
Published in Image Processing On Line on 2012–11–06.

ISSN 2105–1232 c© 2012 IPOL & the authors CC–BY–NC–SA

This article is available online with supplementary materials,

software, datasets and online demo at

http://dx.doi.org/10.5201/ipol.2012.g-ace

Automatic Color Enhancement (ACE)

and its Fast Implementation

Pascal Getreuer

CMLA, ENS Cachan, France (getreuer@cmla.ens-cachan.fr)

Abstract

Automatic Color Enhancement “ACE” is an effective method for color image enhancement
introduced by Gatta, Rizzi, and Marini based on modeling several low level mechanisms of
the human visual system. The direct computation of ACE on an N × N image costs O(N4)
operations. This article describes two fast approximations of ACE. First, the algorithm of
Bertalmı́o, Caselles, Provenzi, and Rizzi uses a polynomial approximation of the slope function
to decomposes the main computation into convolutions, reducing the cost to O(N2 logN).
Second, an algorithm based on interpolating intensity levels also reduces the main computation
to convolutions. The use of ACE for image enhancement and color correction is demonstrated.

Source Code

ANSI C source code to produce the same results as the demo is accessible on the article web
page http://dx.doi.org/10.5201/ipol.2012.g-ace.

1 Introduction

The Automatic Color Enhancement “ACE” method of Gatta, Rizzi, and Marini [9] and further
developed by Rizzi, Gatta, and Marini [10, 11] and Bertalmı́o, Caselles, Provenzi, and Rizzi [13] is
an effective color correction and enhancement method based on a simple model of the human visual
system. The method is inspired by the following low level mechanisms:

• “gray world,” the average perceived color is gray [5]

• “white patch,” normalization toward a white reference [3]

• lateral inhibition [2]

• local-global adaptation [6]

By modeling these mechanisms, an image enhancement method can simulate the process of per-
ception. The enhanced image appears natural because the input image is adjusted in a manner
consistent with perception. This motivation is similar to the Retinex color perception model of Land
and McCann [4]. ACE and Retinex are compared in detail in other works [11, 15, 16].

1

http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2012.g-ace
http://dx.doi.org/10.5201/ipol.2012.g-ace

2 Histogram Equalization

Bertalmı́o et al. [13] proved that ACE has a connection with histogram equalization, which we briefly
review here. Uniform histogram equalization is a method to modify an image so that it has a uniform
histogram.

Let I : Ω → [0, 1] denote the input grayscale image with domain Ω and intensities scaled in
[0, 1]. For a color image, the following is performed independently on the red, green, and blue (RGB)
channels. Define the normalized cumulative histogram F ,

F (λ) = 1
|Ω|

∣
∣{x ∈ Ω : I(x) ≤ λ}

∣
∣, λ ∈ [0, 1], (1)

here |Ω| is the total number of pixels in the image. Considering image intensity I as a random
variable, the histogram computes its cumulative distribution F (λ) = P(I ≤ λ). The histogram
equalized image is obtained as F

(
I(x)

)
. Provided F is invertible, the equalized image F

(
I(x)

)
has

uniformly distributed intensity because

P
(
F (I) ≤ λ

)
= P

(
I ≤ F−1(λ)

)
= F

(
F−1(λ)

)
= λ. (2)

In practice, F is often not invertible due to quantization, however, the resulting image still has an
approximately uniform histogram.

3 ACE

Let I denote the input grayscale image or a given chromatic channel in a color image with domain
Ω and intensity values scaled in [0, 1]. For a color image, the following operation is performed
independently on the RGB channels:

R(x) =
∑

y∈Ω\x

sα
(
I(x)− I(y)

)

‖x− y‖
, x ∈ Ω, (3)

where Ω\x denotes {y ∈ Ω : y 6= x}, ‖x− y‖ denotes Euclidean distance, and sα : [−1, 1]→ R is the
slope function sα(t) = min

{
max{αt,−1}, 1

}
for some α ≥ 1.

−1 − 1

α

1

α
1

−1

1

sα(t)

t

In the limit α → ∞, it is the signum function s∞(t) = sign(t). In the second stage, the enhanced
channel is computed by stretching R to [0, 1] as

L(x) =
R(x)−minR

maxR−minR
. (4)

The first stage of the method (3) adapts local image contrast. Lateral inhibition is simulated
by neighbor differences I(x) − I(y) and weighting according to distance ‖x − y‖. The function
sα amplifies small differences and saturates large differences, which has the effect of expanding or
compressing the dynamic range according to the local image content. The second stage (4) adapts
the image to obtain a global white balance. By implementing these mechanisms, ACE is a simplified
model of the human visual system: the enhancement process is consistent with perception [10, 11].

2

Bertalmı́o et al. [13] developed a variational interpretation of ACE. It is shown that ACE is
equivalent to solving the minimization problem

argmin
I

1

2

∑

x

(
I(x)− 1

2

)2
−

1

4M

∑

x

∑

y 6=x

ω(x, y)Sα

(
I(x)− I(y)

)
, (5)

where S ′
α = sα, ω(x, y) = 1/‖x − y‖, and M = maxx R(x). Furthermore, it is shown that uniform

histogram equalization is a minimizer when α = ∞ and ω(x, y) = 1. Thus ACE may be seen as a
smoothed and localized modification of uniform histogram equalization

Variations of the ACE algorithm have also been considered [9, 10, 11]:

• other slope functions sα

• weight functions other than 1/‖x− y‖

• y can be restricted to a window around x in the summation

• other normalizations for L (4)

While ACE produces high-quality enhancement, a significant obstacle is that direct computation of
(3) is impractically expensive, costing O(N4) operations for an N ×N image. The following sections
describe two fast approximations of ACE that reduce the cost to O(N2 logN).

3.1 Boundary Handling and Convolutions

Both algorithms presented here rely ultimately on performing fast convolutions, and for this rea-
son, we change ACE’s boundary handling to the more convolution friendly half-sample symmetric
extension. Define the half-sample symmetric extension Ef of an N -sample sequence f ,

Efn =

fn if n = 0, . . . , N − 1,

Ef−1−n if n < 0,

Ef2N−1−n if n ≥ N .

Efn

n
−N 0 N 2N

The definition is recursive since multiple reflections may be needed to obtain an index between 0
and N − 1. We also consider the tensor product of this extension applied to an N × N image ui,j,
i = 0, . . . , N − 1, j = 0, . . . , N − 1. Noting that Ef is 2N -periodic, it can also be defined as the
periodization of the reflected sequence f0, . . . , fN−1, fN−1, . . . , f0. The domain can be interpreted to
be a circle of 2N samples. In two dimensions, the domain is the 2N × 2N -periodic torus T2.

For any x, y ∈ T
2, distance is defined on the torus as

d(x, y) := min
x̄,ȳ

{
|x̄− ȳ| : x̄ ≡ x, ȳ ≡ y

}
, (6)

where |v| :=
√

v21 + v22 and ≡ denotes equivalence on the torus. It can be shown that d(x, y) is an
even 2N × 2N -periodic function of (x− y), which allows us to write d(x, y) = d(x− y) = d(y − x).

The summation R(x) (3) is redefined as a summation over the torus T2\x, and Euclidean distance
‖x− y‖ is replaced by torus distance d(x− y):

R(x) =
∑

y∈T2\x

sα
(
I(x)− I(y)

)

d(x− y)
, x ∈ Ω. (7)

Notice that by defining

ω(x− y) =

{

0 if x = y,

1/d(x− y) if x 6= y,
(8)

3

d(y − x)

y1 − x1

y2 − x2

2N −N 0 N 2N
2N

−N

0

N

2N

Figure 1: Distance on T
2 (6).

the domain of summation can be extended to the whole torus T2. Henceforth we compute R as

R(x) =
∑

y∈T2

ω(x− y)sα
(
I(x)− I(y)

)
. (9)

Both algorithms will approximate R in terms of convolutions with ω on T
2. Fast Fourier trans-

forms (FFT) may be used to evaluate these convolutions in O(N2 logN) operations. However, since
ω is even in both coordinates, the discrete cosine transform (DCT) may be used instead for even
greater computational efficiency. The data does not need to be padded in this case because symmetric
boundaries are implied by the transforms, which reduces the cost compared to FFTs. Martucci [7]
showed that convolution with half-sample symmetric boundaries can be performed through DCT
transforms as

ω ∗ I = C−1
2e

(
C1e(ω) · C2e(I)

)
,

where C1e and C2e are the unnormalized DCT-I and DCT-II transforms of the same period lengths.
In one dimension, these transforms are

C1e(h) = h0 + (−1)khN + 2
N−1∑

n=1

hn cos(πnk/N) k = 0, . . . , N, (10)

C2e(x) = 2
N−1∑

n=0

xn cos
(
π(n+ 1

2
)k/N

)
k = 0, . . . , N − 1. (11)

The transforms in higher dimensions are obtained by tensor product. Note that the DCT-I transform
is one sample longer (k = 0, . . . , N) than the other two transforms (k = 0, . . . , N−1). In the pointwise
multiplication (·), the firstN coefficients are multiplied. See Martucci [7] and Getreuer [17] for further
details.

4 Polynomial Slope Function

Bertalmı́o, Caselles, Provenzi, and Rizzi [13] showed that by replacing sα with a polynomial, the
summation in R can be decomposed into convolutions, reducing the complexity to O(N2 logN).

4

4.1 Fast Computation with Convolutions

The key change to the ACE method is to approximate min
{
max{αt,−1}, 1

}
with an odd polynomial

approximation,

sα(t) ≈
M∑

m=1

cmt
m. (12)

The exact choice for the approximating polynomial will be discussed in the next section. It is then
possible to decompose R into a sum of convolutions:

R(x) =
∑

y∈T2

ω(x− y)
M∑

m=1

cm
(
I(x)− I(y)

)m

= −
∑

y∈T2

ω(x− y)
M∑

m=1

cm
(
I(y)− I(x)

)m

= −
∑

y∈T2

ω(x− y)
M∑

m=1

cm

m∑

n=0

(
m

n

)

I(y)n
(
−I(x)

)m−n

=
M∑

n=0

(M∑

m=n

cn

(
m

n

)

(−1)m−n+1I(x)m−n

︸ ︷︷ ︸

an(x)

)
∑

y∈T2

ω(y − x)I(y)n

=
M∑

n=0

an(x)(ω ∗ I
n)(x), (13)

where ∗ is cyclic convolution over T2. For each x, the evaluation of an(x) costs O(1) operations. The
convolutions can be efficient computed with DCT transforms in O(N2 logN) operations. Note that
for the term n = 0, explicit computation of the convolution is not needed since I0 ≡ 1. For an RGB
color image, 3M convolutions need to be computed.

The summation over n can be parallelized since the evaluation of an(x)(ω ∗ I
n)(x) is indepen-

dent for each n. OpenMP is used in the implementation included with this article to evaluate the
summands concurrently.

4.2 Polynomial Approximation

The slope function sα(t) = min
{
max{αt,−1}, 1

}
is approximated with an odd polynomial,

sα(t) ≈
M∑

m=1

cmt
m.

The input image is assumed to have intensities scaled in [0, 1], so the argument t is guaranteed to
be between −1 and 1. By the Stone–Weierstrass theorem, the continuous function sα(t) can be
uniformly approximated on [−1, 1] by a polynomial with any desired precision. However, the degree
of the polynomial affects the computational cost (3M convolutions must be evaluated for an Mth
degree polynomial), so a compromise is necessary between accuracy and speed.

For a fixed polynomial degree M , we select the coefficients cm to minimize the maximum absolute
error over [−1, 1],

min
c

max
t∈[−1,1]

∣
∣
∣
∣
∣
sα(t)−

M∑

m=1

cmt
m

∣
∣
∣
∣
∣
. (14)

5

α Polynomial Max error

1 t 0.000
2 1.85623249t+ 3.82397125t3 − 19.70879455t5 + 26.15510902t7 − 11.15375327t9 0.028
3 3.51036396t− 6.31644952t3 + 0.92439798t5 + 9.32834829t7 − 6.50264005t9 0.057
4 4.76270090t− 18.23743983t3 + 36.10529118t5 − 31.35677926t7 + 9.66532431t9 0.061
5 5.64305564t− 28.94026159t3 + 74.52401661t5 − 83.54012582t7 + 33.39343065t9 0.081
6 6.19837979t− 35.18789052t3 + 95.28157108t5 − 109.95601312t7 + 44.78177264t9 0.118
7 6.69888108t− 41.02503190t3 + 115.02784036t5 − 135.35603880t7 + 55.81014424t9 0.156
8 7.15179080t− 46.43557440t3 + 133.54648929t5 − 159.34156394t7 + 66.27157886t9 0.193

Table 1: Optimal 9th degree approximation of sα for different α. Computed using CVX [12].

−1 − 1

2

1

2
1

−1

1

α = 2

t

−1 − 1

2

1

2
1

−0.2

−0.1

0.1

0.2

t

−1 − 1

5

1

5
1

−1

1

α = 5

t

−1 − 1

2

1

2
1

−0.2

−0.1

0.1

0.2

t

−1 − 1

8

1

8
1

−1

1

α = 8

t

−1 − 1

2

1

2
1

−0.2

−0.1

0.1

0.2

t

Figure 2: Top row: sα and its 9th degree approximation. Bottom row: approximation error.

The optimal c can be found using the Remez algorithm [1]. Table 1 lists the optimal 9th degree
coefficients for integer values of α from 1 to 8. These approximations are used by the implementation
included with this article. For fixed polynomial degree, the approximation error increases with α
(Figure 2).

5 Interpolation

Here we describe another algorithm, which was generously suggested by an anonymous reviewer,
that decomposes the computation of R (3) into convolutions by using interpolation. We again use
the boundary handling developed in §3.1 and DCT-based convolutions. Define the sum

R(x;L) =
∑

y∈T2

ω(x− y)sα
(
L− I(y)

)
, (15)

where I(x) in (9) has been replaced by a constant L. Since the argument of sα now depends only on
y, the sum is a convolution and can be computed in O(N2 logN) operations. This allows for a fast
algorithm to approximate ACE.

Let (Lj) be a sequence such that min I = L1 < L2 < · · · < LJ = max I, and compute R(x;Lj),
j = 1, . . . , J . Then approximate R(x) = R(x; I(x)) by piecewise linear interpolation,

R(x) ≈ R(x;Lj) +
R(x;Lj+1)−R(x;Lj)

Lj+1 − Lj

(I(x)− Lj), j such that Lj ≤ I(x) ≤ Lj+1. (16)

6

For an RGB color image, this algorithm costs 3J convolutions, which can be computed in parallel.
The interpolations (16) can also be computed in parallel by dividing the task as thread j interpolating
the half-closed interval [Lj, Lj+1) (or [LJ−1, LJ] for the rightmost interval).

A direct implementation strategy would begin by computing and storing all 3J convolutions, but
this is a demanding amount of memory. To reduce the memory cost, the included implementation
computes (concurrently) and stores convolutions for just a few consecutive levels Li, . . . , Li+K at a
time, interpolates over [Lj, Lj+1), j = i, . . . , i+K−1, and then the process is repeated with i← i+K
until all intervals have been covered.

In the examples, (Lj) is uniformly spaced, Lj = min I + (max I −min I) j−1
J−1

. We find that using
J = 8 levels provides an accurate approximation for typical images.

6 Examples

This section shows the effects of the parameters and compares the two approximate algorithms.
Computation times are reported using the implementation included with this article running on a
laptop with two cores.1 For reference, some examples include the result with uniform histogram
equalization (HE). Unless otherwise specified, ACE is performed with α = 5, ω(x, y) = 1/

√

x2 + y2

using the level interpolation algorithm with J = 8 levels.

6.1 Effect of Varying α

The α parameter specifies the slope at t = 0 of the function sα(t) = min
{
max{αt,−1}, 1

}
. The larger

this parameter, the stronger the enhancement. Ignoring the spatial weighting, uniform histogram
equalization corresponds to α =∞.

Input (352× 480) ACE, α = 2 ACE, α = 4 ACE, α = 8 HE

6.2 Effect of Varying ω

The following experiments show the enhancement results for α = 8 when ω is a Gaussian with
standard deviation 5, 25, or 100, the default ω(x, y) = 1/

√

x2 + y2, or uniform weighting ω ≡ 1.
The leftmost image shows that ACE acts like an edge detector when ω is finely localized.

12.40GHz Intel R© CoreTM 2 Duo T7700 with 2GB RAM

7

G5 G25 G100 1/
√

x2 + y2 1

6.3 Approximation

The following experiment investigates the cost/quality tradeoff of the two fast ACE approximations,
polynomial slope approximation (§4) and level interpolation (§5). Polynomial slope approximation
is tested with degrees 3, 5, 7, 9, 11 and level interpolation is tested with number of levels 4, 5, . . . , 12.
For the test images, we use the Kodak Image Suite,2 a set of 24 natural color images. The method
parameters are α = 5 and ω(x, y) = 1/

√

x2 + y2.
The scatter plot below shows runtime vs. root-mean-square error (RMSE)3 for every combination

of image and method order. This allows to assess cost/quality tradeoff as well as to visualize how
RMSE varies across different images. Polynomial slope approximations are labeled p3, p5, etc., and
for each degree, the markers indicate the median RMSE over the 24 images. Level interpolations
are labeled i4, i6, etc., and • markers indicate the median RMSE for each number of levels.

Computation time (ms)

0 200 400 600

RMSE

0

5

10

15

20

25

p3

p5

p7
p9 p11

i4

i6
i8 i10 i12

The scatter plot suggests that the two algorithms have similar cost/quality tradeoff with level
interpolation being slightly more efficient. We observe that level interpolation is faster for the same
number of convolutions (i.e., polynomial degree = number of levels) since the linear interval interpo-
lations are simpler than evaluating the an(x) polynomials. Several results for image #21 are shown
below. All results appear very similar, even for low degree or number of levels.

2Available online at http://www.cipr.rpi.edu/resource/stills/kodak.html
3RMSE values are relative to the intensity range [0, 255]. The exact solution was computed using the interpolation

algorithm with 256 levels.

8

http://www.cipr.rpi.edu/resource/stills/kodak.html

Input (768× 512) Polynomial degree 5 Polynomial degree 9

Exact Interpolation with 4 levels Interpolation with 8 levels

6.4 Enhancement

ACE and histogram equalization are applied here to improve image contrast. Enhancement can also
be used to correct images with poor exposure.

Input (331× 248) ACE, α = 5 (291 ms) HE (1 ms)

Input (480× 480) ACE, α = 5 (230 ms) HE (3 ms)

Histogram equalization is effective but sometimes too harsh, producing artificial colors in the
dark foreground. ACE is more moderate and avoids these artifacts.

9

6.5 Color Correction

ACE can also be used to correct film that has discolored and faded from aging [8, 14]. The examples
in this section demonstrate restoration of images scanned from old Kodachrome and Ektachrome
film. These images, originally created by the photographer Erwin Blumenfeld, are provided courtesy
of his estate.

“Untitled, circa 1950” ACE, α = 5 HE

“Self-portrait, NY, circa 1960” ACE, α = 5 HE

“New-York Venus, 1952” ACE, α = 5 HE

10

“The Red Cross, 1945” ACE, α = 5 HE

Acknowledgments

Thanks to Jean-Michel Morel (CMLA, ENS Cachan), Nadia Blumenfeld-Charbit, Rudolf Gschwind
(University of Basel), and Bertrand Lavédrine (Muséum National d’Histoire Naturelle) for useful
discussions on this work. This material is based upon work supported by the National Science Foun-
dation under Award No. DMS-1004694. Work partially supported by the Office of Naval Research
under grant N00014-97-1-0839 and by the European Research Council, advanced grant “Twelve
labours.”

Image Credits

NASA (http://dragon.larc.nasa.gov/retinex/)4

Alan Fink, Kodak Image Suite #21 5

Ana Belén Petro, CC-BY-NC-SA

Adrian Boliston (http://www.flickr.com/photos/boliston/3936248103/), CC-BY

c©The Estate of Erwin Blumenfeld, CC-BY-NC-SA6

References

[1] E. Ya. Remez, “Sur la détermination des polynômes d’approximation de degré donnée,” Com-
munications de la Societé Mathématique de Kharkov 10, 41, 1934.

[2] H.K. Hartline, H.G. Wagner, F. Ratcliff, “Inhibition in the eye of limulus,” Journal of General
Physiology, vol. 39, no. 5, pp. 651–673, 1956.

4Copyright information: http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html.
5Copyright information: http://r0k.us/graphics/kodak/PhotoCD_credits.txt.
6This license only applies to the low-resolution versions included in this article.

11

http://dragon.larc.nasa.gov/retinex/
http://www.flickr.com/photos/boliston/3936248103/
http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html
http://r0k.us/graphics/kodak/PhotoCD_credits.txt

[3] J. von Kries, “Sources of color science,” In: MacAdam, David L. (Ed.), Chromatic Adaptation,
MIT Press, Cambridge, MA, pp. 109–119, 1970.

[4] E.H. Land, J.J. McCann, “Lightness and Retinex Theory,” Journal of the Optical Society of
America 61, 1–11, 1971. http://dx.doi.org/10.1364/JOSA.61.000001

[5] G. Buchsbaum, “A spatial processor model for object color perception,” Journal of the Franklin
Institute vol. 310, no. 1, pp. 1–26, 1980.

[6] J.J. McCann, “Local/global mechanisms for color constancy,” Die Farbe vol. 34, pp. 275–283,
1987.

[7] S. Martucci, “Symmetric convolution and the discrete sine and cosine transforms,” IEEE Transac-
tions in Signal Processing SP-42, pp. 1038–1051, 1994. http://dx.doi.org/10.1109/78.295213

[8] R. Gschwind, F.S. Frey, “Digital Reconstruction of Faded Color Photographs,” Revue Informa-

tique et Statistique dans les Sciences humaines, vol. 33, no. 1–4, pp. 253–274, 1997.

[9] C. Gatta, A. Rizzi, D. Marini, “ACE: An automatic color equalization algorithm,” Proceedings
of the First European Conference on Color in Graphics Image and Vision (CGIV02), 2002.

[10] A. Rizzi, C. Gatta, D. Marini, “A new algorithm for unsupervised global and local color cor-
rection,” Pattern Recognition Letters, vol. 124, pp. 1663–1677, 2003. http://dx.doi.org/10.
1016/S0167-8655(02)00323-9

[11] A. Rizzi, C. Gatta, D. Marini, “From Retinex to automatic color equalization: Issues in develop-
ing a new algorithm for unsupervised color equalization,” Journal of Electronic Imaging, vol. 13,
no. 1, pp. 75–84, 2004. http://dx.doi.org/10.1117/1.1635366

[12] M. Grant, S. Boyd, Y. Ye, “Disciplined convex programming,” in Global Optimization:

from Theory to Implementation, Nonconvex Optimization and Its Applications, L. Liberti and
N. Maculan, eds., Springer, vol. 84, Part II, pp. 155–210, 2006. http://dx.doi.org/10.1007/
0-387-30528-9_7 (Library homepage: http://cvxr.com/cvx)

[13] M. Bertalmı́o, V. Caselles, E. Provenzi, A. Rizzi, “Perceptual Color Correction Through Varia-
tional Techniques,” IEEE Transactions in Image Processing, vol. 16, no. 4, pp. 1058–1072, 2007.
http://dx.doi.org/10.1109/TIP.2007.891777

[14] D. Nikitenko, M. Wirth, K. Trudel, “Applicability of white-balancing algorithms to restoring
faded colour slides: An empirical evaluation,” Journal of Multimedia, vol. 3, no. 5, 2008.

[15] R. Palma-Amestoy, E. Provenzi, M. Bertalmı́o, V. Caselles, “A Perceptually Inspired Varia-
tional Framework for Color Enhancement,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 31, no. 3, pp. 458–474, 2009. http://dx.doi.org/10.1109/TPAMI.2008.86

[16] M. Bertalmı́o, V. Caselles, E. Provenzi, “Issues about Retinex Theory and Contrast En-
hancement,” International Journal of Computer Vision, vol. 83, no. 1, pp. 101–119, 2009.
http://dx.doi.org/10.1007/s11263-009-0221-5

[17] P. Getreuer, “Total Variation Deconvolution using Split Bregman,” Image Processing On Line,
2012. http://dx.doi.org/10.5201/ipol.2012.g-tvdc

12

http://dx.doi.org/10.1364/JOSA.61.000001
http://dx.doi.org/10.1109/78.295213
http://dx.doi.org/10.1016/S0167-8655(02)00323-9
http://dx.doi.org/10.1016/S0167-8655(02)00323-9
http://dx.doi.org/10.1117/1.1635366
http://dx.doi.org/10.1007/0-387-30528-9_7
http://dx.doi.org/10.1007/0-387-30528-9_7
http://cvxr.com/cvx
http://dx.doi.org/10.1109/TIP.2007.891777
http://dx.doi.org/10.1109/TPAMI.2008.86
http://dx.doi.org/10.1007/s11263-009-0221-5
http://dx.doi.org/10.5201/ipol.2012.g-tvdc

	Introduction
	Histogram Equalization
	ACE
	Boundary Handling and Convolutions

	Polynomial Slope Function
	Fast Computation with Convolutions
	Polynomial Approximation

	Interpolation
	Examples
	Effect of Varying α
	Effect of Varying ω
	Approximation
	Enhancement
	Color Correction

ace_20120718.tar

ace_20120718/example.sh

#! /bin/sh
ACE automatic color enhancement demo

Echo shell commands
set -v

Perform ACE automatic color enhancement on avs.jpg with alpha = 8
./ace -a 8 avs.jpg ace.bmp

Perform uniform histogram equalization
./histeq avs.jpg equalized.bmp

ace_20120718/BSD_simplified.txt

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ace_20120718/makefile.gcc

Makefile for ACE
Pascal Getreuer
July 18, 2012

The FFTW3 single precision library (http://www.fftw.org) is required.
Set the flags needed for linking.
LDFFTW3=-lfftw3f

The following three statements determine the build configuration.
For handling different image formats, the program can be linked with
the libjpeg, libpng, and libtiff libraries. For each library, set
the flags needed for linking. To disable use of a library, comment
its statement. You can disable all three (BMP is always supported).
LDLIBJPEG=-ljpeg
LDLIBPNG=-lpng
LDLIBTIFF=-ltiff

##
Set this line to compile with OpenMP multithreading. Comment the
line to disable OpenMP.
OPENMP=-fopenmp

##
Standard make settings
SHELL=/bin/sh
CFLAGS=-O3 -ansi -pedantic -Wall -Wextra $(OPENMP)
LDFLAGS=$(OPENMP)
LDLIBS=-lm $(LDFFTW3) $(LDLIBJPEG) $(LDLIBPNG) $(LDLIBTIFF)

These statements add compiler flags to define USE_LIBJPEG, etc.,
depending on which libraries have been specified above.
ifneq ($(LDLIBJPEG),)
	CJPEG=-DUSE_LIBJPEG
endif
ifneq ($(LDLIBPNG),)
	CPNG=-DUSE_LIBPNG
endif
ifneq ($(LDLIBTIFF),)
	CTIFF=-DUSE_LIBTIFF
endif

ALLCFLAGS=$(CFLAGS) $(CJPEG) $(CPNG) $(CTIFF)

ACE_SOURCES=acecli.c ace.c imageio.c basic.c
HISTEQ_SOURCES=histeq.c imageio.c basic.c

ARCHIVENAME=ace_$(shell date -u +%Y%m%d)
SOURCES=acecli.c ace.c ace.h histeq.c imageio.c imageio.h \
basic.c basic.h makefile.gcc doxygen.conf BSD_simplified.txt GPLv3.txt \
avs.jpg example.sh readme.txt
ACE_OBJECTS=$(ACE_SOURCES:.c=.o)
HISTEQ_OBJECTS=$(HISTEQ_SOURCES:.c=.o)

.SUFFIXES: .c .o
.PHONY: all clean rebuild srcdoc dist dist-zip

all: ace histeq

ace: $(ACE_OBJECTS)
	$(CC) $(LDFLAGS) -o $@ $(ACE_OBJECTS) $(LDLIBS)

histeq: $(HISTEQ_OBJECTS)
	$(CC) $(LDFLAGS) -o $@ $(HISTEQ_OBJECTS) $(LDLIBS)

.c.o:
	$(CC) -c $(ALLCFLAGS) $< -o $@

clean:
	$(RM) $(ACE_OBJECTS) $(HISTEQ_OBJECTS) ace histeq

rebuild: clean all

Source documentation with Doxygen
srcdoc: $(SOURCES)
	doxygen doxygen.conf

dist: $(SOURCES)
	-rm -rf $(ARCHIVENAME)
	mkdir $(ARCHIVENAME)
	ln $(SOURCES) $(ARCHIVENAME)
	tar vchzf $(ARCHIVENAME).tar.gz $(ARCHIVENAME)
	-rm -rf $(ARCHIVENAME)

dist-zip: $(SOURCES)
	-rm -rf $(ARCHIVENAME)
	mkdir $(ARCHIVENAME)
	ln $(SOURCES) $(ARCHIVENAME)
	-rm -f $(ARCHIVENAME).zip
	zip -r9 $(ARCHIVENAME).zip $(ARCHIVENAME)/*
	-rm -rf $(ARCHIVENAME)

ace_20120718/acecli.c

/**
 * @file acecli.c
 * @brief ACE automatic color enhancement command line program
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 * Copyright (c) 2012, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can redistribute it and/or modify it
 * under, at your option, the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version, or the terms of the
 * simplified BSD license.
 *
 * You should have received a copy of these licenses along with this program.
 * If not, see <http://www.gnu.org/licenses/> and
 * <http://www.opensource.org/licenses/bsd-license.html>.
 */

/**
 * @mainpage
 * @verbinclude readme.txt
 */

#include <math.h>
#include <string.h>
#include <ctype.h>
#include "ace.h"
#include "imageio.h"

#define VERBOSE 0

/** @brief struct of program parameters */
typedef struct
{
 /** @brief Input file name */
 char *InputFile;
 /** @brief Output file name */
 char *OutputFile;
 /** @brief Quality for saving JPEG images (0 to 100) */
 int JpegQuality;
 /** @brief Slope parameter, larger implies stronger in enhancement */
 float Alpha;
} programparams;

int ParseParams(programparams *Param, int argc, char *argv[]);

/** @brief Print program usage help message */
void PrintHelpMessage()
{
 puts("ACE automatic color enhancement , P. Getreuer 2012\n");
 puts("Usage: ace [options] <input file> <output file>\n\n"
 "Only " READIMAGE_FORMATS_SUPPORTED " images are supported.\n");
 puts("Options:");
 puts(" -a <number> alpha, stronger implies stronger enhancement\n");
#ifdef USE_LIBJPEG
 puts(" -q <number> quality for saving JPEG images (0 to 100)\n");
#endif
 puts("Example: ");
 puts(" ace input.bmp output.bmp");
}

int main(int argc, char *argv[])
{
 programparams Param;
 float *f = NULL, *u = NULL;
 unsigned long TimeStart;
 int Width, Height;
 int Status = 1;

 if(!ParseParams(&Param, argc, argv))
 return 0;

 /* Read the input image */
 if(!(f = (float *)ReadImage(&Width, &Height, Param.InputFile,
 IMAGEIO_FLOAT | IMAGEIO_PLANAR | IMAGEIO_RGB)))
 goto Catch;

 /* Allocate the output image */
 if(!(u = (float *)Malloc(sizeof(float)*3*
 ((long int)Width)*((long int)Height))))
 goto Catch;

 printf("Enhancing %dx%d image, alpha = %.4f\n",
 Width, Height, Param.Alpha);
 TimeStart = Clock();

 /* ACE enhancement */
 if(!AceEnhanceImage(u, f, Width, Height, Param.Alpha))
 {
 ErrorMessage("Error in computation.\n");
 goto Catch;
 }

 printf("CPU Time: %.3f s\n", 0.001f*(Clock() - TimeStart));

 /* Write the output image */
 if(!WriteImage(u, Width, Height, Param.OutputFile,
 IMAGEIO_FLOAT | IMAGEIO_PLANAR | IMAGEIO_RGB, Param.JpegQuality))
 goto Catch;
#if VERBOSE > 0
 else
 printf("Output written to \"%s\".\n", Param.OutputFile);
#endif

 Status = 0;	/* Finished successfully, set exit status to zero. */

Catch:
 Free(u);
 Free(f);
 return Status;
}

int ParseParams(programparams *Param, int argc, char *argv[])
{
 static char *DefaultOutputFile = (char *)"out.bmp";
 char *OptionString;
 char OptionChar;
 int i;

 if(argc < 2)
 {
 PrintHelpMessage();
 return 0;
 }

 /* Set parameter defaults */
 Param->InputFile = 0;
 Param->OutputFile = DefaultOutputFile;
 Param->JpegQuality = 85;
 Param->Alpha = 5;

 for(i = 1; i < argc;)
 {
 if(argv[i] && argv[i][0] == '-')
 {
 if((OptionChar = argv[i][1]) == 0)
 {
 ErrorMessage("Invalid parameter format.\n");
 return 0;
 }

 if(argv[i][2])
 OptionString = &argv[i][2];
 else if(++i < argc)
 OptionString = argv[i];
 else
 {
 ErrorMessage("Invalid parameter format.\n");
 return 0;
 }

 switch(OptionChar)
 {
 case 'a': /* Read slope parameter alpha */
 Param->Alpha = atof(OptionString);

 if(Param->Alpha < 1 || Param->Alpha > 8)
 {
 ErrorMessage("Alpha must be between 1 and 8.\n");
 return 0;
 }
 break;
#ifdef USE_LIBJPEG
 case 'q':
 Param->JpegQuality = atoi(OptionString);

 if(Param->JpegQuality <= 0 || Param->JpegQuality > 100)
 {
 ErrorMessage("JPEG quality must be between 0 and 100.\n");
 return 0;
 }
 break;
#endif
 case '-':
 PrintHelpMessage();
 return 0;
 default:
 if(isprint(OptionChar))
 ErrorMessage("Unknown option \"-%c\".\n", OptionChar);
 else
 ErrorMessage("Unknown option.\n");

 return 0;
 }

 i++;
 }
 else
 {
 if(!Param->InputFile)
 Param->InputFile = argv[i];
 else
 Param->OutputFile = argv[i];

 i++;
 }
 }

 if(!Param->InputFile)
 {
 PrintHelpMessage();
 return 0;
 }

 return 1;
}

ace_20120718/basic.h

/**
 * @file basic.h
 * @brief Memory management, portable types, math constants, and timing
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 * This purpose of this file is to improve portability.
 *
 * Types \c uint8_t, \c uint16_t, \c uint32_t should be defined as
 * unsigned integer types such that
 * @li \c uint8_t is 8-bit, range 0 to 255
 * @li \c uint16_t is 16-bit, range 0 to 65535
 * @li \c uint32_t is 32-bit, range 0 to 4294967295
 *
 * Similarly, \c int8_t, \c int16_t, \c int32_t should be defined as
 * signed integer types such that
 * @li \c int8_t is 8-bit, range -128 to +127
 * @li \c int16_t is 16-bit, range -32768 to +32767
 * @li \c int32_t is 32-bit, range -2147483648 to +2147483647
 *
 * These definitions are implemented with types \c __int8, \c __int16,
 * and \c __int32 under Windows and by including stdint.h under UNIX.
 *
 * To define the math constants, math.h is included, and any of the
 * following that were not defined by math.h are defined here according
 * to the values from Hart & Cheney.
 * @li M_2PI = 2 pi = 6.28318530717958647692528676655900576
 * @li M_PI = pi = 3.14159265358979323846264338327950288
 * @li M_PI_2 = pi/2 = 1.57079632679489661923132169163975144
 * @li M_PI_4 = pi/4 = 0.78539816339744830961566084581987572
 * @li M_PI_8 = pi/8 = 0.39269908169872415480783042290993786
 * @li M_SQRT2 = sqrt(2) = 1.41421356237309504880168872420969808
 * @li M_1_SQRT2 = 1/sqrt(2) = 0.70710678118654752440084436210484904
 * @li M_E = e = 2.71828182845904523536028747135266250
 * @li M_LOG2E = log_2(e) = 1.44269504088896340735992468100189213
 * @li M_LOG10E = log_10(e) = 0.43429448190325182765112891891660508
 * @li M_LN2 = log_e(2) = 0.69314718055994530941723212145817657
 * @li M_LN10 = log_e(10) = 2.30258509299404568401799145468436421
 * @li M_EULER = Euler = 0.57721566490153286060651209008240243
 * @li M_SQRT2PI = sqrt(2 pi) = 2.50662827463100050241576528481104525
 *
 *
 * Copyright (c) 2010-2011, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can use, modify and/or
 * redistribute it under the terms of the simplified BSD License. You
 * should have received a copy of this license along this program. If
 * not, see <http://www.opensource.org/licenses/bsd-license.html>.
 */

#ifndef _BASIC_H_
#define _BASIC_H_

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

/* Memory management */
/** @brief Function to allocate a block of memory */
#define Malloc(s) MallocWithErrorMessage(s)
void *MallocWithErrorMessage(size_t Size);
/** @brief Function to reallocate a block of memory */
#define Realloc(p, s) ReallocWithErrorMessage(p, s)
void *ReallocWithErrorMessage(void *Ptr, size_t Size);
/** @brief Function to free memory */
#define Free(p) free(p)

/* Portable integer types */
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)

 /* Windows system: Use __intN types to define uint8_t, etc. */
 typedef unsigned __int8 uint8_t;
 typedef unsigned __int16 uint16_t;
 typedef unsigned __int32 uint32_t;
 typedef __int8 int8_t;
 typedef __int16 int16_t;
 typedef __int32 int32_t;

#else

 /* UNIX system: Use stdint to define uint8_t, etc. */
 #include <stdint.h>

#endif

/* Math constants (Hart & Cheney) */
#ifndef M_2PI
/** @brief The constant 2 pi */
#define M_2PI 6.28318530717958647692528676655900576
#endif
#ifndef M_PI
/** @brief The constant pi */
#define M_PI 3.14159265358979323846264338327950288
#endif
#ifndef M_PI_2
/** @brief The constant pi/2 */
#define M_PI_2 1.57079632679489661923132169163975144
#endif
#ifndef M_PI_4
/** @brief The constant pi/4 */
#define M_PI_4 0.78539816339744830961566084581987572
#endif
#ifndef M_PI_8
/** @brief The constant pi/8 */
#define M_PI_8 0.39269908169872415480783042290993786
#endif
#ifndef M_SQRT2
/** @brief The constant sqrt(2) */
#define M_SQRT2 1.41421356237309504880168872420969808
#endif
#ifndef M_1_SQRT2
/** @brief The constant 1/sqrt(2) */
#define M_1_SQRT2 0.70710678118654752440084436210484904
#endif
#ifndef M_E
/** @brief The natural number */
#define M_E 2.71828182845904523536028747135266250
#endif
#ifndef M_LOG2E
/** @brief Log base 2 of the natural number */
#define M_LOG2E 1.44269504088896340735992468100189213
#endif
#ifndef M_LOG10E
/** @brief Log base 10 of the natural number */
#define M_LOG10E 0.43429448190325182765112891891660508
#endif
#ifndef M_LN2
/** @brief Natural log of 2 */
#define M_LN2 0.69314718055994530941723212145817657
#endif
#ifndef M_LN10
/** @brief Natural log of 10 */
#define M_LN10 2.30258509299404568401799145468436421
#endif
#ifndef M_EULER
/** @brief Euler number */
#define M_EULER 0.57721566490153286060651209008240243
#endif

#ifndef M_SQRT2PI
/**
 * @brief The constant sqrt(2 pi)
 * Verified with Maxima using 80-digit precision
 */
#define M_SQRT2PI 2.50662827463100050241576528481104525
#endif

/** @brief Round double X */
#define ROUND(X) (floor((X) + 0.5))

/** @brief Round float X */
#define ROUNDF(X) (floor((X) + 0.5f))

#ifdef __GNUC__
 #ifndef ATTRIBUTE_UNUSED
 /** @brief Macro for the unused attribue GNU extension */
 #define ATTRIBUTE_UNUSED __attribute__((unused))
 #endif
 #ifndef ATTRIBUTE_ALWAYSINLINE
 /** @brief Macro for the always inline attribue GNU extension */
 #define ATTRIBUTE_ALWAYSINLINE __attribute__((always_inline))
 #endif
#else
 #define ATTRIBUTE_UNUSED
 #define ATTRIBUTE_ALWAYSINLINE
#endif

/* Error messaging */
void ErrorMessage(const char *Format, ...);

/* Timer function */
unsigned long Clock();

#endif /* _BASIC_H_ */

ace_20120718/imageio.c

/**
 * @file imageio.c
 * @brief Implements ReadImage and WriteImage functions
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 * Two high-level functions are provided, \c ReadImage and \c WriteImage, for
 * reading and writing image BMP, JPEG, PNG, and TIFF files. The desired
 * format of the image data can be specified to \c ReadImage for how to return
 * the data (and similarly to \c WriteImage for how it should interpret the
 * data). Formatting options allow specifying the datatype of the components,
 * conversion to grayscale, channel ordering, interleaved vs. planar, and
 * row-major vs. column-major.
 *
 * \c ReadImage automatically detects the format of the image being read so
 * that the format does not need to be supplied explicitly. \c WriteImage
 * infers the file format from the file extension.
 *
 * Also included is a function \c IdentifyImageType to guess the file type (BMP,
 * JPEG, PNG, TIFF, and a few other formats) from the file header's magic
 * numbers without reading the image.
 *
 * Support for BMP reading and writing is native: BMP reading supports 1-, 2-,
 * 4-, 8-, 16-, 32-bit uncompressed, RLE, and bitfield images; BMP writing is
 * limited to 24-bit uncompressed. The implementation calls libjpeg, libpng,
 * and libtiff to handle JPEG, PNG, and TIFF images.
 *
 *
 * Copyright (c) 2010-2012, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can use, modify and/or
 * redistribute it under the terms of the simplified BSD License. You
 * should have received a copy of this license along this program. If
 * not, see <http://www.opensource.org/licenses/bsd-license.html>.
 */

#include <string.h>
#include <ctype.h>
#include "imageio.h"

#ifdef USE_LIBPNG
#include <png.h>
#if PNG_LIBPNG_VER < 10400
/* For compatibility with older libpng */
#define png_set_expand_gray_1_2_4_to_8	png_set_gray_1_2_4_to_8
#endif
#endif
#ifdef USE_LIBTIFF
#include <tiffio.h>
#endif
#ifdef USE_LIBJPEG
#include <jpeglib.h>
#include <setjmp.h>
#endif

/** @brief Buffer size to use for BMP file I/O */
#define FILE_BUFFER_CAPACITY (1024*4)

#define ROUNDCLAMPF(x) ((x < 0.0f) ? 0 : \
 ((x > 1.0f) ? 255 : (uint8_t)(255.0f*(x) + 0.5f)))
#define ROUNDCLAMP(x) ((x < 0.0) ? 0 : \
 ((x > 1.0) ? 255 : (uint8_t)(255.0*(x) + 0.5)))

/** @brief Case-insensitive test to see if String ends with Suffix */
static int StringEndsWith(const char *String, const char *Suffix)
{
 unsigned i, StringLength = strlen(String), SuffixLength = strlen(Suffix);

 if(StringLength < SuffixLength)
 return 0;

 String += StringLength - SuffixLength;

 for(i = 0; i < SuffixLength; i++)
 if(tolower(String[i]) != tolower(Suffix[i]))
 return 0;

 return 1;
}

/** @brief Fill an image with a color */
static void FillImage(uint32_t *Image, int Width, int Height, uint32_t Color)
{
 int x, y;

 if(Image)
 for(y = 0; y < Height; y++, Image += Width)
 for(x = 0; x < Width; x++)
 Image[x] = Color;
}

/**
 * @brief Check use of color and alpha, and count number of distinct colors
 * @param NumColors set by the routine to the number of unique colors
 * @param UseColor set to 1 if the image is not grayscale
 * @param UseAlpha set to 1 if the image alpha is not constant 255
 * @param Image pointer to U8 RGBA interleaved image data
 * @param Width, Height dimensions of the image
 * @return pointer to a color palette with NumColors entries or NULL if the
 * number of distinct colors exceeds 256.
 *
 * This routine checks whether an RGBA image makes use of color and alpha, and
 * constructs a palette if the number of distinct colors is 256 or fewer. This
 * information is useful for writing image files with smaller file size.
 */
static uint32_t *GetImagePalette(int *NumColors, int *UseColor, int *UseAlpha,
 const uint32_t *Image, int Width, int Height)
{
 const int MaxColors = 256;
 uint32_t *Palette = NULL;
 uint32_t Pixel;
 int x, y, i, Red, Green, Blue, Alpha;

 if(!UseColor || !NumColors || !UseAlpha)
 return NULL;
 else if(!Image
 || !(Palette = (uint32_t *)Malloc(sizeof(uint32_t)*MaxColors)))
 {
 *NumColors = -1;
 *UseColor = *UseAlpha = 1;
 return NULL;
 }

 *NumColors = *UseColor = *UseAlpha = 0;

 for(y = 0; y < Height; y++)
 {
 for(x = 0; x < Width; x++)
 {
 Pixel = *(Image++);
 Red = ((uint8_t *)&Pixel)[0];
 Green = ((uint8_t *)&Pixel)[1];
 Blue = ((uint8_t *)&Pixel)[2];
 Alpha = ((uint8_t *)&Pixel)[3];

 if(Red != Green || Red != Blue) /* Check color */
 *UseColor = 1;

 if(Alpha != 255) /* Check alpha */
 *UseAlpha = 1;

 /* Check Palette colors (if *NumColors != -1) */
 for(i = 0; i < *NumColors; i++)
 if(Pixel == Palette[i])
 break;

 if(i == *NumColors)
 {
 if(i < MaxColors)
 { /* Add new color to Palette */
 Palette[i] = Pixel;
 (*NumColors)++;
 }
 else
 { /* Maximum size for Palette exceeded */
 Free(Palette);
 Palette = NULL;
 NumColors = -1; / Don't check Palette colors */
 }
 }
 }
 }

 return Palette;
}

/** @brief Read a 16-bit little Endian word from File */
static uint16_t ReadWordLE(FILE *File)
{
 uint16_t w;
 w = (uint16_t) getc(File);
 w |= ((uint16_t) getc(File) << 8);
 return w;
}

/** @brief Read a 32-bit little Endian double word from File */
static uint32_t ReadDWordLE(FILE *File)
{
 uint32_t dw;
 dw = (uint32_t) getc(File);
 dw |= ((uint32_t) getc(File) << 8);
 dw |= ((uint32_t) getc(File) << 16);
 dw |= ((uint32_t) getc(File) << 24);
 return dw;
}

/** @brief Write a 16-bit word in little Endian format */
static void WriteWordLE(uint16_t w, FILE *File)
{
 putc(w & 0xFF, File);
 putc((w & 0xFF00) >> 8, File);
}

/** @brief Write a 32-bit double word in little Endian format */
static void WriteDWordLE(uint32_t dw, FILE *File)
{
 putc(dw & 0xFF, File);
 putc((dw & 0xFF00) >> 8, File);
 putc((dw & 0xFF0000) >> 16, File);
 putc((dw & 0xFF000000) >> 24, File);
}

/** @brief Internal function for reading 1-bit BMP */
static int ReadBmp1Bit(uint32_t *Image, int Width, int Height, FILE *File, const uint32_t *Palette)
{
 int RowPadding = (-(Width+7)/8)&3;
 int x, y, Bit;
 unsigned Code;

 Image += ((long int)Width)*((long int)Height - 1);

 for(y = Height; y; y--, Image -= Width)
 {
 if(feof(File))
 return 0;

 for(x = 0; x < Width;)
 {
 Code = getc(File);

 for(Bit = 7; Bit >= 0 && x < Width; Bit--, Code <<= 1)
 Image[x++] = Palette[(Code & 0x80) ? 1:0];
 }

 for(x = RowPadding; x; x--)
 getc(File); /* Skip padding bytes at the end of the row */
 }

 return 1;
}

/** @brief Internal function for reading 4-bit BMP */
static int ReadBmp4Bit(uint32_t *Image, int Width, int Height, FILE *File, const uint32_t *Palette)
{
 int RowPadding = (-(Width+1)/2)&3;
 int x, y;
 unsigned Code;

 Image += ((long int)Width)*((long int)Height - 1);

 for(y = Height; y; y--, Image -= Width)
 {
 if(feof(File))
 return 0;

 for(x = 0; x < Width;)
 {
 Code = getc(File);
 Image[x++] = Palette[(Code & 0xF0) >> 4];

 if(x < Width)
 Image[x++] = Palette[Code & 0x0F];
 }

 for(x = RowPadding; x; x--)
 getc(File); /* Skip padding bytes at the end of the row */
 }

 return 1;
}

/** @brief Internal function for reading 4-bit RLE-compressed BMP */
static int ReadBmp4BitRle(uint32_t *Image, int Width, int Height, FILE *File, const uint32_t *Palette)
{
 int x, y, dy, k;
 unsigned Count, Value;
 uint32_t ColorH, ColorL;

 FillImage(Image, Width, Height, Palette[0]);
 Image += ((long int)Width)*((long int)Height - 1);

 for(x = 0, y = Height; y;)
 {
 if(feof(File))
 return 0;

 Count = getc(File);
 Value = getc(File);

 if(!Count)
 {	/* Count = 0 is the escape code */
 switch(Value)
 {
 case 0: 	/* End of line */
 Image -= Width;
 x = 0;
 y--;
 break;
 case 1: 	/* End of bitmap */
 return 1;
 case 2: 	/* Delta */
 x += getc(File);
 dy = getc(File);
 y -= dy;
 Image -= dy*Width;

 if(x >= Width || y < 0)
 return 0;
 break;
 default:	/* Read a run of uncompressed data (Value = length of run) */
 Count = k = Value;

 if(x >= Width)
 return 0;

 do
 {
 Value = getc(File);
 Image[x++] = Palette[(Value & 0xF0) >> 4];

 if(x >= Width)
 break;

 if(--k)
 {
 Image[x++] = Palette[Value & 0x0F];
 k--;

 if(x >= Width)
 break;
 }
 }while(k);

 if(((Count + 1)/2) & 1)
 getc(File); /* Padding for word align */
 }
 }
 else
 {	/* Run of pixels (Count = length of run) */
 ColorH = Palette[(Value & 0xF0) >> 4];
 ColorL = Palette[Value & 0xF];

 if(x >= Width)
 return 0;

 do
 {
 Image[x++] = ColorH;
 Count--;

 if(x >= Width)
 break;

 if(Count)
 {
 Image[x++] = ColorL;
 Count--;

 if(x >= Width)
 break;
 }
 }while(Count);
 }
 }

 return 1;
}

/** @brief Internal function for reading 8-bit BMP */
static int ReadBmp8Bit(uint32_t *Image, int Width, int Height, FILE *File, const uint32_t *Palette)
{
 int RowPadding = (-Width)&3;
 int x, y;

 Image += ((long int)Width)*((long int)Height - 1);

 for(y = Height; y; y--, Image -= Width)
 {
 if(feof(File))
 return 0;

 for(x = 0; x < Width; x++)
 Image[x] = Palette[getc(File) & 0xFF];

 for(x = RowPadding; x; x--)
 getc(File); /* Skip padding bytes at the end of the row */
 }

 return 1;
}

/** @brief Internal function for reading 8-bit RLE-compressed BMP */
static int ReadBmp8BitRle(uint32_t *Image, int Width, int Height, FILE *File, const uint32_t *Palette)
{
 int x, y, dy, k;
 unsigned Count, Value;
 uint32_t Color;

 FillImage(Image, Width, Height, Palette[0]);
 Image += ((long int)Width)*((long int)Height - 1);

 for(x = 0, y = Height; y;)
 {
 if(feof(File))
 return 0;

 Count = getc(File);
 Value = getc(File);

 if(!Count)
 {	/* Count = 0 is the escape code */
 switch(Value)
 {
 case 0: 	/* End of line */
 Image -= Width;
 x = 0;
 y--;
 break;
 case 1: 	/* End of bitmap */
 return 1;
 case 2: 	/* Delta */
 x += getc(File);
 dy = getc(File);
 y -= dy;
 Image -= dy*Width;

 if(x >= Width || y < 0)
 return 0;
 break;
 default:	/* Read a run of uncompressed data (Value = length of run) */
 Count = k = Value;

 do
 {
 if(x >= Width)
 break;

 Image[x++] = Palette[getc(File) & 0xFF];
 }while(--k);

 if(Count&1)
 getc(File); /* Padding for word align */
 }
 }
 else
 {	/* Run of pixels equal to Value (Count = length of run) */
 Color = Palette[Value & 0xFF];

 do
 {
 if(x >= Width)
 break;

 Image[x++] = Color;
 }while(--Count);
 }
 }

 return 1;
}

/** @brief Internal function for reading 24-bit BMP */
static int ReadBmp24Bit(uint32_t *Image, int Width, int Height, FILE *File)
{
 uint8_t *ImagePtr = (uint8_t *)Image;
 int RowPadding = (-3*Width)&3;
 int x, y;

 Width <<= 2;
 ImagePtr += ((long int)Width)*((long int)Height - 1);

 for(y = Height; y; y--, ImagePtr -= Width)
 {
 if(feof(File))
 return 0;

 for(x = 0; x < Width; x += 4)
 {
 ImagePtr[x+3] = 255; /* Set alpha */
 ImagePtr[x+2] = getc(File); /* Read blue component */
 ImagePtr[x+1] = getc(File); /* Read green component */
 ImagePtr[x+0] = getc(File); /* Read red component */
 }

 for(x = RowPadding; x; x--)
 getc(File); /* Skip padding bytes at the end of the row */
 }

 return 1;
}

/** @brief Internal function for determining bit shifts in bitfield BMP */
static void GetMaskShifts(uint32_t Mask, int *LeftShift, int *RightShift)
{
 int Shift = 0, BitCount = 0;

 if(!Mask)
 {
 *LeftShift = 0;
 *RightShift = 0;
 return;
 }

 while(!(Mask & 1))	/* Find the first true bit */
 {
 Mask >>= 1;
 ++Shift;
 }

 /* Adjust the result for scaling to 8-bit quantities */
 while(Mask & 1)		/* Count the number of true bits */
 {
 Mask >>= 1;
 ++BitCount;
 }

 /* Compute a signed shift (right is positive) */
 Shift += BitCount - 8;

 if(Shift >= 0)
 {
 *LeftShift = 0;
 *RightShift = Shift;
 }
 else
 {
 *LeftShift = -Shift;
 *RightShift = 0;
 }
}

/** @brief Internal function for reading 16-bit BMP */
static int ReadBmp16Bit(uint32_t *Image, int Width, int Height, FILE *File,
 uint32_t RedMask, uint32_t GreenMask, uint32_t BlueMask, uint32_t AlphaMask)
{
 uint8_t *ImagePtr = (uint8_t *)Image;
 uint32_t Code;
 int RowPadding = (-2*Width)&3;
 int RedLeftShift, GreenLeftShift, BlueLeftShift, AlphaLeftShift;
 int RedRightShift, GreenRightShift, BlueRightShift, AlphaRightShift;
 int x, y;

 GetMaskShifts(RedMask, &RedLeftShift, &RedRightShift);
 GetMaskShifts(GreenMask, &GreenLeftShift, &GreenRightShift);
 GetMaskShifts(BlueMask, &BlueLeftShift, &BlueRightShift);
 GetMaskShifts(AlphaMask, &AlphaLeftShift, &AlphaRightShift);
 Width <<= 2;
 ImagePtr += ((long int)Width)*((long int)Height - 1);

 for(y = Height; y; y--, ImagePtr -= Width)
 {
 if(feof(File))
 return 0;

 for(x = 0; x < Width; x += 4)
 {
 Code = ReadWordLE(File);
 /* By the Windows 4.x BMP specification, color component masks must be contiguous
 [http://www.fileformat.info/format/bmp/egff.htm]. So we can decode the bitfields
 by bitwise AND with the mask and applying a bitshift.*/
 ImagePtr[x+3] = ((Code & AlphaMask) >> AlphaRightShift) << AlphaLeftShift;
 ImagePtr[x+2] = ((Code & BlueMask) >> BlueRightShift) << BlueLeftShift;
 ImagePtr[x+1] = ((Code & GreenMask) >> GreenRightShift) << GreenLeftShift;
 ImagePtr[x+0] = ((Code & RedMask) >> RedRightShift) << RedLeftShift;
 }

 for(x = RowPadding; x; x--)
 getc(File); /* Skip padding bytes at the end of the row */
 }

 return 1;
}

/** @brief Internal function for reading 32-bit BMP */
static int ReadBmp32Bit(uint32_t *Image, int Width, int Height, FILE *File,
 uint32_t RedMask, uint32_t GreenMask, uint32_t BlueMask, uint32_t AlphaMask)
{
 uint8_t *ImagePtr;
 uint32_t Code;
 int RedLeftShift, GreenLeftShift, BlueLeftShift, AlphaLeftShift;
 int RedRightShift, GreenRightShift, BlueRightShift, AlphaRightShift;
 int x, y;

 GetMaskShifts(RedMask, &RedLeftShift, &RedRightShift);
 GetMaskShifts(GreenMask, &GreenLeftShift, &GreenRightShift);
 GetMaskShifts(BlueMask, &BlueLeftShift, &BlueRightShift);
 GetMaskShifts(AlphaMask, &AlphaLeftShift, &AlphaRightShift);
 Width <<= 2;
 ImagePtr = (uint8_t *)Image + ((long int)Width)*((long int)Height - 1);

 for(y = Height; y; y--, ImagePtr -= Width)
 {
 if(feof(File))
 return 0;

 for(x = 0; x < Width; x += 4)
 {
 Code = ReadDWordLE(File);
 /* By the Windows 4.x BMP specification, color component masks must be contiguous
 [http://www.fileformat.info/format/bmp/egff.htm]. So we can decode the bitfields
 by bitwise AND with the mask and applying a bitshift.*/
 ImagePtr[x+3] = ((Code & AlphaMask) >> AlphaRightShift) << AlphaLeftShift;
 ImagePtr[x+2] = ((Code & BlueMask) >> BlueRightShift) << BlueLeftShift;
 ImagePtr[x+1] = ((Code & GreenMask) >> GreenRightShift) << GreenLeftShift;
 ImagePtr[x+0] = ((Code & RedMask) >> RedRightShift) << RedLeftShift;
 }
 }

 return 1;
}

/**
* @brief Read a BMP (Windows Bitmap) image file as RGBA data
*
* @param Image, Width, Height pointers to be filled with the pointer
* to the image data and the image dimensions.
* @param File stdio FILE pointer pointing to the beginning of the BMP file
*
* @return 1 on success, 0 on failure
*
* This function is called by \c ReadImage to read BMP images. Before calling
* \c ReadBmp, the caller should open \c File as a FILE pointer in binary read
* mode. When \c ReadBmp is complete, the caller should close \c File.
*/
static int ReadBmp(uint32_t **Image, int *Width, int *Height, FILE *File)
{
 uint32_t *Palette = NULL;
 uint8_t *PalettePtr;
 long int ImageDataOffset, InfoSize;
 unsigned i, NumPlanes, BitsPerPixel, Compression, NumColors;
 uint32_t RedMask, GreenMask, BlueMask, AlphaMask;
 int Success = 0, Os2Bmp;
 uint8_t Magic[2];

 *Image = NULL;
 *Width = *Height = 0;
 fseek(File, 0, SEEK_SET);

 Magic[0] = getc(File);
 Magic[1] = getc(File);

 if(!(Magic[0] == 0x42 && Magic[1] == 0x4D) /* Verify the magic numbers */
 || fseek(File, 8, SEEK_CUR)) /* Skip the reserved fields */
 {
 ErrorMessage("Invalid BMP header.\n");
 goto Catch;
 }

 ImageDataOffset = ReadDWordLE(File);
 InfoSize = ReadDWordLE(File);

 /* Read the info header */
 if(InfoSize < 12)
 {
 ErrorMessage("Invalid BMP info header.\n");
 goto Catch;
 }

 if((Os2Bmp = (InfoSize == 12))) /* This is an OS/2 V1 infoheader */
 {
 *Width = (int)ReadWordLE(File);
 *Height = (int)ReadWordLE(File);
 NumPlanes = (unsigned)ReadWordLE(File);
 BitsPerPixel = (unsigned)ReadWordLE(File);
 Compression = 0;
 NumColors = 0;
 RedMask = 0x00FF0000;
 GreenMask = 0x0000FF00;
 BlueMask = 0x000000FF;
 AlphaMask = 0xFF000000;
 }
 else
 {
 *Width = abs((int)ReadDWordLE(File));
 *Height = abs((int)ReadDWordLE(File));
 NumPlanes = (unsigned)ReadWordLE(File);
 BitsPerPixel = (unsigned)ReadWordLE(File);
 Compression = (unsigned)ReadDWordLE(File);
 fseek(File, 12, SEEK_CUR);
 NumColors = (unsigned)ReadDWordLE(File);
 fseek(File, 4, SEEK_CUR);
 RedMask = ReadDWordLE(File);
 GreenMask = ReadDWordLE(File);
 BlueMask = ReadDWordLE(File);
 AlphaMask = ReadDWordLE(File);
 }

 /* Check for problems or unsupported compression modes */
 if(*Width > MAX_IMAGE_SIZE || *Height > MAX_IMAGE_SIZE)
 {
 ErrorMessage("Image dimensions exceed MAX_IMAGE_SIZE.\n");
 goto Catch;
 }

 if(feof(File) || NumPlanes != 1 || Compression > 3)
 goto Catch;

 /* Allocate the image data */
 if(!(*Image = (uint32_t *)Malloc(sizeof(uint32_t)*((long int)*Width)*((long int)*Height))))
 goto Catch;

 /* Read palette */
 if(BitsPerPixel <= 8)
 {
 fseek(File, 14 + InfoSize, SEEK_SET);

 if(!NumColors)
 NumColors = 1 << BitsPerPixel;

 if(!(Palette = (uint32_t *)Malloc(sizeof(uint32_t)*256)))
 goto Catch;

 for(i = 0, PalettePtr = (uint8_t *)Palette; i < NumColors; i++)
 {
 PalettePtr[3] = 255; /* Set alpha */
 PalettePtr[2] = getc(File); /* Read blue component */
 PalettePtr[1] = getc(File); /* Read green component */
 PalettePtr[0] = getc(File); /* Read red component */
 PalettePtr += 4;

 if(!Os2Bmp)
 getc(File); /* Skip extra byte (for non-OS/2 bitmaps) */
 }

 for(; i < 256; i++) /* Fill the rest of the palette with the first color */
 Palette[i] = Palette[0];
 }

 if(fseek(File, ImageDataOffset, SEEK_SET) || feof(File))
 {
 ErrorMessage("File error.\n");
 goto Catch;
 }

 /*** Read the bitmap image data ***/
 switch(Compression)
 {
 case 0: /* Uncompressed data */
 switch(BitsPerPixel)
 {
 case 1: /* Read 1-bit uncompressed indexed data */
 Success = ReadBmp1Bit(*Image, *Width, *Height, File, Palette);
 break;
 case 4: /* Read 4-bit uncompressed indexed data */
 Success = ReadBmp4Bit(*Image, *Width, *Height, File, Palette);
 break;
 case 8: /* Read 8-bit uncompressed indexed data */
 Success = ReadBmp8Bit(*Image, *Width, *Height, File, Palette);
 break;
 case 24: /* Read 24-bit BGR image data */
 Success = ReadBmp24Bit(*Image, *Width, *Height, File);
 break;
 case 16: /* Read 16-bit data */
 Success = ReadBmp16Bit(*Image, *Width, *Height, File,
 0x001F << 10, 0x001F << 5, 0x0001F, 0);
 break;
 case 32: /* Read 32-bit BGRA image data */
 Success = ReadBmp32Bit(*Image, *Width, *Height, File,
 0x00FF0000, 0x0000FF00, 0x000000FF, 0xFF000000);
 break;
 }
 break;
 case 1: /* 8-bit RLE */
 if(BitsPerPixel == 8)
 Success = ReadBmp8BitRle(*Image, *Width, *Height, File, Palette);
 break;
 case 2: /* 4-bit RLE */
 if(BitsPerPixel == 4)
 Success = ReadBmp4BitRle(*Image, *Width, *Height, File, Palette);
 break;
 case 3: /* Bitfields data */
 switch(BitsPerPixel)
 {
 case 16: /* Read 16-bit bitfields data */
 Success = ReadBmp16Bit(*Image, *Width, *Height, File,
 RedMask, GreenMask, BlueMask, AlphaMask);
 break;
 case 32: /* Read 32-bit bitfields data */
 Success = ReadBmp32Bit(*Image, *Width, *Height, File,
 RedMask, GreenMask, BlueMask, AlphaMask);
 break;
 }
 break;
 }

 if(!Success)
 ErrorMessage("Error reading BMP data.\n");

Catch:	/* There was a problem, clean up and exit */
 if(Palette)
 Free(Palette);

 if(!Success && *Image)
 Free(*Image);

 return Success;
}

/**
* @brief Write a BMP image
*
* @param Image pointer to RGBA image data
* @param Width, Height the image dimensions
* @param File stdio FILE pointer
*
* @return 1 on success, 0 on failure
*
* This function is called by \c WriteImage to write BMP images. The caller
* should open \c File in binary write mode. When \c WriteBmp is complete,
* the caller should close \c File.
*
* The image is generally saved in uncompressed 24-bit RGB format. But where
* possible, the image is saved using an 8-bit palette for a substantial
* decrease in file size. The image data is always saved losslessly.
*
* @note The alpha channel is lost when saving to BMP. It is possible to write
* the alpha channel in a 32-bit BMP image, however, such images are not
* widely supported. RGB 24-bit BMP on the other hand is well supported.
*/
static int WriteBmp(const uint32_t *Image, int Width, int Height, FILE *File)
{
 const uint8_t *ImagePtr = (uint8_t *)Image;
 uint32_t *Palette = NULL;
 uint32_t Pixel;
 long int ImageSize;
 int UsePalette, NumColors, UseColor, UseAlpha;
 int x, y, i, RowPadding, Success = 0;

 if(!Image)
 return 0;

 Palette = GetImagePalette(&NumColors, &UseColor, &UseAlpha,
 Image, Width, Height);

 /* Decide whether to use 8-bit palette or 24-bit RGB format */
 if(Palette && 2*NumColors < Width*Height)
 UsePalette = 1;
 else
 UsePalette = NumColors = 0;

 /* Tell File to use buffering */
 setvbuf(File, 0, _IOFBF, FILE_BUFFER_CAPACITY);

 if(UsePalette)
 {
 RowPadding = (-Width)&3;
 ImageSize = (Width + RowPadding)*((long int)Height);
 }
 else
 {
 RowPadding = (-3*Width)&3;
 ImageSize = (3*Width + RowPadding)*((long int)Height);
 }

 /*** Write the header ***/

 /* Write the BMP header */
 putc(0x42, File); /* Magic numbers */
 putc(0x4D, File);

 /* Filesize */
 WriteDWordLE(54 + 4*NumColors + ImageSize, File);

 WriteDWordLE(0, File); /* Reserved fields */
 WriteDWordLE(54 + 4*NumColors, File); /* Image data offset */

 /* Write the infoheader */
 WriteDWordLE(40, File); /* Infoheader size */
 WriteDWordLE(Width, File); /* Image width */
 WriteDWordLE(Height, File); /* Image height */
 WriteWordLE(1, File); /* Number of colorplanes */
 WriteWordLE((UsePalette) ? 8:24, File); /* Bits per pixel */
 WriteDWordLE(0, File); /* Compression method (none) */
 WriteDWordLE(ImageSize, File); /* Image size */
 WriteDWordLE(2835, File); /* HResolution (2835=72dpi) */
 WriteDWordLE(2835, File); /* VResolution */

 /* Number of colors */
 WriteDWordLE((!UsePalette || NumColors == 256) ? 0:NumColors, File);

 WriteDWordLE(0, File); /* Important colors */

 if(ferror(File))
 {
 ErrorMessage("Error during write to file.\n");
 goto Catch;
 }

 if(UsePalette)
 { /* Write the Palette */
 for(i = 0; i < NumColors; i++)
 {
 Pixel = Palette[i];
 putc(((uint8_t *)&Pixel)[2], File); /* Blue */
 putc(((uint8_t *)&Pixel)[1], File); /* Green */
 putc(((uint8_t *)&Pixel)[0], File); /* Red */
 putc(0, File); /* Unused */
 }
 }

 /* Write the image data */
 Width <<= 2;
 ImagePtr += ((long int)Width)*((long int)Height - 1);

 for(y = Height; y; y--, ImagePtr -= Width)
 {
 if(UsePalette)
 { /* 8-bit palette image data */
 for(x = 0; x < Width; x += 4)
 {
 Pixel = *((uint32_t *)(ImagePtr + x));

 for(i = 0; i < NumColors; i++)
 if(Pixel == Palette[i])
 break;

 putc(i, File);
 }
 }
 else
 { /* 24-bit RGB image data */
 for(x = 0; x < Width; x += 4)
 {
 putc(ImagePtr[x+2], File); /* Write blue component */
 putc(ImagePtr[x+1], File); /* Write green component */
 putc(ImagePtr[x+0], File); /* Write red component */
 }
 }

 for(x = RowPadding; x; x--) /* Write row padding */
 putc(0, File);
 }

 if(ferror(File))
 {
 ErrorMessage("Error during write to file.\n");
 goto Catch;
 }

 Success = 1;
Catch:
 if(Palette)
 Free(Palette);
 return Success;
}

#ifdef USE_LIBJPEG
/**
* @brief Struct that assists in customizing libjpeg error management
*
* This struct is used in combination with JerrExit (static function defined
* here in utiljpeg.c) to have control over how libjpeg errors are displayed.
*/
typedef struct{
 struct jpeg_error_mgr pub;
 jmp_buf jmpbuf;
} hooked_jerr;

/** @brief Callback for displaying libjpeg errors */
METHODDEF(void) JerrExit(j_common_ptr cinfo)
{
 hooked_jerr *Jerr = (hooked_jerr *) cinfo->err;
 (*cinfo->err->output_message)(cinfo);
 longjmp(Jerr->jmpbuf, 1);
}

/**
* @brief Read a JPEG (Joint Picture Experts Group) image file as RGBA data
*
* @param Image, Width, Height pointers to be filled with the pointer
* to the image data and the image dimensions.
* @param File stdio FILE pointer pointing to the beginning of the BMP file
*
* @return 1 on success, 0 on failure
*
* This function is called by \c ReadImage to read JPEG images. Before calling
* \c ReadJpeg, the caller should open \c File as a FILE pointer in binary read
* mode. When \c ReadJpeg is complete, the caller should close \c File.
*/
static int ReadJpeg(uint32_t **Image, int *Width, int *Height, FILE *File)
{
 struct jpeg_decompress_struct cinfo;
 hooked_jerr Jerr;
 JSAMPARRAY Buffer;
 uint8_t *ImagePtr;
 unsigned i, RowSize;

 *Image = 0;
 *Width = *Height = 0;
 cinfo.err = jpeg_std_error(&Jerr.pub);
 Jerr.pub.error_exit = JerrExit;

 if(setjmp(Jerr.jmpbuf))	
 goto Catch;	/* If this code is reached, libjpeg has signaled an error. */

 jpeg_create_decompress(&cinfo);
 jpeg_stdio_src(&cinfo, File);
 jpeg_read_header(&cinfo, 1);
 cinfo.out_color_space = JCS_RGB; /* Ask for RGB image data */
 jpeg_start_decompress(&cinfo);
 *Width = (int)cinfo.output_width;
 *Height = (int)cinfo.output_height;

 if(*Width > MAX_IMAGE_SIZE || *Height > MAX_IMAGE_SIZE)
 {
 ErrorMessage("Image dimensions exceed MAX_IMAGE_SIZE.\n");
 jpeg_abort_decompress(&cinfo);
 goto Catch;
 }

 /* Allocate image memory */
 if(!(*Image = (uint32_t *)Malloc(sizeof(uint32_t)
 *((size_t)*Width)*((size_t)*Height))))
 {
 jpeg_abort_decompress(&cinfo);
 goto Catch;
 }

 /* Allocate a one-row-high array that will go away when done */
 RowSize = cinfo.output_width * cinfo.output_components;
 Buffer = (*cinfo.mem->alloc_sarray) ((j_common_ptr) &cinfo,
 JPOOL_IMAGE, RowSize, 1);
 ImagePtr = (uint8_t *)*Image;

 while(cinfo.output_scanline < cinfo.output_height)
 for(jpeg_read_scanlines(&cinfo, Buffer, 1), i = 0; i < RowSize; i += 3)
 {
 (ImagePtr++) = Buffer[0][i]; / Red */
 (ImagePtr++) = Buffer[0][i+1]; / Green */
 (ImagePtr++) = Buffer[0][i+2]; / Blue */
 *(ImagePtr++) = 0xFF;
 }

 jpeg_finish_decompress(&cinfo);
 jpeg_destroy_decompress(&cinfo);
 return 1;

Catch:
 if(*Image)
 Free(*Image);

 *Width = *Height = 0;
 jpeg_destroy_decompress(&cinfo);
 return 0;
}

/**
* @brief Write a JPEG image as RGB data
*
* @param Image pointer to RGBA image data
* @param Width, Height the image dimensions
* @param File stdio FILE pointer
*
* @return 1 on success, 0 on failure
*
* This function is called by \c WriteImage to write JPEG images. The caller
* should open \c File in binary write mode. When \c WriteJpeg is complete,
* the caller should close \c File.
*
* @note The alpha channel is lost when saving to JPEG since the JPEG format
* does not support RGBA images. (It is in principle possible to store
* four channels in a JPEG as a CMYK image, but storing alpha this way
* is strange.)
*/
static int WriteJpeg(const uint32_t *Image, int Width, int Height,
 FILE *File, int Quality)
{
 struct jpeg_compress_struct cinfo;
 hooked_jerr Jerr;
 uint8_t *Buffer = 0, *ImagePtr;
 unsigned i, RowSize;

 if(!Image)
 return 0;

 cinfo.err = jpeg_std_error(&Jerr.pub);
 Jerr.pub.error_exit = JerrExit;

 if(setjmp(Jerr.jmpbuf))
 goto Catch;	/* If this code is reached, libjpeg has signaled an error. */

 jpeg_create_compress(&cinfo);
 jpeg_stdio_dest(&cinfo, File);
 cinfo.image_width = Width;
 cinfo.image_height = Height;
 cinfo.input_components = 3;
 cinfo.in_color_space = JCS_RGB;
 jpeg_set_defaults(&cinfo);
 jpeg_set_quality(&cinfo, (Quality < 100) ? Quality : 100, 1);
 jpeg_start_compress(&cinfo, 1);

 RowSize = 3*Width;
 ImagePtr = (uint8_t *)Image;

 if(!(Buffer = (uint8_t *)Malloc(RowSize)))
 goto Catch;

 while(cinfo.next_scanline < cinfo.image_height)
 {
 for(i = 0; i < RowSize; i += 3)
 {
 Buffer[i] = ImagePtr[0]; /* Red */
 Buffer[i+1] = ImagePtr[1]; /* Green */
 Buffer[i+2] = ImagePtr[2]; /* Blue */
 ImagePtr += 4;
 }

 jpeg_write_scanlines(&cinfo, &Buffer, 1);
 }

 if(Buffer)
 Free(Buffer);

 jpeg_finish_compress(&cinfo);
 jpeg_destroy_compress(&cinfo);
 return 1;
Catch:
 if(Buffer)
 Free(Buffer);

 jpeg_destroy_compress(&cinfo);
 return 0;
}
#endif /* USE_LIBJPEG */

#ifdef USE_LIBPNG
/**
* @brief Read a PNG (Portable Network Graphics) image file as RGBA data
*
* @param Image, Width, Height pointers to be filled with the pointer
* to the image data and the image dimensions.
* @param File stdio FILE pointer pointing to the beginning of the PNG file
*
* @return 1 on success, 0 on failure
*
* This function is called by \c ReadImage to read PNG images. Before calling
* \c ReadPng, the caller should open \c File as a FILE pointer in binary read
* mode. When \c ReadPng is complete, the caller should close \c File.
*/
static int ReadPng(uint32_t **Image, int *Width, int *Height, FILE *File)
{
 png_bytep *RowPointers;
 png_byte Header[8];
 png_structp Png;
 png_infop Info;
 png_uint_32 PngWidth, PngHeight;
 int BitDepth, ColorType, InterlaceType;
 unsigned Row;

 *Image = 0;
 *Width = *Height = 0;

 /* Check that file is a PNG file */
 if(fread(Header, 1, 8, File) != 8 || png_sig_cmp(Header, 0, 8))
 return 0;

 /* Read the info header */
 if(!(Png = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL))
 || !(Info = png_create_info_struct(Png)))
 {
 if(Png)
 png_destroy_read_struct(&Png, (png_infopp)NULL, (png_infopp)NULL);

 return 0;
 }

 if(setjmp(png_jmpbuf(Png)))
 goto Catch; /* If this code is reached, libpng has signaled an error. */

 png_init_io(Png, File);
 png_set_sig_bytes(Png, 8);
 png_set_user_limits(Png, MAX_IMAGE_SIZE, MAX_IMAGE_SIZE);
 png_read_info(Png, Info);
 png_get_IHDR(Png, Info, &PngWidth, &PngHeight, &BitDepth, &ColorType,
 &InterlaceType, (int*)NULL, (int*)NULL);
 *Width = (int)PngWidth;
 *Height = (int)PngHeight;

 /* Tell libpng to convert everything to 32-bit RGBA */
 if(ColorType == PNG_COLOR_TYPE_PALETTE)
 png_set_palette_to_rgb(Png);
 if(ColorType == PNG_COLOR_TYPE_GRAY && BitDepth < 8)
 png_set_expand_gray_1_2_4_to_8(Png);
 if(ColorType == PNG_COLOR_TYPE_GRAY || ColorType == PNG_COLOR_TYPE_GRAY_ALPHA)
 png_set_gray_to_rgb(Png);
 if(png_get_valid(Png, Info, PNG_INFO_tRNS))
 png_set_tRNS_to_alpha(Png);

 png_set_strip_16(Png);
 png_set_filler(Png, 0xFF, PNG_FILLER_AFTER);

 png_set_interlace_handling(Png);
 png_read_update_info(Png, Info);

 /* Allocate image memory and row pointers */
 if(!(*Image = (uint32_t *)Malloc(sizeof(uint32_t)
 *((size_t)*Width)*((size_t)*Height)))
 || !(RowPointers = (png_bytep *)Malloc(sizeof(png_bytep)
 *PngHeight)))
 goto Catch;

 for(Row = 0; Row < PngHeight; Row++)
 RowPointers[Row] = (png_bytep)(*Image + PngWidth*Row);

 /* Read the image data */
 png_read_image(Png, RowPointers);
 Free(RowPointers);
 png_destroy_read_struct(&Png, &Info, (png_infopp)NULL);
 return 1;

Catch:
 if(*Image)
 Free(*Image);

 *Width = *Height = 0;
 png_destroy_read_struct(&Png, &Info, (png_infopp)NULL);
 return 0;
}

/**
* @brief Write a PNG image
*
* @param Image pointer to RGBA image data
* @param Width, Height the image dimensions
* @param File stdio FILE pointer
*
* @return 1 on success, 0 on failure
*
* This function is called by \c WriteImage to write PNG images. The caller
* should open \c File in binary write mode. When \c WritePng is complete,
* the caller should close \c File.
*
* The image is written as 8-bit grayscale, indexed (PLTE), indexed with
* transparent colors (PLTE+tRNS), RGB, or RGBA data (in that order of
* preference) depending on the image data to encourage smaller file size. The
* image data is always saved losslessly. In principle, PNG can also make use
* of the pixel bit depth (1, 2, 4, 8, or 16) to reduce the file size further,
* but it is not done here.
*/
static int WritePng(const uint32_t *Image, int Width, int Height, FILE *File)
{
 const uint32_t *ImagePtr;
 uint32_t *Palette = NULL;
 uint8_t *RowBuffer;
 png_structp Png;
 png_infop Info;
 png_color PngPalette[256];
 png_byte PngTrans[256];
 uint32_t Pixel;
 int PngColorType, NumColors, UseColor, UseAlpha;
 int x, y, i, Success = 0;

 if(!Image)
 return 0;

 if(!(RowBuffer = (uint8_t *)Malloc(4*Width)))
 return 0;

 if(!(Png = png_create_write_struct(PNG_LIBPNG_VER_STRING,
 NULL, NULL, NULL))
 || !(Info = png_create_info_struct(Png)))
 {
 if(Png)
 png_destroy_write_struct(&Png, (png_infopp)NULL);

 Free(RowBuffer);
 return 0;
 }

 if(setjmp(png_jmpbuf(Png)))
 { /* If this code is reached, libpng has signaled an error. */
 goto Catch;
 }

 /* Configure PNG output */
 png_init_io(Png, File);
 png_set_compression_level(Png, Z_BEST_COMPRESSION);

 Palette = GetImagePalette(&NumColors, &UseColor, &UseAlpha,
 Image, Width, Height);

 /* The PNG image is written according to the analysis of GetImagePalette */
 if(Palette && UseColor)
 PngColorType = PNG_COLOR_TYPE_PALETTE;
 else if(UseAlpha)
 PngColorType = PNG_COLOR_TYPE_RGB_ALPHA;
 else if(UseColor)
 PngColorType = PNG_COLOR_TYPE_RGB;
 else
 PngColorType = PNG_COLOR_TYPE_GRAY;

 png_set_IHDR(Png, Info, Width, Height, 8, PngColorType,
 PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);

 if(PngColorType == PNG_COLOR_TYPE_PALETTE)
 {
 for(i = 0; i < NumColors; i++)
 {
 Pixel = Palette[i];
 PngPalette[i].red = ((uint8_t *)&Pixel)[0];
 PngPalette[i].green = ((uint8_t *)&Pixel)[1];
 PngPalette[i].blue = ((uint8_t *)&Pixel)[2];
 PngTrans[i] = ((uint8_t *)&Pixel)[3];
 }

 png_set_PLTE(Png, Info, PngPalette, NumColors);

 if(UseAlpha)
 png_set_tRNS(Png, Info, PngTrans, NumColors, NULL);
 }

 png_write_info(Png, Info);

 for(y = 0, ImagePtr = Image; y < Height; y++, ImagePtr += Width)
 {
 switch(PngColorType)
 {
 case PNG_COLOR_TYPE_RGB_ALPHA:
 png_write_row(Png, (png_bytep)ImagePtr);
 break;
 case PNG_COLOR_TYPE_RGB:
 for(x = 0; x < Width; x++)
 {
 Pixel = ImagePtr[x];
 RowBuffer[3*x + 0] = ((uint8_t *)&Pixel)[0];
 RowBuffer[3*x + 1] = ((uint8_t *)&Pixel)[1];
 RowBuffer[3*x + 2] = ((uint8_t *)&Pixel)[2];
 }

 png_write_row(Png, (png_bytep)RowBuffer);
 break;
 case PNG_COLOR_TYPE_GRAY:
 for(x = 0; x < Width; x++)
 {
 Pixel = ImagePtr[x];
 RowBuffer[x] = ((uint8_t *)&Pixel)[0];
 }

 png_write_row(Png, (png_bytep)RowBuffer);
 break;
 case PNG_COLOR_TYPE_PALETTE:
 for(x = 0; x < Width; x++)
 {
 Pixel = ImagePtr[x];

 for(i = 0; i < NumColors; i++)
 if(Pixel == Palette[i])
 break;

 RowBuffer[x] = i;
 }

 png_write_row(Png, (png_bytep)RowBuffer);
 break;
 }
 }

 png_write_end(Png, Info);
 Success = 1;
Catch:
 if(Palette)
 Free(Palette);
 png_destroy_write_struct(&Png, &Info);
 Free(RowBuffer);
 return Success;
}
#endif /* USE_LIBPNG */

#ifdef USE_LIBTIFF
/**
* @brief Read a TIFF (Tagged Information File Format) image file as RGBA data
*
* @param Image, Width, Height pointers to be filled with the pointer
* to the image data and the image dimensions.
* @param File stdio FILE pointer pointing to the beginning of the PNG file
*
* @return 1 on success, 0 on failure
*
* This function is called by \c ReadImage to read TIFF images. Before calling
* \c ReadTiff, the caller should open \c File as a FILE pointer in binary read
* mode. When \c ReadTiff is complete, the caller should close \c File.
*/
static int ReadTiff(uint32_t **Image, int *Width, int *Height,
 const char *FileName, unsigned Directory)
{
 TIFF *Tiff;
 uint32 ImageWidth, ImageHeight;

 *Image = 0;
 *Width = *Height = 0;

 if(!(Tiff = TIFFOpen(FileName, "r")))
 {
 ErrorMessage("TIFFOpen failed to open file.\n");
 return 0;
 }

 TIFFSetDirectory(Tiff, Directory);
 TIFFGetField(Tiff, TIFFTAG_IMAGEWIDTH, &ImageWidth);
 TIFFGetField(Tiff, TIFFTAG_IMAGELENGTH, &ImageHeight);
 *Width = (int)ImageWidth;
 *Height = (int)ImageHeight;

 if(*Width > MAX_IMAGE_SIZE || *Height > MAX_IMAGE_SIZE)
 {
 ErrorMessage("Image dimensions exceed MAX_IMAGE_SIZE.\n");
 goto Catch;
 }

 if(!(*Image = (uint32_t *)Malloc(sizeof(uint32_t)*ImageWidth*ImageHeight)))
 goto Catch;

 if(!TIFFReadRGBAImageOriented(Tiff, ImageWidth, ImageHeight,
 (uint32 *)*Image, ORIENTATION_TOPLEFT, 1))
 goto Catch;

 TIFFClose(Tiff);
 return 1;

Catch:
 if(*Image)
 Free(*Image);

 *Width = *Height = 0;
 TIFFClose(Tiff);
 return 0;
}

/**
* @brief Write a TIFF image as RGBA data
*
* @param Image pointer to RGBA image data
* @param Width, Height the image dimensions
* @param File stdio FILE pointer
*
* @return 1 on success, 0 on failure
*
* This function is called by \c WriteImage to write TIFF images. The caller
* should open \c File in binary write mode. When \c WriteTiff is complete,
* the caller should close \c File.
*/
static int WriteTiff(const uint32_t *Image, int Width, int Height,
 const char *FileName)
{
 TIFF *Tiff;
 uint16 Alpha = EXTRASAMPLE_ASSOCALPHA;

 if(!Image)
 return 0;

 if(!(Tiff = TIFFOpen(FileName, "w")))
 {
 ErrorMessage("TIFFOpen failed to open file.\n");
 return 0;
 }

 if(TIFFSetField(Tiff, TIFFTAG_IMAGEWIDTH, Width) != 1
 || TIFFSetField(Tiff, TIFFTAG_IMAGELENGTH, Height) != 1
 || TIFFSetField(Tiff, TIFFTAG_SAMPLESPERPIXEL, 4) != 1
 || TIFFSetField(Tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB) != 1
 || TIFFSetField(Tiff, TIFFTAG_EXTRASAMPLES, 1, &Alpha) != 1
 || TIFFSetField(Tiff, TIFFTAG_BITSPERSAMPLE, 8) != 1
 || TIFFSetField(Tiff, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT) != 1
 || TIFFSetField(Tiff, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG) != 1
 /* Compression can be COMPRESSION_NONE, COMPRESSION_DEFLATE,
 COMPRESSION_LZW, or COMPRESSION_JPEG */
 || TIFFSetField(Tiff, TIFFTAG_COMPRESSION, COMPRESSION_LZW) != 1)
 {
 ErrorMessage("TIFFSetField failed.\n");
 TIFFClose(Tiff);
 return 0;
 }

 if(TIFFWriteEncodedStrip(Tiff, 0, (tdata_t)Image,
 4*((size_t)Width)*((size_t)Height)) < 0)
 {
 ErrorMessage("Error writing data to file.\n");
 TIFFClose(Tiff);
 return 0;
 }

 TIFFClose(Tiff);
 return 1;
}
#endif /* USE_LIBTIFF */

/** @brief Convert from RGBA U8 to a specified format */
static void *ConvertToFormat(uint32_t *Src, int Width, int Height,
 unsigned Format)
{
 const int NumPixels = Width*Height;
 const int NumChannels = (Format & IMAGEIO_GRAYSCALE) ?
 1 : ((Format & IMAGEIO_STRIP_ALPHA) ? 3 : 4);
 const int ChannelStride = (Format & IMAGEIO_PLANAR) ? NumPixels : 1;
 const int ChannelStride2 = 2*ChannelStride;
 const int ChannelStride3 = 3*ChannelStride;
 double *DestD;
 float *DestF;
 uint8_t *DestU8;
 uint32_t Pixel;
 int Order[4] = {0, 1, 2, 3};
 int i, x, y, PixelStride, RowStride;

 PixelStride = (Format & IMAGEIO_PLANAR) ? 1 : NumChannels;

 if(Format & IMAGEIO_COLUMNMAJOR)
 {
 RowStride = PixelStride;
 PixelStride *= Height;
 }
 else
 RowStride = Width*PixelStride;

 if(Format & IMAGEIO_BGRFLIP)
 {
 Order[0] = 2;
 Order[2] = 0;
 }

 if((Format & IMAGEIO_AFLIP) && !(Format & IMAGEIO_STRIP_ALPHA))
 {
 Order[3] = Order[2];
 Order[2] = Order[1];
 Order[1] = Order[0];
 Order[0] = 3;
 }

 switch(Format & (IMAGEIO_U8 | IMAGEIO_SINGLE | IMAGEIO_DOUBLE))
 {
 case IMAGEIO_U8: /* Destination type is uint8_t */
 if(!(DestU8 = (uint8_t *)Malloc(sizeof(uint8_t)*NumChannels*NumPixels)))
 return NULL;

 switch(NumChannels)
 {
 case 1: /* Convert RGBA U8 to grayscale U8 */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestU8[i] = (uint8_t)(0.299f*((uint8_t *)&Pixel)[0]
 + 0.587f*((uint8_t *)&Pixel)[1]
 + 0.114f*((uint8_t *)&Pixel)[2] + 0.5f);
 }
 break;
 case 3: /* Convert RGBA U8 to RGB (or BGR) U8 */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestU8[i] = ((uint8_t *)&Pixel)[Order[0]];
 DestU8[i + ChannelStride] = ((uint8_t *)&Pixel)[Order[1]];
 DestU8[i + ChannelStride2] = ((uint8_t *)&Pixel)[Order[2]];
 }
 break;
 case 4: /* Convert RGBA U8 to RGBA (or BGRA, ARGB, or ABGR) U8 */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestU8[i] = ((uint8_t *)&Pixel)[Order[0]];
 DestU8[i + ChannelStride] = ((uint8_t *)&Pixel)[Order[1]];
 DestU8[i + ChannelStride2] = ((uint8_t *)&Pixel)[Order[2]];
 DestU8[i + ChannelStride3] = ((uint8_t *)&Pixel)[Order[3]];
 }
 break;
 }
 return DestU8;
 case IMAGEIO_SINGLE: /* Destination type is float */
 if(!(DestF = (float *)Malloc(sizeof(float)*NumChannels*NumPixels)))
 return NULL;

 switch(NumChannels)
 {
 case 1: /* Convert RGBA U8 to grayscale float */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestF[i] = 1.172549019607843070675535e-3f*((uint8_t *)&Pixel)[0]
 + 2.301960784313725357840079e-3f*((uint8_t *)&Pixel)[1]
 + 4.470588235294117808150007e-4f*((uint8_t *)&Pixel)[2];
 }
 break;
 case 3: /* Convert RGBA U8 to RGB (or BGR) float */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestF[i] = ((uint8_t *)&Pixel)[Order[0]]/255.0f;
 DestF[i + ChannelStride] = ((uint8_t *)&Pixel)[Order[1]]/255.0f;
 DestF[i + ChannelStride2] = ((uint8_t *)&Pixel)[Order[2]]/255.0f;
 }
 break;
 case 4: /* Convert RGBA U8 to RGBA (or BGRA, ARGB, or ABGR) float */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestF[i] = ((uint8_t *)&Pixel)[Order[0]]/255.0f;
 DestF[i + ChannelStride] = ((uint8_t *)&Pixel)[Order[1]]/255.0f;
 DestF[i + ChannelStride2] = ((uint8_t *)&Pixel)[Order[2]]/255.0f;
 DestF[i + ChannelStride3] = ((uint8_t *)&Pixel)[Order[3]]/255.0f;
 }
 break;
 }
 return DestF;
 case IMAGEIO_DOUBLE: /* Destination type is double */
 if(!(DestD = (double *)Malloc(sizeof(double)*NumChannels*NumPixels)))
 return NULL;

 switch(NumChannels)
 {
 case 1: /* Convert RGBA U8 to grayscale double */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestD[i] = 1.172549019607843070675535e-3*((uint8_t *)&Pixel)[0]
 + 2.301960784313725357840079e-3*((uint8_t *)&Pixel)[1]
 + 4.470588235294117808150007e-4*((uint8_t *)&Pixel)[2];
 }
 break;
 case 3: /* Convert RGBA U8 to RGB (or BGR) double */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestD[i] = ((uint8_t *)&Pixel)[Order[0]]/255.0;
 DestD[i + ChannelStride] = ((uint8_t *)&Pixel)[Order[1]]/255.0;
 DestD[i + ChannelStride2] = ((uint8_t *)&Pixel)[Order[2]]/255.0;
 }
 break;
 case 4: /* Convert RGBA U8 to RGBA (or BGRA, ARGB, or ABGR) double */
 for(y = 0; y < Height; y++, Src += Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 Pixel = Src[x];
 DestD[i] = ((uint8_t *)&Pixel)[Order[0]]/255.0;
 DestD[i + ChannelStride] = ((uint8_t *)&Pixel)[Order[1]]/255.0;
 DestD[i + ChannelStride2] = ((uint8_t *)&Pixel)[Order[2]]/255.0;
 DestD[i + ChannelStride3] = ((uint8_t *)&Pixel)[Order[3]]/255.0;
 }
 break;
 }
 return DestD;
 default:
 return NULL;
 }
}

/** @brief Convert from a specified format to RGBA U8 */
static uint32_t *ConvertFromFormat(void *Src, int Width, int Height,
 unsigned Format)
{
 const int NumPixels = Width*Height;
 const int NumChannels = (Format & IMAGEIO_GRAYSCALE) ?
 1 : ((Format & IMAGEIO_STRIP_ALPHA) ? 3 : 4);
 const int ChannelStride = (Format & IMAGEIO_PLANAR) ? NumPixels : 1;
 const int ChannelStride2 = 2*ChannelStride;
 const int ChannelStride3 = 3*ChannelStride;
 double *SrcD = (double *)Src;
 float *SrcF = (float *)Src;
 uint8_t *SrcU8 = (uint8_t *)Src;
 uint8_t *Dest, *DestPtr;
 int Order[4] = {0, 1, 2, 3};
 int i, x, y, PixelStride, RowStride;

 if(!(Dest = (uint8_t *)Malloc(sizeof(uint32_t)*NumPixels)))
 return NULL;

 DestPtr = Dest;
 PixelStride = (Format & IMAGEIO_PLANAR) ? 1 : NumChannels;

 if(Format & IMAGEIO_COLUMNMAJOR)
 {
 RowStride = PixelStride;
 PixelStride *= Height;
 }
 else
 RowStride = Width*PixelStride;

 if(Format & IMAGEIO_BGRFLIP)
 {
 Order[0] = 2;
 Order[2] = 0;
 }

 if((Format & IMAGEIO_AFLIP) && !(Format & IMAGEIO_STRIP_ALPHA))
 {
 Order[3] = Order[2];
 Order[2] = Order[1];
 Order[1] = Order[0];
 Order[0] = 3;
 }

 switch(Format & (IMAGEIO_U8 | IMAGEIO_SINGLE | IMAGEIO_DOUBLE))
 {
 case IMAGEIO_U8: /* Source type is uint8_t */
 switch(NumChannels)
 {
 case 1: /* Convert grayscale U8 to RGBA U8 */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x] =
 DestPtr[4*x + 1] =
 DestPtr[4*x + 2] = SrcU8[i];
 DestPtr[4*x + 3] = 255;
 }
 break;
 case 3: /* Convert RGB (or BGR) U8 to RGBA U8 */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x + Order[0]] = SrcU8[i];
 DestPtr[4*x + Order[1]] = SrcU8[i + ChannelStride];
 DestPtr[4*x + Order[2]] = SrcU8[i + ChannelStride2];
 DestPtr[4*x + 3] = 255;
 }
 break;
 case 4: /* Convert RGBA U8 to RGBA (or BGRA, ARGB, or ABGR) U8 */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x + Order[0]] = SrcU8[i];
 DestPtr[4*x + Order[1]] = SrcU8[i + ChannelStride];
 DestPtr[4*x + Order[2]] = SrcU8[i + ChannelStride2];
 DestPtr[4*x + Order[3]] = SrcU8[i + ChannelStride3];
 }
 break;
 }
 break;
 case IMAGEIO_SINGLE: /* Source type is float */
 switch(NumChannels)
 {
 case 1: /* Convert grayscale float to RGBA U8 */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x] =
 DestPtr[4*x + 1] =
 DestPtr[4*x + 2] = ROUNDCLAMPF(SrcF[i]);
 DestPtr[4*x + 3] = 255;
 }
 break;
 case 3: /* Convert RGBA U8 to RGB (or BGR) float */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x + Order[0]] = ROUNDCLAMPF(SrcF[i]);
 DestPtr[4*x + Order[1]] = ROUNDCLAMPF(SrcF[i + ChannelStride]);
 DestPtr[4*x + Order[2]] = ROUNDCLAMPF(SrcF[i + ChannelStride2]);
 DestPtr[4*x + 3] = 255;
 }
 break;
 case 4: /* Convert RGBA U8 to RGBA (or BGRA, ARGB, or ABGR) float */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x + Order[0]] = ROUNDCLAMPF(SrcF[i]);
 DestPtr[4*x + Order[1]] = ROUNDCLAMPF(SrcF[i + ChannelStride]);
 DestPtr[4*x + Order[2]] = ROUNDCLAMPF(SrcF[i + ChannelStride2]);
 DestPtr[4*x + Order[3]] = ROUNDCLAMPF(SrcF[i + ChannelStride3]);
 }
 break;
 }
 break;
 case IMAGEIO_DOUBLE: /* Source type is double */
 switch(NumChannels)
 {
 case 1: /* Convert grayscale double to RGBA U8 */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x] =
 DestPtr[4*x + 1] =
 DestPtr[4*x + 2] = ROUNDCLAMP(SrcD[i]);
 DestPtr[4*x + 3] = 255;
 }
 break;
 case 3: /* Convert RGB (or BGR) double to RGBA U8 */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x + Order[0]] = ROUNDCLAMP(SrcD[i]);
 DestPtr[4*x + Order[1]] = ROUNDCLAMP(SrcD[i + ChannelStride]);
 DestPtr[4*x + Order[2]] = ROUNDCLAMP(SrcD[i + ChannelStride2]);
 DestPtr[4*x + 3] = 255;;
 }
 break;
 case 4: /* Convert RGBA (or BGRA, ARGB, or ABGR) double to RGBA U8 */
 for(y = 0; y < Height; y++, DestPtr += 4*Width)
 for(x = 0, i = RowStride*y; x < Width; x++, i += PixelStride)
 {
 DestPtr[4*x + Order[0]] = ROUNDCLAMP(SrcD[i]);
 DestPtr[4*x + Order[1]] = ROUNDCLAMP(SrcD[i + ChannelStride]);
 DestPtr[4*x + Order[2]] = ROUNDCLAMP(SrcD[i + ChannelStride2]);
 DestPtr[4*x + Order[3]] = ROUNDCLAMP(SrcD[i + ChannelStride3]);
 }
 break;
 }
 break;
 default:
 return NULL;
 }

 return (uint32_t *)Dest;
}

/**
 * @brief Identify the file type of an image file by its magic numbers
 * @param Type destination buffer with space for at least 5 chars
 * @param FileName image file name
 * @return 1 on successful identification, 0 on failure.
 *
 * The routine fills Type with an identifying string. If there is an error
 * or the file type is unknown, Type is set to a null string.
 */
int IdentifyImageType(char *Type, const char *FileName)
{
 FILE *File;
 uint32_t Magic;

 Type[0] = '\0';

 if(!(File = fopen(FileName, "rb")))
 return 0;

 /* Determine the file format by reading the first 4 bytes */
 Magic = ((uint32_t)getc(File));
 Magic |= ((uint32_t)getc(File)) << 8;
 Magic |= ((uint32_t)getc(File)) << 16;
 Magic |= ((uint32_t)getc(File)) << 24;

 /* Test for errors */
 if(ferror(File))
 {
 fclose(File);
 return 0;
 }

 fclose(File);

 if((Magic & 0x0000FFFFL) == 0x00004D42L) /* BMP */
 strcpy(Type, "BMP");
 else if((Magic & 0x00FFFFFFL) == 0x00FFD8FFL) /* JPEG/JFIF */
 strcpy(Type, "JPEG");
 else if(Magic == 0x474E5089L) /* PNG */
 strcpy(Type, "PNG");
 else if(Magic == 0x002A4949L || Magic == 0x2A004D4DL) /* TIFF */
 strcpy(Type, "TIFF");
 else if(Magic == 0x38464947L) /* GIF */
 strcpy(Type, "GIF");
 else if(Magic == 0x474E4D8AL) /* MNG */
 strcpy(Type, "MNG");
 else if((Magic & 0xF0FF00FFL) == 0x0001000AL /* PCX */
 && ((Magic >> 8) & 0xFF) < 6)
 strcpy(Type, "PCX");
 else
 return 0;

 return 1;
}

/**
* @brief Read an image file as 32-bit RGBA data
*
* @param Width, Height pointers to be filled with the image dimensions
* @param FileName image file name
* @param Format specifies the desired format for the image
*
* @return Pointer to the image data, or null on failure
*
* The calling syntax is that the filename is the input and \c Width,
* and \c Height and the returned pointer are outputs. \c ReadImage allocates
* memory for the image as one contiguous block of memory and returns a
* pointer. It is the responsibility of the caller to call \c Free on this
* pointer when done to release this memory.
*
* A non-null pointer indicates success. On failure, the returned pointer
* is null, and \c Width and \c Height are set to 0.
*
* The Format argument is used by specifying one of the data type options
*
* - IMAGEIO_U8: unsigned 8-bit components
* - IMAGEIO_SINGLE: float components
* - IMAGEIO_DOUBLE: double components
*
* and one of the channel options
*
* - IMAGEIO_GRAYSCALE: grayscale data
* - IMAGEIO_RGB: RGB color data (red is the first channel)
* - IMAGEIO_BGR: BGR color data (blue is the first channel)
* - IMAGEIO_RGBA: RGBA color+alpha data
* - IMAGEIO_BGRA: BGRA color+alpha data
* - IMAGEIO_ARGB: ARGB color+alpha data
* - IMAGEIO_ABGR: ABGR color+alpha data
*
* and optionally either or both of the ordering options
*
* - IMAGEIO_PLANAR: planar order instead of interleaved components
* - IMAGEIO_COLUMNMAJOR: column major order instead of row major order
*
@code
 uint32_t *Image;
 int Width, Height;

 if(!(Image = (uint32_t *)ReadImage(&Width, &Height, "myimage.bmp",
 IMAGEIO_U8 | IMAGEIO_RGBA)))
 return 0;

 printf("Read image of size %dx%d\n", Width, Height);

 ...

 Free(Image);
@endcode
*
* With the default formatting IMAGEIO_U8 | IMAGEIO_RGBA, the image is
* organized in standard row major top-down 32-bit RGBA order. The image
* is organized as
@verbatim
 (Top left) (Top right)
 Image[0] Image[1] ... Image[Width-1]
 Image[Width] Image[Width+1] ... Image[2*Width]

 Image[Width*(Height-1)] Image[Width*Height-1]
 (Bottom left) (Bottom right)
@endverbatim
* Each element \c Image[k] represents one RGBA pixel, which is a 32-bit
* bitfield. The components of pixel \c Image[k] can be unpacked as
@code
 uint8_t *Component = (uint8_t *)&Image[k];
 uint8_t Red = Component[0];
 uint8_t Green = Component[1];
 uint8_t Blue = Component[2];
 uint8_t Alpha = Component[3];
@endcode
* Each component is an unsigned 8-bit integer value with range 0-255. Most
* images do not have alpha information, in which case the alpha component
* is set to value 255 (full opacity).
*
* With IMAGEIO_SINGLE or IMAGEIO_DOUBLE, the components are values in the
* range 0 to 1.
*/
void *ReadImage(int *Width, int *Height,
 const char *FileName, unsigned Format)
{
 void *Image = NULL;
 uint32_t *ImageU8 = NULL;
 FILE *File;
 char Type[8];

 IdentifyImageType(Type, FileName);

 if(!(File = fopen(FileName, "rb")))
 {
 ErrorMessage("Unable to open file \"%s\".\n", FileName);
 return 0;
 }

 if(!strcmp(Type, "BMP"))
 {
 if(!ReadBmp(&ImageU8, Width, Height, File))
 ErrorMessage("Failed to read \"%s\".\n", FileName);
 }
 else if(!strcmp(Type, "JPEG"))
 {
#ifdef USE_LIBJPEG
 if(!(ReadJpeg(&ImageU8, Width, Height, File)))
 ErrorMessage("Failed to read \"%s\".\n", FileName);
#else
 ErrorMessage("File \"%s\" is a JPEG image.\n"
 "Compile with USE_LIBJPEG to enable JPEG reading.\n",
 FileName);
#endif
 }
 else if(!strcmp(Type, "PNG"))
 {
#ifdef USE_LIBPNG
 if(!(ReadPng(&ImageU8, Width, Height, File)))
 ErrorMessage("Failed to read \"%s\".\n", FileName);
#else
 ErrorMessage("File \"%s\" is a PNG image.\n"
 "Compile with USE_LIBPNG to enable PNG reading.\n",
 FileName);
#endif
 }
 else if(!strcmp(Type, "TIFF"))
 {
#ifdef USE_LIBTIFF
 fclose(File);

 if(!(ReadTiff(&ImageU8, Width, Height, FileName, 0)))
 ErrorMessage("Failed to read \"%s\".\n", FileName);

 File = NULL;
#else
 ErrorMessage("File \"%s\" is a TIFF image.\n"
 "Compile with USE_LIBTIFF to enable TIFF reading.\n",
 FileName);
#endif
 }
 else
 {
 /* File format is unsupported. */
 if(Type[0])
 ErrorMessage("File \"%s\" is a %s image.", FileName, Type);
 else
 ErrorMessage("File \"%s\" is an unrecognized format.", FileName);
 fprintf(stderr, "\nSorry, only " READIMAGE_FORMATS_SUPPORTED " reading is supported.\n");
 }

 if(File)
 fclose(File);

 if(ImageU8 && Format)
 {
 Image = ConvertToFormat(ImageU8, *Width, *Height, Format);
 Free(ImageU8);
 }
 else
 Image = ImageU8;

 return Image;
}

/**
* @brief Write an image file from 8-bit RGBA image data
*
* @param Image pointer to the image data
* @param Width, Height image dimensions
* @param FileName image file name
* @param Format specifies how the data is formatted (see ReadImage)
* @param Quality the JPEG image quality (between 0 and 100)
*
* @return 1 on success, 0 on failure
*
* The input \c Image should be a 32-bit RGBA image stored as in the
* description of \c ReadImage. \c WriteImage writes to \c FileName in the
* file format specified by its extension. If saving a JPEG image, the
* \c Quality argument specifies the quality factor (between 0 and 100).
* \c Quality has no effect on other formats.
*
* The return value indicates success with 1 or failure with 0.
*/
int WriteImage(void *Image, int Width, int Height,
 const char *FileName, unsigned Format, int Quality)
{
 FILE *File;
 uint32_t *ImageU8;
 enum {BMP_FORMAT, JPEG_FORMAT, PNG_FORMAT, TIFF_FORMAT} FileFormat;
 int Success = 0;

 if(!Image || Width <= 0 || Height <= 0)
 {
 ErrorMessage("Null image.\n");
 ErrorMessage("Failed to write \"%s\".\n", FileName);
 return 0;
 }

 if(StringEndsWith(FileName, ".bmp"))
 FileFormat = BMP_FORMAT;
 else if(StringEndsWith(FileName, ".jpg")
 || StringEndsWith(FileName, ".jpeg"))
 {
 FileFormat = JPEG_FORMAT;
#ifndef USE_LIBJPEG
 ErrorMessage("Failed to write \"%s\".\n", FileName);
 ErrorMessage("Compile with USE_LIBJPEG to enable JPEG writing.\n");
 return 0;
#endif
 }
 else if(StringEndsWith(FileName, ".png"))
 {
 FileFormat = PNG_FORMAT;
#ifndef USE_LIBPNG
 ErrorMessage("Failed to write \"%s\".\n", FileName);
 ErrorMessage("Compile with USE_LIBPNG to enable PNG writing.\n");
 return 0;
#endif
 }
 else if(StringEndsWith(FileName, ".tif")
 || StringEndsWith(FileName, ".tiff"))
 {
 FileFormat = TIFF_FORMAT;
#ifndef USE_LIBTIFF
 ErrorMessage("Failed to write \"%s\".\n", FileName);
 ErrorMessage("Compile with USE_LIBTIFF to enable TIFF writing.\n");
 return 0;
#endif
 }
 else
 {
 ErrorMessage("Failed to write \"%s\".\n", FileName);

 if(StringEndsWith(FileName, ".gif"))
 ErrorMessage("GIF is not supported. ");
 else if(StringEndsWith(FileName, ".mng"))
 ErrorMessage("MNG is not supported. ");
 else if(StringEndsWith(FileName, ".pcx"))
 ErrorMessage("PCX is not supported. ");
 else
 ErrorMessage("Unable to determine format from extension.\n");

 ErrorMessage("Sorry, only " WRITEIMAGE_FORMATS_SUPPORTED " writing is supported.\n");
 return 0;
 }

 if(!(File = fopen(FileName, "wb")))
 {
 ErrorMessage("Unable to write to file \"%s\".\n", FileName);
 return 0;
 }

 if(!(ImageU8 = ConvertFromFormat(Image, Width, Height, Format)))
 return 0;

 switch(FileFormat)
 {
 case BMP_FORMAT:
 Success = WriteBmp(ImageU8, Width, Height, File);
 break;
 case JPEG_FORMAT:
#ifdef USE_LIBJPEG
 Success = WriteJpeg(ImageU8, Width, Height, File, Quality);
#else
 /* Dummy operation to avoid unused variable warning if compiled without
 libjpeg. Note that execution returns above if Format == JPEG_FORMAT
 and USE_LIBJPEG is undefined. */
 Success = Quality;
#endif
 break;
 case PNG_FORMAT:
#ifdef USE_LIBPNG
 Success = WritePng(ImageU8, Width, Height, File);
#endif
 break;
 case TIFF_FORMAT:
#ifdef USE_LIBTIFF
 fclose(File);
 Success = WriteTiff(ImageU8, Width, Height, FileName);
 File = 0;
#endif
 break;
 }

 if(!Success)
 ErrorMessage("Failed to write \"%s\".\n", FileName);

 Free(ImageU8);

 if(File)
 fclose(File);

 return Success;
}

ace_20120718/doxygen.conf

Doxyfile 1.7.1

#---
Project related configuration options
#---
DOXYFILE_ENCODING = UTF-8
PROJECT_NAME =
PROJECT_NUMBER =
OUTPUT_DIRECTORY =
CREATE_SUBDIRS = NO
OUTPUT_LANGUAGE = English
BRIEF_MEMBER_DESC = YES
REPEAT_BRIEF = YES
ABBREVIATE_BRIEF =
ALWAYS_DETAILED_SEC = NO
INLINE_INHERITED_MEMB = NO
FULL_PATH_NAMES = YES
STRIP_FROM_PATH =
STRIP_FROM_INC_PATH =
SHORT_NAMES = NO
JAVADOC_AUTOBRIEF = NO
QT_AUTOBRIEF = NO
MULTILINE_CPP_IS_BRIEF = NO
INHERIT_DOCS = YES
SEPARATE_MEMBER_PAGES = NO
TAB_SIZE = 8
ALIASES =
OPTIMIZE_OUTPUT_FOR_C = YES
OPTIMIZE_OUTPUT_JAVA = NO
OPTIMIZE_FOR_FORTRAN = NO
OPTIMIZE_OUTPUT_VHDL = NO
EXTENSION_MAPPING =
BUILTIN_STL_SUPPORT = NO
CPP_CLI_SUPPORT = NO
SIP_SUPPORT = NO
IDL_PROPERTY_SUPPORT = YES
DISTRIBUTE_GROUP_DOC = NO
SUBGROUPING = YES
TYPEDEF_HIDES_STRUCT = NO
SYMBOL_CACHE_SIZE = 0
#---
Build related configuration options
#---
EXTRACT_ALL = NO
EXTRACT_PRIVATE = NO
EXTRACT_STATIC = NO
EXTRACT_LOCAL_CLASSES = YES
EXTRACT_LOCAL_METHODS = NO
EXTRACT_ANON_NSPACES = NO
HIDE_UNDOC_MEMBERS = NO
HIDE_UNDOC_CLASSES = NO
HIDE_FRIEND_COMPOUNDS = NO
HIDE_IN_BODY_DOCS = NO
INTERNAL_DOCS = NO
CASE_SENSE_NAMES = YES
HIDE_SCOPE_NAMES = NO
SHOW_INCLUDE_FILES = YES
FORCE_LOCAL_INCLUDES = NO
INLINE_INFO = YES
SORT_MEMBER_DOCS = YES
SORT_BRIEF_DOCS = NO
SORT_MEMBERS_CTORS_1ST = NO
SORT_GROUP_NAMES = NO
SORT_BY_SCOPE_NAME = NO
GENERATE_TODOLIST = YES
GENERATE_TESTLIST = YES
GENERATE_BUGLIST = YES
GENERATE_DEPRECATEDLIST= YES
ENABLED_SECTIONS =
MAX_INITIALIZER_LINES = 30
SHOW_USED_FILES = YES
SHOW_DIRECTORIES = NO
SHOW_FILES = YES
SHOW_NAMESPACES = YES
FILE_VERSION_FILTER =
LAYOUT_FILE =
#---
configuration options related to warning and progress messages
#---
QUIET = NO
WARNINGS = YES
WARN_IF_UNDOCUMENTED = YES
WARN_IF_DOC_ERROR = YES
WARN_NO_PARAMDOC = NO
WARN_FORMAT = "$file:$line: $text"
WARN_LOGFILE =
#---
configuration options related to the input files
#---
INPUT =
INPUT_ENCODING = UTF-8
FILE_PATTERNS =
RECURSIVE = NO
EXCLUDE =
EXCLUDE_SYMLINKS = NO
EXCLUDE_PATTERNS =
EXCLUDE_SYMBOLS =
EXAMPLE_PATH = readme.html
EXAMPLE_PATTERNS =
EXAMPLE_RECURSIVE = NO
IMAGE_PATH =
INPUT_FILTER =
FILTER_PATTERNS =
FILTER_SOURCE_FILES = NO
#---
configuration options related to source browsing
#---
SOURCE_BROWSER = NO
INLINE_SOURCES = NO
STRIP_CODE_COMMENTS = YES
REFERENCED_BY_RELATION = NO
REFERENCES_RELATION = NO
REFERENCES_LINK_SOURCE = YES
USE_HTAGS = NO
VERBATIM_HEADERS = YES
#---
configuration options related to the alphabetical class index
#---
ALPHABETICAL_INDEX = NO
COLS_IN_ALPHA_INDEX = 5
IGNORE_PREFIX =
#---
configuration options related to the HTML output
#---
GENERATE_HTML = YES
HTML_OUTPUT = html
HTML_FILE_EXTENSION = .html
HTML_HEADER =
HTML_FOOTER =
HTML_STYLESHEET =
HTML_TIMESTAMP = YES
HTML_ALIGN_MEMBERS = YES
HTML_DYNAMIC_SECTIONS = NO
GENERATE_DOCSET = NO
DOCSET_FEEDNAME = "Doxygen generated docs"
DOCSET_BUNDLE_ID = org.doxygen.Project
GENERATE_HTMLHELP = NO
CHM_FILE =
HHC_LOCATION =
GENERATE_CHI = NO
CHM_INDEX_ENCODING =
BINARY_TOC = NO
TOC_EXPAND = NO
GENERATE_QHP = NO
QCH_FILE =
QHP_NAMESPACE = org.doxygen.Project
QHP_VIRTUAL_FOLDER = doc
QHP_CUST_FILTER_NAME =
QHP_CUST_FILTER_ATTRS =
QHP_SECT_FILTER_ATTRS =
QHG_LOCATION =
GENERATE_ECLIPSEHELP = NO
ECLIPSE_DOC_ID = org.doxygen.Project
DISABLE_INDEX = NO
ENUM_VALUES_PER_LINE = 4
GENERATE_TREEVIEW = NO
USE_INLINE_TREES = NO
TREEVIEW_WIDTH = 250
FORMULA_FONTSIZE = 10
SEARCHENGINE = YES
SERVER_BASED_SEARCH = NO
#---
configuration options related to the LaTeX output
#---
GENERATE_LATEX = YES
LATEX_OUTPUT = latex
LATEX_CMD_NAME = latex
MAKEINDEX_CMD_NAME = makeindex
COMPACT_LATEX = NO
PAPER_TYPE = a4wide
EXTRA_PACKAGES = amsmath amssymb
LATEX_HEADER =
PDF_HYPERLINKS = YES
USE_PDFLATEX = YES
LATEX_BATCHMODE = NO
LATEX_HIDE_INDICES = NO
LATEX_SOURCE_CODE = NO
#---
configuration options related to the RTF output
#---
GENERATE_RTF = NO
RTF_OUTPUT = rtf
COMPACT_RTF = NO
RTF_HYPERLINKS = NO
RTF_STYLESHEET_FILE =
RTF_EXTENSIONS_FILE =
#---
configuration options related to the man page output
#---
GENERATE_MAN = NO
MAN_OUTPUT = man
MAN_EXTENSION = .3
MAN_LINKS = NO
#---
configuration options related to the XML output
#---
GENERATE_XML = NO
XML_OUTPUT = xml
XML_SCHEMA =
XML_DTD =
XML_PROGRAMLISTING = YES
#---
configuration options for the AutoGen Definitions output
#---
GENERATE_AUTOGEN_DEF = NO
#---
configuration options related to the Perl module output
#---
GENERATE_PERLMOD = NO
PERLMOD_LATEX = NO
PERLMOD_PRETTY = YES
PERLMOD_MAKEVAR_PREFIX =
#---
Configuration options related to the preprocessor
#---
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = NO
EXPAND_ONLY_PREDEF = NO
SEARCH_INCLUDES = YES
INCLUDE_PATH =
INCLUDE_FILE_PATTERNS =
PREDEFINED =
EXPAND_AS_DEFINED =
SKIP_FUNCTION_MACROS = YES
#---
Configuration::additions related to external references
#---
TAGFILES =
GENERATE_TAGFILE =
ALLEXTERNALS = NO
EXTERNAL_GROUPS = YES
PERL_PATH = /usr/bin/perl
#---
Configuration options related to the dot tool
#---
CLASS_DIAGRAMS = YES
MSCGEN_PATH =
HIDE_UNDOC_RELATIONS = YES
HAVE_DOT = NO
DOT_FONTNAME = FreeSans
DOT_FONTSIZE = 10
DOT_FONTPATH =
CLASS_GRAPH = YES
COLLABORATION_GRAPH = YES
GROUP_GRAPHS = YES
UML_LOOK = NO
TEMPLATE_RELATIONS = NO
INCLUDE_GRAPH = YES
INCLUDED_BY_GRAPH = YES
CALL_GRAPH = NO
CALLER_GRAPH = NO
GRAPHICAL_HIERARCHY = YES
DIRECTORY_GRAPH = YES
DOT_IMAGE_FORMAT = png
DOT_PATH =
DOTFILE_DIRS =
DOT_GRAPH_MAX_NODES = 50
MAX_DOT_GRAPH_DEPTH = 0
DOT_TRANSPARENT = NO
DOT_MULTI_TARGETS = YES
GENERATE_LEGEND = YES
DOT_CLEANUP = YES

#---
Local options
#---
PROJECT_NAME = "ACE Automatic Color Enhancement"
PROJECT_NUMBER =
EXTRACT_ALL = YES
INPUT = ./
FILE_PATTERNS = *.c *.h
EXAMPLE_PATH = ./
STRIP_FROM_PATH = ./
SOURCE_BROWSER = YES
HTML_OUTPUT = doc
GENERATE_LATEX = NO
HAVE_DOT = NO
CALL_GRAPH = NO
CALLER_GRAPH = NO

ace_20120718/ace.h

/**
 * @file ace.h
 * @brief ACE automatic color enhancement
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 * Copyright (c) 2012, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can redistribute it and/or modify it
 * under, at your option, the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version, or the terms of the
 * simplified BSD license.
 *
 * You should have received a copy of these licenses along with this program.
 * If not, see <http://www.gnu.org/licenses/> and
 * <http://www.opensource.org/licenses/bsd-license.html>.
 */

#ifndef _ACE_H_
#define _ACE_H_

int AceEnhanceImage(float *u, const float *f,
 int Width, int Height, float Alpha);

#endif /* _ACE_H_ */

ace_20120718/readme.txt

ACE Automatic Color Enhancement
Pascal Getreuer, pascal.getreuer@yale.edu, Yale University
Version 20120718 (July 18, 2012)

*** Please cite IPOL article http://www.ipol.im/pub/algo/gm_ace/ ***
*** if you publish results obtained with this software. ***

== Overview ==

This C source code accompanies with Image Processing On Line (IPOL) article
"ACE Automatic Color Enhancement" by Pascal Getreuer and Jean-Michel Morel at

 http://www.ipol.im/pub/algo/gm_ace/

This code is used by the online IPOL demo:

 http://www.ipol.im/pub/demo/gm_ace/

Future software releases and updates will be posted at

 http://dev.ipol.im/~getreuer/code/

== License (BSD) ==

File avs.jpg was created by NASA (http://dragon.larc.nasa.gov/retinex/).

All other files are distributed according to the simplified BSD license. You
should have received a copy of this license along this program. If not, see
<http://www.opensource.org/licenses/bsd-license.html>.

== Program Usage ==

This source code includes two command line programs: ace and histeq

 * ace: runs ACE color enhancement

 * histeq: performs uniform histogram equalization

--- ace ---

Usage: ace [options] input output

where "input" and "output" are BMP files (JPEG, PNG, or TIFF files can also
be used if the program is compiled with libjpeg, libpng, and/or libtiff).

Options:
 -a <number> alpha, stronger implies stronger enhancement
 -q <number> quality for saving JPEG images (0 to 100)

--- histeq ---

Usage: histeq [options] input output

Options:
 -b <number> number of histogram bins (default 256)
 -q <number> quality for saving JPEG images (0 to 100)

Example:

 # Perform ACE automatic color enhancement on avs.jpg with alpha = 8
 ./ace -a 8 avs.jpg ace.bmp

 # Perform uniform histogram equalization
 ./histeq avs.jpg equalized.bmp

Note: If the programs are compiled without libjpeg support, please convert
avs.jpg to avs.bmp in Windows Bitmap BMP format and use this as the input.

Each of these programs prints detailed usage information when executed
without arguments or "--help".

== Compiling ==

Instructions are included below for compiling on Linux sytems with GCC, on
Windows with MinGW+MSYS, and on Windows with MSVC.

Compiling requires the FFTW3 Fourier transform library (http://www.fftw.org/).
For supporting additional image formats, the programs can optionally be
compiled with libjpeg, libpng, and/or libtiff. Windows BMP images are always
supported.

== Compiling (Linux) ==

To compile this software under Linux, first install the development files for
libfftw, libjpeg, libpng, and libtiff. On Ubuntu and other Debian-based
systems, enter the following into a terminal:
 sudo apt-get install build-essential libfftw3-dev libjpeg8-dev libpng-dev libtiff-dev
On Redhat, Fedora, and CentOS, use
 sudo yum install make gcc libfftw-devel libjpeg-turbo-devel libpng-devel libtiff-devel

Then to compile the software, use make with makefile.gcc:

 tar -xf ace_20120718.tar.gz
 cd ace_20120718
 make -f makefile.gcc

This should produce two executables, ace and histeq.

Source documentation can be generated with Doxygen (www.doxygen.org).

 make -f makefile.gcc srcdoc

== Compiling (Windows) ==

The MinGW+MSYS is a convenient toolchain for Linux-like development under
Windows. MinGW and MSYS can be obtained from

 http://downloads.sourceforge.net/mingw/

The FFTW3 library is needed to compile the programs. FFTW3 can be
obtained from

 http://www.fftw.org/

Instructions for building FFTW3 with MinGW+MSYS can be found at

 http://www.fftw.org/install/windows.html
 http://neuroimaging.scipy.org/doc/manual/html/devel/install/windows_scipy_build.html

--- Building with BMP only ---

The simplest way to build the tvdeconv programs is with support for only BMP
images. In this case, only the FFTW3 library is required. Edit makefile.gcc
and comment the LDLIB lines to disable use of libjpeg, libpng, and libtiff:

 #LDLIBJPEG=-ljpeg
 #LDLIBPNG=-lpng -lz
 #LDLIBTIFF=-ltiff

Then open an MSYS terminal and compile the program with

 make CC=gcc -f makefile.gcc

This should produce the executables ace and histeq.

--- Building with PNG, JPEG, and/or TIFF support ---

To use the tvdeconv program with PNG, JPEG, and/or TIFF images, the
following libraries are needed.

 For PNG: libpng and zlib
 For JPEG: libjpeg
 For TIFF: libtiff

These libraries can be obtained at

 http://www.libpng.org/pub/png/libpng.html
 http://www.zlib.net/
 http://www.ijg.org/
 http://www.remotesensing.org/libtiff/

It is not necessary to include support for all of these libraries, for
example, you may choose to support only PNG by building zlib and libpng
and commenting the LDLIBJPEG and LDLIBTIF lines in makefile.gcc.

Instructions for how to build the libraries with MinGW+MSYS are provided at

 http://permalink.gmane.org/gmane.comp.graphics.panotools.devel/103
 http://www.gaia-gis.it/spatialite-2.4.0/mingw_how_to.html

Once the libraries are installed, build the tvdeconv programs with the
makefile.gcc included in this archive.

 make CC=gcc -f makefile.gcc

This should produce two executables, ace and histeq.

== Compiling (Mac OSX) ==

The following instructions are untested and may require adaptation, but
hopefully they provide something in the right direction.

First, install the XCode developer tools. One way to do this is from
the OSX install disc, in which there is a folder of optional installs
including a package for XCode.

The program requires the free FFTW library to build. Optionally, it can
also use the libpng, libjpeg, and libtiff libraries to support more image
formats. These libraries can be obtained on Mac OSX from the Fink project

 http://www.finkproject.org/

Go to the Download -> Quick Start page for instructions on how to get
started with Fink. The Fink Commander program may then be used to download
and install the packages fftw, libpng, libjpeg, and libtiff. It may be
necessary to install fftw-dev, libpng-dev, libjpeg-dev, and libtiff-dev as
well.

Once the libraries are installed, compile the program using the included
makefile "makefile.gcc":

 make -f makefile.gcc

This should produce the executables ace and histeq.

== Acknowledgements ==

This material is based upon work supported by the National Science
Foundation under Award No. DMS-1004694. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.

ace_20120718/GPLv3.txt

		 GNU GENERAL PUBLIC LICENSE
		 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

		 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

		 END OF TERMS AND CONDITIONS

	 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

ace_20120718/imageio.h

/**
 * @file imageio.h
 * @brief Implements ReadImage and WriteImage functions
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 *
 * Copyright (c) 2010-2012, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can use, modify and/or
 * redistribute it under the terms of the simplified BSD License. You
 * should have received a copy of this license along this program. If
 * not, see <http://www.opensource.org/licenses/bsd-license.html>.
 */

#ifndef _IMAGEIO_H_
#define _IMAGEIO_H_

#include <stdio.h>
#include "basic.h"

/** @brief Limit on the maximum allowed image width or height (security). */
#define MAX_IMAGE_SIZE 10000

#ifndef DOXYGEN_SHOULD_SKIP_THIS

/* Build string macros listing the supported formats */
#ifdef USE_LIBJPEG
#define SUPPORTEDSTRING_JPEG	"/JPEG"
#else
#define SUPPORTEDSTRING_JPEG	""
#endif
#ifdef USE_LIBPNG
#define SUPPORTEDSTRING_PNG		"/PNG"
#else
#define SUPPORTEDSTRING_PNG		""
#endif
#ifdef USE_LIBTIFF
#define SUPPORTEDSTRING_TIFF	"/TIFF"
#else
#define SUPPORTEDSTRING_TIFF	""
#endif

/* Definitions for specifying image formats */
#define IMAGEIO_U8 0x0000
#define IMAGEIO_SINGLE 0x0001
#define IMAGEIO_FLOAT IMAGEIO_SINGLE
#define IMAGEIO_DOUBLE 0x0002
#define IMAGEIO_STRIP_ALPHA 0x0010
#define IMAGEIO_BGRFLIP 0x0020
#define IMAGEIO_AFLIP 0x0040
#define IMAGEIO_GRAYSCALE 0x0080
#define IMAGEIO_GRAY IMAGEIO_GRAYSCALE
#define IMAGEIO_PLANAR 0x0100
#define IMAGEIO_COLUMNMAJOR 0x0200
#define IMAGEIO_RGB (IMAGEIO_STRIP_ALPHA)
#define IMAGEIO_BGR (IMAGEIO_STRIP_ALPHA | IMAGEIO_BGRFLIP)
#define IMAGEIO_RGBA 0x0000
#define IMAGEIO_BGRA (IMAGEIO_BGRFLIP)
#define IMAGEIO_ARGB (IMAGEIO_AFLIP)
#define IMAGEIO_ABGR (IMAGEIO_BGRFLIP | IMAGEIO_AFLIP)

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

/**
 * @brief String macro listing supported formats for \c ReadImage
 *
 * This macro can be used for example as
@code
 printf("Supported formats for reading: " READIMAGE_FORMATS_SUPPORTED ".\n");
@endcode
 */
#define READIMAGE_FORMATS_SUPPORTED	\
 "BMP" SUPPORTEDSTRING_JPEG SUPPORTEDSTRING_PNG SUPPORTEDSTRING_TIFF

/** @brief String macro listing supported formats for \c WriteImage */
#define WRITEIMAGE_FORMATS_SUPPORTED	\
 "BMP" SUPPORTEDSTRING_JPEG SUPPORTEDSTRING_PNG SUPPORTEDSTRING_TIFF

#ifndef _CRT_SECURE_NO_WARNINGS
/** @brief Avoid MSVC warnings on using fopen */
#define _CRT_SECURE_NO_WARNINGS
#endif

int IdentifyImageType(char *Type, const char *FileName);

void *ReadImage(int *Width, int *Height,
 const char *FileName, unsigned Format);

int WriteImage(void *Image, int Width, int Height,
 const char *FileName, unsigned Format, int Quality);

#endif /* _IMAGEIO_H_ */

ace_20120718/avs.jpg

ace_20120718/histeq.c

/**
 * @file histeq.c
 * @brief Histogram equalization
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 *
 * Copyright (c) 2011-2012, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can redistribute it and/or modify it
 * under, at your option, the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version, or the terms of the
 * simplified BSD license.
 *
 * You should have received a copy of these licenses along with this program.
 * If not, see <http://www.gnu.org/licenses/> and
 * <http://www.opensource.org/licenses/bsd-license.html>.
 */

#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include "imageio.h"

#define DEFAULT_NUMBINS 256

/** @brief struct of program parameters */
typedef struct
{
 /** @brief Input file name */
 char *InputFile;
 /** @brief Output file name */
 char *OutputFile;
 /** @brief Quality for saving JPEG images (0 to 100) */
 int JpegQuality;

 /** @brief Number of histogram bins */
 long NumBins;
} programparams;

static int ParseParams(programparams *Param, int argc, char *argv[]);

static void PrintHelpMessage()
{
 puts("Histogram equalization, P. Getreuer 2011\n");
 puts("Usage: histeq [options] <input file> <output file>\n"
 "Only " READIMAGE_FORMATS_SUPPORTED " images are supported.\n");
 puts("Options:\n");
 puts(" -b <number> number of histogram bins (default 256)");
#ifdef USE_LIBJPEG
 puts(" -q <number> quality for saving JPEG images (0 to 100)\n");
#endif
}

int EqualizeImage(float *Image, int Width, int Height, int NumBins)
{
 const long NumPixels = ((long)Width) * ((long)Height);
 const long NumEl = 3 * NumPixels;
 const int NumBinsMinusOne = NumBins - 1;
 float *Histogram1D[3] = {NULL, NULL, NULL};
 double CumHist;
 long i;
 int n, Channel, Success = 0;

 if(!(Histogram1D[0] = (float *)Malloc(sizeof(float)*3*NumBins)))
 goto Catch;

 Histogram1D[1] = Histogram1D[0] + NumBins;
 Histogram1D[2] = Histogram1D[0] + 2*NumBins;

 for(Channel = 0; Channel < 3; Channel++)
 for(i = 0; i < NumBins; i++)
 Histogram1D[Channel][i] = 0;

 /* Accumate channel histograms */
 for(i = 0; i < NumEl; i += 3)
 {
 Histogram1D[0][(int)(Image[i + 0]*NumBinsMinusOne + 0.5f)]++;
 Histogram1D[1][(int)(Image[i + 1]*NumBinsMinusOne + 0.5f)]++;
 Histogram1D[2][(int)(Image[i + 2]*NumBinsMinusOne + 0.5f)]++;
 }

 for(Channel = 0; Channel < 3; Channel++)
 for(i = 0; i < NumBins; i++)
 Histogram1D[Channel][i] /= NumPixels;

 /* Convert histograms to equalization maps */
 for(Channel = 0; Channel < 3; Channel++)
 {
 for(n = 0, CumHist = 0; n < NumBins; n++)
 {
 CumHist += Histogram1D[Channel][n];
 Histogram1D[Channel][n] = CumHist - Histogram1D[Channel][n]/2;
 }

 Histogram1D[Channel][0] = 0;
 Histogram1D[Channel][NumBins - 1] = 1;
 }

 /* Equalize the image */
 for(i = 0; i < NumEl; i += 3)
 {
 Image[i + 0] = Histogram1D[0][
 (int)(Image[i + 0]*NumBinsMinusOne + 0.5f)];
 Image[i + 1] = Histogram1D[1][
 (int)(Image[i + 1]*NumBinsMinusOne + 0.5f)];
 Image[i + 2] = Histogram1D[2][
 (int)(Image[i + 2]*NumBinsMinusOne + 0.5f)];
 }

 Success = 1;
Catch:
 Free(Histogram1D[0]);
 return Success;
}

int main(int argc, char **argv)
{
 programparams Param;
 float *Image = NULL;
 unsigned long TimeStart;
 int Width, Height, Status = 0;

 if(!ParseParams(&Param, argc, argv))
 return 0;

 if(!(Image = (float *)ReadImage(&Width, &Height, Param.InputFile,
 IMAGEIO_RGB | IMAGEIO_FLOAT)))
 goto Catch;

 TimeStart = Clock();

 if(!EqualizeImage(Image, Width, Height, Param.NumBins))
 goto Catch;

 printf("CPU Time: %.3f s\n", 0.001f*(Clock() - TimeStart));

 if(!WriteImage(Image, Width, Height, Param.OutputFile,
 IMAGEIO_RGB | IMAGEIO_FLOAT, Param.JpegQuality))
 goto Catch;

 Status = 0;
Catch:
 if(Image)
 free(Image);
 return Status;
}

static int ParseParams(programparams *Param, int argc, char *argv[])
{
 static char *DefaultOutputFile = (char *)"out.png";
 char *OptionString;
 char OptionChar;
 int i;

 if(argc < 2)
 {
 PrintHelpMessage();
 return 0;
 }

 /* Set parameter defaults */
 Param->InputFile = 0;
 Param->OutputFile = DefaultOutputFile;
 Param->JpegQuality = 85;
 Param->NumBins = DEFAULT_NUMBINS;

 for(i = 1; i < argc;)
 {
 if(argv[i] && argv[i][0] == '-')
 {
 if((OptionChar = argv[i][1]) == 0)
 {
 ErrorMessage("Invalid parameter format.\n");
 return 0;
 }

 if(argv[i][2])
 OptionString = &argv[i][2];
 else if(++i < argc)
 OptionString = argv[i];
 else
 {
 ErrorMessage("Invalid parameter format.\n");
 return 0;
 }

 switch(OptionChar)
 {
 case 'b':
 Param->NumBins = atoi(OptionString);

 if(Param->NumBins <= 1 || Param->NumBins > 10000)
 {
 ErrorMessage("Number of bins must be between 2 and 10000.\n");
 return 0;
 }
 break;
#ifdef LIBJPEG_SUPPORT
 case 'q':
 Param->JpegQuality = atoi(OptionString);

 if(Param->JpegQuality <= 0 || Param->JpegQuality > 100)
 {
 fprintf(stderr, "JPEG quality must be between 0 and 100.\n");
 return 0;
 }
 break;
#endif
 case '-':
 PrintHelpMessage();
 return 0;
 default:
 if(isprint(OptionChar))
 ErrorMessage("Unknown option \"-%c\".\n", OptionChar);
 else
 ErrorMessage("Unknown option.\n");

 return 0;
 }

 i++;
 }
 else
 {
 if(!Param->InputFile)
 Param->InputFile = argv[i];
 else
 Param->OutputFile = argv[i];

 i++;
 }
 }

 if(!Param->InputFile)
 {
 PrintHelpMessage();
 return 0;
 }
 return 1;
}

ace_20120718/ace.c

/**
 * @file ace.c
 * @brief ACE automatic color enhancement
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 * Copyright (c) 2012, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can redistribute it and/or modify it
 * under, at your option, the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version, or the terms of the
 * simplified BSD license.
 *
 * You should have received a copy of these licenses along with this program.
 * If not, see <http://www.gnu.org/licenses/> and
 * <http://www.opensource.org/licenses/bsd-license.html>.
 */

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <fftw3.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "ace.h"

/** @brief Degree of the polynomial approximation, must be odd */
#define DEGREE 9

/** @brief Compute small factorials */
static double Factorial(int n)
{
 static const double Table[15] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320,
 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200};

 if(n < 0)
 return 0;
 else if(n < 15)
 return Table[n];
 else
 return n * Factorial(n - 1);
}

/** @brief Compute binomial coefficients */
static double BinomCoeff(int m, int n)
{
 return Factorial(m) / (Factorial(n) * Factorial(m - n));
}

/** @brief FFT-based convolution */
static void Convolve(float *BlurredTrans, const float *OmegaTrans,
 long NumPixels, fftwf_plan ForwardPlan, fftwf_plan InversePlan)
{
 long i;

 fftwf_execute(ForwardPlan);

 for(i = 0; i < NumPixels; i++)
 BlurredTrans[i] *= OmegaTrans[i];

 fftwf_execute(InversePlan);
}

/** @brief Evaluate integer power, hardcoded for degrees 1 to 9 */
static void IntPow(float *Dest, const float *Src, size_t NumSamples, int m)
{
 size_t i;

 switch(m)
 {
 case 1:
 memcpy(Dest, Src, sizeof(float)*NumSamples);
 break;
 case 2:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 Dest[i] = x * x;
 }
 break;
 case 3:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 Dest[i] = x * x * x;
 }
 break;
 case 4:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 float x2 = x * x;
 Dest[i] = x2 * x2;
 }
 break;
 case 5:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 float x2 = x * x;
 Dest[i] = x2 * x2 * x;
 }
 break;
 case 6:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 float x2 = x * x;
 Dest[i] = x2 * x2 * x2;
 }
 break;
 case 7:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 float x2 = x * x;
 Dest[i] = x2 * x2 * x2 * x;
 }
 break;
 case 8:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 float x2 = x * x;
 float x4 = x2 * x2;
 Dest[i] = x4 * x4;
 }
 break;
 case 9:
 for(i = 0; i < NumSamples; i++)
 {
 float x = Src[i];
 float x2 = x * x;
 float x4 = x2 * x2;
 Dest[i] = x4 * x4 * x;
 }
 break;
 default:
 for(i = 0; i < NumSamples; i++)
 Dest[i] = (float)pow(Src[i], m);
 break;
 }
}

/** @brief Compute the FFT of omega(x,y) = 1/sqrt(x^2 + y^2) */
static int ComputeOmegaTrans(float *OmegaTrans,
 float *Omega, int Width, int Height)
{
 fftwf_plan Plan = NULL;
 long PadNumPixels = ((long)Width + 1) * ((long)Height + 1);
 double Sum = 0;
 long i, x, y;

 for(y = 0, i = 0; y <= Height; y++)
 for(x = 0; x <= Width; x++, i++)
 {
 Omega[i] = (x == 0 && y == 0) ? 0
 : 1.0f/sqrt(x*x + y*y);
 Sum += ((x == 0 || x == Width) ? 1 : 2)
 * ((y == 0 || y == Height) ? 1 : 2)
 * Omega[i];
 }

 Sum *= 4*PadNumPixels;

 for(i = 0; i < PadNumPixels; i++)
 Omega[i] /= Sum;

 if(!(Plan = fftwf_plan_r2r_2d(Height + 1, Width + 1, Omega, OmegaTrans,
 FFTW_REDFT00, FFTW_REDFT00, FFTW_ESTIMATE | FFTW_DESTROY_INPUT)))
 return 0;

 fftwf_execute(Plan);
 fftwf_destroy_plan(Plan);

 /* Cut last row and column from KernelTrans */
 for(y = 1, i = Width; y < Height; y++, i += Width)
 memmove(OmegaTrans + i, OmegaTrans + i + y, sizeof(float)*Width);

 return 1;
}

/**
 * @brief ACE automatic color enhancement
 * @param u the enhanced output image
 * @param f the input image in planar row-major order
 * @param Width, Height image dimensions
 * @param Alpha the slope parameter (>=1), larger implies stronger enhancement
 *
 * This routine perform ACE enhancement using the fast O(N log N) algorithm of
 * Bertalmio et al. The slope parameter must be an integer or half-integer
 * between 1 and 8 (1, 1.5, 2, 2.5, ..., 7.5, 8). The slope function is
 * approximated by an \f$L^infinity\f$-optimal degree 9 polynomial.
 *
 * If OpenMP is enabled, the main computation loop is parallelized. Note: in
 * the parallel computation, values are summed in a nondeterministic order
 * (i.e., in whichever order threads finish the computations). Due to
 * rounding effects, addition is not exactly associative and the output varies
 * slightly between runs (+/- 1 intensity level).
 */
int AceEnhanceImage(float *u, const float *f,
 int Width, int Height, float Alpha)
{
 /* L^infinity-optimal degree 9 polynomial coefficients. Since polynomials
 are odd, only the odd term coefficients are stored. */
 static const float SlopeCoeff[15][(DEGREE + 1)/2] = {
 /* Alpha = 1 */
 {1.0f, 0, 0, 0, 0},
 /* Alpha = 1.5 */
 {1.33743875f, 1.55213754f, -3.02825657f, -0.12350511f, 1.28325061f},
 /* Alpha = 2 */
 {1.85623249f, 3.82397125f, -19.70879455f, 26.15510902f, -11.15375327f},
 /* Alpha = 2.5 */
 {2.79126397f, -1.30687551f, -10.57298680f, 20.02623286f, -9.98284231f},
 /* Alpha = 3 */
 {3.51036396f, -6.31644952f, 0.92439798f, 9.32834829f, -6.50264005f},
 /* Alpha = 3.5 */
 {4.15462973f, -11.85851451f, 16.03418150f, -7.07985902f, -0.31040920f},
 /* Alpha = 4 */
 {4.76270090f, -18.23743983f, 36.10529118f, -31.35677926f, 9.66532431f},
 /* Alpha = 4.5 */
 {5.34087782f, -25.67018163f, 63.87617747f, -70.15437134f, 27.66951403f},
 /* Alpha = 5 */
 {5.64305564f, -28.94026159f, 74.52401661f, -83.54012582f, 33.39343065f},
 /* Alpha = 5.5 */
 {5.92841230f, -32.11619291f, 85.01764165f, -96.84966316f, 39.11863693f},
 /* Alpha = 6 */
 {6.19837979f, -35.18789052f, 95.28157108f, -109.95601312f, 44.78177264f},
 /* Alpha = 6.5 */
 {6.45529995f, -38.16327397f, 105.31193936f, -122.83169063f, 50.36462504f},
 /* Alpha = 7 */
 {6.69888108f, -41.02503190f, 115.02784036f, -135.35603880f, 55.81014424f},
 /* Alpha = 7.5 */
 {6.92966632f, -43.76867314f, 124.39645141f, -147.47363378f, 61.09053024f},
 /* Alpha = 8 */
 {7.15179080f, -46.43557440f, 133.54648929f, -159.34156394f, 66.27157886f}
 };
#ifdef _OPENMP
 const int NumThreads = omp_get_max_threads();
#else
 const int NumThreads = 1;
#endif
 const long NumPixels = ((long)Width) * ((long)Height);
 const long PadNumPixels = ((long)Width + 1) * ((long)Height + 1);
 float *(*Arrays)[2] = NULL;
 float *OmegaTrans = NULL, *PolyCoeffs = NULL;
 fftwf_plan (*Plans)[2] = NULL;
 long i;
 int Iter, n, Channel, Success = 0;

 /* Allocate memory */
 if(!(OmegaTrans = (float *)fftwf_malloc(sizeof(float)*PadNumPixels))
 || !ComputeOmegaTrans(OmegaTrans, u, Width, Height)
 || !(PolyCoeffs = (float *)malloc(sizeof(float)*10*10)))
 goto Catch;

 if(!(Arrays = (float *(*)[2])malloc(sizeof(float *)*2*NumThreads)))
 goto Catch;

 for(i = 0; i < NumThreads; i++)
 Arrays[i][0] = Arrays[i][1] = NULL;

 if(!(Plans = (fftwf_plan (*)[2])malloc(sizeof(fftwf_plan)*2*NumThreads)))
 goto Catch;

 for(i = 0; i < NumThreads; i++)
 Plans[i][0] = Plans[i][1] = NULL;

 /* For each thread, allocate a workspace array and create FFTW transform
 plans. These will be used for computing convolutions in parallel. */
 for(i = 0; i < NumThreads; i++)
 if(!(Arrays[i][0] = (float *)
 fftwf_malloc(sizeof(float)*NumPixels))
 || !(Arrays[i][1] = (float *)
 fftwf_malloc(sizeof(float)*NumPixels))
 /* DCT-II with source Arrays[i][0] and dest Arrays[i][1] */
 || !(Plans[i][0] = fftwf_plan_r2r_2d(Height, Width,
 Arrays[i][0], Arrays[i][1], FFTW_REDFT10, FFTW_REDFT10,
 FFTW_ESTIMATE | FFTW_DESTROY_INPUT))
 /* DCT-III with source Arrays[i][1] and dest Arrays[i][0] */
 || !(Plans[i][1] = fftwf_plan_r2r_2d(Height, Width,
 Arrays[i][1], Arrays[i][0], FFTW_REDFT01, FFTW_REDFT01,
 FFTW_ESTIMATE | FFTW_DESTROY_INPUT)))
 goto Catch;

 /* Select polynomial from SlopeCoeff table */
 i = (int)(2*Alpha + 0.5f) - 2;

 if(i < 0)
 i = 0;
 else if(i > 14)
 i = 14;

 /* Precompute coefficients */
 for(n = 0; n <= DEGREE; n++)
 {
 int m;

 for(m = n + ((n % 2 == 0) ? 1 : 0); m <= DEGREE; m += 2)
 PolyCoeffs[10*n + m] = pow(-1, m - n + 1)
 * SlopeCoeff[i][(m - 1)/2] * BinomCoeff(m, n);
 }

 /* Special case for n = zero term */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic) private(i)
#endif
 for(Channel = 0; Channel < 3; Channel++)
 {
 const float *Src = f + NumPixels * Channel;
 float *Dest = u + NumPixels * Channel;

 for(i = 0; i < NumPixels; i++)
 {
 float Temp = Src[i];
 float TempSqr = Temp*Temp;
 float a = PolyCoeffs[DEGREE];
 int m = DEGREE;

 while(m >= 2)
 a = a*TempSqr + PolyCoeffs[m -= 2];

 Dest[i] = a * Temp;
 }
 }

 /* Most of the computation time is spent in this loop. */
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic) private(i)
#endif
 for(Iter = 0; Iter < 3*DEGREE; Iter++)
 {
#ifdef _OPENMP
 const int ThreadId = omp_get_thread_num();
#else
 const int ThreadId = 0;
#endif
 int Channel = Iter / DEGREE; /* = current image channel */
 int n = 1 + (Iter % DEGREE); /* = current summation term */
 const float *Src = f + NumPixels * Channel;
 float *Dest = u + NumPixels * Channel;
 float *Blurred = Arrays[ThreadId][0];

 /* Compute Blurred = Src to the nth power */
 IntPow(Blurred, Src, NumPixels, n);
 /* Convolve Blurred with Omega */
 Convolve(Arrays[ThreadId][1], OmegaTrans, NumPixels,
 Plans[ThreadId][0], Plans[ThreadId][1]);

 for(i = 0; i < NumPixels; i++)
 {
 float Temp = Src[i];
 float TempSqr = Temp*Temp;
 float a = PolyCoeffs[(DEGREE + 1)*n + DEGREE];
 int m = DEGREE;

 while(m - n >= 2)
 {
 m -= 2;
 a = a*TempSqr + PolyCoeffs[(DEGREE + 1)*n + m];
 }

 if(n % 2 == 0)
 a *= Temp;

#ifdef _OPENMP
 Blurred[i] *= a;
#else
 Dest[i] += a * Blurred[i];
#endif
 }

#ifdef _OPENMP
#pragma omp critical
 for(i = 0; i < NumPixels; i++)
 Dest[i] += Blurred[i];
#endif
 }

#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic) private(i)
#endif
 for(Channel = 0; Channel < 3; Channel++)
 {
 float *Dest = u + NumPixels * Channel;
 float MaxValue = -1e30f;

 for(i = 0; i < NumPixels; i++)
 if(Dest[i] > MaxValue)
 MaxValue = Dest[i];

 MaxValue *= 2;

 for(i = 0; i < NumPixels; i++)
 Dest[i] = 0.5f + Dest[i] / MaxValue;
 }

 Success = 1;
Catch:
 /* Free memory */
 for(i = 0; i < NumThreads; i++)
 for(n = 1; n >= 0; n--)
 {
 if(Plans[i][n])
 fftwf_destroy_plan(Plans[i][n]);
 if(Arrays[i][n])
 fftwf_free(Arrays[i][n]);
 }

 if(Plans)
 free(Plans);
 if(Arrays)
 free(Arrays);
 if(PolyCoeffs)
 free(PolyCoeffs);
 if(OmegaTrans)
 fftwf_free(OmegaTrans);
 fftwf_cleanup();
 return Success;
}

ace_20120718/basic.c

/**
 * @file basic.c
 * @brief Memory management, portable types, math constants, and timing
 * @author Pascal Getreuer <getreuer@gmail.com>
 *
 * This file implements a function Clock, a timer with millisecond
 * precision. In order to obtain timing at high resolution, platform-
 * specific functions are needed:
 *
 * - On Windows systems, the GetSystemTime function is used.
 * - On POSIX systems, the gettimeofday function is used.
 *
 * Otherwise as a fallback, time.h time is used, and in this case Clock has
 * only second accuracy. This file attempts to detect whether the platform
 * is POSIX or Windows and defines Clock accordingly. A particular
 * implementation can be forced by defining USE_GETSYSTEMTIME,
 * USE_GETTIMEOFDAY, or USE_TIME.
 *
 *
 * Copyright (c) 2010-2011, Pascal Getreuer
 * All rights reserved.
 *
 * This program is free software: you can use, modify and/or
 * redistribute it under the terms of the simplified BSD License. You
 * should have received a copy of this license along this program. If
 * not, see <http://www.opensource.org/licenses/bsd-license.html>.
 */

#include <stdlib.h>
#include <stdarg.h>
#include "basic.h"

/* Autodetect whether to use Windows, POSIX,
 or fallback implementation for Clock. */
#if !defined(USE_GETSYSTEMTIME) && !defined(USE_GETTIMEOFDAY) && !defined(USE_TIME)
if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
define USE_GETSYSTEMTIME
elif defined(unix) || defined(__unix__) || defined(__unix)
include <unistd.h>
if (_POSIX_TIMERS) || (_POSIX_VERSION >= 200112L)
define USE_GETTIMEOFDAY
endif
endif
#endif

/* Define Clock(), get the system clock in milliseconds */
#if defined(USE_GETSYSTEMTIME)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>

unsigned long Clock() /* Windows implementation */
{
 static SYSTEMTIME TimeVal;
 GetSystemTime(&TimeVal);
 return (unsigned long)((unsigned long)TimeVal.wMilliseconds
 + 1000*((unsigned long)TimeVal.wSecond
 + 60*((unsigned long)TimeVal.wMinute
 + 60*((unsigned long)TimeVal.wHour
 + 24*(unsigned long)TimeVal.wDay))));
}
#elif defined(USE_GETTIMEOFDAY)
#include <unistd.h>
#include <sys/time.h>

unsigned long Clock() /* POSIX implementation */
{
 struct timeval TimeVal;
 gettimeofday(&TimeVal, NULL);
 return (unsigned long)(TimeVal.tv_usec/1000 + TimeVal.tv_sec*1000);
}
#else
#include <time.h>

unsigned long Clock() /* Fallback implementation */
{
 time_t RawTime;
 struct tm *TimeVal;
 time(&RawTime);
 TimeVal = localtime(&RawTime);
 return (unsigned long)(1000*((unsigned long)TimeVal->tm_sec
 + 60*((unsigned long)TimeVal->tm_min
 + 60*((unsigned long)TimeVal->tm_hour
 + 24*(unsigned long)TimeVal->tm_mday))));
}
#endif

/** @brief malloc with an error message on failure. */
void *MallocWithErrorMessage(size_t Size)
{
 void *Ptr;

 if(!(Ptr = malloc(Size)))
 ErrorMessage("Memory allocation of %u bytes failed.\n", Size);

 return Ptr;
}

/** @brief realloc with an error message and free on failure. */
void *ReallocWithErrorMessage(void *Ptr, size_t Size)
{
 void *NewPtr;

 if(!(NewPtr = realloc(Ptr, Size)))
 {
 ErrorMessage("Memory reallocation of %u bytes failed.\n", Size);
 Free(Ptr); /* Free the previous block on failure */
 }

 return NewPtr;
}

/** @brief Redefine this function to customize error messages. */
void ErrorMessage(const char *Format, ...)
{
 va_list Args;

 va_start(Args, Format);
 /* Write a formatted error message to stderr */
 vfprintf(stderr, Format, Args);
 va_end(Args);
}

