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1 Points and curves
A Bezier curve C§ can be defined from its three control points
P ={Fy, P, Py}
by the parametric function
Co={(1—1)’R) +2t(1 —t)P +t2PY,t € [0; 1[}
An interesting property of this curve is that if we get five points
P'=F;,P,P;,P;, P}

from P° with a simple transformation, and then define two new Bezier
curves C} (resp. C}) from the triplets 7)) = {P3, Pl, Py} (resp. T8 =
{P3, P}, P}}), then each of these two little Bezier curves is half of the original
one:

cy=ctuct

C} and C{ are both Bezier curves, so the transformation can continue to
a next step with nine points and four Bezier curves, and eight curves for next
step, and so on; from the relation between Py and P;, we will demonstrate
the existence of this subdivision process.

Let’s first detail the points and triplets generating process, and introduce
the notation.



Figure 1: The Bezier curves subdivision process, from three points and one
curve to five points and two curves.
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0 The initial set, P°, contains one triplet 70 = {P, P?, PY}; this
triplet defines the Bezier curve C8 , as explained before:

Co = {Mg(t),t € [0;1[}, with Mg(¢) = bo(t) Py + () P + 05 (t) Py

where by, by and by are the Bernstein functions, defined for ¢ € [0;1]
and null out of this interval:

b(t) = (1 —1t)?
b(t) = 2t(1 —t)
vy (t) = t2

We can remark that M{(0) = P and lim;_; M{(t) = PY : C{ starts
on P and ends on PY.

1 The first step set, P!, contains five points P}, P\, P}, P{, P}, defined
from PY by the following formulas

)
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P% = %(P% + P%) = 1P+ 5P+ 1P
Py =5(P+ 1)
pl =pr

Two triplets 7, = {P¢, P{, Pi} and 7! = {P}, P#, P{} are defined in
Pl such that 7t U 7t = Pl and 7! N 78 = P4 (the last point of 7
is the first point of N7}).

Looking at M defined before, we remark that MJ(0) = P}, M{(1/2) =
P} and lim;_.q M{(t) = P} : C{ starts on P}, is on P} at middle-course,
and ends on Pj.

We consider now the curves C§ and C7, defined from 7' and 7;' with
the same formulas as CJ:

Co = {My(t),t € [0;1[}, with M (¢) = by(t) Py + bY(t) P + b5(t) Py



step

Cl = {Mi(t),t € [0;1[}, with My (¢) = by(t) Py + b(t) P + b5(t) Py

These curves are Bezier curves, because they are defined by a triplet
and the associated parametric function; we also remark that Cé starts
on P and ends on P} while C} starts on P} and ends on Pj.

Then, Vt € [0;1],

Mg(t) =by(t)Py +bY(t)P} + by (t) Py
= by(t) Py + b9 (t) 5 (Pg + Pl) + bo(t)( o+ 5P+ 1P3)
= (b9(t) + 3b9(t) + %b (t )) + 3(0(t) + ) by (£)) Py + $b3(t) Py
=((1—=t)2+t(1—1t)+ t2) + (1 —t) + 3P + 12
= (1—t/2)%P) +t(1 - t/2)P1 (t/2)*P)

And Vt € [0;1], M{(t) = M{(t/2 +1/2), with the same equations. We
can also write

M(t) = M} (2t) vt € [0;1/2]
MY(t) = M2t —1) Vte[1/2;1]

This shows that the Bezier curve defined on the first (resp. second)
triplet obtained from the initial triplet is the first (resp. second) half
of the Bezier curve defined n the initial triplet; this matches the pre-
viously explained position of the parametric curves, for t = 0,1/2,1.

All these properties are recursive; we will expand them to the P
iteration.

i The i*™™ set P contains 27! + 1 points P§, P}, ..., Pis1_y, Paiy1, de-
fined from the ones in P*~! by a recursive relation:

Vi > 0,Vk € {0..271},

13172/21 if kmod4=0
Py = I(P(Z 1)/2+P(Zk+11)/2)1 X if kmod4=1or3
4P(Zk 2)/2 P]z/Q ) 4P(Zk+2)/2) if kmod4=2

We can define 2° triplets ’Z;-i,j =0..2" — 1 in P*, with

= {Pzija P2ij+1’ P2ij+2}

such that the last point of T]’ is the first point of ’];Z '.1- We can note

that ’];Z can be defined using only one triplet, TJ 2 Or ’T(; 1)/2) from
the previous step.



We also have C;-, the Bezier curve defined on the triplet ’Tj from the
usual formula:

C]i‘ = {M;(t)vt € [0;1[}, with M;(t) = bg(t)Pzij"‘b(l)(t)Pzij+1+bg(t)P2ij+2

The previous properties are transmitted :

Vi, j, M}(0) = Pyj
3 _ +1
M;(1/2) = Pifi, 4
limy ) MJ(t) = P3; oy = M}, 1(0)

and Vt € [0;1],

Mi(t) =M, (t/2) if  mod 2 =0

= ]\4(213'_—11)/2&/2 +1/2) if jmod2=1

and

M(t) = M3 j(2t) vt € [0;1/2]

Mi(t) = M3 (2t —1) Ve [1/2;1]

And we have a general expression of the Bezier curves substitution:

s -0t il 1+1
VZ,],C]- = CQ ] U 62j+1
2m—1
.. 7 i+m
VZ,j,m,Cj - U CQmj-i-n
n=0

2 Bernstein functions

From now we will only consider step 0 and step 1; the situation is exactly
the same at step ¢ and 7 + 1, but restricting to 0 and 1 makes the notations
more easy. We have the following parametric curves, defined with V° =

{6, b1, 05}

Mg(t) = bo(H) Py + bY ()P + by (1) Py
Mg (t) = b(t) Py + b ()P + b3(t) P,
M (t) = by(t)Py + bi(8) Py + by(t) Py

Then, we introduce five parametric functions V1 = {b},b1,06, b3 b1},
such that

MY(t) = by (t) Py + bi(t)Pf + bi(t)P) + b3 (t)P3 + bi(t)P} for t € [0; 1]



We can explicit these b; functions from the relations between the points,
PO and P!. The functions are null, except on the following intervals:

bi(t) = b(2t) = (1 — 2t)? for t € [0;1/2]
bi(t) = b9 (2t) = 4¢(1 — 2t) for t € [0;1/2]
bi(t) = by(2t) = 4t? for t € [0;1/2]
bi(t) = bJ(2t — 1) = 4(t — 1)? for t € [1/2;1]
bi(t) =09(2t — 1) = 4(2t — 1)(1 —t) for t € [1/2;1]
bi(t) = b9(2t — 1) = (2t — 1)? for t € [1/2;1]
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Figure 2: Three generations of the Bernstein functions for the Bezier curves.



This can be verified by developing the formulas: for ¢ € [0;1/2],

by(t)Fy + bi(t) P + by(t) Py
= (1—2t)2P} +4t(1 - 2t)P1 + 4t% Py
= (1—2t)2P0 +4t(1 —2t) (3P0 + 1PO) + 42 (P9 + 5P + 1 P9)
(1 — 2t +13)P) + (2t — 2t2)P0 + 2P
=bJ(t) Py + Y(t) PP + bl (t) P}

and for t € [1/2;1],

S

2 () Py +b3(t)Ps +bj(t) P}

t—1)2P) +4(2t — 1)(1 — t)P§ + (2t — 1)2P}
t— 1230+ $PY+ 1P)) +4(2t — 1) (1 — t)(3PY + 1 PY) + (2t — 1)° P
(1 =2t +t2)P) + (2t — 2t2) PY + 2Py
bo ()P + bR (t) P + b (t) Py

So, for t € [0; 1], the formulation with V! is equivalent to the formulation
with V0 :

by (t) Py +bi(t) Pl +bh(t) Py +b3(t) P3 +bi(t) P = by (t)P§ +bY(t) PP +b5(t) Py

And graphically, we can easily understand that, from step 0 to step 1,
we just have simple homothety and translations; this provides a method
to obtain the b;'» functions for the next subdivision steps, without extra
calculations.

3 Functions spaces

We have now two sets of functions from [0; 1] to [0; 1], and the corresponding
vector spaces
= {bgv b(1)7 bg}? W = UeCt(VO)
VL= {b}, b1, b1, bL, b1}, V! = vect(V))

The dimension of V¥ is 3, and so BY is a basis, because
aby+B0)+4b3 = 0dif o= 0 (fort = 0),7 =0 (fort =1),3 =0 (for t = 1/2)

Moreover, the dimension of V! is 5, because V! is a basis, clearly by the
symmetric relations and analogies between V%and V1.
We express now V0 from V'1:

V() =2t(1 —t) = (2t(1 — 2t) + 2t?)
= 5(01(t) + b3(t)) for t € [0;1/2]
b(t) = 2t(1 —t) :(2(t D2 +2(2t —1)(1—1t)

= 1(b3(t) + bi(t)) for t € [1/2;1]



So, because of the null values of bi(t) for t > 1/2 and bi(t) for t < 1/2,
1
b = 5 (br + by + b3)

We also have

Wit)=01-t)?% =1-2t+1¢

= (1 — 4t + 4¢?) + (2t — 4¢?) + ¢*

= (1—2t)% +2t(1 — 2t) + ¢*

= bj(t) + 3bi(t) + Fb5(t) for t € [0;1/2]
b(t) = (1—1)° = (t—1)2

So, because of the null values of bj(t) and b} (t) for t > 1/2,
1 1
b =0} + Eb% + Zbé

and, by symmetry, b3 = %bé + %bi +b). Thus V0 e V1 V0 c Vi

We can also search for W', such that V! = V0 @ W W' = vect(W1),
Wt = {b8,59}.

We have linear spaces, with V° € V!. So, from the linear algebra point
of view, V0 = AV, V0 = AV

W= VO = AP = vect(Ker(A)V?!)

A is defined in the previous lines, by the expression of V0 from V'

0 —1

1 1/2 1/4 0 0 1 4
A=|0 1/2 1/2 1/2 0 | Ker(A)=| —2 -4
0 0 1/4 1/2 1 1 0

So, the vectors of Ker(A) are a basis of W1, expressed in the V! basis
of V1. These vectors are

bi(t) — 2by(t) + b3(t)

= 4t(1 — 2t) — 8t? = 4t(1 — 4t) for t € [0;1/2]
=8t —1)2+4(2t 1)1 —t) =4(1—t)(4t—3)fort e [1/2;1]
—bj(t) + 4bi(t) — 4b5(t) + (1)

= —(1—2t)2 +16t(1 — 2t) — 16t> = —1+ 20t — 52t% for t € [0;1/2]
= —16(t —1)% + (2t — 1)? = (3 —2t)(6t —5) for t € [1/2;1]

In this vector space, we can select the following definitions for bg and b3:



Wy(t) =2t(4t —1) for t € [0;1/2]
=2(t—1)(4t —3) for t € [1/2;1]

by(t) = (t—1/2)(—10t+ 1) for t € [0;1/2]
= (t—1/2)(10t — 9) for t € [1/2;1]
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Figure 3: Basis of W!.



