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1 Points and curves

A Bezier curve C0
0 can be defined from its three control points

P0 = {P 0
0 , P 0

1 , P 0
2 }

by the parametric function

C0
0 = {(1 − t)2P 0

0 + 2t(1 − t)P 0
1 + t2P 0

2 , t ∈ [0; 1[}

An interesting property of this curve is that if we get five points

P1 = P 1
0 , P 1

1 , P 1
2 , P 1

3 , P 1
4

from P0 with a simple transformation, and then define two new Bezier
curves C1

0 (resp. C1
1) from the triplets T 1

0 = {P 1
0 , P 1

1 , P 1
2 } (resp. T 1

1 =
{P 1

2 , P 1
3 , P 1

4 }), then each of these two little Bezier curves is half of the original
one:

C0
0 = C1

0 ∪ C1
1

C1
0 and C1

1 are both Bezier curves, so the transformation can continue to
a next step with nine points and four Bezier curves, and eight curves for next
step, and so on; from the relation between P0 and P1, we will demonstrate
the existence of this subdivision process.

Let’s first detail the points and triplets generating process, and introduce
the notation.
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Figure 1: The Bezier curves subdivision process, from three points and one
curve to five points and two curves.

step 0 The initial set, P0, contains one triplet T 0
0 = {P 0

0 , P 0
1 , P 0

2 }; this
triplet defines the Bezier curve C0

0 , as explained before:

C0
0 = {M0

0 (t), t ∈ [0; 1[}, with M 0
0 (t) = b0

0(t)P
0
0 + b0

1(t)P
0
1 + b0

2(t)P
0
2

where b0, b1 and b2 are the Bernstein functions, defined for t ∈ [0; 1[
and null out of this interval:

b0
0(t) = (1 − t)2

b0
1(t) = 2t(1 − t)

b0
2(t) = t2

We can remark that M 0
0 (0) = P 0

0 and limt→1 M0
0 (t) = P 0

2 : C0
0 starts

on P 0
0 and ends on P 0

2 .

step 1 The first step set, P1, contains five points P 1
0 , P 1

1 , P 1
2 , P 1

3 , P 1
4 , defined

from P0 by the following formulas

P 1
0 = P 0

0

P 1
1 = 1

2 (P 0
0 + P 0

1 )
P 1

2 = 1
2 (P 1

1 + P 1
3 ) = 1

4P 0
0 + 1

2P 0
1 + 1

4P 0
2

P 1
3 = 1

2 (P 0
1 + P 0

2 )
P 1

4 = P 0
2

Two triplets T 1
0 = {P 1

0 , P 1
1 , P 1

2 } and T 1
1 = {P 1

2 , P 1
3 , P 1

4 } are defined in
P1, such that T 1

0 ∪ T 1
1 = P1 and T 1

0 ∩ T 1
1 = P 1

2 (the last point of T 1
0

is the first point of ∩T 1
1 ).

Looking at M 0
0 defined before, we remark that M 0

0 (0) = P 1
0 , M0

0 (1/2) =
P 1

2 and limt→1 M0
0 (t) = P 1

4 : C0
0 starts on P 1

0 , is on P 1
2 at middle-course,

and ends on P 1
4 .

We consider now the curves C1
0 and C1

1 , defined from T 1
0 and T 1

1 with
the same formulas as C0

0 :

C1
0 = {M1

0 (t), t ∈ [0; 1[}, with M 1
0 (t) = b0

0(t)P
1
0 + b0

1(t)P
1
1 + b0

2(t)P
1
2
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C1
1 = {M1

1 (t), t ∈ [0; 1[}, with M 1
1 (t) = b0

0(t)P
1
2 + b0

1(t)P
1
3 + b0

2(t)P
1
4

These curves are Bezier curves, because they are defined by a triplet
and the associated parametric function; we also remark that C1

0 starts
on P 1

0 and ends on P 1
2 while C1

1 starts on P 1
2 and ends on P 1

4 .

Then, ∀t ∈ [0; 1[,

M1
0 (t) = b0

0(t)P
1
0 + b0

1(t)P
1
1 + b0

2(t)P
1
2

= b0
0(t)P

0
0 + b0

1(t)
1
2(P 0

0 + P 0
1 ) + b0

2(t)(
1
4P 0

0 + 1
2P 0

1 + 1
4P 0

2 )
= (b0

0(t) + 1
2b0

1(t) + 1
4b0

2(t))P
0
0 + 1

2(b0
1(t) + b0

2(t))P
0
1 + 1

4b0
2(t)P

0
2

= ((1 − t)2 + t(1 − t) + 1
4 t2)P 0

0 + (t(1 − t) + 1
2 t2)P 0

1 + 1
4 t2P 0

2

= (1 − t/2)2P 0
0 + t(1 − t/2)P 0

1 + (t/2)2P 0
2

= M0
0 (t/2)

And ∀t ∈ [0; 1[,M 1
1 (t) = M0

0 (t/2 + 1/2), with the same equations. We
can also write

M0
0 (t) = M1

0 (2t) ∀t ∈ [0; 1/2[
M0

0 (t) = M1
1 (2t − 1) ∀t ∈ [1/2; 1[

This shows that the Bezier curve defined on the first (resp. second)
triplet obtained from the initial triplet is the first (resp. second) half
of the Bezier curve defined n the initial triplet; this matches the pre-
viously explained position of the parametric curves, for t = 0, 1/2, 1.

All these properties are recursive; we will expand them to the ith

iteration.

step i The ith set P i contains 2i+1 + 1 points P i
0, P

i
1, ..., P

i
2i+1−1, P

i
2i+1 , de-

fined from the ones in P i−1 by a recursive relation:

∀i > 0,∀k ∈ {0..2i+1},

P i
k =















P i−1
k/2 if k mod 4 = 0

1
2(P i−1

(k−1)/2 + P i−1
(k+1)/2) if k mod 4 = 1 or 3

1
4P i−1

(k−2)/2 + 1
2P i−1

k/2 ) + 1
4P i−1

(k+2)/2) if k mod 4 = 2

We can define 2i triplets T i
j , j = 0..2i − 1 in P i, with

T i
j = {P i

2j, P
i
2j+1, P

i
2j+2}

such that the last point of T i
j is the first point of T i

j+1. We can note

that T i
j can be defined using only one triplet, T i−1

j/2 or T i−1
(j−1)/2, from

the previous step.
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We also have Ci
j , the Bezier curve defined on the triplet T i

j from the
usual formula:

Ci
j = {M i

j(t), t ∈ [0; 1[}, with M i
j(t) = b0

0(t)P
i
2j+b0

1(t)P
i
2j+1+b0

2(t)P
i
2j+2

The previous properties are transmitted :

∀i, j, M i
j(0) = P i

2j

M i
j(1/2) = P i+1

4j+2

limt→1 M i
j(t) = P i

2j+2 = M i
j+1(0)

and ∀t ∈ [0; 1[,

M i
j(t) = M i−1

j/2 (t/2) if j mod 2 = 0

= M i−1
(j−1)/2(t/2 + 1/2) if j mod 2 = 1

and
M i

j(t) = M i+1
2 j(2t) ∀t ∈ [0; 1/2[

M i
j(t) = M i+1

2j+1(2t − 1) ∀t ∈ [1/2; 1[

And we have a general expression of the Bezier curves substitution:

∀i, j, Ci
j = Ci+1

2 j ∪ Ci+1
2j+1

∀i, j,m, Ci
j =

2m−1
⋃

n=0

Ci+m
2mj+n

2 Bernstein functions

From now we will only consider step 0 and step 1; the situation is exactly
the same at step i and i + 1, but restricting to 0 and 1 makes the notations
more easy. We have the following parametric curves, defined with V 0 =
{b0

0, b
0
1, b

0
2}:

M0
0 (t) = b0

0(t)P
0
0 + b0

1(t)P
0
1 + b0

2(t)P
0
2

M1
0 (t) = b0

0(t)P
1
0 + b0

1(t)P
1
1 + b0

2(t)P
1
2

M1
1 (t) = b0

0(t)P
1
2 + b0

1(t)P
1
3 + b0

2(t)P
1
4

Then, we introduce five parametric functions V 1 = {b1
0, b

1
1, b

1
2, b

1
3, b

1
4},

such that

M0
0 (t) = b1

0(t)P
1
0 + b1

1(t)P
1
1 + b1

2(t)P
1
2 + b1

3(t)P
1
3 + b1

4(t)P
1
4 for t ∈ [0; 1[
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We can explicit these b1
j functions from the relations between the points,

P0 and P1. The functions are null, except on the following intervals:

b1
0(t) = b0

0(2t) = (1 − 2t)2 for t ∈ [0; 1/2[
b1
1(t) = b0

1(2t) = 4t(1 − 2t) for t ∈ [0; 1/2[
b1
2(t) = b0

2(2t) = 4t2 for t ∈ [0; 1/2[

b1
2(t) = b0

0(2t − 1) = 4(t − 1)2 for t ∈ [1/2; 1[
b1
3(t) = b0

1(2t − 1) = 4(2t − 1)(1 − t) for t ∈ [1/2; 1[
b1
4(t) = b0

2(2t − 1) = (2t − 1)2 for t ∈ [1/2; 1[

Figure 2: Three generations of the Bernstein functions for the Bezier curves.
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This can be verified by developing the formulas: for t ∈ [0; 1/2[,

b1
0(t)P

1
0 + b1

1(t)P
1
1 + b1

2(t)P
1
2

= (1 − 2t)2P 1
0 + 4t(1 − 2t)P 1

1 + 4t2P 1
2

= (1 − 2t)2P 0
0 + 4t(1 − 2t)( 1

2P 0
0 + 1

2P 0
1 ) + 4t2(1

4P 0
0 + 1

2P 0
1 + 1

4P 0
2 )

= (1 − 2t + t2)P 0
0 + (2t − 2t2)P 0

1 + t2P 0
2

= b0
0(t)P

0
0 + b0

1(t)P
0
1 + b1

1(t)P
1
1

and for t ∈ [1/2; 1[,

b1
2(t)P

1
2 + b1

3(t)P
1
3 + b1

4(t)P
1
4

= 4(t − 1)2P 1
2 + 4(2t − 1)(1 − t)P 1

3 + (2t − 1)2P 1
4

= 4(t − 1)2(1
4P 0

0 + 1
2P 0

1 + 1
4P 0

2 ) + 4(2t − 1)(1 − t)( 1
2P 0

1 + 1
2P 0

2 ) + (2t − 1)2P 0
2

= (1 − 2t + t2)P 0
0 + (2t − 2t2)P 0

1 + t2P 0
2

= b0
0(t)P

0
0 + b0

1(t)P
0
1 + b1

1(t)P
1
1

So, for t ∈ [0; 1[, the formulation with V 1 is equivalent to the formulation
with V 0 :

b1
0(t)P

1
0 +b1

1(t)P
1
1 +b1

2(t)P
1
2 +b1

3(t)P
1
3 +b1

4(t)P
1
4 = b0

0(t)P
0
0 +b0

1(t)P
0
1 +b0

2(t)P
0
2

And graphically, we can easily understand that, from step 0 to step 1,
we just have simple homothety and translations; this provides a method
to obtain the bi

j functions for the next subdivision steps, without extra
calculations.

3 Functions spaces

We have now two sets of functions from [0; 1] to [0; 1], and the corresponding
vector spaces

V 0 = {b0
0, b

0
1, b

0
2},V

0 = vect(V 0)
V 1 = {b1

0, b
1
1, b

1
2, b

1
3, b

1
4},V

1 = vect(V 1)

The dimension of V0 is 3, and so B0 is a basis, because

αb0
0+βb0

1+γb0
2 = 0 iif α = 0 (for t = 0), γ = 0 (for t = 1), β = 0 (for t = 1/2)

Moreover, the dimension of V1 is 5, because V 1 is a basis, clearly by the
symmetric relations and analogies between V 0and V 1.

We express now V 0 from V 1:

b0
1(t) = 2t(1 − t) = (2t(1 − 2t) + 2t2)

= 1
2(b1

1(t) + b1
2(t)) for t ∈ [0; 1/2[

b0
1(t) = 2t(1 − t) = (2(t − 1)2 + 2(2t − 1)(1 − t)

= 1
2(b1

2(t) + b1
3(t)) for t ∈ [1/2; 1[
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So, because of the null values of b1
1(t) for t ≥ 1/2 and b1

3(t) for t ≤ 1/2,

b0
1 =

1

2
(b1

1 + b1
2 + b1

3)

We also have

b0
0(t) = (1 − t)2 = 1 − 2t + t2

= (1 − 4t + 4t2) + (2t − 4t2) + t2

= (1 − 2t)2 + 2t(1 − 2t) + t2

= b1
0(t) + 1

2b1
1(t) + 1

4b1
2(t) for t ∈ [0; 1/2[

b0
0(t) = (1 − t)2 = (t − 1)2

= 1
4b1

2(t) for t ∈ [1/2; 1[

So, because of the null values of b1
0(t) and b1

1(t) for t ≥ 1/2,

b0
0 = b1

0 +
1

2
b1
1 +

1

4
b1
2

and, by symmetry, b0
2 = 1

4b1
2 + 1

2b1
4 + b1

4. Thus V 0 ∈ V1, V0 ⊂ V1.
We can also search for W1, such that V1 = V0 ⊕W1, W1 = vect(W 1),

W 1 = {b0
3, b

0
4}.

We have linear spaces, with V0 ⊂ V1. So, from the linear algebra point
of view, V0 = AV1, V 0 = AV 1,

W1 = V0⊥ = AV1⊥ = vect(Ker(A)V 1)

A is defined in the previous lines, by the expression of V 0 from V 1:

A =







1 1/2 1/4 0 0
0 1/2 1/2 1/2 0
0 0 1/4 1/2 1






Ker(A) =















0 −1
1 4

−2 −4
1 0
0 1















So, the vectors of Ker(A) are a basis of W1, expressed in the V 1 basis
of V1. These vectors are

b1
1(t) − 2b1

2(t) + b1
3(t)

= 4t(1 − 2t) − 8t2 = 4t(1 − 4t) for t ∈ [0; 1/2[
= −8(t − 1)2 + 4(2t − 1)(1 − t) = 4(1 − t)(4t − 3) for t ∈ [1/2; 1[

−b1
0(t) + 4b1

1(t) − 4b1
2(t) + b1

4(t)
= −(1 − 2t)2 + 16t(1 − 2t) − 16t2 = −1 + 20t − 52t2 for t ∈ [0; 1/2[
= −16(t − 1)2 + (2t − 1)2 = (3 − 2t)(6t − 5) for t ∈ [1/2; 1[

In this vector space, we can select the following definitions for b0
3 and b0

4:
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b0
3(t) = 2t(4t − 1) for t ∈ [0; 1/2[

= 2(t − 1)(4t − 3) for t ∈ [1/2; 1[

b0
4(t) = (t − 1/2)(−10t + 1) for t ∈ [0; 1/2[

= (t − 1/2)(10t − 9) for t ∈ [1/2; 1[

Figure 3: Basis of W1.
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