X . Let now E be a set of random curves (Ci) in u such that #E (the cardinality
of E) is independent of each Ci. For each i, let µi = minx∈Ci |Du(x)|. Let us
also assume that Li independent points can be chosen on Ci. The curves Ci can be
thought of as random walks with independent increments but since a finite number
of samples are selected on each curve, the law of the Ci does not really matter. Let us
finally assume that Li is independent from the pixels crossed by Ci. Such a random
model is called a contrario or background model.
A curve Ci is said to be ε-meaningful if

NFA(Ci) = #E ·H(µi)Li < ε.

Remark 1. In digital images, the independence of the values of |Du| is sound only if
the points are far enough from each other. In practice, the minimal distance will be
taken equal to 2, since a 2× 2 finite difference scheme is used to compute the image
gradient.

The following proposition justifies Def. 3.

Proposition 1. The expected number of ε-meaningful curves in a random set E of
random curves is smaller than ε.
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Proof. Let us denote byXi the binary random variable equal to 1 if Ci is meaningful
and to 0 else. Let also N = #E. Let us denote by E(X) the expectation of a random
variable X in the a contrario model. Then

E

(
N∑

i=1

Xi

)
= E

(
E

(
N∑

i=1

Xi|N

))
.

It is assumed that N is independent from the curves. Thus, conditionally to N = n,
the law of

∑N
i=1Xi is the law of

∑n
i=1 Yi, where Yi is a binary variable equal to 1 if

nH(µi)Li < ε and 0 else. By linearity of the expectation,

E

(
N∑

i=1

Xi|N = n

)
= E

(
n∑

i=1

Yi

)
=

n∑
i=1

E(Yi).

Since Yi is a Bernoulli variable, E(Yi) = Pr(Yi = 1) = Pr(nH(µi)Li < ε) =∑∞
l=0 Pr(nH(µi)Li < ε|Li = l) Pr(Li = l). Again, it is assumed that Li is inde-

pendent of the gradient distribution in the image. Thus conditionally to Li = l, the
law of nH(µi)Li is the law of nH(µi)l. Let us finally denote by (α1, · · · , αl) the l
(independent) random values of |Du| along Ci. Then,

Pr
(
nH(µi)l < ε

)
= Pr

(
H( min

16k6l
αk) <

( ε
n

)1/l
)

= Pr
(

max
16k6l

H(αk) <
( ε
n

)1/l
)

since H is nonincreasing

=
l∏

k=1

Pr
(
H(αk) <

( ε
n

)1/l
)

by independence

6
ε

n
from Lemma 2.

This term does not depend upon l. Thus

∞∑
l=0

Pr(nH(µi)Li < ε|Li = l) Pr(Li = l) 6
ε

n

∞∑
l=0

Pr(Li = l) =
ε

n
.

Hence,

E

(
N∑

i=1

Xi|N = n

)
6 ε.

This finally implies E
(∑N

i=1Xi

)
6 ε, which means exactly that the expected num-

ber of ε-meaningful curves is less than ε. ut

In this proposition, it is not assumed a priori that the Ci are level lines of u.
Indeed, in this case it cannot be asserted that the length (number of independent
points) of the curve is independent from the values of the gradient along the curve.
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Cleaning up Meaningful Boundaries

In the rest of the chapter we will deal with (necessary) improvements of the orig-
inal Desolneux et al. method. Proposition 1 asserts that if a curve is a meaningful
boundary, then it cannot be entirely generated in white noise (up to ε false detections
on average). On the other hand, can it be guaranteed that no part of a meaningful
boundary is contained in noise? Or, for a given meaningful boundary, is it possible
to give an upper bound of the size of the part of the boundary that is likely to be
contained in noise (i.e. a non-edge region)? To answer this question, let us introduce
the a posteriori length distribution

pµ(l) ≡ Pr(L > l|min
x∈C
|Du(x)| > µ), (2.5)

where the image model is a white noise, C is a level line in this image, and L its
length. Remark that for small values of µ, the position of level lines is inaccurate.
Indeed, in a region where |Du| < 1 uniformly, for any two points x and y such
that |u(x) − u(y)| = 1, then |x − y| > 1: Level lines cannot be too close. Hence,
given a reasonable value of µ (for instance 1), any small piece of curve with a point
of gradient less than µ will be removed from the meaningful level line. The next
question is "how small"? Following the same philosophy as for meaningful level
lines, let us now consider an image u with Nll (quantized) level lines. Let us also
denote by Nl the number of all possible sampled subcurves of these level lines.
(If the curves are closed with Li independent points, then Nl =

∑Nll

i=1 L
2
i .) Let us

assume that a piece of curve with length l does not contain any point with gradient
less than µ. If l satisfies Nl · pµ(l) < ε, then we can consider that this piece of curve
cannot be due to chance. On the contrary, if l does not satisfy this inequality, the
curve is more likely to have been generated by noise. The decision is to remove the
latter curves. More precisely, the algorithm is:

1. Detect meaningful boundaries.
2. For a fixed µ > 0, let L(µ) = inf{l, Nl · pµ(l) < ε}.
3. For any meaningful boundary, remove every subcurve of length L(µ) containing

a point where |Du| 6 µ.

There is a last problem though: how to compute pµ(l)? This requires the distribu-
tion law of the length of level lines in a noise image. It can be estimated empirically,
for short enough level lines. For instance, in a 500×500 image, there are many level
lines with a length less than about 1000, and the distribution is considered as accu-
rately approximated by the empirical distribution. (See Fig. 2.4.) Then, using Bayes’
rule,

pµ(l) =
∑∞

k=l Pr(minx∈C |Du(x)| > µ|L = k) Pr(L = k)∑∞
k=1 Pr(minx∈C |Du(x)| > µ|L = k) Pr(L = k)

.

By independence of the gradient values along the level lines,

pµ(l) =
∑∞

k=lHc(µ)k Pr(L = k)∑∞
k=1Hc(µ)k Pr(L = k)

. (2.6)
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Fig. 2.4. Log10 of the inverse repartition function of length of level lines in a white noise
image. The average length is about 3.5, meaning that most level lines enclose a single pixel

A new parameter, µ, has been introduced. When µ gets larger, L(µ) decreases,
so that the clean up procedure removes more numerous but smaller pieces of curves.

The choice of µ could depend on the application. Detected edges may be used
for different purposes, for instance shape recognition or image matching. If |Du| is
less than 1, then the position of level lines may be locally inaccurate. Eliminating
pieces of curves with a gradient smaller than µ = 1 for all images is therefore not
restrictive in shape recognition applications. Figure 2.5 shows an example of the
clean up procedure.

2.5 Multiscale Meaningful Boundaries

The contrast measure is an approximation of the gradient by finite differences. More
precisely, Desolneux et al. use the scheme

∂u

∂x
' ux(i, j) =

1
2
(u(i+ 1, j) + u(i+ 1, j + 1)− u(i, j)− u(i, j + 1)), (2.7)

∂u

∂y
' uy(i, j) =

1
2
(u(i, j + 1) + u(i+ 1, j + 1)− u(i, j)− u(i+ 1, j)). (2.8)

Using a 2× 2 scheme is coherent with the application of Helmholtz principle: points
at distance 2 have independent values of contrast in white noise. On the other hand,
this value is noise sensitive. Smoothing the image before computing the gradient
would partly remove noise but would also introduce local dependencies between
pixels. This would make the a contrario model false in smoothed white noise, and
false detections could be expected. Nevertheless, the a contrario model still applies if
the smoothed image is down-sampled at a lower rate, in conformity with Shannon’s
sampling theory.
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Fig. 2.5. Meaningful boundary clean up. Top left: original image. Top right: meaningful
boundaries with local histograms. See Sect. 2.6. Boundaries are found in the sky. They are
detected, because the gradient in the sky is regular due to the smoothly changing illumination.
The gradient value is about 0.2 in the sky, but the curves are so long that they are detected. This
does not contradict our detection principle: such curves are indeed exceptional in noise, since
it is very unlikely that the gradient does not attain an even smaller value on such a long curve.
What is actually contradicted is our assumption that these exceptional curves do correspond
to edges, no matter how small the contrast is. This assumption indeed implies that one is able
to distinguish arbitrary gray level changes. This is perceptually not true. Bottom: result after
the clean up procedure with a gradient threshold equal to 1

The Multiscale Algorithm

Consider a set of Ns dyadic scales {1, 2, ..., 2Ns−1}. For any level line C, let us de-
note by Cs the curve C

2s , obtained by scaling C by a factor 2−s. Let also Hs denote
the empirical contrast distribution of us, where us is obtained by downsampling u by
a factor 2s in agreement with Shannon’s theory. (That is to say, downsampling fol-
lows an adequate smoothing, for instance convolution with a prolate function [147].)

1. Compute the quantized level lines of u.
2. For each level line C with l independent points in u, compute µs, the minimal

value of |Dus| over all pixels crossed by Cs. Let

NFA(C) = Ns ·Nll min
s∈{0,··· ,Ns−1}

(Hs(µs))l/2s

. (2.9)

A curve C is an ε-meaningful multiscale boundary if NFA(C) < ε.

Thus, a curve is meaningful if and only if there exists a scale such that it is ε
Ns

meaningful in the sense of the previous section. Roughly speaking, the Ns factor
is the price to pay to have the right to test several different scales. Clearly it only
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makes sense to consider a small number of dyadic scales (say 3 or 4, since the side
of usual digital image does not much exceed 210 pixels). Since the detection depends
on log ε [51, 52], considering ε

Ns
-meaningful boundaries at each scale can eliminate

only a few lines.
The expected number of detections in a white noise image is still under control.

Proposition 2. With the same hypotheses as in Prop. 1, the expected number of ε-
meaningful multiscale boundaries in a white noise image is less than ε.

Indeed, downsampled images are still white noise images. Together with the linearity
of expectation and the proof of Prop. 1, this yields the result.

Figures 2.6 and 2.7 show the result of the multiscale algorithm on images with
quantization or additive white Gaussian noise. In Fig. 2.6 the shapes are not very
sharp because of motion blur and transparency. Level lines following contours are
very long since they surround several objects. Moreover, the background is nearly
uniform. Thus the minimal contrast value along long level lines is all the more sen-
sitive to the gradient computation. The effect is also dramatic in the noisy image of
Fig. 2.7 (Gaussian noise with standard deviation 30). Note also how the boundaries
of the main objects still coincide with level lines, in spite of the very strong noise.

Fig. 2.6. Influence of quantization noise on meaningful boundaries. Left: the original image
is coarsely quantized and has a very low contrast. This leads to bad gradient estimation and a
lot of missing detections (middle). Right: multiscale detection is less sensitive to quantization
noise and gives correct detections

2.6 Adapting Boundary Detection to Local Contrast

In the a contrario model, the values of the gradient are random variables whose dis-
tribution is empirically estimated by using the histogram of the gradient in the whole
image. The use of this global distribution yields the so-called blue sky effect. Con-
sider an image containing two parts: a contrasted or textured one (e.g. ground) and a
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Fig. 2.7. Multiscale meaningful boundaries and noise. Left: image of Fig. 2.9 with an additive
white Gaussian noise of standard deviation 30. Middle: meaningful boundaries. Since noise
dominates the gradient distribution, only six small level lines are detected. Right: multi-scale
detection using four dyadic scales. Textures are not detected, meaning that noisy textures are
in this case not different enough from noise to be detected. On the other hand, main structures
remain. This allows one to empirically check the stability of the topographic map in spite of a
significant amount of noise

smooth one (e.g. sky), see Fig. 2.9. There is an empirical overdetection in the ground,
and an underdetection in the sky. Indeed, the sky only contributes small values in the
histogram. Thus the algorithm tends to detect any level line which is more contrasted
than the sky. So nearly anything is detected in the ground. Conversely, the contrasted
ground may make the detection more difficult for regions with small contrast, such
as a cloudy sky. This is not coherent with human vision, which locally adapts per-
ception to contrast.
This section addresses the local adaptiveness to contrast by modifying the meaning-
ful boundary model. It describes a local detection algorithm which extends the global
one.

2.6.1 Local Contrast

Let us assume that a closed boundary has been detected. It divides the image into
two connected components: the interior and the exterior of the curve. Let us com-
pute the empirical contrast distribution in each component. Meaningful boundaries
are then detected, independently in each connected component. This procedure can
now be recursively applied. Since the tree of level lines of a quantized image has a
finite depth, it is clear that the detection procedure stops after a finite number of steps.

Two problems make things slightly more delicate. First, the order that is used
to describe the image boundaries may have an influence. The obvious solution is to
treat first the most meaningful boundary at each step.
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A second problem is purely computational and involves open boundaries, that is
the ones whose endpoints belong to the image border. They still cut the image into
two connected components, that should be processed in the same way since there is
no clear notion of interior and exterior. However, in order to make the tree structure
unique, exactly one of these components is considered to be the interior one. Open
boundaries are then closed following the shortest path along the border of the image.
This choice is only an algorithmic one, and is arbitrary from a perceptual point of
view [135]. To circumvent this lack of symmetry between both connected compo-
nents, the detection is first applied to open boundaries until no new open boundaries
are detected. The procedure is then applied to closed boundaries.

Local Algorithm

Let us call R0 the root boundary, that is the (non-meaningful) boundary containing
all the image. If C is a boundary, its interior is denoted by IntC. For an illustration
of the next algorithm, we refer to Fig. 2.8.

1. Set R← R0. (Local root).
2. Set M, the set of already stored in R meaningful boundaries. Initially, M is

empty.
3. Let R′ ← R\ ∪C∈M IntC.
4. Compute the histogram of |Du| in R′.
5. Use this histogram and detect the maximal meaningful boundaries included in
R′. Let us call total maximal boundaries, the meaningful boundariesC satisfying{

Int (C ′) ( Int (C)⇒ NFA(C) < NFA(C ′)
Int (C) ⊂ Int (C ′)⇒ NFA(C) 6 NFA(C ′).

(2.10)

The set of total maximal boundaries is denoted byN . In other words, the bound-
aries inN have an optimal NFA, since they are more meaningful than boundaries
which contain them or in which they are contained. This assumption is stronger
than the maximality defined in Sect. 2.3.2 since the NFA comparison is not re-
stricted to monotone sections. The subtree with root equal to R that remains by
keeping only the boundaries in N has only two levels: the local root R, and
N . Since the interior of open boundaries is arbitrary, the detection of open and
closed boundaries are not mixed. In practice, this means that if an open mean-
ingful boundary C is detected, the definition of total maximal boundary (2.10)
is only applied to open boundaries containing C or contained in C.

6. If N 6= ∅, then new boundaries have been detected in the complementary of the
already detected ones. Then,
a) Set M = M∪ N . By construction, all the closed boundaries in M have

disjoint interiors.
b) return to step 3.

7. IfN = ∅, there are no new boundaries in the local root and in the complementary
of the currently detected boundaries. The search is then resumed at lower levels
of the tree as follows. For any boundary C ∈M,
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a) Store C.
b) Set R← C, andM← ∅.
c) Return to step 3.

(a)

R
�

(b)

R3
R2

R1

(c)

R4

(d)

R4

(e)

Fig. 2.8. Illustrates the local meaningful boundary algorithm. (a) the initial boundaries. They
are oriented so that the tangent and the inner normal form a direct frame. The NFA of each
boundary is computed. There are three total maximal boundaries (in solid line); two are open,
one is closed. While some open curves are detected, the closed ones are skipped. (b) Compute
the contrast histogram in the complementary set of the interior of the open detected boundaries
and resume the search in this part of the image, which is the region R′. The closed boundary
is total maximal meaningful again. However, no new open boundaries are detected. Thus, this
closed boundary is kept. (c) The search is resumed (with recomputed histogram) in the exterior
(white part) of the detected boundaries, until new ones can no longer be found, which is the
case on the figure. When this is over, compute the local contrast histogram in each region
R1, R2, R3 and look for boundaries inside them. (d) A (closed) total maximal boundary
R4 has been detected in R1. Compute the local histogram in R1\R4 and detect boundaries.
(e) Finally, scan for boundaries in R4 with new local contrast histogram. Since nothing is
detected, the output is the boundaries of R1, R2, R3 and R4

Remark 2. Each boundary may be tested more than once. Thus, the number of false
alarms has to be multiplied by the maximal number of boundary visits, which is
bounded from above by the depth of the level lines tree. In fact, each detected bound-
ary often lies in the middle of the local root, and this divides the tree depth by 2. Thus
the maximal number of boundary visits is of the order of the logarithm of the initial
tree depth. In practice, it never exceeds 100.

2.6.2 Experiments on Locally Contrasted Boundaries

Figure 2.9 shows the difference between the detection with a global contrast his-
togram and the updated local histogram. To give an idea of the magnitude of the num-
ber of false alarms, the boundary separating sky and foreground has NFA 10−357.
This means that such contrasted lines are expected to occur less than once in 10357

level lines taken from white noise images. The smaller boundaries around the open-
ing on the top of the tower have 10−10 NFA.

The effect of local contrast in boundaries detection is twofold.
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Fig. 2.9. Influence of local contrast. From left to right: original image, maximal meaningful
boundaries, local maximal meaningful boundaries. There are 280,000 boundaries in the ini-
tial image (for a gray level quantization step of 1), 652 in the second one and 193 in the last
one. Texture is removed since local contrast (for instance) on the church tower is much more
demanding than the global histogram. As the texture is uniform, no level line is a large devia-
tion to the empirical local contrast, yielding no detection. This is very good for shape analysis
where it is often desirable to distinguish texture from real shapes

1. Textures are eliminated.
2. Local contrast makes curves in low contrasted areas more detectable.

This was expected since, in textured regions (as on the tower), the local contrast
values are larger than in the rest of the image. Thus, this increases the NFA of
boundaries; most of them simply disappear in textured regions. This is a masking
phenomenon in the Gestalt terminology [96].
On the other hand, some lines are detected due to the illumination gradient (see
Fig. 2.5). They can be due to the vicinity of the light source or to the variation of
the orientation of the surface of a three dimensional object with respect to the light
source. Such lines do not correspond to silhouettes of physical objects. Nevertheless,
it is reasonable to detect them as remarkable structures.

What is the impact of the preceding study regarding shape recognition? It is well
known that texture is much damaged by compression. Thus, the precise geometry
of level lines in texture may depend very much on the image source (quality, com-
pression rate, etc). Moreover, they are very complex, and will yield many encoded
pieces of curves when the procedure of Chap. 4 is applied. The shape content of a
texture is therefore both huge in quantity and unreliable. The computational cost to
handle it may therefore be too high for some applications. Thus it may be useful to
automatically remove contrasted regions corresponding to texture.
The argument above is reversed for stereo image registration or motion estimation. In
this case, it is a priori known that the images under comparison are nearly the same
image. The goal is to register them extensively. In this application, textures generate
many level lines which can be tracked and should not be eliminated.
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2.7 Bibliographic Notes

The presentation of this chapter follows [35], which improved the boundary detec-
tion method proposed in [52]. The next paragraphs give some genealogy for edge
detection, level lines, level sets, and the topographic map.

2.7.1 Edge Detection

It is a well known fact that shape information in images is concentrated along regions
where color or gray level changes abruptly [13, 117]. Since Marr and Hildreth’s
seminal work on edge detection [118], the effort on extracting shape information
from images has been mainly concentrated on local methods. Among these methods,
which are commonly referred as edge detectors, Canny [27] and Canny-Deriche [48]
filters are certainly the most widely used.

Classical edge detectors have two problems. The first is that they depend on (at
least) two parameters, the threshold on the contrast and the degree of smoothing.
Both are hard to estimate and are usually fixed manually. The second problem with
these methods is that they detect points rather than structures. The edge points have
to be connected by chaining algorithms which involve further parameters.

2.7.2 Meaningful Boundaries vs. Haralick’s Detector

Following Haralick [80], edges are the maxima of the gradient norm in the direction
of the gradient, such that the gradient is larger than a given threshold. Thus, for a gray
level image u, they are the zero-crossings of D2u(Du,Du). Since this quantity is
numerically sensitive to noise, a multiscale strategy à la Marr is applied. In practice,
u is first convolved with a Gaussian with standard deviation σ. Let us denote by gσ

this Gaussian and set uσ = gσ ∗ u. Edge pixels are defined such that |Duσ| > µ and
D2uσ(Duσ, Duσ) has a different sign for neighboring pixels. There have been some
attempts to automatically determine the scale parameter σ [106], but edge detection
widely remains multiscale as predicted by Marr [117]. In practice, it is quite difficult
to track edges back to small scales. The multiscale meaningful boundaries detection
of Sect. 2.5 allows for the consideration of various scales while keeping detection
thresholds completely automatic. Moreover, the number of scales has a logarithmic
influence.

A second problem is that Haralick’s detector provides us with a set of points or
curves containing only a few pixels. The way they should be connected is far from
obvious. It may lead to a very high computational complexity and depends on several
sensitive parameters. Level lines are Jordan curves, and do not have this problem.

Last but not least, Haralick’s operator is inefficient for corners and junctions. In-
deed, at those points, the gradient direction is very badly estimated and edges may be
severely cut. Additional algorithms are necessary to reconnect pieces of edges as op-
posed to level lines nicely bifurcating at T-junctions and giving the different bound-
aries. (See Sect. 2.1.) Figure 2.10 shows the meaningful boundaries and Canny’s fil-
ter (which is an optimized version of Haralick’s method) near two junctions. Edges
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detected in that way often are very short and require additional and somewhat un-
reliable linking procedures. The behavior of the level lines around the T-junctions
is quite clear. When extracting shape elements by local encoding, all the different
configurations near the junctions will be considered. Clearly, meaningful level lines
provide a set of curves which is more reliable and directly usable at the expense of a
more heavy computational cost (a few seconds for a typical 512 × 512 images, half
the time being dedicated to the computation of the level lines tree and half to the
selection of meaningful boundaries).

Fig. 2.10. Junction and level lines. Left: original image. Middle: Haralick’s detector imple-
mented with Canny’s filter. Note how contours are broken near the junctions. Right: detailed
view of meaningful boundaries on the region. Compare the accuracy of level lines on the plate
with the detected edges at the same place

2.7.3 Level Lines and Shapes

Following [110], Chap. 1 asserted that the set of level lines of a digital image was
a natural representation of its shape content. Indeed, it provides a geometric infor-
mation invariant to contrast changes. Moreover, no chaining procedure is needed
since level lines are already curves. This chapter presented briefly the bilinear level
line tree proposed by Lisani et al. [111]. For a detailed account, see the book [55].
Whereas edge detectors usually fail near T-junctions (and additional treatments are
necessary), there are several level lines at a junction (see Fig. 2.11 and [36]).

2.7.4 Tree of Shapes, FLST, and MSER

Prior to the use of level lines, shape analysis was performed in Mathematical Mor-
phology by associating with any image a family of binary images obtained by thresh-
olding at all levels. This yields a complete representation of the image by its upper
level sets [120, 162]. The tree structure of the topographic map has been extensively
used to build an efficient computational representation of the level lines. See the
Monasse et al. [136, 15, 111] algorithms. An efficient region growing algorithm, the
Fast Level Set Transform allows one to compute the tree of level lines for digital
images (constant in each pixel) or bilinearly interpolated images [111]. The idea of
considering the level lines of the bilinear interpolated image was also independently
proposed in the so-called Digital Morse Theory [43].



36 2 Extracting Meaningful Curves from Images

Fig. 2.11. Level lines and T-junctions. Depending on the gray level configuration between
objects and background, level lines may follow or not (as on the figure) the objects boundaries.
In any case, junctions appear where two level lines separate. Here, there are two kinds of level
lines: those surrounding the occluded circle and those following the boundary of the union of
the circle and the square. These level lines are included in each other and do not meet but are
usually very close and not distinguishable along contrasted contours

MSER stands for “maximally stable extremal regions”, which are a subset of the
“extremal regions” of the image. What the authors of [119] define as extremal regions
are the connected components of the level sets of the image (which we call “shapes”)
earlier proposed by Monasse for contrast invariant image registration in [135], [134]
and [137]. Monasse and Guichard’s shape extraction algorithm [136] is very similar
to the MSER extraction [119]. The extracted shapes are organized in a tree structure,
the above-mentioned FLST. Since the set of “shapes” of an image is very big (tens
of thousands of shapes can be typically found in an image of size 512× 512), some
selection strategy needs to be defined in order to pick the “most important” shapes.
Monasse and Guichard proposed to pick the shapes with highest contrast in the shape
tree, which is almost the same definition as the one given in [119]. The recent pa-
per [57] proposed an efficient MSER algorithm for real time object tracking in video
and in [139] and [168, 167] fast tree computations alternatives and variants to the
FLST have also been proposed. In [52] an a contrario technique is used to select
shapes in the level lines tree having contrasted enough boundaries. Variations of this
technique are [111] and [35]. The presentation in this chapter followed the last and
more sophisticated [35], which subsumes all preceding ones.

2.7.5 Extracting Shapes from Images

The extraction of shape elements is seldom addressed in the context of shape
recognition. Most works on shape recognition assume that shapes are already ex-
tracted [69, 130, 152]. In Mokhtarian’s approach [130, 131, 132], shapes are ex-
tracted by simply thresholding dark objects over a bright background. Their bound-
aries are level lines. Rothwell proposed a whole recognition system of flat objects on
uniform background [152]. The shapes he treats are simply Jordan curves bounding
objects. Rothwell’s method builds the object boundaries by extracting edges using
Canny’s edge detector [28]. Canny’s filter performs well in Rothwell’s framework
where objects are well-contrasted over a uniform background. In general, this filter
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is not very efficient (see 2.7.2) but in this particular easier case, one simply gets back
level lines again!





Part II

Level Line Invariant Descriptors





41

Invariance and robustness requirements for shape recognition were discussed in
Sect. 1.2. The local contrast invariance led us to consider image level lines. The
concentration of information requirement required the selection of a set of meaning-
ful level lines that are roughly the level lines which are long and contrasted enough
(a precise definition has been given in Chap. 2). It followed from our discussion in
Sect. 1.2 on occlusion and figure-background that small pieces of meaningful level
lines should be considered. Finally combining the smoothing requirement and the
geometric invariance requirement implies that level lines should be smoothed by an
affine invariant process. This leads us to the following choice for shape elements.

Definition 6. We call level line descriptor (LLD) of an image any piece of well
contrasted level line of the image which has been smoothed by an affine invariant
smoothing process. This piece of level line will not be considered by itself, but rather
by its equivalence class under all planar affine transformations.

The aim of this part is to implement the above definition of LLD. We need to explain
how to segment level lines and how to find an affine invariant code for each LLD.
The next chapter 3 defines robust features of level lines, the so called flat parts which
will be used for affine normalization (described in Chap. 4).





3

Robust Shape Directions

Summary. This chapter deals with shape affine normalization. This method associates with
all shapes deduced from each other by an affine distortion a single normalized shape. A cru-
cial ingredient for normalization is the computation of a small affine covariant set of robust
straight lines associated with a shape. The set of all tangent lines to a shape has this covari-
ance property, but it is too large. A very successful idea is to use bitangent lines, that is, lines
tangent to a shape at two different points. If the shape has a finite number of inflexion points it
also has a finite number of bitangent lines. In Sect. 3.3 a well-established curve affine invariant
smoothing algorithm will be briefly described. This smoothing permits a drastic reduction of
the number of bitangent lines. Yet, not all shapes can be encoded by using bitangents. Convex
shapes have no bitangents and simple shapes have only a few. This explains why shape recog-
nition algorithms compute other robust straight lines associated with the shape. Flat parts of
curves are informally defined as intervals of the curve along which the direction of the tangent
line does not vary too much. For instance, large enough polygons show as many reliable flat
parts as sides. This chapter will present a simple parameterless definition of flat parts, based
again on the Helmholtz principle.

3.1 Flat Parts of Level Lines

Flatness of a part of curve will be measured by comparing its direction at each point
with the direction of the underlying chord (see Fig. 3.1).

Although flatness may look like a rather intuitive geometric concept, it is in fact
quite complex. Our aim is to define a unique measurement, the flatness for very di-
verse phenomena: A long very oscillating curve may look flat seen at a distance.
In another way, a short and very smooth curve can look locally very flat. One can
therefore figure out that at least two parameters are involved in a flatness measure-
ment. One measures the length of the flat part and the other gives the amplitude of
the oscillations. Thus, the flatness definition problem can be viewed as the question
of reducing two parameters to a more abstract one, the flatness. The detection of flat
parts of a curve should meet the following requirements:

• It should not detect just points around which the curve is flat, but the precise
straight intervals on the curve.
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Fig. 3.1. A piece of discrete curve with the underlying chord C (thick segment line)

• Long flat parts should be allowed to move farther from their underlying chord
than short ones.

• The detection should be intrinsic to the curve, and not depend on other curves in
the image.

• Detected flat parts should not overlap.
• Since detecting flat parts is generally the first step of a recognition algorithm, it

deals with a huge amount of information. Therefore, computational complexity
should be low.

3.1.1 Flat Parts Detection Algorithm

Consider a chord from a given curve C: its endpoints delimitate a piece of curve of
length l (measured in pixels). Since one would like to measure how much the piece
turns with respect to the direction −→u given by the chord, let us define

α = max
i∈{0...n−1}

{∣∣∣angle(
−−−−−−−−−→
C(si)C(si+1),−→u )

∣∣∣} ,
where the discrete piece of curve is made of the n consecutive points C(si).

Suppose that α is below some fixed threshold α∗. Following the discussion on
independence in Sect. 2.5, consider that points at a geodesic distance (along the
curve) larger than 2 are statistically independent. Thus, there are l/2 statistically
independent segments of the type (C(si), C(si+1)) along a curve with length l. The
probability of the event that l/2 statistically independent points on a piece of curve
show a tangent line which makes an angle lower than α among all the pieces of curve
for which α < α∗ is:

p(α, l) =
( α
α∗

)l/2

.

Of course, the lower p(α, l) the flatter the piece of curve.
This straightforward computation is valid under the assumption that among all

the pieces of curves such that α < α∗, α is uniformly distributed over [0, α∗], and
that the tangents are independent at Nyquist distance 2. Flat parts are now defined as
rare events with regard to this a contrario model.
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For each piece of the curve for which α < α∗, the probability p(α, l) is com-
puted. Only pieces such that p(α, l) is under a predetermined threshold p∗ are kept
(these parts are called candidates). Such pieces can of course overlap. So some of
them must be selected to be the flat parts of the curves. A greedy algorithm will be
used: the piece of curve with the lowest p is marked as a flat part, then all candi-
dates that share a common part with this best flat part are eliminated. The process is
iterated with the remaining candidates.

3.1.2 Reduction to a Parameterless Method

The computation of α clearly depends on the discretization. The curves which the
proposed algorithm deals with are level lines of images. Their natural discretization
is the pixel.
The whole algorithm involves two thresholds. The first one, α∗, is not critical. In-
deed, since one is interested in detecting flat parts, it is natural to a priori reject
all pieces of curve where α is above a large threshold. We set α∗ = 1 radian once
for all, which is not a strong constraint. More specifically, a change of α∗ multi-
plies all probabilities p(α, l) by a constant factor. Thus, the flatness measurement is
just scaled and the ordering maintained. Moreover, changing α∗ also multiplies the
threshold p∗ by the same constant. Thus, there are not two parameters here, but just
one, namely p∗. This last parameter will be eliminated by Helmholtz principle. It can
be fixed in such a way that almost no flat part occurs in the level curves of a white
noise.
Experimental evidence shows that p∗ = 10−3 is the maximum value for which only
a few detections (on average one) occur on level lines extracted from a white noise
image containing the same amount of level lines as a standard natural image. So with
this value for p∗ the proposed algorithm satisfies the Helmholtz principle in that there
is almost no detection of flat parts in a white noise image.

3.1.3 The Algorithm

Consider a Jordan curve on which flat parts are searched for.

Part I: Candidate identification.

For each chord of the curve with length 10, 20, 30, . . . , 180, 200, and then an
exponential progression1:

1. Compute the maximum angle α between the chord and the piece of curve de-
limited by both ends of the chord. If n denotes the number of independent
points C(si) on this piece of discrete curve:

1 There is a complexity issue here. All chords are not tested, but only a subsample of them
so that the algorithm does not waste too much time for long curves. The only consequence
of this discretization procedure is that long straight lines (in practice, lines whose length is
larger than 100 pixels) can be split into two pieces (see Fig. 3.14 for an example). This is
not an important drawback since the goal is to use flat parts as robust directions.
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α = max
i∈{1...n−1}

{∣∣∣angle(
−−−−−−−−−→
C(si)C(si+1),−→u )

∣∣∣} .
2. If α > 1 rad, a priori reject the piece; else compute p(α, l) =

(
α
α∗

)l/2 = αl/2,
where l is the length of the considered piece of curve.

3. If p(α, l) > p∗ = 10−3, reject the piece.

Part II: Greedy algorithm

1. Keep the candidate for which αl/2 is minimal, mark it as flat part, and discard it
from the list of candidates.

2. Reject all candidates that meet this best candidate.
3. Iterate until no candidate is available anymore.

3.1.4 Some Properties of the Detected Flat Parts

The condition defining the candidates (αl/2 < p∗) is not a real constraint for long
curves. For example, if p∗ = 10−3 and l = 200, all curve parts such that α < 0.97
are accepted as candidates. Nevertheless, long pieces of curves often show subparts
with a lower probability and a greedy algorithm will therefore prefer them. In the
case of circles, however, this does not occur. Let us compute the arcs of circle which
will be marked as flat parts. Figure 3.2 illustrates the following computations.

α
L

2R

Fig. 3.2. Illustration of the flat parts computation on a circle

Proposition 3. A circle of radius R has flat parts if and only if R > −e log(p∗).
In such a case, the length of the detected flat parts is L = 2R sin(1/e).

Proof. A circle of radius R being given, let us consider a chord of length L defin-
ing a maximum angle α with the corresponding piece of curve (0 6 α 6 π/2).
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The values of α and L are related by L = 2R sin(α). The probability defined ear-
lier is p(α,L) = αRα (expressed as a function of L, it writes down p(α,L) =
arcsin(L/2R)R arcsin(L/2R)). The function α 7→ αRα attains a minimum for the
value α = 1/e. Consequently, ∀α, αRα > e−R/e.

Thus, if the probability threshold is set to p∗, and if R < −e log(p∗), then the
circles of length R will show no flat part. On the contrary, if R > −e log(p∗), the
detected flat parts (after the greedy step) in circles of radius R will always show a
maximum angle α = 1/e (that is to say 21 degrees, corresponding to an arc of 1/9
of the total circle), and their length will be L = 2R sin(1/e). ut

Notice that p∗ only controls the minimum radius under which no flat part will
be detected: −e log(p∗). It appears only through its logarithm and small variations
of it will not influence the final result. Although for symmetry reasons no piece of
circle should be favored by the algorithm, the position of the detected flat parts over
a circle strongly depends on the starting point of the discrete curve describing this
circle. This makes flat parts of circular curves unreliable in position. However, this
will not hinder the recognition of circles, as a a circle matches well with itself, up to
any rotation.

3.2 Experiments

3.2.1 Experimental Validation of the Flat Part Algorithm

Experimental results are shown in Figs. 3.4 to 3.9 (original images can be seen on
Fig. 3.3). For each image, the computation time is less than 10 seconds, for a 2GHz
standard PC. When images do not show long level lines, the computation time is less
than a second.

3.2.2 Flat Parts Correspond to Salient Features

Figures 3.10 and 3.11 show the result of the proposed flat parts detector over all level
lines in an image. By all, we mean that all level lines at all levels with quantization
step equal to 1 have been extracted. This allows for an exact reconstruction of the
original image from the level lines and their corresponding gray levels [136]. Some
segments are detected over level lines corresponding to quantization noise (i.e. not
contrasted level lines over perceptually uniform areas), but these segments actually
correspond to small pieces of straight lines. They are no longer detected when the
probability threshold p∗ is set to 10−10 instead of the standard value (10−3). Flat
parts are concentrated along edges. This experiment confirms that segment lines are
actually salient image features.

Comparing Fig. 3.3 to Figs. 3.4 to 3.7 shows that almost all detected flat parts
belong to maximal meaningful boundaries.

In his PhD thesis, Lisani [109] used a flat points detector to build robust semi-
local normalization. Figures 3.12 to 3.15 show a comparison between the flat parts
proposed in this chapter and flat points in the sense of Lisani. See captions for details.
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Fig. 3.3. Left column: original images. Right column: meaningful level lines detected with the
method described in Chap. 2 (right). Top: Bretagne, 413 level lines. Middle: Evian, 481 level
lines. Bottom: Vasarely, 172 level lines
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Fig. 3.4. Flat parts detection: Bretagne. 1004 detections. Flat parts as small as the ones in the
letters of the name of the street are detected (about 10 pixels high). Flat parts in the boundaries
of the shadows can be eliminated by dropping the probability threshold, as can be seen on
Fig. 3.5. Nevertheless these detections actually correspond to small flat parts

Fig. 3.5. Flat parts detection: Bretagne, with p∗ = 10−10, 417 detections. Letters are too small
to be detected but the remaining flat parts are very accurate
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Fig. 3.6. Flat parts detection: Evian. 448 detections

Fig. 3.7. Flat parts detection: Evian, with p∗ = 10−10, 64 detections
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Fig. 3.8. Flat parts detection: Vasarely, 774 detections. Each triangle side is correctly detected
as a single flat part

Fig. 3.9. Flat parts detection: Serena Williams & Puma (original image shown in Fig. 2.6).
Left: Original level lines (425 lines). Middle: p∗ = 10−3 (675 detections). Right: p∗ = 10−10

(156 detections). Flat parts on letters are correctly extracted
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.10. Flat parts detection. (a) original image (size: 512 × 384); (b) 25,755 level lines
(quantization step: 1 gray level). They cover the whole image. (c) 20,065 flat parts detected
over these level lines (probability threshold p∗ has here its standard value: 10−3); (d) flat parts
of length larger than 100 pixels among the previous ones; (e) 6,233 flat parts detected over
these level lines, when the probability threshold p∗ is set to 10−10; (f) flat parts of length
larger than 100 pixels among the previous ones. Flat parts appear to be concentrated along
edges in thick bundles
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(a) (b)

(c) (d)

Fig. 3.11. Flat parts detection. (a) 90,078 level lines from Evian image (quantization step: 1
gray level); (b) flat parts detections over these level lines (16,533 detections); (c) flat parts
detection with p∗ = 10−6 (4,659 detections); and (d) flat parts detection with p∗ = 10−10

(2,041 detections). Flat parts are concentrated along edges
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Fig. 3.12. Lisani’s flat points: Serena Williams & Puma. Only 15 flat points (in black) are
detected. To be compared to the results in Fig. 3.9

3.3 Curve Smoothing and the Reduction of the Number of
Bitangent Lines

Level lines may be subject to noise, and can have details that are too fine in rela-
tion to the essential shape information. Hence, a good shape representation requires
a previous smoothing. Is this smoothing necessary? Quite, from the technological
viewpoint, as otherwise there would be too many bitangent lines to level lines and
therefore too many geometric codes to a level line. The general framework by which
an image or a shape is smoothed at several scales in order to eliminate spurious or
textural details and extract its main features is called Scale Space. The main devel-
opments of Scale Space theory in the past ten years involve invariance arguments.
Indeed, a scale space will be useful for shape recognition only if it is invariant. Let
us summarize a series of arguments given in [5]. A scale space computing contrast
invariant information must in fact deal directly with the image level lines; in order
to be local (not dependent upon occlusions), it must be in fact a partial differential
equation (PDE). In order to be a smoothing, this PDE must be parabolic. The affine
invariance requirement and the invariance with respect to reverse contrast lead to a
single PDE [5]. This PDE, characterizing the unique contrast, contrast reversal and
special affine invariant scale space is
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Fig. 3.13. Flat points vs flat parts: Serena Williams & Puma. From left to right and from
top to bottom: considered level line, flat points (7 detections), flat parts with p∗ = 10−3 (9
detections), flat parts with p∗ = 10−10 (7 detections). One of the flat parts in the legs of
the character M is not detected since these curve pieces are too small and pose a sampling
problem. Since not all chords are tested but a subset of them, endpoints may sometimes be not
conveniently distributed

{
∂u
∂t = |Du|(curv u)1/3,

u(x, t) = u0(x).
(3.1)

It is called Affine Morphological Scale-Space (AMSS). Here u(t, 0) = u0 is the
initial image, u(t, x) is the image smoothed at scale t and curv(u)(x) = div( Du

|Du| )
denotes the signed curvature of the level line passing by x. This equation is equivalent
to the affine curve shortening [156] of all of the level lines of the image, given by the
equation

∂x

∂t
= |Curv(x)| 13 n, (3.2)

where x denotes a point of a level line, Curv(x) its curvature and n the signed normal
to the curve, always pointing towards the concavity.
Moisan [128] found a fast algorithm for this curvature motion. For more details on
this scheme, refer to [128, 100] and to the book [29]. The invariants mentioned mean



56 3 Robust Shape Directions

Fig. 3.14. Flat points vs flat parts: character V in Evian. Top: no smoothing. From left to
right: original level line, flat parts with p∗ = 10−3 (4 detections) and with p∗ = 10−10 (3
detections). The flat points algorithm does not provide any detection. Bottom: after smoothing.
From left to right: original level line, flat parts with p∗ = 10−3 (5 detections) and flat parts
with p∗ = 10−10 (4 detections). With p∗ = 10−3, one of the segments is split because of
the discretization procedure in the multi-scale test of chords. Again here the Lisani flat points
algorithm misses the segments

Fig. 3.15. Flat points vs flat parts: a triangle in Vasarely. Top: no smoothing. From left to right:
original level line, flat parts with p∗ = 10−3 (3 detections) and flat parts with p∗ = 10−10

(3 detections), and flat points (4 detections). Bottom: after smoothing (see Sect. 3.3). From
left to right: original level line, flat parts with p∗ = 10−3 (5 detections) and flat parts with
p∗ = 10−10 (2 detections), and flat points (1 detection)
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that the evolution of a shape does not depend upon any affine distortion of the plane.
This corresponds to an invariance to all orthographic projections of a planar shape.

Figure 3.16 shows that a slight smoothing by the affine scale space eliminates the
sampling effects of a digital image and reduces drastically the number of inflexion
points of a shape without altering its overall aspect. Numerically, the smoothing is
slight and stops at the scale t = 0.5 at which a circle with radius 0.5 collapses. So
the smoothing roughly eliminates details of 1 pixel size.

Fig. 3.16. Some level lines of a gray level image. Quantization effects and noise are seen.
After a slight smoothing these effects disappear (right)

3.4 Bibliographic Notes

3.4.1 Detecting Flat Parts in Curves

In their seminal paper [66], Fischler and Bowles argue that any curve partitioning
technique must satisfy two general principles: stability of the description, and a com-
plete and concise explanation. Smooth sections of curves play a major role because
they fit both principles. For instance, Guy and Medioni [79] consider segment lines
as salient features in images. Flat part multiscale detection has been used for the
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more general problem of polygonal approximation of digitized curves (see [165]).
Segment or straight line detection is one of the cornerstones of computer vision.
Indeed, it is often a preprocessing step of shape recognition, shape tracking [49],
vanishing point detection [2], convex shape detection [93], etc. Most of the time,
straight lines in images are conceived as contiguous edges. Many line detection al-
gorithms therefore require a previous local edge extraction step, such as a Canny’s
filtering [28]. Hough Transform [86] and algorithms derived from it [92] have been
widely studied for this purpose. The goal of these methods is to identify clusters
in a particular space (the parameter space of a straight line, either (ρ, θ) with ρ the
distance of the line to the origin, and θ the angle between a vector normal to the
line and a fixed direction, or (a, b) where a is the slope and b the ordinate of the
intersection between the straight line and the ordinate axis). The Hough transform
is a voting procedure: every pixel votes for the parameters of the straight line going
through it. Another method consists in first chaining the local edges by taking into
account connectivity (see for an example [71]), and then in identifying segments
among the discrete curves [108]. The main drawbacks of these methods are the num-
ber of thresholds (edge detection needs at least a gradient threshold, and the Hough
Transform needs a quantization step for the parameter space discretization and a
threshold for the voting procedure) and their computational burden and instability
(due to local edges chaining). A fuzzy segment concept was proposed in [46]. In this
method the primary detection is still based on a set of points derived from a local
edge detector.

The method presented in this chapter can be viewed as an adaptation to the level
lines of Desolneux et al. [51], who proposed an a contrario method detecting mean-
ingful alignments in images. A meaningful alignment is a segment where a large
enough proportion of points have their gradient orthogonal to the segment. More
precisely a length l segment is ε-meaningful in a N × N image if it contains at
least k(l) points having their direction aligned with the one of the segment, where:

• k(l) is given by: k(l) = min{k ∈ N,Pr(Sl > k) 6 ε/N4}, and
• Pr(S(l) > k) is the probability that, in at least k points in a straight segment of

length l, the gradient of the image is orthogonal to the segment, up to a predeter-
mined precision.

Estimating the probability that k points among l have a tangent with the same di-
rection as the chord is not relevant to detect flat parts. In such a model, consecutive
alignments are indeed not favored. They are instead crucial for shape normalization.

In his PhD thesis [109], Lisani defined flat points on curves by using two arbitrary
parameters. A flat point is the center of a curve segment for which the sum of the
angle variations of tangents is small enough (less than 0.2 radian) over a large enough
piece of curve (larger than 15 pixels). This algorithm misses many flat points, and
does not really detect segments, as several experiments have shown clearly.

Figure 3.17 shows the results for some of the algorithms which were just dis-
cussed. As far as flat parts detection is concerned, Desolneux’s alignments are suit-
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able neither for detecting accurate segment directions nor for detecting segment
lengths. The naive segment detector based on Hough transform which illustrates
the discussion is certainly not the best that can be done using Hough techniques.
Nevertheless even a more clever algorithm would face the same problem as this
one. It involves numerous critical parameters (different parameters would drastically
change the results). Some isolated points are detected as segments because they fall
by chance on the same straight line as another more distant segment and therefore
collect its votes. Both algorithms (alignments and the Hough transform-based al-
gorithm) are not local enough: that is why segments over the characters in the test
image are not detected. Canny’s edge detector is well known to suffer from lack of
accuracy at edge junctions (where the gradient is badly estimated). Here, this would
not be a real issue, since segment lines are searched for between junctions, where
edges are more accurately detected. Nevertheless those edge detectors need several
critical thresholds.

3.4.2 Scale-Space and Curve Smoothing

Since the seminal work of Lamdan et al. [102], bitangent lines are well-known to be
of high interest to build up semi-local invariant curve descriptions. The reduction of
the number of bitangent lines is linked to curve smoothing, or curve scale space. The
modern concept of scale space comes from Witkin [181] and is mainly related to the
Gaussian scale space, given by the heat equation [99]. An interesting shape recog-
nition method using the mean curvature motion was discovered by Mocktharian and
Mackworth [133]. The use of curvature-based smoothing for shape analysis is by
now well established. The seminal papers are [10], [133] and [63]. These authors
define a multi-scale curvature which is similarity invariant, but not affine invariant.
Abbasi et al. [1] used the mean curvature motion and an affine length parameteri-
zation of the boundary of the solid shapes in order to get an approximately affine
shape encoding. Sapiro and Tannenbaum [156] and Alvarez, Guichard, Lions and
Morel [5] independently discovered the affine scale space with different approaches.
Alvarez et al. proved existence of viscosity solutions to the affine scale space. An
existence and regularity theorem was later proved by Angenent, Sapiro and Tannen-
baum [7] from which it can be derived that the number of inflexion points decreases
under the affine scale space. This result is crucial for shape encoding. Moisan [128]
found a fast and fully affine invariant scheme implementing the affine scale space. He
also proved the uniform consistency, which by a Barles and Souganidis [16] result is
sufficient for convergence. The numerical scheme of Moisan was later extended by
Cao and Moisan [34] to more general motions by curvature. Very recently the affine
erosion scheme was used by Niethammer et al. [143] to compute an affine invariant
skeleton of plane curves.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.17. Segment detection. (a) original image; (b) maximal meaningful alignments [51]; (c)
Canny’s edge detector; (d) Points that correspond to an edge and that lie at the same time on a
direction detected by voting in the Hough space; (e) local maximal meaningful level lines; (f)
result of the proposed algorithm. See text for discussion.
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Invariant Level Line Encoding

Summary. Chapters 2 and 3 described the level lines extraction, selection and smoothing pro-
cedures, as well as the selection of a few stable, local directions on these curves. These proce-
dures yield shape elements which cannot be directly compared or recognized since they have
undergone an unknown affine transformation. The classical way to address this problem is
normalization. We call affine invariant normalization a method to build shape representations
that are invariant to any planar affine transformation T (x) = Ax + b, such that det(A) > 0.
In other words, an affine invariant normalization transforms a planar shape F into a normal-
ized shape such that any deformation of F by a planar affine transformation will give back the
same normalized shape. Notice that shapes related by axial symmetry are not considered to be
equivalent in this framework and will not yield the same normalized shape. Similarity invari-
ant normalization is simpler and will be defined in the same way. Section 4.1 first presents the
most classical moment method for affine normalization. We will show that this method is not
efficient. In Sect. 4.1.3, a much more accurate normalization method is proposed, involving
local and robust features of a level line such as bitangent lines and flat parts. This method is
applied first to global level lines and then adapted in Sect. 4.2 to pieces of level lines, thus
making shape recognition robust to occlusions. These normalization techniques will be used
to describe, first, the MSER moment normalization method. The more sophisticated geometric
affine normalization methods will be applied throughout the book to the recognition of LLDs
(level line descriptors).

4.1 Global Normalization and Encoding

4.1.1 Global Affine Normalization

Classical shape normalization methods are based on the inertia matrix normalization.
We shall use Cohignac’s presentation of this method [40]. This method has some
drawbacks that are common to all moment-based normalization methods. They rely
on computing high order moments and are therefore unstable and very sensitive to
noise. In the next section we propose a global geometric normalization technique
based on robust directions (bitangent lines and flat pieces of each level line). Thus
the use of moment-based normalization is not recommended. It is, however, simple
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and elegant and needs to be presented before a more intricate and efficient way is
proposed.

Denote by 1lF the indicator function of a solid shape F . In order to achieve
translation invariance of the normalized representation, it may be assumed that F
has been previously translated so that its barycenter is at the origin of the image
plane. Hence, the moment of order (p, q) (p and q natural integers) of F is defined
by

µp,q(F) =
∫

R2
xpyq1lF (x, y)dxdy.

Let SF be the following 2× 2 positive-definite, symmetric matrix

SF =
1
µ0,0

(
µ2,0 µ1,1

µ1,1 µ0,2

)
,

where µi,j = µi,j(F). By the uniqueness of Cholesky factorization [72], SF may be
uniquely decomposed as SF = BFB

T
F where BF is a lower-triangular real matrix

with positive diagonal entries.

Definition 7. The pre-normalized shape associated to F is the shape F ′ = B−1
F (F).

The aim is to prove that the pre-normalized solid shape is invariant to affine transfor-
mations, up to a rotation.

Lemma 3. Let A be a non-singular 2× 2 matrix. Then SAF = ASFA
T.

Proof. Let a, b, c and d be real numbers such that:

A =
(
a b
c d

)
.

The moment of order (2, 0) associated to the solid shape AF is

µ2,0(AF) = det(A)
∫

R2
(ax+ by)21lF (x, y)dxdy

= det(A)(a2µ2,0 + 2abµ1,1 + b2µ0,2).

The same computation for moments of order (0, 2) and (1, 1) yields

µ0,2(AF) = det(A)(c2µ2,0 + 2cdµ1,1 + d2µ0,2),
µ1,1(AF) = det(A)(acµ2,0 + bdµ0,2 + (ad+ bc)µ1,1).

Since µ0,0(AF) = det(A)µ0,0, one can easily check that SAF = ASFA
T. ut

Lemma 4. LetX0 be a 2×2 invertible matrix. Then, for any 2×2 matrixX:XXT =
X0X0

T if and only if there exists an orthogonal matrix Q such that X = X0Q.

Proof. Since X0 is invertible, XXT = X0X0
T iff X−1

0 X(X−1
0 X)

T
= Id2. Let-

ting Q = X−1
0 X yields the result. ut
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Proposition 4. The pre-normalized solid shape is invariant to any invertible, planar,
linear transformation (x, y)T 7→ A(x, y)T, up to an orthogonal transformation.
Moreover, if det(A) > 0, the invariance holds up to a rotation.

Proof. SinceA is a 2×2 non singular matrix, following Lemma 3, SAF = ASFA
T.

By letting BF be the lower-triangular matrix of Cholesky’s decomposition of BF , it
follows that SAF = ABF (ABF )T. Now, since SAF is a 2×2 positive-definite, sym-
metric matrix, Cholesky factorization yields SAF = BAFBAF

T, where BAF is a
2×2 non-singular, lower-triangular real matrix. Then, by Lemma 4,BAF = ABFQ,
where Q is a 2 × 2 orthogonal matrix. Hence, B−1

AFAF = (ABFQ)−1AF =
Q−1B−1

F A−1AF = Q−1B−1
F F , which proves the invariance of F ′ = B−1

F F
to planar isomorphisms, up to an orthogonal transformation. Finally, notice that if
det(A) > 0, then det(Q) > 0. ut

A closed form for B−1
F in terms of the moments of F can be computed by taking

the inverse of BF , the lower-triangular matrix given by the Cholesky decomposition
of SF ,

B−1
F =

√
µ0,0

 1√
µ2,0

0
− µ1,1

µ2,0

r
µ0,2−

µ2
1,1

µ2,0

1r
µ0,2−

µ2
1,1

µ2,0

 .

The pre-normalized solid shape F ′ = B−1
F F is then an affine invariant representa-

tion of F modulo a rotation. In order to obtain a full affine invariant representation,
only a reference angle is needed. This can be achieved, for instance, by computing

ϕ = Arg
(∫ 2π

0

∫ +∞

0

1lF ′(r, θ)eiθrdrdθ

)
,

then rotatingF ′ by−ϕ. Notice that this rotation normalization method fails whenF ′
exhibits a central symmetry. However, unlike a classical rotation normalization com-
puting the direction of the principal axis, it has the advantage of assigning the same
weight to all points in F ′, and hence to be more robust to the noise affecting its
boundary.

Putting all the steps together, the affine invariant normalization of a solid shapeF
is the set of points (xN , yN ) given by(

xN

yN

)
=
(

cosϕ sinϕ
− sinϕ cosϕ

)
B−1
F

(
x− µ1,0

y − µ0,1

)
,

for all (x, y) ∈ F .

As seen in Fig. 4.1, a classical problem of this kind of normalization is its lack
of robustness. Too strong deformations lead to a bad estimation of the moments.

4.1.2 Application to the MSER Normalization Method

We have described in Sect. 2.2 how stable image extremal regions were extracted
from an image by the MSER method, a variant of Monasse’s Fast Level Set Trans-
form. The MSER extraction is a first step to stereo baseline or object tracking algo-
rithms in which high speed is required. The quick and affine invariant comparisons
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Fig. 4.1. Cohignac’s normalization. Left column: original images. Right column: affine nor-
malization using the moments. The middle and bottom original images were obtained from
the top original image by a numerical affine transformation. Even in this ideal framework, the
normalized solid shapes are not superimposable at all: the moment-based normalization is not
robust. Compare with the local normalization proposed in the next section (the middle and
bottom original images were deformed by the same transformation as in Fig. 4.3)

of MSERs taken from different images are performed by direct application of the
affine normalization described in the above-section 4.1. Once MSERs are computed
in two images to be compared, the affine covariance of MSER detection permits to
compute affine invariant moments of these regions and to perform quick compar-
isons. The MSERs are normalized as explained in Sect. 4.1: the covariance matrix
is diagonalized and then the linear transformation performing its diagonalization is
applied to each region. As a consequence rotational invariants over the normalized
region can be used to compare them. This procedure is affine invariant and yields po-
tential candidates to a match. However, the final check in the original method [119]
is made by using correlation. Invariant descriptions are only used as a preliminary
test. The normalized circular regions are correlated (for all relative rotations). Thus
the MSER procedure is an interesting variant of what has been described in Sect. 4.1.
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Yet the preceding section pointed out the lack of robustness of the global affine nor-
malization by moments and the need for a more accurate normalization. This will be
the object of the next section, where normalization is based on robust flat parts of
shapes.

4.1.3 Geometric Global Normalization Methods

The geometric global normalization method described in continuation is based on
robust directions given by the bitangent lines and the flat pieces of a solid shape
boundary or level line L. In the previous method, the second order moments of the
moment based global normalization were used to find principal shape directions. The
bitangent lines and flat parts will now play that role and lead to a much more reli-
able geometric normalization. A similarity invariant and an affine invariant global
normalization methods are proposed here. The best way to describe such methods is
to directly give a self-explanatory algorithm. In the following level lines are param-
eterized by length.

Similarity Invariant Normalization

For each shape F with boundary L, and for all robust straight line D computed
from L:

1. Translate F so that its barycenter becomes the origin of the plane.
2. Scale F so that its boundary has unit length.
3. Rotate F with respect to the origin so that the robust direction is horizontal.
4. Define the starting point of the parameterization of L as the intersection with

positive ordinate between the vertical axis and the boundary of the solid shape.
In case of ambiguity, choose the closest one to the origin.

Affine Invariant Normalization (Positive Determinant)

The procedure is illustrated in Fig. 4.2. For each robust straight line D computed
from L:

1. Consider the straight line passing through the barycenter G of F , which is par-
allel to D. Consider the intersection between F and the half-plane defined by
this straight line which does not contain D; call G1 its barycenter, and G3 the
barycenter of the complementary part of F .

2. Now consider the straight line passing through G1 and G3. It splits the solid
shape into two parts, letG2 andG4 be their barycenter, such that (

−−−→
G3G1,

−−−→
G2G4)

is directly oriented. (The lines G1G3 and G2G4 intersect at G.)
3. Points {G,G1, G2} define an affine basis. Normalize F by applying to it the

affine transformation mapping {G,G2, G1} into {(0, 0), (1, 0), (0, 1)}.
4. Define the starting point of the parameterization of L as the intersection with

positive ordinate between the vertical axis and the boundary of the normalized
solid shape. In case of ambiguity, choose the closest one to the origin.
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The proof of the next proposition is straightforward from the preceding algorithms.

Proposition 5. LetL1 andL2 = AL1 be two curves such thatL1 is deduced fromL2

by a similarity (resp. affine) transformation, denoted by A. Then the sets of all nor-
malized geometric curves obtained by the above normalization algorithms applied
to all bitangent lines are identical.

Proof. There is byA a one-to-one correspondence between the bitangent lines of L1

andL2 and the two above algorithms then describe a similarity (resp. affine) invariant
procedure leading to identical normalized shapes. ut

The result was enounced for bitangent lines only, as the robust lines also obtain-
able from flat pieces of the curves are not stricto sensu similarity or affine invariant.
Notice, however, that the use of flat zones is unavoidable to encode convex shapes,
which have no bitangent lines. Moreover, under reasonable zoom factors, flat parts
are preserved. Flat parts are often detected as tangent lines at inflexion points (which
are conserved by affine transformations).

Figure 4.3 shows an example of global affine invariant normalization. The shapes
are the same as in Fig. 4.1. Notice that the normalization is much more stable than in
the moment-based approach.

4.2 Semi-Local Normalization and Encoding

The necessity of a local shape encoding has been emphasized enough. So the pre-
ceding sections on global encoding are mere essays towards a local one. This will be
actually a simple adaptation.

Similarity Invariant Normalization and Encoding Algorithm

Given a level line L, for each flat piece or for each bitangent line do the following
(this procedure is illustrated in Fig. 4.4):

a) Call P1 the first tangency point and P2 the other one (for flat pieces, P1 and
P2 are the endpoints of the detected flat segment). Consider the tangent line D
containing these points;

b) Call P1 the first tangent line to L which is orthogonal to D, starting from P1 in
the negative direction. Call P2 the first tangent line to L which is orthogonal to
D, starting from P2 in the positive direction.

c) Find the intersection points between P1 andD, and between P2 andD. Call them
R1 and R2 respectively;

d) Store the normalized coordinates of N equi-distributed points over an arc on L
of length F · ‖R1R2‖, centered at C, the intersection point of L with the perpen-
dicular bisector of [R1R2] (the first intersection starting from P1). By normalized
coordinates one understands coordinates in the similarity invariant frame defined
by points R1, R2 mapped to (− 1

2 , 0), ( 1
2 , 0) respectively.
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G

G1

G2

G3
G4

D

Fig. 4.2. Global affine invariant normalization based on the bitangent line D. Top: definition
of points G1, G2, G3 and G4. Bottom: the normalized solid shape

Two implementation parameters, F and N , are involved in this normalization
procedure. The value of F determines the normalized length of the LLD. It has to be
chosen keeping in mind the following trade-off: if F is too large, LLDs will be too
long to deal with occlusions, while if it is too small, LLDs will not be discriminatory
enough. The choice of F brings up a classic dilemma in shape analysis addressed
in the bibliographical notes of this chapter (Sect. 4.3): locality versus globality of
shape representations. The choice of N is less critical from the shape representation
viewpoint since it is just a sampling precision parameter. Its choice results from a
compromise between accuracy of the LLD and computational load.
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Fig. 4.3. Global affine invariant normalisation based on robust directions. Left column: bound-
aries of the original image (on top) and of two affine deformations of it (the same ones as in
Fig. 4.1). Right column: corresponding affine normalizations based on a bitangent line. The
normalized shapes are very close; this is not the case with the invariant moment method

Figure 4.5 shows some LLDs extracted from a single boundary, taking F = 5
and N = 45. Notice that the representation is quite redundant and yields LLDs de-
scribing the boundary over a wide range of scales. This redundancy increases the
possibility of recognizing shapes subject to partial occlusions or other local pertur-
bations.

All the experiments in Chap. 6 concerning matching based on this semi-local
encoding (Sect. 6.1) were carried out using F = 5 and N = 45. These parameters
can be fixed once for all, and they are not to be tuned by the user.
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L

P2
P1

C

R2

R1
P1

D
P2

Fig. 4.4. Similarity invariant semi-local encoding based on a flat part of straight line D

Fig. 4.5. Example of semi-local similarity invariant encoding. The line on the top-left gener-
ates 19 LLDs (F = 5, N = 45). Twelve of them are based on bitangent lines, the other ones
are based on flat pieces. The representation is of course redundant. Three normalized LLDs,
two deriving from bitangent lines, and one from a flat piece are displayed
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Affine Invariant Normalization and Encoding Algorithm

The affine invariant representation of a level line L is computed by applying the
following procedure for each flat piece or bitangent of L (this procedure is illustrated
in Fig. 4.6):

a) Call P1 the first tangency point and P2 the other one (for flat pieces, P1 and P2

are the endpoints of the detected flat segment). Consider the tangent line D to
these points;

b) Starting from P2, find the next tangent to L which is parallel to D. Call it D′;
c) Consider the straight lines which are parallel to D and lay at 1/3 and 2/3 of

distance from D to D′. Call them D1 and D2 respectively;
d) Starting from P2, find the next intersection points between L and D1, and L and
D2. Consider the straight line T1 defined by these two points.

e) Starting from P1, find the previous tangent to L parallel to T1, and call it T2;
f) Define points R1, R2, and R3 as the intersections between D and T2, D and T1,

and D′ and T2 respectively;
g) Points R1, R2, R3 define an affine basis . The affine normalization is fixed by

mapping {R1, R2, R3} into {(0, 0), (1, 0), (0, 1)} if {R1, R2, R3} is a direct
frame, and into {(0, 0), (1, 0), (0,−1)} if not.

h) Encoding: consider the intersection point between L and the straight line equidis-
tant from D and D′ (the first one starting from P2). Call it C. Normalize the
portion of L having normalized length F /2 at both sides of C. Store N equi-
distributed points over the normalized piece of curve.

P2

P1

R1
R3

T2

T1

D′D

D1 D2

C

R2

Fig. 4.6. Affine invariant semi-local encoding. The encoded LLD is based on the bitangent
through P1 and P2
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As for the similarity invariant normalization, implementation parameters were
fixed once for all to F = 5 and N = 45. Figure 4.7 shows all LLDs extracted from a
single boundary for this choice of parameters. Notice that the encoding is less redun-
dant than for the similarity encoding procedure. This is because the construction of
affine invariant local frames imposes more constraints on the curve than for similarity
invariant frames.

Fig. 4.7. Example of semi-local affine invariant encoding. The line on the top-left generates 7
LLDs (F = 5, N = 45); three of them are represented here

Typical Number of LLDs in Images

The number of LLDs of a gray level image depends on the complexity of its level
lines. Indeed, the number of LLDs is roughly proportional to the number of inflexion
points. Textured images have in general many LLDs since their level lines are quite
complex. To give an order of magnitude, the level lines of a database of 23 natu-
ral images of different type were encoded using the similarity encoding procedure
described above. The level lines were respectively:

1. All meaningful boundaries;
2. Only maximal meaningful boundaries;
3. Maximal meaningful boundaries with local contrast;
4. Cleaned (see Sect. 2.4.1) maximal meaningful boundaries with local contrast.
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The number of LLDs per pixel and the CPU time of the encoding per pixel were
measured. See Tab. 4.1.

Table 4.1. Number of LLDs encoded by the similarity semi-local encoding algorithm. Us-
ing local boundaries and the cleaning procedure makes the encoding much faster. In addition,
the LLD dictionaries are shorter, but they experimentally contain all characteristic pieces of
objects boundaries. The matching phase complexity is directly proportional to the number of
pairs of LLDs, one taken in each image to be matched. Thus, this simplification is algorithmi-
cally quite fruitful

#LLDs/pixel CPU (s)/pixel

all MB 0.1458 0.0024
maximal MB 0.0528 0.0006

local MB 0.0310 0.0004
cleaned local MB 0.0132 0.0002

The typical time for encoding the meaningful boundaries is between 10s and
1min on a 1Ghz computer. The gain from meaningful boundaries to maximal mean-
ingful boundaries is obvious and due to the elimination of redundancies in the level
lines tree. The gain when using local meaningful boundaries is just empirical. In-
deed, it is possible to construct images with more local meaningful boundaries than
maximal meaningful boundaries. Since the cleaning procedure removes some parts
of the level lines, the encoding is logically faster and the LLD dictionary shorter.

Remark 3. The semi-local encoding methods described above may not be local
enough, particularly the semi-local affine invariant encoding. The normalized LLDs
shown in Fig. 4.7 illustrate this problem. In fact, the main cause of non locality of the
proposed semi-local normalization procedures is not the length of the encoded piece
of curve (which could actually be controlled by parameter F ), but the construction of
the invariant frames (the lack of locality of this construction can be seen in Fig. 4.6).
Normalization methods based on more local information are thus needed, in order
to perform better in the presence of occlusions. Semi-local geometric normalization
methods using area-based techniques, similar to the ones that we used for global
encoding , could be explored.

4.3 Bibliographic Notes

The level lines extraction/smoothing/geometric encoding method described in this
book was first introduced by Lisani et al. [109, 110]; the third geometric encoding
stage described in this chapter is inspired from this reference and from Rothwell’s
work on invariant indexing [152]. The next subsections review and attempt to classify
a wide number of antecedent shape encoding methods. Drawbacks will be pointed
out without going into details (for example sensitivity to noise, occlusion, or defor-
mation).
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4.3.1 Geometric Invariance and Shape Recognition

We first review some references about the invariance issue in shape recognition.
Shapes subject to weak perspective distortions, are easily recognized by humans.
The geometric invariance requirement for shape recognition was already discussed
in Chap. 1, Sect. 1.2.1. We claimed that in a general setting, affine invariance should
be considered, while similarity invariance can suffice for a large class of particular
applications. Such a claim was based on the following arguments and articles:

• Projective transformations are shown not to behave well with regard to shape
matching, because they allow the mapping of a large class of curves to a curve
which is arbitrarily close to a circle. (Thus, for example, a rabbit and a duck are
almost projective equivalent [11, 12].)

• Despite some interesting attempts [64], there is no practical way to define projec-
tive invariant local smoothing. Thus affine invariant smoothing is the best possi-
ble [5].

• Since projective transformations are differentiable, they can be locally approxi-
mated by affine transformations (for which invariant smoothing is well defined),
and these approximations are particularly accurate under weak perspective dis-
tortion.

All in all affine distortions have to be thought of as local distortions. This is not really
restrictive, since the locality of shape representation was already required in order
to deal with occlusions and with the figure-background problem (see also Chap. 1,
Sect. 1.2.1).

4.3.2 Global Features and Global Normalization

The simplest recognition methods are global in the sense that the extracted fea-
tures are computed over the whole solid shape. Since they mix global and local
information, they are sensitive to occlusions (part of the solid shape is hidden) or
insertion (a part is added to the solid shape). This makes them inappropriate for
general applications and restricts their use to a few specific applications where the
observed objects do not overlap. The global features are in general scalar numbers
computed over the whole solid shape. In the case of closed curves, Fourier descrip-
tors [101, 105, 149, 185] or invariant moments [62, 134] (following Hu [87]) can
be used. Affine invariant scalars for global shape representation can also be derived
from wavelet coefficients [98, 163]. Using wavelets allows one to capture some lo-
cal shape information, but not to the point of being able to deal with occlusion (the
invariant scalars are computed by using coefficients from different scales). Another
well-known moment related global method is the Sclaroff and Pentland [161] modal
matching. In this method, a physical elastic model of the solid shapes is considered.
Shapes are represented by their ordered set of eigenvalues for the elastic model. This
method permits relatively realistic shape deformations where the thin parts of the
shape can alter more than the bulk.
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An original approach using size functions was proposed by Frosini et al. [67, 68].
Size functions can be seen as tools to get information about the topology of any
graph. Applied to shape recognition, the size function theory leads to nearly invariant
descriptors which can be well adapted to perceptual matching since they rely on
structural information. Methods based on moments or Fourier descriptors, as well as
size function methods, face the same problem. How to define the relative weights
of each moment or size function in a shape comparison distance? This choice is in
general arbitrary or based on ad hoc arguments. Robustness against noise is another
aspect of this problem. Since high order moments (or high frequency modes for the
modal matching method) represent details or fine information about the shape, they
can be contaminated by noise and should not be considered. But up to what order
should moments be considered?

Moments-based normalization methods such as the one presented in Sect. 4.1.1
have been extensively used in shape recognition. As noticed before, these methods
suffer from two stability problems. First because of the dependence on second order
moments the points in the contour of the shape strongly influence the result, making
normalization quite sensitive to contour deformations. This effect can be reduced by
considering robust norms such as Geman-McClure’s ρ-function [70] for the estima-
tion of the principal axis instead of the standard quadratic norm [45, 42]. Second, an
error in the identification of the principal axis when the shape eigenvalues are close
may yield completely different normalizations.

More stable global normalization methods can be built by considering bitangent
lines, as in the geometric normalization method proposed in Sect. 4.1.3. In [144]
affine invariant frames for global shape normalization are built by considering the
pair of tangency points of the curve with the bitangent line and an extra point which
can be the barycenter of the solid shape. This is not as stable as the geometric global
normalization proposed here since the position of the bitangency points is not as
robust as the direction of the bitangent line.

The scale-space representation of level lines can also be used to derive invariant
representations. One such method can be found in Alvarez et al. [6], where shape
invariants are based on the evolution of area and perimeter of the solid shapes sur-
rounded by the level line undergoing the affine scale space. Let us describe the sem-
inal work by Mokhtarian and Mackworth [133]. A shape (in fact a Jordan curve) is
smoothed by curvature motion. At each scale, the smoothed curve is reparameterized
by the normalized arc length, and the position of inflexion points (zero-crossings of
the curvature) is tracked. If σ denotes the scale and s the corresponding normalized
arc length, the proposed multiscale representation of the shape consists of the set
of 2-tuples (si, σi), corresponding to the position and the scale at which two inflex-
ion points meet and vanish. The corresponding binary image in the (s, σ) plane has
been called the Curvature Scale Space and is a similarity invariant representation. It
can also be robust to noise if one only considers the information given by the scale
space for scales larger than an ad hoc or arbitrarily fixed threshold. At first sight, this
method seems to be able to deal with occlusion since curvature is a local property of
curves. This is not the case, however, since at each scale curves are reparameterized
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by the normalized arc length, and occlusions or insertions can drastically modify the
positions of points (si, σi).

4.3.3 Local and Semi-Local Features

While global features are in general defined to be geometrically invariant up to rigid
transformations, the local or semi-local features defined in the shape recognition lit-
erature can be invariant or not.
Commonly used non invariant features are, for instance, sets of edges [117, 118].
Groups of features are more informative than individual local features, and conse-
quently enhance the matching stages: chained edges [183] or edgels [145] (an edge
element with a direction) can be considered.
In order to achieve (geometrical) invariant recognition, non invariant features must
be compared by means of strategies dealing with invariance, thus leading to time
consuming algorithms. Non invariant features will not be further discussed.
Invariant local features may be computed directly on the image, or after the shape
has been extracted. Features can be differential or integro-differential invariants at
some special points (like corners [160]) or regions (e.g. coherent regions [21, 180])
of the image. The computation of differential invariants is quite unstable even after
smoothing the image, since it involves high order derivatives.
Weiss [178] proposes local projective invariants requiring the computation of fourth
order derivatives of the curves. This is of course out of range for contours of solid
shapes derived from real images. Sato and Cipolla [157] propose semi-local quasi-
invariants of curves, which do not need high order derivatives. Nevertheless, their
affine quasi-invariants involve second order derivatives. This still is unrealistic for
curves extracted from real images even after a smoothing step. Nowhere in this whole
book will derivatives be involved in the shape recognition process, not even a first
derivative (tangents are not used, only bitangents). Cohen et al. [39, 88] propose to
approximate curves with B-Splines, leading to a compact representation. This inter-
polation appears to be robust to noise, and an adequate matching algorithm allows
for dealing with occlusions. Although this method seems promising, it suffers from
the interpolation in itself, which depends on the original sampling of the considered
curve.

Most local recognition methods involve curvature extrema of the curves bound-
ing the solid shapes. These points are not affine invariants of curves, but are certainly
from the perceptual viewpoint the most salient points of shapes. This was already
pointed out by Attneave in his 1954 paper [13]:

Information is concentrated along contours (i.e., regions where color
changes abruptly), and is further concentrated at those points on a contour
at which its direction changes most rapidly (i.e., at angles or peaks of cur-
vature). (See Fig. 4.8).

Cohignac et al. [41] propose a multiscale curvature representation for shape recog-
nition by considering curvature extrema of surfaces derived from a shape with the
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affine morphological scale space. This leads, for each shape, to a set of points of
interest in R3. In such local shape recognition methods, shapes are represented by
a finite code, composed of the coordinates of curvature extrema points. Recognition
can then be made local or semi-local by comparing the codes through the partial
Hausdorff distance [89]. Two variations based on this general method leading re-
spectively to a similarity invariant and to a translation-rotation invariant recognition
methods can be found in [8, 69]. Similar approaches can be considered by using
boundary points which are tangent to bitangent lines, instead of the curvature ex-
trema [146].

Fig. 4.8. (From [13]) Curvature extrema concentrate a large amount of shape information.
Quoting Attneave: Common objects may be represented with great economy, and fairly strik-
ing fidelity, by copying the points at which their contours change direction maximally, and
then connecting these points appropriately with a straight edge

Up to here, mainly local invariant features have been discussed. Since very lo-
cal invariants such as differential invariants suffer from noise while global ones (e.g.
moment invariants) suffer from occlusions a suitable trade-off can be the use of semi-
local features.
Lamdan et al. [102], followed by Rothwell [152, 153], have proposed semi-local
descriptors of shapes, invariant up to similarity or affine transformations. (Rothwell
et al. also propose projective invariant representations.) These features are based on
the description of pieces of non-convex curves lying between two bitangent points
(i.e. points at which the same straight line is tangent to the curve). Such features are
affine invariant and the use of bitangent lines ensures robustness to noise. Lisani et
al. [109, 110] improved this bitangent method by associating, with each bitangent to
each level line, a local coordinate system and defining a local affine or similarity nor-
malized piece of curve. They also added to the representation similar local invariant
descriptions based on tangent lines to the curve at inflexion points. This leads to a
more complete representation of level lines.

Some recent methods of image analysis rely on invariant points of interest. These
points are singularities of the image related to zero-crossings as in Lowe [115], or
to Harris points [81]. By using locally computed affine invariant moments, these
points can also be made affine invariant [122]. The purpose is merely to extract an
invariant neighborhood of the image, independently of the shape they may contain.
However, since interest points are usually located near relevant parts of shapes (see
Fig. 4.8), some accurate semi statistical descriptors can be defined. For instance, the
descriptors of [115] are local distributions of the gradient direction in some invariant
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neighborhoods of the points of interest, and are used in [164] for retrieving image
parts in video sequences.





Part III

Recognizing Level Lines





5

A Contrario Decision: the LLD Method

Summary. In this chapter we will try to answer the question “does that shape element look
like this one?”, and to measure the confidence level of this answer. This confidence level will
be computed as the probability that two observed shapes match just by chance. This requires an
a contrario or background model, which will be accurately computed from the shape database
itself. The goal is to reach very high recognition confidence levels and therefore very small
probabilities in the background model. How can we estimate very small probabilities? This
cannot been done by simple counting. Indeed, the number of required samples grows as the
inverse of the probability to be computed. There is, however, a classical way to circumvent this
impossibility. It is enough to use independence. The probability of a very unlikely event can
be estimated accurately provided it is a conjunction of independent events whose probabilities
are larger, and therefore observable.

5.1 A Contrario Models

5.1.1 Shape Model or Background Model?

In what follows, it is always assumed that shape elements have been normalized as
covered in Chap. 4. Consider a given query shape element S and a database B of N
shape elements. Let us also assume that a distance or (dis-)similarity measure d be-
tween shape elements is defined. Assume that we found S ′ ∈ B such that d(S,S ′) is
small. (One of the main purposes of the following discussion is to define what small
does mean here.) The observed similarity of S and S ′ can have two explanations:

• H0: S ′ is near S only by chance. For instance because N is very large and there
are similar shapes around every shape;

• H1: S ′ is near S because of a real similarity. For instance both come from two
photographs of the same object.

A full model for Hypothesis H1 is a model of all aspects of all objects we want to
recognize. Accurately defining such a model would require large sets of observations.
It must therefore be limited to very specific shape types like (e.g.) individual letters.
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It also requires learning algorithms. Thus, we do not consider it feasible to modelH1

in a general shape recognition setting.
A model forH0 (namely the casual resemblance to S) will be called background

model and is more affordable. A way to construct it will be proposed in Sect. 5.2.1.
The decision between H0 and H1 is taken by comparing the distance d(S,S ′) with
some predetermined value δ and deciding that H1 holds whenever d(S,S ′) < δ.
Otherwise,H1 is rejected and the alternative hypothesisH0 is accepted. The quality
of a statistical test is measured by the probability of taking a wrong decision. Two
kinds of errors are possible: rejectH1 for an observation S ′ for whichH1 is actually
true (non-detection or type I error), and accept H1 for S ′ although H1 is false (false
alarm, or type II error). A probability measure can be associated with each type of
error. Thus we have:

• The probability of non-detection or probability of a miss (associated with type I
error)

PM(S, δ) ≡ Pr(d(S, Σ) > δ|H1);

• The probability of false alarms (associated with type II error)

PFA(S, δ) ≡ Pr(d(S, Σ) < δ|H0), (5.1)

provided Pr(·) is a probability measure defined on the set of shape elements. From
now on our convention is to use Greek letters for random shape elements and Roman
letters for observed values.

Note that the background model is given by Pr(·|H0). It is clear that the
lower PM and PFA, the better the test. Yet it is also clear that PM and PFA can-
not be independently optimized. The usual problem is to find a trade-off between
these two probabilities.
Widely used techniques such as the Bayesian test or the Neyman-Pearson test often
amount to threshold the likelihood ratio of the observation under H0 and H1 [150].
However, the practical limits of this theoretical framework are obvious. They indeed
require the knowledge of the likelihood of both the hypothesis H1 and the counter-
hypothesisH0. This is generally unrealistic if the aim is to recognize an unspecified
query shape element. A generative model is indeed needed for the query shape ele-
ment S if the likelihood of each different shape element Σ under hypothesisH1 is to
be computed. In the Bayesian approach, it is also required and generally not possible
to accurately compute the probability of non-detection Pr(d(S, Σ) > δ|H1). This
probability indeed relies on an observation model (noise, blur, projective distortion,
etc.). Such a model is possible in particular applications where there are hypothe-
ses on the shapes being sought. No such assumption is made in the present context,
which aims at a full generality. If two images have shapes in common, these shapes
appear in very few instances, and classical methods do not allow for the construction
of models from these samples.

On the other hand, it will be easier to model the probability of false alarm
PFA(S, δ). It is in fact possible to take a decision just based on the background
probability model forH0. Sure detection simply requires that this probability is very
small. Section 5.2 explains how to compute such small probabilities.



5.1 A Contrario Models 83

5.1.2 Detection Terminology

In presence of multiple testing, the fact that a probability is small has little meaning
per se. What matters is the number of false alarms. We refer to the textbook [55] for
a detailed analysis of this number in various geometric contexts and of its properties.
Let N denote the number of shape elements in the database.

Definition 8. The Number of False Alarms of the shape element S at a distance δ is

NFA(S, δ) ≡ N · PFA(S, δ), (5.2)

where PFA(S, δ) is defined in (5.1).

The number of false alarms is the expected number of the shape elements in the
database whose distance to S is below δ, when it is assumed that B obeys the back-
ground model.

Thus we will call NFA(S, d(S,S ′)) the number of false alarms between a query
shape S and a database shape S ′.

Definition 9. A shape element S ′ is an ε-meaningful match of the query shape ele-
ment S if

NFA(S, d(S,S ′)) 6 ε. (5.3)

Considering ε-meaningful matches as pertinent detections is an a contrario decision.
The above definition is justified next.

Proposition 6. Under the assumption that the database shape elements are identi-
cally distributed following the background model, the expectation of the number of
ε-meaningful matches with S is less than ε.

Proof. Let Σj (1 6 j 6 N ) denote the shape elements in the database, and χj the
indicator function of the event ej : Σj is an ε-meaningful match of the query S (i.e.
its value is 1 if Σj actually is an ε-meaningful match of S, and 0 otherwise). Let
R =

∑N
j=1 χj be the random variable representing the number of shape elements

ε-meaningfully matching S.
The key point is that the linearity of the expectation allows the computation of EH0(R),
the expectation of R in the background model. It is instead difficult or impossible
to estimate the probability law of R (even under H0) because of the unknown de-
pendencies between the events ej . Linearity yields EH0(R) =

∑N
j=1 EH0(χj). By

definition of χj ,

EH0(χj) = Pr(Σj is an ε-meaningful match of S|H0).

By definition, Σj is an ε-meaningful match of S if

Pr(Σ′ ∈ B, d(S, Σ′) < d(S, Σj)|H0) 6
ε

N
. (5.4)

Notice that the probability on the left hand side in (5.4) is itself a random variable.
The probability of this event is less than ε

N . Indeed, let us denote by Xj the random
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variable d(S, Σj), and F the repartition function (under H0) of d(S, Σ). Hence, F
is also the repartition function of Xj and the event on the left hand side of (5.4) also
reads F (Xj) < ε

N . Lemma 2 (page 23) then implies that

Pr
(
F (Xj) <

ε

N
|H0

)
6

ε

N
.

This yields

EH0(R) 6
N∑

j=1

ε

N
= ε. ut

This methodology does not enable an a priori estimate of the number of ε-
meaningful matches in a database of shape elements extracted from a natural image
(i.e. whose shape elements are not likely generated by the background model). This
number is an output of the method. The idea behind the definition is that if all shape
elements in the database were generated by the background model, then Hypothe-
sis H1 should never be accepted. In this case, all ε-meaningful detections should be
considered false alarms. On average, there are less than ε detections.

The lower ε, the surer the ε-meaningful detections. Of course, the same claim
is true when considering distances: the lower the distance threshold δ, the surer the
corresponding matches. But considering the NFA quantifies this confidence level.
Actually, by monotonicity, the equation

δ∗
( ε
N

)
≡ sup{δ > 0,PFA(S, δ) 6 ε/N}

suitably defines a positive real number. The proposition that follows is then straight-
forward.

Proposition 7. A shape element S ′ is an ε-meaningful match of the query S if and
only if d(S,S ′) < δ∗

(
ε
N

)
.

Thus, selecting ε-meaningful matches is equivalent to selecting shape elements S ′
such that d(S,S ′) < δ∗

(
ε
N

)
. In practice, the method consists in fixing ε, and the

value δ∗
(

ε
N

)
remains implicit. Moreover, computing the NFA does not need any

shape model for S.

Definition 10. Let B1 and B2 be two databases containing respectively N1 and N2

shape elements. The Number of False Alarms of a shape element S (belonging to B1)
at a distance δ is

NFA(S, δ) = N1 ·N2 · PFA(S, δ). (5.5)

This situation corresponds to experiments in Chap. 6 where the shape contents of
pairs of images are compared. Prop. 6 then stays true, that is to say if B2 is generated
by the background model, the expected number of ε-meaningful matches between B1

and B2 is less than ε.
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5.2 The Background Model

The advantages of the a contrario decision framework compared to directly setting a
distance threshold between shape elements are clear. Simply setting ε = 1 allows at
most one false alarm among meaningful matches (1-meaningful matches will also be
simply referred to as meaningful matches). In all experiments of the next chapter we
will check that setting ε = 10−1 eliminates false detections. The detection thresh-
old ε can be set uniformly whatever the query shape element and the database are.
While fixing ε = 0.1 will solve the detection problem, we still wish to take advan-
tage of lower values of the number of false alarms to quantify the certainty of each
match. Thus, our aim will be to compute NFAs, no matter how small they are.

Consider the following heuristic argument. Assume that the distribution of d(S, Σ)
is learned by empirical frequencies on a set of N shape elements. Then the lowest
non null observable probability is 1/N . If S is now sought for in another database
also containing N shape elements, then the lowest attainable number of false alarms
is N · 1

N = 1. This means that even if two shape elements S and S ′ are almost
identical, such an empirical estimate of the NFA cannot ensure that the match is not
casual. Indeed, an NFA equal to 1 means that on average one of the shape elements
in the database matches S just by chance. Lowe [113] commented in 1985 the very
same aporia and the very same solution:

Due to limits in the accuracy of image measurements (and possibly also
the lack of precise relations in the natural world) the simple relations that
have been described often fail to generate the very low probabilities of ac-
cidental occurrence that would make them strong sources of evidence for
recognition. However, these useful unambiguous results can often arise as
a result of combining tentatively-formed relations to create new compound
relations that have much lower probabilities of accidental occurrence.

Definition 11. A shape background model H0 is a probability model on a set of
shapes such that the following assumptions hold. Each shape element S can be rep-
resented by a set ofK features x1(S), . . . , xK(S), each of them belonging to a metric
space (Ei, di) (i ∈ {1, . . . ,K}). Then the random variables Σ 7→ di(xi(S), xi(Σ))
(i ∈ {1, . . . ,K}) are mutually independent.

From the partial distances di, a complete, global distance should be defined, in
order to apply the results of Sect. 5.1.1. A possible choice could be the product
distance d defined by

d(S,S ′) = max
i∈{1,...,K}

di(xi(S), xi(S ′)). (5.6)

Nevertheless, there is no reason why the di should have the same order of magnitude.
Instead, denote by Pi(S, δ) the marginal probability

Pi(S, δ) = Pr(di(xi(S), xi(Σ)) 6 δ|H0). (5.7)

Let us define
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δi(S,S ′) = Pi(S, di(S,S ′)) (5.8)

i.e.
δi(S,S ′) = Pr(di(xi(S), xi(Σ)) 6 di(xi(S), xi(S ′))|H0). (5.9)

We can also define the product distance

d(S,S ′) =
(

max
i∈{1,...,K}

δi(S,S ′)
)K

. (5.10)

Despite denomination, this function is not necessarily a distance. However, d(S,S ′)
is small when observing random values di(xi(S), xi(Σ)) smaller than di(xi(S), xi(S ′))
occurs with a low probability. Hence d is a measure of dissimilarity which is relative
to S.

The purpose of this operation is the following: If Σ is a random shape element,
δi(S, Σ) also is a random variable. If the distributions of the distances di are given
by densities, then δi is uniform in (0, 1) by Lem. 2 (p. 23), whatever the law of Σ.
Of course, the δi are independent if the di are independent, which is assumed in the
background model.

The NFA between S and S ′ is still defined by

NFA(S,S ′) = N · d(S,S ′).

The next result immediately generalizes Prop. 6.

Corollary 1. The expected number of ε-meaningful matches in a database of N
shape elements generated by the background model is less than ε.

Proof. The sketch of the proof follows the one of Prop. 6. By linearity of the
expectation, it suffices to prove Pr(NFA(S, Σ) < ε|H0) < ε

N . By definition,
NFA(S, Σ) < ε if and only if, for all i ∈ {1, . . . ,K},

δi(S, Σ) = Pi(S, di(S, Σ)) <
( ε
N

)1/K

.

By the independence assumption,

Pr(NFA(S, Σ) < ε|H0) =
K∏

i=1

Pr
(
Pi(S, di(S, Σ)) <

( ε
N

)1/K

|H0

)
.

But since Pi is exactly the repartition function of di(S, Σ), Lem. 2, (p. 23) applies
and each probability on the right hand product is less than

(
ε
N

)1/K
. Hence,

Pr(NFA(S, Σ) < ε|H0) 6
ε

N
. ut
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5.2.1 Deriving Statistically Independent Features from Level Lines

The Pi(S, δ) will be empirically learned on a size N database. The smallest attain-
able number of false alarms in a background model is thus of orderN · 1

NK = N1−K .
The number of features K should be large enough, so as to attain very small NFAs.
But, it cannot be arbitrary large either. Indeed, digital images contain a finite amount
of information. Therefore level line descriptors cannot be described by an infinite set
of independent features. On the other hand, the features xi(S) should characterize a
shape S, so that d(S,S ′) is small if and only if S and S ′ are similar. Finding a suit-
able trade-off between independence and completeness of the features is necessary.

The decision framework described so far is actually completely general in the
sense that it can be applied to find correspondences between any kind of objects for
which K statistically independent features can be extracted. We now concentrate on
the problem of extracting independent features from level line descriptors (LLD). In
order to make the shape recognition task reliable, shape features have to meet the
three following requirements.

1) Completeness: Two LLDs are alike if and only if their features are alike;
2) Statistical mutual independence (more precisely, distances between features are

independent);
3) Their number is as large as possible.

The first requirement means that the features describe shapes well. The second one
is imposed in order to design the background model, and the third requirement is
needed in order to reach low numbers of false alarms. The existence of a background
model as defined in Def. 11 is not obvious. In particular, proving independence is
not easy. The remainder of this section describes a possible construction of LLDs’
features.

Semi-Local Encoding

First consider the semi-local encoding algorithm described in Chap. 4. Recall that an
LLD is a piece of Jordan curve normalized in a local frame built on a bitangent or
on a flat part. The construction to be described now yields a good trade-off achieving
simultaneously the three feature requirements (see Fig. 5.1 for an illustration). Each
normalized representation C is split into five pieces of equal length. Each one of
these pieces is normalized by mapping the chord between its first and last points
onto the horizontal axis, the first point being at the origin. The resulting normalized
chunks are five features C1, C2, . . . ,C5. These features ought to be independent;
nevertheless, C1, . . . ,C5 being given, it is impossible to reconstruct the LLD they
come from. For the sake of completeness a sixth global feature C6 is therefore made
up of the endpoints of the five previous pieces in the normalized frame. For each
LLD, the shape features introduced in Sect. 5.2 are made of the six shape codes
C1, . . . ,C6. Using the notations introduced in the previous sections, xi(S) = Ci, i ∈
{1, . . . , 6}; the distances di between them are L∞-distances between corresponding
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pieces, parameterized by length. If Ci(s) is such a parameterization, we will simply
set di(Ci, C̃i) = sups ‖Ci(s)− C̃i(s)‖.

The independence hypothesis amounts to say that for shapes of the reference
database each chunk of an LLD does not influence the other ones, and that scales do
not interfere. It cannot be proved that this description provides a background model
in the sense of Def. 11. However, its consistency with the theory of Sect. 5.1 will be
empirically checked.

+=⇒

b)
C5

C4

C3

C2

C1

C6

D

C4

D2

C5

C3C2

C1

D1

a)

R1 R2

Fig. 5.1. Semi-local encoding procedure. Example of a similarity-invariant encoding. Sketch
(a): original LLD in a normalized frame based on a bitangent line. Both ends of the LLD of
length proportional to ‖R1R2‖, are marked with bold lines: this representation is split into five
pieces C1, C2, C3, C4, and C5. Sketch (b): each of them is normalized and a sixth feature C6

made of the endpoints of these pieces is also built

Let us give some realistic orders of magnitude. In typical 512× 512 images, the
experimental number of extracted LLDs is about 104. Thus, the smallest number of
false alarms when matching LLDs between two images is

104 · 104 · 1
(104)6

= 10−16.

In practice, for similar shapes, numbers of false alarms as small as 10−10 will be
observed.

Remark 4. All LLDs are sampled with a fixed number of points, independently of
their lengths in the image. While this solution makes the computation of distances
between normalized LLDs faster, precision problems may arise when considering
long LLDs presenting strong oscillations. For these pieces of level lines, normalized
LLDs may simply not be accurate enough, leading to false detections. Notice how-
ever that false matches involving such long LLDs always show NFAs close to 1 (see
Fig. 6.19 in Chap. 6 for an example).
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Global Encoding (MSER)

A global curve normalization was also proposed in Chap. 4. The a contrario deci-
sion strategy is still valid, considering these normalized curves as shape elements,
and building the features in a similar way as for the semi-local encoding. Precisely
speaking, each normalized MSER is split into five pieces. The starting point was de-
fined in Chap. 4 as the nearest point to the barycenter intersecting the vertical line
to the bottom with a positive ordinate. In the same way as for semi-local encoding,
each one of these pieces is normalized by mapping the chord between its first and
last points on the horizontal axis, the first point being sent to the origin. The resulting
chunks are five features C1, C2, . . . ,C5. For the sake of completeness, a sixth global
feature C6 is made of the endpoints of the five previous pieces. The features are
made of C1, . . . ,C6. The distances di between them are again L∞-distances between
corresponding chunks, parameterized by length.

5.3 Testing the Background Model

A way to test the reliability of the background model would be to check that the shape
chunks are statistically independent on a large and realistic database. Yet this inde-
pendence can be and has been disproved by a χ2 test. Thus our purpose must be less
ambitious. What we really need is to validate the computation of the expected num-
ber of detections (the Number of False Alarms, Prop. 6) in the background model.

Since very small NFAs cannot be observed, the comparison between predicted
and observed NFAs will be performed on a very large database and for values of the
NFA ranging from 0.01 to 10,000.

A first experiment compares the number of detections and its prediction when the
LLDs database and LLD query are both random walks with independent increments.
In this case the background model must be true, since the considered LLDs perfectly
fit the independence assumption. Table 5.1 shows with no surprise that the Number
of False Alarms is very accurately predicted for various database sizes. The number
of detections with a NFA lower than ε is of order ε. Modeling LLDs with random

Table 5.1. Random walks. Average number of detections (over 10 samples) vs ε. The experi-
ments were made with databases of different size (N from 10,000 to 100,000 LLDs)

@
@@N

ε
0.01 0.1 1 10 100 1, 000 10, 000

100, 000 0 0 2.3 15.2 122.2 1, 075.5 9, 872.2

50, 000 0.2 0.3 1.5 11.9 106.1 1, 001.1 9, 789.5

10, 000 0 0 1.2 12.5 108.4 985.0 —

walks is not realistic. We shall now check what amount of dependence between shape
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chunks might come from two dependence factors. First the fact that they are level
lines (which forbids self-crossings) and second the normalization.

Table 5.2 shows the number of detections versus the number of false alarms for
databases made of pieces of level lines (not normalized: the LLDs are made out of 45
consecutive points on pieces of level lines). The LLDs have no self-crossing. Once
again the number of detections is accurately predicted. The number of matches with
a NFA less than ε is again of order ε.

Table 5.2. Pieces of white noise level lines with no normalization. Average (over 10 samples)
number of detections vs ε. The three rows correspond to the size of the various databases,
respectively N = 101, 438 LLDs, 50, 681 LLDs and 9, 853 LLDs

@
@@N

ε
0.01 0.1 1 10 100 1,000 10,000

101, 438 0.1 0.1 1.7 13.8 95.3 942.5 9, 789.4

50, 681 0 0 1.2 10.3 90.5 955.1 9, 859.3

9, 853 0 0.1 0.9 9.5 94.3 973.1 —

Let us now consider databases made of (normalized) LLDs extracted from pieces
of level lines in white noise images. Table 5.3 shows that the number of detections is
still of the same order of magnitude as the number of false alarms ε. Yet, it is not as
precisely predicted as in the former experiments. Roughly speaking, this means that
the dependence mostly comes from the normalization procedure, and not from the
non-self-intersection constraint. Nevertheless, the order of magnitude is still correct,
and does not depend on the size of the database.

Thus, the experiments confirm that we can adopt the Number of False Alarms
under Helmholtz principle. According to this principle a match is relevant if it can-
not happen in a white noise image. Table 5.3 shows that matches with a NFA lower
than 0.1 are unlikely in white noise images. Requiring a good confidence in the
detected matches thus leads to consider 0.1-meaningful matches in realistic experi-
ments (see Chap. 6, Sect. 6.1).

Table 5.3. Normalized pieces of white noise level lines. Average (over 10 samples) number
of detections vs ε on databases with respective size N = 104, 722, N = 47, 033 and N =
10, 784 LLDs

@
@@N

ε
0.01 0.1 1 10 100 1,000 10,000 100,000

104, 722 0.3 1.5 6.5 31.5 173.9 1, 264.4 9, 803.1 99, 899.5

47, 033 0.1 0.3 3.7 20.2 125.4 976.3 9, 854.2 —

10, 784 0 0.2 2.6 14.8 107.6 973.3 — —
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One could suspect that the slight dependence shown in the last experiment comes
from the normalization of very small (and therefore smooth) level lines. Table 5.4
checks that this is not true. It compares numbers of detections and of false alarms
for a database of normalized long pieces of level lines extracted from white noise
images. The results are not better than in the preceding experiment.

Table 5.4. Normalized long (more than 135 pixels) pieces of white noise level lines. Average
(over 10 samples) number of detections vs ε on databases with respective size N = 101, 743,
N = 51, 785 and N = 11, 837 LLDs

@
@@N

ε
0.01 0.1 1 10 100 1, 000 10, 000 100, 000

101, 743 0 0.4 2.8 18.5 124.3 1, 123.2 9, 693.8 99, 921.0

51, 785 0 0.3 2.9 16.0 118.6 983.4 9, 800.4 —

11, 837 0 0.2 1.4 12.3 105.9 975.2 9, 974.7 —

5.4 Bibliographic Notes

5.4.1 Shape Distances

The shape matching problem is strongly related to the definition of adequate dis-
tances. The most commonly used distances are Lp distance, Mahalanobis dis-
tance [61, 166], Hausdorff distance [89], or Fréchet distance [4]. Miller, Younes and
Trouvé [124, 125] (see also the more recent [20]) study the orbit of shapes via the
action of diffeomorphic transformations, allowing in this way non-rigid transforma-
tions. Each transformation has a cost, and the distance between two shapes is the
cost of the transformation with least energy between them. Similarity distance de-
fined as the cost of an elastic deformation has been elaborated by [18]. Most of
these distances are global and sensitive to local occlusions. However, they can be
suitably modified to fit the locality requirement leading for instance to partial Haus-
dorff distance [89, 172, 146]. We refer the reader to general surveys by Alt et al. [3],
Veltkamp et al. [172, 174], Loncarnic [112] and Dryden [58]. A review of more ap-
plied methods involved in Content-Based Image Retrieval (CBIR) systems is found
in [173, 175].
Some global features allow shapes to be matched on other criteria than invariance
with respect to a projective subgroup. For instance, a lot of work has been done
on methods for matching shapes by minimizing the deformation energy involved in
aligning one shape with another. One such method is modal matching [161], which
takes a certain physical plausibility of the deformations into account, and thus ac-
cepts a larger class of invariance than geometric groups. Methods minimizing non-
rigid energy deformations can also be based on local features, but they do not allow
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partial matching since all features are involved in the deformation energy. As an ex-
ample Belongie et al. [22] propose to estimate the transformation leading from one
shape to another when each shape is described by some points with a shape context
(information about the points vicinity). Lisani et al. [109, 110] first defined shape
elements as pieces of level lines. The normalization used in this book is basically the
same. However, in Lisani’s work, distance thresholds were chosen manually based
on empirical testing.

5.4.2 A Contrario Methods

This chapter is mainly based on the paper [141] which introduced the a contrario
method to match elements of level lines. A contrario detection frameworks are clas-
sical in the signal processing field, where a precise model of noise is often available.
See for example an application to the detection of gravitational burst in Arnaud et
al. [9], and another for the detection of small targets in cluttered environment in
Chapple et al. [38]. In both cases in the absence of signal the data distribution is
assumed to be a zero mean Gaussian with known variance.
An example of target detection in non-Gaussian images can be found in Watson and
Watson [177]. The authors model the background of the considered images with a
fractal model based on a wavelet analysis. Targets are detected as rare events with
regard to this model.
The a contrario detection framework has recently been applied by Desolneux et al.
for the detection of alignments [51] or contrasted edges [52], by Almansa et al. for
the detection of vanishing points [2], by Stival and Moisan for stereo images [129],
by Gousseau for the comparison of image composition [75] and by Cao for the de-
tection of good continuations [31].
Another possibility that was investigated is to use the principal component analysis
(PCA) [142]. Although PCA does not provide independent features but uncorrelated
ones, the approximation does not seem to be critical. However, the completeness re-
quirement (for the same number of features) is not satisfied with PCA. Moreover,
shape elements do not form a vector space. The same remark holds for indepen-
dent component analysis (ICA) [91], which assumes that the signals (here, shape
elements) are linear mixtures of independent features.
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Meaningful Matches: Experiments on LLD and MSER

Summary. This chapter tests the shape matching method described in the previous chapter.
Section 6.1 deals with the semi-local invariant recognition method. Both similarity and affine
methods are considered, and a comparative study based on examples is presented. When im-
ages differ by a similarity, affine matching usually returns less matches because affine encod-
ing is more demanding. Nevertheless, affine encoding proves more robust as soon as there
is a slight perspective effect, and yields much smaller NFAs. We will also test an improved
MSER method (namely a global affine matching algorithm of closed level lines). This algo-
rithm works but we will point out a problem with convex shapes, which turn out to be very
hard to distinguish up to an affine transformation. Finally the context-dependence of recogni-
tion will be illustrated by striking experiments on character recognition.

Now comes the time to check the applicability of the shape comparison scheme
described in the previous chapters. All the experiments presented thereafter follow
the same procedure: detection of meaningful boundaries (Chap. 2), affine invariant
smoothing (Chap. 3, Sect. 3.3), similarity or affine normalization-encoding (Chap. 3
and 4), and then matching (Chap. 5).

6.1 Semi-Local Meaningful Matches

This section presents several experiments that illustrate all stages of the semi-local
invariant recognition method, in particular the semi-local normalization procedures
(Chap. 4) and the decision method (Chap. 5). Both similarity and affine versions will
be compared.

6.1.1 A Toy Example

This first experiment compares the performance of the affine invariant and the simi-
larity invariant recognition methods on simple synthetic images. The role of such toy
examples is to illustrate all the stages of the recognition methods. Figure 6.1 shows
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two synthetic images. LLDs from the image on the left (the query image) are sought
in the right image (the scene image).

In the scene image, an affine distorted version of the symbol in the query image is
included. The affine and the similarity semi-local invariant encoding algorithms, de-
scribed in Chap. 4, were applied to the smoothed extracted boundaries before mean-
ingful matches were detected in both cases.

(a)

(b)

Fig. 6.1. Toy example. (a) Original images. The image on the right contains an affine distorted
version of the symbol in the left image. (b) Corresponding maximal meaningful boundaries

Using the semi-local affine invariant recognition method 44 LLDs were extracted
from the query image’s meaningful boundaries. These LLDs are represented by
affine normalized codes of 45 points, as explained in Chap. 4. The same encoding
procedure applied to the scene image led to 105 LLDs. Meaningful matches between
these two sets of LLDs were detected. Following the rationale for the meaningful-
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ness computation presented in Chap. 5, a perfect match between LLDs would have
reached a NFA of 44× 105/1056 = 3.45 10−9 (when the empirical distributions of
distances to query LLDs are learned using only the considered scene image, as done
here). But perfect matching is impossible, even with synthetic images. Indeed, the
interpolation involved in the affine transformation of the image leads to boundaries
that are not exactly the transformed boundaries of the original image. Another reason
is as pointed out in Chap. 4 that flat pieces are not affine invariant (they are not even
similarity invariant), and their position may vary.

This is exactly what can be observed in the experiment. All 42 detected mean-
ingful matches between LLDs for the affine invariant framework (NFA < 1) are
shown (superimposed) in Fig. 6.2(a). No false match was detected. The best match
has NFA = 5.4 10−7 and the worst one 9.6 10−1. These two matches are displayed
in Fig. 6.3(a). The leftmost and middle images correspond respectively to the query
and the scene LLDs, and the rightmost image shows their LLDs in the normalized
frame, superimposed. The LLDs matching at NFA = 9.6 10−1 do not correspond
exactly to the same piece of curve but they are still detected since they are close
enough. This kind of instability is not really a problem since in general the encoding
is redundant enough to capture better matches involving the same portions of the
curve. This is illustrated in Fig. 6.2(b) where almost all the same pieces of boundary
shown in Fig. 6.2(a) are still present with a meaningfulness ε < 10−2.

Finally, notice that one of the nested boundaries of the symbol does not have any
matched LLD while the other (which is almost symmetric to it) does. The explana-
tion is that in the scene image one of these nested boundaries has a flat piece and
is therefore encoded. In the other one no flat piece is detected. This will not be a
problem because such quasi-convex curves are also encoded in parallel by the global
method presented in Chap. 4, Sect. 4.1.

The second part of this experiment applies the semi-local similarity invariant
recognition method to the same query and scene images. The similarity invariant
method is not expected to perform better than the affine invariant one, the com-
mon LLDs in the query and the scene images being related to each other by an
affine transformation. However, it is interesting to know if the semi-local similarity
invariant method still is able to retrieve some matches. In this second part of the
experiment the same stages as in the previous one were followed, except for the nor-
malization/encoding procedure. The semi-local similarity invariant encoding method
described in Chap. 4 is used. In the query image 80 LLDs were extracted from its
meaningful boundaries and 127 for the scene image. Notice that the similarity invari-
ant encoding is more redundant than the affine invariant encoding. The explanation
is simple. As pointed out in Chap. 4 (Sect. 4.2) the construction of the affine in-
variant semi-local frames imposes more constraints on the curve than the similarity
invariant one. (These affine semi-local frames are also more global than similarity
semi-local frames, which makes them less robust to occlusion.) Perfect matches in
this second part of the experiment could reach numbers of false alarms as low as
88 × 127/1276 = 2.66 10−9. Here perfect matches cannot occur, mainly because
boundaries are not related to each other by similarity transformations.
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(a) NFA < 1

(b) NFA < 10−2

Fig. 6.2. Affine invariant semi-local recognition. Meaningful matches (NFA < 1) between
LLDs. No false match was detected

All 44 detected meaningful matches between LLDs (NFA < 1) for the simi-
larity semi-local invariant recognition method are shown superimposed in Fig. 6.4.
Figure 6.5 displays the matching LLDs in the images and in their corresponding nor-
malized frame, for the largest and the lowest NFA (2.5 10−5 and 7.1 10−1), as well
as another example of matched LLD.

We see from the superimposed normalized LLDs that these LLDs are not as close
as for the affine encoding. However, just look at LLDs in Fig. 6.5(a) and 6.5(c). Even
though the query and the scene images are related by an affine transformation with
considerable shear and tilt, almost the entire shape is recognized with a high enough
degree of confidence. The only exception is for the nested boundaries, which are too
convex to be encoded by the semi-local method.
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(a) Best match, NFA = 5.4 10−7

(b) Worst match, NFA = 9.6 10−1

Fig. 6.3. Affine invariant semi-local recognition. The matches showing the lowest and the
largest NFA less than 1. Right column: both matched codes are superimposed. As expected,
the first match is much more accurate

Fig. 6.4. Similarity invariant semi-local recognition. Meaningful matches (NFA < 1) between
LLDs. No false match was detected

Part of the discussion presented in this section can be summarized in Fig. 6.6. The
list of meaningful matches is ordered from best (lowest NFA) to worst (largest NFA),
and the index i of this sorted list is plotted versus − log10(NFAi) where NFAi is the
NFA of the i-th best match. Such a function is plotted for the similarity and for the
affine matches. The affine semi-local invariant matches reach lower NFA. Notice that
in both affine and similarity invariant recognition methods there are several matches
that show small NFA, leading to the sure detection of common shapes.



98 6 Meaningful Matches: Experiments on LLD and MSER

(a) Best match, NFA = 2.5 10−5

(b) Worst match, NFA = 7.1 10−1

(c) Another example, NFA = 2.5 10−4

Fig. 6.5. Similarity invariant semi-local recognition. The matches showing the lowest and the
largest NFA

6.1.2 Perspective Distortion

The affine method performs obviously better than the similarity method when deal-
ing with images related through an affine transformation and not suffering from oc-
clusion. This second experiment shows that the affine method also performs better
than the similarity method when applied to real images related through moderately
weak perspective transformations. The two images considered in this experiment
(which we call Hitchcock experiment) are shown in Fig. 6.7 with their correspond-
ing level lines. The resolution of these images is 640 × 480, which is enough to
ensure good accuracy in the extracted level lines.

For the affine semi-local invariant method, 1,150 and 853 LLDs were extracted
from the query image and from the scene image respectively. The number of 1-
meaningful matches detected was 517. In order to reduce the redundancy of the
output, a greedy algorithm eliminates matched LLDs which share a large piece of
curve with other LLDs presenting lower NFA. More precisely, if a pair of LLDs
(S1,S ′1) is an ε1-meaningful match, and there exists another pair (S2,S ′2) matching
ε2-meaningfully, with ε2 < ε1, such that S1 shares at least half of its length with
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Fig. 6.6. NFA of affine and similarity semi-local invariant matches for the toy example. Both
lists of meaningful matches are ordered from best (lowest NFA) to worst (largest NFA), and
for each list, the index i of the sorted list is plotted versus − log10(NFAi), where NFAi is the
NFA of the i-th best match

Fig. 6.7. Hitchcock experiment: original images and their corresponding level lines. Top:
query image, 307 maximal boundaries were detected. Bottom: scene image, 266 maximal
boundaries
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S2, and if the same property holds for S ′1 and S ′2, then the pair (S1,S ′1) is eliminated
from the output list of matches. By this elimination of redundant matches, the list of
meaningful matches is drastically reduced from 517 to 16 elements. This also shows
how redundant the encoding is. These 16 matched LLDs are shown superimposed
in Fig. 6.8. No false matches were detected, and all matches have their NFA below
0.1. The best match, shown in Fig. 6.9, reaches NFA = 6.5 10−11. This value is re-
markably low, considering that ideal perfect matches in this experiment would have
a number of false alarms of 1150× 853/8536 = 2.5 10−12 (when the empirical dis-
tributions of distances to query shape LLDs are learned using only the considered
scene image, as done here).

Fig. 6.8. Affine invariant semi-local recognition method: meaningful matches between LLDs.
No false matches were detected, and all detections show an NFA below 0.1. The lowest NFA
is 6.5 10−11

Fig. 6.9. Affine invariant semi-local recognition method: the match showing the lowest NFA
(6.5 10−11)

Figure 6.10 displays the meaningful matches detected using the similarity semi-
local invariant recognition method. In this case, 2,033 and 1,463 LLDs were ex-
tracted from the query image and from the scene image respectively. As noticed
in the toy example, the similarity method allows the extraction of more LLDs than
the affine method. A total number of 244 meaningful matches (NFA < 1) were de-
tected, and 26 matches were left after applying the greedy algorithm. The meaningful
matches for the similarity method are shown in Fig. 6.10. The lowest NFA reached
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with the similarity method is 3.8 10−8, and corresponds to the LLDs and the normal-
ized LLDs presented in Fig. 6.11. Figures 6.10(b) and 6.10(c) present respectively the
LLDs matching at ε < 0.1, and those for which the NFA is between 0.1 and 1. Notice
that none of the 10−1-meaningful matches are false matches, and that the correspond-
ing LLDs are in general much more local than the LLDs matching in Fig. 6.10(c).
Indeed, the more global the LLDs, the less accurate the similarity approximation of
the underlying transformation, which is in fact a projective transformation. Two false
matches, for which the NFA is larger than 0.1, are seen in Fig. 6.10(c). Figure 6.12
shows the LLDs of these false matches as well as the superimposed normalized LLDs
represented in the normalized frame.

We end the discussion on the Hitchcock experiment with a comparison between
the NFA of the meaningful matches for the affine and the similarity semi-local in-
variant methods illustrated in Fig. 6.13. The principle is the same as for the toy
example from Sect. 6.1.1. The list of meaningful matches is ordered from best (low-
est NFA) to worst (largest NFA), and the index i of this sorted list is plotted versus
− log10(NFAi), where NFAi is the NFA if the i-th best match. Such a function is
plotted for the similarity and for the affine matches. The affine semi-local invari-
ant matches reach lower NFA. Notice that in both affine and similarity invariant
recognition methods, there are several matches that show small NFA, leading to sure
detections of common shapes.

6.1.3 A More Difficult Problem

Both in the toy example and the in Hitchcock experiment query and scene images
represented different views of the same planar elements. Corresponding shapes were
accurately described by the meaningful boundaries, leading to the detection of sev-
eral matching LLDs with high detection confidence. In this subsection a more diffi-
cult example is considered. It consists in finding common LLDs between the pair of
images in Fig. 6.14. Although at first sight these two different posters for the movie
Casablanca are very similar they present many differences that considerably affect
the topographic map and consequently the set of maximal meaningful boundaries.
For instance the actors’ faces in the query image (the one on top in Fig. 6.14) come
from a snapshot while the scene image is a drawing.

In this example only the similarity semi-local invariant method is considered. The
number of LLDs that were extracted from the query and the scene images were 3,540
and 8,554 respectively. Figure 6.15 shows the 1-meaningful matches (i.e. matches for
which NFA < 1) on the top row and the 10−1-meaningful matches on the bottom
row. The number of detected 1-meaningful matches was 211, which was reduced
to 17 after applying the greedy algorithm. It seems that the majority of the relevant
shape information that both images have in common has been detected. No mean-
ingful match was found for the characters ‘Casab’, which are indeed quite different
(up to a similarity) in both images.

Figure 6.16 shows the LLDs corresponding to the most meaningful match, for
which NFA = 1.1 10−6. Such a low NFA is a consequence of the fact that this
query LLD is so unusual that it is almost impossible that just by chance another LLD
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(a) All 26 matches having an NFA below 1

(b) 12 matches show an NFA below 0.1

(c) 14 matches show an NFA between 0.1 and 1

Fig. 6.10. Similarity invariant semi-local recognition method: meaningful matches between
LLDs. Among the 26 matches having an NFA below 1, 12 are 10−1-meaningful. Two false
matches can be seen in (c); their NFA is above 0.1
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Fig. 6.11. Similarity invariant semi-local recognition method: the match showing the lowest
NFA (3.8 10−8)

(a) False match, NFA = 0.64

(b) False match, NFA = 0.68

Fig. 6.12. Similarity semi-local invariant method: the two false matches. Their NFA are larger
than 0.1

lies so close to it. A worthwhile remark here follows from the definition of the NFA
given in Chap. 5. Suppose that two query LLDs S1 and S2 and two scene LLDs S ′1
and S ′2 satisfy d(S1,S ′1) = d(S2,S ′2) = δ. Then if

#{S ′ ∈ B s.t. d(S1,S ′) 6 δ} < #{S ′ ∈ B s.t. d(S2,S ′) 6 δ},

it follows that NFA(S1,S ′1) < NFA(S2,S ′2). Hence for a given distance d the rarer
a query LLD S (with respect to B) the lower NFA(S, d). This makes sense. A rare
LLD is more discriminatory than a banal one.

Figure 6.17 shows all the false matches detected at NFA < 1. They all have an
NFA between 0.1 and 1. Finally, notice that all matches which semantically corre-
spond to the same LLDs show NFAs below 0.1.
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Fig. 6.13. Hitchcock experiment: NFA of affine and similarity semi-local invariant matches.
Both lists of meaningful matches are ordered from best (lowest NFA) to worst (largest NFA),
and for each list, the index i of the sorted list is plotted versus − log10(NFAi), where NFAi

is the NFA of the i-th best match

6.1.4 Slightly Meaningful Matches between Unrelated Images

The experiment presented in this subsection consists in looking for common LLDs
between unrelated images. Two examples are considered. Query and scene images
for the first experiment are shown in Fig. 6.18. All the matches for which NFA is be-
low 1 are superimposed to the original images. 4,731 and 4,946 LLDs were extracted
from the query and scene images respectively. Among all 4731 × 4946 ≈ 23 106

possible pairs of query-scene LLDs only 6 matches having NFA < 1 were detected.
Their NFAs range from 0.21 to 0.97. The matched LLDs and their corresponding
normalized LLDs are shown in Fig. 6.19. Numbers 1), 4) and 5), are simple (they
are relatively short and do not present many oscillations) and match with pretty small
distances. However, because of their banality they do not show lower NFAs. Matches
number 2) and 6), while locally different, are quite similar at a coarse scale as can
be seen from their superimposed normalized LLDs. For such long LLDs a represen-
tation using 45 points may not be accurate enough. A finer sampling would probably
have led to larger NFAs for that kind of matches.

A second example of LLDs common to unrelated images is shown in Fig. 6.20.
The 22 LLDs extracted from the query image are searched in the 546 LLDs from the
scene image on the left. The matched LLDs and their normalized LLDs are shown in
Fig. 6.21. According to what was presented in Chap. 5, matches showing NFAs lower
than 0.1 are not supposed to happen by chance (as would matches between LLDs
extracted from random level lines). Thus some common reason must lay behind such
an unexpected coincidence. In fact many shapes in images derive from natural or
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Fig. 6.14. Casablanca experiment. Left column: original images. Right column: corresponding
level lines. The image on top was taken as query image

man-made objects having similar structures. In particular, many objects are built of
parallel parts with equal length. This common feature was called constant width by
Kanizsa.

6.1.5 Camera Blur

The last experiment deals with the semi-local invariant method for shape recognition.
This experiment just aims at illustrating how the meaningful boundaries of small
objects are affected by the blur introduced when objects are far from the camera and
how this problem can be solved by representing the query image at multiple scales.
The same solution is applied in the celebrated SIFT method.

The query and scene images for this example are shown in Fig. 6.22, with their
corresponding maximal meaningful boundaries. Images are displayed at the same
scale. Figure 6.23 illustrates a detail of the maximal meaningful boundaries of the
scene image corresponding to the region of interest for this experiment. Compare
these boundaries with the ones extracted from the query image in Fig. 6.22 (on top
right). The characters in the scene image have been almost completely destroyed and
only a few similar LLDs can be observed.
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(a) NFA < 1

(b) NFA < 0.1

Fig. 6.15. Casablanca experiment. Meaningful matches between similarity invariant LLDs.
Top: NFA < 1. Bottom: NFA < 10−1. No false match can be seen

Fig. 6.16. The match with the lowest NFA. The query LLD (left image) matches the database
LLD (right image). NFA = 1.1 · 10−6

Figure 6.24 on the top row shows the original image and two image reductions,
by factors 4 and 8. The bottom row presents their corresponding maximal mean-
ingful boundaries (followed by an affine shortening at scale T = 0.5, see Chap. 3,
Sect. 3.3). Image reductions were performed using a prolate kernel.

Figure 6.25 shows the detected matches at NFA < 1 for each query image (the
original image and the two reductions) with the scene image. When the LLDs of the
original query image are searched only two matches having NFA < 1 are found
(Fig. 6.25(a)). Both matches are correct and their NFAs are 8.8 10−6 and 1.9 10−4.
Using as query image the image reduced by a factor 4 more meaningful matches
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Fig. 6.17. The five false matches for NFA < 1 with their normalized LLDs. The leftmost and
middle images correspond to the query and the scene LLDs respectively. The rightmost image
shows their normalized LLDs superimposed. All false matches show NFAs between 0.1 and 1

are found and the best one reaches an NFA of 2.3 10−10. In this case all matches
are correct (Fig. 6.25(b)). Finally using the query image reduced by a factor 8 even
more meaningful matches are detected and reach lower NFAs. In this case the NFA
of correct matches ranges from 2.1 10−3 to 3.6 10−12. A false match with NFA =
7.6 10−1 was detected but it corresponds to an artifact (a border effect) of the image
reduction. See Fig. 6.25(c).
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Fig. 6.18. Left: query image, 4,731 LLDs were extracted from this image. Right: scene image,
the number of LLDs extracted from it was 4,946. Among the 23 106 pairs of query-scene
LLDs, only six match with NFA < 1. The NFA of these matches range from 0.21 to 0.97
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1)NFA = 0.21

2)NFA = 0.62

3)NFA = 0.78

4)NFA = 0.80

5)NFA = 0.82

6)NFA = 0.97

Fig. 6.19. The six false matches detected for NFA < 1 with their normalized LLDs. The
leftmost and middle images correspond to the query and the scene LLDs respectively. The
rightmost image shows their normalized LLDs superimposed. All false matches show NFAs
between 0.1 and 1
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Fig. 6.20. Puma experiment. Left: query image, from which 22 LLDs were extracted. Right:
scene image; 546 LLDs were extracted from it. The two matches detected at NFA < 1 are
superimposed to the original images

1)NFA = 3.0 10−4

2)NFA = 1.3 10−2

Fig. 6.21. Puma experiment: the two matches detected for NFA < 1, with their normalized
LLDs. The leftmost and middle images correspond to the query and the scene LLDs respec-
tively. The rightmost image shows their normalized LLDs superimposed. Such a conspicuous
coincidence admits a better explanation than randomness: many shapes in images derive from
natural or man-made objects having a common structure. For instance, many objects are built
of parallel or equal-length parts
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Fig. 6.22. Top row: query image and its maximal meaningful boundaries; 312 LLDs were
extracted from this image. Bottom row: scene image and corresponding maximal meaningful
boundaries. 1,859 LLDs were extracted from it

Fig. 6.23. Detail of the maximal meaningful boundaries of the scene image corresponding to
the region of interest. The character boundaries have been very degraded by blur and smooth-
ing

Fig. 6.24. Original query image and two image reductions. Left column: original image and
corresponding maximal meaningful boundaries. Middle: image reduction by a factor 4 (324
LLDs were extracted from this image). Right: image reduction by a factor 8 (73 LLDs were
extracted from this image). Reductions were performed using a prolate kernel
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(a) Using the original query image. 2 matches have their NFA below 1 (8.8 10−6 and
1.9 10−4)

(b) Using an image reduction by 4 of the query image: 4 meaningful matches, with
NFAs equal to 2.3 10−10, 1.3 10−6, 1.5 10−5 and 5.7 10−1

(c) Using an image reduction by 8 of the query image: 5 meaningful matches, at
NFAs 3.6 10−12 7.4 10−5, 4.6 10−4, 2.1 10−3 and 7.6 10−1. The last one corre-
sponds to a false match, but was introduced by an artifact in the image reduction
procedure

Fig. 6.25. LLDs matched with the scene image using three different scales of a query im-
age. The number of meaningful matches along with their meaningfulness increases when we
consider image reductions. These image reductions simulate the effect of distance from the
camera
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6.2 Recognition Relative to Context

The recognition thresholds obviously increase with the rareness and decrease with
the banality of the query LLD in the background database. In many experiments the
background model was extracted from the image itself. With this choice the back-
ground model is the real shape background, which we can also call shape context.
Choosing as background model the context of the shape or a neutral background
made of arbitrary images will of course change the recognition thresholds. The aim
of the experiment presented here is to show that the choice of the background can be
steered by the user, depending on what he wishes. Assume the user wishes to pick
all letters m in a scanned text. Then the question arises: Is the wish restricted to ex-
actly the same lowercase m, with the same size, or are all lowercase m’s welcome?
Clearly the thresholds are not the same for both cases. They can actually be tuned by
changing the background. To illustrate the concept four LLDs extracted from a sam-
ple character m (Fig. 6.26) were sought in 14 scanned pages by using the semi-local
similarity invariant recognition method.

Two experiments were undertaken: in the first one the background model was
built from the 14 scanned pages (79,376 LLDs) whereas in the second one the
database came from 21 natural images (98,857 LLDs).

Figure 6.27 shows all matches in one of the 14 scanned pages with the first back-
ground model, which is basically the same text. Only m’s with the same size and
format as the query are recognized.

Figure 6.28 shows the recognitions with the generic database. Clearly the recog-
nition thresholds were higher in the second case (Fig. 6.29). This result is fully co-
herent with the definition of a contrario recognition. In the first case, the focus is
put on recognizing LLDs that share some common structure with a particular font
m among other fonts against all other fonts. In the second case the focus is put on
recognizing LLDs in the text image that share a common structure with m, against
arbitrary LLDs. Thus, other similar characters will not be rejected. This explains
why italic m were rejected in the first case and retrieved in the second.

Fig. 6.26. Characters - the query curve
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Fig. 6.27. Character recognition when probabilities are estimated with a database of scanned
text pages. A total number of 111 matches were detected. All m’s having the same font as the
query were retrieved. Only two matches with LLDs which do not belong to an m were found



6.2 Recognition Relative to Context 115

Fig. 6.28. Characters recognition when probabilities are estimated with a database extracted
from natural images. 154 matches were detected. The corresponding distance thresholds ob-
tained in this case were larger than those in Fig. 6.27

Fig. 6.29. Characters. Superimposition of the matched normalized LLDs. Left: the four query
LLDs. Middle: all LLDs from the scanned text that match the corresponding query LLD su-
perimposed; probabilities were estimated using the 14 scanned pages. Right: superimposed
matched LLDs when probabilities were estimated with the database of natural images. The
matching threshold is larger in the latter case
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6.3 Testing A Contrario MSER (Global Normalization)

In Chap. 4 normalization methods invariant up to similarities or affine transforma-
tions were presented. This section shows several experiments on global shape match-
ing that validate the normalization and the distance threshold derived from the num-
ber of false alarms (see Chap. 5). We deal here with closed level lines extracted as
maximal meaningful in the level line tree. Thus the method tested in this section can
be termed as an improved MSER method. It is improved in two ways: first because
we use the geometric global normalization defined in Sect. 4.1.3 and second because
we use the a contrario decision technique, which defines the right rejection thresh-
olds. Before going to the experiments, recall that each level line leads to as many
descriptors (or codes) as bitangent or flat parts in the curve.

6.3.1 Global Affine Invariant Recognition. A Toy Example

This first experiment illustrates the global recognition method with a simple example.
The pair of images considered here involves the two images presented in Fig. 6.30,
where the global meaningful matches have been superimposed. The image on the
left was taken as query image, and the one on the right contains an affine distorted
version of the query. MSERs were extracted by means of the global affine invariant
normalization method (Chap. 4, Sect. 4.1.3), after extracting the meaningful bound-
aries and smoothing them with the affine curve shortening.

The detection of meaningful matches between all MSERs extracted from both
images was performed using the detection method presented in Chap. 5. A single
false match was detected with an NFA equal to 0.53. Matches between four different
pairs of curves were detected. For each of these pairs, the best match (recall that be-
tween two curves, several matches between MSERs may exist) is shown in Fig. 6.31,
with the corresponding NFA.

Fig. 6.30. Toy example: original images with global meaningful matches superimposed. The
image on the right contains an affine distorted version of the symbol in the left image
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(a) NFA = 3.7 10−9

(b) NFA = 4.1 10−8

(c) NFA = 3.6 10−7

(d) NFA = 5.3 10−1

Fig. 6.31. Affine invariant global recognition: all pairs of curves showing matches with
NFA < 1. Right column: the MSERs extracted from the curves that match with the low-
est NFA are displayed, superimposed

6.3.2 Comparing Similarity and Affine Invariant Global Recognition Methods

In this experiment we compare the performance of the affine and the similarity
global recognition methods on two images whose maximal meaningful boundaries
are shown in Fig. 6.32. The boundaries on the left were taken as query. The shapes
in the scene images are strongly distorted, some by a projection on a cylinder (the
bottle).
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The aim was to find the character ‘n’ taken from the query image in the scene
image.

Fig. 6.32. Evian: maximal meaningful boundaries. Left: query. Right: scene

Figure 6.33 shows the detected 1-meaningful matches with MSERs extracted
from the ‘n’ in the query image for the similarity invariant method. The query ‘n’
was represented by 10 MSERs. 36 matches were found in the scene image. The
lowest NFA was 10−11. Some false matches can be seen, but they all show NFAs
between 0.7 and 1.

Figure 6.34 shows the matched MSERs when considering the global affine
method. The query ‘n’ is still represented with 10 MSERs since it is the same ‘n’ that
was considered for the global similarity matching (and there is always one MSER ex-
tracted for each bitangent line or flat part of the curve). A total of 35 matches showed
an NFA below 1. The matches that actually correspond to the ‘n’ on the bottle, show
NFAs that range from 10−15 to 10−8. The NFA of matches which do not corre-
spond to MSERs in the ‘n’ on the bottle, are between 10−3 and 1. However, some
false matches are not really false but rather casual, since they correspond to other
characters such as ‘n’ or ‘u’ that appear on the bottle (Minérale and Naturelle).

Figure 6.35 shows, for both methods, the matches showing the lowest NFA. The
top row shows the normalized MSER for the global similarity invariant method and
the bottom row shows the normalized MSER for the affine method. Notice that the
pair of affine normalized MSERs are much closer to one another than the pair of
similarity normalized MSERs. It seems then reasonable that the NFA reached with
the global affine invariant method (10−15) is lower than the one reached with the
similarity method (10−8).

In Fig. 6.36, the false match that shows the lowest NFA is presented for both
methods. The top row shows the normalized MSER for the global similarity invariant
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Fig. 6.33. Evian: global similarity invariant matching. All 1-meaningful matches with charac-
ter ‘n’ from the query image. The query ‘n’ is represented with 10 MSERs, that match with
36 MSERs from the scene image. The lowest NFA is 10−11. False detections show NFAs
between 0.7 and 1

Fig. 6.34. Evian: affine invariant global matching. Meaningful matches with character ‘n’
from the query image represented with 10 MSERs. Left: 1-meaningful matches, 35 matches.
False matches show an NFA between 10−3 and 1, but some of them are not really false but
rather casual, since they correspond to other characters ‘n’ and ‘u’ which are present in the
scene. Good matches show NFA ranging from 10−15 to 10−8. Right image: the 23 meaningful
matches showing NFAs below 10−2
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Fig. 6.35. Evian experiment. Top row: matches for the ‘n’ showing the lowest NFA for the
global similarity invariant recognition. Bottom row: best match for the global affine invariant
recognition method. In each of the rows, the curve on the left is the normalized MSER ex-
tracted from the query ‘n’, and the one on the right is the corresponding normalized MSER
extracted from the scene image. The NFA for the similarity method was 10−11, and for the
affine method was 10−15. In spite of the projection on the bottle, the normalized MSERs are
very alike

method, and the bottom row shows the normalized MSER for the affine method. The
NFA for the similarity invariant match was 0.7, and for the affine method 4.0 10−3.

6.3.3 Global Matches of Non-Locally Encoded LLDs

The main drawback of global shape matching is its sensitivity to occlusion, whereas
local matching is especially designed to deal with it. Nevertheless, the semi-local
encoding presented in Chap. 4 is unable to encode curves which are convex or quasi-
convex (curves for which the length after normalization is not large enough to be
encoded). While in general (as will be shown with some experiments) these quasi-
convex boundaries are not very discriminatory because they are not rich in details,
some of them may provide useful information that should not be missed. Indeed
individually speaking each match may not be very meaningful, yet the conjunction of
several of them can become very significant. Thus, the global and semi-local methods
must work together. Of course the non-locally encoded LLDs are globally encoded
and therefore globally compared.
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Fig. 6.36. Evian experiment. Top row: the false match for the ‘n’ that shows the lowest NFA,
for the global similarity invariant recognition method. Bottom row: best match for the affine
invariant recognition method. In each of the rows, the curve on the left is the normalized
MSER extracted from the query ‘n’, and the one on the right is the corresponding normalized
MSER extracted from the scene image. The NFA for the similarity invariant match was 0.7,
and for the affine method 4.0 10−3 (seen in the handwriting on the top of the right image from
Fig. 6.34)

First Example: a Book Cover

Figure 6.37 shows two different views of a book cover and its corresponding max-
imal meaningful boundaries. The query image (on top) consists of a partial view,
taken from a different viewpoint. The two images are related by a strong perspec-
tive deformation. Perspective transformations can be locally approximated by affine
transformations. Indeed many boundaries in images are quite local. It is therefore
sound to try to find correspondences between the considered pair of images using
the semi-local or the global affine invariant recognition methods.

Figure 6.38 shows the 1-meaningful matches between LLDs detected by the
semi-local affine recognition method. Among the 16 matches a single false match
with NFA equal to 0.6 can be seen on the right part of the scene image. The lowest
NFA was 10−10.

The next stage of the matching procedure is finding matches between MSERs
extracted from those maximal meaningful boundaries that were not described by
any semi-local LLD. All not semi-locally encoded LLDs are shown in Fig. 6.39(a).
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Fig. 6.37. Book cover. Top row: query image, and its corresponding 208 maximal meaningful
boundaries. Bottom row: scene image, and its 1,185 maximal meaningful boundaries

Fig. 6.38. Book cover: the 16 semi-local affine invariant matches. The NFA of the best match
is 10−10 . The scene LLD of the only false match that was detected (NFA = 0.6) can be seen
on the right part of the scene image



6.3 Testing A Contrario MSER (Global Normalization) 123

These two sets of curves are used as input for the global affine invariant recognition
method. Figure 6.39(b) shows the detected 1-meaningful matches between MSERs.
Good matches reach NFAs as low as 10−10. Some false matches are detected, but
they are only false because they do not correspond to the same objects. These false
matches correspond to MSERs that look actually alike. Such false correspondences
often occur. Convex or quasi-convex shapes are not very discriminatory. Higher level
information (such as spatial coherence between matches) is needed in order to assess
their semantic validity.

(a)

(b)

Fig. 6.39. Book cover. (a) All not locally encoded LLDs. Too small or too convex level lines
are not encoded. (b) The 160 matches between MSERs, using the global affine invariant recog-
nition method. The search is only performed on the LLDs which had not been locally encoded.
The NFA’s of some matches reach values as low as 10−10. Since spatial coherence between
matches is not taken into account, false matches (from a semantic viewpoint) are unavoidable
(these matches correspond to MSERs that actually are alike)
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Notice that if we combine the matches that were obtained from both the semi-
local and affine invariant methods, almost all shapes in common are detected. Com-
pare now the combination of these matches with the matches detected when using
the global method over all the LLDs (Fig. 6.40). Using first the semi-local method
and then the global method over the non semi-locally encoded LLDs produces fewer
false matches than using the global method over the original sets of LLDs. Even
when not dealing with occlusions considering semi-local descriptions for compli-
cated boundaries is more efficient than describing them globally.

Fig. 6.40. Book cover. The 857 global LLDs (MSERs) detected as 1-meaningful matches
among all LLDs. The lowest NFA reaches 10−14. The majority of the false matches are un-
avoidable since the MSERs are very alike

Two Frames of a Sequence

Figure 6.41 shows the semi-locally matched LLDs between two frames of a movie
sequence using the semi-local similarity invariant method. The non semi-locally en-
coded LLDs are displayed in Fig. 6.42. The majority of the non semi-locally en-
coded LLDs are oval shaped and not discriminatory enough to decide if a match is
semantically correct. Nevertheless, while pairing two of them may not provide much
information, looking for spatial coherence between all pairs of matches can lead to
high confidence detections.

Figure 6.43 shows some MSER matches (those for which the NFA is be-
low 10−2). Almost all represented MSERs seem to be discriminatory enough. No
oval shaped boundary is present. Such shapes are rarely discriminatory. This fact is
consistent with the detection methodology: good matches between discriminatory
shape elements show the lowest NFAs.
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Fig. 6.41. Movie frames. The 75 semi-local similarity invariant 1-meaningful matches. The
lowest NFA is about 2.0 10−16

Fig. 6.42. Movie frames. Non semi-locally encoded maximal meaningful boundaries. There
are 356 lines in the query image (left) and 373 in the scene image (right)

Fig. 6.43. Movie frame. The 120 global 10−2-meaningful matches among the non semi-
locally encoded LLDs. The lowest NFA is about 5.0 10−13





Part IV

Grouping Shape Elements





7

Hierarchical Clustering and Validity Assessment

Summary. The unsupervised classification of points into groups is commonly referred to as
clustering or grouping. Clustering aims at discovering structure in a point data set by dividing
it into its natural groups. There are three classical problems related to the construction of
the right clusters. The first is evaluating the validity of a cluster candidate. In other words,
is a group of points really a cluster, i.e. a group with a large enough density? The second
problem is that meaningful clusters can contain or be contained in other meaningful clusters.
A rule is needed to define locally optimal clusters by inclusion. This rule, however, is not
enough to interpret correctly the data. The third problem is defining a correct merging rule
between meaningful clusters, and thus being able to decide whether they should stay separate
or unit. A unified a contrario method will be proposed for these problems. In continuation,
some complexity issues and heuristics to find sound candidate clusters will be considered. In
the next chapters, the clustering theory developed here will find a main application in shape
recognition: the grouping of several local matches into a more global shape matching.

7.1 Clustering Analysis

The previous chapters proved that it is possible to define shape elements in images
with invariance properties that agree with visual perception. This definition is ac-
curate in the sense that two random shape elements look similar with a very small
probability in the ad hoc background model. This is, however, only the first stage in
the shape identification process. The next stage should assert whether several shape
elements belong to the same shape or not. Shape elements must be grouped into
what would be more properly called a shape. In this chapter, the grouping problem
will be addressed in a very general setting where the problem is to group data points
in a metric space. The next chapter will develop the particular application to shape
element grouping. The point data set will then be specific. Each point will be a ge-
ometric transformation (similarity or affine transformation) predicted by a matching
pair of shape elements. Each cluster of transformations will correspond to a globally
recognized shape.

The classification of general data into groups is usually referred to as clustering.
Let E ⊂ RD and consider a data set D = {x1, . . . , xM} of M points in E (some of
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them may be equal). The clustering problem consists in finding disjoints groups G1,
..., Gk with ∪k

i=1Gi ⊂ D. The inclusion can a priori be strict; the Gi may not form
a partition of D. Of course, in order to give a quantitative relevance to each group, E
is equipped with a dissimilarity function d : E × E → R+. The groups are then
constructed so that each one contains homogeneous data (intra-cluster similarity) and
the content of different groups is fairly different (inter-cluster dissimilarity). Many
techniques for achieving this goal have been proposed. The gentle reader is referred
to the Keynotes A.1 for a short review and useful references. The class of method to
be used depends on the problem and the type of data to be processed.
Still, there are three main general problems associated with cluster detection (see
Fig. 7.1):

1. Cluster validity: How to assess the relevance of a group of data points? A validity
or meaningfulness measure should be defined.

2. Optimization: How to find relatively exact borders for each group?
3. Merging rule: When two valid clusters are included in another one, is it better to

merge them or to keep them separate?

a

H

R1

R2

I

R

Fig. 7.1. This figure illustrates three aspects of the grouping problem. The figure presents a
set of data points in the plane and some test regions where an exceptional density may be
observed or not. Intuitively, regions H and I do not contain clusters. So the first question is
to rule out such non meaningful clusters. A second question is the choice of sound candidate
regions: for instance, should R1 be enlarged to include the point a? Another problem is to find
the best description of the observed clusters. The region R is a possible good candidate, but
it also contains the points of regions R1 and R2 which also are sound candidates. Thus, the
question arises of whether R should be chosen as cluster region, rather than the pair (R1, R2)

This chapter describes an a contrario decision method to answer these three ques-
tions.
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7.2 A Contrario Cluster Validity

7.2.1 The Background Model

In everything that follows E ⊂ RD is endowed with a probability measure π (which
will also be called background law). By definition, π(R) is the probability that a
random point belongs to R. We do not mention measurability issues here. They are
straightforward enough in this context.
The definition of π is problem specific. In general it is given a priori or can be
empirically estimated over the data (see next chapter).

Definition 12. A point background process is a finite point process (Xi)i=1, ... M

in E made of M mutually independent variables, identically distributed with law π.

A standard way to construct such a point process from (E, π) is to consider the
product probability space (EM ,Pr = πM ) and the random variables Xi defined by
Xi(x) = xi for any x = (xi)i=1, ..., M ∈ EM .

Let us now consider an observed data set of M points {x1, . . . , xM} in E.
Exactly as in Chap. 5, a subset of the data set will form a meaningful group if it could
not occur by chance. In other words, it could not be explained by the background
model. Therefore, the cornerstone of the a contrario method is to contradict the
following assumption:
(A) The observed M-tuple (xi)i∈{1...M} is a realization of the background process.

Let us give an example to illustrate this idea. Figure 7.2 represents two 2D pro-
jections of a 4-dimensional set of points. These points correspond to similarities ap-
plying a shape element in an image to the matched shape element in another image
by the method described in Chap. 8. The high density of a region of the space re-
veals that the points therein correspond to the same shape. The probability that such
a concentrated cluster is a realization of the background process is very low.

It is assumed that an agglomeration algorithm is given. This is defined as a func-
tion

A : EM → (P(E))P

(x1, . . . , xM ) 7→ A(x1, . . . , xM ) = (G1, . . . , GP )
(7.1)

which to any M -tuple of data points associates a P -tuple of sets, G1, ..., GP , such
that each Gk is a part of {x1, . . . , xM}. The algorithm A is designed from any clus-
tering algorithm and proposes a set of group candidates from a set of data points. The
number of candidates P only depends on the number of data pointsM and not on the
particular values of x1, ..., xM . A particular choice for A will be given in Sect. 7.4,
but all the theory hereafter does not depend on this choice. Some of the candidate
groups may actually be empty, meaning that P is an upper bound of the number of
possible groups.
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Fig. 7.2. Top row: two projections of a 4-dimensional data point set corresponding to a prob-
lem studied in Chap. 8, Fig. 9.16. Each dot represents a similarity associated with a meaningful
match between shape elements.. A group of dots corresponds to a coherent set of similarities
indicating that the matched shapes belong to the same global shape. Thus, optimally assem-
bling shapes reduces to the search of optimal point clusters in dimension 4. The question of
finding the right groups is crucial. Errors can lead to adding spurious elements or to removing
correct elements from a shape. The two top plots are the raw data to be clustered. Bottom
row: these plots depict (in black dots) the only group detected by the method presented in this
chapter

7.2.2 Meaningful Groups

Consider a small region R ⊂ E containing the origin, typically a hyperrectangle
centered at the origin. Assume that k points among (x1, . . . , xM ) belong to a
region of the type xj + R, for some j, 1 6 j 6 M . If k is large enough and R
small enough one will observe a cluster of points in R which can hardly have been
generated by the background model. This group of points will then be detected a
contrario in xj +R. Clusters can be grouped around any of the xj and can have any
shape. A generic shape for the tested regions must, however, be fixed a priori. The
region R will have to belong to a finite family R of regions, which will be detailed
later. For the time being simply assume that R has finite cardinality #R and that
0 ∈ R for all R ∈ R.

In the following, for k 6 M ∈ N and 0 6 p 6 1, let us denote the tail of the
binomial law by
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B(M,k, p) =
∑
j>k

(
M

j

)
pj(1− p)M−j .

Given a background process X1, . . . , XM and a region R of E with probability
π(R), B(M,k, π(R)) can be interpreted as the probability that at least k out of the
M points of the process belong to R. A thorough study of the binomial tail and its
use in the detection of geometric structures is presented in [51] and the textbook [55].
In this latter book, a chapter is dedicated to clustering, but with a method which is
only valid in dimension 2.

Definition 13. Let G ⊂ {x1, . . . xM} a subset of k points out of the M data points.
We call number of false alarms of G,

NFAg(G) ≡ #R ·M · P · min
xj∈G, R∈R
G⊂xj+R

B(M − 1, k − 1, π(xj +R)). (7.2)

We say that G is an ε-meaningful group if NFAg(G) < ε.

As a sanity check of the above definition, the aim is to prove that the expected
number of ε-meaningful regions is less than ε, when the data set x1, ..., xM is a
realization of the background process and the group candidates result from the ag-
glomeration algorithm A.

Careful notation is needed. Let us fix 1 6 j 6 M and R ∈ R. We note:

• X = (X1, . . . , XM ), the background process;
• x = (x1, . . . xm) a set of M points in E;
• Xj = (X1, . . . , XM ) with Xj omitted in the list;
• xj = (x1, . . . , xM ) with xj omitted in the list;
• dπj(xj) = dπ(x1) . . . dπ(xM ) with dπ(xj) omitted in the product;
• Prj the marginal of Pr with respect to Xj ;
• K(Xj , Xj , R) number of points in the list Xj belonging to Xj +R.

Lemma 5. Let us fix xj ∈ E. Consider a random process X1, ..., XM . Then

Pr j

(
B(M − 1,K(Xj , xj , R), π(xj +R)) <

ε

#R ·M

)
6

ε

#R ·M
.

Proof. The repartition function of the random variableK(Xj , xj , R) is k 7→ B(M−
1, k, π(xj +R)). The result follows from Lem. 2, p. 23. ut

Proposition 8. Let X1, ... XM be a background process. Consider the P random
groups A(X1, . . . , XM ) = (Γ1, . . . , ΓP ). Then the expected number of the ε-
meaningful groups among Γ1, ..., ΓP is less than ε.

Proof. Note

• For 1 6 i 6 P , the Bernoulli variable

Yi =

1 if Γi is ε-meaningful,

0 otherwise.
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• S =
∑

i Yi the number of ε-meaningful groups.

Also denote by Ki the (random) cardinality of Γi and ε = ε
MP#R .

Pr(Yi = 1) = Pr

 min
Xj∈Γi, R∈R
Γi⊂Xj+R

B(M − 1,Ki − 1, π(Xj +R)) < ε

 (7.3)

= Pr(∃j, R s.t. Xj ∈ Γi, Γi ⊂ Xj +R,

B(M − 1,Ki − 1, π(Xj +R)) < ε)
(7.4)

6 Pr(∃j, R s.t. B(M − 1,K(Xj , Xj , R), π(Xj +R)) < ε) (7.5)

6
∑

16j6M
R∈R

Pr(B(M − 1,K(Xj , Xj , R), π(Xj +R)) < ε). (7.6)

The first inequality results from Γi ⊂ Xj + R ⇒ Ki − 1 6 K(Xj , Xj , R) and
the monotonicity of the map k 7→ B(M − 1, k, p). Now, Lem. 5 cannot be directly
applied. Indeed, the considered region is centered at a random point Xj and thus has
a random probability. However, by Fubini Theorem

Pr(B(M − 1,K(Xj , Xj , R), π(Xj +R)) < ε)

=
∫
dπ(xj) Pr j(B(M − 1,K(Xj , xj , R), π(xj +R)) < ε),

6
∫
dπ(xj)ε by Lem. 5,

= ε.

Thus
Pr(Yi = 1) 6 M#Rε =

ε

P
.

Finally,

E(S) =
P∑

i=1

E(Yi) 6
P∑

i=1

ε

P
= ε. ut

Remark 5. As in Chap. 2 and 5, the key point is that the expectation of the number S
of meaningful regions is easily controlled. The probability law of S would instead
be extremely difficult to compute because of the interaction between regions.

To summarize: The number of false alarms is a measure of how likely it is that a
group G containing at least k of the data points, was generated by chance, as a real-
ization of the background process. The lower NFAg(G), the less likely the observed
cluster in the background process. By Prop. 8, the only parameter controlling the de-
tection is ε. This provides a handy way to control false detections. If, on average, one
is ready to tolerate one non relevant region among all regions, then ε can be simply
set to 1.

The following proposition shows that the influence of the parameter #R and of
the decision parameter ε on the detection results are very weak.
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Proposition 9 ([51]). Let 0 < p < 1 and

k∗ = min{k : MP#R · B(M − 1, k, p) 6 ε}.

Then
α
√

2p(1− p) 6 k∗ − p(M − 1) 6
α√
2
, (7.7)

where α =
√

(M − 1) ln(MP#R/ε).
Notice that k∗ is the minimal number of points in a ε-meaningful group and thus
depends on the size of the regions containing the group. By the preceding result, this
decision threshold only has a logarithmic dependence upon P , #R and ε.

Figure 7.3 shows an example of clustering. The data consists of 950 points uni-
formly distributed in the unit square, and 50 points manually added around the po-
sitions (0.4, 0.4) and (0.7, 0.7). The figure shows the result of a numerical method
involving the above NFA. Both visible clusters are found with NFAg respectively
equal to 10−8 and 10−7. Such low numbers can hardly be the result of chance. How
to obtain exactly these two clusters and no other larger or smaller ones which would
also be meaningful? This will be discussed in the next two sections.

Fig. 7.3. Clustering of twice 25 points around (0.4, 0.4) and (0.7, 0.7) surrounded by 950 i.i.d.
points, uniformly distributed in the unit square. The regions of R are rectangles as described
in Sect. 7.4.1. In this example #R = 2500 (50 different sizes in each direction). Exactly two
maximal meaningful clusters are detected. The NFAg of the lower left one is 10−8 while the
upper-right one has a NFAg equal to 10−7

7.3 Optimal Merging Criteria

7.3.1 Local Merging Criterion

While each meaningful group is relevant by itself, the whole set of meaningful re-
gions exhibits in general a high redundancy. Indeed a very meaningful group G usu-
ally remains meaningful when it is slightly enlarged or shrunk into a group G′.
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If, e.g. G ⊂ G′, this question is easily answered by a comparing NFAg(G) and
NFAg(G′). The group with the smallest number of false alarms must of course be
preferred. Another more subtle question arises when three or more groups interact.
Let G1 and G2 be two tested disjoint groups and G another tested group containing
G1∪G2. We then face two conflicting interpretations of the data: two clusters or just
one? The merged group G is not necessarily a better data representation than the two
separate clusters G1 and G2. One possibility is that G is less meaningful than each
one of the merging groups. In such a case, G1 and G2 should be kept rather than G.
The situation is less obvious when G is more meaningful than both G1 and G2. In
this case, keeping G1 and G2 separated may still be opportune. So a quantitative
merging criterion is required. We shall first define a number of false alarms for a
pair of groups. This new value will be compared to the NFAg of the merged group.
Let us introduce the trinomial coefficient(

M

i, j

)
=
(
M

i

)(
M − i
j

)
.

We note

M(M,k1, k2, π1, π2) =
M∑

i=k1

M−i∑
j=k2

(
M

i, j

)
πi

1π
j
2(1− π1 − π2)M−i−j . (7.8)

This number can be interpreted as follows. Let R1 and R2 be two disjoint regions
of E and π1 = π(R1), π2 = π(R2) their probabilities. ThenM(M,k1, k2, π1, π2)
is the probability that at least k1 among the M , and then at least k2 points among the
remaining ones belong to R1 and R2 respectively. Thus, this probability measures
how exceptional a pair of concentrated clusters can be in the background model.

As in the case of single regions, it is assumed that a set of P pairs of group
candidates are obtained by an operator A2. That is to say

A2 : EM → (P(E)× P(E))P

(x1, . . . , xM ) 7→ A2(x1, . . . , xM ) = ((G1
1, G

2
1), . . . , (G

1
P , G

2
P )),

(7.9)

where it is assumed that Gk
i ⊂ {x1, . . . xM}, for k = 1, 2 and 1 6 i 6 P .

Definition 14. Consider two group candidates (G1, G2) of data points. Let (z1, z2) ∈
G1 ×G2 be two data points, and R1 and R2 inR. Let us denote by

• k1 (resp. k2) the cardinality of G1\(z2 + R2) (resp. G2\(z1 + R1)), i.e. the
number of points of G1 (resp. G2) that are not in z2 +R2 (resp. z1 +R1).

• π1 = π((z1 +R1)\(z2 +R2)) and π2 = π((z2 +R2)\(z1 +R1)).

Let us define the number of false alarms of the pair (G1, G2) by

NFAgg(G1, G2) = M3 ·P ·(#R)2 min
(z1,z2)∈G1×G2,

R1,R2∈R
G1⊂z1+R1,
G2⊂z2+R2

M(M−2, k1−1, k2−1, π1, π2).

(7.10)
We say that a pair of groups (G1, G2) is ε-meaningful if NFAgg(G1, G2) < ε.
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Let us sum up how to compute this quantity. Choose a region centered at one point
of G1 (resp. G2) and containing G1 (resp. G2). Those two regions may intersect, so
remove their intersection and the points it may contain. Then, k1 and k2 points are
left in each group and the trinomial tail can be computed. As above, this quantity
measures how likely it is that G1 and G2 contain simultaneously at least k1 and k2

points. Removing the intersection is a mere technicality and the probability of this
event is the tail of the trinomial law.

As usual, the aim is to prove that the expected number of ε-meaningful pairs
of regions is less than ε. As in the study of ε-meaningful groups, some care must
be taken of notations and abbreviations. Let 1 6 i 6= j 6 M . Two tested regions
xi + Ri and xj + Rj may intersect and we have to deal with this possibility. (The
indices i and j in Ri and Rj only aim at reminding us that these are regions centered
at xi and xj although this notation is actually a bit incorrect). We note

• X = (X1, . . . , XM ), the background process,
• x = (x1, . . . xM ) a set of M dots in E,
• Xij = (X1, . . . , XM ) with Xi, Xj omitted in the list,
• xij = (x1, . . . , xM ) with xi, xj omitted in the list,
• Xij = (X1, . . . , XM ) with Xi and Xj replaced by xi and xj ,
• dπij(xij) = dπ(x1) . . . dπ(xM ) with dπ(xi) and dπ(xj) omitted in the product,
• Prij the marginal of Pr with respect to xij ,
• K(X, i, j, Ri, Rj) = the number of points among Xij that are in Xi + Ri but

not in Xj +Rj , i.e. belonging to (Xi +Ri) \ (Xj +Rj),
• Ki = K(X, i, j, Ri, Rj), Kj = K(X, j, i, Rj , Ri),
• K̃i = K(Xij , i, j, Ri, Rj), K̃j = K(Xij , j, i, Rj , Ri),
• ki = K(xi, i, j, Ri, Rj), kj = K(xj , j, i, Rj , Ri),
• πi = π((xi +Ri) \ (xj +Rj)), πj = π((xj +Rj) \ (xi +Ri)),
• Πi = π((Xi +Ri) \ (Xj +Rj)), Πj = π((Xj +Rj) \ (Xi +Ri)),
• ε = ε

M3P (#R)2 .

Lemma 6. For every xi, xj ∈ E,

Pr ij
[
M(M − 2, K̃i, K̃j , πi, πj) < ε

]
< (M − 1)ε.

Proof. The proof extends the arguments used for Lem. 2, p. 23 to the case of two
variables. Notice that this proof is true for discrete variables since it uses the fact that
K̃j and K̃i can only take M − 1 different values. Indeed,

Pr ij
[
M(M − 2, K̃i, K̃j , πi, πj) < ε

]
=

∑
(ki,kj)|M(M−2,ki,kj ,πi,πj)<ε

Pr ij(K̃i = ki, K̃j = kj)

=
∑

(ki,kj)|M(M−2,ki,kj ,πi,πj)<ε

(
M − 2
ki, kj

)
πki

i π
kj

j (1− πi − πj)M−2−ki−kj .

Let
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ki(ε, kj) = inf{0 6 k 6 M − 2|M(M − 2, k, kj , πi, πj) < ε},

with the useful conventions M(M − 2, k, kj , πi, πj) = 0 and
(
M−2
k,kj

)
= 0 if k >

M − 1− kj . The map k 7→ M(M − 2, k, kj , πi, πj) being monotone,

M(M − 2, k, kj , πi, πj) < ε⇔ k > ki(ε, kj). (7.11)

Summarizing and using the definition of ki(ε, kj),

Pr ij
[
M(M − 2, K̃i, K̃j , πi, πj) < ε

]
=

M−2∑
kj=0

M−2∑
k=ki(ε,kj)

(
M − 2
k, kj

)
πk

i π
kj

j (1− πi − πj)M−2−k−kj

6
M−2∑
kj=0

M−2∑
k=ki(ε,kj)

M−2−k∑
l=kj

(
M − 2
k, l

)
πk

i π
l
j(1− πi − πj)M−2−k−l

=
M−2∑
kj=0

M(M − 2, ki(ε, kj), kj , πi, πj) < (M − 1)ε. ut

Proposition 10. Consider a background process X1, ..., XM and the P random
pairs A2(X1, . . . , XM ) = ((Γ 1

1 , Γ
2
1 ), . . . , (Γ 1

P , Γ
2
P )). Then the expected number of

ε-meaningful pairs of regions among them is less than ε.

Proof. Let us note for k = 1, . . . , P

• The Bernoulli variable

Yk =

1 if (Γ 1
k , Γ

2
k ) is ε-meaningful,

0 otherwise.

• S =
∑P

k=1 Yk the number of ε-meaningful pairs of regions.

Let us fix k. LetXi andXj two points in the process, belonging to Γ 1
k and Γ 2

k . LetRi

andRj be two regions inR, such that Γ 1
k ⊂ Xi+Ri and Γ 2

k ⊂ Xj +Rj . Let also K̂i

be the number of points of Γ 1
k that are not in Xj +Rj and K̂j the number of points

of Γ 2
k that are not in Xi + Ri. Notice that with the notations above, K̂i − 1 6 Ki

and K̂j − 1 6 Kj . Then,

Pr(Yk = 1) = Pr(∃i, j, Ri, Rj s.t. Xi ∈ Γ 1
k , Xj ∈ Γ 2

k ,

Γ 1
k ⊂ Xi +Ri, Γ

2
k ⊂ Xj +Rj ,

M(M − 2, K̂i − 1, K̂j − 1,Πi,Πj) < ε).
6 Pr(∃i, j, Ri, Rj s.t.M(M − 2,Ki,Kj ,Πi,Πj) < ε)

6
M∑

i,j=1

∑
Ri,Rj

Pr(M(M − 2,Ki,Kj ,Πi,Πj) < ε)
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The first inequality results from K̂i−1 6 Ki and K̂j−1 6 Kj and the monotonicity
of the map (k, l) 7→ M(M − 2, k, l, p, q) with respect to each of its variables. By
Fubini’s theorem,

Pr(M(M − 2,Ki,Kj ,Πi,Πj) < ε)

=
∫

E2
dπ(xi)dπ(xj)

∫
EM−2

1l{M(M−2,ki,kj ,πi,πj)<ε}dπ
ij(xij)

=
∫

E2
dπ(xi)dπ(xj) Pr ij(M(M − 2, K̃i, K̃j , πi, πj) < ε)

< (M − 1)ε,

where Lem. 6 has been used in the last inequality. Finally,

E(S) =
P∑

k=1

E(Yk)

<

P∑
k=1

(M − 1)M2(#R)2ε

6 ε. ut

Definition 15 (Merging condition). LetG1 andG2 be two groups andG containing
G1 ∪G2. We say that G is indivisible relatively to G1 and G2 if

NFAg(G) 6 NFAgg(G1, G2). (7.12)

Equation (7.12) represents a crucial test for the coherence of a cluster. If it is
not fulfilled, G will not be considered a valid region as it can be divided into a
more meaningful pair of cluster regions. The next lemma will prove useful to give
a very coarse, but qualitatively handy characterization for the relationship between
the NFAgs of a cluster, and two disjoint clusters contained in it.

Lemma 7. For every k1 and k2 in {0, . . . ,M}, such that k1 +k2 6 M and for every
π1 and π2 in [0, 1] such that π1 + π2 6 1,

M(M,k1, k2, π1, π2) 6 B(M,k1, π1) · B(M,k2, π2). (7.13)

A proof of the lemma is given in Appendix A.3. We are actually interested in its
consequence.

Proposition 11. Let G be indivisible with respect to G1 and G2. Let also assume
that the regions related to G1 and G2 are disjoint. Then

NFAg(G) <
M

P
·NFAg(G1) ·NFAg(G2)

Proof. Let us denote by π1 and π2 the probability of the regions attaining the NFAg

ofG1 andG2. These regions are assumed to be disjoint. By an obvious monotonicity
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argument those regions also attain the minimum of the trinomial law. From (7.10) and
Def. 15,

NFAgg(G1, G2) = M3P (#R)2M(M − 2, k1 − 1, k2 − 1, π1, π2)

and
NFAg(Gi) = MP (#R)B(M − 1, ki − 1, πi), i = 1, 2.

By Lem. 7, it follows that

NFAgg(G1, G2) 6 M3P · (#R)2 · B(M − 2, k1 − 1, π1)B(M − 2, k2 − 1, π2).

Since B(M−2, k−1, p) 6 B(M−1, k−1, p) for allM , k and p, the result follows.
ut

Proposition 11 yields a very simple necessary condition for cluster indivisibility.
However the bound is not tight enough to be used as a merging condition: in practice
many clusters G satisfy this condition without being indivisible (for an example, see
Fig. 7.5). Nevertheless, the condition may still be useful from a qualitative point of
view. An example of its use will be shown in the next chapter.

7.4 Computational Issues

7.4.1 Choosing Test Regions

What is the right set of test regionsR? This question is obviously application driven.
To fix ideas, let us just indicate a sound and generic choice. For some reasonably
fixed a > 0, r > 1 and n ∈ N, consider all hyperrectangles whose edge lengths be-
long to the set {a, ar, ar2, . . . , arn}. This allows one to consider a tractable num-
ber of test regions with very different sizes and shapes. The choice of the hyperrect-
angles is particularly opportune when the probability distribution π defined on a hy-
perrectangle E of RD is a tensor product of one-dimensional densities π1, . . . , πD.
We address the question with more details in the next chapter.

Definition 13 permits us to compute the NFAg of any group of points. This com-
putation involves a region centered at a data point. Since the number of scales is
n in each dimension, there are MnD regions centered at a data point. In the next
chapter D = 4 or 6. From the numerical feasibility viewpoint, MnD becomes too
large when n grows. Hence, detection cannot be performed by scanning all the re-
gions centered at a point, counting the number of points it contains and computing
the tail of the binomial law. The agglomeration procedure A involved in the defini-
tion of the meaningful groups precisely aims at reducing the number of test groups.
In the experiments this agglomeration algorithm is a classical hierarchical clustering
algorithm. It provides a binary tree structure from a data set (x1, . . . , xM ). This tree,
sometimes called dendrogram, contains exactly 2M − 1 nodes, M of which are sin-
gletons. The pairs of A2 are simply obtained as the children of a node of this binary
tree. There are at most P = M − 1 of them.
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More generally speaking, hierarchical clustering methods provide a family of
nested partitions of the point data set that can always be embedded in a tree structure
(that may not be binary).

Sect. A.1 describes some of the main aggregation techniques for building such
trees. Many of them perform a recursive binary merging procedure. Thus, they di-
rectly yield binary trees. In such methods the initial set of nodes is the set of data
singletons, {x1}, . . . , {xN}. At each stage of the construction, the two closest
nodes are united to form a parent node. The inter-cluster distance must be chosen ad
hoc. In the case of sparse data, one can take the minimal distance d(xi, xj) where xi

belongs to the first cluster and xj to the second one. The nodes of the tree are all
merged parts at all levels and the children of a node are the parts it was merged from.
The result much depends on the choice of the dissimilarity function between clusters,
for which there is no universal choice.

Such a construction introduces some needed arbitrariness. Indeed, the set of all
possible partitions of a data point set is huge. A tree structure reduces the exploration
to searching an optimal subtree of the initial tree structure. This reduction makes
sense if the set of nodes of the initial tree structure contains roughly all groups of
interest. Choosing the right metric on the data point set and the right inter-cluster
distance is therefore crucial.

Given a dendrogram of the data point set, the following algorithm explores all
regions centered at data points and containing a dendrogram node.

Grouping Algorithm
For each node G (candidate group) with cardinality k in the clustering tree or den-
drogram:

1. Set NFAg(G)← +∞.
2. For each x ∈ G,

a) Find the smallest region x+R centered at x containing the other data points
in G.

b) Set NFAg(G)← min(NFAg(G),MP ·#R ·B(M − 1, k− 1, π(x+R))).

7.4.2 Indivisibility and Maximality

We are now faced with Questions 2 and 3 mentioned at the beginning of this chap-
ter. We can get many meaningful clusters by the preceding method. Their NFAg

is known. One can also compute the NFAgg of a pair of clusters, and compare it
roughly to the NFAg of their union. The next definition proposes a way to select the
right clusters by using the cluster dendrogram.

Definition 16 (Maximal ε-meaningful group). A node G is maximal ε-meaningful
if and only if

1. NFAg(G) 6 ε;
2. G is indivisible with respect to any pair of sibling descents;
3. For all indivisible descent G′, NFAg(G′) > NFAg(G);



142 7 Hierarchical Clustering and Validity Assessment

4. For all indivisible ascent G′, either NFAg(G′) > NFAg(G) or there exists an
indivisible descent G′′ of G′ such that NFAg(G′′) < NFAg(G′).

Condition 4 implies that G can be abandoned for a larger group only if this group
has not been beaten by one of its descents. Imposing Conditions 3 and 4 ensures that
two different maximal meaningful groups are disjoint.

Two simple examples illustrate the critical importance of the merging condition.
Figure 7.4 shows a configuration of 100 points distributed on [0, 1]2, and naturally
grouped in two clusters G1 and G2. In the hierarchical structure, G1 and G2 are
the children of G = G1 ∪ G2. All three nodes are obviously meaningful since their
NFAg is much lower than 1. Their NFAg also is lower than the NFAg of the other
groups in the dendrogram. Taking a uniform background law, it has been checked
that for this particular configuration,

NFAg(G2) < NFAg(G) < NFAg(G1).

Clearly G1 represents an informative part of the data that should be kept and will be.
Notice that G2 is more meaningful than G and is contained in G. Thus, G would be
eliminated if only the most meaningful groups by inclusion were kept. On the other
hand, G is more meaningful than G1, so that G1 is not a local maximum of mean-
ingfulness with respect to inclusion. So, without the notion of indivisibility, trouble
would arise: G would eliminate G1 and G2 would eliminate G. The result would be
the solution indicated in the middle column of Fig. 7.4. ActuallyG is neither indivis-
ible nor satisfies Condition 3 above since it is less meaningful than the pair (G1, G2)
and than G2. Thus, the result of the grouping procedure yields, in accordance with
the rule of Def. 16, the pair (G1, G2).
In [54], the above-mentioned maximality definition was proposed. It consists in pick-
ing the lowest NFA in all the tree branches. As has just been seen, this definition is
not suitable here. By this definition, G1 would have been the only maximal mean-
ingful cluster of the tree.

Figure 7.5 illustrates another situation where the indivisibility check yields the
intuitively right solution. In this example, the union G of two clusters G1 and G2

is more meaningful than each separate cluster. Without the indivisibility require-
ment, G would be the only maximal meaningful group. This would have been co-
herent had G1 and G2 been intricate enough. In the presented case, the indivisibility
condition yields two clusters G1 and G2, since NFAgg(G1, G2) < NFAg(G).

7.5 Experimental Validation: Object Grouping Based on
Elementary Features

Grouping phenomena are essential in human perception since they are responsible
for organizing information. In vision, grouping has been especially studied by Gestalt
psychologists like Wertheimer [179]. These experiments aim at extracting the groups
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Fig. 7.4. Indivisibility prevents collateral elimination. Each subfigure shows a configuration of
points and a piece of the corresponding dendrogram with the selection of maximal meaningful
groups depicted in gray. The number in each node corresponds to − log10(NFAg) of its asso-
ciated cluster so that the cluster is meaningful when this number is large. The number placed
between two nodes is the NFAgg of the corresponding pair. Left: original configuration. Mid-
dle: the node selected by taking only the most meaningful group in each branch. The leftmost
group G1 is eliminated. It is, however, very meaningful since NFAg(G1) = 10−18. Right: by
combining indivisibility and maximality criteria, both clusters G1 and G2 are selected

of objects in an image that share some elementary geometrical properties. The ob-
jects boundaries are extracted as in Chap. 2. Once these objects are detected, say
O1, ...OM , we can compute for each of them a list ofD features (gray level, position,
orientation, etc). If k objects among M have one or several features in common, one
wonders if it is happening by chance or if they should be grouped. Each data point
is a point in a bounded subset of RD and the method described above is applied.
Actually, some coordinates, such as angles, belong to the unit circle since periodicity
must be taken into account. This can be done all the same.

Let us return to the experiment in Fig. 7.3. The dot process contains two groups
of 25 points in addition to 950 i.i.d uniformly in the unit square. Two groups and two
groups only are detected, each with very good NFAg (less than 10−7).

7.5.1 Segments

In the second example, groups are perceived as a result of the collaboration between
two different features. Figure 7.6 shows 71 straight segments with different orien-
tations almost uniformly distributed in position. As expected no meaningful cluster
is detected in the space of position coordinates of the barycenters. In all the experi-
ments, the number of rectangle sizes in each direction is 50. Thus #R = 50D.
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Fig. 7.5. Indivisibility prevents faulty union. Each sub-figure shows a configuration of points
and a piece of the corresponding dendrogram with the selection of maximal meaningful groups
depicted in gray. The number in each node corresponds to the NFAg of its associated clus-
ter. The number between two nodes is the NFAgg of the corresponding pair. Left: original
configuration. Middle: the node selected if one only checks maximality by inclusion and not
indivisibility. The largest group G has the lowest NFAg and would be the only one kept.
Note that the optimal region is not symmetric since it must be centered on a data point.
Right: selected nodes obtained by combining the indivisibility and maximality criteria. Since
NFAgg(G1, G2) = 10−140 < 10−127 = NFAg(G), the pair (G1, G2) is preferred to G

Fig. 7.6. An image of a scanned drawing of segments and its 71 maximal meaningful level
lines [52]
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If orientation is chosen as the only feature (D = 1), 6 maximal meaningful
groups are detected corresponding to the most represented orientations, see Fig. 7.7.
None of these clusters exhibits a very low NFAg . The central group is not even de-
tected, because the directions of the segments are slightly different. This only means
that orientation is not the only perceptual grouping law used in the interpretation of
this figure. All the other groups are actually not perceived because they are masked
by the clutter made of all the other objects. However, they certainly have a coherent
direction.

Fig. 7.7. Grouping with respect to orientation: there are 6 maximal meaningful groups. The
NFAg range is between 10−0.4 and 10−3.8. Notice that the central group is missing. Indeed,
the direction of the segments is not accurate and the group is not meaningful with respect to
orientation. This experiment shows that orientation alone is not enough to detect some groups.
Orientation is only one law of perceptual grouping among others

Let us see what happens when considering two features (D = 2, #R = 2500). In
the space (x-coordinate, orientation), a single maximal meaningful cluster is found
(Fig. 7.8). It corresponds to the group G of 11 central vertical segments. Its NFAg

is equal to 10−0.3, what means it is hardly meaningful with respect to these two
features. In the space (y-coordinate, orientation), the combination of the maximality
and the merging criterion leads to prefer the two rows of segments to the whole G.
This is coherent with the visual perception since we actually see two lines of seg-
ments here. On the contrary, in the (x-coordinate, orientation) space, the merging
criterion indicates that observing G is more meaningful than observing simultane-
ously its children in the dendrogram. This decision still conforms with observation:
no particular group within G can be distinguished by the x-coordinate. The same
group is obtained in the space (x-coordinate, y-coordinate, orientation), with a lower
NFAg = 10−2.3.
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Fig. 7.8. Grouping in the space (x-coordinate,orientation). This time, the whole central group
is detected and is the only maximal meaningful group. (NFAg = 10−0.3). If grouping is done
with respect to full 2D-position and orientation, the central group is still the only detected
group with NFAg = 10−2.3

7.5.2 DNA Image

The 80 objects in Fig. 7.9 are more challenging. More features are needed in order to
represent them (diameter, elongation, orientation, etc.). It is clear that a projection
on a single feature is not enough to differentiate the objects. Globally, we see three
groups of objects: the DNA markers, which share the same form, size and orientation;
the numbers, all on the same line, almost of the same size, and finally the elements
of the ruler, also on the same line and with similar diameters. The position appears
to be decisive in the perceptive formation of these groups.

Fig. 7.9. An image of DNA and its 80 maximal meaningful level lines [52]

In the space (diameter, y-coordinate) 6 maximal meaningful groups are detected
(Fig. 7.10). Four of them correspond to the lines of DNA markers (from left to right
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and top-down), − log10(NFAg) = 1.2, 6.1, 5.1, 4.3. The group of numbers contains
23 objects (a group of two digits sometimes contains three objects: the two digits and
a level line surrounding both of them) and − log10(NFAg) = 41.7. The last group,
composed of the vertical graduation of the ruler contains 31 objects and is even more
meaningful: − log10(NFAg) = 57.3.

Fig. 7.10. Grouping with respect to diameter and y coordinate. Six groups are detected, 4 of
which are rows of DNA markers. The last two ones correspond to the ruler. − log10(NFAg)
range from 1.2 to 6.1 for the DNA. The last two groups are larger and obviously more mean-
ingful: − log10(NFAg) = 41.7 and 57.3

Assume we gave up considering the position information. Would we still see
the DNA markers as a group? By taking several other features into account (see
Fig. 7.11), the DNA markers form an isolated and very meaningful group: the com-
bined features (orientation, diameter, elongation, convexity coefficient) reveal the
DNA markers as a very good maximal meaningful cluster (NFAg = 10−10). There
are two other interesting groups that are actually not detected, but whose NFAg is
also close to 1: the 1’s and the 2’s on the ruler.

Let us detail how π, the law of the background model, was estimated from the
data themselves. The marginal distribution of each characteristic is approximated by
the empirical histogram. All the characteristics are assumed to be independent. Note
that the obtained distribution is not uniform at all. Why having this construction
instead of a uniform law? First, there would be the assumption that the range of
the data is known and it is not. Moreover, the distribution of each characteristic has
no reason to be uniform. Hence, contradicting a uniform background model would



148 7 Hierarchical Clustering and Validity Assessment

produce detections caused by the discrepancy of the real distribution with respect
to the uniform one. Thus we must define a background law which is as realistic
as possible for each single observation. Let us now take the opposite view and ask
why we did not directly take the joint empirical law. Because of sparse samples it is
simply not possible to estimate this distribution. We would need at least one million
data points. In contrast estimating one dimensional laws is quite compatible with the
amount of data.

Fig. 7.11. Grouping with respect to orientation, elongation, diameter, and a convexity coeffi-
cient. The DNA markers are the most meaningful group NFAg = 10−10. Note that the 1 and
2’s, though not meaningful groups, have NFAg only slightly larger than 1 (1.6 and 4.5)

7.6 Bibliographic Notes

Finding groups in a large data set is an active research field. It is involved in data-
mining, pattern recognition and pattern classification. The main clustering techniques
are presented in [171, 60, 56, 97] and will be shortly reviewed in the keynotes
(Sect. A.1). Dubes [59] and Milligan and Cooper [126] proposed solutions to the
choice of the number of clusters, which are related to the stopping rule in hierar-
chical methods. Bock [24] and Gordon [73, 74] are particularly interested in the
validity assessment. Their approach is close to an a contrario method: they define
a background model in which they measure the concentration of points. A uniform
model may not be the best method, but it may be useful to define a data-dependent
background model as done in the next chapter. The method of the present chapter is
directly inspired by Desolneux et al. method for detecting dots in an image [54]. In
this method, a hierarchical classification of the set of dots is considered and meaning-
ful clusters are detected a contrario to a standard Poisson null model. A maximality
criterion was also defined but had several flaws that were taken into consideration in
this chapter. A very complete study of hierarchical segmentation and representation
is presented by Guigues in his Ph.D thesis [78] (in French).
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Grouping Spatially Coherent Meaningful Matches

Structure means recognizing that unity is at the foundation
of everything. To say structure is also to say Abstraction:
geometry, rhythm, proportion, lines, planes, idea. These are
elements of work – they act, they form, they construct and gain
meaning through the law of unity.

Joaquín Torres-García, Estructura.

Summary. This chapter is about forming coherent groups of matching shape elements. This
grouping, sometimes called generalized Hough transform, is crucial for virtually all shape
recognition algorithms. It will be used for the main shape identification method treated in
this book, namely the LLD, the MSER method in Chap. 9 and the SIFT method in Chap. 11.
Each pair of matching shape elements leads to a unique transformation (similarity or affine
map). A natural way to group these shape elements into larger shapes is to find clusters in
the transformation space. The theory in the previous chapter is immediately applicable. The
main problem addressed here is the correct definition and computation of the background
model π. This background model is a probability distribution on the set of similarities, or on
the set of affine transformations. In order to have accurate shape clusters, π must be built
from empirical measurements on observable shape matching transformations. As in Chap. 5,
the main issue is to compute accurately a density function in high dimension (4 or 6) with
relatively few samples. The found solution is analogous: determine the marginal variables for
which an independence assumption is sound. Then the density functions of these marginal
laws can be accurately estimated on the data and yield an accurate background model.

8.1 Why Spatial Coherence Detection?

Figure 8.1 displays on the bottom left image a detail of Picasso’s painting Guer-
nica shown on the top left image. However, the painting is incomplete and partially
occluded in the bottom image. It is also deformed by perspective. Moreover, the
compression rates are also different. Figure 8.2 displays the LLDs common to these
two images, both local and global, with affine invariant encoding. It turns out that lo-
cal LLDs are much more discriminative. Indeed, since no restriction is made on the
affine distortion, a lot of normalized convex LLDs look quite the same. The match-
ing pairs have been computed by the method of Chap. 5. There are 94, whereas more
global matches are due to quasi convex LLDs.

The objective of this chapter is twofold: first, to prove that shape elements corre-
sponding to a single shape can be accurately grouped together. Second, that this
grouping procedure is robust enough to discard all false matches. Incidentally, this
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will dramatically reinforce the confidence in the more local previous detections. The
group NFAs are indeed usually very small.

The organization of this chapter is as follows. In Sect. 8.2, the parameterization of
similarities or general affine transformations is described. Section 8.3 applies the
general clustering ideas presented in Chap. 7 first by defining a dissimilarity measure
between transformations, and then by defining a suitable background model for the
sets of transformations. A few experiments are also shown to illustrate the ideas.
Many more results will be given in the next chapter.

Fig. 8.1. Guernica experiment. Original images and maximal meaningful level lines. Top:
query image. Bottom: scene image

8.2 Describing Transformations

Let I and I ′ be two images, referred to as the query image and the scene image. For
each match between a shape element S in I and a shape element S ′ in I ′, a geometric
transformation (a similarity or an affine transformation) can be computed. In what
follows, the parameters involved in these transformations are described as well as
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Fig. 8.2. Guernica experiment: meaningful matches, both affine invariant semi-local and
global encoding. The number of semi-local LLDs is 7440 in the first image and 6131 in the
second one (hence 4.6 107 tests). The number of globally encoded LLDs is 740 (resp. 897).
There are very few false matches for locally encoded shapes and their NFA is more than 0.4.
The total number of local (resp. global) matches is 94. (resp. 337). Globally encoded shapes
yield many wrong affine invariant matches that can be observed on the left hand part of the
second image. This is easily explained. All parallelograms are affine equivalent, and so are all
triangles, or all ellipses

the way they can be estimated, both for the similarity and the affine transformation
cases.

8.2.1 The Similarity Case

This subsection specifies the grouping method for the LLD case. Of course any other
kind of shape element can be used provided matches yield candidate similarities or
candidate affine transformations. Let S and S ′ be two matching LLDs. Recall that a
LLD is a normalized piece of level line described in a local frame. It is completely
determined by two points, or equivalently a point and a vector. This last represen-
tation will be chosen. A local frame is then given by a couple (p, v) where p gives
the origin of the frame and v gives its scale and orientation. Assume that S is re-
lated to (p, v) and S ′ to (p′, v′). Since S and S ′ match, they differ by a similarity
transformation. Now, there exists a unique similarity mapping the local frame (p, v)
onto (p′, v′) (see Fig. 8.3). By using complex numbers notation, this similarity can
be uniquely expressed as

∀z ∈ C, T(z) = az + b, with a =
v′

v
and b = p′ − ap, (8.1)

with (a, b) ∈ C2.

8.2.2 The Affine Transformation Case

Consider the local affine invariant normalization described in Chap. 4. Affine nor-
malization of a piece of curve was done by mapping its local frame {R1, R2, R3}
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T

R
′

2

R1

R2 R
′

1

Fig. 8.3. Two pieces of level lines and their corresponding local similarity frames. The simi-
larity T maps R1 into R′

1 and R2 into R′
2

onto the triplet {(0, 0), (1, 0), (0, 1)}. Given another triplet {R′1, R′2, R′3} of non
aligned points, there is a unique affine transformation mapping {R1, R2, R3} on
{R′1, R′2, R′3}, again denoted by T. There exists a unique 2 × 2 matrix M and a
unique (tx, ty) ∈ R2 such that

T(x, y) = M

(
x

y

)
+

(
tx

ty

)

Calculating M boils down to the solution of a 2 × 2 linear system. By the classical
QR decomposition [72], M can be written

M =

(
cos θ − sin θ
sin θ cos θ

)(
1 ϕ
0 1

)(
sx 0
0 sy

)
. (8.2)

This decomposition is unique and completely determines (θ, ϕ, sx, sy) in [0, 2π) ×
R×R+×R+. Let us denote by (xR1 , yR1) and by (x′R1

, y′R1
) the pair of coordinates

of R1 and R′1 respectively and by (mij) the coefficients of M. Then the transforma-
tion parameters T = (θ, ϕ, sx, sy, tx, ty) can be computed by means of the following
formulas
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θ = arctan(m21/m22),
ϕ = (m11m12 +m21m22) / (m11m22 −m12m21) ,

sx =
√
m2

11 +m2
21,

sy = (m11m22 −m12m21) /
√
m2

11 +m2
21,(

tx

ty

)
=

(
x′R1

y′R1

)
−M

(
xR1

yR1

)
.

(8.3)

The vector T characterizes the transformation T. Unambiguously one can adopt the
same notation for similarities or affine transformations. In addition, since T charac-
terizes T, both of them can be identified. Thus write for X ∈ R2, T (X) instead
of T(X).

Figure 8.4 shows three 2-D projections of the transformation points Tk correspond-
ing to the Guernica affine invariant meaningful matches (Fig. 8.2).
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Fig. 8.4. Guernica experiment: each point represents a transformation associated with an
affine invariant meaningful match, described by 6 parameters. Each figure represents a two-
dimensional projection of the points, respectively tx vs. ty (translation coordinates), θ (ro-
tation) vs. ϕ (shear), and ln(sx) vs. ln(sy) (zooms in the x and y directions). The noise is
mainly due to similar global LLDs, which do not belong to the same real shape. The main
cluster is also spread out because of the perspective effect
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8.3 Meaningful Transformation Clusters

The problem of planar shape detection is by now reduced to a clustering problem in
the transformation space. According to Chap. 7, it is necessary to define

1. A dissimilarity measure between points in the transformation space;
2. A probability on the space of transformations;
3. A grouping strategy.

8.3.1 Measuring Transformation Dissimilarity

Defining a distance between transformations is not trivial for two reasons. First, the
magnitudes of the parameters of a transformation are not directly comparable. This
problem is not specific to transformation clustering but general to clustering of any
kind of data, as discussed in Sect. A.1. Second, our representation of similarities or
affine transformations does not behave well in a vector space. A sound distance is
not necessarily derived from a norm.

Definition 17 (similarity case). Let T (resp. T ′) be the similarity determined by two
shapes elements (S1,S2) (resp. (S ′1,S ′2)). Let also (R1, R2) (resp. (R′1, R

′
2)) be the

points determining the local frame of S1 (resp. S ′1). We call dissimilarity measure
of T, T ′,

dS(T, T ′) = max {‖T (Ri)− T ′(Ri)‖, ‖T (R′i)− T ′(R′i)‖, i ∈ {1, 2}} . (8.4)

Lemma 8. The function dS is non negative, symmetric and satisfies

dS(T, T ′) = 0⇔ T = T ′.

Proof. The first two properties are obvious. Since a similarity is uniquely defined by
the images of two points, the last property follows. Remark that dS is not a distance
since the triangle inequality does not hold. ut

For the sake of completeness, let us define a dissimilarity function between affine
transformations.

Definition 18 (affine case). Let T (resp. T ′) be an affine transformation deter-
mined by two shapes elements (S1,S2) (resp. (S ′1,S ′2)). Let also (R1, R2, R3) (resp.
(R′1, R

′
2, R

′
3)) the points determining the local frame of S1 (resp. S ′1). We set

dA(T, T ′) = max {‖T (Ri)− T ′(Ri)‖, ‖T (R′i)− T ′(R′i)‖, i ∈ {1, 2, 3}} . (8.5)

8.3.2 Background Model: the Similarity Case

In order to apply the detection framework of Chap. 7, a background law is first
needed. A data point here is a similarity transformation represented by a pair of
complex numbers (a, b) ∈ C2. The purpose of this section is to devise a sound
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background law π on the set of similarity transformations. With this in aim, recall
that (a, b) is determined by two local frames in the images to be matched, respec-
tively (p, v) and (p′, v′). Let us now assume that these observations are the realization
of a random variable (P, V, P ′, V ′) ∈ C4. It is natural to assume that the position,
the size and the orientation of an object are independent. This is certainly sound up to
some border effects. In addition, two images which do not contain common shapes
also can be assumed independent. This leads us to take to the following independence
assumption for the background model.
(A’) Consider a random model image I and a random scene image I ′. Then the
random variables P, |V |, arg V, P ′, |V ′|, arg V ′ associated with (necessary casual)
matches between both images are mutually independent.

The marginal laws of the six previous random variables are easily learned from
the two images. Hence the law of (P, V, P ′, V ′) is assumed to be known. By (8.1)
such a 4-tuple uniquely defines a random similarity pattern denoted by (A,B)
where A represents the rotation and zoom, and B the translation. The background
law π is nothing but the distribution of (A,B). The expression of (A,B) as a func-
tion of (P, V, P ′, V ′) is explicit and given by

(A,B) : (P, V, P ′, V ′) 7→
(
V ′

V
, P ′ − V ′

V
P

)
.

The background law π is the image of the law (P, V, P ′, V ′) by this application. It
is also clear that A and B are not independent. Nevertheless, by definition of the
conditional law,

dπ(a, b) = dπB(b |A = a) dπA(a), (8.6)

where πA is the marginal of A and πB( · |A = a) is the law of B knowing A = a.
Since |A| = |V ′|/|V | and argA = arg V ′ − arg V mod (2π), these two variables
are independent under Assumption (A’). Thus, the distribution πA can easily be com-
puted. Moreover, it turns out that A is independent from P and P ′. Hence, the law
of B = P ′ − AP , conditionally to A = a is the law of P ′ − aP , which can also be
easily computed under (A’). The background law π follows from (8.6).

In practice, the computation of π between two images is as follows:

1. Extract all the shape elements of query and scene images;
2. Compute the empirical laws of P, V, P ′, V ′ giving the position, the scale and

the orientation of the local frames related to shape elements in the two images.
Under the independence assumption (A’), this yields the law of the background
model (P, V, P ′, V ′);

3. Under the same assumption, compute the empirical laws of |A| = |V ′|
|V | and

argA = arg V ′ − arg V mod (2π);
4. For each value a of A with non null frequency, compute the empirical distribu-

tion of P ′ − aP .

The probability of a region R is then given by approximating the integral
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π(R) =
∫

R

dπB(b|A = a) dπA(a).

A few words about the estimation of the background model: One would expect argA
to be uniformly distributed in [−π, π), and this belief was experimentally confirmed,
although the horizontal and vertical directions may sometimes be privileged. (See
Fig. 8.5 and experiments.) The distribution of the zoom factor |A| is instead far from
being uniform or even showing a constant shape in the different experiments we have
made. There is no way to figure out a realistic a priori distribution for |A|, or for B
given A. The background model distributions must be learned from the scene and
query images.
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Fig. 8.5. Empirical histograms for affine invariant matching for the experiment of Figs. 8.1
and 8.2. In the first row, the empirical zoom factors in the x and y direction (logscale), which
are image dependent. In the second row, the distribution of the shear and the rotation angle.
The shear is basically uniform, but the rotation exhibits some peaks around−π

2
and π

2
because

of the numerous horizontal and vertical lines in the image

Remark 6. The ideas presented here also hold for the affine transformation cluster-
ing. For this case, θ, ϕ, sx and sy are considered to be mutually independent. Their
distributions can be learned empirically as well as the joint probability of (tx, ty)
given (θ, ϕ, sx, sy). This construction, experimentally satisfying though it is (see
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next chapter), has no right theoretical justification. The problem of finding the right
independent marginal variables in the affine case is left open.

8.4 Experiments

The consistency of the previous definitions is now briefly checked. The next chapter
contains many more experiments. All the experiments will be performed with a pair
of images. The steps leading to a complete experimental setting for shape identifica-
tion are:

1. The method of Chap. 5 is first applied and yields a set of M pairs of matching
LLDs, one in the query image and one in the scene image;

2. A background model π on the set of similarities or on the set of affine transfor-
mations E is built using the method of the present chapter;

3. The transformations T1, . . . , TM associated with the matching pairs are used
to form a point data set in E. From this set, a clustering tree is built according to
the dissimilarity measures of Def. 17 (similarity case) or Def. 18 (affine case).

4. Maximal groups are computed by Def. 16.

The final outcome of the shape identification method of this book for each pair of
images is a set of maximal meaningful clusters. Each cluster is likely to correspond
to an identified shape. One can display for each cluster its associated LLDs. If the
grouping is correct, this set of LLDs must correspond to a matching shape in both the
query image and the scene image. In practice, the identified shapes have dramatically
low NFAs. Thus, they yield an overwhelming certainty about identification. This
certainty is, however, not fully unambiguous because of a stroboscopic effect. Indeed
shapes often have self-similar parts: windows, or rows of windows in a building are a
good example. Other examples are produced by symmetric shapes. For instance, the
letter N is self-similar by a π rotation. In some cases, two or more very meaningful
groups can be found, each one corresponding to a shape self-similarity. Such self-
similarities can, however, easily be anticipated by a previous comparison of the query
image with itself. This comparison can be performed by the above algorithm. The
main group will then correspond to the global match of the shape with itself and the
other groups to stroboscopic effects.

Figure 8.6 depicts the maximal meaningful groups for the Guernica experiments.
There is one single maximal meaningful group, with − log10(NFAg) = 196.2. The
best match between shape elements has a NFA about 4.16 10−12. Hence grouping
dramatically increases confidence in detections while all the false matches are elim-
inated. Marginals of the estimated background law were already shown in Fig. 8.5.
This figure shows the learned distribution of the zoom factors in the x and y direc-
tions as well as the shear and rotation angle. The latter is not perfectly uniform in
this case, because the vertical and horizontal directions are privileged in these geo-
metrical images. Figure 8.7 shows the maximal meaningful cluster.

Now we consider the problem of finding common groups of shapes between the
pair of images in Fig. 8.8. The same procedure is applied, in its similarity-invariant
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Fig. 8.6. Guernica experiment: a single maximal meaningful group was detected. Matches of
the group for the query image (left) and the scene image (right). The group is composed of 117
good matches and its − log10(NFAg) is 196.2
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Fig. 8.7. Guernica experiment: transformation points of Fig. 8.4, where the points correspond-
ing to the only affine invariant group are represented with larger dots. The boundaries of the
corresponding hyperrectangle are drawn. The rest of the points are considered to be isolated
and do not belong to any group
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version. Two maximal meaningful groups are detected: the faces and the title. The
corresponding points in the similarity space are displayed on Fig. 8.9. The two groups
with their different translation and their different scaling are clearly visible this time.

12 meaningful matches, − log10(NFAg) = 32.85

8 meaningful matches, − log10(NFAg) = 17.62

Fig. 8.8. Casablanca experiment: there are exactly two maximal meaningful groups, corre-
sponding to the faces and the title. The relative scale of the images presented above is the
same as the original one. One should note that the faces and the title actually lie in different
relative positions and scales

The clustering algorithm decides that two separate groups (the actors’ faces on
the one hand and the word “Casablanca” on the other hand) are a better representation
than a single large group containing both groups. Indeed, the large group in Fig. 8.10
has a NFAg of 10−31.9, which is larger than the NFAg of one of its children (whose
values are 10−32.85 and 10−17.62). It follows from Def. 16 (Chap. 7) that the large
group cannot be maximal. Still, one could argue that, since the values 10−31.9 and
10−32.85 are extremely close, the robustness in this decision does not seem to be
in agreement with the situation depicted in Fig. 8.9, were the separation between
the two detected maximal meaningful clusters seems to be quite large. Actually, the
strong condition in this example, that prevents the large group from being maximal,
is indivisibility. Indeed, by comparing the product of the children’s NFAg with the
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Fig. 8.9. Casablanca experiment: meaningful clusters in the similarity space. Left: projection
on the translation dimensions. Right: projection on the rotation and zoom (log scale) axes. In
this case, two clusters are clearly visible. Their position but also their scale are different

large group’s NFAg , Prop. 11 (Chap. 7) is sufficient to state that the latter one is not
indivisible, by far, and thus cannot be maximal.

Fig. 8.10. Casablanca experiment. Meaningful group corresponding to the merging of groups
in Fig. 8.8. This group contains 20 meaningful matches, and its − log10(NFAg) is 31.9. Ac-
cording to Definition 15 and following Prop. 11, it is not indivisible and cannot be maximal

The examination of the transformation histograms (Fig. 8.11) shows that the ro-
tation angle is nearly uniformly distributed. The zoom factor, on the other hand, does
not have an intuitive distribution. The translation has to be learned conditionally to
the rotation and the zoom. The last two plots are the two-dimensional distribution of
the translation, conditioned by the rotation and zoom of the two detected maximal
meaningful groups. As can be seen, these distributions are not simple and cannot be
deduced from one another by a single scaling.
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Fig. 8.11. Empirical histograms for similarity invariant matching for the experiment in
Fig. 8.8. On the first row the log-empirical zoom factor ln(s) and the rotation angle θ. This
last one is nearly uniform in this case. On the bottom row the distribution of the translation
vector, conditioned by two different values of the couple (ln(s), θ). These values correspond
to the two maximal groups that are depicted on Fig. 8.8. Since the scales are different, so are
the distributions
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8.5 Bibliographic Notes

The use of spatial coherence for shape or object detection has been the subject of
intensive research, in particular since Ballard’s work on the generalized Hough trans-
form [14]. In his paper, Ballard proposed a method extending the Hough transform
to any kind of planar shape not necessarily described by an analytic formula. Stock-
man [170] presented another early work based on the same principle (recognizing
a query shape by finding clusters in the transformation space) where he introduced
a coarse to fine technique reducing the search complexity. Other voting schemes,
like Geometric Hashing [184, 103] or the Alignment method [90], are frequently
used for detection or recognition. They are computationally more expensive and can
be less accurate. In [76, 77] Grimson and Huttenlocher presented a study on the
likelihood of false peaks in the Hough parameter space. Their work inspired the de-
tection method adopted in this chapter. They indeed proposed a detection framework
where recognition thresholds are derived from a null model (the conspiracy of ran-
domness). Previous recognition methods generally associated a single threshold with
each query image, independent of the scene complexity. In contrast to these methods,
the grouping thresholds derived in this chapter satisfy an important property: they
are functions of the scene complexity and of the uncertainty in feature extraction.
The method of the present chapter took these fundamental ideas from Grimson and
Huttenlocher’s work. The computational swiftness is obtained by hierarchically rep-
resenting the transformation points. The definition of a data-dependent background
model is crucial for avoiding false clusters: Grimson and Huttenlocher’s method as-
sumes that matched features are uniformly distributed in the image. This assumption
is usually not valid. See [148].

Finding groups in data sets is a major problem in many fields such as statisti-
cal pattern recognition, image processing, or data mining. Grouping phenomena are
probably essential in human perception. In vision, the grouping phenomenon was
thoroughly explored by the Gestalt school. The seminal paper on this problem is
Wertheimer [179] . In Computer Vision, the first attempts to model a computational
perceptual organization date back to Marr [117]. More recently D. Lowe [113] pro-
posed a detection framework based on computing accidental occurrences. He writes:

In other words, one can shift our attention from finding properties with
high prior expectations to those that are sufficiently constrained to be de-
tectable among a realistic distribution of accidentals.[...] Even when we
ignore the ultimate interpretation for some grouping and therefore its par-
ticular a priori expectation, we can judge it to be significant based on the
non-accidentalness criteria.

Lindenbaum’s beautiful paper [107] proposed to evaluate a priori the performance of
any invariant shape recognition device. For this author, a shape can be distinguished
if and only it occurs with very small probability in the random background. The
author gives a lower bound on the number of points k in the shape ensuring recog-
nition. This lower bound depends on the number of points N in the background, the
accuracy d of the recognition, the required invariance and ε, the allowed error proba-
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bility for each test. Unfortunately, the shape model assumed by the author is not quite
realistic. For him, a shape is a cluster of points concentrated around some curve rep-
resenting the shape’s boundary and the background is modelled as a Poisson noise
with lower density.

In [23], the authors have proposed a probabilistic compositional model for shape
recognition. In their vision model, visual primitives are recursively composed, sub-
ject to syntactic restrictions, to form tree-structured objects. The involved compo-
sitional rules have a structure close to Chomsky’s grammars. To take a simple but
significant example of syntactic rule:

alignment+ alignment→ alignment,

with the restriction that both alignments are themselves aligned. From the proba-
bilistic viewpoint, the source of inspiration of this theory is very close to our own
aims. This is best illustrated by the following quotation from Laplace’s Essay on
Probability which we take from [23].

On a table we see letters arranged in this order, Constantinople, and we
judge that this arrangement is not the result of chance, not because it is less
possible than the others, for if this word were not employed in any language
we should not suspect it came from any particular cause, but this word being
in use amongst us, it is incomparably more probable that some person has
thus arranged the aforesaid letters than this arrangement is due to chance.

Laplace is assuming a contrario that any combination of the 26 alphabet letters
would be equally likely. Now, a modern dictionary contains not more than 105 words.
The number of possible words with 14 letters like Constantinople in the a contrario
model is about 2.4 1019. Thus the probability of the group Constantinople happening
just by chance is less than 10−14 in the a contrario model.
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Experimental Results

Summary. In this chapter we illustrate a complete and parameterless recognition process by
presenting many experiments with manifold image kinds. The whole algorithm is concisely
described in Appendix B.1.

9.1 Visualizing the Results

Almost all the experiments presented in this chapter are illustrated in a uniform for-
mat. The list below gives the format and summarizes the steps of the complete recog-
nition algorithm.

1. The two original images.
2. The smoothed maximal meaningful boundaries of the original images, extracted

using the algorithm described in Chap. 2, then smoothed with Moisan’s imple-
mentation of the affine curve shortening equation (Chap. 3.3).

3. Detection of meaningful matches between LLDs. We consider here the 1-meaning-
ful matches, despite the fact that a few of them may correspond to false de-
tections. Indeed, as seen in Chap. 5, the constraints imposed by the encoding
methods and by the non-intersection of level lines introduce a certain amount
of dependence between the distances used as features in the background model
(which were assumed to be independent). Thresholding the NFA at 0.1 empir-
ically ensures that no detection occurs in white noise images. However, since
the detection of meaningful matches is followed by a grouping process based on
spatial coherence, in the experiments these few false matches are kept in order
to test the robustness of the grouping algorithm.
A fundamental hypothesis for the a contrario detection of groups is that under
the background model transformation points are mutually independent. In order
to comply with this hypothesis, a greedy algorithm eliminates matched LLDs
which share a large piece of curve with other LLDs presenting lower NFA. More
precisely if a pair of LLDs (S1,S ′1) is an ε1-meaningful match, and there exists
another pair (S2,S ′2) matching ε2-meaningfully, with ε2 < ε1, such that S1
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shares at least half of its length with S2, and the same for S ′1 and S ′2, then the
pair (S1,S ′1) is eliminated from the output list of matches.
The detection of 1-meaningful matches is illustrated by superimposing the
matched LLDs to the original images.

4. Grouping of spatially coherent meaningful matches. For each meaningful group
of matches that is detected (the maximal 1-meaningful groups defined in Chap. 8),
four images are shown.
• The LLDs that match within a group are shown, superimposed to the original

images.
• Given the set of transformations corresponding to the matches within a

group, the best affine or even projective transformation (in the least squares
sense) that maps the LLDs in the query image to the ones in the scene im-
age is computed. Then the query image is mapped using this transformation.
The superposition of the transformed query image and the scene image is
presented.

• All the pieces of meaningful level lines of the two registered images are
then submitted to a visual check. To this purpose, let us fix two values l
and d. Let C1 and C2 be two pieces of level lines with the same length l
parameterized by the length parameter. If for all s ∈ (0, l), |C1(s)−C2(s)| <
d then display C1 and C2.

9.2 Experiments

The detection framework and the algorithms presented in this book are completely
general and can be applied to any kind of images. Besides the Guernica and Casablanca
experiments, this section gives some examples of different kind and nature, all simi-
larities (or affinities). All experiments were done using the single-linkage algorithm
(see Keynotes A.1.2).

Mutiple Occurrences of a Logo

This example illustrates the performance of the proposed methodology in detecting
multiple groups in an image. Two images containing occurrences of the Coca-Cola
logo are compared in Fig. 9.1. Figure 9.2 shows the meaningful matches, both lo-
cally and globally encoded with the affine invariant method. They lead to points in
the 6-dimensional space clustered by the single linkage method. Maximal meaning-
ful groups appear in three projections in Fig. 9.3. Five groups are detected and are
all correct. The NFAg of maximal meaningful groups are reported in Tab. 9.1. The
corresponding LLDs are displayed for each group in Fig. 9.4 and 9.5. Figures 9.6
and 9.7 show the registration results of the query image into the scene image, for
each maximal meaningful group.



9.2 Experiments 167

Fig. 9.1. Coca-Cola experiment: original images and maximal meaningful level lines. Top:
query image. Bottom: scene image

Table 9.1. Coca-Cola experiment: NFAg for the maximal meaningful groups in Figure 9.4

Group nb. 1 2 3 4 5

nb. of matches 15 7 5 6 4

− log10(NFAg) 19.4 13.5 3.7 1.9 0.6
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Fig. 9.2. Coca-Cola experiment: meaningful matches with local encoding (top) and global
encoding (bottom). Number of tests: 1.57 107 (590 LLDs in the query image, 26, 620 in the
scene image). There are 133 meaningful local matches and 1,002 global matches. The best
match has NFA = 8.4 10−12
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Fig. 9.3. Coca-Cola experiment: maximal meaningful groups and projections of the corre-
sponding regions. Their − log10(NFAg) is respectively 19.4, 13.5, 3.7, 1.9 and 0.6. The im-
age on the top left corresponds to the projection on the (tx, ty) plane, where the groups are
clearly separated. The second plot displays the rotation θ against ϕ (shear). Finally the last fig-
ure depicts the zoom in the x and y coordinates in the normalized frame (logarithmic scale).
Identifying those groups in the point clouds is not easy. The points that belong to a maximal
meaningful group are represented with larger dots. The rest of the points are considered to be
isolated and do not belong to any group
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Fig. 9.4. Coca-Cola experiment: first three maximal meaningful groups (among five). Their
− log10(NFAg) is respectively 19.4, 13.5, 3.7
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Fig. 9.5. Coca-Cola experiment: maximal meaningful groups (last two among five). Their
− log10(NFAg) is respectively 1.9 and 0.6
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Fig. 9.6. Coca-Cola experiment: superposition of the logo onto the image for the first three
groups. A mean planar projective transformation is computed for each group of transforma-
tions by using a linear regression. Another practical way to check the validity of the trans-
formation is to display all the pieces of maximum meaningful level lines that are everywhere
close to each other after registration (in practice pieces of length 40 at distance less than 4)
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Fig. 9.7. Coca-Cola experiment: superposition of the logo onto the image for the last two
groups. See caption of Fig. 9.6
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Valbonne Church

Figure 9.8 shows two different views of the Valbonne church with their correspond-
ing maximal meaningful level lines. The meaningful matches between these two
views up to similarity invariance are shown in Fig. 9.9. Some of them are false
matches, but all of them showed a NFA larger than 0.1, as predicted by the ex-
perimental results in Chap. 5. There are also some casual matches that correspond
to the same structures in the images. Figure 9.10 displays the only detected maximal
meaningful group (see caption for details). A global affine transformation was esti-
mated from this group by means of a least squares procedure, over the corresponding
matched LLDs. This transformation was used to map the query image into the scene
image (Fig. 9.11). The superposition of the transformed query image and the scene
image shows that the estimated affine transformation is a good approximation to the
actual projective transformation.

Fig. 9.8. Two frames of the Valbonne church sequence, with its corresponding meaningful
level lines. The image on the top was taken as query image
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Fig. 9.9. Valbonne church: 81 meaningful matches were found, for 14,710 LLDs in the query
image and 18,413 in the scene image. All false detections have NFA larger than 0.1. The best
match has NFA = 2.98 10−12

Fig. 9.10. Valbonne church: a single maximal meaningful group is detected. All false matches
and spatially incoherent matches are rejected. The group contains 35 (similarity invariant)
meaningful matches and − log10(NFAg) = 84.8
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Fig. 9.11. Valbonne church: registration of the images computed from the maximal meaningful
group. On the right, the matching pieces of level lines. On the bottom right of the image some
straight lines appear, because of the coincidental superposition of the lower and upper parts of
the gate after registration

Tramway

The next experiment shows that the grouping procedure naturally induces a back-
ground/foreground separation. The two images to be matched, displayed in Fig. 9.12,
are frames from a movie. Results are shown in Figs. 9.13 to 9.15. See captions for
details.

Fig. 9.12. Tramway images: two frames from a movie
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Fig. 9.13. Tramway images. Meaningful matches. 434 local and 71 global LLD matches

Fig. 9.14. Tramway images: the two maximal meaningful groups. The first one corresponding
to the background contains 220 matches, and − log10(NFAg) = 643.7. The second one is
the train with 15 matches and − log10(NFAg) = 11.9



178 9 Experimental Results

Fig. 9.15. Tramway images: registration with respect to two maximal meaningful groups. The
first set of lines corresponds to the background. Notice the outer contour of the train. This is
a consequence of the well-known aperture problem in optical flow computation: The visual
motion cannot be determined in the direction of the level lines since this does not result in any
change in the image. The counterpart is visible on the bottom images, where the motion of
(static) cables cannot be separated from the motion of the tram

9.3 Occlusions

This section describes an example where the region of interest in the scene is oc-
cluded by the foreground. The images are two photographs of the painting Las Meni-
nas by Velázquez. One is taken from the Web, and the other was shot directly in the
Museo del Prado in Madrid. As can be seen in Fig. 9.16, the bottom image is par-
tially occluded by people contemplating the painting. Colors and the illumination are
completely different. Nonetheless, maximal meaningful level lines are quite insensi-
tive to this change. This empirical statement will be proved by the matching and the
grouping phase. The top image is the query and its shape content is sought for on the
bottom image. In this experiment, the similarity version of the recognition method
was used. Figure 9.17 shows the detected 1-meaningful matches between LLDs. The
best match shows an NFA of 4.1 10−14. Here again, the few false matches that were
found have their NFA above 0.1.
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Fig. 9.16. Las Meninas experiment. Top row: query image and its maximal meaningful bound-
aries. Bottom: scene image and maximal meaningful boundaries

Fig. 9.17. Las Meninas experiment: 1-meaningful matches. The NFA of the best match is
4.1 10−14. Some false detections can be observed. All of them are due to global matches
between nearly convex pieces
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A single maximal meaningful group was detected. This group contains 70 spa-
tially coherent meaningful matches, and its − log10(NFAg) is 226.70. Figure 9.18
shows the matched LLDs that are within the group.

Fig. 9.18. The 70 matched LLDs within the spatially coherent group. All false matches have
been rejected. The value of − log10(NFAg) of the group is 226.70

The Las Meninas experiment shows as usual the superposition of the registered
query image and the scene image (Fig. 9.19). The registration is very accurate, as
can be seen in the pieces of level lines that are common to the two images. Nearly
all the shape content is matched in this case.

Fig. 9.19. Las Meninas experiment. Left: superposition of the scene image and the transformed
query image. Right: comparison of pieces of level lines

9.4 Stroboscopic Effect

In our last example, we will find groups of spatially coherent meaningful matches
between the two images shown in Fig. 9.20. The meaningful matches between LLDs
are displayed in Fig. 9.21. Three maximal meaningful groups are detected; their
NFAg are reported in Tab. 9.2. The LLDs in each group and the registration results
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are shown in Fig. 9.22 and 9.23 . The most meaningful detection is of course over-
whelming, with 169 matches and −log10(NFAg) = 534.8. The other two groups
correspond to stroboscopic effects, and their detection is also very meaningful. These
detections are completely legitimate since they correspond to large repeating parts of
the image.

Fig. 9.20. Roundabout images

Fig. 9.21. Roundabout images and meaningful matches. There are 274 local matches, and 645
global ones

Table 9.2. Roundabout images. Number of matches and NFAg of the meaningful groups (in
the order depicted in Fig. 9.22)

Group nb. 1 2 3

nb. of matches 169 12 17

− log10(NFAg) 534.8 76.81 46.2
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Fig. 9.22. Roundabout images. There are three maximal meaningful groups. The NFAg and
the number of matches are reported in Tab. 9.2. All these groups are correct. The last two ones
are due to the local self-similarity of the image
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Fig. 9.23. Roundabout images. Left: superposition of the two images when the first one is
mapped onto the second one by the planar projective mapping computed from maximal mean-
ingful groups. The superposition of the two images is brighter in the overlapping area. On the
right: pieces of level lines which coincide for both images
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The SIFT Method
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The SIFT Method

Summary. In this chapter and in the next one, we describe one of the most popular shape
descriptors, Lowe’s Scale-Invariant Feature Transform (SIFT) method [115]. In continuation
we will perform a structural and practical comparison of the SIFT-based matching method
with the Level Line Descriptor method (LLD) developed in this book. The LLD method in
fact includes the features of the recent, also popular, MSER method.

Comparing SIFT and LLD is not an easy task, since they are of different nature. On the
one hand LLD is based on geometrical shape descriptors, rigorously invariant with respect to
similarity or affine transformations. Moreover, the method comes with decision rules, either
for matching or grouping. On the other hand, SIFT descriptors are local patches which are
based on key points and which are just similarity-invariant. The comparison will be based on
ad hoc experimental protocols, in the spirit of the SIFT method itself. These protocols check
the robustness of local descriptors to all perturbations listed in Sect. 1.2 (Chap. 1).

We shall start with a comprehensive description of the SIFT shape encoding (Sect. 10.1).
Then we shall compare robustness and stability of both shape descriptors (Sect. 10.2).
Sect. 10.3 compares the matching performances of both algorithms on pair of images hav-
ing similar shapes or obtained by photographing the same scene under different viewpoints.
The main focus of the book is the computation of matching thresholds. In the SIFT method
the thresholds are learned from the pair of images. We shall see that obvious matches can be
missed when the query shape appears more than once in the searched image. In the next chap-
ter a fusion of SIFT and of the a contrario techniques both for matching and grouping will be
proposed.

10.1 A Short Guide to SIFT Encoding

SIFT encoding is a procedure that enables one to extract local information from digi-
tal images. This procedure was introduced by Lowe in 2004 [115] and is now used in
many computer vision applications. SIFT stands for Scale Invariant Feature Transfor-
mation: It consists in normalizing local patches around robust scale covariant image
key points. Lowe claims that 1) his descriptors are invariant with respect to trans-
lation, scale and rotation, and that 2) they provide a robust matching across a large
range of affine distortions, change in 3D viewpoint, addition of noise, and change in
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illumination. In addition, being local, they are robust to occlusion. Thus they match
all requirements for shape recognition algorithms listed in Sect. 1.2 (Chap. 1) except
one: affine invariance.

This preliminary section is dedicated to the description of this encoding algo-
rithm, which consists of four steps: detection of scale-space extrema (Sect. 10.1.1),
accurate localization of key points (Sect. 10.1.2), orientation assignment (Sect. 10.1.3),
and descriptor building (Sect. 10.1.4). We also briefly discuss the way SIFT descrip-
tors can be compared (Sect. 10.1.5).

10.1.1 Scale-Space Extrema

Following a classical paradigm, stable points of interest are supposed to lie at ex-
trema of the Laplacian of the image in the image scale-space representation. The
scale-space representation introduces a smoothing parameter σ, the scale, and con-
volves the image with Gaussian functions of increasing standard deviation σ.

Thus digital images are smoothed at several scales: Lσ = Gσ ? I , where

Gσ = G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

is the 2D-Gaussian function with integral 1 and standard deviation σ. The nota-
tion ? stands for the convolution. By a classical approximation inspired from psy-
chophysics [117], the Laplacian of the Gaussian is replaced by a Difference of Gaus-
sians at different scales (DOG). Extrema of the Laplacian are then replaced by ex-
trema of DOG functions: Dσ = Lkσ − Lσ, where k is a constant multiplicative
factor. Indeed, it is easy to show that Dσ is an approximation of the scale-invariant
Laplacian:

Dσ ≈ (k − 1)σ2∆Gσ ? I.

In the terms of David Lowe:

The factor (k−1) in the equation is constant over all scales and therefore
does not influence extrema location. The approximation error will go to zero
as k goes to 1, but in practice we have found that the approximation has
almost no impact on the stability of extrema detection or localization for
even significant differences in scale, such as k =

√
2.

To be more specific, one has

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ))?I(x, y) = L(x, y, kσ)−L(x, y, σ)

The relationship betweenD and σ2∆G can be understood from the heat
diffusion equation (parameterized in terms of σ rather than the more usual
t = σ2):

∂G

∂σ
= σ∆G.
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From this, we see that ∆G can be computed from the finite difference
approximation to ∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∆G =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∆G.

This shows that when the difference-of-Gaussian function has scales dif-
fering by a constant factor it already incorporates the σ2 scale normaliza-
tion required for the scale-invariant Laplacian.

This leads to an efficient computation of local extrema of D by exploring neigh-
bourhoods through a Gaussian pyramid (see Figs. 10.1 and 10.2).

Fig. 10.1. Gaussian pyramid for key points extraction (from [115])

10.1.2 Accurate Key Point Detection

In order to achieve sub-pixel accuracy, the interest point position is slightly corrected
thanks to a quadratic interpolation. Let us call x0 the current detected point in scale
space, which is known up to the (rough) sampling accuracy in space and scale. Notice
that all points x here are space coordinates supplemented with a scale coordinate. Let
us call x1 = x0 +y the real extremum of the DOG function. Let us assume that y is
small. The Taylor expansion of Dσ yields
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Fig. 10.2. Neighborhood for the location of key points (from [115]). Local extrema are de-
tected by comparing each sample point in Dσ with its eight neighbors at scale σ and its nine
neighbors in the scales above and below

Dσ(x0 + y) = Dσ(x0) +
∂ (Dσ(x0))

T

∂x
(x0)y +

1
2
yT ∂

2Dσ

∂x2
(x0)y + o(‖y‖2),

whereDσ and its derivatives are evaluated at an interest point and x denotes an offset
from this point. Since interest points are extrema ofDσ , setting the derivative to zero
gives:

y = −
(
∂2Dσ

∂x2

)
(x0)−1 ∂Dσ

∂x
(x0),

which is the sub-pixel correction for a more accurate position of the key point of
interest.

Since points with low contrast are sensitive to noise, and since points that are
poorly localized along an edge are not reliable, a filtering step is called for. Low con-
trast points are handled through a simple thresholding step. Edge points are swept out
following the Harris and Stephen’s interest points paradigm. Let H be the following
Hessian matrix:

H =

(
Dxx Dxy

Dxy Dyy

)
.

The reliability test is simply to assess whether the ratio between the largest eigen-
value and the smaller one is below a threshold r. It springs to check:

Tr(H)2

Det(H)
<

(r + 1)2

r
.

10.1.3 Orientation Assignment

Up to this point, key point extraction is scale-invariant. In order to extract rotation-
invariant patches, an orientation must be assigned to each key point. Lowe proposes
to estimate a semi-local average orientation for each key point. From each sample
image Lσ , gradient magnitude and orientation is precomputed using a 2× 2 scheme.
An orientation histogram is assigned to each key point by accumulating gradient
orientations weighted by 1) the corresponding gradient magnitude and by 2) a Gaus-
sian factor depending on the distance to the considered key point and on the scale.
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The precision of this histogram is 10 degrees. Peaks simply correspond to dominant
directions of local gradients. Keypoints are created for each peak with similar mag-
nitude, and the assigned orientation is refined by local quadratic interpolation of the
histogram values.

10.1.4 Local Image Descriptor

Once a scale and an orientation are assigned to each key point, it is possible to extract
similarity-invariant patches. The main problem is to extract robust patches.

Gradient samples are accumulated into orientation histograms summarizing the
contents over 4× 4 subregions surrounding the key point of interest. Each of the 16
subregions corresponds to a 8-orientations bins histogram, leading to a 128 element
feature for each key point (see Fig. 10.3). Two modifications are made in order to
reduce the effects of illumination changes: histogram values are thresholded to re-
duce importance of large gradients (in order to deal with a strong illumination change
such as camera saturation), and feature vectors are normalized to unit length (making
them invariant to affine changes in illumination).

Fig. 10.3. Example of a 2×2 descriptor array of orientation histograms (right) computed from
an 8 × 8 set of samples (left). The orientation histograms are quantized into 8 directions and
the length of each arrow corresponds to the magnitude of the histogram entry. (From [115])

10.1.5 SIFT Descriptor Matching

Even for highly distinctive key point descriptors, Lowe admits that many false
matches can be seen in the case of cluttered images. He proposes to address this
problem by a Generalized Hough Transform step, in order to identify subsets of
matching key points that also agree on location, scale, and orientation. He also pro-
poses an alternative option, which consists in selecting the matches by thresholding
the ratio between the distance from the query match to the first closest database
match and the distance from the query match to the second one. This ensures the
selected matches to be clearly separated from the clutter. An obvious drawback is
that no repeated match can be detected.
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The SIFT method is a priori perfectly similarity invariant and turns out to be, as
we will see, robust to moderate affine transformations. Before passing to comparative
experiments, let us point out that, according to Lowe, the elimination of outliers still
is a problem. The SIFT method empirical threshold performs reasonably, but breaks
down when several similar shapes are present (this is what we called the stroboscopic
effect). Thus, we will demonstrate in the next chapter that an a contrario method can
secure SIFT descriptors. Lowe recommends a grouping step, which is exactly what
the grouping method developed in Chap. 8 does. Thus, this will also be developed in
the next chapter.

10.2 Shape Element Stability versus SIFT Stability

10.2.1 An Experimental Protocol

The standard requirement for a shape matching algorithm is its invariance with re-
spect to the classic image perturbations listed in Sect. 1.2, Chap. 1. In this section we
shall compare the stability of the shape elements obtained by LLD to the stability of
the SIFT descriptors. The most classical image perturbations will be considered: blur,
contrast changes, viewpoint changes, similarity transformations, JPEG compression.
The aim here is neither to compare the matching algorithms themselves, nor to esti-
mate the accuracy of the descriptors (similarity invariant1 curve descriptor for LLD
or patch descriptor for SIFT). We just intend to control the stability of the location of
these descriptors when the perturbations are applied. A first step in this experimental
assessment is to define a common algorithm, so that it makes sense to compare the
two families of descriptors. Considering a reference image (image 1) and five im-
ages (images 2 to 6) representing the same scene with some perturbation (change of
viewpoint, illumination, blur, etc) and considering that the homographies Hi leading
from image 1 to image i are known, we propose the following comparison protocol:

1. Extract descriptors from image 1 and image i.
2. Compute the proportion p of descriptors of image 1 that match, after transfor-

mation by Hi, with at least one descriptor of image i.

A similarity invariant image descriptor consists of a 2D location, an angle and a scale.
When considering level line descriptors (LLDs), we take the two reference points in
the canonical frame (similarity invariant encoding, see Sect. 4.2) and compute the
magnitude, angle and midpoint of the segment joining them. SIFT descriptors are
already associated with a point (the key point), an angle and a scale, from which a
second point can be computed. The midpoint between these two points is used to
indicate the 2D location of the descriptor.

Two descriptors are considered to match if their orientations, scales and midpoint
locations are similar, up to some allowed error. In the tests we permit up to 5 pixels
1 Affine invariant LLDs are not considered in this comparison chapter since SIFT descriptors

are just similarity invariant.
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error in location, 80% change in scale and 30o angular variation. It is realistic to take
such large thresholds, because the transformations between natural images are far
from being perfect similarities and actually always have some affine distortion.

In order to prevent the possibility of counting several matches between the im-
ages corresponding to approximately the same spatial region, similar descriptors
in image 1 (the ones that match according to the criteria specified above) are first
grouped together. Therefore, p is actually the proportion of groups of descriptors in
image 1 that find some match in image i.

Six experiments were led to test several invariance requirements. The test images
are shown in Sect. 10.2.2 (let us recall that image 1 is the reference image), and the
proportion p of descriptors which are retrieved is plotted in a graph.

Let us remark that if the descriptor extraction is robust and if both images have
a similar spatial content, a high value of p must be expected. On the contrary, if this
proportion is very low, any matching algorithm will fail, simply because the sought
descriptors have not been extracted in the other image.

10.2.2 Experiments

The database used in this section comes from (see e.g. [122]):
http://www.robots.ox.ac.uk/˜vgg/research/affine/index.html.

Each image comes with a homography matrix that permits to register each image
from number 2 to number 6 to the first image of the series. (In Computer Vision, a
planar homography is interpreted as a mapping between a point on a ground plane
as seen from one camera, to the same point on the ground plane as seen from a sec-
ond camera.) Extraction and matching of SIFT descriptors was performed by using
Lowe’s software from http://www.cs.ubc.ca/˜lowe/keypoints/

Testing Robustness to Blur

Figure 10.4 displays a set of images obtained by an increasing real defocus of the
camera. The results in Fig. 10.5-left show that SIFT descriptors behave better than
LLD descriptors in the presence of blur. The reason is that SIFT key points are ob-
tained as the result of a blurring process (which produces the scale-space). Indeed,
the SIFT method actually simulates the physical blur at several scales, thus making
the shape recognition, to some extent, blur invariant. On the contrary, level lines are
highly perturbed by the blur and therefore LLDs greatly differ between the images.

Results for LLD can be improved by paralleling the SIFT method, namely by
computing the LLDs for image 1 after applying a Gaussian blur with increasing
variance (see Fig. 10.5-right).

Testing Robustness to Zoom and Rotation Change

The deformation between images taken from a similar view point is mainly due to
the zoom factor and the rotation of the camera around its optical axis. See Fig. 10.6.
The results with both methods are quite similar (see Fig. 10.7), with a small advan-
tage to LLD.
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Fig. 10.4. Images obtained by an increasing real defocus of the camera. Row 1: images 1
and 2. Row 2: images 3 and 4. Row 3: images 5 and 6

Fig. 10.5. Testing robustness to blur. Left: proportion of retrieved elements from image 1 to
image i. Right: proportion of retrieved elements from image 1 + increasing Gaussian blur to
image i
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Fig. 10.6. Images undergoing different changes in rotation and scale. Row 1: images 1 and 2.
Row 2: images 3 and 4. Row 3: images 5 and 6

Testing Robustness to Viewpoint Change

The next experiment consists in retrieving the same graffiti from different viewpoints.
Let us note that a strong perspective distortion can be seen in image 6 (Fig. 10.8).
The results here are slightly in favor of LLD (see Fig. 10.9). However, under strong
perspective deformation none of the methods is able to produce good results.

Testing Robustness to Non-Linear Contrast Change

Simulating changes in illumination or in the non linear response of the CCDs, non-
linear contrast changes and contrast inversions have been applied to a reference im-
age, as can be seen in Fig. 10.10.
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Fig. 10.7. Testing robustness to zoom and rotation change. Proportion of retrieved elements
from image 1 to image i

Results in Fig. 10.11 show that both methods are quite robust to contrast changes
(somehow surprisingly SIFT descriptors are better than LLDs in one case). As ex-
pected, the SIFT robustness is very poor with respect to contrast inversion. The very
few matches occur where descriptors with opposite direction and a similar scale have
been extracted. As expected, LLDs behave very well since they are indeed designed
to be robust with respect to any kind of contrast change and contrast inversion.

Testing Robustness to JPEG Compression

In this experiment, the parameter of interest is the JPEG compression rate, which
increases from image 1 to 6 (see Fig. 10.12).
LLD behaves poorly when compared to SIFT (see Fig. 10.13). The block effect de-
stroys level lines because if the compression rate is too strong, level lines mostly
follow blocks. This problem actually is, like the invariance to zooms, easily fixed by
making the LLD method covariant to zooms. Indeed, with zooms applied the block
effects are highly attenuated.

Testing Robustness to Noise

In the next experiment images 2, 3, 4, 5 and 6 have been obtained by adding to im-
age 1 increasing amounts of Gaussian noise (10, 20, 30, 40 and 50 standard deviation,
respectively, see Fig. 10.14).

Here again SIFT descriptors outperform LLD (see Fig. 10.15-left). The reason is
that noise destroys the level lines structure of an image and therefore alters its LLDs.
On the contrary, Gaussian convolution reduces noise and SIFT descriptors are better
preserved. As has been commented in Sect. 10.2.2, the use of a scale-space strategy
in combination with LLD extraction brings back the performance of LLD to the level
of SIFT (see Fig. 10.15-right).
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Fig. 10.8. Snapshots of the same graffiti from different viewing positions. Row 1: images 1
and 2. Row 2: images 3 and 4. Row 3: images 5 and 6

10.2.3 Some Conclusions Concerning Stability

Although every comparison protocol is a questionable point, lessons can be learned
from the preceding experiments and corresponding figures. We have compared two
very different extraction procedures for shape elements, one based on level lines
(LLD) and the other one on points of interest (SIFT). Both extraction algorithms
exhibit a similar robustness with respect to contrast changes, similarities and weak
viewpoint changes. LLD is unable to resist blur, JPEG compression and noise since
they imply changes in the image geometry, while the blur invariant nature of SIFT
key points (as stable points in the scale-space) descriptors makes them specially
adapted to these kinds of perturbations. However, it has been shown that the use
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Fig. 10.9. Testing robustness to viewpoint change. Proportion of retrieved elements from im-
age 1 to image i

Fig. 10.10. The same image after different contrast changes and contrast inversion. Row 1:
images 1 and 2. Row 2: images 3 and 4. Row 3: images 5 and 6
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Fig. 10.11. Testing robustness to non-linear contrast change. Proportion of retrieved elements
from image 1 to image i

of a scale-space strategy dramatically increases the LLD performance. The main
weakness of SIFT descriptors is their intrinsic modest robustness to strong similar-
ities and viewpoint changes. On the contrary, LLDs can be made robust to affine
transformations (see Chap. 6) which are local approximations to true perspective
transformations.

10.3 SIFT Descriptors Matching versus LLD A Contrario
Matching

The previous section was about the descriptor repeatability and stability under sev-
eral perturbations. In this section we compare the matching results of SIFT and LLD.

The LLD matching strategy has been extensively described in previous chapters
and is mainly based on the use of a contrario techniques both for matching individ-
ual shapes and for grouping together matches contributing to similar homographies
between the compared images.

In its simpler version, the SIFT matching is based on the following algorithm
proposed by Lowe in [115]: A SIFT descriptor from the first image is matched with
its nearest neighbor in the second one, provided the ratio of the distances between
the nearest and the second nearest neighbor is below some threshold (this latest con-
dition should reinforce the confidence, making this matching algorithm more stable
than simply thresholding the distances). The lower the threshold is, the more reli-
able the matches should be. Despite this, one can observe in the experiments (see
next section) that false matches are mixed with good matches, even with a decreased
threshold (see [121] where this analysis is systematically led with several descrip-
tors). This is not surprising since the ratio for SIFT is purely empirical and does not
follow, as it should, from a probabilistic analysis. Some statistically rare descriptors
would deserve a relaxed threshold, while more care should be taken with common
descriptors. In order to get rid of the false matches mixed with good matches, a post-
processing based on the Generalized Hough Transform could be used (as proposed
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Fig. 10.12. The same image with different JPEG compression rates. Row 1: images 1 and 2.
Row 2: images 3 and 4. Row 3: images 5 and 6

in [115]). However, voting thresholds and bin sizes are also touchy parameters that
can introduce either false positives or wrong detections. For these reasons in our tests
we have not used this postprocessing.

10.3.1 Measuring Matching Performance

Two magnitudes have been defined to quantify the quality of the matching between
two images. First, if the homography between both images is known, we define the
matching efficiency as the ratio between the number of correct matches and the total
number of matches. A match between two pairs of descriptors is said to be correct if,
after applying the known homography to the first element of the pair, the distance to
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Fig. 10.13. Testing robustness to JPEG compression. Proportion of retrieved elements from
image 1 to image i

Fig. 10.14. Images with increasing levels of white Gaussian noise. Row 1: images 1 and 2.
Row 2: images 3 and 4. Row 3: images 5 and 6
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Fig. 10.15. Testing robustness to noise. Left: proportion of retrieved elements from image 1 to
image i. Right: proportion of retrieved elements from image 1 + increasing Gaussian blur to
image i

the second element is small (in our tests, smaller than 5 pixels). In the case of SIFT,
we use as matching elements the key points, and in LLD we use one of the points of
the local reference frame of the shape.

Second, the matching area is the proportion domain of the first image that has
a correct match in the second image. This is easy to compute when using SIFT,
since each descriptor is associated to an image patch. However, LLD gives matches
between pieces of level lines, not between bi-dimensional portions of the images.
Thus, in order to compare both kinds of matches we have divided the domain of the
first image into small squares with fixed size (50 × 50 pixels in our tests) and we
consider that one of these squares has a match in the second image if it contains at
least one correct matching element (key point for SIFT or piece of matched level line
for LLD). The ratio between the number of matched squares and the total number of
squares in the image is what we call area of the matching.

10.3.2 Experiments

Blur

We compared by SIFT and LLD the images in Fig. 10.4. Observe (Fig. 10.17) that
the efficiency of both methods is high but that SIFT outperforms LLD in terms of
matching area (see Fig.10.16). If we apply a blur to the first image, as suggested in
section 10.2.2, matching results improve significantly for LLD (Fig. 10.17).

Zoom and Rotation

We compare the images in Fig. 10.6. The results in Fig. 10.19 show that LLD and
SIFT have similar performances under rotation changes. LLD performance decreases
abruptly under strong scale changes (see Fig. 10.18).
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Fig. 10.16. Left: SIFT matching (white points correct matches, black points wrong matches).
Right: LLD matching. The density of correctly matched SIFT descriptors is remarkable

Fig. 10.17. Performance of matching with blur, between image 1 and image i. Left: matching
efficiency. Right: matching area

Changing the Viewpoint

We compare the images in Fig. 10.8. First we use the similarity invariant encoding.
The results in Fig. 10.22 show that SIFT, even if it is not, by design, affine invariant,
is able to cope with affine deformations better than LLD in its similarity invariant
version (see Fig. 10.20). Instead, LLD results are better when using the affine invari-
ant version of the algorithm (see Fig. 10.21).

Stroboscopic Effect

The following figures display one of the main problems of the matching strategy
for SIFT: it is unable to detect several instances of the same object (see Fig. 10.23
and 10.24). LLD is able to find as many groups of matches as instances of the same
object are present in the image (see Fig. 10.25, 10.26, 10.27).
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Fig. 10.18. Left: SIFT matching (white points correct matches, black points wrong matches).
Right: LLD matching. Top: image 1; bottom: image 2

Fig. 10.19. Performance of matching with zoom and rotation, between image 1 and image i.
Left: matching efficiency. Right: matching area



10.3 SIFT Descriptors Matching versus LLD A Contrario Matching 205

Fig. 10.20. Left: SIFT matching. Each circle represents a SIFT key point which got a match.
The radius is the scale of the key point. White circles represent correct matches, black circles
represent wrong matches. Right: LLD matching. Top: image 1; bottom: image 4

Fig. 10.21. LLD affine invariant matching. Left: image 1. Right: image 4
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Fig. 10.22. Performance of matching with change in viewing position, between image 1 and
image i. Left: matching efficiency. Right: matching area

Fig. 10.23. Original images. Left: image 1. Right: image 2

Fig. 10.24. SIFT matching. Left: from image 1 to image 2. Right: from image 2 to image 1
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Fig. 10.25. LLD matching (first maximal meaningful group)

Fig. 10.26. LLD matching (second maximal meaningful group)

Fig. 10.27. LLD matching (third maximal meaningful group)
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In the next chapter we will discuss some simple modifications of SIFT that enable
the detection of several instances of the same object.

10.4 Conclusion

We have confirmed experimentally what could have been anticipated from the meth-
ods. SIFT, which simulates blur at various scales, is much more robust in presence of
blur and noise. In order to put LLD at the same level, several blurs of the query im-
ages or shapes must be performed before LLD is applied to each one of them. Under
weak viewing deformations SIFT also performs better than LLD in terms of match-
ing area, since SIFT descriptors are more dense than LLD shapes. LLD is instead
obviously more robust to strong affine deformations.

As expected, since it attempts to make accurate rejection thresholds, the effi-
ciency of LLD is in general higher than SIFT in terms of rejection of wrong matches.
The next chapter will consider the fusion of both methods, trying to take from each
method what it is best for.

10.5 Bibliographic Notes

10.5.1 Interest Points of an Image

SIFT interest points (the key points) are obtained as the maxima of the Laplacian of
the image (approximated by a difference of Gaussians) through a Gaussian pyramid.
Many variations exist on the computation of interest points, following the pioneering
work of Harris and Stephens [81]. In particular, recent methods are affine invariant.
In [123], an overview and a comparison between the main affine invariant region
detectors is presented. One of the conclusions is that no method really outperforms
all the other ones, although the highest score is obtained by the MSER detector [119].

10.5.2 Local Descriptors

SIFT descriptors are basically local histograms of the gradient direction, weighted
by the gradient norm, in the vicinity of the key point. These histograms are invari-
ant to rotations of the image domain and thresholding and normalization of image
gradients is used in order to achieve some invariance to illumination changes. In the
recent years, several other local descriptors have been proposed, incorporating fur-
ther invariance to changes in viewing conditions. In particular, MSER [119] uses
moment invariants to describe the vicinity of the interest points. This approach was
also used by Monasse in [134]. A recent paper [121] aims at comparing the dif-
ferent descriptors. Performance is evaluated by examining the so-called ROC curves
plotting the number of false positive detections as a function of false negative detec-
tions. While on one of the methods, the gradient location and orientation histograms
(GLOH [121]) seems slightly better than the other ones, the difference (in particular
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with SIFT) is not that large. Let us remark that there are two ways to achieve geomet-
rical invariance: either descriptors are computed in invariant regions, or they have a
group invariance by themselves. For instance, in [19], skew and stretch are corrected
in the neighborhood computation. An affine contrast change is first applied. Then,
descriptors are rotation invariant gray level moments.

10.5.3 Matching and Grouping

The matching phase relies on the distance between descriptors. A distance that is
commonly used between descriptors is the Mahalanobis distance. It is basically a L2

norm in an orthogonal basis (not orthonormal) where coordinates may be assumed
uncorrelated. The implicit assumption is that distribution of descriptors is Gaussian,
and there is no reason why this would be true. Moreover, the values of this dis-
tance have no absolute meaning: it merely allows to rank match candidates. Hence,
simple procedures, such as the thresholding of ratios between the best and second
best matches in SIFT, are usually used. MSER [119] uses a voting procedure over
the nearest measurements comparing a set of invariants that form the descriptors. In
the next chapter some improvements on the SIFT descriptors definition and on the
matching step are proposed, based on a contrario techniques.

The use of a grouping step improves the matching results. In SIFT, a Hough
transform procedure [14] is proposed, but other methods [158] use greedy procedures
based on RANSAC [65]. The clustering method proposed in Chap. 8 and 9 can also
be used to group the matching results, as shown in the next chapter.
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Securing SIFT with A Contrario Techniques

Summary. In the previous chapter two shortcomings of Lowe’s SIFT algorithm have been
pointed out, namely its low matching efficiency (ratio between the number of correct matches
and the total number of matches) and its inability to match several instances of the same object.
The grouping stage of the method also is widely empirical and requires some fix.

In this chapter we shall examine three easy improvements of the SIFT method, all based on
the a contrario techniques developed in the present book. They permit to treat all raised issues.
The first one (Sect. 11.1) is the direct application of the theory for a contrario grouping of
transformations developed in Chap. 8. The second one (Sect. 11.2) is the use of a background
model for SIFT matches which prevents the elimination of multiple matches. Finally Sect. 11.4
yields an efficient a contrario technique computing a NFA for each SIFT match. In summary,
the aim is to demonstrate that the whole SIFT algorithm can be secured and associated realistic
NFAs, as we did in Chap. 5 and 8 for the LLD method.

11.1 A Contrario Clustering of SIFT Matches

The problem of matching efficiency of the SIFT algorithm was already remarked
in [115] by D. Lowe. He proposed to address this problem by a generalized Hough
transform, in order to identify subsets of matching key points that also agree on
location, scale, and orientation. Quoting Lowe:

The correct matches can be filtered from the full set of matches by identi-
fying subsets of keypoints that agree on the object and its location, scale, and
orientation in the new image. The probability that several features will agree
on these parameters by chance is much lower than the probability that any
individual feature match will be in error. The determination of these con-
sistent clusters can be performed rapidly by using an efficient hash table
implementation of the generalized Hough transform. Each cluster of 3 or
more features that agree on an object and its pose is then subject to further
detailed verification. First, a least-squared estimate is made for an affine
approximation to the object pose. Any other image features consistent with
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this pose are identified, and outliers are discarded. Finally, a detailed com-
putation is made of the probability that a particular set of features indicates
the presence of an object, given the accuracy of fit and number of probable
false matches. Object matches that pass all these tests can be identified as
correct with high confidence.

In this section we propose to develop this technique and to replace the Hough
transform by a clustering step identical to the one described in Chap. 8 and 9.

The location, scale and orientation of each one of the SIFT matching pairs can
be represented as a point in the space of similarity transformations. These points
can be grouped together using the technique of Chap. 8. The resulting meaningful
clusters correspond to sets of spatially coherent matches. Matches not belonging to
any meaningful cluster are rejected as wrong.

The following images illustrate the use of this clustering technique. In Fig. 11.2
the clustering method has been applied to a pair already shown in the previous chap-
ter. Each circle represents a SIFT key point that got a match. As usual, the radius
represents the scale of the key point. White circles represent correct matches, black
circles represent wrong matches. The results for the original SIFT method are shown
on the left part of the image. On the right side, the new results using the clustering
technique are shown. The most meaningful cluster is displayed and the key points of
the SIFT descriptors contributing to the cluster are shown in white. The efficiency of
the matching procedure increases from 37.9% to 67.8%. Notice that efficiency did
not reach 100% because some imprecise (though not completely incoherent) matches
were included in the maximal meaningful cluster. For all of them, the location and
scale are quite close to the one expected according to the underlying homography,
this explains why these matches were included in the cluster.

The second figure (Fig. 11.1) compares the results of the original SIFT algo-
rithm (left) and those obtained after clustering (right). As can be observed, the final
number of matches decreases but the efficiency increases significantly (from 82.1%
to 100%).

In the next figures we show an example with several clusters of matches. Fig-
ure 11.3 displays the result of the comparison of two of the images displayed in the
previous chapter (Fig. 10.8). Observe that some of the matches are wrong. After ap-
plying the clustering step two clusters of matches are found (see Fig. 11.4). All of
the matches in these clusters are correct.

11.2 Using a Background Model for SIFT

The matching algorithm for SIFT used in the previous chapter consists in selecting
the matches by thresholding the ratio between the distance from the query match to
the first closest database match and the distance from the query match to the second
closest one. This ensures the selected matches to be clearly separated from the clutter.
The best threshold was determined empirically by Lowe by making a statistics on
40,000 key points:
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Fig. 11.1. Left: SIFT matching (the radius represents the scale of the key point; white circles
represent correct matches, black circles represent wrong matches). Right: SIFT matching fol-
lowed by a contrario clustering (white circles mark the key points belonging to the cluster, all
of them are correct matches). Top: image 1; bottom, image 4

The probability that a match is correct can be determined by taking the
ratio of distance from the closest neighbor to the distance of the second
closest. Using a database of 40,000 keypoints (...).

Actually it is clear that this empirical probability is not given by a model. Another
obvious drawback is that no repeated match can be detected.

A very simple way to overcome this last drawback consists in using a third image
as background model for learning the rejection thresholds. Here we are applying the
very same SIFT method, but we just notice that any image can be used as background
model (the one we have used in our tests is shown in Fig. 11.5). The matching proce-
dure simply consists in selecting the matches by thresholding the ratio between the
distance from the query match to the database match and the distance from the query
match to the closest match in the background model. As a consequence of this mod-
ification several new matches have been detected and, in particular, several instances
of the same object have now been detected (see Figs. 11.6 and 11.7).
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Fig. 11.2. Left: SIFT matching (the radius represents the scale of the key point; white cir-
cles represent correct matches, black circles represent wrong matches). Right: SIFT matching
followed by a contrario clustering. Top: image 1; bottom: image 5

Fig. 11.3. SIFT matching between top and bottom images
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Fig. 11.4. SIFT matching between top image (query) and bottom image (database), followed
by a contrario clustering. Two maximal meaningful clusters were detected

Fig. 11.5. Image used as background model for the rejection thresholds of matches

11.3 Meaningful SIFT Matching

The SIFT algorithm is based on the use of a set of descriptors for each key point
detected in the image scale-space. Descriptors proposed in [115] are based on local
histograms of gradient directions. Matching these descriptors involves a threshold
computed empirically from the images themselves. In order to make the method
more robust, this threshold should be derived from statistical arguments. In this sec-
tion, we intend to do so, by deriving the matching threshold following an a contrario
approach. We shall propose a new SIFT descriptor for which an automatic matching
strategy similar to the one presented in Chap. 5 can be applied. The new SIFT algo-
rithm exhibits high matching efficiency and is able to detect several instances of the
same object. And again, the clustering step proposed in Sect. 11.1 can be applied to
further improve the results.
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Fig. 11.6. Left: original SIFT matching result. Since the same shapes occur twice in the bot-
tom image, the standard SIFT threshold procedure eliminates almost all matches. Right: re-
sult when using a background model. Top: query image; bottom: database image. The wrong
matches can be eliminated by clustering in the transformations’ space, as illustrated in the next
figure 11.7

Fig. 11.7. SIFT matching between the top image (query) and the bottom image (database),
with background model thresholding, followed by a contrario clustering. Two maximal mean-
ingful groups were detected

11.3.1 Normalization

Exactly the same key points as in [115] will be used in the proposed algorithm.
We gave some details on the procedure to compute them in Sect. 10.1. Each key
point comes with a position, but also with its scale and an orientation (which is
one of the dominant gradient directions in the vicinity of the point). Hence it is
characterized by an element (x, s, ϕ) ∈ R2×R+× (−π, π). There are usually a few
hundreds key points in a 512× 512 image. Even though a very simple interpolation
procedure attempts to refine the position of the key points, Lowe estimates that the
position error is of the magnitude of the scale of the interest point, the error on the
orientation is ±15◦, and the scale is determined up to a

√
2 factor. It turns out that



11.3 Meaningful SIFT Matching 217

the accuracy is often much better than that, thus permitting a fair enough registration
of the images. A pair of interest points (x, s, ϕ) and (y, t, ψ) in two images defines a
unique similarity (four scalar parameters). This similarity writes

F (ξ) = zRξ + b,

where z = t
s ,R is the plane ψ−ϕ rotation, and b = y−zRx. Let us assume that u is

a gray level image and that v is obtained by applying the similarity F to u followed
by a contrast change g (we recall that contrast changes are modeled by an increasing
function g : R → R). Thus, v(x) = g(u(zRx + b)) = g(u(F (x))). An elementary
calculation shows that

Dv(F (x)) = g′(u)zDu(F (x))R, (11.1)

meaning that the gradient of u has simply been rotated by the rotation R−1 and
multiplied by a positive number. Therefore the direction of the gradient of v at point
F (x) is obtained by rotating the direction of the gradient of u at x.

11.3.2 Matching

Let us assume that u and v are two images, or pieces of images, of the same size
belonging respectively to a set of images Q (for query) and B (for base). Let us
denote by NQ and NB the cardinality of Q and B. How to compare u and v and
to come to the robust decision that they are similar? A similarity measure is often
defined as a distance between descriptors. The comparison relies on the following
fact: two images differing by a contrast change have the same gradient direction. On
the contrary, if u and v are not related, then so are the directions of their gradient. In
this case, it is sound to assume a contrario that the difference of these directions (in
absolute value) is a uniform random variable in (0, π), and independent of the values
taken at remote enough points.

The a contrario approach consists in deciding that two images are actually sim-
ilar when their observed similarity could not occur just by chance. More precisely,
we have to check if the gradients of u and v are much more often aligned than the
a contrario model can allow. For any point x, let us denote by D(x) the difference
of the directions of Du(x) and Dv(x). It is a number in the interval (0, π), defined
if both Du(x) and Dv(x) are nonzero. In order to avoid quantization effects on the
gradient direction, only points where the gradient norm is larger than τ > 0 can be
considered. In practice, τ = 5.

Let x1, ..., xM , be M points in the image domain of u. The way they are cho-
sen will be the object of a further careful analysis. Let us consider the following a
contrario hypothesis.

H0: the M values (D(xi))16i6M are i.i.d., uniform in (0, π).

Again, this hypothesis is clearly false if the images are similar. Our purpose is
precisely to adequately reject this hypothesis. Let α ∈ (0, π), and qα = α

π . The
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probability, under H0, that at least k among the M values {D(x1), . . . D(xM )} are
less than α is given by the tail of the binomial law

B(M,k, qα) =
M∑

j=k

(
M

j

)
qj
α(1− qα)M−j . (11.2)

Otherwise said, B(M,k, qα) is the probability that the directions of Du and Dv
coincide at (at least) k points out of M , by chance. If for two images u and v, we
indeed observe k such points and if B(M,k, qα) happens to be very small, then
chance is certainly not a good explanation. Let us note, however, that if the image
setsQ and B are very large, then such an observation may indeed be casual. The fact
that an observation should be considered as surprising (or not) depends on the size of
the database. This leads us to the following definition, which follows the Desolneux
et al. method [51]. For a detailed account, we refer to the book [55].

Definition 19. Let 0 6 α1 6 . . . 6 αL 6 π be L values in [0, π]. For any (u, v) ∈
Q× B, we call number of false alarms of (u, v) the quantity

NFA(u, v) = NQ ·NB · L · min
16i6L

B(M,ki, qαi), (11.3)

where ki is the cardinality of

{j, 1 6 j 6 M,D(xj) 6 αi}.

We say that (u, v) is ε-meaningful, or that u and v are ε-similar if NFA(u, v) 6 ε.

Since numbers of false alarms can be very small, the logarithmic scale is more intu-
itive and we call meaningfulness of (u, v) the valueM(u, v) = − log10(NFA(u, v)).

The interpretation of this definition will be made clear after stating the following
proposition. We put its proof for a sake of completeness, but it it just a variant of the
other meaningfulness propositions in the present book, in particular Props. 8 and 10.

Proposition 12. For two image sets Q and B such thatH0 holds, the expected num-
ber of ε-meaningful pairs is less than or equal to ε.

Proof. For all i, let us denote by Ki the random number of points among the xj

such that D(xj) is less than αi. For any v, (u, v) is ε-meaningful, if there is at least
1 6 i 6 L such that NQ ·NB · L · B(M,Ki, qαi) < ε. Let us denote by E(u, v, i)
this event. Its probability PH0(E(u, v, i)) satisfies

PH0(E(u, v, i)) 6
ε

L ·NQNB
.

Indeed, for any real random variable X with survival function H(x) = Pr(X > x),
it is a classical fact that Pr(H(X) < x) 6 x. By applying this result to Ki, we
get the upper bound on PH0(E(u, v, i)). The event E(u, v) defined by “(u, v) is ε-
meaningful” isE(u, v) = ∪16i6LE(u, v, i). Let us denote by EH0 the mathematical
expectation underH0. Then
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EH0

 ∑
u∈Q, v∈B

1E(u,v)

 =
∑

u∈Q, v∈B
EH0(1E(u,v))

6
∑

u∈Q, v∈B
16i6L

PH0(E(u, v, i))

6
∑

u∈Q, v∈B
16i6L

ε

LNQNB
= ε. ut

Remark that if Q and B are white noise images, then H0 trivially holds. For two
such bases, any detection is a false alarm. Indeed, it is a priori known that the images
are unrelated, which does not mean that they have nothing in common. The number
of false alarm quantifies what has to be accepted as a casual similarity. Hence, by
setting ε = 1, one (false) detection may be observed on average in databases of
noise images. Obviously, this still holds if only one of the images u and v is made of
noise. It actually turns out that H0 is reasonable if the sample points x1, ..., xM are
carefully chosen, as discussed in Sect. 11.3.3.

Thus, Def. 19 together with Prop. 12 mean that there are, on average, less than ε
pairs of images (u, v) inQ×B that match by chance, that is to say, whenH0 holds.
Under this hypothesis, any detection must be considered as a false alarm (hence
the denomination of NFA). Thus, it is chosen to eliminate any observation having a
frequency of the order of ε in the a contrario model.

The values qα are simply quantization steps and are known a priori. Hence, it is
possible to tabulate the values of the binomial law once and for all, and to rapidly
compute the number of false alarms. It is possible to figure out the behavior of the
NFA with respect to the parameters, thanks to the following asymptotic expansion,
first proved by Hoeffding (for more details, see the original article [85] and the text-
book [55]).

Proposition 13. LetH(r, p) = r ln r
p +(1−r) ln 1−r

1−p , be the relative entropy of two
Bernoulli laws with parameters r and p. Then, for k > Mp,

B(M,k, p) 6 exp
(
−M ·H

(
k

M
, p

))
. (11.4)

This inequality leads to the following sufficient condition of meaningfulness.

Corollary 2. If

max
16i6L

ki>Mqαi

H

(
ki

M
, qαi

)
>

1
M

ln
LNQNB

ε
, (11.5)

the pair (u, v) is ε-meaningful.

In this corollary, it appears clearly that the value of k such that (u, v) is ε-meaningful
only depends on the logarithm ofL,NQ,NB and ε. In practice, we chooseL about 10
which is compatible with our perceptual accuracy of directions. We also take ε = 1



220 11 Securing SIFT with A Contrario Techniques

since it means that we have on average less than 1 false detection. But, as we shall
see, really similar images have much smaller NFA and the choice of ε is not really
important. Thus, in all experiments, we always set ε = 1, and we can therefore claim
that the decision threshold is automatically derived. The asymptotic estimate given
by Hoeffding’s inequality [85] also shows the conditions to obtain a small number of
false alarms. IfM is fixed, then the NFA is a decreasing function of the proportion of
coincidental direction k

M . If the proportion is assumed to be fixed, then the number
of false alarms is exponentially (thus very fast) decreasing with respect to the number
of samples M .

11.3.3 Choosing Sample Points

The computation of the number of false alarms is made under the assumption H0.
Thus, we assume u and v to be independent randomly chosen images. But we also
assume that the fact thatDu(x) andDv(x) are collinear is independent from the fact
that Du(y) and Dv(y) are collinear at some other pixel y.

We must make this assumption realistic. There are two reasons for being careful.
The first one is that if x and y are too close to each other, then Du(x) and Du(y)
can be correlated. Thus, we must take pixels at a critical minimal distance to ensure
independence of their gradients. Since the gradient is computed by a 2 × 2 finite
difference scheme, sample points must be at least two pixels afar, in the original
images. This has to be corrected by the scaling introduced by the normalization. If
for instance, u has to be zoomed in by a factor 4 before comparison with v, then the
minimal distance between two samples in the resulting image is 2× 4 = 8.

The second issue for ensuring independence of observations is what we shall call
the alignment problem. Images contain shapes, whose boundary are often piecewise
smooth curves, that can locally be approximated by straight lines. The orientations
of the gradient at two points on an alignment are the same, and cannot be assumed
independent, even though the points may be far from each other. Hence sample points
must be chosen sparse enough to minimize the probability that they fall on an edge
which is common to both u and v. This obviously puts strong limits on the number of
samples that may be drawn. In [32], calculations showed that the number of samples
that are necessary to attain very low numbers of false alarms (yielding detection) is
about 100, with reasonable noise conditions. When globally comparing two images,
drawing about 100 samples yields very good results with a number of false detections
which is conform to the prediction.

When dealing with image patches, the results may be less satisfactory. Indeed,
patches result from a normalization procedure. Two parts of images basically con-
taining an edge lead to two normalized patches that are very similar, and aligned with
the edge direction. Moreover, if points are uniformly sampled over the sets of pixels
with a large enough gradient, the gradient direction difference will be small with a
high probability, since all the samples are very likely to belong to the (single) edge.
Hence, the number of false alarms will be small. The patches are very similar indeed,
and the detection is not a false alarm to this respect. However, it is not very infor-
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mative. This problem is analog to the aperture problem in the estimation of optical
flow: edges are locally indistinguishable.

This implies that the comparison of gradient directions is sensible only if the
images are complex enough. An easy way to check this is to impose to draw samples
in u and v such that the gradient direction in u (for instance) is close to uniform over
the sample points. This way, samples are constrained not to lie on the same alignment
and to restore some of the complexity of the images. These considerations lead us to
the sampling algorithm described in the next section.

11.4 The Detection Algorithm

For two images I1 and I2 compute their interest points (xi, si, ϕi), (yj , tj , ψj). With
no loss of generality, assume that tj > si (else reverse the role of I1 and I2). Let F
be the similarity F (x) = zRx+ b mapping (xi, si, ϕi) on (yj , tj , ψj), where z > 0,
R is a plane rotation, and b ∈ R2, are uniquely determined. Define two normalized
images u and v. The image v is obtained by cropping I2 in a patch P around yj . The
image u is simply I1 ◦ F−1, also restricted to P .

Let us quantize the direction of Dv in (0, 2π) on 2N values. Sample points
are then chosen by the following recursion. Let us consider x1 ∈ R2 such that
|Du(x1)| > τ and |Dv(x1)| > τ . Assume that n points have been sampled. Then, a
n+ 1th point xn+1 is chosen such that

• |Du(xn+1)| > τ and |Dv(xn+1)| > τ .
• For each k, 0 6 k < 2N , the number of points of {x1, ..., xn+1} such that the

direction of Dv belongs to the interval
(

kπ
N , (k+1)π

N

)
is less than 1 + n

2N .

This simply means that the repartition of the sample points is required to stay es-
sentially uniform. This is not always possible. If the histogram of directions in v is
unimodal, then no long sequence will fit the condition. As a consequence, ifK points
are tested, then they may lead to a set of sample points containing much less than K
points. Let M be this number of points. The number of false alarms between u and v
is then computed by using Def. 19. Hence, the final number of samples depends on
the complexity of v. If v is essentially an edge, the sample sequence will be short and
the number of false alarms will be large (since computed on very few points). On the
contrary, for complex images (for instance pure texture), sample sequences will be
long, thus leading to very small NFAs.

Let us remark that this peculiar sampling introduces a slight asymmetry in the
algorithm between u and v and that the algorithm would be strictly contrast invariant
only if τ = 0. In practice, letting τ = 5 removes gray level quantization effects
which can entail false detections [50].

Numerically, experiments were led withK = 1000, andM is restricted to be less
than 300. This means that points are drawn according to the two conditions above.
The loop ends either when the total number of drawn points reaches K = 1000
or when the number of admissible points reaches 300. In practice the number of
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admissible points ranges from 50 to 300. When the patches present the alignment
problem, M is obviously small. In this case, numbers of false alarms are large, as
can be seen on the asymptotic development (11.4).

11.4.1 Experiments: Securing SIFT Detections

In the experiments, P is a square patch whose size is proportional to the key point
scale (a factor 25 is used).

In all the experiments, we observed the following facts:

• Right matches can be very meaningful (− log10(NFA) ' 30);
• on the contrary the wrong matches meaningfulness is close to 0. When it is not

the case, there is actually a strong geometrical similarity between the compared
patches.

Fig. 11.8. Multiple matches experiment

In the experiment of Fig. 11.8 and 11.9, there are several partial occurrences
of a logo. The usual procedure for matching SIFT descriptors (nearest neighbor,
then comparison with second nearest neighbor) is inefficient in this case. In this
experiment, 72 matches with an NFA less than 1 are detected. The best match has a
meaningfulness (i.e. − log10(NFA)) equal to 25.4. Half the matches have NFA less
than 10−3, and are of course correct.

That there can be meaningful but wrong matches is not only inevitable but se-
mantically sound. Fig. 11.12 shows such an example. Clearly the two matched SIFT
patches do not correspond to the same motorcycle. All the same both present a wheel
with the same orientation, taken from the same perspective and under the same light.
Under such circumstances, it is not only acceptable, but even desirable to make the
detection. This is clearly illustrated in Fig. 11.8 which displays many physically dif-
ferent but identical Coca Cola cans. Fig. 11.10 shows an excellent match between
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Fig. 11.9. Matching groups in the images of Fig. 11.8. Each circle represents a SIFT key point
which got a match. The radius is twice the scale of the key point. The grouping procedure is
the same as in in Chap. 8
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Fig. 11.10. Best SIFT match between the images of Fig. 11.8. Its meaningfulness is 25.4. On
the left, the two registered patches. On the right figure, points where the gradient is not larger
than 5 in both patches are displayed in gray. When the gradient is large in both images and
when directions of the gradient coincide up to 40◦, the pixel is plotted in white. It is plotted
in black otherwise. Even though the images are different, the registration provided by the key
points is accurate enough and yields a very meaningful match

Fig. 11.11. A false and meaningful SIFT match between the two patches displayed on the
left. The meaningfulness is 2.4. As can be seen, there are many white dots. Moreover, the
orientation of the gradient at these locations is clearly not unimodal and the detection is not
due to the presence of a single alignment

two of them, taken from the same image. As we commented in Sect. 10.3.2 the SIFT
original threshold procedure discards such matches. However, they are obviously
of high interest. The detection and grouping of similar shapes in the same image
is actually a fundamental gestalt [96]. However, some meaningful (but usually not
very meaningful) casual matches can occur, which do not correspond to any recur-
rence of the same shape. Fig. 11.11 shows such a match between two SIFT patches,
with 2.4 meaningfulness. Clearly the gradient orientations are very similar in both
patches at many pixels, and the patches are complex enough to make such a coinci-
dence an unlikely event. The overall explanation of such coincidence is given by the
Gestalt Theory, which points out the recurrence of standard shapes in most images.
Such shapes are called gestalts and include among others convex curves and bars
with constant width [96]. The fact that two different patches show a similar arrange-
ment of frequent shapes is therefore not unlikely. But this experiment proves that the
a contrario model for patches similarity developed in this chapter is still a bit too
primitive.

The next experiment shows matching and grouping results between two different
views of the church of Valbonne (Fig. 11.13). Because of parallax, two different
groups are detected, which is correct.

11.5 Bibliographic Notes

Following [110, 140] the fact that some complex enough element recurs in two dif-
ferent images or even in the same can be taken as a basic definition of shape. Shapes
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Fig. 11.12. Stroboscopic effect due to similarity within a class of objects. The second image
has been obtained by a real defocus of the camera. On the bottom left, two patches that are
very alike. The meaningfulness of their SIFT match is 2.2. The gradient directions difference
is less than 40◦ at many locations (dots in white in the bottom patch). These patches do not
come from exactly the same object, but retrieving them cannot be considered as a false alarm.
Original images courtesy of the LEAR Team, INRIA

simply are parts of an image which can be recognized in another one. There have
been of course several attempts to measure the certainty of detected shape similar-
ities. Schmid et al. [159, 158] use statistics of the distance between descriptors to
recognize parts of objects of the same type, in a semi-supervised way. The grouping
of SIFT matches for attaining certainty was pointed out in Lowe [114] and more re-
cently in Cao et al. [33]. The grouping phase in [115, 158] is used a posteriori, both
to eliminate possible casual matches, and to reinforce the detection of right matches.
The novelty in [33] is the accurate computation of the number of false alarms as-
signed to a group.

An alternative to the method described in Sect. 11.3 and 11.4 for meaningful
SIFT matching has been recently proposed in [151].
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Fig. 11.13. Two different views of Valbonne church. There are two groups, corresponding to
two different parts of the scene with different depths. In the first group, the largest meaning-
fulness is 30.8, in the second group, 2.7 because the resolution is lower in this part
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Keynotes

A.1 Cluster Analysis Reader’s Digest

Clustering methods have been and are still the object of applied and theoretical re-
search in many different fields such as statistical pattern recognition, data mining,
image processing, biomedical sciences, etc. It is not the aim of this section to present
a complete overview of clustering techniques, but rather to provide enough infor-
mation to justify why a particular technique may be preferred (there is no universal
best clustering algorithm, and choices and compromises have to be made). A good
review of clustering techniques by Jain et al., from a statistical pattern recognition
viewpoint, can be found in [94]. The main concepts can also be found in Duda and
Hart [61], Hastie et al. [83] and Kaufman and Rousseeuw [97] textbooks.

Most of the clustering algorithms are either partitional, or hierarchical methods.
While partitional methods produce a single partition, hierarchical methods produce a
nested series of partitions. In this sense, they provide a totally different data descrip-
tion and should not be considered as two competing techniques. However, as shall
be seen, because of their different nature, the corresponding strategies for cluster
validity assessment may be quite different.

A.1.1 Partitional Clustering Methods

Let us denote by T = {Tk, k ∈ {1, . . . ,M}} the data set where each pattern Tk is a
D-dimensional feature vector, and by dT : T × T → R+ the dissimilarity measure.
Assuming for the moment that the partition size c is given, the goal of a partitional
clustering algorithm is to identify the partition P(T ) = {T1, . . . , Tc} on T that opti-
mizes a criterion function. Parametric methods as mixture decomposition will not be
addressed here since there is no a a priori knowledge on the underlying probability
distribution. (In these methods, the data set is assumed to be drawn from a mixture
of c underlying parametric distributions, and the goal is to determine the involved pa-
rameters. The standard algorithm is the Expectation-Maximization algorithm [47].)
Hence, since there are approximately cM/c! ways of partitioning a set of M ele-
ments into c subsets (a Stirling number of the second kind), optimizing the criterion
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function by exhaustive search is intractable and iterative optimization procedures are
needed.

The simplest and most widely used family of criteria function is the one of related
minimum variance criteria [61, 97]. The energy to be minimized here is

E =
1
2

c∑
m=1

nm〈dm〉,

where nm is the number of points in the m-th cluster, and

〈dm〉 =
1
n2

m

∑
Ti∈Tm

∑
Tj∈Tm

dT (Ti, Tj)

is the average dissimilarity measure between points in the m-th cluster. If T was a
subset of a vector space, and dT was the squared Euclidean distance, the resulting
criteria would be the sum of variances of each cluster,

c∑
m=1

∑
T∈Tm

‖T − 〈Tm〉‖22 , where 〈Tm〉 =
1
nm

∑
T∈Tm

T.

Strictly speaking, this criterion only makes sense when clusters are isotropic, mul-
tivariate normally distributed. Moreover, the solution is not invariant to linear trans-
formations of the data. Many variations on this method exists, taking any Minkowski
metric or the squared Mahalanobis distance instead of the squared Euclidean dis-
tance [94]. Notice however that all of these methods are based on the notions of
medoid or centroid (barycenter) of a set of points and this does not make sense un-
less patterns live in a vector space.

Related minimum variance criteria suffer from the problem that partitions that
split large clusters may be favored over ones that maintain the integrity of natural
clusters [61]. When natural clusters have very different number of points, the parti-
tion minimizing this criteria may not reveal the intrinsic structure of the data. Another
weakness of these methods is the lack of ability to extract a very dense cluster embed-
ded in the center of a diffuse cluster. Besides, the partition solution has to be found
by iterative optimization procedures. These iterative procedures are to be initialized
by a reasonable initial partition and solution can be trapped in local minima [94].

Other popular criterion functions, also defined only when patterns live in Eu-
clidean (or Hermitian) spaces, and closely related to the previous ones, can be de-
rived based on the within cluster scatter matrix W (P(T )), and the between cluster
scatter matrix B (P(T )) [61],
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W (P(T )) =
c∑

m=1

∑
T∈Tm

(T − 〈Tm〉) · (T − 〈Tm〉)T,

B (P(T )) =
c∑

m=1

nm (〈Tm〉 − 〈T 〉) · (〈Tm〉 − 〈T 〉)T,

S =
c∑

m=1

(T − 〈T 〉) · (T − 〈T 〉)T = W (P(T )) +B (P(T )) ,

where 〈T 〉 is the barycenter of all patterns in the data set, and S is the total scatter
matrix, which is a constant given the data, independent on the partition. One can
define optimal partitions as minimizers of tr [W (P(T ))] (or equivalently maximiz-
ers of tr [B (P(T ))]). This turns out to be a minimum variance criterion. Another
possibility is to minimize det [W (P(T ))] whose solution is invariant to linear trans-
formations of the data. In any case, combinatorial optimization is intractable and one
has to consider iterative procedures.

Iterative Methods for Partitional Clustering

Most partitional methods are based on the definition of c elements from a pattern
space called centrotypes, each defined to be a representative object of one of the
clusters. The criterion function to be minimized is usually the sum of the average
dissimilarities between each centrotype and all of the other patterns of the same
cluster. Typically, iterative methods begin by initialising a set of c centrotypes. Each
pattern is then assigned to the cluster corresponding to its closest centrotype (for the
considered dissimilarity measure), and centrotypes are re-computed in order to mim-
imize the criterion function. The iteration ends when centrotypes do not change. The
computational efficiency of this approach depends on how easily centrotypes can be
computed. The c-means algorithm [116] (also referred in the literature as k-means)
runs typically inO(M) [25]. Indeed in this algorithm the dissimilarity measure is the
squared Euclidean distance and centrotypes are the clusters’ barycenters, which can
be easily computed using an update equation. A similar algorithm can be obtained by
using the `1-norm as dissimilarity measure. The centrotypes for this measure (which
is more robust to outliers than the squared Euclidean distance) are the cluster medi-
ans.

When the dissimilarity measure does not lead to a closed form representation for
the centrotypes, a method known as k-medoid which allows clustering with respect
to any specified dissimilarity measure can be used [97]. In this method, centrotypes
(the so-called medoids) are restricted to be patterns from the data set, and as before
patterns are assigned to the cluster corresponding to its closest centrotype. The goal
is then to select, among all M patterns the c centrotypes which minimize the sum
of the average dissimilarities between each centrotype and all of the other patterns
of the same cluster. A widely used implementation for the k-medoid method is the
Partitioning Around Medoids algorithm (PAM), by Kaufman and Rousseeuw [97].
PAM consists of two phases. In the first one, a method for selecting the initial set of c
centrotypes or medoids is applied. The second phase is an iterative procedure where
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in each iteration the set of centrotypes is updated by analyzing all possible pairs of
patterns such that one pattern is a centrotype and the other is not, and by swapping
the pair which most reduces the value of the criterion function. The cost of a single
iteration is O(c(M − c)2).

A.1.2 Hierarchical Clustering Methods

While partitional clustering algorithms construct a single partition with c clusters
(a flat description), hierarchical methods deliver a recursive structure. Since they
represent data in different ways, partitional and hierarchical methods do not really
compete with one another. Indeed, when data is to be described in terms of classes,
subclasses, sub-subclasses (e.g. a biological taxonomy), flat representations do not
make sense and hierarchical methods are needed. There are, of course, many appli-
cations in which data is not inherently hierarchical, and one has to make a choice
among clustering methods from both types. Hierarchical methods are more versa-
tile than partitional methods and can deal with many differently shaped clusters, but
generally they are more time consuming.

Depending on the direction they build the hierarchy, these clustering methods can
be agglomerative (bottom-up) or divisive (top-down). The former, which are usu-
ally computationally simpler, start with each single point as a cluster, and iteratively
merge the closest pair of clusters in the sense of a chosen dissimilarity measure. The
generic algorithm is as follows [94].

1. Initialization: compute the proximity matrix (the matrix containing the dissimi-
larity between each pair of patterns).

2. Find the most similar pair of clusters using the proximity matrix. Merge these
two clusters.

3. Update the proximity matrix according to this merging.
4. Repeat steps 2 and 3 until all patterns are in one cluster.

At each iteration step, two clusters are merged. The procedure builds up a tree or
dendrogram, where leaves are the M elements of T (step 1). At level l, this tree
has M − l nodes, each node being a cluster. At level l + 1, the closest clusters from
level l are merged (step 2). By closest, we mean the pair Ti and Tj minimizing a
given distance or proximity measure δ(Ti, Tj) between clusters. Different strategies
for updating the proximity matrix lead to different hierarchical clustering methods.
(Moreover, since all of these algorithms are merging methods, they admit a varia-
tional formulation and can be solved as an energy minimization problem; see [138],
Chap. 3.) Lance and Williams [104] define a class of methods by specifying a gener-
alized recurrence formula for updating the proximity matrix:

δ(Ti∪Tj , Tk) = αi δ(Ti, Tk)+αj δ(Tj , Tk)+β δ(Ti, Tj)+γ |δ(Ti, Tk)−δ(Tj , Tk)|,

where parameter values αi, αj , β and γ characterize the particular clustering method.
Below we describe the most popular ones.
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• Choosing αi = αj = 1/2, β = 0 and γ = −1/2, leads to the following distance
between clusters:

δmin(Tp, Tq) = min
Ti∈Tp,Tj∈Tq

dT (Ti, Tj).

The corresponding algorithm is known as single-linkage algorithm [94, 61]. Here
the nearest-neighbor points determine the nearest subsets. If elements in T are
viewed as nodes of a graph, merging Tp and Tq corresponds to adding an edge
between the nearest points in Tp and Tq. This procedure generates a tree, and if
one lets the procedure evolve up to having a single cluster containing all points,
the result is a minimal spanning tree.

• Taking αi = αj = γ = 1/2, β = 0, yields

δmax(Tp, Tq) = max
Ti∈Tp,Tj∈Tq

dT (Ti, Tj).

The resulting algorithm is called complete-linkage algorithm [94, 61]. Here dis-
tance between two clusters is given by the farthest pair of points in the two clus-
ters. This procedure produces a graph in which edges connect all of the nodes in a
cluster. When the nearest clusters are merged, edges between every pair of nodes
in the two clusters are added. If the diameter of a partition is defined as the largest
diameter for clusters in the partition, then each iteration of the complete-linkage
algorithm increases the diameter of the partition as little as possible.

• Taking αi = ni/(ni +nj), αj = nj/(ni +nj), and β = γ = 0, leads to a group
averaging method, where

δavg(Tp, Tq) =
1

npnq

∑
Ti∈Tp

∑
Tj∈Tq

dT (Ti, Tj).

• Some clustering methods based on barycenters, such as Ward’s minimum vari-
ance method [176], can also be represented in terms of Lance and Williams for-
mula. For Ward’s method, αi = (ni+nk)/(ni+nj +nk), αj = (nj +nk)/(ni+
nj +nk), β = −nk/(ni +nj +nk), γ = 0, and the corresponding cluster prox-
imity measure is

δward(Tp, Tq) =
npnq

np + nq
‖〈Tp〉 − 〈Tq〉‖22,

where 〈Tp〉 and 〈Tq〉 denote the barycenters of Tp and Tq respectively.

Time and memory complexity of the algorithms given by the Lance and Williams
formula are studied in [44]. Overall, the time required for hierarchical clustering is
O(M2 logM), and the memory complexity is O(M2).

In practice, if clusters are compact and well separated, all methods yield the same
results. However, when this is not the case, the resulting partitions may be quite dif-
ferent. Depending on the cluster proximity measure, different methods of clustering
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can be more or less successful with different types of clusters. Single-linkage al-
gorithms suffer from the chaining effect: A single corrupted point somewhere in be-
tween two compact clusters can lead to an unwanted merging between them [94, 61].
However, this property is very useful if one wants to detect elongated clusters.

The complete-linkage algorithm tends to produce compact clusters with small
diameters. However, patterns assigned to a cluster can be much closer to patterns in
other clusters [83, 61].

The single-linkage and the complete-linkage algorithms are both sensitive to out-
liers since they rely on extremal measures. One way to reduce the influence of out-
liers is using δavg as cluster proximity measure though the improvement is often not
good enough. Besides, average methods have another drawback compared to single
or complete linkage methods: they are not invariant under monotone transformations
on the dissimilarity measure dT (invariance of the former ones is a consequence of
being based on extremal values) [83].

To end this section, let us make a few general remarks. In Sect. A.1.1, one of the
main assumptions is that the number of clusters cwas given, for partitional clustering
algorithms. Then, the goal was to find the c-partition on the data optimizing a global
criterion (in practice iterative methods are used and the convergence to a global mini-
mum is not ensured). Agglomerative hierarchical clustering methods perform well in
making local decisions about cluster merging since they make use of the proximity
matrix. As the hierarchy is built by means of local optimization, the level corre-
sponding to a c-partition will not correspond in general to a global optimum (unless
clusters are compact and well separated). For instance, Ward’s method will not lead
to the same c-partition as a c-means method, despite the fact that both attempt to
minimize variance. In this sense, one would rather say that partitional methods are
better than hierarchical methods. But how to be sure that there are exactly c groups
of patterns in the data? Is the criterion function well adapted to the shape of clus-
ters that are present in the data? From this viewpoint, hierarchical clustering may
be more appealing than partitional ones. Another argument in favor of hierarchical
clustering methods is their versatility and their ability to cope with differently shaped
clusters. For instance, the single linkage algorithm can deal with non-isotropic, elon-
gated or concentric clusters while partitional methods like c-means can only deal
with isotropic clusters. Since their outputs are nested series of partitions, ranging
from M clusters to one single cluster, one can imagine methods to determine the
number of clusters as stopping rules in the merging process. If stopping rules are
correctly designed, hierarchical methods would also be able to detect clusters having
different densities or different number of points.

A.1.3 Cluster Validity Analysis and Stopping Rules

The great variety of clustering methods that have been proposed in the recent past
has been followed by an increasing interest in clustering validation methods. In [74],
a comprehensive study of these techniques is presented.

Cluster validity analysis deals with assessing the validity of classifications ob-
tained from the application of clustering procedures. There are different validation
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approaches [59, 74] depending on the amount of prior information on the data. This
section deals with internal validation tests, which consist in determining if the struc-
ture is intrinsically adapted to the data. In other words, internal tests are derived
from some internal criteria measuring the suitability of the clustering structure for
the original data set with no other information than the data themselves.

Classical issues in cluster validity analysis are the assessment of individual clus-
ter validity and the assessment of a whole partition. (In some applications validity of
a dendrogram also needs to be assessed. This problem is not addressed here.) These
two issues are briefly summarized next.

Partition Validity Assessment

A relevant question to address in order to assess the validity of a partition, is deriving
the number of clusters [59], denoted by c. Notice that by solving this problem, it can-
not be ensured that the c clusters are valid clusters. The most common approach to
decide how many clusters are best consists in finding partitions for c = 1, . . . , cmax

and optimizing a measure G(c) of partition adequacy, which is usually based on the
within-cluster and between-cluster variability. When applied to hierarchical cluster-
ing methods these cluster validity assessment techniques are known as global stop-
ping rules because the choice of c can be seen as stopping the merging process (in
the agglomerative case) at a certain level of the dendrogram.

When dealing with hierarchical classifications, another approach to determine
the most appropriate number of clusters are local stopping rules. In the agglomera-
tive case, these rules are merging criteria to decide whether two clusters should be
merged. Usually, the merging process is continued until it is decided, for the first
time, that two clusters should not be aggregated.

Milligan and Cooper [126], and Dubes [59], present comparative studies of some
stopping rules. Milligan and Cooper’s paper provides a particularly comprehensive
Monte-Carlo evaluation of these rules, by comparing thirty local and global stopping
rules. In their simulation experiment, only strongly clustered data sets (internally
cohesive and well separated clusters) were considered. Hence, since clustering this
kind of data should not be a challenging problem, techniques that do not perform
well on it are also expected to be inefficient when dealing with any data set. The
main conclusion of this experiment is that only five or maybe six of the compared
rules perform quite well on strongly clustered data. One can also observe that the
majority of the stopping rules described in the study are based on heuristics and lack
of theoretical foundation. Those derived from rigorous statistical techniques, assume
in general hypotheses on the data which are unrealistic in most real applications (e.g.
multivariate normal distribution for the patterns). In order to briefly illustrate the
considered stopping rules, it is worth describing Calinski and Harabasz’s index [26]
and Duda and Hart’s rule [61], since these methods provided the best results.

• Calinski and Harabasz propose a global stopping rule for assessing partitions, by
choosing the partition size c that maximizes the index
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G(c) =
1

c−1 tr [B (P(T ))]
1

M−c tr [W (P(T ))]
,

whereB (P(T )) andW (P(T )) are respectively the between- and within-cluster
scatter matrices of a c-partition P , defined in section A.1.1. The index G(c) is
the ratio between the total within-cluster sum of squared distances about the cen-
troids, and the total between-cluster sum of squared distances. This index is only
defined for sets of patterns living in an Euclidean space. Moreover, since the in-
dex is based on the sum of squares criterion, it has a tendency to partition the
data into hyperspherical shaped clusters, having roughly equal numbers of pat-
terns [74] (this is probably the main reason for its first position in Milligan and
Cooper’s ranking, since their data was strongly clustered, and clusters contained
almost the same numbers of points and were pretty isotropic).

• Duda and Hart proposed the Je(2)/Je(1) local stopping rule for deciding
whether or not a cluster should be split into two subclusters. The rule consists in
computing the ratio between the total within sum of squared distances about the
centroids of the two clusters for the two-cluster solution (Je(2)), and the within
sum of squared distances about the centroid when only one cluster is present
(Je(1)). The method considers a null hypothesis, assuming that all patterns come
from a normal distribution, whose mean and variances are empirically estimated
over the whole data set. The null hypothesis of one single cluster is rejected if
Je(2)/Je(1) is smaller than a specified critical value, fixed by a significance
level for the hypothesis testing. While considering a normal distribution as a null
hypothesis and using the sum of squared distances may not be well adapted to
real clustering problems (particularly when the number of patterns in the data set
is not as large to be well represented by an asymptotic distribution), the proposed
a contrario formulation is appealing from our point of view.

To finish the discussion on partition validity assessment we quote one of Bock’s
conclusions from his work on significance tests in cluster analysis [24], where a
comparison between global and local methods is made.

Some care is needed when applying any test for clustering, bearing in
mind that different types of clusters may be present simultaneously in the
data, and that the number of clusters is, in some sense, dependent on the
intended level of information compression. Thus, a global application of a
cluster test to a large or high-dimensional data set will not be advisable
in most cases. However, a local application (...) to a specific part of the
data will often be useful for providing evidence for or against a prospective
clustering tendency.

Validity Assessment of Individual Clusters

The problem is now to decide, among the candidate clusters furnished by the clus-
tering procedure, which ones correspond to natural clusters. But what does a natural
cluster look like? As pointed out by Gordon [74], it may be difficult to specify a
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relevant definition of an ideal cluster for a particular data set. However, clusters must
reveal structure in the data and can be detected as opposed to a complete absence of
structure. Thus, in order to decide whether the candidate clusters are significant, they
can be compared to some appropriate random distribution. This leads to a general
methodology for cluster validity analysis based on the statistical approach of hy-
pothesis testing [24, 73, 74]. Following Bock [24], this framework consists of these
stages:

1. Design a null hypothesisH for the absence of class structure in the data (a back-
ground model, or null model), meaning that patterns are sampled from a homo-
geneous population. Then, heterogeneity or clustering structure are involved in
the alternative hypothesis A.

2. Define a test statistic, which will be used as a validity index to discriminate
betweenH and A.

3. If, for a given significance level (error probability) α, the test statistic of the
observed data exceeds the corresponding critical value cα, the null hypothesisH
is rejected, in favor of A.

This general framework can be adapted for assessing the validity of individual
clusters. A general approach within this framework is the Monte-Carlo validation,
which is described in [74]. Assume one wants to assess the validity of an observed
cluster Ti having n patterns in a data set having M patterns. In the Monte-Carlo val-
idation method, data sets of M patterns are simulated under the background model,
and classified using the same clustering procedure that was used to classify the orig-
inal data. The test statistic is computed for those clusters having n patterns, and the
distribution of the test statistic is estimated. Then, using the value of the test statistic
of Ti, one can compute the significance level of rejectingH. Two popular test statis-
tics are the maximum F test and the U statistic (see Bock [24] and Gordon [74]).

Appropriate null models for data are the subject of the study presented in [73].
These models, which specify the distribution of patterns in the absence of structure
in the data, can be of two types.

– Standard (data-independent) null models. Two well known standard null models
are the Poisson model and the Unimodal model [24]. The main problem with the
Poisson model is the choice of the region R within which patterns are uniformly
distributed (standard choices for normalized data are the unit hypercube and the
unit hypersphere). The Unimodal model assumes that the joint distribution of the
variables describing the patterns is unimodal, but the choice of the distribution
may not be easy.

– Data-influenced null models. Here the data is used to influence the specification
of the null model. Examples of these null models are the Poisson model where R
is chosen to be the convex hull of the data set, or the Ellipsoidal model, which is
a multivariate normal distribution, whose mean and covariance matrix are given
by the data set.
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In [73], Gordon concludes that the results of the tests depend considerably on the
choice of the null model and that in general the results based on data-influenced null
models are more relevant than those obtained using a standard null model.
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A.2 Three classical methods for object detection based on spatial
coherence

This section addresses some issues of the generalized Hough transform [14], whose
variations are probably the most widely used techniques in object detection. Two fre-
quently used techniques for robust transformation estimation will also be described:
geometric hashing[103, 184] and the RANSAC algorithm [65].

A.2.1 The Generalized Hough Transform

In [14] Ballard proposed a generalization of the Hough transform [86] allowing the
detection of arbitrary planar shapes undergoing similarity transformations. Most ob-
ject detection and recognition systems using transformations clustering are based on
the generalized Hough transform. The basic idea is to quantize the transformation
space into D-dimensional cells. Each transformation point Ti is quantized and then
votes for one of these cells. In practice, noise and image quantization induce local-
ization errors in the extracted features and one has to take into account uncertainty
in computing Ti. Thus, each pairing of model and image features defines a volume
of possible transformations, so it should cast a vote into each cell intersecting this
volume (see [76] for an error analysis when using line segments as features).
As with all techniques based on histograms in multidimensional spaces, the gener-
alized Hough method is very sensitive to the choice of quantization precision (this
remark also holds for Lamdan and Wolfson’s Geometric Hashing [184, 103] de-
scribed in Sect. A.2). Most of the time, the cell size is chosen by problem specific ad
hoc arguments (see [114] for an example). However, in the general case, quantization
effects may lead to several problems:

• Similar transformation points may vote for different cells. In order to reduce this
problem, either votes are counted by adding the votes of neighboring cells (using
a sliding window) in the case of no uncertainty in Ti, or, when uncertainty is
considered, a vote is cast into each cell intersecting the uncertainty volume.

• In the plane similarity case, for instance, if one wants to do a fine discretization
of the 4-D transformation space in order to perform accurate detection, the search
space is too large for an exhaustive search. Coarse to fine techniques applied to
transformation clustering, first introduced by Stockman [170], can deal with this
complexity problem, but there is no reason why the most voted cells at the finer
scale should correspond to the most voted ones at coarser scales.

• From the detection viewpoint, the size of the cells is also crucial. Indeed, if quan-
tization is too fine, cells will not have enough votes and correct instances will be
missed (false negatives). On the other hand, choosing a very coarse quantization
increases the likelihood of large clusters occurring at random (false positives).

These remarks partially motivate our decision to use the clustering techniques de-
scribed in Chap. 7, along with the validity assessment method proposed in the same
chapter. Indeed, the proposed methodology does not suffer from quantization prob-
lems.
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The generalized Hough transform is with geometric hashing [103, 182, 184],
and the alignment method [90] one of the most popular voting schemes. Given two
shapes, the geometric hashing method aims at determining if there is a transformed
subset of the features from one shape that matches a subset of the features of the
other one. The alignment method is a similar voting method. The generalized Hough
transform method, instead of voting over all possible configurations of shapes, con-
sists in voting over all possible transformations mapping a shape to another one.
As for all techniques based on histograms in multidimensional spaces, these voting
methods are very sensitive to the choice of quantization precision (too large bins may
lead to false matches, and too small bins may produce misses). Besides, most of the
time, the size of the hash table and the amount of parameters (the size of the bins in
the voting stage, the threshold for the amount of votes in each bin, etc.) are crippling.
The complexity of these voting schemes increases with the invariance degree; affine
invariant shape retrieval in large databases is intractable. All these properties make
the local features not suitable for shape retrieval in large databases.

A.2.2 Geometric Hashing

In order to illustrate the geometric hashing algorithm, we present the case of similar-
ity or affine transformations.

A query shape S is searched in a set of shapes.

Preprocessing (off line). For each shape S ′i in the set of shapes:

1. Extract local invariant features from S ′i. Assume n such features are found.
2. For each local basis bj (e.g. a pair of points for similarity transformations, three

non-collinear points for affine transformations) of features:
a) Compute the quantized coordinates (u, v) of all the remaining features, in

the local basis.
b) Use the couple (u, v) as an index in a hash table, and write the information

(i, bj) in the corresponding bin (i is the index that identifies S ′i).

Recognition stage (on line). For the query shape S:

1. Extract local invariant features from S. Assume n such features are found.
2. Choose arbitrarily a local basis (two or three points, depending on the considered

invariance).
3. Compute the quantized coordinates (u, v) of all the remaining features, in the

local basis.
4. For each of these coordinates, go to the corresponding bin in the hash table, and

cast a vote for each pair (i, bj) inscribed in the bin.
5. Keep only the pairs (i, bj) which received more than a certain number of votes.

Each of these pairs stands for a potential match.
6. For each potential match, compute the best transformation (in the least squares

sense) between all corresponding features, and check if the query features and
the features from the corresponding shape are well aligned. If not, go to (2) and
choose another basis.
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For affine invariant shape recognition, time complexity for the preprocessing
stage is O(n4) for each shape in the set of shapes. If the access time to the hash
table is O(1), time complexity for the recognition stage is between O(m) (when the
first query basis chosen at random corresponds to a model in the set of shapes) and
O(m4) (when no basis from the query shape corresponds to a model in the set of
shapes).

A.2.3 A RANSAC-based Approach

The RANdom SAmple Consensus (RANSAC) algorithm by Fischler and Bolles
[65], is certainly one of the most popular robust estimators in computer vision. It has
proved very successful in stereo vision tasks, such as estimating homographies and
fundamental matrices [82]. The main reason for its success is its ability to deal with
large proportions of outliers. Roughly speaking, in its general form, the RANSAC
procedure to fit a model consists in randomly selecting a minimal subset of the data
(i.e. a subset allowing to instantiate the model), then computing the number of inliers
consistent with the instantiated model. These two steps are repeated for N minimal
subsets of the data. The model having the largest number of inliers is chosen and
refined by re-estimating it from the corresponding set of inliers.

Our framework deals with M meaningful matches, and usually M is small
enough to test for all corresponding similarity or affine transformations. Hence, using
the same ideas, an elementary algorithm would be as follows:

1. For each element in the set of M pairs of local frames corresponding to mean-
ingful matches:
a) Compute the associated transformation T ;
b) Apply T to all query local frames, and compute their distances to their cor-

responding scene local frames;
c) Compute the number of inliers consistent with T , i.e. the pairs for which the

distance is less than d pixels;
2. Choose the transformation T having the largest number of inliers;
3. Re-estimate T for all pairs of local frames determined as inliers (with a least

squares method, for instance).

One can iterate this procedure on the set of outliers in order to find other (less domi-
nant) transformations.

Even for this simple version of the algorithm, two problems arise: the choice of
the distance threshold d, and the minimum number of inliers a model should have in
order to be valid. The distance threshold d is usually chosen empirically. Otherwise, it
can be chosen by considering a significance level α, corresponding to the probability
that a point is an inlier [82], which requires hypothesizing a model for the distribution
of distances. Concerning the minimum number of inliers to assess model validity,
generally it is also fixed by means of arbitrary rules. It seems reasonable to us that
this minimum number of inliers depends on the distance threshold, but as far as we
know no effort has been done to establish this relation.
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A.3 On the Negative Association of Multinomial Distributions

This section presents the notion of negative association (a strong notion of negative
dependence) and summarizes some relevant consequences first reported by Joag-Dev
and Proschan in [95]. Some proofs are also completed when they were just outlined
in the original paper. The result is then applied to multinomial distributions.

Definition 20 (Negative association). A set X = {X1, . . . , Xn} of real random
variables is said to be negatively associated (NA) if for every two disjoint index sets
I, J ⊂ {1, . . . , n},

E [f(Xi, i ∈ I)g(Xj , j ∈ J)] 6 E [f(Xi, i ∈ I)] · E [g(Xj , j ∈ J)] ,

for all non-decreasing functions f : R#I → R, g : R#J → R (a function h :
Rk → R is said to be non-decreasing if h(x1, . . . , xk) > h(y1, . . . , yk) whenever
x1 6 y1, . . . , xk 6 yk).

Remark 7. Negative association is a natural generalization of negative correlation.

The negatively associated set X = {X1, . . . , Xn} verifies the following properties:

Property 1. For any non-decreasing functions fi, i ∈ {1, . . . , n},

E

[
n∏

i=1

fi(Xi)

]
6

n∏
i=1

E [fi(Xi)] .

Proof. Define f(x1, . . . , xn−1) =
∏n−1

i=1 fi(xi) and g(xn) = fn(xn) for all
(x1, . . . , xn) ∈ Rn. Since f and g are both non-decreasing, it follows from Defi-
nition 20 that

E

[
n∏

i=1

fi(Xi)

]
6 E

[
n−1∏
i=1

fi(Xi)

]
E [fn(Xn)] .

Using induction yields the desired result. ut

Property 2. For all (x1, . . . , xn) ∈ Rn,

Pr (Xi > xi ∀ i ∈ {1, . . . , n}) 6
n∏

i=1

Pr (Xi > xi) .

This follows immediately from Property 1 for fi(x) = χ[x>xi], the indicator function
of event [x > xi]. The following property is obvious from Definition 20:

Property 3. Non-decreasing functions defined on disjoint subsets of a set of NA ran-
dom variables are NA.
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Property 4. The union of independent sets of NA random variables is NA.

Proof. Let X and Y be independent vectors such that for each one its components
are sets of NA random variables. Let (X1,X2) and (Y1,Y2) denote arbitrary par-
titions of X and Y respectively. Hence, the vector (X,Y) is NA if and only if
E [f(X1,Y1)g(X2,Y2)] 6 E [f(X1,Y1)] E [g(X2,Y2)]. Now,

E [f(X1,Y1)g(X2,Y2)] = E {E [f(X1,Y1)g(X2,Y2)|Y1,Y2]}
=
∑

(y1,y2)

E [f(X1,Y1)g(X2,Y2)|Y1 = y1,Y2 = y2]

·Pr(Y1 = y1,Y2 = y2).

Since (X1,X2) and (Y1,Y2) are independent, {f(X1,Y1)|Y1 = y1,Y2 = y2}
and {g(X2,Y2)|Y1 = y1,Y2 = y2} are parametric functions of random vectors X1

and X2 respectively. Thus, because of the negative association of X,

E [f(X1,Y1)g(X2,Y2)|Y1 = y1,Y2 = y2] 6

E [f(X1,Y1)|Y1 = y1,Y2 = y2] E [g(X2,Y2)|Y1 = y1,Y2 = y2] .

Hence,

E [f(X1,Y1)g(X2,Y2)] 6 E {E [f(X1,Y1)|Y1,Y2] E [g(X2,Y2)|Y1,Y2]}

Now, since the conditional expectations

E [f(X1,Y1)|Y1,Y2] and E [g(X2,Y2)|Y1,Y2]

are respectively Y1 and Y2 measurable functions, it follows that

h1(Y1) ≡ E [f(X1,Y1)|Y1,Y2] = E [f(X1,Y1)|Y1] ,
h2(Y2) ≡ E [g(X2,Y2)|Y1,Y2] = E [g(X2,Y2)|Y2] .

Finally, using that Y is NA,

E [f(X1,Y1)g(X2,Y2)] 6 E [h1(Y1)h2(Y2)]
6 E [h1(Y1)] E [h2(Y1)]
= E [f(X1,Y1)] E [g(X2,Y2)] . ut

These results yield the following proposition.

Proposition 14. A random vector X = (X1, . . . , Xn) having a multinomial distri-
bution of indexM and parameter p = (p1, . . . , pn) (denoted by X ∼Mult(M,p)),
is NA.
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Proof. The variable X can be decomposed as

X =
M∑

k=1

Yk,

where each Yk ∼Mult(1,p), and the Yk’s are mutually independent. Since, for all
k ∈ {1, . . . ,M}, all elements in Yk are zero except for one whose value is 1, vector
Yk is NA. Indeed, for all I , J disjoint subsets of {1, . . . , n}, for all non-decreasing
functions f : R#I → R, g : R#J → R,

E [f(Yk,i, i ∈ I)g(Yk,j , j ∈ J)] 6 E [f(Yk,i, i ∈ I)] · E [g(Yk,j , j ∈ J)]
⇔ E [(f(Yk,i, i ∈ I)− f(0, . . . , 0)) (g(Yk,j , j ∈ J)− g(0, . . . , 0))]

6 E [f(Yk,i, i ∈ I)− f(0, . . . , 0)] · E [g(Yk,j , j ∈ J)− g(0, . . . , 0)] .

The last inequality is true: the right member is non-negative because f(Yk,i, i ∈
I) − f(0, . . . , 0) and g(Yk,j , j ∈ J) − g(0, . . . , 0) are non-negative, and the left
member is zero since (f(Yk,i, i ∈ I)−f(0, . . . , 0) and g(Yk,j , j ∈ J)−g(0, . . . , 0)
cannot be non-zero at the same time.
Then, using Property 4, it follows that {Y1, . . . ,YM} is NA. Finally, for all l ∈
{1, . . . , n}, Xl =

∑M
k=1 Yk,l are non-decreasing functions defined on disjoint sub-

sets of {Y1, . . . ,YM}. This proves that X is NA (Property 3). ut

Remark 8. Applying Property A.3 to the random vector X proves Lem. 7, stated in
Sect. 7.3.
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Algorithms

B.1 LLD Method Summary

Input Image

?
Maximal Boundaries

STEP 1:
EXTRACTION

1.1. Level Lines Tree computation (Sect. 2.1)
1.2. Maximal Meaningful Boundaries selection.

(Sect. 2.3.2). Active options:
– Clean sub-curves in noise (µ = 1) (Sect. 2.4.1)
– Multiscale version (two levels, Ns = 2) (Sect. 2.5)
– Local contrast (Sect. 2.6)

?
Level Line Descriptors (LLDs)

STEP 2:
ENCODING

2.1. Curves smoothing (Sect. 3.3)
2.2. Extraction of robust directions: bitangents

and flat parts (Sect. 3.1)
2.3. Geometric normalization, similarity and affine

invariant: global (Sect. 4.1.3) and local (Sect. 4.2)

Two sets of LLDs

?
Meaningful Matching Pairs

STEP 3:
RECOGNITION

3.1. Background model construction: selection
of statistically independent global and local
features from LLDs (Sect. 5.2.1) and computation
of empirical frequencies of distances between
them (Sect. 5.2.1 and Eq. (5.9))

3.2. Given any two LLDs in the databases, compute
their distance (Eq. (5.10)) and NFA (Def. 8)

3.3. Use Def. 9 to find ε-meaningful matching pairs

?
Maximal Meaningful Groups of Matches

STEP 4:
GROUPING

4.1. Build a background model on the set of similarities
or affine transforms associated to the matching pairs
(Sect. 8.3.2)

4.2. The transforms (similarity, Sect. 8.2.1; or affine,
Sect. 8.2.2) associated with the matching pairs
form a point data set

4.3. From this set a clustering tree is built (Sect. A.1.2)
using the dissimilarity measures of Def. 17 (similarity
case) or 18 (affine case)

4.4. Maximal groups are computed using the grouping
algorithm in Sect. 7.4.1 and Def. 16
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B.2 Improved MSER Method Summary

Input Image

?
MSERs

STEP 1:
EXTRACTION

1.1. Computation of the Tree of Shapes of the image
using FLST [136]

1.2. Selection of Maximally Stable Extremal Regions
(MSER) (Sect. 2.2)

?
Improved MSERs descriptors

STEP 2:
ENCODING

2.1. Geometric global normalization (Sect. 4.1.3):
similarity and affine invariant

Two sets of improved MSER descriptors

?
Meaningful Matching Pairs

STEP 3:
RECOGNITION

3.1. Background model construction: selection
of statistically independent global features
from MSER descriptors (Sect. 5.2.1) and
computation of empirical frequencies of distances
between them (Sect. 5.2.1 and Eq. (5.9))

3.2. Given any two MSER descriptors in the databases,
compute their distance (Eq. (5.10)) and NFA (Def. 8)

3.3. Use Def. 9 to find ε-meaningful matching pairs

?
Maximal Meaningful Groups of Matches

STEP 4:
GROUPING

4.1. Build a background model on the set of similarities
or affine transforms associated to the matching pairs
(Sect. 8.3.2)

4.2. The transforms (similarity, Sect. 8.2.1; or affine,
Sect. 8.2.2) associated with the matching pairs
form a point data set

4.3. From this set a clustering tree is built (Sect. A.1.2)
using the dissimilarity measures of Def. 17 (similarity
case) or 18 (affine case)

4.4. Maximal groups are computed using the grouping
algorithm in Sect. 7.4.1 and Def. 16
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B.3 Improved SIFT Method Summary

Input Image

?
Keypoints

STEP 1:
EXTRACTION

1.1. Computation of keypoints: extrema of the
Laplacian in the image scale space. They are pairs
(position, scale). (Sect. 10.1.1, 10.1.2 and [115])

?
Improved SIFT descriptors: keypoint + scale + orientation + image patch

STEP 2:
ENCODING

2.1. Associate one or more orientations to each keypoint
(dominant gradient directions in the vicinity
of the point) (Sect. 10.1.3)

2.2. Associate an image patch to each keypoint
(region in the vicinity of the point)

2.3. Subdivide the square patch into 8× 8 subsquares
2.4. Keep the orientation histograms inside each square

The orientations are weighted by gradient magnitude

Two sets of improved SIFT descriptors

?
Meaningful Matching Pairs

STEP 3:
RECOGNITION

3.1. Background model: the differences of
gradient directions between statistically
independent image points are uniformly
distributed in (0, π) (Sect. 11.3.2)

3.2. Given any two keypoints in the databases
get their corresponding image patches (up to the
similarity transform between the keypoints) (Sect. 11.4)

3.3. Sort a set of statistically independent pixels
in the patches and compute the NFA of the matching
(Sect. 11.4)

3.4. Keep ε-meaningful matching pairs

?
Maximal Meaningful Groups of Matches

STEP 4:
GROUPING

4.1. Build a background model on the set of similarities
associated to the matching pairs (Sect. 8.3.2)

4.2. The similarity transforms (Sect. 8.2.1) associated
with the matching pairs form a point data set

4.3. From this set a clustering tree is built (Sect. A.1.2)
using the dissimilarity measure of Def. 17 (similarity
case)

4.4. Maximal groups are computed using the grouping
algorithm in Sect. 7.4.1 and Def. 16
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ε-meaningful boundary, 21
ε-meaningful shape element matching,

necessary and sufficient condition, 82
ε-meaningful shape matching, 81
a contrario detection, 4, 20, 21, 24, 27, 44,

58, 81, 87, 90, 127, 128, 130, 146, 232

affine basis, 65, 70
affine curve shortening, 55
affine distortion, 43, 57, 73
affine invariance, 73–75
affine invariant encoding, 70, 72
affine invariant local frames, 71
affine invariant moments, 76
affine invariant normalization, 61
affine invariant shape elements, 13
affine invariant shape recognition, 236
affine invariant shape retrieval, 235
affine invariant smoothing, 12
affine morphological scale space, 75
affine scale space, 11, 54, 57, 59, 74
affine semi-local encoding, 70
affine shape encoding, 59
affine shape normalization by Cholesky

method, 62
affine transformation, 76, 148, 149
asymptotic estimate (of the minimal number

of points in a cluster), 133
Attneave, 6, 8, 9, 11, 12, 20, 75, 76

background model, 147
background model, 2, 4, 5, 13, 79, 81, 83,

87, 127, 129, 134, 146, 148, 153, 155,
160, 233

background model for shape distances, 83
background point process, 129
binomial law, 130
bitangent line, 67, 74, 76
blur, 7, 21, 29, 80

clustering, 154
contrast, 29, 30, 34
contrast (local), 33, 71
contrast (of boundaries), 20
contrast along level lines, 29
contrast change, 8
contrast changes (invariance to), 6, 7, 12, 35
contrast distribution, 30
contrast histogram, 32
contrast invariance, 17
contrast invariant information, 54
curvature, 55, 59
curvature motion, 55

dendrogram, 139, 140, 228
dissimilarity, 152
dissimilarity measure of two transforma-

tions, 152

edge detection, 34, 59, 75, 90
edge detector, 60
expectation of the number of ε-meaningful

curves, 24
expectation of the number of ε-meaningful

regions, 131
expectation of the number of ε-meaningful

matches, 81
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expected number of ε-meaningful pairs of
regions, 136

figure-background problem, 7, 8, 41, 73
figure-background problem, 8
flat parts of a circle, 46

geometric hashing, 235
gestalt, 11, 33, 160
global affine invariant normalization, 61
global encoding, 66, 72
global normalization (geometric), 65
grouping, 4, 140, 147, 152, 155, 160

Helmholtz principle, 2–4, 27, 45, 88
hierarchical clustering, 14, 138, 139,

228–231
Hough transform, 58, 59, 160, 234, 235
hyperrectangle, 130, 138

independence, 6, 7, 24, 44, 85, 87, 88, 147,
153

indicator function, 62
indivisibility, necessary condition, 137
invariance of a normalized shape by

Cholesky method, 63

Jordan curve, 18
Jordan level lines in images, 18

Kanizsa, 6, 8, 12

level line, 8–10, 12, 13, 18, 20–23, 25, 30,
32, 33, 35, 36, 41, 45, 47, 54, 58, 61,
65, 66, 70, 72, 85, 88–90, 149

LLD, 8–10, 12–14, 41, 61, 67, 71, 72, 79,
91, 147, 149, 155, 163, 185

local encoding, 13, 35, 68, 72, 85, 87

maximal meaningful boundary, 22
maximal ε-meaningful group, 139
maximal meaningful alignments, 60
maximal meaningful boundary, 21, 22, 31
maximal meaningful cluster, 133, 140, 155
maximal monotone section, 21
meaningful match, 83
merging condition of two clusters, 137
merging (of clusters), 127, 133, 134, 139,

140, 228, 230

monotone section in the level line tree,
definition, 21

MSER, 8, 12, 13, 114, 147, 185, 206, 207
multiscale (boundaries), 27
multiscale representation, 12
mutinomial law, 134

negative association of random variables,
237

NFA, 3, 5, 21, 22, 24, 28, 31, 32, 81, 88,
132–134, 137–140, 155

NFA of a match of shape elements, 5
NFA of a cluster region, 131
NFA of a match of shape elements, 82
NFA of a pair of cluster regions, 134
NFA of pair of matching shape elements, 81
noise, 7–9, 12, 17, 20, 26–30, 34, 45, 47, 54,

57, 61, 63, 72, 74–76, 88–90, 234
normalization of curves, consistency, 66

occlusion, 6, 8, 12, 13, 41, 73, 74

perspective, 7, 10, 73
projective transformations, 73

RANSAC, 236
robust direction of a shape, 68

shape element, 147
shape element, 4, 5, 11–14, 35, 36, 61, 67,

79–83, 90, 127, 129, 130, 147, 148
see also LLD, 9

shape element, general definition, 41
SIFT, 2, 8–10, 12–14, 103, 147, 185, 209
similarity invariance, 73
smoothing, 9–11, 28, 34, 41, 54, 56, 57, 59,

61, 72, 73, 75
stroboscopic effect, 155, 178, 201, 223
sub-sampling, 12

texture, 33
topographic map, 17
tree of level lines, 22, 23, 30–32, 35, 72
tree structure of point data set, 138, 155
trinomial and binomial (inequality), 137

Wertheimer, 6, 12, 160
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