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Abstract

This article proposes an implementation and a study of the paper Adaptive Interpolation of
Discrete-Time Signals That Can Be Modeled as Autoregressive Processes by Janssen et al [10].
The algorithm presented in this paper allows one to reconstruct an audio signal which presents
localized degradations by interpolating the missing samples. This method assumes that the sig-
nal can locally be modeled as a realization of an autoregressive process and iteratively estimate
the model parameters and the interpolated samples by minimizing a quadratic criterion. We
investigate the limits and the algorithmic aspects of this method on several audio examples.

Source Code

The source code can be found at http://www.laurentoudre.fr/IPOL/ARInterpolation-1.0.zip
(login = demo, password =demo).

Supplementary Material

An online demo can be found at http://dev.ipol.im/~oudre/ipol_demo/lo_ar/ (login =
demo, password =demo).

1 Introduction

The restoration of audio signals containing localized degradations (known as clicks, scratches, bursts)
consists in a detection phase (finding the locations of the degraded samples) and a reconstruction
phase (replacing the degraded samples by more suitable values). In the case where some parts of
the signal are completely missing, the first step is omitted and only the second phase is necessary.
In this article, we assume in either way that the locations of the degraded or missing samples are
known (for example thanks to a preliminary detection step) and we only focus on the reconstruction
phase.

Numerous methods have been developed for interpolation of missing samples in music or speech
signals. While some interpolation techniques, such as median filtering, are completely blind (no
hypothesis on the signal is made) [17], they are often too crude to reconstruct gaps larger than a
few samples. Most of the efficient methods dealing with audio signals are therefore model-based and
introduce some prior information on the characteristics of the signal [7]. The choice of the model
(sinusoidal [14, 12], autoregressive (AR) [10, 18, 19, 5, 6, 4, 3], Gabor decomposition [21]...) is guided
by the type of data treated (speech, instrumentals, songs...) and by the type of degradation (long
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or short gaps, number of missing samples...). For example, the physiological production of speech is
often described by a source-filter model where the speech signal is assumed to have been produced by
a source or excitation signal (the glottal airflow) and a linear filter (the vocal track). Assuming that
the excitation is a white noise and that the filter is all-pole, this model writes as an autoregressive
(AR) model [16], which makes AR-based interpolation methods relevant for speech signals. More
generally, the AR model is an appropriate choice for many locally stationary signals. Indeed, the
position of the poles permits to deal with both noise-like and harmonic signals (respectively by setting
poles close to the origin or to the unit circle) [8]. Also, the order p of the model allows one to adapt
to the complexity of the considered signal.

The good fit between AR models and audio signals has been widely used for interpolation of
missing samples. The paper implemented in this article was the first to propose a method for
interpolation of bursts containing several contiguous missing samples and based on AR models [10].
This principle has simultaneously been applied by [18, 19] for detection of impulsive noise and
restoration of gramophone recordings. These works have been followed by a large number of variants.
A Bayesian extension of this problem has been formulated in [5, 6], while some specific techniques
have been developed for processing long gaps [4, 3]. Interestingly, a recent study on interpolation
methods [1] shows that, compared to more recent or sophisticated methods, the Janssen et al [10]
method already obtains satisfactory results on several basic interpolation tasks for gaps comprised
between 1 milliseconds and 10 milliseconds (for comparison, real life clicks are often assumed to have
durations ranging from less than 20 microseconds to 4 milliseconds [7]).

We propose in this article a rigorous implementation and testing of Janssen et al method for
interpolation of missing samples with known locations. Section 2 gives some introductory results
on AR processes. Section 3 describes the method and the algorithmic concepts behind it. Finally,
Section 4 presents the performances of the algorithm on several audio examples, as well as a study
on the limits of the method.

2 Some results on autoregressive processes

2.1 Definition

A real wide sense stationary stochastic process (yk)k∈Z is an autoregressive process of order p ∈ N
∗

if it satisfies
∀k ∈ Z, yk + a1 yk−1 + . . .+ ap yk−p = ek, (1)

where a = [a1, . . . , ap]
t ∈ R

p, ap 6= 0 and (ek)k∈Z is a zero-mean white noise process of variance σ2.
By convention, we set a0 = 1.

2.2 Yule-Walker equations

Let R(τ) = E [yk yk+τ ] be the autocorrelation function of process (yk)k∈Z. From (1) we have

R(τ) = E [yk yk+τ ]

= E

[
yk

(
−

p∑

l=1

al yk−l+τ + ek+τ

)]

= −

p∑

l=1

al R(τ − l) + E [yk ek+τ ] . (2)
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From (1), (2) and by using the fact that R(−τ) = R(τ) (since the process is real and stationary),




R(0) R(1) · · · R(p)
R(1) R(0) · · · R(p− 1)
...

...
. . .

...
R(p) R(p− 1) · · · R(0)







1
a1
...
ap


 =




σ2

0
...
0


 . (3)

This relationship is known as the Yule-Walker equations and is characteristic of an AR process.

3 Method

3.1 Principle

Consider a finite audio signal s ∈ R
N , which can be modeled as a realization of an AR process

of order p. Let T ⊂ {1, . . . , N} be the set containing the indexes of the missing samples (which is
supposed to be known). In order to restore the signal, we assume that the first and last p samples are

not missing, i.e. ∀t ∈ T, p < t ≤ N −p. We define the set of known samples T̃ = {1, . . . , N}\T . Our

aim is to estimate s(T ) by using only the reliable information s(T̃ ) and the AR process hypothesis.
Note that in the following, no other assumption on the signal is made.

The method presented in this paper is iterative and works as follows:

• Step 1: Given p, an estimate of s(T ) and s(T̃ ), calculate the parameters a of the AR process
of order p which best fits the corrupted signal s in a quadratic sense.

• Step 2: Given p, T , s(T̃ ) and an estimate of a, calculate the missing samples s(T ) which best
fit the AR process estimated in Step 1 in a quadratic sense.

• Repeat Steps 1 & 2 until the reconstruction gets satisfactory.

The criterion minimized in Step 1 & 2 writes

Q(a, s) =
N∑

k=p+1

∣∣∣∣∣sk +
p∑

l=1

al sk−l

∣∣∣∣∣

2

=
N∑

k=p+1

|ek|
2 . (4)

This criterion represents the squared error of reconstruction (difference between original and recon-
structed signal) but also an estimation of the variance of the excitation signal (up to a multiplicative
term). It is successively minimized w.r.t. a (Step 1) and s (Step 2). Note that the optimization

performed in Step 2 actually only concerns s(T ), as the samples s(T̃ ) are supposed to be known and
shall not be updated.

3.2 Step 1: Estimation of the AR parameters

Given an estimate of the missing samples (a rough choice for initialization is to set the values of the
missing samples to 0) and an order p ∈ N

∗, we want to estimate the AR parameters â ∈ R
p which

minimize the criterion Q(a, s) defined in (4) with respect to a.
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3.2.1 Autocovariance method

Let ci,j be an unbiased estimate of the autocovariance function from samples s1, . . . , sN for delay
i− j

ci,j =
1

N − p

N∑

k=p+1

sk−i sk−j. (5)

Then, by setting C = (ci,j)1≤i,j≤p and c0 = [c0,1 . . . c0,p]
t, we can rewrite criterion (4) as:

Q(a, s) = at Ca+ 2 at c0 + c0,0. (6)

The optimal AR parameters are obtained by setting ∇aQ(a, s) = 0 where ∇a denotes the gradient
with respect to a, and thus are obtained by solving

Câ = −c0. (7)

The problem of estimating AR parameters from data samples has been given much attention [11]
and the method described here is only one among many others. As it requires the use of an estimate
of the autocovariance function, it often referred to as the autocovariance method. There exist some
fast methods for solving this problem [15], which provide a resolution in O(p2).

3.2.2 Autocorrelation method

Nevertheless, there are variants to this method which are easier to implement and with a lower
complexity. Variants consist in using different estimators of the autocovariance function (biased or
unbiased) or different index ranges (by padding the signal with zeros). Provided that N is large
enough (compared to p), it is fair to assume that all these methods give similar results, as the
eventual bias becomes undetectable [16]. Yet, the choice of the variant may be crucial when dealing
with shorter signals [2]. As we work here with audio signals samples at Fs = 44100 Hz, which are
likely to contain a large number of samples, we are able to choose the estimation method by focusing
on its computational time.

Among these variants the autocorrelation method uses the relationship between the AR param-
eters and the autocorrelation function (known or estimated), previously defined as the Yule-Walker
equations (3). This method is based on a biased estimator of the autocorrelation function

R̂(τ) =
1

N

N∑

k=τ+1

sk sk−τ . (8)

The estimation of the AR parameters (7) is rewritten as




R̂(0) R̂(1) · · · R̂(p− 1)

R̂(1) R̂(0) · · · R̂(p− 2)
...

...
. . .

...

R̂(p− 1) R̂(p− 2) · · · R̂(0)







a1
a2
...
ap


 = −




R̂(1)

R̂(2)
...

R̂(p)


 . (9)

Just like the autocovariance method, there exist a fast algorithm (Levinson-Durbin algorithm
[13]) dedicated to Toeplitz matrices which allows to solve (9) in O(p2) operations. As this algorithm
is easy to understand and to implement, we have chosen to use the autocorrelation method for the
estimation of AR parameters. Furthermore, this algorithm is faster than the one provided for the
autocovariance method.
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3.2.3 Levinson-Durbin algorithm for solving the autocorrelation problem

The Levinson-Durbin algorithm is a procedure which iteratively evaluates the model parameters
{a1, . . . , al+1, σ

2
l+1} of order l + 1 from those of order l, until the desired order p. Let us write

R̂l =




R̂(0) R̂(1) · · · R̂(l)

R̂(1) R̂(0) · · · R̂(l − 1)
...

...
. . .

...

R̂(l) R̂(l − 1) · · · R̂(0)


 , (10)

then we have

R̂l+1 =




R̂l

R̂(l + 1)

R̂(l)
...

R̂(l + 1) R̂(l) · · · R̂(0)


 =




R̂(0) R̂(1) · · · R̂(l + 1)

R̂(1)

R̂l
...

R̂(l + 1)


 . (11)

One obtains R̂l+1 from R̂l by adding a row and a column. We can therefore combine (3) and (11)
so as to get 



R̂l

R̂(l + 1)

R̂(l)
...
...

R̂(l + 1) R̂(l) · · · · · · R̂(0)







1
al1
...
all
0



=




σ2
l

0
...
0

kl+1 σ
2
l



. (12)

al1, . . . , a
l
l and σ2

l are respectively the estimated AR parameters and the estimated variance of exci-

tation process ek at step l. By definition, we set kl+1 =
1
σ2

l

∑l

j=1 a
l
j R̂(l+1− j): in the literature kl+1

is called the reflection coefficient.
By using the second formulation of R̂l+1 in (11) and using the circulant form of matrix R̂l+1, we

get another formulation for (12)




R̂(0) R̂(1) · · · · · · R̂(l + 1)

R̂(1)

R̂l

...

...

R̂(l + 1)







0
al
...
a1
1



=




kl+1 σ
2
l

0
...
0
σ2
l



. (13)

Calculating (12) - kl+1× (13) gives:

R̂l+1




1
a1 − kl+1 al

...
al − kl+1 a1

−kl+1



=




σ2
l (1− k2

l+1)
0
...
0
0




(14)

which can be interpreted as a Yule-Walker equation of order l + 1 by setting:

• kl+1 =
1
σ2

l

∑l

j=1 a
l
j R̂(l + 1− j)

• al+1
l+1 = −kl+1
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• al+1
j = alj − kl+1 a

l
l+1−j for 1 ≤ j ≤ l

• σ2
l+1 = σ2

l (1− k2
l+1)

Algorithm 1 describes the Levinson-Durbin algorithm following from these recursive relations.

Algorithm 1: Levinson-Devinson algorithm

Input: R̂(0), . . . , R̂(p)
Output: a1, . . . , ap

Initialization : aold1 = − R̂(1)

R̂(0)
, σ2

1 = (1− ( R̂(1)

R̂(0)
)2)R̂(0) ;

for l = 1 to p− 1 do

kl+1 =
1
σ2

l

∑l

j=1 a
old
j R̂(l + 1− j);

al+1 = −kl+1;
σ2
l+1 = σ2

l (1− k2
l+1);

for j = 1 to l do
aj = aoldj − kl+1 a

old
l+1−j ;

end
aold = a;

end

3.3 Step 2: Estimation of the missing samples

Given an estimate of the AR parameters â, we want to interpolate the missing samples s(T ) so as
to minimize the criterion Q(a, s) defined in (4). We can rewrite criterion (4) as

Q(a, s) = s(T )tBs(T ) + 2 s(T )t d+ Γ
(
s(T̃ )

)
, (15)

where Γ
(
s(T̃ )

)
is a term only depending on s(T̃ ). The expressions of B and d can be obtained by

identification. Intuitively, B rules the dependencies between the unknown samples, while d links the
unknown samples with the known ones.

• B is a |T | × |T | matrix with entries

∀(t, t′) ∈ T 2 bt,t′ =

{ ∑p−|t−t′|
l=0 al al+|t−t′| if 0 ≤ |t− t′| ≤ p

0 else
; (16)

• d is a |T | vector with entries:

∀t ∈ T dt =
∑

−p≤k≤p

t−k∈T̃

b|k| st−k. (17)

The solution of the minimization of (15) w.r.t. s(T ) is:

Bs(T ) = −d (18)

It can easily be proved that matrix B is symmetric and positive definite. There exist some general
algorithms for solving (18) in O(|T |3) operations: we used a method based on the Cholesky decom-
position of matrix B. The first step consists in calculating the Cholesky decomposition (symmetric
indefinite factorization) B = LDLt with L is a lower triangular matrix with constant values 1 on its
main diagonal and D being a diagonal matrix [20]. Equation (18) is solved by successively solving
the two triangular systems Lx = −d and Lt s(T ) = D−1 x
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3.4 Application to long audio signals

Let us consider a real life scenario for our system. A 30 seconds excerpt with a sampling frequency
of 44.1 kHz contains N = 1323000 samples. If we introduce 10 bursts per second, each with a
duration of 4 milliseconds (176 samples), it gives a total of |T | = 52800 missing samples. While one
could think of directly applying the method previously described to the whole signal, the number of
samples considered is in practice too high to allow an efficient processing:

• It is unrealistic to model several seconds of music with one single AR model. Indeed, the
stationarity assumed by the model is only valid on a local scale. Also, the complexity of the
considered signal is limited by the order p: in particular, if several instruments and several
successive notes are played it is unlikely that we can find p large enough to capture the time
progression.

• The computation of autocovariances and autocorrelations in (5) and (8) depends on N and
becomes time-consuming, as well as the reconstruction of the missing samples, which implies
a O(|T |3) complexity.

For these reasons, it is proposed to divide the audio signal into frames before processing it with
the interpolation algorithm. More precisely, the signal is divided into overlapping frames of length
Nw with an hop size of Nh samples. In practice, we choose Nh = Nw/4, corresponding to a 75%
overlap. In order to reconstruct the information provided by the different overlapping frames which
correspond to the same period, we use the overlap-add (OLA) procedure [9]:

1. Pad the input signal with zeros: Nw zeros are added before and after the signal samples

2. Add
(
⌈N+Nw

Nh

⌉Nh −Nw

)
− N zeros at the end of the signal so as to round up the number of

frames

3. Divide the signal into overlapping frames of length Nw with 75% overlap

4. Apply the algorithm to each frame (in particular, the p first and last samples of the frame are
not processed)

5. Multiply each frame with a Hamming window of size Nw.

6. Add iteratively all the frames with a 75% overlap so as to reconstruct the signal

7. Remove the Nw first and the
(
⌈N+Nw

Nh

⌉Nh

)
−N last samples

Note that due to the chosen overlap and window, this procedure allows a perfect reconstruction: if
no processing is applied on Step 4, the output signal is exactly the input one. The Hamming window
used in the process is defined as

∀1 ≤ k ≤ Nw w(k) =
1

4× 0.54

(
0.54− 0.46 cos

(
2π

k − 1

Nw

))
. (19)

4 Results

4.1 Evaluation

For our experiments, we consider 30 seconds excepts of audio signals sampled at 44.1 kHz, thus
containing N = 1323000 samples. As our method assumes that the locations of the missing samples
is known, the easiest way to test our system is to randomly create artificial bursts. To this aim, two
parameters are introduced:
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• The number of desired groups of missing samples: Nburstset

• The maximum length for a burst (in samples): Nmax

The locations of the missing samples are randomly chosen so as to form Nbursts bursts of size randomly
chosen between 1 and Nmax samples. We make sure that the bursts are at least separated with one
sample (i.e. there is really Nbursts distinct bursts).

Another advantage of using artificial bursts is that the ground truth is available for assessing the
performances of the reconstruction system. Given the ground truth signal s of length N and the
reconstructed signal ŝ, the signal-to-noise ratio is defined as

SNR = 10 log10

∑N

k=1 |sk|
2

∑N

k=1 |sk − ŝk|2
. (20)

Since by definition s(T̃ ) = ŝ(T̃ ), it seems more relevant to evaluate the SNR only on the recon-
structed samples, i.e. :

SNR T = 10 log10

∑
k∈T |sk|

2

∑
k∈T |sk − ŝk|2

. (21)

4.2 Parameters

There are three parameters that need to be set by the user:

• The order p of the model. Intuitively, the order of the model depends on the complexity
of the signal on the current frame. In order to get an acceptable interpolation, Janssen et al

[10] propose to use p = 3Nmax + 2. Indeed, it seems fair to assume that p should at least be
greater than Nmax, so as to only use known samples for reconstruction.

• The hop size Nh / window size Nw (with Nw = 4Nh). The choice of the window size
depends on the order p and on the maximum burst length Nmax. The estimation of the
AR parameters (Step 1) implies the calculation of autocovariances or autocorrelations, which
requires a large number of samples (compared to p) to be significant. Intuitively, the larger the
order p, the larger the number of samples needed. Furthermore, the number of samples should
be greater than Nmax, as we must insure that within a frame, the number of known samples
is at least larger than the number of missing ones, since otherwise the learnt model becomes
irrelevant. Also due to the 75% overlap and to the fact that the first and last p samples of
the frame are not processed, we must have Nw > 8

3
p in order to insure that each sample is

processed at least in one frame.

• The number of iterations. While no proof of convergence for the iterative process described
in Section 3.1 has been proposed, in practice we shall see that only a few iterations are needed
to obtain acceptable results.

4.3 First results

In this section, we propose to investigate the influence of the order p within the reconstruction
process. To this aim, we used a 5 seconds excerpt of pop music (The Beatles) sampled at 44.1 kHz
and removed Nmax = 200 samples (4.5 ms). The goal is to interpolate the missing samples with
different values of p. We chose the hop size as Nh = 2max(p,Nmax), which imposed that the window
size was greater to both p and Nmax. The window size was set as Nw = 4Nh.

Figure 1 displays the SNR T obtained with different values for order p and different numbers of
iterations.

We remark that:
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Figure 1: SNR T obtained for the interpolation of 200 missing samples in a 5 seconds excerpt of pop
music for different values of the order p and for different numbers of iterations.

• The SNR T increases when the order p increases.

• The algorithm converges after 2 or 3 iterations in all cases: after 2 iterations, the variations in
SNR T are limited.

• Increasing the number of iterations does not always increase the SNR T . Intuitively, if the
first reconstruction is irrelevant (for example, this can happen when p is too small), then the
iterative process works as a vicious circle: the AR parameters learnt in the next iteration are
biased and subsequently produce a bad reconstruction, etc... As a matter of fact, for some
values of p, the SNR T slowly decreases after the first iteration.

In the remainder of this article, the number of iterations will be fixed to two. This is a good
compromise between performances and calculation time.

The reconstructed signals obtained after 2 iterations for different values of p are displayed on
Figure 2. This figure confirms the intuitive idea that a large value for p yields a finer model for the
signal. For p = 1 the model is a simple linear interpolation, and when p increases, the reconstructed
signal becomes more complex and thus better fits the original signal. This observation is also reflected
by the SNR T previously shown on Figure 1.

Nevertheless, according to Figure 3, this phenomenon seems to occur until p reaches a certain
value (here p = 1000) and then the SNR T slowly decreases. Thus the choice of order p seems to
be a tricky problem, as it significantly influences the performances in term of SNR T . Intuitively,
we want p to be large enough to approximate the signal, but in practice we shall choose a moderate
value for p as:

• If p is too large, the SNR T may decrease.

• As seen in Section 3.2 the computation cost of the AR parameters estimation phase depends
on the order p.

• The interpolated samples do not need to perfectly fit the original signal in order to give good
perceptual results, as the human ear is not able to detect such small differences. This fact is
in particular true when the gaps are small.
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Figure 2: Interpolation of 200 missing samples in a 5 seconds excerpt of pop music for different values
of order p. The window size is set to Nw = 8max(p,Nmax) and the frames have a 75% overlap. The
results are obtained after 2 iterations of the algorithm. The blue line stands for the original signal
and the red dots to the reconstructed one.
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Figure 3: SNR T obtained for the interpolation of 200 missing samples in a 5 seconds excerpt of pop
music for different values of order p after 2 iterations.

To conclude, we must keep in mind that as no prior information on the signal is known (in particular
we have no idea of the complexity of the signal on the given frame), the choice of p remains heuristic
and that we can only seek for an acceptable value for p, which will provide good perceptual results.
In their article, Janssen et al [10] propose to use p = 3Nmax + 2. According to our simulations,
this choice seems reasonable, even though we have no way to prove or explain it: in particular it is
unclear why the authors chose 3Nmax + 2 instead of 3Nmax.

4.4 Real-life examples

This section describes tests of the reconstruction algorithm in several realistic situations. Three
audio signals were considered with a duration of 30 seconds and sampled at 44.1kHz1:

• Speech: Woman speaking with no audible noise

• Music: Artificially synthesized instrumental piece

• Noise: Cocktail situation with many speakers and background noise

300 bursts of length comprised between 1 sample and 175 samples (which corresponds to the range
20µs - 4 ms) were generated. The missing samples were interpolated with the default parameters
of the algorithm (2 iterations, p = 3Nmax + 2 and Nh = 2max(p,Nmax)). For each excerpt, the
experiment was repeated 100 times to calculate an average SNR T .

Speech Music Noise
11.0 (± 1.0) 13.8 (± 0.4) 4.0 (± 0.2)

Table 1: SNR T (in dB) obtained by reconstructing 300 bursts of maximum size 175 samples. We
represent the average SNR T of 100 simulations (± its standard deviation).

Results are presented on Table 1: while the algorithm obtains good results for speech and music,
the SNR T is lower on the noise signal. Intuitively, these results can be explained by the fact that

1http://www.phon.ucl.ac.uk/resource/hearloss/
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the AR model is a predictive model which is particularly efficient when a linear relationship can be
learnt between samples. In the case of random noise, while the source/filter model is still valid, the
excitation/source is prominent over the filter and learning the AR parameters does not help much
for the reconstruction. Furthermore, the algorithm is based on the minimization of criterion (4),
which can be interpreted as the variance of the excitation. If the signal mainly consists in random
noise, this variance is naturally large and attempting to minimize it shall somehow de-noise the
signal but also prevents reconstructing the original noise signal. On the contrary, harmonic signals
such as speech or music are well modeled as the minimization of criterion (4) tends to reconstruct
an harmonic structure by reducing the influence of noise.

4.5 Limits of the algorithm

The algorithm proposed in this paper can a priori be applied to any type of degradation. Yet, we
shall seen that, in practice, the performance of the reconstruction strongly depends on the number
of missing samples.

4.5.1 Number of missing samples

This point was investigated by taking a 30 seconds excerpt of pop music (Beatles song), containing
voice, drums, guitar, piano, etc... One random burst of size Nmax was created and the missing samples
interpolated. Since the SNR T should strongly depends on the burst position, the experiment was
repeated 1000 times. The average SNR T was calculated for size Nmax. Since the default value for
p (equal to 3Nmax + 2) also depends on Nmax and can influence the results, a second variant was
tested for this experiment with the same p for all experiments.

The algorithms were tested with Nmax = 1, 50, 100, 150, . . . , 500. In Experiment A, p was fixed
to 3× 500+ 2 = 1502 for all Nmax (which corresponds to the default order for Nmax = 500), while in
Experiment B, p depends on Nmax such as p = 3Nmax+2. In both experiments, the hop and window
size were respectively equal to Nh = 2max(p,Nmax) and Nw = 4Nh. Results are presented in Figure
4. For Experiment A, we see that the average SNR T decreases when the burst length increases
and that most of the loss in dB occurs between Nmax = 1 and Nmax = 50. From Nmax = 50, the
SNR T slowly decreases (note that the value used for p is large enough to deal with all the considered
burst lengths, which can explain those good results). Interestingly, the evolution is not the same for
Experiment B: in particular, under 400 samples, the value of p influences the performances as much
as the burst length. It seems that on this example, the default choice for parameter p is appropriate
for small bursts (< 50 samples) and large bursts (> 400 samples), but is not optimal for average
length bursts. This confirms the fact that the choice of order p is a tricky question and that in real
life situations, performances will both depend on the number or missing samples and on the correct
estimation of appropriate order p.

4.5.2 Types of bursts

Another question arises from these experiments: the SNR T obtained for very small bursts is sig-
nificantly larger than those obtained for long bursts. Is it due to the burst type (i.e. Nmax) or to
the number of missing samples (i.e. Nbursts×Nmax). A second experiment investigated the ability of
the algorithm to interpolate different types of bursts. In a 30 seconds excerpt of pop music, vairous
types of bursts were tested while keeping a fixed number (2000) of missing samples. It seems natural
to think that the algorithm should perceive better 2000 disjoint bursts of 1 sample, than 1 burst of
2000 samples. Various burst lengths were tested Nmax (1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100,
125, 200, 250, 400, 500, 1000, 2000 samples). For each considered Nmax, the number of burst Nbursts

is adapted to have Nmax × Nbursts = 2000. This experiment was repeated 100 times and the results
are presented on Figure 5.
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Figure 4: Average SNR T obtained for the interpolation of one burst of Nmax missing samples
after two iterations. In Experiment A, p is constant and equal to 1502 while in Experiment B,
p = 3Nmax + 2.

Interestingly, while the number of missing samples Nmax ×Nbursts is the same in all these simula-
tions, the SNR T varies much according to Nmax. The general behaviour observed on this experiment
is indeed comparable with the one of Experiment B in Figure 4 for the range 1 ≤ Nmax ≤ 500 (even
though the number of bursts Nbursts is no longer equal to 1): again, the order p seems to influence the
results, as well as Nmax. The degradation due to presence of multiple bursts is limited (approximately
-2dB for 100 ≤ Nmax ≤ 500) and the number of bursts Nbursts does not have a strong influence on
the performance.

From these two simulations we can conclude that:

• Our algorithm performance depends on the size of the bursts it has to process rather than on
the number of observed bursts.

• The choice of p is a tricky problem that can influence the quality of the obtained results.

5 Conlusion

The algorithm presented in this article is a straightforward application of the autoregressive hypoth-
esis to audio signals for the interpolation of missing or degraded samples. Efficient algorithms exist
for the resolution of the two main steps of the method (the parameter estimation and the calculation
of the missing samples), allowing to provide a good quality reconstruction in a limited time. Pro-
vided that the bursts present in the signal have a reasonable size, this method obtains good results
on speech and music signals. Nevertheless, the heuristic choice of order p is a tricky problem which
sometimes prevents from achieving optimal results.
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