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Multi image noise estimation and denoising
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Abstract

Photon accumulation on a fixed surface is the essence of gitamioy. In the times of chemical
photography this accumulation required the camera to mevikttee as possible, and the scene to be
still. Yet, most recent reflex and compact cameras proposgst lnode, permitting to capture quickly
dozens of short exposure images of a scene instead of a singlélhis new feature permits in principle
to obtain by simple accumulation high quality photograpmgdim light, with no motion or aperture
blur. It also gives the right data for an accurate noise modet, both goals are attainable only if an
accurate cross-registration of the burst images has bed#ormed. The difficulty comes from the non
negligible image deformations caused by the slightest cametion, in front of a 3D scene, and from the
light variations or motions in the scene. This paper prop@saumerical processing chain permitting to
achieve jointly the two mentioned goals: an accurate noisdeifor the camera, which is used crucially
to obtain a state of the art multi-images denoising. The kajure of the proposed processing chain is a
reliable multi-image noise estimator, whose accuracy bélidemonstrated by three different procedures.
Thanks to the signal dependent noise model obtained fronbuingt itself, a faithful detection of the
well registered pixels can be made. The denoising by simgaraulation of these pixels, which are an
overwhelming majority, permits to extend the Nicéphorepdie photon accumulation method to image
bursts. The denoising performance by accumulation is sttoweach the theoretical limit, namely,4n
denoising factor fom frames. Comparison with state of the art denoising algortiwill be shown on

several bursts taken with reflex cameras in dim light.

. INTRODUCTION

The accumulation of photon impacts on a surface is the essainphotography. The first Nicephore
Niepce photograph [20] was obtained after an eight hourosxe. The serious objection to a long
exposure is the variation of the scene due to changes in lighhera motion, and incidental motions of
parts of the scene. The more these variations can be conpdn#ze longer the exposure can be, and
the more the noise can be reduced. It is a frustrating expezifor professional photographers to take
pictures under bad lighting conditions with a hand-held esmIf the camera is set to a long exposure

time, the photograph gets blurred by the camera motions peduae. If it is taken with short exposure,
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the image is dark, and enhancing it reveals the noise. Mstdiltmma can be solved by taking a burst of
images, each with short-exposure time, as shown in Fig.d pgraveraging them after registration. This
observation is not new and many algorithms have been prdposestly for stitching and super-resolution.
These algorithms have thrived in the last decade, probahlykis to the discovery of a reliable algorithm
for image matching, the SIFT algorithm [55]. All of the muilthage fusion algorithms share three well
separated stages, the search and matching of charactpogtis, the registration of consecutive image
pairs and the final accumulation of images. All methods perfeome sort of multi-image registration,
but surprisingly do not propose a procedure to check if tlggstation is coherent. Thus, there is a
non-controlled risk that the accumulation blurs the finaluaulation image, due to wrong registrations.
Nevertheless, as we shall see, the accurate knowledge sd gtitistics for the image sequence permits
to detect and correct all registration incoherences. Euantbre, this noise statistics can be most reliably
extracted from the burst itself, be it for raw or for JPEG imagin consequence, a stand alone algorithm
which denoises any image burst is doable. As experimentsshdlw, it even allows for light variations
and moving objects in the scene, and it reaches,fhedenoising factor predicted for the sum of the
independent (noise) random variables.

We call in the following “burst”, or “image burst” a set of digl images taken from the same camera,
in the same state, and quasi instantaneously. Such buestsb#ained by video, or by using the burst
mode proposed in recent reflex and compact cameras. The &asnsupposed to be held as steady as
possible so that a large majority of pixels are seen throtghvthole burst. Thus, no erratic or rash
motion of the camera is allowed, but instead incident mationthe scene do not hamper the method.

There are other new and promising approaches, where takiagds with different capture conditions
is taken advantage of. Liu et al. [88] combine a blurred imadih long-exposure time, and a noisy one
with short-exposure time for the purpose of denoising thesd and deblurring the first. Beltramio and
Levine [11] improve the dynamic range of the final image by borimg an underexposed snapshot with
an overexposed one. Combining again two shapshots, onendlthe other without flash, is investigated
by Eisemanret. al. [33] and Fattalet. al [37]. Another case of image fusion worth mentioning is [8],
designed for a 3D scanning system. During each photogragésian, a high-resolution digital back is
used for photography, and separate macro (close-up) amiolet light shots are taken of specific areas
of text. As a result, a number of folios are captured with twts©f data: a “dirty” image with registered
3D geometry and a “clean” image with the page potentiallyodegd differently to which the digital
flattening algorithms are applied.

Our purpose here is narrower. We only aim at an accurate eetgeation followed by denoising for an
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image burst. No super-resolution will be attempted, noratmbination of images taken under different
apertures, lightings or positions. The main assumptiorhersetting is that a hand-held camera has taken
an image burst of a still scene, or from a scene with a minaitynoving objects. To get a significant
denoising, the number of images can range from 9 to 64, whiahtg a noise reduction by a factor
3 to 8. Since the denoising performance grows like the sguaoeof the number of images, it is less
and less advantageous to accumulate images when their ngmuves. But impressive denoising factors
up to 6 or 8 are reachable by the simple algorithm proposed, vanich we shall calaverage after
registration(AAR). Probably the closest precursor to the present meihdite multiple image denoising
method by Zhanget. al. [92]. Their images are not the result of a burst. They are asagken from
different points of views by different cameras. Each camesas a small aperture and a short exposure
to ensure minimal optical defocus and motion blur, to the cbsery noisy output. A global registration
evaluating the 3D depth map of the scene is computed from thld-wiew images, before applying a
patch based denoising inspired by NL-means [15]. Thus tieidag strategy is more complex than the
simple accumulation after registration which is promotedhe present paper. Nevertheless, the authors
remark that their denoising performance stalls when the bernof frames grows, and write that this
difficulty should be overcome. Yet, their observed dengjsirerformance curves grow approximately
like the square root of the number of frames, which indic#ites the real performance of the algorithm
is due to the accumulation. The method proposed here thergfes back to accumulation, as the essence
of photography. It uses, however, a hybrid scheme whichdéscat each pixel between accumulation and
block denoising, depending on the reliability of the matthe comparison of temporal pixel statistics
with the noise model extracted from the scene itself peranieliable conservative decision so as to apply
or not theaccumulation after registratiofAAR). Without the accurate nonparametric noise estinmatio
this strategy would be unreliable. Therefore estimatingueately the noise model in a burst of raw or
JPEG images is the core contribution of this paper. A moreptexnand primitive version of the hybrid
method was announced in the conference paper [17]. It ditcoatain the noise estimation method
presented here.

a) Plan and results of the paperfhe paper requires a rich bibliographical analysis for thanyn
aspects of multi-image processing (Section Ill). This syrshows that most super-resolution algorithms
do in fact much more denoising than they do super-resolusimee they typically only increase the size
of the image by a factor 2 or 3, while the number of images wdldaretically allow for a 5 to 8 factor.
Section Il reviews the other pilar of the proposed method, thise estimation literature. (This corpus

is surprisingly poor in comparison to the denoising litarat)
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Fig. 1. From left to right: one long-exposure image (time 4 fec, 1ISO=100), one of 16 short-exposure images (time = 1/40
sec, ISO = 1600) and the average after registration. All esdgave been color-balanced to show the same contrast. ige lo
exposure image is blurry due to camera motion. The middlet-ghxposure image is noisy, and the third one is séooe times

less noisy, being the result of averaging 16 short-exposuagies. Images may need to be zoomed in on a screen to compare

details and textures.

Section 1V is key to the proposed technique, as it demorstithiat a new variant of static noise blind
estimate gives results that exactly coincide with Poissmgsenestimates taken from registered images in a
temporal sequence. It is also shown that although JPEG er@geained by off-the-shelf cameras have no
noise model, a usable substitute to this noise model can tagebl: It simply is the variance of temporal
sequences of registered images. Section V describes thegwo multi-image denoising method, which
in some sense trivializes the denoising technology, sihpeoposes to go back as much as possible to
a mere accumulation, and to perform a more sophisticatedisiag only at dubiously registered pixels.

Section VI compares the proposed strategy with two statbefart multi-images denoising strategies.

Il. NOISE ESTIMATION, A REVIEW

As pointed out in [53], “Compared to the in-depth and widerliture on image denoising, the literature
on noise estimation is very limited”. Following the clasdistudy by Healey et al. [45], the noise in
CCD sensors can be approximated by an additive, white amdlstependent noise model. The noise
model and its variance reflect different aspects of the ingagihain at the CCD, mainly dark noise
and shot noise. Dark noise is due to the creation of spuriberdrens generated by thermal energy
which become indistinguishable from photoelectrons. Staise is a result of the quantum nature of
light and characterizes the uncertainty in the number otgi®stored at a collection site. This number

of photons follows a Poisson distribution so that its vac@equals its mean. The overall combination
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of the different noise sources therefore leads to an affileen@riance: + bu depending on the original
signal valueu. Yet, this is only true for the raw CCD image. Further progegstages in the camera
hardware and software such as the white balance, the deskipggithe gamma correction, the blur
and color corrections, and eventually the compressiongtaie the noise and modify its nature and its
standard deviation in a non trivial manner. There is theeefm noise model for JPEG images. However,
as we shall see, a signal dependent noise variance modetltittdre sestimated from bursts of JPEG

images (section IV-B.) It is enough to perform reliably theage after registration (AAR).

A. Additive Gaussian noise estimation

Most computer vision algorithms should adjust their par@mseaccording to the image noise level.
Surprisingly, there are few papers dealing with the noigenasion problem, and most of them only
estimate the variance of a signal independent additiveenbitussian noise (AWGN). This noise statistics
is typically measured on the highest-frequency portionhefimage spectrum, or on homogenous image
patches. In the AWGN case a spectral decomposition throngirtaonormal transform such as wavelets
or the DCT preserves the noise statistics. To estimate tis& variance, Donoho et. al [29] consider the
finest scale wavelet coefficients, followed by a median filbegliminate the outliers. Suppo$g; }i—1 ...n

be N independent Gaussian random variables of zero-mean argheas?, then
E{MED(|y;|)} ~ 0.67450.
It follows immediately that the noise standard deviatiois given by

- 1

The standard procedure of the local approaches is to analget of local estimates of the variance.
For example, Rank et. al [48] take the maximum of the distidouof image derivatives. This method is
based on the assumption that the underlying image has agartien of homogeneous regions. Yet, if an
image is highly textured, the noise variance can overegtithdo overcome this problem, Ponomarenko
et. al [72] have proposed to analyze the local DCT coeffisieAtsegmentation-based noise estimation
is carried out in [1], which considers both i.i.d. and sphtiaorrelated noise.

The algorithm in [73] is a modification of the early work [72¢aling with AVIRIS (Airborne Visible
Infrared Imaging Spectrometer) images, in which the exalnaf the noise variance in sub-band images
is addressed. The idea is to divide each block into low fragueand high frequency components by
thresholding, and to usk blocks of the smallest variance of the low frequency coefits to calculate

a noise variance, wherk is adaptively selected so that it is smaller for highly-tegd images.
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[25] proposed an improvement of the estimate of the variaiddVGN by using transforms creating
a sparse representation (via BM3D [22]) and using robusissts estimators (MAD and ICI). For a
univariate data seX, X, ..., X,,, the MAD is defined as the median of the absolute deviatians fihe

data’s median: MAD= median ( |X; — median(Xj;)| ). The algorithm is as follows.

1) for each8 x 8 block, group together up to 16 similar non-overlapping kfdnto 3D array.
The similarity between blocks in evaluated by comparingesponding blocks extracted from a
denoised version by BM3D.

2) apply a 3-D orthonormal transform (DCT or wavelet) on egcbup and sort the coefficients
according to the zig-zag scan.

3) collect the first 6 coefficients;,---,cs and define their empirical energy as the mean of the

magnitude of the (up to 32) subsequent coefficients:

E{|Cj|2} = mearﬂC?_Ha U 7C?+32|}

4) Sort the coefficients from all the groups (6 coefficients gmup) according to their energy
5) do MAD and Intersection of Confidence Intervals (ICI) [4B] achieve the optimal bias-variance

trade-off in the MAD estimation.

All the above mentioned algorithms give reasonable esémaff the standard deviatiomhen the
noise is uniform. Yet, when applying these algorithms to estimate signakddpnt noise, the results
are poor. The work of C. Liet. al.[54] estimates the upper bound on the noise level fitting taraara
model. The noise estimation from the raw data is discuss4@9h [40]. The former is a parametric
estimation by fitting the model to the additive Poissoniaau&sian noise from a single image, while the

latter measures the temporal noise based on an automatiesa&gion of 50 images.

B. Poisson Noise Removal

This paper deals with real noise, which in most real imaga&gté cameras, tomography, microscopy
and astronomy) is a Poisson noise. The Poisson noise iseimher photon counting. This noise adds up
to a thermal noise and an electronic noise which are appuairi;n AWGN. In the literature algorithms
considering the removal of AWGN are dominant but, if its mlodeknown, Poisson noise can be
approximately reduced to AWGN by a so called variance st transformation (VST). The standard

procedure follows three steps,

1) apply VST to make the data homoscedastic

2) denoise the transformed data
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3) apply the inverse VST.

The square-root operation is widely used as a VST,
fz)=b/z+c (@H)

It follows from the asymptotic unit variance ¢f(z) that the parameters are given by- 2 andc = 3/8,
which is the Anscombe transform [2]. A multiscale VST (MS-MSs studied in [91] along with the
conventional denoising schemes based on wavelets, ridgatel curvelets depending on morphological
features (isotropic, line-like, curvilinear, etc) of théven data. It is argued in [58] that the inverse

transformation of VST is crucial to the denoising performanBoth the algebraic inverse
D\? 3
Za(D)=(—=) —=.
A(D) ( 5 ) 3

and the asymptotically unbiased inverse

Ip(D) = <§>2 - %>

in [2] are biased for low counts. The authors [58] proposeacteunbiased inverse. They consider an

inverse transfornZ¢ that maps the valu&{f(z)|y} to the desired valué&:z|y that

B{f (2} =2 (x/z+ : %)
z=0 ’

where f(z) is the forward Anscombe transform (1). In practice, it isfisignt to compute the above
equation for a limited set of valuesand approximat&€- by Zp for large values of;. Furthermore, the
state-of-the-art denoising scheme BM3D [39] is appliedhia second step.

There are also wavelets based methods [69], [50] or Bayd8iah [56], [51] removing Poisson
noise. In particular, the wavelet-domain Wiener filter [68s a cross-validation that not only preserves
important image features, but also adapts to the local nieigel of the spatially varying Poisson
process. The shrinkage of wavelet coefficients investigladsy to correct the thresholds [50] to explicitly
account for effects of the Poisson distribution on the taisthe coefficient distributions. A recent
Bayesian approach by Lefkimmiatis et al. [51] explores airgige quad-tree image representation which
is suitable for Poisson noise degradation and then follow®xpectation-maximization technique for
parameter estimation and Hidden Markov tree (HMT) struegdor interscale dependencies. The common
denominator to all such methods is that we need an accurasdPomodel, and this will be thoroughly
discussed in Section IV.

It is, however, a fact that the immense majority of accessitlages are JPEG images which contain

a noise altered by a long chain of processing algorithmsingndith compression. Thus the problem of
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estimating noise in a single JPEG image is extremely illegost has been the object of a thorough study
in [53]. This paper proposes a blind estimation and remowethod of color noise from a single image.
The interesting feature is that it constructs a “noise Iduattion” which is signal dependent, obtained
by computing empirical standard deviations image homogansegments. Of course the remanent noise
in a JPEG image is no way white or homogeneous, the high fretes being notoriously removed by
the JPEG algorithm. On the other hand, demosaicking usaally as a villainous converter of white
noise into very structured colored noise, with very largetspThus, even the variance of smooth regions
cannot give a complete account of the noise damage, becaise in JPEG images is converted in
extended flat spots. We shall, however, retain the idea piexhio [53] that, in JPEG images, a signal
dependent model for the noise variance can be found. InoseldtiB a simple algorithm will be proposed
to estimate the color dependent variance in JPEG images fnalt-images. All in all, the problem of
estimating a noise variance is indeed much better posedvérakeimages of the same scene by the
same camera, with the same camera parameters, are availaidetechnique is classic in lab camera

calibration [44].

1. M ULTI-IMAGES AND SUPER RESOLUTION ALGORITHMS

b) Photo stitching: Probably one of the most popular applications in image sicg, photo
stitching [14], [57] is the first method to have popularizeéeé SIFT method permitting to register into a
panorama a set of image of a same scene. Another relatedatjpli is video stabilization [7]. In these
applications no increase in resolution is gained, the fim@ge has roughly the same resolution as the
initial ones.

¢) Super-resolution:Super-resolution means creating a higher resolutionetargage from several
images of the same scene. Thus, this theme is directly detatehe denoising of image bursts. It is
actually far more ambitious, since it involves a deconvotlut However, we shall see that most super-
resolution algorithms actually make a moderate zoom in, adumany images, and therefore mainly
perform a denoising by some sort of accumulation. The catiari model in the found references is
anyway not accurate enough to permit a strong deconvolution

A single-frame super-resolution is often referred to asrilation. See for example [85], [86]. But
several exemplar-based super-resolution methods invollier images which are used for learning,
like in Baker and Kanade [4] who use face or text images asrriSimilarly, the patch-example-
based approaches stemming from the seminal paper [41], usam@st-neighbor search to find the

best match for local patches, and replace them with the sporeding high-resolution patches in the
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training set, thus enhancing the resolution. To make thghieirs compatible, the belief-propagation
algorithm to the Markov network is applied, while anothepp@a[26] considered a weighted average by
surrounding pixels (analogue to nonlocal means [15]).eladtof a nearest-neighbor search, Yang et. al
[83] proposed to incorporate the sparsity in the sense theth écal patch can be sparsely represented
as a linear combination of low-resolution image patchest arhigh-resolution image is reconstructed
by the corresponding high-resolution elements. The reoemiarkable results of [87] go in the same
direction. The example-based video enhancement is disduss[12], where a simple frame-by-frame
approach is combined with temporal consistency betweecesseo/e frames. Also to mitigate the flicker
artifacts, a stasis prior is introduced to ensure the ctergiy in the high frequency information between
two adjacent frames.

d) Focus on registration:In terms of image registration, most of the existing sugsetution
methods rely either on a computationally intensive optft@l calculation, or on a parametric global
motion estimation. The authors of [94] discuss the effeftsalti-image alignment on super-resolution.
The flow algorithm they employ addresses two issues: flowistergy (flow computed from frame A to
frame B should be consistent with that computed from B to AJ iow accuracy. The flow consistency
can be generalized to many frames by computing a consistedtd of flow fields. Local motion is usually
estimated by optical flow, other local deformation modeldiude Delaunay triangulation of features [9]
and B-splines [64]. Global motion, on the other hand, candignated either in the frequency domain
or by feature-based approaches. For example, Vandewalié §2] proposed to register a set of images
based on their low-frequencies, aliasing-free part. Thesume a planar motion, and as a result, the
rotation angle and shifts between any two images can begsaigatalculated in the frequency domain.
The standard procedure for feature-based approaches te @gtect the key points via Harris corner
[19], [3] or SIFT [89], [75], (2) match the corresponding ptd while eliminating outliers by RANSAC
and (3) fit a proper transformation such as a homography. Ter applications of SIFT registration are
listed in Tab. II.

e) Reconstruction after registrationA number of papers focus on image fusion, assuming the
motion between two frames is either known or easily compubEdd and Feuer [34] formulate the
super-resolution of image sequences in the context of Kalfittering. They assume that the matrices
which define the state-space system are known. For exarhgldyltrring kernel can be estimated by a
knowledge of the camera characteristics, and the warpihgdas two consecutive frames is computed
by a motion estimation algorithm. But due to the curse of disi@nality of the Kalman filter, they can

only deal with small images, e.g. of siz® x 50. The work [59] by Marquina and Osher limited the

DRAFT



10

forward model to be spatial-invariant blurring kernel witie down-sampling operator, while no local
motion was present. They solved a TV-based reconstructitin Bvegman iterations.

A joint approach on demosaicing and super-resolution obrcohages is addressed in [35], based
on their early super-resolution work [36]. The authors uselilateral-TV regularization for the spatial
luminance component, the Tikhonov regularization for theominance component and a penalty term
for inter-color dependencies. The motion vectors are cdetpuia a hierarchical model-based estimation
[10]. The initial guess is the result of the Shift-And-Add tlned. In addition, the camera PSF is assumed
to be a Gaussian kernel with various standard deviation ifterednt sets of experiments.

f) Methods joining denoising, deblurring, and motion comgegion: Super-resolution and motion
deblurring are crossed in the work [5]. First the object mcked through the sequence, which gives
a reliable and sub-pixel segmentation of a moving object Té]len a high-resolution is constructed
by merging the multiple images with the motion estimatioheTdeblurring algorithm, which mainly
deals with motion blur [47], has been applied only to the sagdf interest. The recent paper on super-
resolution by L. Baboulaz and P. L. Dragotti [3] presentsesalregistration and fusion methods. The
registration can be performed either globally by contirmiowoments from samples, or locally by step
edge extraction. The set of registered images is mergedairdimgle image to which either a Wiener
or an iterative Modified Residual Norm Steepest Descent (MBNmethod is applied [67] to remove
the blur and the noise. The super-resolution in [75] use§ SIRANSAC to compute the homography
between the template image and the others in the video segushifts the low-resolution image with
subpixel accuracy and selects the closest image with thealpshifts.

g) Implicit motion estimation:More recently, inspired by the nonlocal movie denoising hodt
which claims that “denoising images sequences does nofreeqotion estimation” [16], researchers
have turned their attention towards super-resolution autimotion estimation [32], [31], [74]. Similar
methodologies include the steering kernel regression BBIBD [24] and its many variants. The forward
model in [24] does not assume the presence of the noise. awaithors pre-filter the noisy LR input by
V-BM3D [21]. They up-sample each image progressivelftimes, and at each time, the initial estimate
is obtained by zero-padding the spectra of the output fraenptievious stage, followed by filtering. The
overall enlargement is three times the original size. Sugeolution in both space and time is discussed
in [76], [77], which combine multiple low-resolution videsequences of the same dynamic scene. They
register any two sequences by a spatial homography and atahgifine transformation, followed by a

regularization-based reconstruction algorithm.
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TABLE |

COMPARISON OFSUPERRESOLUTION ALGORITHMS

11

Ref. # of images Registration Deblurring blur kernel
V.S. factor
[41] 1 2 KNN to training set NO
[4] to 16
[26] 1 2 MAP penalty 3x3
3 5% D
[83] 1 to 4 | sparse w.r.t. traning back-projection Not mention
[19] 15 2 Harris+tRANSAC Tiknonov Not mention
[18] 25 3 PCA NO
[94] 40 2 consistent flow bundle NO
[82] 4 2 frequency domain NO
[34] 100 2 assume known motion Kalman filter 3 x 3 average
[36], [35] | 30 3 hierarchical estimates [10] bilateral-TV Gaussian
[75]* 15,60 | 2 SIFT+RANSAC NO
[89] 20 4 SIFT+RANSAC Least-square Gausgo = 3)
[5] 10 2 region tracking [6] motion analysis [47]| motion blur
[3] 20, 40| 8 moment-based or Wiener or B-spline
Harris + RANSAC MRNSD [67] of degree 7
[32] 1 2 implicit: NLM NO
[31] 20 3
[74] 30 3 implicit: NLM TV 3 x 3 average
[78] kernel regression bilateral-TV
[24] 9 3 Video-BM3D zero-padding spectra 3 x 3 average

h) A synoptic table of super-resolution multi-images medthdecause the literature is so rich, a
table of the mentioned methods, classified by their mairufeat is worth looking at. The methods can
be characterized by a) their numberof fused images, which goes from 1 to 60, b) the zoom factor,
usually 2 or 3, and therefore far inferior to the potentiabmofactor/k, c) the registration method,
d) the deblurring method, e) the blur kernel. A survey of thelé demonstrates that a majority of the
methods use many images to get a moderate zoom, meaninghthatehoising factor is important.
Thus, these methods denoise in some sense by accumulatigmrBcisely because all of them aim at
super-resolution, none of them considers the accumuldtjoitself.

Tables 1 and 2 confirm the dominance of SIFT+RANSAC as a stdnslay to register multi-images,
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TABLE Il

MULTI-IMAGE SIFT FOR REGISTRATION

Application # of images | Registration Blending method
[8]* | manuscript Not mention | SIFT + RANSAC Delaunay triangulation
[64] | registration 30 ultrasound| SIFT + threshold + | B-splines deformation

60 MRI least-square for affing

[84] | Mosaic 200 SIFT + RANSAC weighted average
[46] 10
[52] | stitching 6 SIFT + RANSAC weighted average
[93] | head tracking| 1020 SIFT + RANSAC NA (track 3D motion)

as will also be proposed here in an improved variant. Sewdrtile methods in Table 1 which do not
perform SIFT+RANSAC, actually the last four rows, are “ingfif. This means that they adhere to
the dogma that denoising does not require motion estimattas replaced by multiple block motion

estimation, like the one performed in NL-means and BM3D. Eesv, we shall see in the experimental
section that AAR (average after registration) has a stittdsgperformance than such implicit methods.
This is one of the main questions that arose in this explomatind the answer is clear cut: denoising

by accumulation, like in ancient photography times stilaisalid response in the digital era.

IV. NOISE BLIND ESTIMATION

In this section we return to noise estimation and will confrand cross-validate a single frame noise

estimation with a multi-images noise estimation.

A. Single image noise estimation

Most noise estimation methods have in common that the na@w®lard deviation is computed by
measuring the derivative or equivalently the wavelet cokeffit values of the image. As we mentioned,
Donoho et al. [30] proposed to estimate the noise standaridtimn as the median of absolute values
of wavelet coefficients at the finest scale. Instead of theiamedanany authors [13], [49] prefer to use a
robust median.

Olsen [70] and posteriorly Rank et al. [48] proposed to comjploie noise standard deviation by taking
a robust estimate on the histogram of sample variances ohgsitin the derivative image. In order to
minimize the effect of edges small windows were preferreth @x 3 or 5 x 5 pixels. The sample variance

of small patches or the pointwise derivatives provide a rajust measure and require a considerable
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number of samples with few outliers to guarantee the corsetdction of the standard deviation. We
observed that the opposite point of view, that is, the useaafer windowsl5 x 15 pixels to 21 x 21
pixels permits a more robust estimation. However, sinagelawindows may contain more edges a much
smaller percentile will be preferred to the median, in geacthe1% or the 0.5%.

Noise in real photograph images is signal dependent. Inrdodadapt the noise estimation strategies,
the gray level image histogram will be divided adaptivelyia fixed number of bins having all the same
number of samples. This is preferable to classical appesalhere the gray range is divided into equal
intervals. Such a uniform division can cause many bins tolim®st empty.

To evaluate if a signhal dependent noise can be estimateddreingle image, 110 images were taken
with a Nikon D80, with ISO 100 and very good illumination cati@hs. These are the best conditions
we can expect to have a low noise standard deviation. Thdee intages were converted to gray level
by averaging the three color values at each pixel. Finallyofa3 sub-sampling was applied by averaging
square groups of nine pixels. These operations having etivitie noise standard deviation by slightly
more than five, these images can be considered as noise imadly,/a signal dependent noise was added
to them, with varianc&® + 2u whereu was the noiseless grey level.

The uniform and adaptive divisions of the grey level ranga fixed number of 15 bins were compared,
and several noise estimation methods were applied to dstitha noise standard deviation inside each
bin. The performance of all methods are compared in Tabkhibwing the average and standard deviation
of the errors between the estimated and original noise suiMee best estimate is obtained by applying
the proposed strategy using the variance of large patchiesrréthan small ones or point derivatives.
These measurements also confirm that the division of thelgvey range into bins with fixed cardinality
is preferable to the fixed length interval division. This edment confirms that a signal dependent noise
can be estimated with a high accuracy.

i) Ground truth?: In order to evaluate the performance of such a noise estimatgorithm in real
images we need a ground truth to compare with. This grourtd tan be obtained for a given camera
by taking a sequence of images of the same pattern, aftegfitkiea camera on a pedestal. All camera
parameters remain unchanged for all photographs of theesequthus avoiding different exposure times
or apertures. The temporal average and standard devidtibe avhole sequence of images can therefore
be computed without any further registration. The use ofexgwise constant image reduces the effect
of small vibrations of the camera, see Fig. 2. The noise imeadmnnel is estimated independently.
Each color range is divided adaptively into a fixed numberio$ tlaking into account the color channel

histogram. Inside each bin a percentile is used to estinh&testandard deviation.
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MAD RMAD MVPD MVPD2
e 1.81 2.87 1.58 0.75

std(e) | 1.14 2.59 1.06 0.61
a) Uniform gray division

MAD RMAD MVPD MVPD2
1.66 1.87 1.36 0.73

std(e) | 1.04 1.17 0.90 0.35
b) Adaptive gray division

ol

TABLE Il
A SIGNAL DEPENDENT NOISE WITH VARIANCES + 2u IS ADDED TO 110NOISE FREE IMAGES THE UNIFORM AND
ADAPTIVE STRATEGIES FOR DIVIDING THE GREY LEVEL RANGE IN A FKED NUMBER OF 15 BINS ARE COMPARED FOR
EACH STRATEGY, THE FOLLOWING NOISE ESTIMATION METHODS IN EACH BIN ARE COMPRED: MEDIAN OF ABSOLUTE
DERIVATIVES (MAD), ROBUST MEDIAN OF ABSOLUTE DERIVATIVES(RMAD), MEDIAN OF SAMPLE VARIANCE OF PATCHES
3x 3 OF THE DERIVATIVE IMAGE (MVPD) AND 0.005 PERCENTILE OF SAMPLE VARIANCE OF PATCHEQ1x 21 OF THE
DERIVATIVE IMAGE (MVPD2). ARE DISPLAYED THE AVERAGE AND STANDARD DEVIATION OF THE ERROB BETWEEN THE

ESTIMATED AND ORIGINAL NOISE CURVES FOR THEL10IMAGES.

Fig. 3 displays the ground truth estimated curves with thiategy, both in RAW and JPEG format
for two different ISO settings. The ground truth curves asepared with the ones estimated in the first
image of the sequence by the proposed single image noiseadisin algorithm. For the RAW case, the
single image and ground truth estimated curves are neaglytizhl. Fig. 2 shows a lack of red in the
RAW image of the calibration pattern, even if this patterracdually gray. This effect is corrected by
the white balance as observed in the JPEG image.

The ground truth noise curves estimated from the JPEG imdge®t agree at all with the classical
noise model. This is due to the various image range nonlitreasformations applied by the camera
hardware during the image formation, which modify the natand standard deviation of the noise. The
ground truth and single image estimated curves in the JPE@ lcave a similar shape but a different
magnitude. The main new feature is that the interpolatiathlaw pass filtering applied to the originally
measured values have strongly altered the high frequenmypanents of the noise. Thuthe noise
statistics are no longer computable from a local patch of the image. The estimation of such a noise
curve can only be accomplished by computing the temporal variance in a sequence of images of

the same scene.
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Fig. 2. Calibration pattern used for noise ground truthnestion. Left: raw image. Right: JPEG image. Even if the calilon
pattern is nearly gray the raw image looks blue because thésréess present. This effect is corrected by the white lcalan

applied by the camera image chain leading to the jpeg image.
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a) RAW images b) JPEG images

Fig. 3. Ground truth and single image noise estimates folRA®/ and JPEG images of Fig. 2. The estimated curve by the
temporal average and standard deviation coincide with thee estimated from the first image by the proposed single image
noise estimation algorithm. This is not the case for the JRE&yes. The ground truth and single image estimated curves i
the JPEG case have a similar shape but a different magnifiréeinterpolation and low pass filtering applied to the ovégi
measured values have altered the high frequency compoogttie noise and have correlated its low frequencies. Thiansie
that the noise statistics are no longer computable from al ljeatch of the image. The estimation of a noise curve can baly

accomplished by computing the temporal variance in a seguefhimages of the same scene.

B. Multi-image noise estimation

A temporal average requires the images of the sequence terfeely registered. Yet, this registration
rises a serious technical objection: how to register glgltak images of a burst? Fortunately, there are
several situations where the series of snapshots are imdkted to each other by a homography, and we

shall explore these situations first. The homography assamis actually valid in any of the following
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situations:

1) the only motion of the camera is an arbitrary rotation acbiis optic center;

2) the photographed objects share the same plane in the 3i2;sce

3) the whole scene is far away from the camera.

The computation of an homography between a pair of imagedsnihe accurate correspondence of
at least four points in each image. Finding key points in iesagnd matching them is a fundamental
step for many computer vision and image processing apgitatOne of the most robust is the Scale
Invariant Feature Transform (SIFT) [55], which we will ugether possible methods allowing for large
baselines are [61], [62], [60], [71], [66], [65], but we arerf using images taken with only slight changes
of view point.

Because wrong matches occur in the SIFT method, an accistatgaée of the dominant homography
will require the elimination of outliers. The standard nadho eliminate outliers is RANSAC (RANdom
SAmple Consensus) [38]. However, it is efficient only wheriliets are a small portion of the whole
matching set. For this reason several variants have be@oged to improve the performance of outlier
elimination, the principal being [79], [90], [81], [68], 8. The main difference between our approach
and the classic outlier elimination is the fact that we dspof a whole sequence of images and not
just of a pair. Instead of choosing a more elaborate vergian RANSAC, we preferred to exploit the
sequence redundancy in order to improve the registratagest

The goal is to estimate a dominant homography for the whaleesénages, which are typically a
few dozens. Only matches which are common to the whole seguanist be kept. In other terms, the
keypoints of the first image are kept only if they are matchéth wnother keypoint in any other image
of the sequence. This constraint eliminates most of theessit(see Algorithm 1). In order to apply such
a strategy, we assume that the images overlap considefRéball that the purpose is not to make a
mosaic or a panorama, but to estimate the noise curve anduellgrto denoise the sequence.

A temporal average and standard deviation is computed éorahistered sequence. The average values
are used to build a histogram and to divide the grey levelgampptively. Inside each bin, the median
value of the corresponding standard deviations is taken.

Fig. 4 displays three frames from an image sequence withagimgtpattern and a fixed pedestal. The
noise curves estimated from the first image with the singkgienalgorithm and those from the registered
and averaged sequence are displayed in the same figure. fithated curves in the raw image coincide
if either of both strategies is applied. However, as presfipwbserved these are quite different when we

take into account the JPEG image.
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Fig. 4. Three frames from an image sequence with a rotatitigrpaand a fixed pedestal both in RAW (top) and JPG (bottom).
The estimated curves in the raw image coincide if either dhlstrategies is applied. However, as previously obserkedet

are quite different when we take into account the JPEG image

Images taken with indoor lights often show fast variatiohghe contrast and brightness, like those in
Fig. 5. This brightness must be rendered consistent thrallghe images, so that the standard deviation
along time is due to the noise essentially and not to the dmwrmg lights. For this reason, a joint
histogram equalization must conservatively be appliedteethe noise estimation chain. The Midway
equalization method proposed in [27], [28] is the ideal tlmoto so, since it forces all images to adopt
a joint midway histogram which is indeed a kind of barycenter of the histowgg of all images in the

burst. Fig. 5 illustrates the noise estimation after anaigetolor equalization.
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Fig. 5. Top: two frames of an image sequence with variatidnsrightness. Noise curve estimated by temporal average and

standard deviation after registration. Bottom: the same fnames of the sequence after a joint histogram equalizg@8]
and estimated noise curves. The second estimation is tofiree first was not, because of the almost imperceptibletifigh

conditions.

V. AVERAGE AFTER REGISTRATION DENOISING

The core idea of the average after registration (AAR) dengimethod is that the various values at
a cross-registered pixels obtained by a burst are i.i.dusThveraging the registered images amounts to
averaging several realizations of these random variaBleseasy calculation shows that this increases
the SNR by a factor proportional tgn, wheren is the number of shots in the burst.

There is a strong argument in favor of denoising by simplerayiag of the registered samples
instead of block-matching strategies. If a fine non-pedddkture is present in an image, it is virtually
indistinguishable from noise, and actually contains a flactrum part which has the same Fourier
spectrum as the white noise. Such fine textures can be dighned from noise only if several samples
of the same texture are present in other frames and can beatelguegistered. Now, state of the art
denoising methods (e.g. BM3D) are based on nonlocal blodkhiray, which is at risk to confound the
repeated noise-like textures with real noise. A regisiraprocess which is far more global than block
matching, using strong features elsewhere in the imageidipermit a safer denoising by accumulation,
provided the registration is sub-pixel accurate and thebarmof images sufficient.

A simple test illustrates this superior noise reduction &éadure preservation on fine non periodic
textures. A image was randomly translated by non integdtsstaind signal dependent noise was added

to yield an image sequence of sixteen noisy images. Figuto@sthe first image of the sequence and
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its denoised version obtained by accumulation after nedienh (AAR). The theoretical noise reduction

factor with sixteen images is four. This factor is indeedches by the accumulation process. Table IV
displays the mean square error between the original imagi¢h@ndenoised one by the different methods.
Block based algorithms such as NLmeans [15] and BM3D [23}ele& considerably larger error, even
if their noise reduction could be theoretically superioeduo their two dimensional averaging support.

But fine details are lost in the local comparison of small imadpcks.

Fig. 6. Noise curve. From top to bottom: one of the simulatedges by moving the image and adding Poisson noise,
denoised by accumulation after registration and the naiseecobtained by the accumulation process using the siiteages.

The standard deviation of the noise (Y-axis) fits to the sguwapt of the intensity (X-axis).

As mentioned in the introduction, the registration by usthg SIFT algorithm and computing a
homography registration is by now a standard approach imthage fusion literature. The main difference
of the proposed approach with anterior work is that the noewetil works do not account for registration
errors. Yet, in general, the images of a 3D scenermterelated by a homography, but by an epipolar

geometry [43]. Even if the camera is well-calibrated, a 3npw-point correspondence is impossible to
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Barbara| Couple | Hill
noisy 11.30 11.22 | 10.27
NLM 4.52 3.73 4.50
BM3D 4.33 3.39 | 3.90
AR 3.55 3.03 2.73

TABLE IV
MEAN SQUARE ERROR BETWEEN THE ORIGINAL IMAGE AND THE DENOISEEDNE BY THE VARIOUS CONSIDERED METHODS
APPLIED ON THE NOISY IMAGE SEQUENCES INFIGURE 6. THE BLOCK BASED ALGORITHMS, NLMEANS [15] AND BM3D
[23] HAVE A CONSIDERABLY LARGER ERROR EVEN IF THEIR NOISE REDUCTION COULD BE IN THEORY SUPERIOFDUE TO
THEIR TWO DIMENSIONAL AVERAGING SUPPORTAAR IS CLOSE TO THE THEORETICAL REDUCTION FACTOR FOUR

obtain without computing the depth of the 3D scene. Howeswe mentioned, a camera held steadily in
the hand theoretically produces images deduced from ed&h by a homography, the principal image
motion being due to slight rotations of the camera. Nonet®lwe should not expect that a simple
homography will be perfectly accurate everywhere in eadh pat only on a significant part. A coherent

registration will be obtained by retaining only the SIFT olas that are common to the whole burst.
Therefore the registration applies a joint RANSAC strategyexposed in Algorithm 1. This ensures that
the same background objects are used in all images to cortfp@orresponding homographies.

The main new feature of the algorithm is this: The averagm@pplied only at pixels where the
observed standard deviation after registration is clos¢hte one predicted by the estimated noise model.
Thus, there is no risk whatsoever associated with AAR, Isecawonly averages sets of samples whose
variability is noise compatible.

At the other pixels, the conservative strategy is to applyatesof the art video denoising algorithm
such as the spatiotemporal NL-means algorithm or BM3D. Tmioba smooth transition between the
averaged pixels and the NL-means denoised pixels, a wegghiinction is used. This function is equal
to 0 when the standard deviation of the current pixel is lothan 1.5 times the estimated noise standard
deviation, and equal to 1 if it is larger than 3 times the eatéd noise standard deviation. The weights

are linearly interpolated between 1.5 and 3.

VI. DISCUSSION AND EXPERIMENTATION

We will compare the visual quality of restored images froral feurst sequences. The focus is on

JPEG images, which usually contain non white noise and @otdacts. As we illustrated in the previous
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sections, the variability of the color at a certain pixel manhbe estimated from a single image but from
a whole sequence. We will compare the denoised images byg #ghR as well as the classical block
based denoising algorithms, NL-means. Fig. 7 shows thdtsesbtained on three different bursts. Each
experiment shows in turn: a) three images extracted fronbtinst, b) the burst average after registration
performed atll points, followed by a mask of the image regions in which tmageral standard deviation
is significantly larger than the standard deviation prextidby the noise estimate. At all of these points a
block based denoising estimate is used instead of the teihp@an. The final combined image, obtained
by an hybridization of the average registration and NL-MeanBM3D, is the right image in each second
row.

The first experimental data was provided by the company DxsLH captures a rotating pattern with
a fixed pedestal. In this case, the dominant homography isation of the main circular pattern, which
contains more SIFT points than the pedestal region. Sire@tbposed algorithm only finds a dominant
homography, which is the rotation of the pattern, the singlerage fails to denoise the region of the
fixed pedestals and of the uniform background. As shown inthige parts of the mask, these regions
are detected because they have an excessive temporalrstaledéation. They are therefore treated by
NL-means or BM3D in the final hybrid result. The whole pattéself is restored by pure average after
registration.

The second burst consists of two books, a newspaper and angnovbuse. Since the dominant
homography is computed on still parts, the books and thegraakd, the moving mouse is totally blurred
by the averaging after registration, while the rest of thenscis correctly fused. As a consequence, AAR
uses the average everywhere, except the part swept by theemou

The last burst is a sequence of photographs with short expdsue of a large painting taken in
Musée d’'OrsayMartyrs chiéetiens entrant lamphittre by Léon Bénouville. Making good photographs
of paintings in the dim light of most museums is a good dirgailigation for the proposed algorithm,
since the images of the painting are related by a homograpéy @ith large changes of view point,
the painting being flat. As a result, the average is everya/ferored by the hybrid scheme. Details on
the restored images and comparison with BM3D are shown ing&I0. Dim light images are displayed

after their color values have been stretchedt@55].
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Algorithm 1 Hybrid Accumulation After Registration Algorithm
Input Initial set of imagesly, I1,-- -, I,, obtained from a burst

SIFT
Apply the SIFT algorithm between to each pélp, I;), j = 1,---,n. Call S; the set of matches.
Retain fromS; only the matches for which the matching key point/in has a match in all other

images.

RANSAC
Set number of agreed points;, to 0.
while the number of trials does not excead do
Pick up 4 random points fronSy
for (eachj > 0) do
Compute the homography using these 4 points and the comdsgpones inS;
Add to m the number of points ir5; which agree with this homography up to the precision
end for
If m > maxim, thenmazim = m and save the set of agreed points in the whole sequence
end while

Compute for each pair, the homograpHy with the selected points.

FUSION

Apply the homographyH; to each image obtaining;, j = 1,---,n.

Average the transformed images obtaining the megén y). Compute alsos(z,y), the temporal
standard deviation.

Estimate the noise curve usindz,y), gettingo, (u) the standard deviation associated to each color
u.

Obtain the final estimate:

(1 —w(p, o))z, y) +w(p, o) NL(Ip)(z,y),

where NL is the NL-means algorithm (Buades et al. [15]) and the famcti(v, o) is defined by

0 if o <1.50,(1)
w(v, o) = %"&Sﬂ) if 1.50, (1) <o < 30,(1)
1 if o> 30y,(1)
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