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Multi image noise estimation and denoising
A. Buades Y. Lou J.M. Morel Z. Tang

Abstract

Photon accumulation on a fixed surface is the essence of photography. In the times of chemical

photography this accumulation required the camera to move as little as possible, and the scene to be

still. Yet, most recent reflex and compact cameras propose a burst mode, permitting to capture quickly

dozens of short exposure images of a scene instead of a singleone. This new feature permits in principle

to obtain by simple accumulation high quality photographs in dim light, with no motion or aperture

blur. It also gives the right data for an accurate noise model. Yet, both goals are attainable only if an

accurate cross-registration of the burst images has been performed. The difficulty comes from the non

negligible image deformations caused by the slightest camera motion, in front of a 3D scene, and from the

light variations or motions in the scene. This paper proposes a numerical processing chain permitting to

achieve jointly the two mentioned goals: an accurate noise model for the camera, which is used crucially

to obtain a state of the art multi-images denoising. The key feature of the proposed processing chain is a

reliable multi-image noise estimator, whose accuracy willbe demonstrated by three different procedures.

Thanks to the signal dependent noise model obtained from theburst itself, a faithful detection of the

well registered pixels can be made. The denoising by simple accumulation of these pixels, which are an

overwhelming majority, permits to extend the Nicéphore Niepce photon accumulation method to image

bursts. The denoising performance by accumulation is shownto reach the theoretical limit, namely a
√
n

denoising factor forn frames. Comparison with state of the art denoising algorithms will be shown on

several bursts taken with reflex cameras in dim light.

I. INTRODUCTION

The accumulation of photon impacts on a surface is the essence of photography. The first Nicephore

Niepce photograph [20] was obtained after an eight hours exposure. The serious objection to a long

exposure is the variation of the scene due to changes in light, camera motion, and incidental motions of

parts of the scene. The more these variations can be compensated, the longer the exposure can be, and

the more the noise can be reduced. It is a frustrating experience for professional photographers to take

pictures under bad lighting conditions with a hand-held camera. If the camera is set to a long exposure

time, the photograph gets blurred by the camera motions and aperture. If it is taken with short exposure,
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the image is dark, and enhancing it reveals the noise. Yet, this dilemma can be solved by taking a burst of

images, each with short-exposure time, as shown in Fig. 1, and by averaging them after registration. This

observation is not new and many algorithms have been proposed, mostly for stitching and super-resolution.

These algorithms have thrived in the last decade, probably thanks to the discovery of a reliable algorithm

for image matching, the SIFT algorithm [55]. All of the multi-image fusion algorithms share three well

separated stages, the search and matching of characteristic points, the registration of consecutive image

pairs and the final accumulation of images. All methods perform some sort of multi-image registration,

but surprisingly do not propose a procedure to check if the registration is coherent. Thus, there is a

non-controlled risk that the accumulation blurs the final accumulation image, due to wrong registrations.

Nevertheless, as we shall see, the accurate knowledge of noise statistics for the image sequence permits

to detect and correct all registration incoherences. Furthermore, this noise statistics can be most reliably

extracted from the burst itself, be it for raw or for JPEG images. In consequence, a stand alone algorithm

which denoises any image burst is doable. As experiments will show, it even allows for light variations

and moving objects in the scene, and it reaches the
√
n denoising factor predicted for the sum of then

independent (noise) random variables.

We call in the following “burst”, or “image burst” a set of digital images taken from the same camera,

in the same state, and quasi instantaneously. Such bursts are obtained by video, or by using the burst

mode proposed in recent reflex and compact cameras. The camera is supposed to be held as steady as

possible so that a large majority of pixels are seen through the whole burst. Thus, no erratic or rash

motion of the camera is allowed, but instead incident motions in the scene do not hamper the method.

There are other new and promising approaches, where taking images with different capture conditions

is taken advantage of. Liu et al. [88] combine a blurred imagewith long-exposure time, and a noisy one

with short-exposure time for the purpose of denoising the second and deblurring the first. Beltramio and

Levine [11] improve the dynamic range of the final image by combining an underexposed snapshot with

an overexposed one. Combining again two snapshots, one withand the other without flash, is investigated

by Eisemannet. al. [33] and Fattalet. al [37]. Another case of image fusion worth mentioning is [8],

designed for a 3D scanning system. During each photography session, a high-resolution digital back is

used for photography, and separate macro (close-up) and ultraviolet light shots are taken of specific areas

of text. As a result, a number of folios are captured with two sets of data: a “dirty” image with registered

3D geometry and a “clean” image with the page potentially deformed differently to which the digital

flattening algorithms are applied.

Our purpose here is narrower. We only aim at an accurate noiseestimation followed by denoising for an
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image burst. No super-resolution will be attempted, nor thecombination of images taken under different

apertures, lightings or positions. The main assumption on the setting is that a hand-held camera has taken

an image burst of a still scene, or from a scene with a minorityof moving objects. To get a significant

denoising, the number of images can range from 9 to 64, which grants a noise reduction by a factor

3 to 8. Since the denoising performance grows like the squareroot of the number of images, it is less

and less advantageous to accumulate images when their number grows. But impressive denoising factors

up to 6 or 8 are reachable by the simple algorithm proposed here, which we shall callaverage after

registration(AAR). Probably the closest precursor to the present methodis the multiple image denoising

method by Zhanget. al. [92]. Their images are not the result of a burst. They are images taken from

different points of views by different cameras. Each camerauses a small aperture and a short exposure

to ensure minimal optical defocus and motion blur, to the cost of very noisy output. A global registration

evaluating the 3D depth map of the scene is computed from the multi-view images, before applying a

patch based denoising inspired by NL-means [15]. Thus the denoising strategy is more complex than the

simple accumulation after registration which is promoted in the present paper. Nevertheless, the authors

remark that their denoising performance stalls when the number of frames grows, and write that this

difficulty should be overcome. Yet, their observed denoising performance curves grow approximately

like the square root of the number of frames, which indicatesthat the real performance of the algorithm

is due to the accumulation. The method proposed here therefore goes back to accumulation, as the essence

of photography. It uses, however, a hybrid scheme which decides at each pixel between accumulation and

block denoising, depending on the reliability of the match.The comparison of temporal pixel statistics

with the noise model extracted from the scene itself permitsa reliable conservative decision so as to apply

or not theaccumulation after registration(AAR). Without the accurate nonparametric noise estimation,

this strategy would be unreliable. Therefore estimating accurately the noise model in a burst of raw or

JPEG images is the core contribution of this paper. A more complex and primitive version of the hybrid

method was announced in the conference paper [17]. It dit notcontain the noise estimation method

presented here.

a) Plan and results of the paper.:The paper requires a rich bibliographical analysis for the many

aspects of multi-image processing (Section III). This survey shows that most super-resolution algorithms

do in fact much more denoising than they do super-resolution, since they typically only increase the size

of the image by a factor 2 or 3, while the number of images wouldtheoretically allow for a 5 to 8 factor.

Section II reviews the other pilar of the proposed method, the noise estimation literature. (This corpus

is surprisingly poor in comparison to the denoising literature.)
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Fig. 1. From left to right: one long-exposure image (time = 0.4 sec, ISO=100), one of 16 short-exposure images (time = 1/40

sec, ISO = 1600) and the average after registration. All images have been color-balanced to show the same contrast. The long

exposure image is blurry due to camera motion. The middle short-exposure image is noisy, and the third one is somefour times

less noisy, being the result of averaging 16 short-exposureimages. Images may need to be zoomed in on a screen to compare

details and textures.

Section IV is key to the proposed technique, as it demonstrates that a new variant of static noise blind

estimate gives results that exactly coincide with Poisson noise estimates taken from registered images in a

temporal sequence. It is also shown that although JPEG images obtained by off-the-shelf cameras have no

noise model, a usable substitute to this noise model can be obtained: It simply is the variance of temporal

sequences of registered images. Section V describes the proposed multi-image denoising method, which

in some sense trivializes the denoising technology, since it proposes to go back as much as possible to

a mere accumulation, and to perform a more sophisticated denoising only at dubiously registered pixels.

Section VI compares the proposed strategy with two state of the art multi-images denoising strategies.

II. N OISE ESTIMATION , A REVIEW

As pointed out in [53], “Compared to the in-depth and wide literature on image denoising, the literature

on noise estimation is very limited”. Following the classical study by Healey et al. [45], the noise in

CCD sensors can be approximated by an additive, white and signal dependent noise model. The noise

model and its variance reflect different aspects of the imaging chain at the CCD, mainly dark noise

and shot noise. Dark noise is due to the creation of spurious electrons generated by thermal energy

which become indistinguishable from photoelectrons. Shotnoise is a result of the quantum nature of

light and characterizes the uncertainty in the number of photons stored at a collection site. This number

of photons follows a Poisson distribution so that its variance equals its mean. The overall combination
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of the different noise sources therefore leads to an affine noise variancea+ bu depending on the original

signal valueu. Yet, this is only true for the raw CCD image. Further processing stages in the camera

hardware and software such as the white balance, the demosaicking, the gamma correction, the blur

and color corrections, and eventually the compression, correlate the noise and modify its nature and its

standard deviation in a non trivial manner. There is therefore no noise model for JPEG images. However,

as we shall see, a signal dependent noise variance model can still be estimated from bursts of JPEG

images (section IV-B.) It is enough to perform reliably the average after registration (AAR).

A. Additive Gaussian noise estimation

Most computer vision algorithms should adjust their parameters according to the image noise level.

Surprisingly, there are few papers dealing with the noise estimation problem, and most of them only

estimate the variance of a signal independent additive white Gaussian noise (AWGN). This noise statistics

is typically measured on the highest-frequency portion of the image spectrum, or on homogenous image

patches. In the AWGN case a spectral decomposition through an orthonormal transform such as wavelets

or the DCT preserves the noise statistics. To estimate the noise variance, Donoho et. al [29] consider the

finest scale wavelet coefficients, followed by a median filterto eliminate the outliers. Suppose{yi}i=1,···N

beN independent Gaussian random variables of zero-mean and varianceσ2, then

E{MED(|yi|)} ≈ 0.6745σ.

It follows immediately that the noise standard deviationσ is given by

σ̃ =
1

0.6745
MED(|yi|) = 1.4826MED(|yi|).

The standard procedure of the local approaches is to analyzea set of local estimates of the variance.

For example, Rank et. al [48] take the maximum of the distribution of image derivatives. This method is

based on the assumption that the underlying image has a largeportion of homogeneous regions. Yet, if an

image is highly textured, the noise variance can overestimated. To overcome this problem, Ponomarenko

et. al [72] have proposed to analyze the local DCT coefficients. A segmentation-based noise estimation

is carried out in [1], which considers both i.i.d. and spatially correlated noise.

The algorithm in [73] is a modification of the early work [72] dealing with AVIRIS (Airborne Visible

Infrared Imaging Spectrometer) images, in which the evaluation of the noise variance in sub-band images

is addressed. The idea is to divide each block into low frequency and high frequency components by

thresholding, and to useK blocks of the smallest variance of the low frequency coefficients to calculate

a noise variance, whereK is adaptively selected so that it is smaller for highly-textured images.

DRAFT



6

[25] proposed an improvement of the estimate of the varianceof AWGN by using transforms creating

a sparse representation (via BM3D [22]) and using robust statistics estimators (MAD and ICI). For a

univariate data setX1,X2, ...,Xn, the MAD is defined as the median of the absolute deviations from the

data’s median: MAD= mediani ( |Xi − medianj(Xj)| ) . The algorithm is as follows.

1) for each8 × 8 block, group together up to 16 similar non-overlapping blocks into 3D array.

The similarity between blocks in evaluated by comparing corresponding blocks extracted from a

denoised version by BM3D.

2) apply a 3-D orthonormal transform (DCT or wavelet) on eachgroup and sort the coefficients

according to the zig-zag scan.

3) collect the first 6 coefficientsc1, · · · , c6 and define their empirical energy as the mean of the

magnitude of the (up to 32) subsequent coefficients:

E{|cj |2} = mean{|c2j+1, · · · , c2j+32|}

4) Sort the coefficients from all the groups (6 coefficients per group) according to their energy

5) do MAD and Intersection of Confidence Intervals (ICI) [42]to achieve the optimal bias-variance

trade-off in the MAD estimation.

All the above mentioned algorithms give reasonable estimates of the standard deviationwhen the

noise is uniform. Yet, when applying these algorithms to estimate signal dependent noise, the results

are poor. The work of C. Liuet. al. [54] estimates the upper bound on the noise level fitting to a camera

model. The noise estimation from the raw data is discussed in[39], [40]. The former is a parametric

estimation by fitting the model to the additive Poissonian-Gaussian noise from a single image, while the

latter measures the temporal noise based on an automatic segmentation of 50 images.

B. Poisson Noise Removal

This paper deals with real noise, which in most real images (digital cameras, tomography, microscopy

and astronomy) is a Poisson noise. The Poisson noise is inherent to photon counting. This noise adds up

to a thermal noise and an electronic noise which are approximately AWGN. In the literature algorithms

considering the removal of AWGN are dominant but, if its model is known, Poisson noise can be

approximately reduced to AWGN by a so called variance stabilizing transformation (VST). The standard

procedure follows three steps,

1) apply VST to make the data homoscedastic

2) denoise the transformed data
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3) apply the inverse VST.

The square-root operation is widely used as a VST,

f(z) = b
√
z + c. (1)

It follows from the asymptotic unit variance off(z) that the parameters are given byb = 2 andc = 3/8,

which is the Anscombe transform [2]. A multiscale VST (MS-VST) is studied in [91] along with the

conventional denoising schemes based on wavelets, ridgelets and curvelets depending on morphological

features (isotropic, line-like, curvilinear, etc) of the given data. It is argued in [58] that the inverse

transformation of VST is crucial to the denoising performance. Both the algebraic inverse

IA(D) =

(

D

2

)2

− 3

8
.

and the asymptotically unbiased inverse

IB(D) =

(

D

2

)2

− 1

8
,

in [2] are biased for low counts. The authors [58] propose an exact unbiased inverse. They consider an

inverse transformIC that maps the valueE{f(z)|y} to the desired valueEz|y that

E{f(z)|y} = 2
∞
∑

z=0

(

√

z +
3

8
· y

z exp−y

z!

)

wheref(z) is the forward Anscombe transform (1). In practice, it is sufficient to compute the above

equation for a limited set of valuesy and approximateIC by IB for large values ofy. Furthermore, the

state-of-the-art denoising scheme BM3D [39] is applied in the second step.

There are also wavelets based methods [69], [50] or Bayesian[80], [56], [51] removing Poisson

noise. In particular, the wavelet-domain Wiener filter [69]uses a cross-validation that not only preserves

important image features, but also adapts to the local noiselevel of the spatially varying Poisson

process. The shrinkage of wavelet coefficients investigates how to correct the thresholds [50] to explicitly

account for effects of the Poisson distribution on the tailsof the coefficient distributions. A recent

Bayesian approach by Lefkimmiatis et al. [51] explores a recursive quad-tree image representation which

is suitable for Poisson noise degradation and then follows an expectation-maximization technique for

parameter estimation and Hidden Markov tree (HMT) structures for interscale dependencies. The common

denominator to all such methods is that we need an accurate Poisson model, and this will be thoroughly

discussed in Section IV.

It is, however, a fact that the immense majority of accessible images are JPEG images which contain

a noise altered by a long chain of processing algorithms, ending with compression. Thus the problem of
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estimating noise in a single JPEG image is extremely ill-posed. It has been the object of a thorough study

in [53]. This paper proposes a blind estimation and removal method of color noise from a single image.

The interesting feature is that it constructs a “noise levelfunction” which is signal dependent, obtained

by computing empirical standard deviations image homogeneous segments. Of course the remanent noise

in a JPEG image is no way white or homogeneous, the high frequencies being notoriously removed by

the JPEG algorithm. On the other hand, demosaicking usuallyacts as a villainous converter of white

noise into very structured colored noise, with very large spots. Thus, even the variance of smooth regions

cannot give a complete account of the noise damage, because noise in JPEG images is converted in

extended flat spots. We shall, however, retain the idea promoted in [53] that, in JPEG images, a signal

dependent model for the noise variance can be found. In section IV-B a simple algorithm will be proposed

to estimate the color dependent variance in JPEG images frommulti-images. All in all, the problem of

estimating a noise variance is indeed much better posed if several images of the same scene by the

same camera, with the same camera parameters, are available. This technique is classic in lab camera

calibration [44].

III. M ULTI -IMAGES AND SUPER RESOLUTION ALGORITHMS

b) Photo stitching: Probably one of the most popular applications in image processing, photo

stitching [14], [57] is the first method to have popularized the SIFT method permitting to register into a

panorama a set of image of a same scene. Another related application is video stabilization [7]. In these

applications no increase in resolution is gained, the final image has roughly the same resolution as the

initial ones.

c) Super-resolution:Super-resolution means creating a higher resolution, larger image from several

images of the same scene. Thus, this theme is directly related to the denoising of image bursts. It is

actually far more ambitious, since it involves a deconvolution. However, we shall see that most super-

resolution algorithms actually make a moderate zoom in, outof many images, and therefore mainly

perform a denoising by some sort of accumulation. The convolution model in the found references is

anyway not accurate enough to permit a strong deconvolution.

A single-frame super-resolution is often referred to as interpolation. See for example [85], [86]. But

several exemplar-based super-resolution methods involveother images which are used for learning,

like in Baker and Kanade [4] who use face or text images as priors. Similarly, the patch-example-

based approaches stemming from the seminal paper [41], use anearest-neighbor search to find the

best match for local patches, and replace them with the corresponding high-resolution patches in the
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training set, thus enhancing the resolution. To make the neighbors compatible, the belief-propagation

algorithm to the Markov network is applied, while another paper [26] considered a weighted average by

surrounding pixels (analogue to nonlocal means [15]). Instead of a nearest-neighbor search, Yang et. al

[83] proposed to incorporate the sparsity in the sense that each local patch can be sparsely represented

as a linear combination of low-resolution image patches; and a high-resolution image is reconstructed

by the corresponding high-resolution elements. The recentremarkable results of [87] go in the same

direction. The example-based video enhancement is discussed in [12], where a simple frame-by-frame

approach is combined with temporal consistency between successive frames. Also to mitigate the flicker

artifacts, a stasis prior is introduced to ensure the consistency in the high frequency information between

two adjacent frames.

d) Focus on registration:In terms of image registration, most of the existing super-resolution

methods rely either on a computationally intensive opticalflow calculation, or on a parametric global

motion estimation. The authors of [94] discuss the effects of multi-image alignment on super-resolution.

The flow algorithm they employ addresses two issues: flow consistency (flow computed from frame A to

frame B should be consistent with that computed from B to A) and flow accuracy. The flow consistency

can be generalized to many frames by computing a consistent bundle of flow fields. Local motion is usually

estimated by optical flow, other local deformation models include Delaunay triangulation of features [9]

and B-splines [64]. Global motion, on the other hand, can be estimated either in the frequency domain

or by feature-based approaches. For example, Vandewalle et. al. [82] proposed to register a set of images

based on their low-frequencies, aliasing-free part. They assume a planar motion, and as a result, the

rotation angle and shifts between any two images can be precisely calculated in the frequency domain.

The standard procedure for feature-based approaches is (1)to detect the key points via Harris corner

[19], [3] or SIFT [89], [75], (2) match the corresponding points while eliminating outliers by RANSAC

and (3) fit a proper transformation such as a homography. The other applications of SIFT registration are

listed in Tab. II.

e) Reconstruction after registration:A number of papers focus on image fusion, assuming the

motion between two frames is either known or easily computed. Elad and Feuer [34] formulate the

super-resolution of image sequences in the context of Kalman filtering. They assume that the matrices

which define the state-space system are known. For example, the blurring kernel can be estimated by a

knowledge of the camera characteristics, and the warping between two consecutive frames is computed

by a motion estimation algorithm. But due to the curse of dimensionality of the Kalman filter, they can

only deal with small images, e.g. of size50 × 50. The work [59] by Marquina and Osher limited the
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forward model to be spatial-invariant blurring kernel withthe down-sampling operator, while no local

motion was present. They solved a TV-based reconstruction with Bregman iterations.

A joint approach on demosaicing and super-resolution of color images is addressed in [35], based

on their early super-resolution work [36]. The authors use the bilateral-TV regularization for the spatial

luminance component, the Tikhonov regularization for the chrominance component and a penalty term

for inter-color dependencies. The motion vectors are computed via a hierarchical model-based estimation

[10]. The initial guess is the result of the Shift-And-Add method. In addition, the camera PSF is assumed

to be a Gaussian kernel with various standard deviation for different sets of experiments.

f) Methods joining denoising, deblurring, and motion compensation: Super-resolution and motion

deblurring are crossed in the work [5]. First the object is tracked through the sequence, which gives

a reliable and sub-pixel segmentation of a moving object [6]. Then a high-resolution is constructed

by merging the multiple images with the motion estimation. The deblurring algorithm, which mainly

deals with motion blur [47], has been applied only to the region of interest. The recent paper on super-

resolution by L. Baboulaz and P. L. Dragotti [3] presents several registration and fusion methods. The

registration can be performed either globally by continuous moments from samples, or locally by step

edge extraction. The set of registered images is merged intoa single image to which either a Wiener

or an iterative Modified Residual Norm Steepest Descent (MRNSD) method is applied [67] to remove

the blur and the noise. The super-resolution in [75] uses SIFT + RANSAC to compute the homography

between the template image and the others in the video sequence, shifts the low-resolution image with

subpixel accuracy and selects the closest image with the optimal shifts.

g) Implicit motion estimation:More recently, inspired by the nonlocal movie denoising method,

which claims that “denoising images sequences does not require motion estimation” [16], researchers

have turned their attention towards super-resolution without motion estimation [32], [31], [74]. Similar

methodologies include the steering kernel regression [78], BM3D [24] and its many variants. The forward

model in [24] does not assume the presence of the noise. Thus the authors pre-filter the noisy LR input by

V-BM3D [21]. They up-sample each image progressivelym times, and at each time, the initial estimate

is obtained by zero-padding the spectra of the output from the previous stage, followed by filtering. The

overall enlargement is three times the original size. Super-resolution in both space and time is discussed

in [76], [77], which combine multiple low-resolution videosequences of the same dynamic scene. They

register any two sequences by a spatial homography and a temporal affine transformation, followed by a

regularization-based reconstruction algorithm.
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TABLE I

COMPARISON OFSUPERRESOLUTION ALGORITHMS

Ref. # of images Registration Deblurring blur kernel

V.S. factor

[41] 1 2 KNN to training set NO

[4] to 16

[26] 1 2 MAP penalty 3× 3

3 5× 5

[83] 1 to 4 sparse w.r.t. traning back-projection Not mention

[19] 15 2 Harris+RANSAC Tiknonov Not mention

[18] 25 3 PCA NO

[94] 40 2 consistent flow bundle NO

[82] 4 2 frequency domain NO

[34] 100 2 assume known motion Kalman filter 3× 3 average

[36], [35] 30 3 hierarchical estimates [10] bilateral-TV Gaussian

[75]* 15, 60 2 SIFT+RANSAC NO

[89] 20 4 SIFT+RANSAC Least-square Gauss(σ = 3)

[5] 10 2 region tracking [6] motion analysis [47] motion blur

[3] 20, 40 8 moment-based or Wiener or B-spline

Harris + RANSAC MRNSD [67] of degree 7

[32] 1 2 implicit: NLM NO

[31] 20 3

[74] 30 3 implicit: NLM TV 3× 3 average

[78] kernel regression bilateral-TV

[24] 9 3 Video-BM3D zero-padding spectra 3× 3 average

h) A synoptic table of super-resolution multi-images methods: Because the literature is so rich, a

table of the mentioned methods, classified by their main features, is worth looking at. The methods can

be characterized by a) their numberk of fused images, which goes from 1 to 60, b) the zoom factor,

usually 2 or 3, and therefore far inferior to the potential zoom factor
√
k, c) the registration method,

d) the deblurring method, e) the blur kernel. A survey of the table demonstrates that a majority of the

methods use many images to get a moderate zoom, meaning that the denoising factor is important.

Thus, these methods denoise in some sense by accumulation. But, precisely because all of them aim at

super-resolution, none of them considers the accumulationby itself.

Tables 1 and 2 confirm the dominance of SIFT+RANSAC as a standard way to register multi-images,
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TABLE II

MULTI -IMAGE SIFT FOR REGISTRATION

Application # of images Registration Blending method

[8]* manuscript Not mention SIFT + RANSAC Delaunay triangulation

[64] registration 30 ultrasound SIFT + threshold + B-splines deformation

60 MRI least-square for affine

[84] Mosaic 200 SIFT + RANSAC weighted average

[46] 10

[52] stitching 6 SIFT + RANSAC weighted average

[93] head tracking 1020 SIFT + RANSAC NA (track 3D motion)

as will also be proposed here in an improved variant. Severalof the methods in Table 1 which do not

perform SIFT+RANSAC, actually the last four rows, are “implicit”. This means that they adhere to

the dogma that denoising does not require motion estimation. It is replaced by multiple block motion

estimation, like the one performed in NL-means and BM3D. However, we shall see in the experimental

section that AAR (average after registration) has a still better performance than such implicit methods.

This is one of the main questions that arose in this exploration, and the answer is clear cut: denoising

by accumulation, like in ancient photography times still isa valid response in the digital era.

IV. N OISE BLIND ESTIMATION

In this section we return to noise estimation and will confront and cross-validate a single frame noise

estimation with a multi-images noise estimation.

A. Single image noise estimation

Most noise estimation methods have in common that the noise standard deviation is computed by

measuring the derivative or equivalently the wavelet coefficient values of the image. As we mentioned,

Donoho et al. [30] proposed to estimate the noise standard deviation as the median of absolute values

of wavelet coefficients at the finest scale. Instead of the median, many authors [13], [49] prefer to use a

robust median.

Olsen [70] and posteriorly Rank et al. [48] proposed to compute the noise standard deviation by taking

a robust estimate on the histogram of sample variances of patches in the derivative image. In order to

minimize the effect of edges small windows were preferred, with 3×3 or 5×5 pixels. The sample variance

of small patches or the pointwise derivatives provide a non robust measure and require a considerable
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number of samples with few outliers to guarantee the correctselection of the standard deviation. We

observed that the opposite point of view, that is, the use of larger windows15 × 15 pixels to 21 × 21

pixels permits a more robust estimation. However, since larger windows may contain more edges a much

smaller percentile will be preferred to the median, in practice the1% or the0.5%.

Noise in real photograph images is signal dependent. In order to adapt the noise estimation strategies,

the gray level image histogram will be divided adaptively into a fixed number of bins having all the same

number of samples. This is preferable to classical approaches where the gray range is divided into equal

intervals. Such a uniform division can cause many bins to be almost empty.

To evaluate if a signal dependent noise can be estimated froma single image, 110 images were taken

with a Nikon D80, with ISO 100 and very good illumination conditions. These are the best conditions

we can expect to have a low noise standard deviation. These color images were converted to gray level

by averaging the three color values at each pixel. Finally factor 3 sub-sampling was applied by averaging

square groups of nine pixels. These operations having divided the noise standard deviation by slightly

more than five, these images can be considered as noise free. Finally, a signal dependent noise was added

to them, with variance8 + 2u whereu was the noiseless grey level.

The uniform and adaptive divisions of the grey level range ina fixed number of 15 bins were compared,

and several noise estimation methods were applied to estimate the noise standard deviation inside each

bin. The performance of all methods are compared in Table IIIshowing the average and standard deviation

of the errors between the estimated and original noise curves. The best estimate is obtained by applying

the proposed strategy using the variance of large patches rather than small ones or point derivatives.

These measurements also confirm that the division of the greylevel range into bins with fixed cardinality

is preferable to the fixed length interval division. This experiment confirms that a signal dependent noise

can be estimated with a high accuracy.

i) Ground truth?: In order to evaluate the performance of such a noise estimation algorithm in real

images we need a ground truth to compare with. This ground truth can be obtained for a given camera

by taking a sequence of images of the same pattern, after fixing the camera on a pedestal. All camera

parameters remain unchanged for all photographs of the sequence, thus avoiding different exposure times

or apertures. The temporal average and standard deviation of the whole sequence of images can therefore

be computed without any further registration. The use of a piecewise constant image reduces the effect

of small vibrations of the camera, see Fig. 2. The noise in each channel is estimated independently.

Each color range is divided adaptively into a fixed number of bins taking into account the color channel

histogram. Inside each bin a percentile is used to estimate the standard deviation.
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MAD RMAD MVPD MVPD2

e 1.81 2.87 1.58 0.75

std(e) 1.14 2.59 1.06 0.61
a) Uniform gray division

MAD RMAD MVPD MVPD2

e 1.66 1.87 1.36 0.73

std(e) 1.04 1.17 0.90 0.35
b) Adaptive gray division

TABLE III

A SIGNAL DEPENDENT NOISE WITH VARIANCE8 + 2u IS ADDED TO 110 NOISE FREE IMAGES. THE UNIFORM AND

ADAPTIVE STRATEGIES FOR DIVIDING THE GREY LEVEL RANGE IN A FIXED NUMBER OF 15 BINS ARE COMPARED. FOR

EACH STRATEGY, THE FOLLOWING NOISE ESTIMATION METHODS IN EACH BIN ARE COMPARED: MEDIAN OF ABSOLUTE

DERIVATIVES (MAD), ROBUST MEDIAN OF ABSOLUTE DERIVATIVES(RMAD), MEDIAN OF SAMPLE VARIANCE OF PATCHES

3×3 OF THE DERIVATIVE IMAGE (MVPD) AND 0.005 PERCENTILE OF SAMPLE VARIANCE OF PATCHES21×21 OF THE

DERIVATIVE IMAGE (MVPD2). ARE DISPLAYED THE AVERAGE AND STANDARD DEVIATION OF THE ERRORS BETWEEN THE

ESTIMATED AND ORIGINAL NOISE CURVES FOR THE110 IMAGES.

Fig. 3 displays the ground truth estimated curves with this strategy, both in RAW and JPEG format

for two different ISO settings. The ground truth curves are compared with the ones estimated in the first

image of the sequence by the proposed single image noise estimation algorithm. For the RAW case, the

single image and ground truth estimated curves are nearly identical. Fig. 2 shows a lack of red in the

RAW image of the calibration pattern, even if this pattern isactually gray. This effect is corrected by

the white balance as observed in the JPEG image.

The ground truth noise curves estimated from the JPEG imagesdo not agree at all with the classical

noise model. This is due to the various image range nonlineartransformations applied by the camera

hardware during the image formation, which modify the nature and standard deviation of the noise. The

ground truth and single image estimated curves in the JPEG case have a similar shape but a different

magnitude. The main new feature is that the interpolation and low pass filtering applied to the originally

measured values have strongly altered the high frequency components of the noise. Thus,the noise

statistics are no longer computable from a local patch of the image. The estimation of such a noise

curve can only be accomplished by computing the temporal variance in a sequence of images of

the same scene.
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Fig. 2. Calibration pattern used for noise ground truth estimation. Left: raw image. Right: JPEG image. Even if the calibration

pattern is nearly gray the raw image looks blue because the red is less present. This effect is corrected by the white balance

applied by the camera image chain leading to the jpeg image.
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a) RAW images b) JPEG images

Fig. 3. Ground truth and single image noise estimates for theRAW and JPEG images of Fig. 2. The estimated curve by the

temporal average and standard deviation coincide with the one estimated from the first image by the proposed single image

noise estimation algorithm. This is not the case for the JPEGimages. The ground truth and single image estimated curves in

the JPEG case have a similar shape but a different magnitude.The interpolation and low pass filtering applied to the original

measured values have altered the high frequency componentsof the noise and have correlated its low frequencies. This means

that the noise statistics are no longer computable from a local patch of the image. The estimation of a noise curve can onlybe

accomplished by computing the temporal variance in a sequence of images of the same scene.

B. Multi-image noise estimation

A temporal average requires the images of the sequence to be perfectly registered. Yet, this registration

rises a serious technical objection: how to register globally the images of a burst? Fortunately, there are

several situations where the series of snapshots are indeedrelated to each other by a homography, and we

shall explore these situations first. The homography assumption is actually valid in any of the following
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situations:

1) the only motion of the camera is an arbitrary rotation around its optic center;

2) the photographed objects share the same plane in the 3D scene;

3) the whole scene is far away from the camera.

The computation of an homography between a pair of images needs the accurate correspondence of

at least four points in each image. Finding key points in images and matching them is a fundamental

step for many computer vision and image processing applications. One of the most robust is the Scale

Invariant Feature Transform (SIFT) [55], which we will use.Other possible methods allowing for large

baselines are [61], [62], [60], [71], [66], [65], but we are here using images taken with only slight changes

of view point.

Because wrong matches occur in the SIFT method, an accurate estimate of the dominant homography

will require the elimination of outliers. The standard method to eliminate outliers is RANSAC (RANdom

SAmple Consensus) [38]. However, it is efficient only when outliers are a small portion of the whole

matching set. For this reason several variants have been proposed to improve the performance of outlier

elimination, the principal being [79], [90], [81], [68], [63]. The main difference between our approach

and the classic outlier elimination is the fact that we dispose of a whole sequence of images and not

just of a pair. Instead of choosing a more elaborate version than RANSAC, we preferred to exploit the

sequence redundancy in order to improve the registration stage.

The goal is to estimate a dominant homography for the whole set of images, which are typically a

few dozens. Only matches which are common to the whole sequence must be kept. In other terms, the

keypoints of the first image are kept only if they are matched with another keypoint in any other image

of the sequence. This constraint eliminates most of the outliers (see Algorithm 1). In order to apply such

a strategy, we assume that the images overlap considerably.Recall that the purpose is not to make a

mosaic or a panorama, but to estimate the noise curve and eventually to denoise the sequence.

A temporal average and standard deviation is computed for the registered sequence. The average values

are used to build a histogram and to divide the grey level range adaptively. Inside each bin, the median

value of the corresponding standard deviations is taken.

Fig. 4 displays three frames from an image sequence with a rotating pattern and a fixed pedestal. The

noise curves estimated from the first image with the single image algorithm and those from the registered

and averaged sequence are displayed in the same figure. The estimated curves in the raw image coincide

if either of both strategies is applied. However, as previously observed these are quite different when we

take into account the JPEG image.
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Fig. 4. Three frames from an image sequence with a rotating pattern and a fixed pedestal both in RAW (top) and JPG (bottom).

The estimated curves in the raw image coincide if either of both strategies is applied. However, as previously observed these

are quite different when we take into account the JPEG image

Images taken with indoor lights often show fast variations of the contrast and brightness, like those in

Fig. 5. This brightness must be rendered consistent throughall the images, so that the standard deviation

along time is due to the noise essentially and not to the changes of lights. For this reason, a joint

histogram equalization must conservatively be applied before the noise estimation chain. The Midway

equalization method proposed in [27], [28] is the ideal toolto do so, since it forces all images to adopt

a joint midwayhistogram which is indeed a kind of barycenter of the histograms of all images in the

burst. Fig. 5 illustrates the noise estimation after and before color equalization.
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Fig. 5. Top: two frames of an image sequence with variations of brightness. Noise curve estimated by temporal average and

standard deviation after registration. Bottom: the same two frames of the sequence after a joint histogram equalization [28]

and estimated noise curves. The second estimation is correct. The first was not, because of the almost imperceptible lighting

conditions.

V. AVERAGE AFTER REGISTRATION DENOISING

The core idea of the average after registration (AAR) denoising method is that the various values at

a cross-registered pixels obtained by a burst are i.i.d.. Thus, averaging the registered images amounts to

averaging several realizations of these random variables.An easy calculation shows that this increases

the SNR by a factor proportional to
√
n, wheren is the number of shots in the burst.

There is a strong argument in favor of denoising by simple averaging of the registered samples

instead of block-matching strategies. If a fine non-periodic texture is present in an image, it is virtually

indistinguishable from noise, and actually contains a flat spectrum part which has the same Fourier

spectrum as the white noise. Such fine textures can be distinguished from noise only if several samples

of the same texture are present in other frames and can be accurately registered. Now, state of the art

denoising methods (e.g. BM3D) are based on nonlocal block matching, which is at risk to confound the

repeated noise-like textures with real noise. A registration process which is far more global than block

matching, using strong features elsewhere in the image, should permit a safer denoising by accumulation,

provided the registration is sub-pixel accurate and the number of images sufficient.

A simple test illustrates this superior noise reduction andtexture preservation on fine non periodic

textures. A image was randomly translated by non integer shifts, and signal dependent noise was added

to yield an image sequence of sixteen noisy images. Figure 6 shows the first image of the sequence and
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its denoised version obtained by accumulation after registration (AAR). The theoretical noise reduction

factor with sixteen images is four. This factor is indeed reached by the accumulation process. Table IV

displays the mean square error between the original image and the denoised one by the different methods.

Block based algorithms such as NLmeans [15] and BM3D [23], have a considerably larger error, even

if their noise reduction could be theoretically superior due to their two dimensional averaging support.

But fine details are lost in the local comparison of small image blocks.

Fig. 6. Noise curve. From top to bottom: one of the simulated images by moving the image and adding Poisson noise,

denoised by accumulation after registration and the noise curve obtained by the accumulation process using the sixteenimages.

The standard deviation of the noise (Y-axis) fits to the square root of the intensity (X-axis).

As mentioned in the introduction, the registration by usingthe SIFT algorithm and computing a

homography registration is by now a standard approach in theimage fusion literature. The main difference

of the proposed approach with anterior work is that the mentioned works do not account for registration

errors. Yet, in general, the images of a 3D scene arenot related by a homography, but by an epipolar

geometry [43]. Even if the camera is well-calibrated, a 3D point-to-point correspondence is impossible to
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Barbara Couple Hill

noisy 11.30 11.22 10.27

NLM 4.52 3.73 4.50

BM3D 4.33 3.39 3.90

AR 3.55 3.03 2.73

TABLE IV

MEAN SQUARE ERROR BETWEEN THE ORIGINAL IMAGE AND THE DENOISEDONE BY THE VARIOUS CONSIDERED METHODS

APPLIED ON THE NOISY IMAGE SEQUENCES INFIGURE 6. THE BLOCK BASED ALGORITHMS, NLMEANS [15] AND BM3D

[23] HAVE A CONSIDERABLY LARGER ERROR, EVEN IF THEIR NOISE REDUCTION COULD BE IN THEORY SUPERIOR, DUE TO

THEIR TWO DIMENSIONAL AVERAGING SUPPORT. AAR IS CLOSE TO THE THEORETICAL REDUCTION FACTOR FOUR.

obtain without computing the depth of the 3D scene. However,as we mentioned, a camera held steadily in

the hand theoretically produces images deduced from each other by a homography, the principal image

motion being due to slight rotations of the camera. Nonetheless, we should not expect that a simple

homography will be perfectly accurate everywhere in each pair, but only on a significant part. A coherent

registration will be obtained by retaining only the SIFT matches that are common to the whole burst.

Therefore the registration applies a joint RANSAC strategy, as exposed in Algorithm 1. This ensures that

the same background objects are used in all images to computethe corresponding homographies.

The main new feature of the algorithm is this: The averaging is applied only at pixels where the

observed standard deviation after registration is close tothe one predicted by the estimated noise model.

Thus, there is no risk whatsoever associated with AAR, because it only averages sets of samples whose

variability is noise compatible.

At the other pixels, the conservative strategy is to apply a state of the art video denoising algorithm

such as the spatiotemporal NL-means algorithm or BM3D. To obtain a smooth transition between the

averaged pixels and the NL-means denoised pixels, a weighting function is used. This function is equal

to 0 when the standard deviation of the current pixel is lowerthan 1.5 times the estimated noise standard

deviation, and equal to 1 if it is larger than 3 times the estimated noise standard deviation. The weights

are linearly interpolated between 1.5 and 3.

VI. D ISCUSSION AND EXPERIMENTATION

We will compare the visual quality of restored images from real burst sequences. The focus is on

JPEG images, which usually contain non white noise and colorartifacts. As we illustrated in the previous
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sections, the variability of the color at a certain pixel cannot be estimated from a single image but from

a whole sequence. We will compare the denoised images by using AAR as well as the classical block

based denoising algorithms, NL-means. Fig. 7 shows the results obtained on three different bursts. Each

experiment shows in turn: a) three images extracted from theburst, b) the burst average after registration

performed atall points, followed by a mask of the image regions in which the temporal standard deviation

is significantly larger than the standard deviation predicted by the noise estimate. At all of these points a

block based denoising estimate is used instead of the temporal mean. The final combined image, obtained

by an hybridization of the average registration and NL-Means or BM3D, is the right image in each second

row.

The first experimental data was provided by the company DxO Labs. It captures a rotating pattern with

a fixed pedestal. In this case, the dominant homography is a rotation of the main circular pattern, which

contains more SIFT points than the pedestal region. Since the proposed algorithm only finds a dominant

homography, which is the rotation of the pattern, the simpleaverage fails to denoise the region of the

fixed pedestals and of the uniform background. As shown in thewhite parts of the mask, these regions

are detected because they have an excessive temporal standard deviation. They are therefore treated by

NL-means or BM3D in the final hybrid result. The whole patternitself is restored by pure average after

registration.

The second burst consists of two books, a newspaper and a moving mouse. Since the dominant

homography is computed on still parts, the books and the background, the moving mouse is totally blurred

by the averaging after registration, while the rest of the scene is correctly fused. As a consequence, AAR

uses the average everywhere, except the part swept by the mouse.

The last burst is a sequence of photographs with short exposure time of a large painting taken in

Musée d’Orsay,Martyrs chŕetiens entrant lamphith́eâtre by Léon Bénouville. Making good photographs

of paintings in the dim light of most museums is a good direct application for the proposed algorithm,

since the images of the painting are related by a homography even with large changes of view point,

the painting being flat. As a result, the average is everywhere favored by the hybrid scheme. Details on

the restored images and comparison with BM3D are shown in Fig. 8-10. Dim light images are displayed

after their color values have been stretched to[0, 255].
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Algorithm 1 Hybrid Accumulation After Registration Algorithm
Input Initial set of imagesI0, I1, · · · , In, obtained from a burst

SIFT

Apply the SIFT algorithm between to each pair(I0, Ij), j = 1, · · · , n. Call Sj the set of matches.

Retain fromSj only the matches for which the matching key point inI0 has a match in all other

images.

RANSAC

Set number of agreed points,m, to 0.

while the number of trials does not exceedN do

Pick up 4 random points fromS0

for (eachj > 0) do

Compute the homography using these 4 points and the corresponding ones inSj

Add to m the number of points inSj which agree with this homography up to the precisionp.

end for

If m > maxim, thenmaxim = m and save the set of agreed points in the whole sequence

end while

Compute for each pair, the homographyHj with the selected points.

FUSION

Apply the homographyHj to each image obtaininḡIj, j = 1, · · · , n.

Average the transformed images obtaining the meanµ(x, y). Compute alsoσ(x, y), the temporal

standard deviation.

Estimate the noise curve usingσ(x, y), gettingσn(u) the standard deviation associated to each color

u.

Obtain the final estimate:

(1− w(µ, σ))µ(x, y) + w(µ, σ)NL(I0)(x, y),

whereNL is the NL-means algorithm (Buades et al. [15]) and the function w(ν, σ) is defined by

w(ν, σ) =























0 if σ < 1.5σn(µ)

σ−1.5σn(µ)
1.5σn(µ)

if 1.5σn(µ) < σ < 3σn(µ)

1 if σ > 3σn(µ)
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