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Abstract
In this thesis we tackle two problems which deal with filling-in the infor-
mation in a region of an image or a video, where the data is either missing
or has to be replaced. These problems have applications in the context of
image and video editing. The first is image inpainting, and aims at obtain-
ing a visually plausible completion in a region in which data is missing due
to damage or occlusion. The second problem concerns the propagation of
an editing performed by a user in one or two reference frames of a video,
throughout the rest of the video. Both problems are of theoretical inter-
est since their analysis involves an understanding of the self-similarity in
natural images and videos. At a high level, the common theme in both
problems, is the exploitation and imposition of a model of redundancy (or
self-similarity) to fill-in missing parts of a signal.

Resumen
En esta tesis consideramos dos problemas que tratan el completado de una
imagen o un video en una región en la que los datos o bien faltan (por
ejemplo porque han sido dañados) o bien tienen que ser sustitúıdos. Estos
problemas tienen aplicación en el contexto de edición de imagen y video. El
primero de estos problemas es el de inpainting de imágenes, cuyo objetivo
es dar una completación plausible en la region en la que faltan datos. El
segundo problema consiste en la propagación de una edición proporcionada
por un usuario en un cuadro de un video, a los demás cuadros. Además
de su aplicación práctica, ambos problemas son de interés teórico, ya que
su análisis requiere una compresión de la estructura de auto-similitud de
las imagenes y videos naturales. De hecho, a nivel conceptual ambos temas
tienen en común el cómo aprovechar e imponer la redundancia de una señal
para completar partes faltantes.
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Preface

In this thesis we tackle two problems of data interpolation: image inpainting
and keyframe-based video editing. Both problems deal with filling-in the
information in a region of the image or video, where the data is either
missing or has to be replaced.

Although both problems are related, we have addressed them using some-
what independent approaches, for reasons that will be explained soon. As
a consequence, the thesis is divided into two parts which can be read inde-
pendently.

The first part is devoted to the problem of image inpainting. The aim here is
to obtain a visually plausible image interpolation in a region in which data is
missing due to damage or occlusion. Usually, to solve this problem, the only
available data is the image outside the region to be inpainted. It has become
a standard tool for digital image retouching tasks, such as the removal of
scratches in scanned old photographies, or dust spots in digital photography.
In these cases the edited region is rather small. Recent advances in the field
with the development of the so-called exemplar-based methods, allow major
modifications of an image, such as removing entire objects and completing
the part of the image that was occluded by the removed object. These
image inpainting methods are sometimes referred to as image completion,
disocclusion or object removal. We should stress that the aim of inpainting
is not to recover the true occluded background, but to create a background
which looks natural to a human observer.

Exemplar-based methods for inpainting exploit the self-similarity of images.
Natural images tend to be highly redundant formed by repetitive geometric
and texture patterns. Exemplar-based methods mimic this repetitive be-
haviour, filling the inpainting domain replicating the same patterns present
in the rest of the image. Roughly speaking, they work by copying small
pieces of the image and pasting them in the inpainting domain in a coher-
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Figure 1: Inpainting problem. On the left: the original image. In the center:
the result of one of the exemplar-based inpainting scheme derived from the varia-
tional framework presented in this thesis. On the right: the red curves show the
boundaries between regions that have been copied from a corresponding region in
Oc.

ent manner. The work we present in the first part of thesis is a variational
framework for these type of inpainting methods.

In the second part of the thesis, we propose a variational method for video
editing. The term video editing applies to a variety of tasks ranging from
basic operations such as trimming, cutting, splitting and resizing video seg-
ments to more sophisticated ones such as modifying the appearance of the
objects in a scene, or more generally, removing or adding objects in a video
segment.

In this thesis, we focus on following video editing problem. We are given an
image sequence where an object’s surface has been edited in one or two ref-
erence frames, and a certain editing domain. The objective is then to prop-
agate the edited information in the reference frame (or frames) throughout
the editing domain, following the motion of the objects’ surface.

The problem that we tackle is a rather specific one, but in fact it is a
direct application of a fundamental problem in video editing, namely the
propagation of color/intensity information through motion trajectories, in
a temporally and spatially consistent manner.

Temporal consistency refers to a smooth transition between successive frames,
coherent with the motion in the sequence. Objects in a video are expected
to move following smooth trajectories. This is a very strong a priori of the
human visual system, and as a consequence any artifact causing sudden
changes or temporal jitter in a video is immediately perceived and highly
distracting. Therefore, the editing of a video cannot be reduced to a series
of independent image editing problems. The temporal interdependence be-
tween frames, imposed by the motion in the sequence, has to be taken into
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Figure 2: An example of an input and output of the video editing application. The
sequence has 20 frames in total. In the first row a user has edited the first and the
last frames of the sequence. In the remaining frames, we would like to propagate the
edited information inside the area delimited by the red curve (the editing domain).
In the second row, we show the output obtained using the proposed model.

account. This implies that of the motion in the editing domain has to be
known (or rather estimated).

Spatial consistency refers to a seamless integration of the editing with its
spatial surrounding in each frame. In the image editing literature, spatial
consistency is usually addressed using gradient-domain methods. These
are based on the manipulation of the image gradients instead of its grey
levels. The modified gradients are then integrated to recover the resulting
image, typically by solving a Poisson equation. This procedure prevents the
appearance of seams at the boundaries of the edited region.

In order to achieve both temporal and spatial consistency, we propose an
energy functional to propagate gradient-domain information along motion
trajectories.

This problem appears as a building block of other more complex video
editing tasks, such as video inpainting for object removal. The added diffi-
culty in video inpainting, is that the motion of the dis-occluded background
is unknown, and due to the temporal consistency constraint, it has to be
somehow interpolated. The problem of motion inpainting and interpolation
is also a very interesting problem, but is not in the scope of this thesis.

Besides their practical applications, the problems addressed in this thesis
are of theoretical interest since their analysis involves an understanding of
the sources of self-similarity present in natural images and videos. Indeed at
a high level, the common theme in both problems, is the exploitation and
imposition of a model of redundancy (or self-similarity) to fill-in missing
parts of a signal. Both approaches are different due to the different nature
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of the type of redundancy considered in each case.

In the case of video the main source of redundancy is the temporal consis-
tency. It is a notion of redundancy related to the constancy of an object’s
appearance with respect to the evolution of time, which is a continuous
parameter. Therefore we can express temporal consistency with a local
formulation: two snapshots of a pixel at successive time stamps of its tra-
jectory have to be similar. These local formulations of self-similarity are
naturally modelled by local differential operators, which lead to PDEs that
propagate or interpolate the data at the key-frames along trajectories.

On the other hand, in still images, the main source of self-similarity is
given by the repetition of features and textures at different locations of
an image. This locations might be far apart in the image domain, as in
a periodic signal the repetitions are separated by integer multiples of the
period. Therefore, modelling this non-local self-similarity requires different
techniques, which search the available part of the image for pieces that
can be coherently assembled to fill-in the inpainting domain. Once found,
these pieces are directly copied from their source locations without any
propagation happening.
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Part I

Exemplar-based image
inpainting
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Chapter 1

Introduction

1.1 Previous work

Most inpainting methods found in the literature can be classified into two
groups: geometry- and texture-oriented methods depending on how they
characterize the redundancy of the image . We now briefly review the de-
velopments in both types of approaches, with emphasis in texture-oriented
methods. This review will be helpful for motivating the proposed formula-
tion.

Geometry-oriented methods

In this class of methods images are usually modeled as functions with some
degree of smoothness, expressed for instance in terms of the curvature of the
level lines or the total variation of the image. This smoothness assumption is
exploited to interpolate the inpainting domain by continuing the geometric
structure of the image (its level lines, or its edges), usually as the solution
of a (geometric) variational problem or by means of a partial differential
equation (PDE). Such PDE can be derived from variational principles, as
for instance in Masnou and Morel (1998); Ballester et al. (2001); Chan et al.
(2002); Chan and Shen (2001); Esedoglu and Shen (2002); Masnou (2002), or
inspired by phenomenological modeling Bertalmı́o et al. (2000); Bornemann
and März (2007); Tschumperlé and Deriche (2005). These methods show
good performance in propagating smooth level lines or gradients, but fail in
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4 introduction

the presence of texture. They are often referred to as structure or cartoon
inpainting.

In most cases, geometry-oriented methods are local in the sense that they
are based on PDEs. An implication of this is that among all the data avail-
able from the image, they only use that at the boundary of the inpainting
domain.

Texture-oriented methods

Texture-oriented inpainting was born as an application of texture synthesis,
e.g. Efros and Leung (1999); Igehy and Pereira (1997). Its recent develop-
ment was triggered in part by the works of Efros and Leung (1999) and Wei
and Levoy (2000) using non-parametric sampling techniques (parametric
models have also been considered, e.g. Levin et al. (2003)). In these works
texture is modeled as a two dimensional probabilistic graphical model, in
which the value of each pixel is conditioned by its neighborhood. These
approaches rely directly on a sample of the desired texture to perform the
synthesis. The value of each target pixel x is copied from the center of a
(square) patch in the sample image, chosen to match the available portion
of the patch centered at x. See Levina and Bickel (2006) for a probabilistic
theoretical justification.

This strategy (with various modifications) has been extensively used for
inpainting Bertalmı́o et al. (2003); Bornard et al. (2002); Criminisi et al.
(2004); Drori et al. (2003); Efros and Leung (1999); Pérez et al. (2004).
As opposed to geometry-oriented inpainting, these so-called exemplar-based
approaches, are non-local : to determine the value at x, the whole image
may be scanned in the search for a matching patch.

As pointed out in Demanet et al. (2003) the problem of exemplar-based
inpainting can be stated as that of finding a correspondence map ϕ : O →
Oc, which assigns to each point x in the inpainting domain O (a subset
of the image domain Ω, usually a rectangle in R2) a corresponding point
ϕ(x) ∈ Oc := Ω \ O where the image is known (see Figure 1.2). The
unknown part of the image is then synthesized using the map ϕ. The
filling-in strategy of Efros and Leung (1999); Wei and Levoy (2000) can be
regarded as a greedy procedure (each hole pixel is visited only once) for
computing a correspondence map. The results obtained are very sensitive
to the order in which the pixels are processed Criminisi et al. (2004); Pérez
et al. (2004); Harrison (2005).
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To address this issue, in Demanet et al. (2003) the authors proposed to
model the inpainting problem as the minimization of an energy functional
in which the unknown is the correspondence map itself:

E(ϕ) =

∫
O

∫
Ωp

|û(ϕ(x+ h))− û(ϕ(x) + h)|2dhdx, (1.1)

where û : Oc → R is the known part of the image, and Ωp is the patch
domain (a neighborhood of the origin 0 ∈ R2). The unknown image is
computed as u(x) = û(ϕ(x)), x ∈ O. Thus ϕ should map a pixel x and
its neighborhood in such a way that the resulting patch is close to the
one centered at ϕ(x). This model has been the subject of further analysis
by Aujol et al. Aujol et al. (2010), proposing extensions and proving the
existence of a solution in the set of piecewise roto-translation maps, i.e.
maps of the form

ϕ(x) =
∑
i∈I

Ri(x− ci)11Ai(x),

where {Ai}i∈I is a Caccioppoli partition of O (i.e. all sets of the partition
have finite perimeter in O and the sum of the perimeters is finite), and for
each i ∈ I Ri is a rotation matrix and ci is a translation vector. 11Ai(x) = 1
if x ∈ Ai and zero otherwise.

The energy (1.1) is highly non-convex and no effective way to minimize
it is known Aujol et al. (2010). Hence, other authors have addressed the
determination of a correspondence map by looking for simpler optimization
problems.

For example, Komodakis and Tziritas (2007) compute a coarse correspon-
dence map by formulating the problem as a probabilistic inference on a
lattice, in which the nodes correspond to square blocks of pixels covering
the inpainting domain. Using loopy belief propagation (a message pass-
ing inference algorithm, see Pearl (1998)) the authors efficiently compute
a coarse correspondence map over the lattice. The size of the blocks and
their separation is such that each pixel in the inpainting domain is cov-
ered by four blocks. Thus, strictly speaking, this method computes, for
each pixel, four correspondences. These have to be somehow fused to get
the inpainted image. In this sense, the method departs from model (1.1).
However, as we show later, a minor modification of the energy minimized in
Komodakis and Tziritas (2007) falls as a coarse case of model (1.1) in which
the correspondence map is constrained to be block-wise a translation.

Another optimization strategy is followed in Kawai et al. (2009); Wexler
et al. (2007). In both works the variable to be optimized is the unknown
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image whereas the correspondence map appears as an auxiliary variable.
The resulting energy functional can be regarded as a relaxation of (1.1):

E(u, ϕ) =

∫
Õ

∫
Ωp

|u(x+ h)− û(ϕ(x) + h)|2dhdx, (1.2)

where Õ := O + Ωp denotes the set of centers of patches that intersect
the inpainting domain O (see Figure 1.2). The energy is usually optimized
using an alternating scheme with respect to the variables u and ϕ, and the
unknown image is determined as part of the optimization process, and is
not constrained to be u(x) = û(ϕ(x)). Although this relaxation is still non-
convex, the alternating minimization scheme converges to a critical point of
the energy. This approach was also used in the context of texture synthesis
Kwatra et al. (2005).

In Pritch et al. (2009) the authors present a framework for several image
editing tasks, with inpainting among them. Key to their framework is what
they call the shift map t : Õ → Z2, which can be defined in terms of the cor-
respondence map as follows t(x) = ϕ(x)−x. For the inpainting application,
they minimize energy (1.1) for the smallest possible patch domain Ωp: the
center of the patch plus its four immediate neighbors in the discrete image
rectangular lattice. The minimization is seen as a gaph labelling problem
on the lattice, where the labels are the shifts t (or equivalently, the positions
on the known portion of the image). Energy (1.1) corresponds to a pairwise
Markov Random Field and is minimized using graph cuts. To reduce the
computational burden due to the large number of labels, the authors adopt
a hierachical multiscale approach. An initial correspondence map is com-
puted at a coarse scale and refined in subsequent scales. In this refinement
steps, labels correspond to small perturbations of the coarse map. In this
way, the number of labels is reduced. The resulting scheme works well if an
approximate solution can be computed at a coarse scale, however it is not
able to recover from large errors in the coarse scale. In Liu and Caselles
(2013) they alleviate this problem by including fine scale features in the
coarse scale.

An interesting approach was proposed by He and Sun (2012). The authors
analize the statistics of the offsets to the nearest neighbor between known
patches. Only the most frequent offsets are then used as labels for the
model of Pritch et al. (2009). This results in faster running times, and also
in better results for images with mostly periodic frotal textures.
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(a) DSC model (b) Shift map model (c) KT model

Figure 1.1: Comparison of variational inpainting models. (a) The model (1.1) in
Demanet et al. (2003) minimizes the error between the patch centered at x, and
the one centered at ϕ(x). The yellow pixel x+ y is copied from ϕ(x+ y), and has
to be similar to the pixel the same relative position in the patch centered at ϕ(x).
(b) Shift Map is a particular case of energy (1.1), in which the patch consists of
a pixel and its four neighbors. (c) The work of Komodakis and Tziritas (2007)
minimizes the overlap error of patches at a coarse grid (grey pixels). Pixel x + y
does not have a correspondence.

Exemplar-based methods provide impressive results in recovering textures
and repetitive structures. However, their ability to recreate the geometry
without any example is limited and not well understood. Different strategies
have been proposed for combining geometry and texture inpainting. Some
rely on human intervention for constraining the geometry Sun et al. (2005).
Others usually decompose the image in structure and texture components.
The structure is reconstructed using some geometry-oriented scheme, and
this is used to guide the texture inpainting Bertalmı́o et al. (2003); Cao
et al. (2011); Drori et al. (2003); Jia and Tang (2004).

Non-local image regularization

Let us finally note that the works in texture synthesis of Efros and Leung
(1999); Wei and Levoy (2000) have also influenced the development of non-
local methods for other applications, such as denoising Awate and Whitaker
(2006); Buades et al. (2005), superresolution Protter et al. (2009) and regu-
larization of inverse problems Gilboa and Osher (2008); Peyré et al. (2011).
As opposed to the case of inpainting, in these contexts the estimation of a
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pixel value may involve many locations in the image. The resulting corre-
spondence is not one-to-one, but rather one-to-many, usually encoded as a
weight function w : Ω× Ω→ R, with Ω being the image domain. For each
x, w(x, ·) weights the contribution of each image location to the estimation
of x. Inspired by regularization techniques used in the context of graphs or
discrete data and trying to formulate the non-local means denoising method
Buades et al. (2005); Awate and Whitaker (2006) as a variational model,
Gilboa and Osher Gilboa and Osher (2008, 2007) proposed the following
functional

E(u) =

∫
Ω

∫
Ω
w(x, y)(u(x)− u(y))2dydx (1.3)

which can be considered as a non-local version of the Dirichlet integral. The
weights w are considered as known. The minimum of (1.3) should have a
low pixel error (u(x)− û(y))2 whenever w(x, y) is high. When the weights
are Gaussian

w(x, y) ∝ exp

(
− 1

T
‖pu(x)− pû(y)‖2

)
, (1.4)

the non-local means algorithm results from the first step of Jacobi’s iterative
method for solving the Euler-Lagrange equation of (1.3). Here, ‖ · ‖ is
a weighted L2-norm in the space of patches and T is a parameter that
determines the selectivity of the weights w.

Other variational approaches for non-local denoising have also been pro-
posed in Kindermann et al. (2006); Brox et al. (2008); Peyré et al. (2011);
Pizarro et al. (2010).

1.2 Contributions

Despite all the efforts for combining them, geometry and texture inpainting
are still quite separate fields, each one with its own analysis and imple-
mentation tools. Variational models as the one introduced in this paper
provide common tools and thus might help in unifying of both trends. We
therefore propose a variational framework for non-local image inpainting as
a contribution to the modeling and analysis of texture-oriented methods.

The main contributions of this work are the following:
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Figure 1.2: Inpainting problem. Top, left: on a rectangular image domain Ω,
missing data u in a region O has to be reconstructed using the available image û
over Oc := Ω \ O. A patch centered at x ∈ O is denoted by pu(x). The set of

centers of incomplete patches is Õ := O+ Ωp, where Ωp denotes the patch domain.
Top right: the image shows a completion obtained using the patch NL-medians, a
scheme derived from the general formulation presented in this work. Bottom: the
resulting completion shows a correspondence map which is a piece-wise translation.
The red curves show the boundaries between the regions of constant translation.
In each of these regions, the image is copied rigidly from a corresponding region in
Oc.

The variational formalism

We propose a variational framework for exemplar-based image inpainting
(Chapter 2). The proposed formulation can be seen as a generalization of
(1.2) by considering different patch similarity criteria other than the squared
L2-norm. Via the selection of the patch similarity criterion different inpaint-
ing schemes can be naturally derived. In this work we discuss four of them,
patch NL-means, -medians, -Poisson and -gradient medians, corresponding
to similarity criteria based on L2- and L1-norms between patches or their
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gradients. The patch NL-means is related to the inpainting methods of
Kawai et al. (2009); Wexler et al. (2007). Methods related to the the patch
NL-Poisson and patch NL-medians have been used in Kwatra et al. (2005)
in the context of texture synthesis.

The proposed inpainting models encode self-similarity as a correspondence
map ϕ : Õ → Õc. But we show that such models can be obtained as a
Gamma limit of a broader class of non-local regularization models in which
the image redundancy and self-similarity is encoded by a non-local weight
function w : Õ × Õc → R, which serves as a probabilistic correspondence.
This probabilistic correspondence model has the form of a Gibbs free en-
ergy, where a parameter T > 0 controls the entropy of the weights. The
resulting weights w for T > 0 corresponds to the exponential weights of Eq.
(1.4) used for non-local denoising and regularization Awate and Whitaker
(2006); Buades et al. (2005). When T → 0, we recover the correspondence
maps inpainting energy. Heuristically, one can say that the optimal simi-
larity weights w converge to δ(y − ϕ(x)) where ϕ : Õ → Õc is an optimal
correspondence map for (1.2).

The case of T > 0 is not well suited for the inpainting application (it results
in a blurry completion), but it is still insightful to present our inpainting
energies in the broader context of the more general non-local regularization
framework. This allows us to relate existing models for non-local regulariza-
tion with exemplar-based inpainting and to provide intuitive interpretations
of the energy. In particular we discuss the connections of our model and
the Gibbs free energy in the context of statistical mechanics. Interestingly,
similar energies have been used to approach the problems of quantization
and clustering (Rose (1998)) and point matching by a rigid transormation
(Rangarajan et al. (1997)). These problems, at first sight seemingly unre-
lated, are all connected by the fact that they require the computation of an
unknown correspondence map. Furthermore, the non-local regularization
framework is still interesting in itself, since it can be applied to other in-
verse problems problems in which the similarity weights are unknown and
have to be estimated together with the image (Facciolo et al. (2009), Peyré
et al. (2011)).

We provide a theoretical study of two models contained in the general Gibbs
energy formulation (T > 0): the patch NL-means, and the patch NL-Poisson
model. For both of them we prove the existence of minima and their reg-
ularity. For the Gamma limit as T → 0 of the patch NL-means energy, we
prove the existence of optimal solutions of the limit functional which are
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measurable correspondence maps which also minimize (1.2).

The energy for T > 0 is introduced in Sections 2.1 and 2.2 and in Section
2.3 we derive the inpainting energy as the limit case when T = 0. The
connections with related models in inpainting, regularization and statistical
mechanics approaches to clustering and point matching are described on
Chapter 5.

The inpainting schemes

The inpainting is performed as an iterative minimization process alternat-
ing between weight computation and image synthesis steps, described in
Section 3.1. These steps depend on the patch metric. As opposed to the
non-local means denoising algorithm in which only the central pixel from
each exemplar is used, we use the whole patch. This causes some blur due
to patch overlap, but provides stability and convergence in fewer iterations.
For T > 0, we prove the convergence to critical points of the alternating
optimization scheme with respect to the variables u and w (which coin-
cides with the Expectation-Maximization (EM) algorithm) for both models,
patch NL-means and -Poisson (see Sections 3.2 and 3.3).

In the limit case T = 0, when the fuzzy correspondence w converges to a
dense correspondence map, this iterative process generates a sort of patch
work, as the one shown in Fig. 1.2. The inpainting domain is partitioned
into arbitrarily shaped segments which show an exact copy (of image or gra-
dient values) of some region in the hole’s complement. Transitions between
the copied segments take place in a band around the boundary between
the segments. The width of the band is the size of the patch. The four
inpainting schemes differ in the way this blending is done (and in the par-
tition found). Methods based on the L2-norm perform a smooth blending,
whereas those based on the L1-norm favor sharper transitions. In Sections
4.1, 4.2, 4.3 and Chapter 7 we provide a comprehensive comparison on real
and synthetic problems, showing the benefits and limitations of the four
schemes studied.

In particular, both gradient-based methods, patch NL-Poisson and -gradient
medians, combine the exemplar-based interpolation with PDE-based diffu-
sion schemes. This results in a smoother continuation of the information
across the boundary and inside the inpainting domain, and in a better prop-
agation of structures. Furthermore, the inclusion of gradients in the patch
similarity criterion allows to handle additive brightness changes.
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Of particular interest, is the regularity of the correspondence map obtained.
In Section 4.2 we prove a mild regularity result, namely the existence of op-
timal correspondence maps ϕ which are uniform limits of maps of bounded
variation with finitely many values. This result is interesting in connection
with the experimental observation that the computed ϕ copies rigidly parts
of the image outside the inpainting domain, behaving locally as a transla-
tion. This observation is also at the root of the roto-translation constraint
imposed to ϕ in Aujol et al. (2010).

Implementation: convergence analysis of PatchMatch
Barnes et al. (2009) algorithm

The most time consuming step in the minimization of the inpainting en-
ergies is the computation of the optimal matching between patches in the
inpainting domain and patches in the region of available data. Recently
Barnes et al. Barnes et al. (2009) introduced the PatchMatch, an efficient
algorithm based on heuristics to solve the problem of matching patches be-
tween images. In Section 6.3 we prove its convergence in probability and
we compute a bound on its convergence rate.

1.3 Notation

Images are denoted as functions u : Ω → R, where Ω denotes the image
domain, a rectangle in RN . We will commonly refer to points in Ω as
pixels. These will be denoted by x, x̂, z, ẑ or y, the latter for positions
inside the patch. A patch of u centered at x is denoted by pu(x) := pu(x, ·) :
Ωp → R, where Ωp is a rectangle centered at 0. The patch is defined by
pu(x, y) := u(x + y), with y ∈ Ωp. Let O ⊂ Ω be the hole or inpainting
domain, and Oc = Ω \O. We assume that O is an open set with Lipschitz
boundary. We still denote by û : Oc → R the known part of the image u:
û := u|Oc .

Let us define some domains in Ω that are useful to work with patches. We
denote by Ω̃ the set of centers of patches contained in the image domain,
i.e. Ω̃ = {x ∈ Ω : x + Ωp ⊆ Ω}. As was defined in the Introduction, we

take Õ, the extended inpainting domain, as the set of centers of patches
that intersect the hole, i.e. Õ := O + Ωp = {x ∈ Ω : (x + Ωp) ∩ O 6= ∅}.
For a simplified presentation, we assume that Õ ⊆ Ω̃, i.e. every pixel in
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Õ is the center of a patch contained in Ω. We denote Õc = Ω̃ \ Õ. Thus,
patches pû(y) centered at points y ∈ Õc are contained in Oc (see Figure
1.2). Further notation will be introduced in the text.





Chapter 2

Variational framework

In this chapter we present our variational framework building on top of
previous models for image regularization with fuzzy correspondence maps.
The proposed scheme can be seen as a generalization of the model (1.2)
of Kawai et al. (2009); Kwatra et al. (2005); Wexler et al. (2007) with
a probabilistic correspondence. As will be discribed in Section 2.3, the
correspondence case can be recovered as a limit case of our framework.

2.1 Preliminaries

Our variational framework is inspired by the following non-local functional

Fw(u) =

∫
O

∫
Oc
w(x, x̂)(u(x)− û(x̂))2dx̂dx (2.1)

which comes as a straightforward adaptation of (1.3) to the inpainting prob-
lem. In this case w : O × Oc → R+ is a weight function that measures the
similarity between patches centered in the inpainting domain and in its
complement. Let us assume for the moment that the weights are known.
As in the case of denoising, the minimization of (2.1) enforces a low pixel
error (u(x)− û(x̂))2 whenever the similarity w(x, x̂) is high. In this way the
similarity weights drive the information transfer from known to unknown
pixels.

In Gilboa and Osher (2007) the weights are considered as known and remain
fixed through all the iterations. While this might be appropriate in appli-

15
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cations where they can be estimated from the noisy image, in the image
inpainting scenario here addressed, the weights are not available and have
to be inferred together with the image (as in Peyré et al. (2008); Protter
et al. (2009)).

One of the novelties of the proposed framework is the inclusion of adaptive
weights in a variational setting, considering the weight function w as an ad-
ditional unknown. Instead of prescribing explicitly the Gaussian functional
dependence of w w.r.t. u, we will do it implicitly, as a component of the
optimization process. In doing so, we obtain a simpler functional, avoiding
to deal with the complex, non-linear dependence between w and u.

In our formulation, we will constrain w(x, ·) to be a probability density
function, which can be seen as a relaxation of the one-to-one correspon-
dence map of Aujol et al. (2010); Demanet et al. (2003), providing a fuzzy
correspondence between each x ∈ O and the complement of the inpainting
domain.

2.2 Proposed formulation: similarity weights

In this setting, we propose an energy which contains two terms, one of them
is inspired by (2.1) and measures the coherence between patches in Õ and
those in Õc, for a given similarity weight function w : Õ × Õc → R. This
permits the estimation of the image u from the weights w. The second term
allows us to compute the weights given the image. The complete proposed
functional is

EE,T (u,w) = UE(u,w)− TH(w),

subject to

∫
Õc
w(x, x̂)dx̂ = 1, ∀x ∈ Õ, (2.2)

where

UE(u,w) =

∫
Õ

∫
Õc
w(x, x̂)E(pu(x)− pû(x̂))dx̂dx, (2.3)

and E(·) is an error function for image patches (such as the squared L2-
norm). The second term is given by

H(w) = −
∫
Õ

∫
Õc
w(x, x̂) logw(x, x̂)dx̂dx.

Except for a constant term, H(w) corresponds to the entropy of a joint
probability over Õ × Õc, given by |Õ|−1w(x, y). Alternatively, we can also
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interpret H(w) as the integral of the entropies of each individual probability
w(x, ·) (the inner integrals over Õc).

We observe that the term (u(x)− û(x̂))2 in (2.1), that penalizes differences
between pixels, is substituted in (2.3) by the patch error function E(pu(x)−
pû(x̂)). This has two implications.

The first is that minimizing (2.3) with respect to the image will force patches
pu(x) and pû(x̂) to be similar whenever w(x, x̂) is high. The second impli-
cation has to be understood together with the inclusion of the second term,
which integrates the entropy of each probability w(x, ·) over Õ. For a given
completion u, and for each x ∈ Õ, the optimum weights minimize the mean
patch error for pu(x), given by∫

Õc
w(x, x̂)E(pu(x)− pû(x̂))dx̂,

while maximizing the entropy. This can be understood as a minimization
of the mean patch error subject to a level of randomness, measured by the
entropy: The energy EE,T can be seen as a Lagragian and T corresponds to
the Lagrange multiplier multiplying the entropy constraints.

An equivalent interpretation can be given in terms of the principle of max-
imum entropy (Jaynes (1957)), widely used for inference of probability dis-
tributions: if we fix the level of mean patch error UE and want to estimate
the probability distribution, we may choose between all probability distri-
butions the one that maximizes the entropy. In that case, the Lagrangian
would be given by 1

T EE,T . According to the principle of maximum entropy,
the best representation for a distribution given a set of samples is the one
that maximizes the entropy, i.e. the distribution which makes the less as-
sumptions about the process.

The resulting weights are given by

wE,T (u;x, x̂) :=
1

ZE,T (u;x)
exp

(
− 1

T
E(pu(x)− pû(x̂))

)
,

with the normalizing factor ZE,T (u;x)

ZE,T (u;x) :=

∫
Õc

exp

(
− 1

T
E(pu(x)− pû(x̂))

)
dx̂. (2.4)

Taking E as the squared L2-norm of the patch, then the resulting weights
are Gaussian, given by formula (1.4). The parameter T in (2.2) controls the
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trade-off between both terms and is also the selectivity parameter of the
Gaussian weights.

Let us describe in detail some patch error functions of interest in practice.

The patch error function E

Patches are functions defined on Ωp, and if P denotes a suitable space of
patches, we consider error functions E : P → R+ defined either as the
weighted sum of pixel errors

E(pu(x)− pû(x̂)) := g ∗ e(u(x+ ·)− û(x̂+ ·))

=

∫
Ωp

g(h)e(u(x+ h)− û(x̂+ h))dh,

where e : R→ R+, or gradient errors

E(pu(x)− pû(x̂)) := g ∗ e(∇u(x+ ·)−∇û(x̂+ ·))

=

∫
Ωp

g(h)e(∇u(x+ h)−∇û(x̂+ h))dh.

where e : R2 → R+. Here, g : RN → R+ denotes a suitable intra-patch
kernel function. We assume that g ∈ L1(RN )+(i.e. g is a nonnegative in-
tegrable function in the L1 sense) and

∫
RN g(h) dh = 1. As an example,

one could take g(h) = N (h|0, aI), the Gaussian probability density func-
tion with 0 mean and isotropic standard deviation a. In our mathematical
statements we will consider a function g with compact support in RN . We
will consider four patch error functions.

Patch non-local means. In this case we use e(r) = |r|2 and the patch
error function is a weighted squared L2-norm that we denote by

E2(pu(x)− pû(x̂)) = ‖pu(x)− pû(x̂)‖2g,2 = g ∗ |u(x+ ·)− û(x̂+ ·)|2.

P can be taken as the set of L2 functions in Ωp.

Patch non-local medians. If we set e(r) = |r| then the patch error
function results in a weighted L1-norm:

E1(pu(x)− pû(x̂)) = ‖pu(x)− pû(x̂)‖g,1 = g ∗ |u(x+ ·)− û(x̂+ ·)|.

P can be taken as the set of L1 functions in Ωp.
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Patch non-local Poisson. Let us take P as the space W 1,2(Ωp), and
consider pixel errors e( · ) that are a convex combination of intensity and
gradient errors. Thus, for λ ∈ [0, 1) we define the following patch error
function:

Eλ,2(pu(x)− pû(x̂)) =

λ‖pu(x)− pû(x̂)‖2g,2 + (1− λ)‖pu(x)− pû(x̂)‖2g,2,∇ =

g ∗
(
λ|u(x+ ·)− û(x̂+ ·)|2 + (1− λ)|∇u(x+ ·)−∇û(x̂+ ·)|2

)
.

Note that if we set λ = 1 we get E2.

Patch non-local gradient medians We take P as the space of square
integrable functions of bounded variation in Ωp Ambrosio et al. (2000). As
in the previous case, we will consider a convex combination of intensity
and gradient errors with coefficient λ ∈ [0, 1), but with a L1 norm for the
gradient component:

Eλ,1(pu(x)− pû(x̂)) =

λ‖pu(x)− pû(x̂)‖2g,2 + (1− λ)‖pu(x)− pû(x̂)‖g,1,∇ =

g ∗
(
λ|u(x+ ·)− û(x̂+ ·)|2 + (1− λ)|∇u(x+ ·)−∇û(x̂+ ·)|

)
.

In an abuse of notation we have used ∇ to denote the distributional deriva-
tive.

By plugging each of these patch error functions in the energy EE,T we get
different inpainting functionals. Let us define the following notational short-
hands to refer to them:

E2,T := EE2,T , E1,T := EE1,T , E2,λ,T := EE2,λ,T and E1,λ,T := EE1,λ,T .

We use similar shorthands for UE (e.g. U2,λ = UE2,λ
). As will be discussed

below, the patch error function determines not only the similarity criterion
but also the image synthesis, and thus is a key element in the framework.

The last two patch error functions take the gradient of the image into ac-
count. Let us mention that the use of nonlocal energies with gradient terms
for deblurring and denoising problems has been proposed in Kindermann
et al. (2006).
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Existence and regularity of minimizers

In this section we present results stating the existence of minimizers for the
patch NL-means E2,T , patch NL-medians E1,T and patch NL-Poisson E2,λ,T

functionals. The corresponding proofs can be found in Appendix A.

Let us recall that Ω is a rectangle in RN and that u : Ω → R is such that
u|Oc = û. We assume that û : Oc → R with û ∈ L∞(Oc). We also assume
that u is extended by symmetry and then by periodicity to RN .

Let us introduce some notation. Let Cc(RN ) be the set of continuous func-
tions with compact support in RN and by Cc(RN )+ we denote the set of
nonnegative functions in Cc(RN ). We also recall the notation for Sobolev
functional spaces. As usual, if Q is an open set we denote by W 1,p(Q),
1 ≤ p ≤ ∞, the space of functions v ∈ Lp(Q) such that ∇v ∈ Lp(Q)N .
By W 1,p(Q)+ we denote the set of nonnegative functions in W 1,p(Q). We
denote by W 2,p(Q) (resp. by W 2,p

loc (Q)), 1 ≤ p ≤ ∞, the space of func-
tions v ∈ Lp(Q) such that ∇v ∈ Lp(Q)N and D2v ∈ Lp(Q)N×N (resp. the
functions v ∈ W 2,p(Q′) for any subdomain Q′ included in a compact set of
Q).

We define the admissible class of functions

A2,T := {(u,w) : u ∈ L∞(Ω), u = û in Oc, w ∈ W},

where W :=
{
w ∈ L1(Õ × Õc) :

∫
Õc
w(x, y) dy = 1 a.e. x ∈ Õ

}
.

The following propositions state the existence of smooth minima and smooth
probability distributions representing the fuzzy correspondences between Õ
and Õc, both for patch NL-means and patch NL-medians models.

Proposition 2.1 (Minimizers of patch NL-means.). We assume that g ∈
Cc(RN )+ has support contained in Ωp, ∇g ∈ L1(RN ) and û ∈ BV (Oc) ∩
L∞(Oc). Then there exists a minimum (u,w) ∈ A2,T of E2,T . Moreover, for

any minimum (u,w) ∈ A2,T we have that u ∈W 1,∞(O) and w ∈W 1,∞(Õ×
Õc).

Proposition 2.2 (Minimizers of patch NL-medians.). Under the same hy-
pothesis as in the previous proposition, there exists a minimum (u,w) ∈ A2,T

of E1,T . For any minimum (u,w) ∈ A2,T we have that u ∈ W 1,∞(O) and

w ∈W 1,∞(Õ × Õc).
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Let us now consider the existence of minimizers for the patch NL-Poisson
model E2,λ,T . For simplicity we set λ = 0. Similar results hold for λ ∈ [0, 1).
In this case, the set of admissible solutions is defined as follows:

A2,0,T := {(u,w) ∈ A2,T : u ∈W 1,2(O), u|∂O = û|∂Oc}.

Proposition 2.3 (Minimizers of patch NL-Poisson.). We assume that û ∈
W 2,2(Oc)∩L∞(Oc) and g ∈W 1,∞(RN )+ has compact support in Ωp. There
exists a minimum (u,w) ∈ A2,0,T of E2,λ,T with λ = 0. Moreover for any

solution (u,w) ∈ A2,0,T we have u ∈ W 1,2(O) ∩W 2,p
loc (O) ∩ L∞(O) for all

p ∈ [1,∞) and w ∈W 1,∞(Õ × Õc).

As argued in Appendix A, exitence also holds for the patch NL-gradient
medians under suitable hypothesis on û and g (Lema A.9).

2.3 Proposed formulation: getting a
correspondence

Our variational framework for inpainting stems from the adaptation of a
denoising model. As a consequence, our model considers similarity weights,
which can be seen as a probabilistic correspondence map. The spread of
this probabilistic weights is controlled by T , the weight given to the entropy
term.

The results in this section prove that, as intuition suggests, when T → 0 the
energy EE,T converges to an energy EE,0 which has minimizers that corre-
spond to correspondence maps. This limit case is the most relevant case for
the application of inpainting. The convergence results only consider patch
NL-means and patch NL-Poisson. Although we do not prove analogous re-
sults patch NL-medians or patch NL-gradient medians, we will still define
energies with T = 0 for patch NL-medians and patch NL-gradient medians
(and implement the resulting schemes.

For this limit case, we require a more general definition for the similarity
weights w. The mapping x 7→ w(x, · ) defines for each x a probability
density function over Õc. As a consequence, it only models probability
measures that have a density (with respect to the Lebesgue measure) in Õ.
In the limit case when T = 0 we need to consider as well other probability
measures over Õ for which there is no density function.
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Definition 2.4 (Measurable measure-valued map). Let X ⊆ RN , Y ⊆ RM
be open sets, µ be a positive Radon measure in X and x 7→ νx be a function
that assigns to each x in X a Radon measure νx on Y. We say that the map
is µ-measurable if x 7→ νx(B) is µ-measurable for any Borel set B in Y. In
the case that νx(Y) = 1 µ-a.e. in X , then we say that ν is a measurable
probability-valued map.

A correspondence map ϕ : Õ → Õc can be represented by a probability-
valued map with all probabilities νx given by a Dirac’s delta function on
ϕ(x). Indeed, ϕ is a measurable map if and only if x ∈ Õ 7→ νx = δϕ(x)(y)
is measurable probability-valued map. We denote by νϕ the measure deter-
mined by the correspondence map ϕ.

We now state the Gamma limit of the model when T → 0.

Proposition 2.5. For the patch NL-means and patch NL-Poisson models,
when T → 0 the energy EE,T Gamma-converges to the energy

EE,0(u, ν) :=

∫
Õ

∫
Õc
E(pu(x)− pû(x̂))dνx(x̂)dx. (2.5)

where x 7→ νx is a measurable probability valued map, with respect to the
Lebesgue measure restricted to Õ. In particular, the minima of EE,T con-
verge to minima of EE,0.

This functional has several minimizers w.r.t. ν. Any measurable probability-
valued map ν, such that

supp(νx) ⊆ arg min
x̂∈Õc

E(pu(x)− pû(x̂))

is a minimizer. In particular, there exist minima of the energy EE,0 of the
form (u, νϕ) for a measurable correspondence map ϕ. More precisely, let
us consider the case of patch NL-means and define the space of admissible
solutions

A2,0 := {(u, ν) : u ∈ L∞(Ω), u = û in Oc, ν ∈MP},

whereMP the set of measurable measure-valued maps ν ≥ 0 in Õ× cl(Õc)
with respect to the Lebesgue measure restricted to Õ. The following propo-
sition holds.
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Proposition 2.6. We assume that g ∈ Cc(RN ) has support contained in
Ωp, ∇g ∈ L1(RN ) and û ∈ BV (Oc) ∩ L∞(Oc). There exists a minimum

(u∗, ν∗) ∈ A2,0 of E2,0 such that ν∗ = νϕ where ϕ : Õ → cl(Õc) is a
measurable map.

For these minima of (2.5)

ϕ(x) ∈ arg min
x̂∈Õc

E(pu(x)− pû(x̂)),

i.e. ϕ(x) ∈ Õc is the center of a nearest neighbor of pu(x), with respect to
the error function E (we use the term nearest neighbor even though E does
not need to be a metric).

In the case of patch NL-means, the energy E2,0 can be seen as a relaxation
of similar existing models Kawai et al. (2009); Wexler et al. (2007). Indeed,
if we restrict the probability-valued map ν to be of the form νϕ, for some
measurable correspondence map ϕ : Õ → Õc, then we can express the
energy directly in terms of ϕ

EE,0(u, ϕ) =

∫
Õ
E(pu(x)− pû(ϕ(x)))dx. (2.6)

Equation (1.2) is obtained as a particular case when E is the squared L2-
norm. An equivalent formulation has been proposed by Peyré Peyré (2009),
where the energy is interpreted as a regularization model based on the
distance to the manifold of known patches.

In Kwatra et al. (2005) two models are presented for its application to
texture synthesis: a gradient-based model and a robust model. Both cor-
respond to particular cases of (2.6) using a L2 gradient-based norm and a
L0.8-norm respectively.

In the following, for a unified presentation, we will use the notation w for
the weights both when T > 0 and when T = 0.





Chapter 3

Minimization of the energies

We have formulated the inpainting problem as the constrained optimization

(u∗, w∗) := arg min
u,w

EE,T (u,w),

subject to u(x) = û(x), ∀x ∈ Oc,

subject to

∫
Õc
w(x, x̂)dx̂ = 1,

(3.1)

where EE,T is the inpainting energy defined in (2.2).

In this chapter we first describe an alternating optimization algorithm to
compute local minima of problem (3.1). We will consider T > 0. As we
show in Section 3.2, the alternating optmization scheme can be related to
the Expectation-Maximization algorithm (EM) widely used in statistics for
maximum likelihood estimation (Dempster et al. (1957)). This leads to an
interesting interpretation of the model, as the maximization of a probability
on the space of patches, induced by the known patches of the image, that
will be discussed in Section 5.1. In Section 3.3 we summarize results on the
convergence of the scheme for the patch NL-means and patch NL-Poisson
models.

3.1 Alternating optimization scheme

The objective EE,T (3.1) is non-convex, and we can only compute a local
minima. To that aim, we use an alternating minimization algorithm. At

25



26 minimization of the energies

each iteration, two optimization steps are solved: the constrained minimiza-
tion of E with respect to w while keeping u fixed; and the minimization of
E with respect to u with w fixed. This procedure yields the iterative scheme
of Algorithm 1.

Algorithm 1 Alternate minimization of EE,T (u,w).

Require: Initial condition u0(x) with x ∈ O, tolerance τ > 0.

1: repeat

2: wk = arg min
w

EE,T (uk, w), subject to

∫
Õc

wk(x, x̂)dx̂ = 1, ∀x ∈ Õ.

3: uk+1 = arg min
u

EE,T (u,wk), subject to uk+1(x) = û(x), ∀x ∈ Oc.

4: until ‖uk+1 − uk‖ < τ .

Weights update step for the case T > 0

For the weights update step, we keep u fixed and minimize (2.2) with respect
to w. For T > 0, the weights can be computed by defining the Lagrangian

L(w) = EE,T (u,w) +

∫
Õ
λ(x)

(∫
Õc
w(x, x̂)dx̂− 1

)
dx.

From the Euler-Lagrange equation δwL(w) = 0, and after normalizing the
weights, we obtain

wE,T (u;x, x̂) :=
1

ZE,T (u;x)
exp

(
− 1

T
E(pu(x)− pû(x̂))

)
,

where the normalizing factor ZE,T (u;x) is given by

ZE,T (u;x) :=

∫
Õc

exp

(
− 1

T
E(pu(x)− pû(x̂))

)
dx̂. (3.2)

Weights update step for the case T = 0

In this case the weights are actually a measurable probability-valued map
and we minimize the following energy:

EE,0(u, ν) :=

∫
Õ

∫
Õc
E(pu(x)− pû(x̂))dνx(x̂)dx. (3.3)
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This functional has several minimizers w.r.t. ν. In practice, we compute
a minimizer that is a correspondence map, by setting νx = δϕ(x) where

ϕ(x) ∈ Õc is the center a nearest neighbor of pu(x), i.e.

ϕ(x) ∈ arg min
x̂∈Õc

E(pu(x)− pû(x̂)).

This is supported by Proposition 2.6 which states that (for patch NL-means
and patch NL-Poisson), there are minimizers in which the measurable prob-
ability map ν is associated to a measurable correspondence map.

Image update step

In this section we present the derivation of the image update step corre-
sponding to the four patch error functions mentioned earlier. First we will
present the cases when image patches are compared using the squared L2-
norm and the L1-norm.

Before moving to the derivation of the these schemes, let us remark that
with the change of variables z := x+ h, ẑ := x̂+ h, the image energy term
can be expressed as an accumulation of pixel errors:

UE(u) =

∫
Õ

∫
Õc
w(x, x̂)

∫
Ωp

g(h)e(u(x+ h)− û(x̂+ h))dhdx̂dx

=

∫
O

∫
Oc
m(z, ẑ)e(u(z)− û(ẑ))dẑdz + C, (3.4)

where C is a constant term. We have introduced the pixel influence weights
m : O ×Oc → R+ defined as

m(z, ẑ) := g ∗ (w(z − ·, ẑ − ·))

=

∫
Ωp

g(h)w(z − h, ẑ − h)dh. (3.5)

Here redefine the weights by extending their domain to RN × RN , i.e. w :
RN × RN → R+, by setting w(x, x̂) = 0 outside of Õ × Õc.

For each pair of pixels (z, ẑ) ∈ O × Oc, m(z, ẑ) weights the effective con-
tribution of the pixel error between u(z) and û(ẑ) in the total value of
the energy. The quantity m(z, ẑ) is computed by integrating the similarity
w(z−h, ẑ−h) between all patches that overlap ẑ and those that overlap z in
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the same relative position (shown in Fig. 3.1). Note that the energy (3.4)
corresponds to equation (2.1), with the patch similarity weights w being
substituted with the pixel influence weights m, a spacial convolution of w
with kernel g (as in Kindermann et al. (2006); Pizarro et al. (2010)).

Let us also define the following:

k(w; z) :=

∫
Oc
m(z, ẑ)dẑ =

∫
Oc
g ∗ (w(z − ·, ẑ − ·))dẑ = 1, (3.6)

given that the weights w and g are normalized. Thus, for each z m(z, ·) can
also be interpreted as a probability density function. Although k(w; z) = 1,
we will keep the notation k(w; z) in the following derivations. Later, in
Section 4.5 we propose modifications of the energy for which k(w; z) may
vary.

For T = 0, assuming that ν = νϕ for some measurable correspondence map
ϕ, the pixel influence weights result in

m(z, ẑ) =

∫
Ωp

g(h)χ
Õ

(z − h)δϕ(z−h)(ẑ − h)dh

=

∫
Ωp

g(h)χ
Õ

(z − h)δϕ(z−h)+h(ẑ)dh. (3.7)

The characteristic function of Õ, χ
Õ

(x), is 1 if its argument is in Õ and
0 otherwise. Its purpose in the above formula is to zero out the terms for
which z − h falls out of Õ since ϕ is only defined in Õ.

Patch non-local means

If we use the weighted squared L2-norm ‖pu(x)− pû(x̂)‖2g,2 as a patch error
function E in (2.3), then the image energy term (3.4) is quadratic on u.
Its minimum for fixed weights w can be computed explicitly as a non-local
average of the known pixels:

u(z) =
1

k(w; z)

∫
Oc
m(z, ẑ)û(ẑ)dẑ, (3.8)

for z ∈ O. The weights in the average are the pixel influence weights
m, obtained by convolving the Gaussian similarity weights with the patch
kernel g. To obtain more insight about this, let us expand m to obtain:

u(z) =
1

k(w; z)

∫
Ωp

g(h)

∫
Õc
w(z − h, x̂)û(x̂+ h)dx̂dy.
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Figure 3.1: Patch non-local inpainting. The value at z ∈ O is computed using
contributions from all the patches that overlap it, i.e. those centered at x ∈ Õ
such that z = x + h with h ∈ Ωp. The influence function m(z, ẑ) accumulates all
contributions w(z − h, ẑ − h) from patches centered at ẑ − h to z − h.

There are two averaging processes involved. The outer integral goes through
all patches pu(z − h) overlapping the target pixel z. Each patch suggests a
value for z resulting from the inner sum: a non-local average of the pixel at
position h in all patches pû(x̂) in Õc. This sum is weighted by the similarity
between the patch pu(z − h) and each pû(x̂).

Therefore, we can distinguish two types of pixel interactions. Interactions
due to the patch overlap of nearby pixels in the image lattice and non-local
interactions driven by the similarity weights. The latter can be controlled
by the selectivity parameter T , but the extent of the overlap interactions is
given by the patch size.

In particular for T = 0, equation (3.8) yields

u(z) =

∫
Ωp

g(h)û(ϕ(z − h) + h)dh.

This blending may cause some blur, which leads us to consider the L1-norm
in the search of a more robust image synthesis.

Patch non-local medians

We consider the L1-norm patch error function in the image energy term,
which corresponds to taking e(x) = |x| in (3.4). The Euler equation for u,
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given the influence function m, can be formally written as

[δuEE,T (u)](z) =

∫
Oc

sign[u(z)− û(ẑ)]m(z, ẑ)dẑ 3 0.

This expression is multivalued, since sign(r) := r/|r| if |r| > 0 and sign(r) ∈
[−1, 1] if r = 0. Its solution for each u(z), z ∈ O is obtained as a weighted
median of the pixels of the complement Oc, with weights m(z, · ).

Both schemes presented so far perform inpainting by transferring (by aver-
ages or medians) known gray levels into the inpainting domain. As we will
see next, using a patch error function based on the gradient of the image
yields methods which transfer gradients and compute the resulting image
as the solution of a PDE. This results in better continuation properties of
the solution, in particular at the boundary of the inpainting domain.

Patch non-local Poisson

The patch NL Poisson method combines squared weighted L2-norms of
intensity and gradients. Expressing the resulting image energy in terms of
the m weights yields

Uλ,2(u) =

∫
O

∫
Oc
m(z, ẑ)[(1− λ)|∇u(z)−∇û(ẑ)|2 + λ(u(z)− û(ẑ))2]dẑdz

(3.9)

Notice that (3.9) can be rewritten as

Uλ,2(u) ∝
∫
O
k(w; z)|∇u(z)− v(w; z)|2dz+

λ

1− λ

∫
O
k(w; z)(u(z)− f(w; z))2dz + C,

where C is a constant term,

f(w; z) :=
1

k(w; z)

∫
Oc
m(z, ẑ)û(ẑ)dẑ

is the solution of the patch NL-means image update step and the field
v(w; · ) : O → RN is given by

v(w; z) :=
1

k(w; z)

∫
Oc
m(z, ẑ)∇û(ẑ)dẑ. (3.10)
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This energy balances two terms. The first one imposes u’s gradient to be
close (in the L2 sense) to a guiding vector field v(w; ·) computed as a non-
local weighted average of the image gradients in the known portion of the
image. The second term correspondos to a quadratic attachment to the
solution of the patch NL-means image update.

In this case the Euler-Lagrange equation w.r.t. u becomes:

div[k(w; z)∇u(z)]− λ

(1− λ)
k(w; z)u(z) =

div[k(w; z)v(w; z)]− λ

(1− λ)
k(w; z)f(w; z), z ∈ O,

u(z) = û(z), z ∈ ∂O \ ∂Ω,
∇u(z) · nΩ(z) = 0, z ∈ ∂O ∩ ∂Ω.

(3.11)
Here nΩ(z) ∈ RN denotes the outgoing normal to Ω, for z ∈ ∂Ω. The
problem is linear and can be solved for instance with a conjugate gradient
scheme.

Observe that when λ = 0 the resulting PDE is a Poisson equation. In
the energy above, the attachment to f(w, · ) vanishes, and only gradients
are transfered to the inpainting domain. In this case, the patch similarity
weights w are computed based only on the gradients (and thus also the
pixel influence weights m). In most cases however, the gradient is not a
good feature for measuring the patch similarity, and it is convenient to
consider also the gray level/color data. Typically we will set λ 6 0.1, in
this way we include some intensity information in the computation of the
weights, without departing too much from the Poisson equation.

Patch non-local gradient medians

Lastly, we consider the L1-norm of the gradient. As before, the image energy
can be written as follows

Uλ,1(u) ∝
∫
O

∫
Oc
m(z, ẑ)|∇u(z)−∇û(ẑ)|dẑdz+

λ

1− λ

∫
O
k(w; z)(u(z)− f(w; z))2dz + C,

with the same boundary conditions as with the patch NL-Poisson. When
λ > 0, we minimize this energy using the fixed point algorithm described in
Section 6.2, based on the projection method presented in Chambolle (2004).
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When λ = 0, the resulting energy can be minimized with an implicit gradi-
ent descent. Given an iterate ut, the next is computed as

min
ut+1

∫
O

∫
Oc
m(z, ẑ)|∇ut+1(z)−∇û(ẑ)|dẑdz +

1

2δt
‖ut+1 − ut‖2. (3.12)

This energy for ut+1 is of the same kind as Uλ,1 for λ > 0. Thus, at each
step ut+1 is computed using the same fixed point algorithm described in the
Sectio6.2.

As patch NL-Poisson, this scheme transfers gradients and interpolates the
gray levels using the boundary conditions. With the use of the L1 error
function, we expect the solution of patch NL-GM to retain more small scale
detail than that of patch NL-Poisson.

3.2 Equivalence with EM

Let us notice that the iterations of the alternating optimization algorithm
coincide with the Expectation Maximization algorithm (EM). Indeed, the
weights update corresponds the E-step, while the image update is the M-
step. Let us denote the optimal weights for a given u as

wE,T (u;x, x̂) =
1

ZE,T (u;x)
exp

(
− 1

T
‖pu(x)− pû(x̂)‖2g,E

)
, (3.13)

where ZE,T (u;x) is the corresponding normalization factor. Then we may
write the energy EE,T for a given (u,w) as

1

T
EE,T (u,w) =

∫
Õ

KL(wE,T (u;x, ·), w(x, ·)) dx− LE(u),

where

LE(u) =

∫
Õ

log ZE,T (u;x) dx (3.14)

corresponds to the so called marginal likelihood in the context of EM. The
alternating optimization algorithm converges (modulo subsequences) to sta-
tionary points of LE(u).

Note that

−TLE(u) = EE,T (u,wE,T (u)) ≤ EE,T (u,w) ∀(u,w)
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and

min
(u,w)

EE,T (u,w) = min
u

min
w
EE,T (u,w) =

min
u
EE,T (u,wE,T (u)) = min

u
−TLE(u).

Thus, the functional EE,T (u,w) is equivalent to −LE(u) in the sense that
both have the same minima.

The alternating optimization algorithm converges to a critical point of both
of them. More precisely:

Proposition 3.1. Any limit point of the sequence {uk}∞k=0 defined by Al-
gorithm 2, is a stationary point u∗ of LE(u) and LE(uk) converges mono-
tonically to LE(u∗).

Proof. Indeed,

LE(uk+1)− LE(uk) =

− 1

T
EE,T (uk+1, wE,T (uk)) +

1

T
EE,T (uk, wE,T (uk))

+

∫
Õ

KL(wE,T (uk+1;x, ·), wE,T (uk;x, ·)) dx

−
∫
Õ

KL(wE,T (uk;x, ·), wE,T (uk;x, ·)) dx

≥ − 1

T
EE,T (uk+1, wE,T (uk)) +

1

T
EE,T (uk, wE,T (uk)) ≥ 0.

Thus LE(uk) is increasing.

Let us notice that one can prove Proposition 3.1 by adapting the proof of
Theorem 2 in Wu (1983).

3.3 Convergence of the alternating optimization
scheme

In this section we state convergence results of the alternating optimization
scheme to a critical point of the continuous energy functionals both for the
case of patch NL-means and -Poisson models.
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We consider first the case of probabilistic weights, with T > 0. Let EE,T be
one of the patch NL-means energy E2,T or patch NL-Poisson E2,λ,T . Simi-
larly, AE denotes A2,T or A2,∇,T (the spaces of admissible functions defined
in Section 2.2). Let us recall the alternating optimization scheme. This
time we make explicit the sets of admissible functions.

Algorithm 2 Alternate minimization of EE,T .

Initialization: choose u0 with ‖u0‖∞ ≤ ‖û‖∞ .

For each k ∈ N solve za

wk+1 = arg min
w∈W

EE,T (uk, w), (3.15)

uk+1 = arg min
(u,wk+1)∈AE

EE,T (u,wk+1), (3.16)

The following propositions hold for patch NL-means, and patch NL-Poisson
with λ = 0. The proofs can be found in Appendix C.

Proposition 3.2. Algorithm 2 converges (modulo a subsequence) to a crit-
ical point (u∗, w∗) ∈ A2,T of E2,T . The solution obtained has the smoothness

described in Proposition 2.1, that is u∗ ∈W 1,∞(O) and w∗ ∈W 1,∞(Õ×Õc).

Proposition 3.3. Algorithm 2 converges (modulo a subsequence) to a crit-
ical point (u∗, w∗) ∈ A2,0,T of E2,0,T . The solution obtained has the smooth-

ness described in Proposition 2.3, that is u∗ ∈W 1,2(O)∩W 2,p
loc (O)∩L∞(O)

for any p ∈ [1,∞) and w ∈W 1,∞(Õ × Õc).

Let us point out that the convergence of the alternating optimization (Al-
gorithm 2) holds also in the discrete domain.

For the case T = 0, we limit our analysis to the discrete case. In the discrete
case, the convergence can be proved thanks to the convexity of EE,0(u, ν) in
each variable when the other is fixed.

Proposition 3.4. In the discrete case, algorithm 2 with T = 0 converges
(modulo a subsequence) to a critical point of the energy EE,0.

Proof. Since uk and νk are bounded, there is a subsequence (ukj , νkj ) con-
verging to (ū, ν̄). Notice that if ν is fixed, then the solution of minu EE,0(u, ν)
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is unique. Clearly ν̄ is a minimum of ν → EE,0(ū, ν). Proceeding as in Bert-
sekas (1999), one can prove that ukj+1−ukj converges to 0 and deduce that
ū is a minimum of u→ EE,0(u, ν̄).





Chapter 4

Observations on the energies
and their minima

In this chapter, the first three sections describe some characteristics of the
solutions found by the minimization process, as well as the differences be-
tween the schemes derived from the proposed framework. Spetial interest
is paid to the regularity of the correspondence maps, discussed in Section
4.2.

Based on the observations made about the behaviour of the different models,
in Sections 4.4 and 4.5 we present some useful extensions of the energy.

The analysis will consist sometimes of simple mathematical arguments and
sometimes of empirical observations based on synthetic experiments, de-
signed to control and isolate certain specific properties. The aim of this sec-
tion is to provide insight on the many factors that determine the behaviour
of the different methods on more complex, real inpainting problems.

4.1 Effect of the selectivity parameter

First we consider the inpainting of a regular texture (shown in Figure 4.1)
with two different mean intensities. The inpainting domain hides all patches
on the boundary between the dark and bright textures. With this example
we can test the ability of each method to create an interface between both
regions. Situations like these are common in real inpainting problems, for

37
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instance due to inhomogeneous lighting conditions. We have also added
Gaussian noise with standard deviation σ = 10 to show the influence of
the selectivity parameter T . Each column of Figure 4.1 shows the results
of the four methods described in the previous section. We have tested
each method with T = 0 (top row), and T > 0, chosen approximately to
match the expected deviation of each patch error due to the noise. For both
gradient-based methods we take λ = 0, i.e. no image component.

Figure 4.1: Inpainting of a synthetic texture. The initial condition is shown
in the top row. In the rest of the rows we show a zoom (region in the red rectangle)
of the results of patch NL-means, -medians, -Poisson and -GM, from top to bottom.
In the frist column T = 0, and in the second column T = 200, T = 14, T = 400 and
T = 20, respectively. The intra-patch weight kernel g is shown in the bottom right
corner of the initial condition, it has a standard deviation a = 5 and the patch size
is s = 15.

The first notorious difference is on how the methods handled the transition
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between the dark and bright textures. Patch NL-means produces a smooth
transition whereas a sharp step is obtained with the patch NL-medians. On
the other hand, both gradient-based methods yield a much smoother shad-
ing of the texture, due to the fact that the image update step is computed
as the solution of a PDE which diffuses the intensity values present at the
boundary of the inpainting domain. For the case of patch NL-Poisson this
interpolation is linear, since this is a solution of the homogeneous Poisson
equation (i.e. Laplace equation).
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Figure 4.2: Profiles of the results in Figure 4.1. The profiles are taken from
an horizontal line going between the circles in Figure 4.1. Top: results with T = 0
and bottom: results with T > 0.

As expected, the results using a higher value of T show some denoising.
This effect can be better appreciated in the profiles shown in Figure 4.2,
which depict the image values for a horizontal line between the circles. In
the usual context of inpainting, in which the available data is not perturbed
by noise, this denoising translates into an undesirable loss of texture quality
(some details are treated as noise, a common effect in image enhancement).
For the rest of the inpainting experiments shown we will consider T = 0.
In other applications such as denoising or image regularization, the case of
T > 0 becomes relevant (see Peyré et al. (2011) and our work in Facciolo
et al. (2009)).
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4.2 Regularity of optimal correspondence maps

Let us focus now on the solution of the functional when T = 0. In this case,
the weights w have to be replaced by a measurable probability- valued map
ν, which in turn can be associated with a correspondence map ϕ : Õ → Õc.
For a minimum (u, ϕ), ϕ(x) corresponds to the center of the most similar
patch to pu(x) (the nearest neighbor).

Figure 4.3: Minimization of the energy. Some iterations of the minimiza-
tion procedure corresponding to the patch NL-medians (all schemes have a similar
behaviour). The top row shows the first 5 iterations and the result obtained after
convergence (rightmost column). The bottom row shows the corresponding distri-
bution of the patch error (energy density). Notice the emergence of coherent copy
regions and how the energy concentrates along their boundaries.

Copy regions and transition bands

In Figure 4.3 we show some iterates of the alternating minimization pro-
cess for the patch NL-median applied to the texture problem in Figure 4.5
(the other schemes show a similar evolution). The red curves depict the
boundaries of the regions with constant offset with respect to the nearest
neighbor. This offset is given by t(x) = ϕ(x) − x, for x ∈ Õ. Following
Barnes et al. (2009), we will refer to t as the nearest-neighbor field (NNF).
The minimization process starts from a highly complex NNF. Then regions
of constant offset start to grow from the boundaries towards the interior of
the inpainting domain, creating a (rather simple) partition of Õ.

For that, let us analyze how would the inpainting look like for the simple
case in which O is partitioned in two regions of constant NNF, R1 with
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t(x) = t1 and R2 with t2 (Figure 4.4). For a patch centered in Ri we have
that νx(x̂) = δ(x̂− (x+ ti)). It can be seen that the pixel influence function
of a pixel z ∈ O is given by

m(z, ẑ) = α1δ(ẑ − (z + t1)) + α2δ(ẑ − (z + t2))

for ẑ ∈ Oc, where αi =
∫

Ωp
g(y)χRi(z − y)dy, with i = 1, 2 is the area of

the intersection of the patch centered at z with Ri. Notice that due to the
normalization of g, α1 + α2 = 1. Thus, for the patch NL-means we have

u(z) = α1û(z + t1) + α2û(z + t2),

while the patch NL-medians selects the region with larger overlap with the
patch at z:

u(z) = û(z + tiM ) with iM = arg max
i=1,2

αi.

Figure 4.4: Two copy regions and the transition band. In regions R1

and R2, which have a constant NNF, data is rigidly translated (copied) from cor-
responding source regions in the complement. The transition between these copy
regions takes place on a band whose width coincides with the patch size.

Pixels in the red band in Figure 4.4 receive two contributions (α1, α2 >
0). Outside this band, in both regions R1 and R2, the image u results
from a rigid translation (i.e. a verbatim copy) from two corresponding
regions in Oc. The transition between both copy regions takes place at the
red transition band. Patch NL-means performs a smooth blending whereas
patch NL-medians creates a sharp cut. For gradient-based methods, the
same reasoning applies at the gradient level.

This argument generalizes to an arbitrary number of regions. The value
of u at each pixel z is determined by the copy regions overlapped by the
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patch centered at z, weighted by the overlap area. The transition bands
are defined as the centers of patches intersecting at least two different copy
regions. Outside these bands, the resulting image is an exact copy (of
intensities or gradients) of a corresponding source region in Oc.

The bottom row in Figure 4.3 shows the evolution of the patch error E[pu(x)−
pû(n(x))]. Recall from (2.6) that, for T = 0, the energy is computed as the
sum of these errors. The energy is concentrated around the transition bands,
since patches that do not overlap any band are an exact copy of the source
patch. This provides some intuition on why the minimization of the energy
might favour a piece-wise constant NNF (or a correspondence map which
is a piece-wise translation).

Figure 4.5: Inpainting of structured texture. From left to right: Initial
condition, result of patch NL-means, -medians, -Poisson and -GM (all results are
zoomed-in regions). Results with s = 15, a = 5 and T = 0. The treatment of color
images is described in Section 4.5.

The results obtained with the proposed schemes are compared in Figure
4.5. We can see that patch NL-means and -Poisson show some smoothing
due to the blending between copy regions. Both L1-based schemes obtained
sharper results (for patch NL-medians it is easy to identify the regions in
the complement that have been replicated).

Figure 4.6 shows another manifestation of the effects of the transitions.
The image to be inpainted consists of Gaussian noise. Using this synthetic
texture allows us to measure quantitatively the perceptual quality of the
inpainted texture via the local variance (the mean is well reproduced by
all methods). We estimate the local variance by smoothing the image of
squared differences w.r.t. the mean. In the interior of the copy regions, away
from their boundaries (red curves), the reproduction of the source texture
is exact, and thus the variance is preserved. As expected the variance
decreases along the red curves, where pixel values are synthesized using
incoherent contributions from different copy regions. Both for the intensity
and the gradient model, the L2-norm causes a higher decay of the variance
than the L1-norm.



4.2. regularity of optimal correspondence maps 43

Figure 4.6: Inpainting of random texture. Top: initial condition (the gray
square is the hole). Bottom, from left to right: images of the local variance superim-
posed with the boundaries between copy regions (red curves) for patch NL-means,
-medians, -Poisson and -GM. Notice the attenuation of the variance over the red
curves, specially for L2-based methods.

Regularity of optimal correspondence maps: mathematical
analysis

The empirical observations discussed in the previous section, lead us to
study the existence of regular optimal correspondence maps. The following
result gives us some information on the the existence of correspondences
with some regularity.

Theorem 4.1. Let X be an open bounded subset of RN with Lipschitz
boundary and Y be a compact subset of Rm. Let U : X × Y → R be a
Lipschitz continuous function. For each x ∈ X, let M(x) := {y ∈ Y :
U(x, y) = minȳ∈Y U(x, ȳ)}. Then there exists a selection of the multi-
function x ∈ X → M(x) ⊆ Y , i.e., a function S : X → Y such that
S(x) ∈M(x) ∀x ∈ X, which is a uniform limit of functions in BV (X)m.

As a uniform limit of functions in BV (X)m, S inherits some of their prop-
erties. In particular, HN−1-a.e. x ∈ X is either a point of approximate
continuity of S, or a jump point with two limits.

The proof of Theorem 4.1 can be found in Appendix B, where we also
included a brief summary of the properties of BV functions.

The result can be immediately applied to our case with X = Õ, Y =
Õc, by showing that patch error function is Lipschitz continuous. This
is shown in the Appendix A in Lemmas A.2, A.6 A.8 and A.9 for patch
NL-means, patch NL-medians, patch NL-gradient medians and patch NL-
Poisson respectively. These Lemmas hold under the assumptions of the
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corresponding existence results in Section 2.2. Theorem 4.1 implies that
the offsets map t(x) = ϕ(x) − x is a uniform limit of maps of bounded
variation (in this case from Õ to R2).

Notice that the result does not say that all optimal correspondence maps
are regular. Take for instance the completion of periodic textures such as
the one in Figure 4.1 but without the Gaussian noise. In that case, an exact
replication of the periodic pattern can be achieved with its correspondence
map jumping continuously from one period to the other. In this case, there
are many minima, and some have regular correspondence maps. In view of
Propositions 2.1 and 2.3, this raises the question if the solution obtained by
annealing, i.e. by solving E2,T (or E2,λ,T ) and letting T → 0+ is indeed a
regular solution in the sense described in Theorem 4.1. We are not able to
answer this question, at present.

This type of regularity is much milder that the one piece-wise translational
maps observed for some images. However, it is likely that stronger regu-
larity results require making further assumptions about the image û. In
Section 5.1 we discuss possible directions from derived from a geometric
interpretation of the energy in the space of patches.

4.3 Local minima

The alternating minimization scheme is only guaranteed to converge to a
local minima. Some local mimima do not correspond to a visually plausible
inpainting. The different schemes have different behaviours with respect to
this issue. We illustrate this with two examples.

Interpolation of a line

We consider a very simple image consisting on a green vertical line over a
dark background. The inpainting domain is a horizontal gap as shown in
Table 4.1. The inpainting region is initialized with the background color.
For this evaluation we fix the size of the patch and increase the width of the
gap. For narrow gaps, all methods are able to join both ends of the green
vertical line. When increasing the gap, at a certain width the gray initial-
ization prevails, the methods get stuck on a local minima, not being capable
of recovering the vertical line. The first column of Table 4.1 shows the max-
imum width (in pixels) that produces a good reconstruction. Observe that
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the combined schemes propagate the line through wider gaps, and that the
optimal mixing parameter λ for this purpose is around the values that we
have proposed in the previous section. Basically these schemes have two
propagation mechanisms: a local one, by diffusion of the intensity values
by the PDE, and a non-local one by transference of gradients from Oc. In-
tuitively, when λ > 0 these mechanisms reinforce each other: the diffused
values allow a better estimation of the weights, and therefore the transfer-
ence of more appropriate gradients, which will help to diffuse the intensity
values further in the next image update step. On the other hand, intensity-
based methods depend only on the iteration of weights computation and
image update to propagate information.

The second column of Table 4.1 shows the results obtained by incorporating
the confidence mask later described in Section 4.5. An alternative way to
prolong the geometric structures is to increase the patch size as will be
discussed in Section 6.4.

GAP GAP
Method (tc = 5)

P λ = 0 13 40
P λ = 0.1 16 46
P λ = 0.5 11 34

M 9 29

GM λ = 0 15 > 56
GM λ = 0.01 21 > 56
GM λ = 0.001 40 > 56

Md 7 42

Table 4.1: Geometric interpolation. The inpainting domain is shown in white
and the patch domain is shown in the lower right corner (9× 9 pixels). The table
reports the maximum gap width (measured in pixels) for which the algorithm
is capable of recovering the vertical line. P, M, Md and GM stand for patch
NL-Poisson, -means, -medians and -gradient median respectively. The rightmost
column shows the maximal gaps obtained with the use of a confidence masks with
decay tc = 5 (see Section 4.5).
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Figure 4.7: Stiffness effect. Left: Initial condition. The black rectangle is
the inpainting domain. Evolution of patch NL-means (top) and patch NL-medians
with same initialization and parameters. The boundaries between copy regions
are superimposed on red. Those between bright and dark copy regions have been
highlighted.

Stiffness of the L1-based methods

L1 methods are more reluctant to make changes during the minimization
process, and therefore they are more likely to get trapped in local minima.
The same robustness that favors sharp transitions between copy regions
makes them more greedy. Once a set of neighboring patches have settled on
a locally stable solution (typically a region of constant NNF), it is hard for
the algorithm to change that local decision. Figure 4.7 shows a comparison
between patch NL-means and -medians. Both methods are given a bad
initialization. We have highlighted the boundary between bright and dark
copy regions (shown in green). A copy front is advancing from the bound-
ary carrying correct information and meets an already settled copy front,
which has taken an undesirable decision based on the initialization. Pixels
on the boundary of the mistaken front start receiving contributions from
patches in the advancing front. Initially these contributions will be outliers
in the distribution from which the pixel value is estimated. The median will
discard these outliers, and the pixel value will not change unless of course,
patches in the advancing front outnumber the mistaken ones.

4.4 Decoupling image and weights update steps

In the variational setting, the image synthesis and the weights update are
coupled through a unique patch error function E. One can envision a
broader family of methods in which different patch comparison criterions
can be chosen independently for the weights update step and for the image



4.4. decoupling image and weights update steps 47

update step. If we denote by Eu and Ew the patch error functions for image
update and the weight update respectively, we have the following algorithm

Algorithm 3 Alternate minimization of EEu,T and EEw,T .

Initialization: choose u0 with ‖u0‖∞ ≤ ‖û‖∞ .

For each k ∈ N solve

wk+1 = arg min
w∈W

EEw,T (uk, w), (4.1)

uk+1 = arg min
(u,wk+1)∈AEu

EEu,T (u,wk+1), (4.2)

We now discuss two examples. Let us observe that such schemes are non-
variational. For the two cases described bellow, it can be proven, that they
converge (modulo the extraction of a subsequence) to a Nash equilibrium of
two different energy functionals, one for the computation of weights when
the image is fixed, and the other for the synthesis of the image, when the
weights are fixed (the proof follows that of Proposition 3.3).

In practice, however, we have observed that these schemes may present
oscillations.

Pixel-wise image synthesis

Part of the inspiration for our formalism comes from (1.3), an energy which
models the (pixel) non-local means. One could devise an iterative scheme
version of the non-local means algorithm, alternating between weights up-
date and pixel-wise image synthesis. To that aim, we define Eu using a
patch size of a single pixel

Eu(pu(x)− pû(x̂) = (u(x)− û(x̂))2.

One can think of Eu as a particular case of the squared L2-norm ‖ · ‖2g,2
when the patch weights g has zero variance.

In this case the image update step yields (compare with (3.8)):

uk+1(x) =

∫
Õc
wk(x, x̂)û(x̂)dx̂. (4.3)
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Similar iterative schemes have been applied to image denoising (Awate and
Whitaker (2006); Brox et al. (2008)). An immediate question is how does
such a scheme relates with the variational patch-wise version when applied
to the problem of inpainting. One of the first observations to be made, is
that both works (Awate and Whitaker (2006); Brox et al. (2008)) perform
a slightly different image synthesis, which for the case of inpainting reads

uk+1(x) = uk(x)(1− τ) + τ

∫
Õc
wk(x, x̂)û(x̂)dx̂.

The image update is a convex combination of the current image uk and
the pixel-wise non-local means synthesis, where τ ∈ (0, 1] is the time step.
Note that with τ = 1 the equation reduces to (4.3). In practice τ ' 0.2
(Awate and Whitaker (2006); Brox et al. (2008)). This is necessary for
the iterative scheme to converge (otherwise it might sometimes present an
oscillatory behaviour). However, for such small values of the time step, the
convergence will be slow, implying more steps of weight computation and
image synthesis. This is particularly undesirable in inpainting applications,
where the initialization is typically far away from the solution.

We have not observed such instabilities with the patch-wise synthesis, allow-
ing convergence to be reached in a few iterations. The patch-wise synthesis
is computationally more expensive than the pixel-wise one. However, in
either case, the cost of the image update is minor compared to that of the
weights update. Therefore, the patch-wise synthesis yields usually consid-
erably lower run times.

From the point of view of the quality of the results obtained, let us briefly
comment that copy regions also appear with the pixel-wise scheme. As
with the patch NL-medians, the transitions between these regions are sharp,
improving the rendering of some textures. However methods with a pixel-
wise synthesis show a considerably poorer ability to propagate structures.
More generally, patch-wise methods propagate the information from the
boundary deeper inside the inpaining domain, alleviating the dependence
on the initialization. This is a direct consequence of copying patches instead
of pixels. We note that these observations are based on results obtained
using equation (4.3) (i.e. with τ = 1) for which the method did converge.
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Different combinations of gradient and intensities for image
and weights updates

Gradient-based methods produce smooth interpolations and enforce the
continuity of the image at the boundary of the inpainting domain, which
are generally desirable features. For this to be done variationally the simi-
larity weights w have to be computed using patches of the gradient, which
in most cases do not provide a reliable measure of patch similarity. For
this reason, both for patch NL-Poisson and patch NL-gradient medians, we
define the patch error function as a convex combination between a gradient
patch error function and the squared L2-norm of intensities (the patch error
function of patch NL-means). In this way, by controlling the coefficient λ of
the convex combination we can take the image values into account for the
computation of the weights, and at the same time, to synthesize the image
with a diffusion PDE.

Figure 4.8: Linear combination of gradient-based methods with NL-
means. First image starting from the left: Initialization. The gray rectangle is
the inpainting domain. Only patches centered outside the red area are available.
Second image: Result obtained with patch NL-GM, using λ = 0. A similar result
is obtained with the patch NL-Poisson with λ = 0 (not shown). Details: Top, from
left to right: results with patch NL-Poisson with λ = 0.01, 0.05, 0.1, 1 (the latter
corresponds to patch NL-means). Bottom: results with patch NL-GM with λ =
0.001, 0.005, 0.01. All details have been linearly stretched for display. Differences
are most noticeable in the top and in the left of the images.

In Figure 4.8 we show some results corresponding to the combination of both
gradient schemes with patch NL-means while varying the mixture coefficient
λ. The image shows a periodic pattern with an illuminance gradient. Most
of the dark exemplars are incomplete, and thus only bright exemplars from
the bottom of the image are available. The rightmost detail shows the result
of patch NL-means: the image has been completed using bright patches and
presents a discontinuity on the upper side of the hole. On the other hand, a
completion using gradients only (see result of the patch NL-GM) manages
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to interpolate both the texture and the shading. The small images on the
right show results of both gradient methods with different values for λ.
The value of the mixing parameter λ should be carefully selected since it
mixes two different magnitudes (norms of gradients and gray levels). With
λ ∼ 0.1 for patch NL-Poisson and λ ∼ 0.01 for patch NL-GM, some of the
good continuation properties are preserved and enough color information is
added to the patch comparison criterion.

However, as will be shown in Chapter 7, in many cases, one cannot find
a value of λ which balances a gradient-based blending of the image and
at the same time produces reliable similarity weights. For such cases it is
usefull to extend gradient-based methods by considering two mixture coef-
ficients: λw ∈ [0, 1] for the weights update step and λu ∈ [0, 1] controlling
the image synthesis (by minimizing Uλu,p with respect to u). This allows to
combine the benefits of intensity- and gradient-based methods into a single
algorithm.

4.5 Extensions

Color images

An energy for color images can be obtained by defining a patch error func-
tion for color patches as the sum of the error functions of the three scalar
components:

E(pu(x)− pû(x̂)) =
3∑
i=1

E(pui(x)− pûi(x̂)),

where u : Ω→ R3 is the color image, and ui, with i = 1, 2, 3, its components
(analogously for gradient-based errors). Given the weights, each channel is
updated using the corresponding scheme for scalar images. All channels are
updated using the same weights.

Confidence mask

For large inpainting domains, it is useful to introduce a mask κ : Ω→ (0, 1]
which assigns a confidence value to each pixel, depending on the certainty
of its information (see also Criminisi et al. (2004); Komodakis and Tziritas
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(2007)). This will help in guiding the flow of information from the boundary
towards the interior of the hole, eliminating some local minima and reducing
the effect of the initial condition. The resulting image energy term takes
the form

UE(u) =

∫
Õ

∫
Õc
κ(x)w(x, x̂)E(pu(x)− pû(x̂))dx̂dx.

The effect of κ on the image update step can be seen on the pixel influence
weights m

m(z, ẑ) =

∫
Ωp

χ
Õc

(ẑ − y)g(y)κ(z − y)w(z − y, ẑ − y)dy.

Thus, the contribution of the patch pu(z − y) to the evidence function is
now weighted by its confidence. Patches with higher confidence will have a
stronger influence. With the inclusion of the confidence mask, the normal-
ization coefficient c(z) becomes:

c(z) =

∫
Oc
m(z, ẑ)dẑ =

∫
Ωp

g(y)κ(z − y)dy.

On the similarity weights, the confidence mask has the effect of modifying
the selectivity parameter T by a locally varying T/κ(x). If the confidence
is high, the effective selectivity T/κ(x) will be lower, thus increasing the se-
lectivity of the similarity measure. When T = 0 the weights are substituted
by a Dirac’s delta independently of κ.

For the experiments shown in this paper, the confidence mask was set to

κ(x) =

{
(1− κ0) exp

(
−d(x,∂O)

tc

)
+ κ0 if x ∈ O,

1 if x ∈ Oc,

which shows an exponential decay w.r.t. the distance to the boundary inside
the hole d(·, ∂O). Here tc > 0 is the decay time and κ0 > 0 determines
the asymptotic value reached far away from the boundary. Setting tc = 0
amounts to using a constant confidence mask. Table 4.1 shows the effect of
using a confidence mask with tc = 5 and κ0 = 0.1, allowing the restoration
of the vertical line for much wider gaps, and thus alleviating the dependence
on the gray initial condition.
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Interpolation of sparsely sampled images

The framework we presented has been generalized to the interpolation of
sparsely sampled images in Facciolo et al. (2009). This problem differs from
the typical inpainting scenario in that there are no complete patches in
Õc to copy from. Other exemplar-based methods used for interpolation of
sparse samples, generally based on sparseland model (Aharon et al. (2006);
Candes and Wakin (2008)), resort to a dictionary with complete patches
built in a previous training stage (Aharon et al. (2006); Elad et al. (2005);
Mairal et al. (2008)). The extension of our framework proposed in Facciolo
et al. (2009) allows to use the incomplete patches from the sparsely sampled
image as the only source of information. A description of this method is
out of the scope of this thesis. The interested reader can refer to Facciolo
et al. (2009).



Chapter 5

Discussion and connections

In this chapter we discuss connections between the proposed framework and
related models. We start by providing a geometric description of the energy
in the space of patches in Section 5.1. In Sections 5.2 and 5.3 we review
similar energies in statistical mechanics, and their application to related
geometric problems like point clustering and rigid registration between two
sets of points. In Section 5.4 we revisit related work in image inpainting and
non-local image regularization. Finally, in 4.5 we describe some extensions
of the proposed framework.

5.1 Interpretation in the space of patches

The proposed functionals for T > 0 and T = 0, have a simple geomet-
ric interpretation in the space of patches. We will exploit this geometric
viewpoint to review the problem of the regularity of the correspondence
map, and to draw connections to similar approaches for related geometrical
problems.

Similar geometric interpretations for related non-local regularization models
have been proposed by Peyré (2009) and Peyré et al. (2011). We will discuss
them later in Section 5.4.

53
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Manifolds of patches

We consider the problem from the point of view of the manifold of patches.
For a continuous image, the space of patches is a functional space. Thus, for
simplicity, we consider the case of continuous images with sampled patches.
We also assume that u : Ω ⊂ R2 → R is smooth (suppose u is acquired by
an optical system with a smoothing point spread function K). The patch
of u centered at x is given by a sampling of u on a neighborhood of x. Let
Π = Ωp ∩ Z2, which is a discrete neighborhood of 0 ∈ Z2. Denoting by D
be the cardinal of Π, we have that pu(x) = (u(x+ h) : h ∈ Π) ∈ RD. Given
a image u, the map pu : Ω → RD defines a parameterization of a manifold
of Mu, given by the image of pu.

T > 0: density model in the space of patches

As shown in Proposition 3.1 the alternating minimization scheme is equiv-
alent to an EM algorithm applied to the maximiztion of the marginal like-
lyhood:

LE,T (u) =

∫
Õ

log ZE,T (u;x) dx (5.1)

where

ZE,T (u) =

∫
Õc

exp

(
− 1

T
E(pu(x)− pû(x̂))

)
dx̂.

We can interpret the above expressions in terms of a probabilistic model
in the space of patches, by noticing that ZE,T (u;x) is a density estimate

(in the patch space) of the set of patches in Õc: it corresponds to the total
unnormalized similarity of patch pu(x).

Thus, the image is considered as an ensemble of overlapping patches. Known
patches in Õc are fixed, forming a patch density model used to estimate the
patches in Õ. The minimizers (u∗, w∗) are obtained when the patches of
the inpainted image are in regions of high density of known patches in the
patch space.
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T = 0: manifold model in the space of patches

When T = 0, minimizing the energy EE,0 on (u, ν) corresponds to minimiz-
ing the following energy, depending only on the image u

LE,0(u) =

∫
Õ

inf
x̂∈Õc
{E(pu(x)− pû(x̂))}dx (5.2)

For a closed set C ⊂ RD, we denote by dC the distance of a point p ∈ RD
to C, measured by E, that is dC,E(p) = infq∈C E(p − q). Thus, instead of
a density model, the energy penalizes dMû

the distance to the manifold of
known patches.

Remarks on the existence of regular correspondence maps: the
point of view of the manifold of patches

Let us explain the role of the selection Theorem 4.1, considering the problem
from the point of view of the manifold of patches. As before, we consider
a continuous image domain but we sample the patches. Mu ⊂ RD is the
manifold of patches given by the image of pu. By suitable assumptions on
the kernel K we may assume that pu is of class C1.

For a fixed u, the computation of the correspondence map can be seen as
the following problem. Given two images u : Ωu → R, ū : Ωū → R with
the corresponding manifolds of patches Mu,Mū, let us consider the map
projMū

(p) that associates to each point p ∈ RD the set of points of Mū of
minimal distance to p, that is

projMū
(p) := {q ∈Mū : dMū(p) = ‖p− q‖}.

What is the regularity of correspondence maps ϕ that associate to each
point x ∈ Ωu a point ϕ(x) ∈ Ωū such that pū(ϕ(x)) ∈ projMū

(pu(x)) ?

The regularity of the correspondence maps is related to the regularity of
the parameterizations pu and pū of the manifolds Mu and Mū, and to
the regularity of the projection map projMū

(x). Our purpose is to describe
what is the generic geometric situation and justify the need of using selection
theorems in order to ensure the existence of mildly regular correspondences.
For that, let us recall some results on the differentiability and the singular
set of semiconcave functions Cannarsa and Sinestrari (2004).
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A function f defined on an open set A ⊂ RD is semiconcave with modulus
ω if there is a nondecreasing upper semicontinuous function ω : R+ → R+

such that limρ→0+ ω(ρ) = 0 and

λf(p) + (1− λ)f(q)− f(λp+ (1− λ)q) ≤ λ(1− λ)|p− q|ω(|p− q|)

for any pair p, q such that the segment [p, q] is contained in A and for any
λ ∈ [0, 1]. If w(ρ) = ρ we say that the modulus is linear.

The distance dC to a closed set C ⊂ RD is a locally semiconcave function
in RN \ C with linear modulus and d2

C is semiconcave in RD with linear
modulus.

Proposition 5.1. (Cannarsa and Sinestrari (2004), Chapter 3) If f is
semiconcave, then the superdifferential D+f(p) 6= ∅. If D+f(p) is a single-
ton, then f is differentiable at p. If D+f(p) is a singleton for any p ∈ A,
then f ∈ C1(A).

Proposition 5.2. (Cannarsa and Sinestrari (2004), Proposition 4.1.2)
Suppose that f : A → R is semiconcave with a linear modulus. Then the
gradient of f is a function in BVloc(A,RD) and the set Σ(f) of singularities
of f , i.e. the points where f is not differentiable, coincides with the jump
set SDf of the gradient of f , which is a HD−1-rectifiable set.

Proposition 5.3. (Cannarsa and Sinestrari (2004), Proposition 4.4.1) Let
C ⊂ RD be a closet set. Then dC is semiconcave with linear modulus in
RD \C. dC is differentiable at p 6∈ C if and only if projC(p) is a singleton.
In that case

projC(p) = p− dC(p)DdC(p).

Let us apply these results to the distance map dMū . If p 6∈ Σ(dMū), then
dMū is differentiable at p and projMū

(p) is a single point on Mū. Thus,
the function dMū is differentiable at the points Mu \ Σ(dMū). Hence the
mapping projMū

is well defined on Mu \ Σ(dMū) and is given by

p ∈Mu \ Σ(dMū)→ projMū
(p) = p− dMū(p)DdMū(p).

Hence it is a BV function (see Proposition 5.2). Since the map x ∈ Ωu →
pu(x) is differentiable, the mapping x ∈ {x̄ ∈ Ωu : pu(x̄) 6∈ Σ(dMū)} to
projMū

(pu(x)) is a BV function. By Proposition 5.1 we may assume that
it is C1 at the points in Mu \ Σ(dMū).
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Generically, we may assume thatMu intersects Σ(dMū) transversally, thus
we may assume that the intersection Mu ∩Σ(dMū) is a rectifiable curve in
Mu.

Let MP2(ū) be the set of points y ∈ Ωū where the rank of the differential
of pū at y is 2. Since the differential of pū is given by the map dpū(y)(v) =
{v · ∇ū(y + h) : h ∈ Π} and

‖dpū(y)(v)‖22 =
∑
h∈Π

〈∇ū(y + h)⊗∇ū(y + h)(v), v〉,

the rank of dpū(y) is the rank of the 2×2 matrix
∑

h∈Π∇ū(y+h)⊗∇ū(y+h).

Since we can give the structure of a differentiable manifold to pū(MP2(ū)),
if we assume that Ωū =MP2(ū) and pū is injective, then x ∈ Ωu → ϕ(x) ∈
Ωū is a (locally) BV function.

Thus, we have seen that there are several obstructions to the regularity of
ϕ. The first is the position of the manifold Mu relative to the singularities
of the distance map to Mū. Intuitively, if they intersect, generically this
intersection is a rectifiable curve. At those points, we have to select the
correspondence map so that it is a BV map. More significantly, the map
pū may not be injective and then we need again a selection. We can only
guarantee the regularity of ϕ if projMū

(pu(x)) is a point in pū(MP2(ū) (that
is, in the image of the set of points where pū is injective) where the inverse
of pū is differentiable. Thus, regularity without using the selection theorem
can only be guaranteed at the points ofMP2(ū) where pū is injective. But
we only know that pū is locally injective at the points of MP2(ū) and we
can only expect a BV regularity result on ϕ in all Ωu by a proper selection
of the inverse map of pū. For that reason, we used the extension to the BV
case of the Kuratowski-Ryll-Nardewsky selection theorem in order to have
a global statement in all Ωu.

5.2 Connections with statistical mechanics

For simplicity, we restrict ourselves to the discrete case where O is a subset
of a domain Ω in Z2. In the context of statistical mechanics (Mézard and
Montanari (2009)) we consider Õ as a system of particles x ∈ Õ. Each
particle x can be in one of a set of possible states x̂ ∈ Õc. The configuration
of the system is determined by the state of all its particles. Thus, we can
encode the configuration with the correspondence map ϕ : Õ → Õc, which
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assigns a state to each particle. The set of all possible configurations is then

Φ = {ϕ : Õ → Õc}, which has a total of |Õc||Õ| elements.

A given image completion u, which we consider fixed, defines an energy for
each configuration ϕ

UE(u, ϕ) =
∑
x∈Õ

E(pu(x)− pû(ϕ(x)) =
∑
x∈Õ

Ex(u, ϕ(x)).

To simplify notation, we have defined the energies Ex(u, ϕ(x)) = E(pu(x)−
pû(ϕ(x)) for x ∈ Õ. The notation makes explicit the dependence on u.

Let us assume a given probability distribution P (ϕ) defined over Φ, the
configuration space. The Gibbs free energy with temperature T is then
defined as follows

GE,T (u, P ) =
∑
ϕ∈Φ

P (ϕ)UE(u, ϕ) + T
∑
ϕ∈Φ

P (ϕ) logP (ϕ).

The Gibbs free energy is considered as a function of the probability dis-
tribution on the space of configurations P . The Gibbs free energy is rel-
evant in statistical physics since it provides a criterion for the equilibrium
distribution for a system at constant temperature: A system at constant
temperature is in equilibrium if the Gibbs energy is at its minimum. The
distribution that attains the minimum is the Boltzmann distribution:

PE,T (u;ϕ) =
1

ZE,T (u)
exp

(
− 1

T
UE(u, ϕ)

)
, (5.3)

where

ZE,T (u) =
∑
ϕ∈Φ

exp

(
− 1

T
UE(u, ϕ)

)
is a normalization factor called the partition function.

This can be easily seen. From the previous equation, we have that

UE(u, ϕ) = −T logZE,T (u)− T logPE,T (u, ϕ).

Substituting this expression into the Gibbs free energy yields

GE,T (u, P ) = −T logZE,T (u) + T
∑
ϕ∈Φ

P (ϕ) log

(
P (ϕ)

PE,T (u;ϕ)

)
= FE,T (u) + T KL(P, PE,T (u)),
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where we have introduced the Helmholtz free energy, given by FE,T (u) =
−T logZE,T (u), and identified the second term as T times the Kullback-
Leibler divergence between probabilities P and PE,T (u). The Helmholtz
free energy does not depend on P , and the Kullback-Leibler divergence is
zero when P = PE,T (u) and is positive otherwise. Thus, it can be easily
seen that the Boltzmann distribution minimizes the Gibbs free energy, and
the minimum is the Helmholtz free energy.

The Gibbs free energy resembles our inpainting energy EE,T : The first term
is the expected value of the energy under P , and the second is the negative
entropy of P , multiplied by T . However, the sums in the definition of G
and ZT are on the space of all possible configurations Φ; this amounts to a

total of |Õc||Õ| terms, as opposed to the Õ × Õc terms in EE,T .

As we shall see next, the inpainting energy EE,T corresponds to a restriction
of the Gibbs free energy to a particular class of probability distributions P .

This comes as a consequence that UE(u, ϕ) has a very simple structure: it
is the sum of independent energies for each particle x ∈ Õ. There are no
terms coupling different particles. This is what is called a non-interacting
system.

This simplifies the expressions above. For instance for the partition function
we have that

ZE,T (u) =
∏
x∈Õ

∑
ϕ(x)∈Õc

exp

(
− 1

T
Ex(u, ϕ(x))

)
=
∏
x∈Õ

ZE,T (u, x),

i.e. the global partition function ZT factorizes as a product of individual
normalization factors for each x ∈ Õ. Substituting in the definition of the
Boltzmann distribution, we have that

PE,T (u, ϕ) =
∏
x∈Õ

ZE,T (u, x)−1 exp

− 1

T

∑
x∈Õ

Ex(u, ϕ(x))


=
∏
x∈Õ

ZE,T (u, x)−1 exp

(
− 1

T
Ex(u, ϕ(x))

)
=
∏
x∈Õ

wE,T (u;x, ϕ(x)).

Due to the absence of interacting terms in the energy, the equilibrium prob-
ability factorizes as the product of the probabilities of each particle x being
at state ϕ(x), i.e. the states of different particles are statistically inde-
pendent. Each of these factors is given by the optimal similarity weights
wE,T (u).
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Let us now see which is the non-interacting expression for the Gibbs free
energy. The Gibbs free energy is defined for any probability distribution on
the configuration space, including those in which states of different particles
are not independent. Let us ignore those cases, and consider a restriction of
the Gibbs free energy to those distributions that factorize over the particles:

P (ϕ) =
∏
x∈Õ

w(x, ϕ(x)).

In that case, it can be shown that the Gibbs free energy reduces to

GE,T (u,w) =
∑
x∈Õ

∑
ϕ(x)∈Õc

w(x, ϕ(x))Ex(u, ϕ(x))

+ T
∑
x∈Õ

∑
ϕ(x)∈Õc

w(x, ϕ(x)) log(w(x, ϕ(x))

= UE(u,w)− TH(w) = EE,T (u,w)

When restricting the Gibbs free energy to non-interacting probability dis-
tributions, we obtain our energy EE,T . The minimizer of this restricted
Gibbs free energy will still be the Boltzmann distribution PE,T (u), since it
factorizes over the particles.

Furthermore, the Helmholtz free energy results in

FE,T (u) = −T log
∏
x∈Õ

ZE,T (u;x) = −T
∑
x∈Õ

logZE,T (u;x) = LE,T (u),

which coincides with the marginal log likelihood defined in Section 3.2.

5.3 Deterministic annealing for related
geometric problems

In the previous sections we interpreted our model from a geometric point
of view in the space of patches, and we showed that the inpainting energy
has the form of the Gibbs free energy of a system of particles in the context
of statistical mechanics. Interestingly, statistical mechanics has inspired
similar approaches for the solution of related geometric problems for sets
of points in RD, such as clustering (see Rose (1998) and references therein)
and rigid registration of two point sets (Rangarajan et al. (1997)), among
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others. In this section we review the similarities and the differences between
these problems and ours.

These methods have in common that they look for a correspondence map
between points by minimizing a non-convex energy. To avoid local minima
they relax the energy by using a probabilistic correspondence, and gradu-
ally reduce the randomness of the assignment until the get a deterministic
assignment. The rationale behind this approach, is that the problem for
a random assignment is easier to solve (it may be convex). This scheme,
called deterministic annealing, is inspired by statistical mechanics, thus we
will first mention the basic statistical mechanics framework.

In chemistry an annealing procedure is often used to drive a system to
configuration of minimal energy. It consists in embedding the system in a
thermal bath at a high temperature, and slowly lowering the temperature,
maintaining at all time the system at thermal equilibrium.

Deterministic annealing for clustering

Let us now review the statistical mechanics formulation of clustering of
Rose (1998). We use his notation. The purpose is to partition the set of
data points into subgroups each of which as homogeneous as possible. For
that one defines a cost criterion to be minimized which may depend on the
application. To fix ideas, let us mention the case of quantization. In that
case given a source vector we want to represent it by a codevector y(x) from
a codebook so that the expected distortion is minimized:

D =
∑
x

p(x)d(x, y(x)).

Here p(x) is the distribution of the source and d(x, y) represents a distortion
measure. The mapping of the source vectors x to a codebook vector y
determine a partition of the source.

A probabilistic framework is defined by randomizing the encoding rule
(fuzzy clustering). Then the distortion measure can be written as

D =
∑
x

∑
y

p(x, y)d(x, y(x)) =
∑
x

p(x)
∑
y

p(y|x)d(x, y),

where p(x, y) is now the joint probability distribution and p(y|x) is the
association probability relating input vector x to the codevector y. If we
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minimize D with respect to (y, p(y|x)) we obtain a hard assignment x →
y(x). But one can ask for the minimization of D subject to a level of
randomness, measured by the entropy

H =
∑
x

∑
y

p(x, y) log p(x, y).

The solution can be obtained using Lagrange multipliers and minimizing
the Lagrangian G = D−TH, where T is the Lagrange multiplier. Note that
G has the form of a Gibbs free energy, when seen as a function of p.

The objective of minimal distortion is reached through deterministic an-
nealing: T is gradually reduced, and with it the level of distortion, until a
hard assignment with minimal distortion is reached. The behavior of the
association probabilities with respect to T goes from a uniform distribution
for large T (input vectors are associated to the codebook with uniform dis-
tribution) to a hard assignment as T → 0+. During this cooling scheme,
the system undergoes a sequence of phase transitions in which the clus-
ters split and the number of clusters increases. In this context the critical
temperatures can be computed In some sense, when letting T → 0+, the
system self-organizes and looks for a better optimum. As in our case, the
optimum codevectors and association probabilities for fixed T are obtained
using an alternating optimization scheme which alternates minimizations
with respect to the codevectors and the association probabilities.

To understand the relation between our inpainting problem and quantiza-
tion, we consider an image over a discrete domain. The objective is to find
a correspondence which assings each unknown patch pu a known patch pû,
such that the patch error E is minimized. Thus the x vectors correspond to
the unknown patches, pu, the codevectors correspond to the known patches
pû and the patch error function E corresponds to the distorion. Then, the
energy G corresponds to the inpainting energy with T > 0, EE,T . The differ-
ence between our approach and the quantization problem, is that for us the
variables are the x vectors, in the domain of the correspondence, whereas in
the context of quantization, the variables are the y vectors, in the codomain
of the correspondence.

These are not interchangeable. When minimizing over y we aim at covering
the hole set of x vectors, so that each x vector has a nearby codevector.
When minimizing over x, we do not need to cover the set of y vectors. We
only require that each vector x is close to a codevector y. Indeed, when
minimizing over x, the problem can be solved independently for each x. In
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this setting, an annealing procedure yields a constant solution x = ȳ for all
x vectors, where the vector ȳ is the codevector closer to the average code-
vector. In the inpainting application, the x vectors correspond to patches
of an image and they are not independent since nearby patches overlap.
Furthermore, there are constraints given by the boundary conditions of the
inpainting domain. Thus, setting all patches as a constant might not be a
solution. Still, we have observed that a deterministic annealing scheme has
a bias towards this type of solutions.

Deterministic annealing for point set registration

Deterministic annealing has also been used effectively to find a rigid trans-
formation registering two sets of points Rangarajan et al. (1997). As before,
let us denote by x and y the points in each set. Let us assume that both
sets have the same number of points. The transformation is applied to
the y points, and should map each y to match a single x point. There
is thus a bijective correspondence between both sets, we denote by y(x),
such that τ(y(x)) ≈ x. The aim is then to find a bijective correspondence
x 7→ y(x) and the transformation τ (parametrized by a rotation angle, a
scaling factor and a translation vector) such that the following matching
error is minimized

D(τ, y(·)) =
∑
x

d(x, τ(y(x))),

where d(·, ·) is a distance. The correspondence between both sets can be
encoded with binary weights w(x, y) ∈ {0, 1}, resulting in the equivalent
function

D(τ, w) =
∑
x

∑
y

w(x, y)d(x, τ(y)),

with the constraints w(x, y) ∈ {0, 1},
∑

xw(x, y) = 1 and
∑

y w(x, y) = 1.
These constraints on w imply that the correspondence is bijective, and also
that w(x, y) is a permutation matrix.

The energy D is minimized with an alternating optimization scheme similar
to ours. Instead of the image update step, the authors minimize for the
parameters of τ . Due to the bijection constraint, the minimization with re-
spect to the weights is a combinatorial linear programming problem, known
as the linear assignment problem. It turns out that a solution can be found
by relaxing the binary constraints to positivity constraints w(x, y) ≥ 0.
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This means, in conjunction with the two sum constraints, that w(x, y) is a
doubly stochastic matrix.

The resulting minimization problem on w is a linear problem with convex
constraints. To solve it the authors propose an interior point method using
a barrier function for the positivity constraint. This yields the following
energy

G(τ, w) =
∑
x

∑
y

w(x, y)d(x, τ(y))− T
∑
x

∑
y

w(x, y) logw(x, y),

subject to
∑

xw(x, y) = 1 and
∑

y w(x, y) = 1.

In this case the entropy term is motivated as a barrier function in an in-
terior point method for the minimization of D with respect to the weights.
Following that reasoning, the cooling of T should be performed for each
minimization with respect to w. This would require, for each weights up-
date step, the minimization of energy GT (τ, ·) several times with decreasing
T , before updating τ . Instead the authors propose to perform the cooling as
an outer loop, decreasing T while they alternate between the minimizations
with respect to τ and w.

5.4 Revisiting related work

Let us briefly review the connections of our work with other inpainting algo-
rithms and also with existing variational models of non-local regularization
which have been proposed in contexts such as image denoising.

The methods presented in Kawai et al. (2009); Wexler et al. (2007) are
closely related to the patch NL-means scheme of (3.8), based in the opti-
mization of an energy as in equation (1.2). In Wexler et al. (2007) the energy
is interpreted as a likelihood for a MRF model. The method can be seen
as an approximate EM algorithm for maximizing the log-likelihood w.r.t.
the pixels in O, and some approximations have to be taken to make the
optimization tractable. Based on heuristics, the authors also propose to use
more robust estimators than the mean for the synthesis of pixels. Within
the framework here proposed, robust estimators (as the median) naturally
result from particular choices of the patch error functions E(·). In Kawai
et al. (2009) the authors propose modifications of the energy which improve
the results, such as some spatial localization of the similarity weights and
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brightness invariance. The latter is achieved by introducing a multiplicative
constant that matches the mean illuminance between each pair of patches.

Similar ideas have also been applied in the context of texture synthesis. In
Kwatra et al. (2005) the authors propose two energies: a gradient-based
and a robust one. The former can be obtained as a particular case of the
patch NL-Poisson when T → 0 (in the sense discussed in Section 2.2), while
the latter corresponds to using an L0.8-norm, also with T → 0.

The patch NL-means algorithm is also related to the manifold image models
of Peyré (2009). Equation (3.8) can be split into two steps analog to the
manifold and image projection steps of Peyré (2009). First, for each patch
centered in Õ we compute a new patch as a weighted average of all patches
in the complement, according to the patch similarity weights pMS

u (z) :=∫
Õc
w(z, ẑ)pû(ẑ)dẑ with z ∈ Õ. Doing this for each hole position yields an

incoherent ensemble of patches. The image is obtained by averaging these
patches: u(z) = 1

A(Ωp)

∫
Ωp
pMS
u (z−y, y)dy. We use a density model, instead

of the manifold model of Peyré (2009). Indeed, pMS
u (x) is the mean shift

operator applied to pu(x). It is known that the iteration of this operator
corresponds to an adaptive gradient ascent of the Parzen estimate of a PDF
Cheng (1995), which in this case is generated by the set of patches in the
complement of the hole. The use of a density model entails some advantages,
mainly from the computational point of view: learning a manifold model is
computationally costly.

In the following we will comment on the relation of this model with recent
works on non-local regularization.

The UINTA algorithm, presented in Awate and Whitaker (2006) is a non-
local denoising algorithm that minimizes the entropy of the patches in the
image. Casting this idea to the context of inpainting the UINTA’s entropy
is estimated as the sample mean

EU (u) := −
∫
Õ
log

[∫
Õc
exp(−1

h
‖pu(x)− pû(x̂)‖2)dx̂

]
dx

where the inner integral is the probability of the patch pu(x) obtained as a
Parzen density estimate. The corresponding Euler-Lagrange equation can
be solved with a fixed point iteration which coincides with the patch NL-
means scheme (3.8). In Awate and Whitaker (2006) this energy is minimized
by considering all patches as independent (disregarding the overlap between
neighboring patches), and evolving each of them according to a gradient
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descent of EU . Then an image is formed with the centers of these new
patches. The repetition of this process yields an iterative application of the
pixel NL-means (i.e. the standard non-local means algorithm).

In Brox et al. (2008) the authors use a variational principle for deriving
the iterated pixel NL-means regularizer, and show its application to the
restoration of texture. The underlying energy corresponds to the quadratic
penalty between the solution image u, and a pixel NL-means type average
of the noisy input image û. The weights for this average are computed using
u. Due to the dependence of the weights with the regularized image u, the
minimizer is no longer a weighted average as NL-means, but the solution
of a nonlinear optimization problem. It is shown that if the derivative of
the nonlinear component is neglected, the resulting Euler-Lagrange equa-
tion matches the proposed fixed point algorithm: the iterated NL-means
regularizer.

In Pizarro et al. (2010) the authors presented a variational framework for
image denoising consisting in non-local regularization and data adjustment
terms. Inpainting could be performed by considering only the data term as
follows:

EP (u) := −
∫
Õ

∫
Õc

exp(E(pu(x)− pû(x̂)))dx̂dx

This energy is the same as the one adapted from the UINTA algorithm EU ,
without the logarithm. In Pizarro et al. (2010) the Euler-Lagrange equation
is solved with a fixed point iteration. This model has two differences with
our framework. First it allows to use a more general nonlinearity for the
computation of the weights other than the exponential. Second, even in
the case of the exponential, the methods differ in the normalization, for
instance, when E is the squared L2-norm, the resulting scheme is as the
patch NL-means, with the unnormalized weights.

After its introduction in Arias et al. (2009), our model has been inter-
preted as a non-local self-similarity regularizer in Peyré et al. (2011), where
in conjunction with appropriate data fitting terms it has been applied to
the solution of inverse problems, including inpainting, super-resolution and
compressive sensing. In Peyré et al. (2011) a different patch-error func-
tion E is used, namely the L2-norm between patches (without squaring it).
This choice is motivated as a patch-wise version of their work Peyré et al.
(2008) on non-local Total Variation Gilboa and Osher (2008); Lezoray et al.
(2007); Zhou and Schölkopf (2005) with adaptive weights. This patch-wise
non-local TV is defined as the L1-norm of the non-local gradient of the patch
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valued image pu : Ω→ RΩp . The non-local gradient is defined as a function
∇wpu : Ω×Ω→ RΩp given by ∇wpu(x, x̂) := w(x, x̂)(pu(x)− pu(x̂)). Thus,
the patch-wise non-local TV reads

‖∇wpu‖ :=

∫
Ω

∫
Ω
w(x, x̂)‖pu(x)− pu(x̂)‖2dx̂dx.

Note that in this sense, the model of the patch NL-medians corresponds to
an anisotropic version of the non-local TV where the 2-norm in the integral
is replaced by the 1-norm. Our work and the work of Peyré et al. (2011) are
complementary. In Peyré et al. (2011) the regularization term is fixed, and
the authors focus on the possibilities given by different data terms suited
for different applications. On the other hand in this work we focus on
the regularization term exploring its properties with different patch error
functions E, and applying them to a problem in which the data term plays
no role at all, since there is no data to adjust to.

The model of Komodakis and Tziritas (2007) as a coarse
correspondence model

As we commented in the introduction, several inpainting schemes can be
considered as particular instances or relaxations of the inpainting functional
proposed by Demanet et al. (2003). According to this model the unknown
image is given by u = û ◦ϕ, and is not considered a variable. The energy is
given by

EDSC(ϕ) =

∫
O

∫
Ωp

|û(ϕ(x+ h))− û(ϕ(x) + h)|2dhdx

=

∫
O

∫
Ωp

|u(x+ h)− û(ϕ(x) + h)|2dhdx.

The pair-wise MRF model proposed by Komodakis and Tziritas (2007)
does not fit into this formulation. In Komodakis and Tziritas (2007), the
inpainting domain is covered by a coarse rectangular grid. The vertical
and horizontal separation between nodes in the grid is s. Each node is
connected by its four neighbors (left, right, up and down). We denote
by N (a) the four neighborhood of a. If a and b are neighbors, we write
a ∼ b. At each grid node a a known patch is attached, centered at position
ϕ(a) ∈ Õc. The size of these patches is 2s. Such that the right half of the
patch attached at node a, overlaps the left half of the patch attached at the
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(a) EDSC (b) EKT (c) EDSC-KT

Figure 5.1: Comparison of variational inpainting models. (a) The energy EDSC

minimizes the error between the patch centered at x, and the one centered at ϕ(x).
The yellow pixel x+y is copied from ϕ(x+y), and has to be similar to the pixel the
same relative position in the patch centered at ϕ(x). (b) Energy EKT minimizes
the overlap error of patches of side 2s when attached at a grid where nodes (grey
pixels) are separated by a gap of width s. (c) EDSC-KT is a coarse version of EDSC,
in which the mapping is block-wise a translation. The blocks are separated by gray
lines. The domain of discrete cross shaped patch is shown.

right neighbor of a. The pair-wise potentials in the MRF penalize the L2

error between overlapping patches, in the area of overlap. Let us denote by
Ωp(a, 2s) ⊂ Ω, a square neighborhood of side 2s centered at node a. The
interaction potential between neighboring nodes a and b is given by

Va,b(ϕ(a), ϕ(b)) =

∫
Ωp(a,2s)∩Ωp(b,2s)

(û(ϕ(a) + x− a)− û(ϕ(b) + x− b))2dx.

Patches attached at nodes close to the boundary will intersect the known
part of the image Oc. A node potential is defined which measures the
squared L2 error in the overlap area:

Va(ϕ(a)) =

∫
Ωp(a,2s)∩Oc

(û(x)− û(ϕ(a) + x− a))2dx

The energy is then defined as

EKT(ϕ) =
∑
a

Va(ϕ(a)) +
∑
a∼b

Va,b(ϕ(a), ϕ(b))

In the following we show that a coarse version of EKT can be written as a
MRF similar to EKT. To that aim, we consider a coarse rectangular grid as
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in Komodakis and Tziritas (2007), in which nodes are separated by a gap
of size s horizontally and vertically.

For each grid node a, we define a square patch of size s (half the size of
the patch used by Komodakis and Tziritas (2007)), denoted Ωp(a, s). We
constrain the correspondence map ϕ to be a translation in each Ωp(a, s),
thus

ϕ(x) = ϕ(a) + x− a, ∀x ∈ Ωp(a, s).

With this correspondence map, the image defined as u(x) = û(ϕ(x)) =
û(ϕ(a) + x− a), i.e. by copying at Ωp(a, s) the patch at ϕ(a).

We also define a cross-shaped patch Ωc(0, s), by adding to the four sides
of Ωp(a, s) a rectangle of sides s and s/2 (see Figure REF). We use this
cross-shaped patch to compare patches, whereas the square patch is only
used to specify the regions in which ϕ is a translation.

To compute a correspondence map defined over the nodes, we modify energy
on EDSC in two ways. First, by using the cross-shaped patch Ωc to compare
patches, and second by summing only over the grid. This yields the following
energy:

EDSC-KT(ϕ) =
∑
a

∫
Ωc(0,s)

(û(ϕ(a+ h))− û(ϕ(a) + h))2dh

=
∑
a

∫
Ωc(a,s)

(û(ϕ(x))− û(ϕ(a) + x− a))2dx

Let us consider a term of the above sum for a node a. We assume that
Ωc(a, s) does not intersect the known part of the image. The cross-shaped
patch Ωc(a, s) intersects five square patches: Ωp(a, s), and half of the patch
attached to each of the four neighboring nodes. The term corresponding to
Ωp(a, s) vanishes, since in Ωp(a, s), ϕ(x) = ϕ(a) + x− a. Thus we have∫

Ωc(a,s)
(û(ϕ(x))− û(ϕ(a) + x− a))2dx =

∑
b∈N (a)

W ′a,b(ϕ(a), ϕ(b))

where

W ′a,b(ϕ(a), ϕ(b)) =

∫
Ωc(a,s)∩Ωp(b,s)

(û(ϕ(b) + x− b)− û(ϕ(a) + x− a))2dx.

For each neighboring node b ∈ N (a), W ′a,b(ϕ(a), ϕ(b)) couples ϕ(b) with
ϕ(a). The set Ωc(a)∩Ωp(b), corresponds to the half of the square patch Ωp(b)
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adjacent to the square patch at a. Similarly, since a is also a neighboring
node of b, i.e. a ∈ N (b), there will be a second term coupling ϕ(b) and
ϕ(a), given by:

W ′b,a(ϕ(b), ϕ(a)) =

∫
Ωc(b,s)∩Ωp(a,s)

(û(ϕ(a) + x− a)− û(ϕ(b) + x− b))2dx

Note that the domain now is the half of Ωp(a) adjacent to b. There are no
other terms coupling the correspondences of a and b, thus the full coupling
is given by the following interaction potential:

Wa,b(ϕ(a), ϕ(b)) = W ′b,a(ϕ(b), ϕ(a)) +W ′a,b(ϕ(a), ϕ(b))

=

∫
Ωc(a,s)∩Ωc(b,s)

(û(ϕ(a) + x− a)− û(ϕ(b) + x− b))2dx

Thus, we see that the terms in energy EDSC-KT for which there is no inter-
section with the known portion of the image give rise to interaction terms
very similar to those of EKT. In both cases the potential measures the er-
ror between patches in the region in which they overlap when attached to
neighboring nodes at the grid. In Komodakis and Tziritas (2007) they use a
square patch of size 2s, and the area of overlap corresponds to a rectangular
patch of s× 2s between nodes a and b. In our case, it is the overlap area of
two cross-shaped patches, resulting in a square patch s× s located between
a and b. Let us mention that if we used square patches of size 2s instead
the cross-shaped patch in the energy EDSC-KT, then each node would have
interactions with its eight nearest neighbors in the grid.

It can seen that when the cross-shaped patch at a node a intersects Oc, we
have a single node potential given by

Wa(ϕ(a)) =

∫
Ωc(a,s)∩Oc

(û(x)− û(ϕ(a) + x− a))2dx.

In this case, the interaction potentials between a and b have to be com-
puted over Ωc(a, s) ∩ Ωc(b, s) ∩ O. This is different from the formulation
in Komodakis and Tziritas (2007) where the interaction potential between
patches intersecting Oc in computed in the same way as for patches that do
not intersect Oc.



Chapter 6

Implementation

In this chapter we describe some aspects of the implementation of the in-
painting schemes described in the previous chapters. In Section 6.2 we
describe the implementation of the image update step for the four inpaint-
ing schemes, considering a general T > 0. The implementation of the
patch NL-means, patch NL-medians and patch NL-Poisson is straightfor-
ward. The patch NL-gradient medians deserves more attention. In Section
6.3 we describe the implementation of the weights update step, which is
critical for performance. When T = 0, it amounts to the computation of a
correspondence map as a nearest neighbor field. We describe PatchMatch,
an efficient algorithm for computing an approximate nearest neighbor field
(Barnes et al. (2009)), and provide a bound on its convergence rate. Finally,
in Section 6.4 we describe a multiscale scheme, necessary to avoid bad local
minima.

6.1 Discrete setting and notation

Throughout this chapter we consider discrete images defined over a rect-
angular bounded domain Ω := {0, . . . , N}2 and conrresponding discrete
versions of the inpainting domain and its complement, Õ = Õ ∩ Z2 and
Õc = Õc ∩ Z2. To avoid a cumbersome notation, we slightly modify it in
this chapter (for instance some arguments of functions will be denoted as
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subindices). The discrete energy reads:

EE,T (u,w) = UE(u,w)− TH(w),

subject to
∑
x̂∈Õc

wxx̂ = 1, ∀x ∈ Õ, (6.1)

where
UE(u,w) =

∑
x∈Õ

∑
x̂∈Õc

wxx̂E(pu(x)− pû(x̂)), (6.2)

and
H(w) = −

∑
x∈Õ

∑
x̂∈Õc

wxx̂ logwxx̂.

Patches are now functions defined on a discrete domain Ωp = Ωp ∩Z2. The
patch error functions E is defined as the weighted sum of pixel errors

E(pu(x)− pû(x̂)) =
∑
h∈Ωp

ghe(ux+h − ûx̂+h),

where e : R→ R+, or gradient errors

E(pu(x)− pû(x̂)) =
∑
h∈Ωp

ghe(∇ux+h −∇ûy+h).

where e : R2 → R+. Here, g : ZN → R+ denotes the intra-patch kernel
function, which is nonnegative, with support Ωp and

∑
h∈ZN gh = 1.

We need to define the discrete version of the gradient and divergence opera-
tors. We will use the notation [A→ B] = {f : A→ B}, the set of functions
from A to B.

We define ∇ : [Ω→ R]→ [Ω→ R2] as

∇u1
i,j :=

{
0 if i = N ,
ui+1,j − ui,j if i < N ,

and similarly for the component ∇u2
i,j . The notation z = (i, j) refers to for

locations on the image. Let us also define a divergence operator ∇· : [Ω→
R2]→ [Ω→ R],

∇ · pi,j :=


p1
i,j if i = 0,

−p1
i−1,j if i = N ,

p1
i,j − p1

i−1,j otherwise,

+


p2
i,j if j = 0,

−p2
i,j−1 if j = N ,

p2
i,j − p2

i,j−1 otherwise.
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These operators incorporate Neumann boundary conditions on the bound-
ary of Ω, and are dual operators, i.e. denoting 〈·, ·〉 the usual scalar prod-
ucts in [Ω → R] and [Ω → R2], 〈∇u, p〉 = −〈u,∇ · p〉, for all u ∈ [Ω → R],
p ∈ [Ω→ R2].

To work with gradients in the discrete setting we need to define Oe as the set
of pixels with at least one neighbor in O (according to the 4-connectivity).
If we think as the discrete image as a lattice of nodes joined by edges, all
variable edges are between nodes in Oe. Correspondingly, Õ is defined as
the set of centers of patches that interesect Oe.

6.2 Image update step

For the computation of the image update step, we will rewrite the energy
using the pixel influence weights m : Oe ×Oce → R+:

mzẑ =
∑
h∈Ωp

ghwz−h,ẑ−hχÕ(ẑ − h)

Patch NL-means and patch NL-Poisson

The discrete version of the image energy term for patch NL-Poisson is given
by

Uλ,2(u) =
∑
z∈Oe

∑
ẑ∈Oce

mzẑ[(1− λ)|∇uz −∇ûẑ|2 + λ(uz − ûẑ)2]

The energy is quadratic in u and can be minimized by solving the following
linear equation:{

(1− λ)∇ · [kz∇uz]− λkzuz = (1− λ)∇ · [kzvz]− λkzfz, z ∈ Oe,
u(z) = û(z), z ∈ Oe \O.

(6.3)
where he have defined

fz :=
1

kz

∑
ẑ∈Oce

mzẑûẑ and vz :=
1

kz

∑
ẑ∈Oce

mzẑ∇ûẑ.

Equation (6.3) can be solved efficiently with a conjugate gradient scheme.
When λ = 1, then the solution becomes simply uz = fz, and can be com-
puted directly.
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Patch NL-medians

The discrete version of the image energy term for patch NL-Poisson is given
by

U1(u) =
∑
z∈O

∑
ẑ∈Oc

mzẑ|uz − ûẑ|.

This problem can be solved for each z independently, and its solution is
given by a median of the known values ûẑ weighted by mzẑ.

Patch NL-gradient medians

With the notation defined above, we write the discretized image energy
term as

Uλ,1(u) = (1− λ)
∑
z∈Oe

∑
ẑ∈Oce

mz,ẑ|∇uz −∇ûẑ|+ λ
∑
z∈O

kz(uz − fz)2,

with the same boundary conditions as with the patch NL-Poisson. When
λ > 0, the second sum acts as a quadratic data attachment to fz, patch NL-
means’ image update. Following Almansa et al. (2006); Chambolle (2004)
we derive here a fixed point algorithm to minimize this energy.

In the case when λ = 0, the data attachment term vanishes and the fixed
point algorithm cannot be directly applied. In that case, the resulting
energy can be minimized with an implicit gradient descent. Given an iterate
ut, the next is computed as

ut+1 = arg min
u

∑
z∈Oe

∑
ẑ∈Oce

mz,ẑ|∇uz −∇ûẑ|+
1

2δt

∑
z∈O

(uz − utz)2.

This energy for ut+1 is of the same type as Uλ,1 for λ > 0. Thus, at each step
ut+1 is computed using the same fixed point algorithm, which we describe
next.

Fixed point algorithm

Let us define U := [Oe → R] and V := [Oe → R2]. In these spaces we will
consider the usual scalar products and will denote them as 〈·, ·〉U and 〈·, ·〉V .
Notice that, with these definitions, the gradient and divergence are not dual
operators when restricted to Oe, i.e. in general 〈u,∇ · p〉U 6= −〈∇u, p〉V .
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We are looking for a completion u ∈ Û := {u ∈ U : uz = ûz, ∀z ∈ Oe \ O}
as the solution of the following problem:

min
u∈Û

∑
z∈Oe

∑
ẑ∈D

mzẑ|∇uz − vẑ|+
1

2δt

∑
z∈O

cz(uz − fz)2, (6.4)

where v : D → R2,m : Oe×D → R+ ∪{0}, f : O → R and c : Oe → R+ are
given. For the sake of generality we consider a generic domain D instead
of the complement Oce. This generalization is relevant, due for instance to
computational considerations as will be discussed shortly. Let us remark
that, since cz > 0 for z ∈ Oe, the energy is convex and the minimum is
unique.

For simplicity we extend f over Oe by defining fz = ûz for z ∈ Oe \O. We
use the fact that for any η ∈ R2, |η| = sup|ε|<1 η · ε, and write the energy
as:

min
u∈Û

sup
|εzẑ |61

∑
z∈Oe

∑
ẑ∈D

mzẑεzẑ · (∇uz − vẑ) +
1

2δt

∑
z∈Oe

cz(uz − fz)2.

We have defined the unit field ε ∈W := {ε : Oe ×D → R2}.

Interchanging the minimum with the supremum, we obtain the following
expression for the optimum u∗ in the inpainting domain

u∗z = fz + δtc−1
z ∇ · Lεz, z ∈ O. (6.5)

We have defined the linear operator L : W → V as Lεz =
∑

ẑ∈Dmzẑεzẑ.

We can extend the expression (6.5) to Oe, by defining a new divergence
operator

∇· : V → U as ∇ · εz := χOz ∇ · εz.

Here χOz = 1 if z ∈ O and χOz = 0 otherwise. We also define a modified
gradient ∇ : U → V as the negative adjoint operator of ∇· , given by

∇uz := ∇[χOz uz].

Besides allowing to extend (6.5) these operators are relevant since, as op-
posed to the usual gradient and divergence operators, they are still dual
when they are restricted to functions over Oe: 〈∇ · p, u〉U = −〈p,∇u〉V , for
p ∈ V , u ∈ U .
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Substituting expression (6.5) in the energy, we arrive to the following dual
formulation:

min
|εzẑ |61

−
∑
z∈Oe

δt

(
Lεz · ∇

[
c−1∇ · Lε

]
z

+
1

2
c−1
z [∇ · Lεz]2

)

−
∑
z∈Oe

[
Lεz · ∇fz −

∑
ẑ∈D

mzẑεzẑ · vẑ

]
.

Using that ∇[c−1∇ · Lε]z = ∇[c−1∇ · Lε]z for all z ∈ Ω, we can rewrite the
dual problem with the more compact expression

min
|εzẑ |61

∑
z∈Oe

[
δt

2
c−1
z [∇ · Lεz]2− Lεz · ∇fz +

∑
ẑ∈D

mzẑεzẑ · vẑ

]
. (6.6)

Adding the Lagrange multipliers corresponding to the restrictions |εzẑ| 6 1,∑
z,ẑ∈Oe×D λzẑ(|εzẑ|

2 − 1), and deriving with respect to ε we get the Euler
equation

mzẑ[−∇fz + vẑ − δt∇[c−1∇ · Lε]z] + λzẑεzẑ = 0. (6.7)

The Karush-Kuhn-Tucker Theorem yields the existence of the Lagrange
multipliers with values

λzẑ = mzẑ| − ∇fz + vẑ − δt∇(c−1∇ · Lε)z|.

The solution of (6.6) is computed with the semi-implicit scheme

εt+1
zẑ =

εtzẑ + ν mzẑ[−∇fz + vẑ − δt∇[c−1∇ · Lεt]z]
1 + ν mzẑ| − ∇fz + vẑ − δt∇[c−1∇ · Lεt]z|

, (6.8)

where ν is a time step small enough for assuring the convergence of the fixed
point iteration. Finally the solution of the primal problem is recovered with
(6.5).

Convergence

Let us first observe that ∇fz −∇fz = ∇[(1 − χOz )fz] = ∇[χ
Oe\O
z fz] for all

z ∈ Ω, which allows to express the dual energy (6.6) as

J∗(ε) :=
δt

2
‖c−1/2∇ · Lε+ c1/2f/δt‖2U + 〈h, ε〉W , (6.9)
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where hzẑ := mzẑ(vẑ −∇[χ
Oe\O
z fz]) and 〈·, ·〉W is the usual scalar product

in W . This expression shows that, since cz > 0, there is a unique minimum
value for ∇·Lε. We prove now that the sequence defined in (6.8) converges
to that minimum.

Proposition 6.1. If cz =
∑

ẑ∈Dmzẑ 6 1 for z ∈ Oe and the time step ν
verifies ν < 1

4δtK , with

K := max
i,j∈Oe

{
χOi,j +

ci,j
ci+1,j

χOi+1,j ;χ
O
i,j +

ci,j
ci,j+1

χOi,j+1

}
, (6.10)

the sequence (εt) defined in (6.8) converges to a minimum of the energy
(6.9).

Proof. We only sketch the main steps of the proof. The derivations are
similar to those in Almansa et al. (2006); Chambolle (2004). Let us first
show that if ν < 1

4δtK , the energy J∗ decreases. Defining η := ν−1(εt+1−εt)
for a given t > 0, we have that the variation in the energy can be bounded
by

J∗(εt+1) 6J∗(εt) +
1

2
ν(νδt‖c−1/2∇ · Lη‖2U − ‖η‖2W )

6J∗(εt) +
1

2
‖η‖2W ν(4νδtK − 1), (6.11)

where K is a constant such that 4K‖η‖2W > ‖c−1/2∇ · Lη‖2U for all η ∈W .
We will derive this constant later.

Therefore, by choosing ν < (4δtK)−1 the energy decreases with εt. Let
m := limt→∞ J

∗(εt) > 0. Let us prove now that εt also converges. Since
|εtzẑ| 6 1 for all z ∈ Oe, ẑ ∈ D, t > 0, there exists a subsequence (εtk)
converging to ε. From (6.8) we see that (εtk+1) converges as well. Let
ε′ := limtk→∞ ε

tk+1. Defining η := (ε′− ε)/ν, we see that in the limit when
tk →∞,

J∗(ε′) 6 J∗(ε) +
1

2
‖η‖2W ν(4νδtK − 1).

Since J∗(ε′) = J∗(ε) = m we can conclude that η = 0 and therefore ε = ε′.
This implies that the whole sequence (εt) converges. Furthermore the limit
ε verifies the Euler equation (6.7), and thus is a minimizer of the dual energy
J∗.

We now sketch the derivation of the expression for K. Let us define the fol-
lowing c-weighted norms: ‖u‖2c := 〈c−1u, u〉U for u ∈ U , ‖ξ‖2c := 〈c−1ξ, ξ〉V
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for ξ ∈ V and ‖A‖2cc := supξ∈V

{
‖Aξ‖2c
‖ξ‖2c

}
for operators A : V → U . For any

η ∈W we can write

‖c−1/2∇ · Lη‖2U = ‖∇ · Lη‖2c 6 ‖∇ · ‖2cc‖Lη‖2c .

On one hand we have that

‖Lη‖2c 6 ‖η‖2W sup
z∈Oe

{
c−1
z

∑
ẑ∈D

m2
zẑ

}
6 ‖η‖2W ,

where first inequality is an application of Cauchy-Schwarz, in the second we
have used that

∑
i a

2
i 6 (

∑
i |ai|)2, and the fact that cz =

∑
ẑ∈Dmzẑ 6 1.

On the other hand, from the definition of the divergence operator, it can be
shown that ‖∇ · ‖2cc 6 4K.

Computational considerations

Let us remark that for the case of inpainting (D = Oce) the domain of the
dual variable ε is Oe×Oce ⊂ R4, and therefore the direct implementation of
this algorithm is prohibitive (for large images with large inpainting domains
ε will not fit in memory). To circumvent this problem we threshold the
pixel influence weights mzẑ, so as to keep for each z only the M largest
contributions. This reduces the size of ε to M |Oe|. Indeed, when h → 0
the m function is already sparse w.r.t. ẑ, being the number of non-zero
elements less or equal than the patch size (in pixels). In our experiments
we set M to the size of the patch, capturing exactly the function m.

6.3 Computation of the Nearest Neighbor Field

For minimizing the functionals derived from (2.2), we use the alternating op-
timization schemes described in (Algorithms 1. Most of the computational
load is caused by the updating of the weights. In this Section we discuss
the convergence properties of PatchMatch, an algorithm recently introduced
by Barnes et al. (2009), which we use to speed-up the computation of the
similarity weights.

For T > 0, the computation of the weights is of order O(|Õ||Õc||Ωp|). This
is also the case in the limit T = 0, namely for EE,0. In that case, as
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shown in Proposition 2.6, there are minima given by probability-valued
maps ν associated to a correspondence map ϕ : Õ → Õc. This allows us to
express the energy directly in terms of the unknown map ϕ. Thus, when
considering the optimization of EE,0 the weights update step is substituted
by a minimization w.r.t. a correspondence map ϕ,

ϕx ∈ arg min
ξ∈Z2

Ux(ξ), for all x ∈ Õ,

where the energy Ux corresponds to the patch error function

Ux(ξ) =

{
E(pu(x)− pû(ξ)) if ξ ∈ Õc
+∞ otherwise.

Although the patch error does not have to be a metric, we refer to pû(ϕx)
as the nearest patch or nearest neighbor of pu(x). Following Barnes et al.
(2009), we refer to the correspondence map ϕ : Õ → Õc as the near-
est neighbor field (NNF). A brute force search for the NNF also conveys
O(|Õ||Õc||Ωp|) operations.

PatchMatch is a very efficient algorithm for approximating the NNF (Barnes
et al. (2009)). The search for the nearest neighbor is performed simulta-
neously over the points in Õ based in the following heuristic: since query
patches overlap, the offset ϕx − x of a good match at x is likely to lead to
a good match for the adjacent points of x as well. It is an iterative algo-
rithm which starting from a random initialization, alternates between steps
of propagation of good offsets and random search.

We need some notation and definitions. Pixels in Õ = {x1, x2, . . . , x|Õ|}
are sorted according to the lexicographical order in Z2. For any x ∈ Õ, let
N4(x) = {z ∈ Õ : 0 < |z − x| 6 1} be its 4-neighborhood. We consider
a transition probability kernel Q : Õc × B → [0, 1], where B is a σ-algebra
in Õc (the subsets of Õc in our discrete case). Finally, let us define the
notation,

η ∧x ξ =

{
η if Ux(η) 6 Ux(ξ)
ξ if Ux(η) > Ux(ξ),

where ξ, η ∈ Õc.

The PatchMatch algorithm is described in Algorithm 4. The computational
order is O(|Ωp||Õ|), whereas the memory requirements are of O(|Õ|). For
most applications, a few iterations after a random initialization are often
sufficient. Our implementation, coded in C without optimizations, running
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on a notebook’s dual core 1.8GHz CPU, takes between 3s to 4s to compute
the correspondences for an image of 300× 255, with a mask of |Õ| ≈ 14.000
pixels and |Õc| ≈ 50.000 pixels and a patch of size 7× 7.

This algorithm can be extended to store queues of L offsets in an L-Nearest
Neighbors Field (Barnes et al. (2010)) (see also Arias et al. (2011)). This
allows its application to the case T > 0, by truncating the support of w(x, ·)
to the L-nearest neighbors of pu(x). This increases the computational cost
and the memory requirements by a factor of L. We note however, that
although each iteration is more costly, the use of queues usually reduces the
required number of iterations.

Algorithm 4 PatchMatch with propagation of offsets.

Initialization. Choose ϕ0
x ∼ U(Õc), i.e., randomly with a uniform distribu-

tion.

For each n ∈ N,

Random search. For each x ∈ Õ draw Sϕnx ∼ Q(ϕnx, · ). Set

ϕ
n+ 1

2
x = ϕnx ∧x Sϕnx.

Forward propagation. If n is odd, for each i = 1, . . . , |Õ|, set

ϕn+1
xi = ϕ

n+ 1
2

xi ∧xi

(∧
xi

{ϕn+1
xj + xi − xj : xj ∈ N4(xi), j < i}

)
.

If n is even, invert the direction of propagation (backward propaga-
tion).

Convergence of the PatchMatch algorithm

In this Section we discuss the convergence properties of the PatchMatch
algorithm (for L = 1, i.e. without considering queues). For simplicity we
will prove the convergence result for a different version of the PatchMatch
algorithm. The difference lies in the propagation step: In the original ver-
sion of Barnes et al. (2009), a node z will propagate the offset ϕz−z to x. In
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our simplified version, the absolute position ϕz ∈ Õc is propagated instead
(Algorithm 5). The arguments for the simplified “position-propagation”
case can be applied to the “offset-propagation” case (with more involved
computations). The latter is much more relevant from the practical point
of view. This is briefly discussed in Section 6.3. Before proceeding to the
convergence result, it is necessary to add some additional structure.

We will consider that elements in Õ correspond to the vertices of a directed
acyclic graph (DAG) G = (Õ, E), where E ⊂ Õ × Õ denotes the edge set.
We define the edge set as follows:

E = {(x, y) ∈ Õ × Õ : y ∈ N4(x), x < y}.

By x < y we mean that x precedes y in the lexicographical order. Note that
the lexicographical order is a topological order for the resulting DAG. Paths
in G will be denoted by c = (c1, . . . , cnc) ∈ Õnc , where nc ∈ N is the length
of the path. Given any pair of nodes, x, z ∈ Õ, we will denote by P(z, x)
the set of paths from z to x. A node z ∈ Õ is said to be an ancestor of x
if P(z, x) 6= ∅. Note that if z is an ancestor of x, then z comes before x in
the lexicographical ordering. Similarly, z is a descendant of x if P(x, z) 6= ∅
(i.e. x is an ancestor of z). We will write A(x) and D(x) for the set of
ancestors and descendants of node x, respectively.

Algorithm 5 Propagation of positions.

Given n ∈ N, and ϕn+ 1
2 :

Forward propagation. If n is odd, for each i = 1, . . . , |Õ|, set

ϕn+1
xi = ϕ

n+ 1
2

xi ∧xi

(∧
xi

{ϕn+1
xj : xj ∈ N4(xi), j < i}

)
.

If n is even, invert the direction of propagation (backward propaga-
tion).

The following proposition provides a bound on the convergence rate (in
probability) for Algorithm 5. Without loss of generality we will assume
throughout this Section that minξ Ux(ξ) = 0 for all x ∈ Õ.

Proposition 6.2. Assume that for each pair x, y ∈ Õ, we have that dx,y :=

‖Ux − Uy‖∞ < +∞. Assume that Õc is compact (and therefore finite) and



82 implementation

that Q(x,A) > 0, for all x ∈ Õc, A ⊂ Õc. Then, the sequence (ϕn) defined
by the PatchMatch algorithm converges to a minimizer of the total energy
U , in the sense that

lim
n→∞

P (Ux(ϕnx) > ε) = 0, for all ε > 0, x ∈ Õ.

Moreover, we have that

P (Ux(ϕn+1
x ) > ε) 6

∏
z∈A(x)

C(z, ε− `z,x)P (Ux(ϕnx) > ε), (6.12)

where `z,x is the length of the minimal path from z to x:

`z,x :=

{
minc∈P(z,x)

∑nc
i=2 dci−1,ci if P(z, x) 6= ∅,

+∞, if P(z, x) = ∅,

and for each z ∈ Õ, C(z, · ) : R→ [0, 1] is a non-increasing function defined
by:

C(z, a) := sup
η∈{Uz>a}

Q(η, {Uz > a}).

For a > 0, C(z, a) < 1.

Before going into the proof, let us make a few remarks about the statement.

We require the supremum norm between the energies to be bounded. Al-
though this seems a reasonable assumption for practical applications, it is
violated in the case of the propagation of offsets. In that case, the U ener-
gies, as a function of the offsets have different domains: an offset ξ which
is valid at x (x + ξ ∈ Õc) might fall out of Õc when translated to another
point z ∈ Õ. In the next section we show how this can be dealt with.

The other hypothesis is that Q(x,A) > 0 for all x ∈ Õc, A ⊂ Õc. In our
discrete setting this implies that the random search can transition from any
location in Õc to any other position in Õc with positive probability. This is
sufficient for the algorithm to converge, as already noted by the authors.

Equation (6.12) states that probability that a node x maintains an energy
higher that ε after a complete iteration, decreases at least by a factor of∏

z∈A(x)

C(z, ε− `z,x).

This factor considers the random searches from all ancestors of x, which
are the nodes that propagate their positions, directly or indirectly, to x.
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The fact that the supremum norm between the energies of different nodes
is bounded, implies that if the energy of x is still above ε, then necessarily,
the energy of any of its ancestors z have to be lower bounded by ε−`z,x (we
prove that bellow, in Lemma 6.3). Each ancestor z has to have an energy
greater than ε− `z,x after the random search step, and therefore also before
the random search. The quantity C(z, ε − `z,x) is an upper bound of the
probability of drawing a random position with energy higher ε− `z,x given
that the current position has energy also higher than ε− `z,x.

As can be seen from (6.12), the efficiency of the PatchMatch is mostly
given by the propagation steps, when nodes collaborate by sharing their
findings. For comparison, consider a PatchMatch algorithm without propa-
gation where each ϕx is searched for independently for each x ∈ Õ. In that
case, the bound on the rate of convergence (6.12) reduces to

P (Ux(ϕn+1
x ) > ε) 6 C(x, ε)P (Ux(ϕnx) > ε).

Thus, the speed-up given by the propagation corresponds to∏
z∈A(x)
z 6=x

C(z, ε− `z,x).

Note that only those z ∈ A(x) with `z,x < ε contribute to lower the bound.

The proof of Proposition 6.2 relies on the following lemma.

Lemma 6.3. Assume that for each pair x, y ∈ Õ, we have that dx,y :=
‖Ux − Uy‖∞ < +∞. Let us consider an assignment ϕ resulting from a

propagation step. Then we have that for each pair of nodes x, z ∈ Õ,

Ux(ϕx) > ε ⇒ Uz(ϕz) > ε− `z,x.

Proof. Let us consider a path c ∈ P(z, x). We have that for any a > 0,

Uci(ϕci) > a ⇒ Uci(ϕci−1) > a

(otherwise, ϕci−1 would have been propagated to node ci). Since ‖Uci −
Uci−1‖∞ = dci−1,ci , we have that

Uci(ϕci) > a ⇒ Uci−1(ϕci−1) > a− dci−1,ci .

A simple recursion results in

Ux(ϕx) > ε ⇒ Uz(ϕz) > ε−
nc∑
i=2

dci−1,ci .
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Thus each path from z to x imposes a bound over Uz(ϕz). The intersection
of all of them is given by Uz(ϕz) > ε− `z,x.

We now prove Proposition 6.2.

Proof. Let us consider x ∈ Õ. Since ϕn+1 is the result of a search step
followed by a propagation step, we can apply Lemma 6.3. Thus,

Ux(ϕn+1
x ) > ε ⇒ Uz(ϕ

n+1
z ) > ε− `z,x, ∀z ∈ Õ,

⇒ Uz(ϕ
n
z ) > ε− `z,x and Uz(Sϕ

n
z ) > ε− `z,x, ∀z ∈ Õ,

where the last implication is due to the random search step. Taking prob-
abilities we have that

P (Ux(ϕn+1
x ) > ε) 6 P (Uz(ϕ

n
z ) > ε− `z,x and Uz(Sϕ

n
z ) > ε− `z,x,∀z ∈ Õ)

=
∏
z∈Õ

P (Uz(Sϕ
n
z ) > ε− `z,x|Uz(ϕnz ) > ε− `z,x)

P (Uz(ϕ
n
z ) > ε− `z,x,∀z ∈ Õ)

6
∏
z∈Õ

P (Uz(Sϕ
n
z ) > ε− `z,x|Uz(ϕnz ) > ε− `z,x)P (Ux(ϕnx) > ε).

The second equality is due to Bayes’ formula for conditional probabilities,
and to the conditional independence of the random searches given ϕn. In
the latter inequality we have used that P (Uz(ϕ

n
z ) > ε − `z,x,∀z ∈ Õ) 6

P (Ux(ϕnx) > ε) since the l.h.s. corresponds to the probability of the inter-
section of several events, while the r.h.s. is the probability of only one of
such events.

Let us now estimate a bound for the conditional probabilities in the last
inequality. These measure the probability that a random search does not
decrease the energy level. Let us defined the notation {Uz > a} := {ξ ∈
Õ : Uz(ξ) > a} to denote the upper level set of energy a. To simplify
notation, given z ∈ Õ we denote by P z,n the probability distribution of ϕnz
(i.e. P (ϕnz ∈ A) = P z,n(A), for A ∈ B(Õc)). Then, by the definition of
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conditional probability, we have:

P (Uz(Sϕ
n
z ) > a|Uz(ϕnz ) > a)

=
1

P (Uz(ϕnz ) > a)
P (Uz(Sϕ

n
z ) > a and Uz(ϕ

n
z ) > a)

=
1

P z,n({Uz > a})

∫
{Uz>a}

P z,n(dη)

∫
{Uz>a}

Q(η, dξ)

=

∫
{Uz>a}

P z,n(dη)

P z,n({Uz > a})
Q(η, {Uz > a})

Notice that P z,na := [P z,n({Uz > a})]−1P z,n is a probability when restricted
to the upper level set {Uz > a}. Therefore, the following bound holds

P (Uz(Sϕ
n
z ) > a|Uz(ϕnz ) > a) 6 sup

η∈{Uz>a}
Q(η, {Uz > a}) =: C(z, a).

The coefficient C(z, a) a supremum of probabilities, thus C(z, a) ∈ [0, 1].
The function C(z, · ) : R → [0, 1] is non-increasing, since for a1, a2 ∈ R,
a1 > a2 we have that {Uz > a1} ⊆ {Uz > a2}. Finally, since Uz is non-
negative with a minimum value of 0, for a > 0, we have that Q(η, {Uz >
a}) < 1, for all η ∈ Õc. Since Õc is compact (and therefore finite in the
discrete setting) we have that C(z, a) < 1, for a > 0.

Registered propagation

Let us now address the propagation of offsets (Algorithm 4). We extend
the definition of the energies to Z2 by taking Ux(ξ) = +∞ if ξ ∈ Z2 \ Õc.
For each pair of connected nodes (z, x) ∈ E we are given a transformation
Tx,z : Õc → Z2 (which is Tx,z(ξ) = ξ− z+x in Algorithm 4). The registered
propagation is defined as follows:

ϕn+1
xi = ϕ

n+ 1
2

xi ∧xi

(∧
xi

{Txi,z(ϕn+1
z ) : (z, xi) ∈ E}

)
.

With analogous computations (slightly more involved), one can prove that
this version of the PatchMatch also converges, with the following bound for
the rate of convergence:

P (Ux(ϕn+1
x ) > ε) 6

∏
z∈A(x)

C(z, β(T, z, x, ε))P (Ux(ϕnx) > ε), (6.13)
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where

β(T, z, x, ε) = max
c∈P(z,x)

min
i=1,...,nc

U∗(T, c, ε)i −
nc∑

j=i+1

d(T )cj−1,cj

 , (6.14a)

U∗(T, c, ε)i =

{
ε if i = 1,

min{Uci−1(ξ) : ξ ∈ Õc \ T−1
ci,ci−1

(Õc)} if i = 2, . . . , nc,

(6.14b)

d(T )x,z = ‖Ux ◦ Tx,z − Uz‖∞,T−1
x,z (Õc)

. (6.14c)

This is a consequence of the fact that we are allowing the transformations
Tx,z to map some ξ ∈ Õc outside Õc, i.e. Tx,z(ξ) ∈ Z2 \ Õc. If Tx,z(ϕz) ∈
Z2\Õc, then it is not propagated to node x. Thus, the fact that Ux(ϕx) > ε,
implies that either ϕz ∈ T−1

x,z (Õc) and Uz(ϕz) > ε − d(T )x,z, or ϕz ∈ Õc \
T−1
x,z (Õc), in which case, we do not have control over Uz(ϕz) other than

Uz(ϕz) > min{Uz(ξ) : ξ ∈ Õc \ T−1
x,z (Õc)}.

This gives rise to the U∗ coefficients in (6.13).

Observe that in the case in which Tx,z(Õ
c) ⊂ Õc, for all (z, x) ∈ E, then

one recovers

β(T, z, x, ε) = ε− `(T )z,x = ε− min
c∈P(z,x)

nc∑
i=2

d(T )ci−1,ci ,

as in (6.12). The transformations Tx,z should be chosen to lower the edge
cost d(T )x,z, by registering Ux and Uz.

In Barnes et al. (2009) the propagation is performed with a transformation
Tx,z(ξ) = ξ − z + x, which corresponds to the propagation of the offset
ξ − z. Let us estimate the corresponding bound according to (6.13). We
denote by e0 = (0, 1) and e1 = (1, 0). The parents of node x ∈ Õ are
x − ei with i = 0, 1, and correspondingly Tx,x−ei(ξ) = ξ + ei. Note that

Õc \ T−1
x,x−ei(Õ

c) = Õc \ (Õc − ei). To simplify the discussion, we assume
that

min{Uz(ξ) : ξ ∈ Õc \ (Õc − ei)} > κ > 0

for all z ∈ Õ. Then, as can be seen from (6.14a) and (6.14b), for all ε < κ,
we have that β(T, z, x, ε) = ε−minc∈P(z,x)

∑nc
i=2 d(T )ci−1,ci .
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For d(T )x,x−ei we have

d(T )x,x−ei = ‖UxTx,x−ei − Ux−ei‖∞,T−1
x,x−ei

= sup
ξ∈T−1

x,x−ei
(Õc)

|g ∗ e(u(Tx,x−ei(x− ei) + ·)− û(Tx,x−ei(ξ) + ·))−

g ∗ e(u(x− ei + ·)− û(ξ + ·))|

6 sup
ξ∈T−1

x,x−ei
(Õc)

|(g ◦ Tx,x−ei − g)| ∗ e(u(x− ei + ·)− û(ξ + ·)).

(6.15)

We have used that x = Tx,x−ei(x− ei) and that if T is a translation g ∗ (f ◦
T ) = (g ◦ T ) ∗ f . The bound 6.15 corresponds to a patch error weighted by
the kernel

∂+
i g(h) := g ◦ Tx,x−ei(h)− g(h) = g(h+ ei)− g(h) ≈ ∂ig(h),

which is an approximation of the partial derivative of g. This is an inter-
esting property, because if g is smooth, |∂+

i g(h)| is small (recall that we
should minimize d(T ) to maximize the coefficients β). This is essentially
the Lipschitz estimate of Lemma A.2 in the present context.

The “propagation of offsets” exploits the overlap of neighboring patches in
the image domain, suggesting that each node should be connected with its
neighbors on the image grid. This supports the intuitions in Barnes et al.
(2009).

6.4 Multiscale scheme

Exemplar-based inpainting methods show a critical dependence with the size
of the patch. In Figure 6.1, we show completions obtained with patch NL-
means using different patch sizes. We used a Gaussian intra-patch weight
kernel g with standard deviation a. The Figure shows two results with a
small patch (a = 4) and one result with a large patch (a = 19). The latter
is able to reproduce the periodic pattern of the lamps, but the comple-
tion is blurry due to the spacial overlap of the patches and presents many
discontinuities at the boundary of the hole.

The results with the small patch (second and fourth columns) do not show
these artifacts, but one of them has failed to reproduce the lamps. The
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Figure 6.1: Single scale vs. multiscale. Left column: inpainting domain
and initial condition. For the rest of the columns, from left to right: single scale
inpainting with a 9 × 9 patch with a = 4; single scale inpainting with a 43 × 43
patch with a = 19; multi-scale inpainting with three scales, corresponding to patch
sizes of 9× 9 with a = 4, 21× 21 with a = 9, and 43× 43 with a = 19. All results
have been computed with the patch NL-means scheme. The bottom row shows the
boundaries between copy regions superimposed over the energy density image.

only difference between both is the initialization. The one in the second
column was initialized with the original image, whereas the other one with
the result obtained with the multiscale approach described in this section.

As in many state of the art exemplar-based inpainting methods (e.g. Kawai
et al. (2009); Komodakis and Tziritas (2007); Wexler et al. (2007)), we will
incorporate a multiscale scheme. This is usually motivated as an heuristic
to avoid local minima, to find a good initialization and/or to alleviate the
computational cost. However, as noted in Holtzman-Gazit and Yavneh
(2008), as the example of Figure 6.1 suggests, inpainting is inherently a
multiscale problem: images have structures of different sizes, ranging from
large objects (as the lamps and their periodic distribution on the image) to
fine scale textures (like the Chinese characters) and edges. The multiscale
scheme responds to the fact that several patch sizes are needed to reproduce
all these structures properly.

Multiscale algorithm

In the following we describe the multiscale method we adopted, which goes
along the lines of what is customary in the literature (Fang and Lien (2009);
Kawai et al. (2009); Wexler et al. (2007)). It consists on applying sequen-
tially the inpainting scheme on a Gaussian image pyramid, starting at the
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coarsest scale. The result at each scale is upsampled and used as initializa-
tion for the next finer scale. The patch size is constant through scales.

Let us consider S scales, the finest denoted with s = 0. We will specify
the size of the image at the coarsest level AS−1. Denoting the size of the
image at the finest scale by A0, we compute the sampling rate as r :=
(A0/AS−1)1/(S−1) ∈ (0, 1). The width of the Gaussian filtering is associated
to the subsampling factor as in Morel and Yu (2008). Let a0 be the size of
the patch and Ea0 the corresponding energy. We will add the superindex
s = 0, . . . , S − 1 to the variables u and w to denote the scale. As before,
the subindex 0 refers the initial condition, i.e. us0 is the initial condition at
scale s.

Algorithm 6 Multiscale scheme.

Require: uS0 , S, a0 and AS−1

1: Initialize: (uS−1, wS−1) = arg min(u,w) Ea0(u,w)
2: for each scale s = S − 2, . . . , 0 do
3: Upsample us+1 to obtain us0
4: (us, ws) = arg min(u,w) Ea0(u,w)
5: end for

The upsampling from s+ 1 to s is obtained as in Wexler et al. (2007). The
coarse weights ws+1 are first interpolated to the finer image size, yielding
ws0. These weights are then used to solve an image update step at the new
scale: us0 = minu Ea0(u,ws0). More conventional upsampling schemes by
local interpolation (such as bilinear or splines) introduce a bias towards low-
frequency non-textured regions. This exemplar-based upsampling avoids
this bias.

Notice that keeping the patch size constant while filtering and reducing
the image, is almost equivalent to enlarging the patch domain and filtering
an image of constant size. The process can thus be seen as the sequential
minimization of a series of inpainting energies with varying patch size given
by as = (1/rs)a0, s = 0, . . . , S − 1, over a corresponding series of filtered
images. In the coarsest scale S−1, a larger portion of the inpainting domain
is covered by partially known patches. This makes the inpainting task easier
and less dependent on the initialization. The energy at this scale should
have fewer local minima. The dependency of the minimization process on
the initial condition ensures that each single scale solution remains close
to the coarse scale initialization. The multiscale algorithm exploits this



90 implementation

dependency to obtain an image u0 which is approximately self-similar for
all scales (or equivalently, for all patch sizes).

Figure 6.1 shows a comparison between single and multiscale results with
the patch NL-means scheme. The multiscale result shows the benefits of
large and small patch sizes. The missing lamps have been completed with
the correct shape and spacing by the coarser stages, and the fine details
are overall much less blurry and there are almost no discontinuities at the
boundary of O. The bottom row shows the copy regions. The single scale
results show a coarse partition with the large patch (the copying is more
rigid), and one with many small regions with the smaller patch. The multi-
scale’s NNF shows an intermediate partition, with some large regions inside
of the hole and smaller ones around its boundary. The inpaintings at the
finer scales work by refining the coarse partition obtained at coarser scales.



Chapter 7

Experimental results

In this section we further demonstrate the performance of the proposed
schemes on real inpainting problems and compare them with four represen-
tative state of the art methods. The images used were obtained from Ko-
modakis and Tziritas (2007) and from the 100 images benchmark proposed
by Kawai et al. (2009), available at http://yokoya.naist.jp/research/

inpainting/.

7.1 Experimental setting

We consider four inpainting methods, variations of our proposed frame-
work, namely patch NL-means, -medians, -Poisson and -gradient median.
Gradient-based methods. In all cases we use the multiscale approach. To
prevent blurring we set T , the selectivity of the similarity weights w, to
T = 0. In this case, the weights select the nearest neighbor of each patch
in Õ. We use the CIE La*b* color space.

The weights update step dominates the computational load of the algo-
rithms. We a variant use the PatchMatch algorithm Barnes et al. (2009) in
Section 6.3, which estimates a list of the L first nearest neighbors of each
patch, and therefore can be used both for T > 0 and for T → 0. The algo-
rithm has a computational cost of O(|O|×|Ωp|×L) per iteration. Typically
between 5 and 10 iterations are sufficient to obtain results comparable with
the exhaustive search when using lists of size L between 5 and 10.

91
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For patch NL-means, -median and -Poisson, this represent a speed-up from
10min to less than 1min, for a 200x200 pixels image with a hole area of
20%, running on a 2Ghz CPU. The patch NL-gradient median may take
longer, since the corresponding image update step can be time consuming,
especially for small values of the mixing parameter λ (see Appendix 6.2).

The results are shown in Figs. 7.1, 7.2 and 7.3, classified according to the
nature of the inpainting problem. These figures include comparisons with
the literature as well, as will be explained shortly below. Obtaining good
results requires fixing the following parameters:

Patch size. For almost all experiments we used patches of size s between
3 × 3 and 9 × 9. We used constant intra-patch weights (g = 1/|Ωp|),
since the Gaussian ones require a larger support, reducing the available
exemplars.

Multiscale parameters. The multiscale scheme has two parameters: the
size of the coarsest image AS−1 and the number of scales S. The
former is the most critical one. In our experiments AS−1 was set
to a 20% of the original size, except for some cases which required
less subsampling because there were too few exemplars in the hole’s
complement at the coarsest scale. The number of scales S was set such
that the subsampling rate r = (A0/AS−1)1/(S−1) ≈ (1/2)1/3 ≈ 0.8 as
in Wexler et al. (2007).

Confidence mask. The confidence mask has two parameters, the asymp-
totic value c0 and the decay time tc. For all experiments we fix c0 = 0.1
and used a decay time tc = 5 except for small inpainting domains, in
which we set tc = 1.

For the mixing coefficient λ of gradient-based methods we tested two con-
figurations: low-λ corresponding to λ = 0.01 and λ = 0.001 for patch
NL-Poisson and patch NL-gradient medians, and high-λ corresponding to
λ = 0.1 and λ = 0.01 for patch NL-Poisson and patch NL-gradient medians.
Recall that lower values of λ give a higher weight to the gradient component
of the energy. This is appropriate for structured images with strong edges.
For the image in Figs. 7.1, 7.2 and 7.3 we used the same λ configuration
for both gradient-based schemes.

The rest of the parameters are also the same for the images in Figs. 7.2
and 7.3. Instead, for images in Fig. 7.1 we used different parameters for
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intensity- and gradient-based methods. In these cases, image-based methods
required larger patches than gradient-based ones.

For the sake of comparison we include here some results obtained using
four representative methods of the state of the art. Two of them compute
a coarse correspondence map, the PatchWorks (PW) method Pérez et al.
(2004) and the approach of Komodakis and Tziritas (2007) (KT). The first
one is greedy and the latter is iterative. Seams between blocks are elim-
inated a posteriori, using for instance a Poisson blending. The other two
methods compute a dense correspondence map: Resynthetizer (R) Harrison
(2005) (greedy) and the approach of Kawai et al. (2009) (KSY) (iterative).
The latter is similar to the patch NL-means (see Section 5), with two im-
provements: locality of the nearest neighbor search and a correction that
accounts for multiplicative brightness changes.

The results from KT and KSY were kindly provided to us by their authors.
The results from KT were published in Komodakis and Tziritas (2007) and
those from KSY can be found in Kawai et al. (2009) and are also available
at http://yokoya.naist.jp/research/inpainting/. The Resynthetizer
algorithm is implemented as a plug-in for the GIMP image editing software
Kimball et al.. We used that implementation to generate the results la-
beled as “R”. Our implementation of PatchWorks was written by Geoffrey
Scoutheeten and was kindly made available to us by Simon Masnou. It
does not include the blending post-processing step, so all seams are visible.
We refer the reader to Pérez et al. (2004) and Cao et al. (2011) for results
obtained using this efficient technique with blending.

7.2 Observations and comments

Gradient vs. intensity

The proposed framework allows to design inpainting schemes based on the
image gradient. So far, the gradient has mainly been used as a post-
processing to remove seams between copy regions Pérez et al. (2004); Shen
et al. (2005). Instead, in this framework, the gradient is used both for the
image and weights update steps (also in Kwatra et al. (2005) for texture
synthesis).

Gradient-based methods perform well in images with a strong structure
(Figs. 7.1 and 7.3) but fail in images characterized by random textures. In

http://yokoya.naist.jp/research/inpainting/
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(a) Cabin

(b) Station bench

(c) Sofa

Figure 7.1: Results on structured images. PW: PatchWorks Pérez et al.
(2004), R: Resynthesizer Harrison (2005), KT: method of Komodakis and Tziritas
(2007) and KSY: method et al. Kawai et al. (2009). M, Md, P and GM stand for
patch NL-means, -medians, -Poisson and -gradient medians.
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(a) Baseball

(b) Bridge

(c) Golf

Figure 7.2: Results on random textures. PW: PatchWorks Pérez et al.
(2004), R: Resynthesizer Harrison (2005) and KT: method of Komodakis and Tzir-
itas (2007). M, Md, P and GM stand for patch NL-means, -medians, -Poisson and
-gradient medians.
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(a) Matsuri

(b) Building

(c) Mailboxes

Figure 7.3: Results on periodic textures. PW: PatchWorks Pérez et al.
(2004), R: Resynthesizer Harrison (2005), KT: method of Komodakis and Tziritas
(2007) and KSY: method of Kawai et al. (2009). M, Md, P and GM stand for
patch NL-means, -medians, -Poisson and -gradient medians.
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the following we are going to analyze the reasons for this behavior, discussing
the benefits and limitations of using gradients both in the image and weights
update steps. Many of the effects we are going to remark here have already
been discussed in more detail in Chapter 4.

Gradients in the image synthesis. The image obtained with patch
NL-Poisson and -gradient median is the result of copying gradients from the
known portion of the image and then solving a PDE. Although we do not
have a proof of it, in our experiments we observe that the synthesized image
will not have edges which are not in Oc. This is not the case for intensity-
based methods, which present discontinuities (seams) at the boundary of
the hole and between copy regions. These seams are present in almost all
images, but are particularly noticeable in images 7.1(b), 7.1(c), 7.3(a) and
7.3(c).

Gradients in the patch similarity weights. For patch NL-Poisson and
-gradient median, the patch error is a combination of intensity and gradi-
ents. With the low values of λ used, the gradient component dominates.
For some textured images this may cause the method to fail. In baseball
(Fig. 7.2(a)) for instance, segments of the sky have been reproduced in the
snow. Fig. 7.4 shows results obtained with the extension to the gradient-
based methods presented in Section 4.4. Different values of the mixture
coefficient λ are used for the image (λu) and weights update (λw). Results
in Fig. 7.4 have λw = 1, i.e. the weights are computed based only on the
image values. The image is updated using the corresponding image update
step with a low value of λu. Such scheme is non-variational unless λu = λw.
Although the results using λw = 1 improve for baseball and bridge, this will
not be the case in general. As an example, the last row of Fig. 7.4 shows the
result obtained for the sofa image. With such illumination changes, better
results (as those shown in 7.1(c)) are obtained by giving more weight to the
gradients in the patch comparison criterion (i.e. a low value of λw).

Gradient-based methods facilitate the prolongation of structures and edges,
due to the reinforcement of local PDE diffusion and non-local propagation
(in Section 4.3 we quantitatively compared the ability of each method to
propagate a straight line). This allows to use smaller patches, which allevi-
ates the computational load and amounts to more available exemplars and
less blending due to patch overlap (either by averages or medians).
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Means vs. medians

It is notorious that L1-based functionals perform better at the reproduction
of fine texture. The results of the L2 methods are smoothed by the spatial
averaging of overlapping patches. On the other hand, patch NL-medians
creates sharp discontinuities as in Fig. 4.1 when different copy regions meet
(e.g. 7.1(b) and 7.1(c)). These discontinuities are very noticeable and in
these cases some smoothing is desirable. This has been previously noted in
Pérez et al. (2004), where the authors distinguish between color and texture
seams. Color seams occur between copy regions with little texture having
different colors (the results of PatchWorks and patch NL-medians in image
7.1(c) are a clear example). These seams are best removed with a smooth
blending. On the other hand, texture seams require a sharp cut since a soft
blending would smooth the texture.

The image synthesis obtained with patch NL-gradient medians offers an
alternative to this dilema. The patch NL-gradient medians method perform
sharp cuts between copy regions at the gradient level. As a gradient-based
method does not introduce discontinuities, and texture is preserved since
there is no blending in the transition bands between copy regions. This can
be noticed in the results with patch NL-gradient medians for in images 7.4,
7.2(c) and in the grass in 7.3(b).

As was discussed in Section 4.3, L1-based methods are more stiff, meaning
that they show a higher dependence on the initialization (specially patch
NL-medians). Although the confidence mask diminishes this effect, it still
affects the results. This is the reason for some misalignments in straight
lines, due to subsampling artifacts of the multiscale scheme (see for instance
the results of patch NL-gradient median in images 7.1(b) and 7.1(c)). Also
patch NL-medians generally requires the use of larger patches, particularly
for structured images. This is not always possible, as in image 7.1(a), where
we could not find a proper set of parameters. However we found a good
result by after 3 iterations of the multiscale scheme.

Which scheme to use?

There is not a clear answer to this question, since it largely depends on
the image. Based on the previous observations, we can conclude that the
gradient adds interesting features for the image synthesis in general, but
its use in the patch similarity can be misleading for some strongly textured
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Figure 7.4: Results for non-variational gradient methods. Results using
the non variational extension of the patch NL-Poisson (left column) and patch NL-
gradient median (right column) (see Section 4.4). The patch similarity is computed
based solely on image values (setting λw = 1), whereas the image update step is
mainly gradient-based by keeping λu to a low value.
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images. This leads us to consider different mixture parameters for the image
and weights updates, λu and λw respectively, using the extension presented
in Section 4.4. This simple modification adds more flexibility to gradient-
based schemes, allowing to have the benefits of intensity- and gradient-based
methods.

For textured images good results can be obtained with λw ≈ 1 as shown in
Fig. 7.4. For structured images (Figs. 7.1 and 7.3) low values of λw will
be beneficial, since this amounts to use a patch similarity measure invariant
with respect to additive brightness changes. The value of λu is not critical,
as long as it is sufficiently small. In that case, the synthesis is dominated
by the gradient-based term. Thus, this modification does not add an extra
parameter.

Between patch NL-Poisson and -gradient medians, the latter yields a bet-
ter reproduction of random textures. However its running times are still
impractical.



Chapter 8

Conclusions and future work

We presented a variational framework for exemplar-based image inpainting.
The proposed formalism models in a unified manner the cases of probabilis-
tic and one-to-one correspondences. We focus on the latter, more relevant
for the current inpainting application. However, we provide a general pre-
sentation which evidences connections with related models for non-local
image regularization and provides intuitive interpretations of the proposed
energy.

We derived from the proposed framework four different inpainting schemes,
corresponding to error functions based on the combinations of L1- and L2-
norms, with image or gradient patches. For many images the inpainting
achieved is a patch-work with arbitrarily shaped segments, which emerge
during the minimization process. Transitions between these segments can
be sharp or smooth depending on the used norm.

Not all images, show these copy regions, and in general the absence of copy
regions is correlated with a bad result. We are currently researching on
enforcing the correspondence map to be piece-wise translational, by adding
a suitable regularization term in the weights update step.

One of the novelties of this work is the exploration of the use of gradients
in exemplar-based inpainting methods. In our framework this implies not
only copying gradients (gradient-based synthesis has been used before for
removing seams between patches), but also using them for the computation
of the similarity weights. Although this does not work well for images with
random textures, we found that it provides some interesting benefits in
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more structured images, such as additive brightness invariance and better
propagation of structures.

The proposed functional shows a critical dependence with the patch size.
Furthermore, it is non-convex and has many local minima. To tackle these
issues we used a multiscale approach. We believe that inpainting is in-
herently a multiscale problem and are currently working on a variational
formulations of multiscale inpainting.

Other direction of current and future research is the exploration of other
patch error functions. In particular it would be interesting to study the
patch comparison criteria based on structure tensors, which provide a more
robust estimation of the morphological structure of the image. We can
also consider correlation metrics such as the Normalized Cross-Correlation
which could add invariance to multiplicative brightness changes (we thank
the anonymous reviewer for suggesting this).
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Appendix A

Existence and regularity of
minima for the similarity

weights model

We shall consider here three models: patch NL-means, patch NL-medians
and patch NL-Poisson.

Let us recall the notation we will use. Let Cc(RN ) be the set of continuous
functions with compact support in RN . By Cc(RN )+ we denote the set of
nonnegative functions in Cc(RN ). As usual, if Q is an open set we denote
by W 1,p(Q), 1 ≤ p ≤ ∞, the space of functions v ∈ Lp(Q) such that
∇v ∈ Lp(Q)N . By W 1,p(Q)+ we denote the set of nonnegative functions in
W 1,p(Q). We denote by W 2,p(Q) (resp. by W 2,p

loc (Q)), 1 ≤ p ≤ ∞, the space
of functions v ∈ Lp(Q) such that∇v ∈ Lp(Q)N and D2v ∈ Lp(Q)N×N (resp.
the functions v ∈W 2,p(Q′) for any subdomain Q′ included in a compact set
of Q).

We assume here that Ω is a rectangle in RN and û : Oc → R with û ∈
L∞(Oc). We assume that u : Ω → R is such that u|Oc = û. We also
assume that u is extended by symmetry and then by periodicity to RN .
Let us assume that g ∈ Cc(RN )+ has support contained in Ωp, and that
g ∈ L1(RN )+ with

∫
RN g(h) dh = 1.
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Existence of minima for the patch NL-means model

In this Section we consider the patch NL-means model

E2,T (u,w) =

∫
Õ

∫
Õc
w(x, x̂)‖pu(x)− pû(x̂)‖2g,2dx̂dx+ TH(w). (A.1)

We implicitly understand that E2,T (u,w) = +∞ in case that the second
integral is not defined.

Let us recall the admissible class of functions

A2,T := {(u,w) : u ∈ L∞(Ω), u = û in Oc, w ∈ W}.

where

W := {w ∈ L1(Õ × Õc) :

∫
Õc
w(x, x̂) dx̂ = 1 a.e. x ∈ Õ}.

Our purpose is to prove the following results about the existence and regu-
larity of minima of E2,T .

Proposition A.1. Assume that g ∈ Cc(RN )+ has support contained in
Ωp, that ∇g ∈ L1(RN ) and û ∈ BV (Oc) ∩ L∞(Oc). Then there exists a
minimum (u,w) ∈ A2,T of E2,T . Moreover, for any minimum (u,w) ∈ A2,T

we have that u ∈W 1,∞(O) and w ∈W 1,∞(Õ × Õc).

In other words, there are smooth minima and smooth probability distribu-
tions representing the fuzzy correspondences between Õ and Õc. To prove
Proposition A.1 we need the following Lemmas which will play also a key
role in the rest of the paper.

Lemma A.2. Assume that g ∈ Cc(RN )+ has support contained in Ωp,

∇g ∈ L1(RN ) and û ∈ BV (Oc) ∩ L∞(Oc). Assume that u ∈ L∞(Õ + Ωp).
Then the functions

∇xg ∗ (u(x+ ·)− û(x̂+ ·))2 and ∇x̂g ∗ (u(x+ ·)− û(x̂+ ·))2 (A.2)

are uniformly bounded in Õ × Õc by a constant that depends on ‖∇g‖L1,
‖u‖∞, ‖û‖∞.
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Proof. Let x ∈ Õ, x̂ ∈ Õc. Observe that x̂ + Ωp ⊂ Oc. Let us observe
that by approximating u by smooth functions the following computations
are easily justified. Using the L1 integrability of ∇hg and the boundedness
of u, we compute

∇x+x̂

∫
RN

g(h)(u(x+ h)− û(x̂+ h))2 dh

= 2

∫
RN

g(h)(u(x+ h)− û(x̂+ h))(∇xu(x+ h)−∇x̂û(x̂+ h)) dh

= 2

∫
RN

g(h)(u(x+ h)− û(x̂+ h))(∇hu(x+ h)−∇hû(x̂+ h)) dh

= −
∫
RN
∇hg(h)(u(x+ h)− û(x̂+ h))2 dh.

By our assumptions, the above integral is bounded by a constant that only
depends on ‖∇g‖L1 , ‖u‖∞ and ‖û‖∞. Now,

∇x−x̂
∫
RN

g(h)(u(x+ h)− û(x̂+ h))2 dh

= 2

∫
RN

g(h)(u(x+ h)− û(x̂+ h))(∇xu(x+ h) +∇x̂û(x̂+ h)) dh

= 2

∫
RN

g(h)(u(x+ h)− û(x̂+ h))(∇hu(x+ h) +∇hû(x̂+ h)) dh

=

∫
RN

g(h)(∇hu(x+ h)2 −∇hû(x̂+ h)2) dh

+ 2

∫
RN

g(h)(u(x+ h)∇hû(x̂+ h)− û(x̂+ h)∇hu(x+ h)) dh.

Integrating by parts, we have that the first term in the last equality is
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bounded. Observe that∫
RN
g(h)(u(x+ h)∇hû(x̂+ h)− û(x̂+ h)∇hu(x+ h)) dh

= −
∫
RN

g(h)((û(x̂+ h) + 1)∇hu(x+ h)− u(x+ h)∇hû(x̂+ h)) dh

+

∫
RN

g(h)∇hu(x+ h) dh

= −
∫
RN

g(h)∇h
(

u(x+ h)

(û(x̂+ h) + 1)

)
(û(x̂+ h) + 1)2 dh

−
∫
RN
∇hg(h)u(x+ h) dh

=

∫
RN
∇h(g(h)(û(x̂+ h) + 1)2)

u(x+ h)

(û(x̂+ h) + 1)
dh

−
∫
RN
∇hg(h)u(x+ h) dh

=

∫
RN
∇hg(h)(û(x̂+ h) + 1)u(x+ h) dh

+ 2

∫
RN

g(h)∇hû(x̂+ h)u(x+ h) dh

−
∫
RN
∇hg(h)u(x+ h) dh.

The first and third integrals are well defined and bounded by constants that
only depend on ‖∇g‖L1 , ‖u‖∞, ‖û‖∞. Let us check that the integral∫

RN
g(h)∇hû(x̂+ h)u(x+ h) dh (A.3)

is well defined and bounded. Assuming first that u is continuous, then∫
RN g(h)∇hû(x̂ + h)u(x + h) dh is well defined and bounded. Now, if u ∈
L∞(Õ+Ωp), we may approximate it by continuous functions un converging
to u a.e. with ‖un‖∞ ≤ ‖u‖∞. Then g ∗ (un(x+ ·)− û(x̂+ ·))2 → g ∗ (u(x+
·) − û(x̂ + ·))2 a.e. and in Lp for all p ∈ [1,∞). Since our statement holds
for un it also holds for u and the above convergence is also uniform. The
statement of the Lemma follows.

Remark 1. Notice that our mild assumption that û ∈ BV (Oc) forces us to
consider the assumption that û ∈ L∞(Oc). Indeed this implies that u is also
bounded and we can give sense to the integral

∫
RN g(h)∇hû(x̂+h)u(x+h) dh.
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Remark 2. If we assume that u ∈ L∞(Õ) then the statement of Lemma
A.2 holds for x ∈ O.

Lemma A.3. Under the assumptions of Proposition A.1, if (un, wn) ∈ A2,T

is a minimizing sequence for E2,T such that un is uniformly bounded, then
we may extract a subsequence converging to a minimum of E2,T .

Proof. Let (un, wn) ∈ A2,T be a minimizing sequence of (A.1) such that
{un}n is uniformly bounded. Since Ω is a bounded domain we have that∫

Õ

∫
Õc
χ{wn>1}wn(x, x̂) logwn(x, x̂)dx̂dx

is bounded. Hence wn(1 + log+wn) is bounded in L1(Õ × Õc), i.e. wn is
bounded in LLog+L(Õ × Õc). Then the sequence wn is relatively weakly
compact in L1 and modulo a subsequence we may assume that wn weakly
converges in L1(Õ × Õc) to some w ∈ W. By Lemma A.2, the functions

∇x
∫
RN

g(h)(un(x+ h)− û(x̂+ h))2 dh

and

∇x̂
∫
RN

g(h)(un(x+ h)− û(x̂+ h))2 dh

are bounded in L∞(Õ×Õc). Thus, modulo the extraction of a subsequence,
we may assume that un → u weakly in all Lp, 1 ≤ p < +∞ and g ∗ (un(x+
·) − û(x̂ + ·))2 converges strongly in all Lp spaces and also in the dual of
LLog+L to some function W . Then by passing to the limit as n → ∞ we
have ∫

Õ

∫
Õc
w(x, x̂)W (x, x̂)dx̂dx+ TH(w) ≤ lim inf

n
E2,T (un, wn).

Taking test functions ψ(x, x̂), integrating in Õ× Õc and using the convexity
of the square function, we have∫

RN
g(h)(u(x+ h)− û(x̂+ h))2 dh ≤W (x, x̂).

Thus
E2,T (u,w) ≤ lim inf

n
E2,T (un, wn).
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Proof of Proposition A.1. The proof of existence follows from Lemma A.3
once we observe that there are minimizing sequences (un, wn) ∈ A2,T for
E2,T such that un is uniformly bounded. For that, let (u,w) ∈ A2,T and
let us compute the equation satisfied by u if it is a minimum of E2,T (·, w).
Indeed, since∫

Õ

∫
Õc
w(x, x̂)‖pu(x)− pû(x̂)‖2g,2dx̂dx =∫

RN

∫
RN

g ∗ (w(z − ·, ẑ − ·))(u(z)− û(ẑ))2dẑdz, (A.4)

we have

u(z) =

∫
RN

g ∗ (w(z − ·, ẑ − ·))û(ẑ)dẑ, z ∈ O, (A.5)

where g ∗ (w(z − ·, ẑ − ·)) are the pixel influence weights m(z, ẑ) defined in
(3.5). We have used the fact that

∫
Oc g ∗ (w(z − ·, ẑ − ·))dẑ = 1 for any

z ∈ O and any w′ ∈ W.

Similarly, if w is a minimum of E2,T (u, ·) we have that

w(x, x̂) = w2,T (u)(x, x̂) =
1

Z2,T (u;x)
exp

(
− 1

T
g ∗ (u(x+ ·)− û(x̂+ ·))2

)
.

(A.6)
Notice that both equations (A.5) and (A.6) hold if (u,w) ∈ A2,T is a mini-
mum of E2,T .

To prove the existence of minima of of E2,T , let (u′n, w
′
n) ∈ A2,T be a mini-

mizing sequence for this energy. Let

un = arg min
u

E2,T (u,w′n), (A.7)

wn = arg min
w

E2,T (un, w). (A.8)

Since
E2,T (un, wn) ≤ E2,T (un, w

′
n) ≤ E2,T (u′n, w

′
n),

(un, wn) ∈ A2,T is also a minimizing sequence of (A.1). By (A.5) we have

un(z) =

∫
RN

g ∗ (w′n(z − ·, ẑ − ·))û(ẑ)dẑ, z ∈ O, (A.9)

and we deduce that ‖un‖L∞(O) ≤ ‖û‖∞. Then, using Lemma A.3 we may
extract a subsequence of (un, wn) converging to a minimum of E2,T .



existence and regularity of minima 111

Let us prove the regularity assertion. Let (u,w) ∈ A2,T be a minimum of
E2,T . Let us first prove that ∇xw(x, x̂) and ∇x̂w(x, x̂) are bounded. By
(A.5) we have that ‖u‖L∞(O) ≤ ‖û‖∞ and

a ≤ Z2,T (u;x) ≤ b, (A.10)

for some constants b > a > 0 which only depend on ‖û‖∞. Thus w is
bounded and bounded away from zero. To abbreviate our expressions, let
U(x, x̂) := g ∗ (u(x+ ·)− û(x̂+ ·))2. Since

∇xw(x, x̂) = −
exp

(
− 1
T U(x, x̂)

)
Z2,T (u;x)

(
1

T
∇xU(x, x̂) +

∇xZ2,T (u;x)

Z2,T (u;x)

)
,

∇x̂w(x, x̂) = −
exp

(
− 1
T U(x, x̂)

)
TZ2,T (u;x)

∇x̂U(x, x̂),

where

∇xZ2,T (u;x) = − 1

T

∫
Õc

exp

(
− 1

T
U(x, x̂)

)
∇xU(x, x̂)dx̂,

by Lemma A.2 and (A.10) we conclude that ∇xw(x, x̂) and ∇x̂w(x, x̂) are
bounded.

Now, by (A.5), for any x ∈ O we have

∇xu(x) =

∫
RN
∇xg ∗ (w(x− ·, ẑ − ·))û(ẑ)dẑ.

Since

∇xg ∗ (w(x− ·, ẑ − ·)) =∫
RN

g(h)∇xw(x+ h, ẑ + h)χ
Õ

(x+ h)χ
Õc

(ẑ + h)dh

+

∫
RN

g(h)w(x+ h, ẑ + h)∇xχÕ(x+ h)χ
Õc

(ẑ + h)dh

and χ
Õ
∈ BV (RN ) we conclude that ∇xg ∗ (w(x− ·, ẑ− ·)) is bounded. We

deduce that ∇xu(x) is bounded. Hence u ∈ W 1,∞(O) and w ∈ W 1,∞(Õ ×
Õc).
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Existence of minima for the patch NL-Poisson model

In this Section we consider the patch NL-Poisson model E2,λ,T . For simplic-
ity we set λ = 0. Similar results hold for λ ∈ [0, 1). The energy reads

E2,0,T (u,w) :=

∫
Õ

∫
Õc
w(x, x̂)‖pu(x)− pû(x̂)‖2g,∇dx̂dx+ TH(w), (A.11)

where we denote ‖p‖2g,∇ =
∫
RN g(h)‖∇p(h)‖22dh for any p ∈ W 1,2(Ωp). Re-

call that we assume that u|Oc = û.

Let A2,0,T := {(u,w) ∈ A2,T : u ∈W 1,2(O), u|∂O = û|∂Oc}.

Our purpose is to prove the following result stating the existence of solutions
of

min
(u,w)∈A2,0,T

E2,0,T (u,w). (A.12)

Proposition A.4. Assume that û ∈W 2,2(Oc)∩L∞(Oc) and g ∈W 1,∞(RN )+

has compact support in Ωp. There exists a solution of the variational prob-
lem (A.12). Moreover for any solution (u,w) ∈ A2,0,T we have u ∈W 1,2(O)∩
W 2,p
loc (O) ∩ L∞(O) for all p ∈ [1,∞) and w ∈W 1,∞(Õ × Õc).

Lemma A.5. Assume that û ∈ W 1,2(Oc) and g ∈ L∞(RN )+ has compact
support on Ωp. Let (u,w) ∈ A2,0,T . Assume that E2,0,T (u,w) ≤ C. Then

‖u‖W 1,2(O) ≤ C ′(C, ‖∇û‖L2(Oc)), (A.13)

where C ′ = C ′(C, ‖∇û‖L2(Oc)) denotes a constant that depends on its argu-
ments.

Proof. Since the left hand side of∫
Õ

∫
Õc
w(x, x̂)g ∗ |∇xu(x+ ·)−∇x̂û(x̂+ ·)|2 dxdx̂

=

∫
Õ

∫
Õc
w(x, x̂)

(
g ∗ |∇xu(x+ ·)|2 + g ∗ |∇x̂û(x̂+ ·)|2

− 2g ∗ (∇xu(x+ ·) · ∇x̂û(x̂+ ·))) dxdx̂

is upper bounded,

|g ∗ (∇xu(x+ ·) · ∇x̂û(x̂+ ·))| ≤ ε

2
g ∗ |∇xu(x+ ·)|2 +

1

2ε
g ∗ |∇x̂û(x̂+ ·)|2,
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for any ε > 0, and∫
Õ

∫
Õc
w(x, x̂)g ∗ |∇xû(x̂+ ·)|2 dxdx̂ ≤ C ′(C, ‖∇û‖L2(Oc)),

taking ε = 1
2 , the result follows from∫

Õ

∫
Õc
w(x, x̂)g ∗ |∇xu(x+ ·)|2 dxdx̂

=

∫
Õ

∫
Õc
w(x, x̂)

∫
RN

g(h)|∇xu(x+ h)|2 dxdx̂dh

=

∫
Õ

∫
RN

g(h)|∇xu(x+ h)|2 dxdh

=

∫
RN

∫
RN

χ
Õ

(x)g(h)|∇xu(x+ h)|2 dx

=

∫
RN

∫
RN

χ
Õ

(x̂− h)g(h)|∇xu(x̂)|2 dhdx̂

≥
∫
O

∫
RN

χ
Õ

(x̂− h)g(h)|∇xu(x̂)|2 dhdx̂

≥
∫
O

∫
RN

g(h)|∇xu(x̂)|2 dhdx̂ =

∫
O
|∇xu(x̂)|2 dx̂.

Lemma A.6. Assume that û ∈ W 2,2(Oc), u ∈ W 1,2(O), u|∂O = û|∂Oc and
g ∈W 1,∞(RN )+ has compact support on Ωp. Then

∇xg ∗ |∇xu(x+ ·)−∇x̂û(x̂+ ·)|2 and ∇x̂g ∗ |∇xu(x+ ·)−∇x̂û(x̂+ ·)|2
(A.14)

are bounded in L∞(Õ×Õc) with a bound depending on ‖û‖W 2,2(Oc), ‖g‖W 1,∞

and ‖∇u‖L2(O).

Proof. The bounds in (A.23) follow if we prove that

∇x+x̂

∫
RN

g(h)|∇xu(x+ h)−∇x̂û(x̂+ h)|)2 dh and

∇x−x̂
∫
RN

g(h)|∇xu(x+ h)−∇x̂û(x̂+ h)|2 dh

are bounded in L∞ with a bound depending on ‖û‖W 2,2(Oc), ‖g‖W 1,∞ and
‖∇u‖L2(Õ). Let us write ui(x) = ∂xiu(x), ûi(x) = ∂xi û(x), i = 1, . . . , N .
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Let x ∈ Õ, x̂ ∈ Õc, i ∈ {1, . . . , N}. As in the proof of Lemma A.2 we have

∇x+x̂

∫
RN
g(h)(ui(x+ h)− ûi(x̂+ h))2 dh

= 2

∫
RN

g(h)(ui(x+ h)− ûi(x̂+ h))(∇xui(x+ h)−∇x̂ûi(x̂+ h)) dh

= 2

∫
RN

g(h)(ui(x+ h)− ûi(x̂+ h))(∇hui(x+ h)−∇hûi(x̂+ h))2 dh

= −
∫
RN
∇hg(h)(ui(x+ h)− ûi(x̂+ h))2 dh.

Then∣∣∣∣∇x+x̂

∫
RN

g(h)(ui(x+ h)− ûi(x̂+ h))2 dh

∣∣∣∣
≤ 2‖∇hg‖∞

(∫
Õ+Ωp

|∇u(x̂)|2dx̂+

∫
Õc+Ωp

|∇û(x̂)|2dx̂

)
.

Notice that since u ∈W 1,2(O), u|∂O = û|∂Oc and u = û on Oc we have that
u ∈W 1,2(Õ + Ωp).

As above, by direct computation and after integration by parts, we have

∇x−x̂
∫
RN

g(h)(ui(x+ h)− ûi(x̂+ h))2 dh

= −
∫
RN
∇hg(h)(ui(x+ h)2 − ûi(x̂+ h)2) dh

+ 2

∫
RN

g(h)ui(x+ h)∇hûi(x̂+ h) dh

+ 2

∫
RN
∇h(g(h)ûi(x̂+ h))ui(x+ h) dh.

The three terms are bounded by a constant depending on ‖û‖W 2,2(Oc),
‖g‖W 1,∞ and ‖∇u‖

L2(Õ)
.

Proof of Proposition A.4. Existence. Let (un, wn) be a minimizing sequence
of (A.12). Since Ω is a bounded domain we have that∫

Õ

∫
Õc
χ{wn>1}wn(x, x̂) logwn(x, x̂)dx̂dx
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is bounded. Hence wn(1 + log+wn) is bounded in L1(Õ × Õc). Then the
sequence wn is relatively weakly compact in L1 and modulo a subsequence
we may assume that wn weakly converges in L1(Õ × Õc) to some w ∈ W.

By Lemma A.5, we have that un is uniformly bounded in W 1,2(Õ). By
Lemma A.6, we have that

∇x
∫
RN

g(h)|∇un(x+ h)−∇ûn(x̂+ h)|2 dh and

∇x̂
∫
RN

g(h)|∇un(x+ h)−∇ûn(x̂+ h)|2 dh (A.15)

are uniformly bounded in L∞(Õ × Õc). Thus, modulo the extraction of a
subsequence, we may assume that un → u a.e. and in L2(Õ), ∇un → ∇u
weakly in L2(Õ + Ωp), and g ∗ (∇xun(x + ·) − ∇x̂ûn(x̂ + ·))2 converges
strongly in all Lp spaces, 1 ≤ p < ∞, and also in the dual of LLog+L to
some function W . Then by passing to the limit as n→∞ we have∫

Õ

∫
Õc
w(x, x̂)W (x, x̂)dx̂dx+ TH(w) ≤ lim inf

n
E2,0,T (un, wn).

Taking test functions ψ(x, x̂), integrating in Õ× Õc and using the convexity
of the square function, we have∫

g(h)(∇xu(x+ h)−∇x̂û(x̂+ h))2 dh ≤W (x, x̂).

Thus

E2,0,T (u,w) ≤ lim inf
n
E2,0,T (un, wn).

Regularity. Observe that if (u,w) ∈ A2,0,T is a minimum of (A.12), then
u ∈W 1,2(O) (by Lemma A.5) and it satisfies the Euler-Lagrange equations.
By fixing w and computing the first variation of E2,0,T with respect to its
first variable, we have that u is a solution of the Poisson equation:

∆u(z) = div v(w; z), z ∈ O, (A.16)

u = û in ∂O,

where

v(w; z) =

∫
RN

g ∗ (w(z − ·, ẑ − ·))∇û(ẑ)dẑ. (A.17)
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Notice that we used again that k(w; z) :=
∫
RN g ∗ (w(z − ·, ẑ − ·))dẑ = 1

for all z ∈ O. On the other hand, if u is fixed and we compute the first
variation of E2,0,T with respect to its second variable, then

w(x, x̂) = w2,0,T (u;x, x̂) =
1

Z2,0,T (u;x)
exp

(
− 1

T
‖pu(x)− pû(x̂)‖2g,∇

)
,

(A.18)
where the normalizing factor Z2,0,T (u) is given by

Z2,0,T (u;x) =

∫
Õc

exp

(
− 1

T
‖pu(x)− pû(x̂)‖2g,∇

)
dx̂. (A.19)

As in the proof of Proposition A.1 we observe that Z2,0,T (u;x) is bounded
and bounded away from zero (thanks to Lemmas A.5 and A.6). Then, it
follows that w ∈W 1,∞(Õ×Õc). Using this and (A.17) we have that v(w) ∈
W 1,∞(O)2. Then the solution u of (A.16) is in W 1,2(O)∩W 2,p

loc (O)∩L∞(O)
for any p ∈ [1,∞) (Gilbarg and Trudinger (2001)).

Remark 3. Notice that the regularity result holds for any (u∗, w∗) ∈ A2,0,T

satisfying (A.16) and (A.18).

Existence of minima for the patch NL-medians and patch
NL-gradient medians models

We consider the patch NL-medians model

E1,T (u,w) =

∫
Õ

∫
Õc
w(x, x̂)‖pu(x)− pû(x̂)‖gdx̂dx+ TH(w). (A.20)

As previously, we assume E2,T (u,w) = +∞ in case that the second integral
is not defined.

Let

W := {w ∈ L1(Õ × Õc) :

∫
Õc
w(x, x̂) dx̂ = 1 a.e.x ∈ Õ}.

Let us consider the admissible class of functions

A1,T := {(u,w) : u ∈ L∞(Ω), u = û in Oc, w ∈ W}.

Our purpose is to prove the following result.
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Proposition A.7. Assume that g ∈ Cc(RN )+ has support contained in Ωp,
∇g ∈ L1(RN ) and û ∈ BV (Oc)∩L∞(Oc). There exists a minimum (u,w) ∈
A1,T of E1,T . For any minimum (u,w) ∈ A1,T we have that u ∈ W 1,∞(O)

and w ∈W 1,∞(Õ × Õc).

To prove Proposition A.7 we need the following Lemma.

Lemma A.8. Assume that g ∈ Cc(RN )+ has support contained in Ωp,

∇g ∈ L1(RN ) and û ∈ BV (Oc) ∩ L∞(Oc). Assume that u ∈ L∞(Õ + Ωp).
Then the functions

∇xg ∗ |u(x+ ·)− û(x̂+ ·)| and ∇x̂g ∗ |u(x+ ·)− û(x̂+ ·)| (A.21)

are uniformly bounded in Õ × Õc by a constant that depends on ‖∇g‖L1,
‖u‖∞, ‖û‖∞.

Proof. Let x ∈ Õ, x̂ ∈ Õc. Observe that x̂ + Ωp ⊂ Oc. Let us observe
that by approximating u by smooth functions the following computations
are easily justified. Let η(r) = sign0(r). Using the L1 integrability of ∇hg
and the boundedness of u, we compute

∇x+x̂

∫
RN

g(h)|u(x+ h)− û(x̂+ h)| dh

=

∫
RN

g(h)η(u(x+ h)− û(x̂+ h))(∇xu(x+ h)−∇x̂û(x̂+ h)) dh

=

∫
RN

g(h)η(u(x+ h)− û(x̂+ h))(∇hu(x+ h)−∇hû(x̂+ h)) dh

= −
∫
RN
∇hg(h)|u(x+ h)− û(x̂+ h)| dh.

By our assumptions, the above integral is bounded by a constant that only
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depends on ‖∇g‖L1 , ‖u‖∞ and ‖û‖∞. Now,

∇x−x̂
∫
RN

g(h)|u(x+ h)− û(x̂+ h)| dh

=

∫
RN

g(h)η(u(x+ h)− û(x̂+ h))(∇xu(x+ h) +∇x̂û(x̂+ h)) dh

=

∫
RN

g(h)η(u(x+ h)− û(x̂+ h))(∇hu(x+ h) +∇hû(x̂+ h)) dh

=

∫
RN

g(h)η(u(x+ h)− û(x̂+ h))

(∇hu(x+ h)−∇hû(x̂+ h) + 2∇hû(x̂+ h)) dh

=

∫
RN

g(h)∇h|u(x+ h)− û(x̂+ h)| dh

+ 2

∫
RN

g(h)η(u(x+ h)− û(x̂+ h))∇hû(x̂+ h) dh.

Integrating by parts, we have that the first term in the last equality is
bounded. The last integral is also bounded since û ∈ BV (Oc). The neces-
sary computations can be justified by smoothing the absolute value (

√
ε2+2 )

and smoothing the functions.

Remark 4. There are minimizing sequences that satisfy the assumptions
of the Lemma A.2.

Remark 5. The above proof can be extended to any patch error function
given by

g ∗ |u(x+ ·)− û(x̂+ ·)|p

for an exponent p ∈ [1,∞).

We consider now the patch NL-gradient medians energy, with λ = 0:

E2,0,T (u,w) :=

∫
Õ

∫
Õc
w(x, x̂)‖pu(x)− pû(x̂)‖g,∇dx̂dx+ TH(w), (A.22)

In this case we only sketch a proof for existence, without stating the regu-
larity of the solution.

Let us define the following notation:

HBV (Ω) = {u ∈W 1,1(Ω),∇u ∈ BV (Ω)}.

The following Lemma is analogous to Lemmas A.2, A.6 and A.8 for the case
of patch NL-gradient medians.
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Lemma A.9. Assume that û ∈ HBV (Oc), u ∈ BV (O), u = û in Oc and
g ∈W 1,∞(RN )+ has compact support on Ωp. Then

∇x
∫
RN

g(h)|∇xu(x+ h)−∇x̂û(x̂+ h)| dh and

∇x̂
∫
RN

g(h)|∇xu(x+ h)−∇x̂û(x̂+ h)| dh (A.23)

are bounded in L∞(Õ×Õc) with a bound depending on ‖û‖HBV (Oc), ‖g‖W 1,∞

and ‖u‖BV .

Then from the boundedness of the energy one gets that the assumptions
are satisfied. As before, from Lemma A.9 one can deduce the existence of
minima.





Appendix B

Optimal correspondence maps

In this appendix we prove existence of solutions of the energy E2,0 and
the existence of optimal correspondence maps. Then in Subsection B we
prove the existence of correspondence maps which are uniform limits of
bounded variation functions with finitely many values. We give the details
corresponding to the patch NL-means model. Analogous results with similar
proofs hold for the patch NL-Poisson model (see Remark 7).

Existence of optimal correspondence maps

Let us first recall the notion of measurable measure-valued map.

Definition B.1 (Measurable measure-valued map). Let X ⊆ RN , Y ⊆ RM
be open sets, µ be a positive Radon measure in X and x→ νx be a function
that assigns to each x in X a Radon measure νx on Y. We say that the
map is µ-measurable if x → νx(B) is µ-measurable for any Borel set B in
Y.

By the disintegration theorem, if ν is a positive Radon measure in X × Y
such that ν(K × Y) < ∞ for any compact set K ⊆ X and µ = π]ν where
π : X × Y → X is the projection on the first factor (i.e. µ(B) = ν(B × Y )
for any Borel set B ⊆ X), then there exist a measurable measure-valued
map x→ νx such that νx(Y) = 1 µ-a.e. in X and for any ψ ∈ L1(X ×Y, ν)
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we have

ψ(x, ·) ∈ L1(Y, νx) for µ− a.e.x ∈ X ,

x→
∫
Y
ψ(x, y) dνx(y) ∈ L1(X , µ),∫

X×Y
ψ(x, y) dν(x.y) =

∫
X

∫
Y
ψ(x, y) dνx(y) dµ(x).

Let us consider MP the set of measurable measure valued maps ν ≥ 0 in
Õ×cl(Õc) such that π]ν = LN |

Õ
, where LN |

Õ
denotes the Lebesgue measure

restricted to Õ. We assume that g ∈ Cc(RN ) has support contained in Ωp,
∇g ∈ L1(RN ) and û ∈ BV (Oc) ∩ L∞(Oc). Let

A2,0 := {(u, ν) : u ∈ L∞(Ω), u = û in Oc, ν ∈MP}.

For (u, ν) ∈ A2,0, define

E2,0(u, ν) :=

∫
Õ

∫
Õc
g ∗ (u(x+ ·)− û(x̂+ ·))2dν(x, x̂). (B.1)

Notice that, by Lemma A.2, the above integral is well defined. We are now
ready to state the existence result.

Proposition B.2. There exists a minimum (u, ν) ∈ A2,0 of E2,0.

Proof. Let (un, νn) ∈ A2,0 be a minimizing sequence of E2,0. Let us observe
that we may take un uniformly bounded. Indeed, let κ = 2‖û‖∞ and
uκ,n = unχ|un|≤κ. Then

|uκ,n(x)− û(x̂)| ≤ |un(x)− û(x̂)|.

This is clearly true if |un(x)| ≤ κ. Now if |un(x)| > κ we have

|un(x)− û(x̂)| > κ− û(x̂) ≥ ‖û‖∞ ≥ |uκ,n(x)− û(x̂)|.

Thus g ∗ (uκ,n(x+ ·)− û(x̂+ ·))2 ≤ g ∗ (un(x+ ·)− û(x̂+ ·))2 and (uκ,n, νn)
is also a minimizing sequence. Thus, we may assume that un is uniformly
bounded. By extracting a subsequence, if necessary, we may assume that
un converges to some u ∈ L∞(Õ + Ωp) with u|Oc = û. By Lemma A.2,
g ∗ (un(x+ ·)− û(x̂+ ·))2 is uniformly Lipschitz in x, x̂ and we may assume
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that it converges uniformly to a function W (x, x̂). On the other hand, we
may also assume that νn → ν weakly∗ as measures. Hence∫

Õ

∫
Õc
W (x, x̂)dν(x, x̂) 6

lim inf
n

∫
Õ

∫
Õc
g ∗ (un(x+ ·)− û(x̂+ ·))2dν(x, x̂).

Notice that π]ν = LN |
Õ

. Clearly from the weak∗ convergence, we have that

ν(V ×cl(Õc)) ≤ LN (V ) for any open set V ⊆ Õ and ν(K×cl(Õc)) ≥ LN (K)
for any compact set K ⊆ Õ. By regularity of the measure ν we have that
ν(B × cl(Õc)) = |B| for any Borel set B ⊆ Õ. Thus π]ν = LN |

Õ
.

Now, as in the proof of Proposition A.1, we have that g ∗ (u(x+ ·)− û(x̂+
·))2 ≤W (x, x̂). Hence∫

Õ

∫
Õc
g ∗ (u(x+ ·)− û(x̂+ ·))2dν(x, x̂) ≤

lim inf
n

∫
Õ

∫
Õc
g ∗ (un(x+ ·)− û(x̂+ ·))2dν(x, x̂).

Thus (u, ν) ∈ A2,0 is a minimum of E2,0.

Remark 6. If û ≥ 0 we may also take uκ,n = τκ(un) where κ ≥ ‖û‖∞ and
τκ(r) = sign(r) inf(|r|, κ).

Let ϕ : Õ → Õc be a measurable map. Then x ∈ Õ → νx = δϕ(x)(x̂) is

measurable. Similarly if the map x ∈ Õ → νx = δϕ(x)(x̂) is measurable then
ϕ is measurable. Let us denote by νϕ the measure determined by ϕ.

Proposition B.3. There exists a minimum (u∗, ν∗) ∈ A2,0 of E2,0 such that

ν∗ = νϕ where ϕ : Õ → cl(Õc) is a measurable map.

Proof. Let (u∗, ν∗) ∈ A2,0 be a minimum of E2,0. Then

ν∗ ∈ arg min
ν∈MP

E2,0(u∗, ν).

Let us prove that there is a measurable map ϕ such that νϕ is a minimum of
A2,0. Indeed, this is a consequence of the Kuratowski-Ryll-Nardzewski The-
orem (Srivastava (1998), Theorem 5.2.1) or (Aliprantis and Border (2006),
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Theorem 14.86). Let us consider U(x, x̂) = g ∗ (u(x+ ·)− û(x̂+ ·))2, x ∈ Õ,
x̂ ∈ Õc. Let

m(x) = min
x̂∈Õc

U(x, x̂),

M(x) = {x̂ ∈ Õc : U(x, x̂) = m(x)}.

Then, by Berge’s maximum theorem applied to −U(x, x̂) (Aliprantis and
Border (2006), Theorem 14.30) we have that m(x) is continuous and M(x)
is an upper hemicontinuous correspondence with compact values. Thus it
has a closed graph (Aliprantis and Border (2006), Theorem 14.12), hence
it is measurable (Aliprantis and Border (2006), Theorem 14.68). By the
Kuratowski-Ryll-Nardzewski Theorem, we know that x → M(x) admits a
measurable selector, that is there is a measurable map x → ϕ(x) ∈ M(x).
The measure νϕ is a minimum of A2,0 since we may write

U(x, ϕ(x)) = min
x̂∈Õc

U(x, x̂) ≤
∫
Õc
U(x, x̂)dν∗x(x̂).

Integrating in x we deduce that

E2,0(u∗, νϕ) =

∫
Õ

∫
Õc
U(x, x̂)dνϕx (x̂)dx ≤∫

Õ

∫
Õc
U(x, x̂)dν∗x(x̂)dx = E2,0(u∗, ν∗).

Let us sketch a second proof which gives a different point of view. Clearly,
since the energy function ν → E2,0(u∗, ν) is linear in ν, there are minima
that are attained on the set of extreme points of the convex setMP. Thus,
the proposition is a consequence of the following Lemma whose proof can
be found in (Arias et al. (2012)).

Lemma B.4. The set of extreme points of the convex set MP coincides
with the set of measures {νϕ : ϕ is a measurable map}.

We now address the relation between the patch NL-means functional for
T > 0 and E2,0.

Proposition B.5. The energies E2,T Gamma-converge to the energy E2,0.
In particular, the minima of E2,T converge to minima of E2,0.
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Proof. Let (u, ν) ∈ A2,0 and (un, wn) ∈ A2 be such that un → u weakly∗

in L∞ and wn → ν weakly∗ as measures. The fact that un → u weakly∗ in
L∞ includes that un is uniformly bounded. By Lemma A.2, g ∗ (un(x+ ·)−
û(x̂+ ·))2 is uniformly Lipschitz and converges uniformly to some function
W (x, x̂). Then∫
Õ

∫
Õc
W (x, x̂)dν(x, x̂) ≤ lim inf

n

∫
Õ

∫
Õc
wn(x, x̂)g∗(un(x+·)−û(x̂+·))2dxdx̂

≤ lim inf
n

∫
Õ

∫
Õc
wn(x, x̂)g ∗ (un(x+ ·)− û(x̂+ ·))2dxdx̂+ TnH(wn).

Since g ∗ (u(x+ ·)− û(x̂+ ·))2 ≤W (x, x̂), we have that

E2,0(u, ν) ≤ lim inf
n
E2,Tn(un, wn).

Now, let (u, ν) ∈ A2,0. Let νx be the probability measures obtained by
disintegrating ν with respect to LN |

Õ
. Let us take wn(x, x̂) = gTn ∗ νx(x̂)

where gT (x̂) = 1
T 2 g( x̂T ) for any T > 0. Thus wn ∈ W, wn → ν weakly∗ as

measures and wn ≤ 1
TNn
‖g‖∞. This implies that (u,wn) ∈ A2 and

lim
n
Tn

∫
Õ

∫
Õc
wn(x, x̂) log wn(x, x̂) dxdx̂ = 0.

On the other hand

lim
n

∫
Õ

∫
Õc
wn(x, x̂)g ∗ (u(x+ ·)− û(x̂+ ·))2 dxdx̂ =∫

Õ

∫
Õc
g ∗ (u(x+ ·)− û(x̂+ ·))2 dν(x, x̂).

Thus lim supn E2,Tn(u,wn) ≤ E2,0(u, ν).

Remark 7. Statements analogous to Propositions B.2, B.3 and B.5 also
hold for the non-local Poisson model with λ = 0, where the limit energy is
now

E2,0,0(u, ν) :=

∫
Õ

∫
Õc
g ∗ (∇u(x+ ·)−∇û(x̂+ ·))2 dν(x, x̂).

In this case, we assume that û ∈W 2,2(Oc) and g ∈W 1,∞(RN ) has compact
support in Ωp and we use Lemmas A.5 and A.6.
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Regularity of optimal correspondence maps

The following result gives us some information on the the existence of cor-
respondences with some regularity.

Theorem B.6. Let X be an open bounded subset of RN with Lipschitz
boundary and Y be a compact subset of Rm. Let U : X × Y → R be a
Lipschitz continuous function. For each x ∈ X, let M(x) := {x̂ ∈ Y :
U(x, x̂) = min̄̂x∈Y U(x,̄̂ x)}. Then there exists a selection of the multi-
function x ∈ X → M(x) ⊆ Y , i.e., a function S : X → Y such that
S(x) ∈M(x) ∀x ∈ X, which is a uniform limit of functions in BV (X)m.

We included a brief summary of the properties of BV functions after the
proof of this theorem. Notice that we defined X as an open set since we
define the BV space on open sets. The same statement holds true if we
replace X by its closure X. In that case, since X has a Lipschitz boundary
(hence of Lebesgue null measure) functions in BV (X) uniquely determine
its extension to X (the trace on ∂X is well defined) Ambrosio et al. (2000).

Its proof is a simple adaptation of the Kuratowski-Ryll-Nardzewski Theo-
rem (Srivastava (1998), Theorem 5.2.1) or (Aliprantis and Border (2006),
Theorem 14.86). For that we need the following simple Lemma.

Lemma B.7. Let m(x) = inf x̂∈Y U(x, x̂), x ∈ X. The function m(x) is
Lipschitz. Also are the functions x ∈ X → inf̄̂x∈B U(x,̄̂ x) for any B ⊆ Y
and ε > 0.

Proof. Let x, x̄ ∈ X. Since U is Lipschitz in both variables we have

m(x) ≤ U(x, x̂) ≤ U(x̄, x̂) ≤ L|x− x̄|.

Taking infima with respect to x̂ in the right hand side we have m(x) ≤
m(x̄) + L|x − x̄|. By symmetry we have that m is Lipschitz. The more
general case follows in the same way.

Proof of Theorem B.6. Let

Mε(x) = {x̂ ∈ Y : U(x, x̂) ≤ min
¯̂x∈Y

U(x,̄̂ x) + ε}, x ∈ X.

Let εn ↓ 0 and Mn(x) := Mεn(x). Let d denote the euclidian distance in Y .
Without loss of generality, assume that d < 1.
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We define inductively a sequence Sn : X → Y of functions in BV (X)m

taking finitely many values such that for every x ∈ X and every n ∈ N,

(i) d(Sn(x),M(x)) ≤ 2−n, and

(ii) d(Sn−1(x), Sn(x)) ≤ 2−n+2.

For that, let {rk} be a countable dense set in Y . Define S0(x) = r0 for all
x ∈ X. Let n > 0 and assume that we have constructed Si satisfying (i),
(ii) for all i < n. For each k ∈ N, let

Enk = {x ∈ X : |Sn−1(x)− rk| ≤ 2−n+2, d(rk,Mn(x)) ≤ 2−n}.

Let us prove that for a suitable selection of εn the sets Enk are sets of finite
perimeter in X. Since Sn−1 is in BV (X)m and takes finitely many values,
the set {x ∈ X : |Sn−1(x)−rk| ≤ 2−n+2} is of finite perimeter in X. Observe

{x ∈ X : d(rk,Mn(x)) ≤ 2−n}
= {x ∈ X : ∃x̂ ∈ B(rk, 2

−n) s. t. U(x, x̂) ≤ m(x) + εn}
= {x ∈ X : inf

x̂∈B(rk,2−n)
U(x, x̂)−m(x) ≤ εn}.

Since by Lemma B.7 the functions inf x̂∈B(rk,2−n) U(x, x̂) and m(x) are Lip-
schitz functions of x, by excluding a set of null measure we may select a
sequence εn → 0+ such that all sets Enk are sets of finite perimeter in X.

Let us consider a finite set Rn ⊂ {rk}k, which is a 2−n net in Y , that is,
any point x̂ ∈ Y is at distance at most 2−n from Rn. Let us prove that
X = ∪k:rk∈RnE

n
k . Let x ∈ X. Since, by (i), d(Sn−1(x),M(x)) ≤ 2−n+1,

there exists x̂ ∈ M(x) such that |Sn−1(x) − x̂| ≤ 2−n+1. Let rk ∈ Rn be
such that

|x̂− rk| ≤ 2−n. (B.2)

Then

|Sn−1(x)− rk| ≤ |Sn−1(x)− x̂|+ |x̂− rk| ≤ 2−n+1 + 2−n < 2−n+2. (B.3)

Thus x ∈ Enk .

Then there exist pairwise disjoint sets Dn
k ⊆ Enk such that ∪k:rk∈RnD

n
k =

∪k:rk∈RnE
n
k = X and Dn

k are sets of finite perimeter in X. It suffices to
take Dn

k = Enk \ ∪j<kEnj .
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Let Sn(x) =
∑

k:rk∈Rn rkχD
n
k
(x). Clearly Sn ∈ BV (X)m and takes finitely

many values in Y . By (B.2), we have that d(Sn(x),M(x)) ≤ 2−n. By (B.3),
we have d(Sn−1(x), Sn(x)) ≤ 2−n+2.

Now, by (ii), the sequence Sn converges uniformly to some function S :
X → Y . By (i), S(x) ∈ M(x) for all x ∈ X. Thus S is a uniform limit of
functions in BV (X)m.

Remark 8. Notice that the above proof also shows that given ε > 0 there is
a function Sε ∈ BV (X)m with finitely many values such that U(x, Sε(x)) ≤
m(x) + ε.

Some properties of functions with bounded variation

Let us point out some of the properties of S as a uniform limit of BV (X)m

functions. For a detailed account of the properties of functions of bounded
variation, we refer to Ambrosio et al. (2000).

Let Q be an open subset of RN . Let u ∈ L1
loc(Q). The total variation of u

in Q is defined by

V (u,Q) := sup

{∫
Q
u div σ dx : σ ∈ C∞c (Q;RN ), |σ(x)| ≤ 1 ∀x ∈ Q

}
,

(B.4)
where C∞c (Q;RN ) denotes the vector fields with values in RN which are
infinitely differentiable and have compact support in Q. For a vector v =
(v1, . . . , vN ) ∈ RN we denoted |v|2 :=

∑N
i=1 v

2
i . Following the usual nota-

tion, we will denote V (u,Q) by |Du|(Q).

Let u ∈ L1(Q). We say that u is a function of bounded variation in Q if
V (u,Q) <∞. The vector space of functions of bounded variation in Q will
be denoted by BV (Q). Recall that BV (Q) is a Banach space when endowed
with the norm ‖u‖ :=

∫
Q |u| dx+ |Du|(Q).

A measurable set E ⊆ Q is said to be of finite perimeter in Q if χE ∈
BV (Q). The perimeter of E in Q is defined as P (E,Q) := |DχE |(Q).
Recall that almost all level sets of a bounded variation function are sets of
finite perimeter.

Let us denote by LN and HN−1, respectively, the N -dimensional Lebesgue
measure and the (N − 1)-dimensional Hausdorff measure in RN .
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Let u ∈ [L1
loc(Q)]m (m ≥ 1). We say that u has an approximate limit at

x ∈ Q if there exists ξ ∈ Rm such that

lim
ρ↓0

1

|B(x, ρ)|

∫
B(x,ρ)

|u(y)− ξ|dy = 0. (B.5)

The set of points where this does not hold is called the approximate dis-
continuity set of u, and is denoted by Su. Using Lebesgue’s differentiation
theorem, one can show that the approximate limit ξ exists at LN -a.e. x ∈ Q,
and is equal to u(x): in particular, |Su| = 0. If x ∈ Q \ Su, the vector ξ is
uniquely determined by (B.5) and we denote it by ũ(x).

We say that x ∈ Q is an approximate jump point of u if there exist u+(x) 6=
u−(x) ∈ Rm and |νu(x)| = 1 such that

lim
ρ↓0

1

|B±ρ (x, νu(x))|

∫
B±ρ (x,νu(x))

|u(y)− u±(x)| dy = 0

where B±ρ , νu(x)) = {y ∈ B(x, ρ) : ±〈y − x, νu(x)〉 > 0}. We denote by
Ju the set of approximate jump points of u. If u ∈ BV (Q)m, the set Su is
countablyHN−1 rectifiable, Ju is a Borel subset of Su andHN−1(Su\Ju) = 0
Ambrosio et al. (2000). In particular, we have thatHN−1-a.e. x ∈ Q is either
a point of approximate continuity of ũ, or a jump point with two limits in
the above sense.





Appendix C

Convergence of the alternating
optimization scheme

In this chapter we prove the convergence of the alternating optimization
scheme (Algorithm 2) such a scheme to a critical point of the energy. We
consider the models of patch NL-means and patch NL-Poisson models with
λ = 0.

Let EE,T be one of the energies E2,T or E2,0,T . Similarly, AE,T denotes A2,T

or A2,0,T .

Proposition C.1. The iterated optimization algorithm converges (modulo
a subsequence) to a critical point (u∗, w∗) ∈ AE,T of EE,T . For the energy
E2,T (resp. E2,0,T ) the solution obtained has the smoothness described in

Proposition A.1 (resp. A.4), that is u∗ ∈W 1,∞(O) and w∗ ∈W 1,∞(Õ×Õc)
(resp. u∗ ∈ W 1,2(O) ∩ W 2,p

loc (O) ∩ L∞(O) for any p ∈ [1,∞) and w ∈
W 1,∞(Õ × Õc)).

Proof. Being similar, we give the details only for the case of the patch NL-
Poisson energy.

Step 1. Basic estimates. Let us prove that

κ

N∑
k=0

‖wk+1 − wk‖2 + E2,0,T (uN+1, wN+1) ≤ E2,0,T (u0, w0) (C.1)
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for some κ > 0 and {wk(x, x̂)}k is uniformly bounded in W 1,∞(Õ × Õc).

Let h(u,w;x, x̂) = w(x, x̂)‖pu(x)−pû(x̂)‖2g,∇+Tw(x, x̂) logw(x, x̂). We may

write E2,0,T (u,w) =
∫
Õ

∫
Õc
h(u,w;x, x̂)dx̂dx.

To prove (C.1), let us observe that

h(uk, wk;x, x̂)−h(uk, wk+1;x, x̂)

=
∂h

∂w
(uk, wk+1;x, x̂)(wk(x, x̂)− wk+1(x, x̂))

+
∂2h

∂w2
(uk, w;x, x̂)(wk(x, x̂)− wk+1(x, x̂))2

for an intermediate value w(x, x̂) ∈ [wk(x, x̂), wk+1(x, x̂)]. Since

∂h

∂w
(uk, wk+1) = 0 and

∂2h

∂w2
(uk, w) =

T

w
,

it suffices to prove that the sequence wk is bounded independently of k,
because this implies that also is w. In that case we have

h(uk, wk;x, x̂)− h(uk, wk+1;x, x̂) ≥ κ(wk(x, x̂)− wk+1(x, x̂))2 (C.2)

for some κ > 0.

To prove that wk is bounded independently of k it suffices to observe that

wk(x, x̂) =
1

Z2,0,T (uk−1;x)
exp

(
− 1

T
‖puk−1(x)− pû(x̂)‖2g,∇

)
, (C.3)

where the normalizing factor Z2,0,T (uk−1;x) is given by

Z2,0,T (uk−1;x) =

∫
Õc

exp

(
− 1

T
‖puk−1(x)− pû(x̂)‖2g,∇

)
dx̂. (C.4)

Now, we observe that by Lemma A.5, uk is uniformly bounded in W 1,2(O),
and by Lemma A.6 ‖puk−1(x)−pû(x̂)‖2g,∇ is uniformly bounded. This implies
that there exist b > a > 0 independent of k such that

a ≤ Z2,0,T (uk−1;x) ≤ b.

By the results of Section A this implies that {wk(x, x̂)}k is uniformly bounded
in W 1,∞(Õ × Õc).
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Now, using (C.2) we obtain

κ‖wk − wk+1‖22 ≤ E2,0,T (uk, wk)− E2,0,T (uk, wk+1)

= E2,0,T (uk, wk)− E2,0,T (uk+1, wk+1)

+ E2,0,T (uk+1, wk+1)− E2,0,T (uk, wk+1)

≤ E2,0,T (uk, wk)− E2,0,T (uk+1, wk+1),

since E2,0,T (uk+1, wk+1) − E2,0,T (uk, wk+1) ≤ 0 because uk+1 is given by
(4.2). By adding from k = 0, . . . , N , we get (C.1).

Step 2. Convergence to a critical point of E2,0,T and regularity. By Step 1
we may extract a subsequence kj such that wkj weakly converges to some
w∗ in Lp for all p ∈ [1,∞] and ukj converges to some u∗ ∈ W 1,2(O). By
(C.1) also wkj+1 converges to w∗ in Lp for all p ∈ [1,∞].

The equations satisfied by uk+1, wk+1 are

∆uk+1(z) = div vk+1(z) z ∈ O (C.5)

uk+1(z) = û(z) z ∈ ∂O,

where

vk+1(z) =

∫
Ωp

g(h)

∫
Õc
wk+1(z − h, x̂)∇û(x̂+ h)dydh (C.6)

and wk+1(x, x̂) is given by (C.3) and (C.4) with k replaced by k + 1.

Notice that

vkj (z), vkj+1(z)→ v∗(z) :=

∫
Ωp

g(h)

∫
Õc
w∗(z − h, x̂)∇û(x̂+ h)dydh

as j → ∞. The convergence is also strong, since vk is uniformly bounded.
Then, using (C.5) we have that

‖∇uk −∇uk+1‖22 =

∫
RN

(vk − vk+1)(∇uk −∇uk+1) dz

≤ ‖vk − vk+1‖2‖∇uk −∇uk+1‖2.

Since both uk and uk+1 have the same boundary values, uk−uk+1 converges
to 0 in W 1,2(O). Thus ukj , ukj+1 both converge to u∗ in L2(O). We have

w∗(x, x̂) =
1

Z2,0,T (u∗;x)
exp

(
− 1

T
‖pu∗(x)− pû(x̂)‖2g,∇

)
, (C.7)
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where the normalizing factor Z2,0,T (u∗;x) is given by

Z2,0,T (u∗;x) =

∫
Õc

exp

(
− 1

T
‖pu∗(x)− pû(x̂)‖2g,∇

)
dx̂. (C.8)

Notice that u∗ satisfies the boundary condition in (C.5). Thus (u∗, w∗) ∈
A2,0,T is a critical point of E2,0,T (u,w). Since E2,0,T (u∗, w) is a strictly convex
function of w, then w∗ is a minimum of E2,0,T (u∗, w). Since E2,0,T (u,w∗) is
a strictly convex function of u, then u∗ is a minimum of E2,0,T (u,w∗). By
Remark 3, (u∗, w∗) we have the regularity stated in the statement.



Part II

Gradient-based video editing
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Chapter 9

Introduction

9.1 Problem definition

Digital editing of a captured video footage is becoming more and more com-
mon, mainly due to advances in computer graphics and computer vision
techniques. Video editing tasks vary from basic operations such as trim-
ming, cutting, splitting and resizing video segments to more elaborate ones
such as editing objects’ textures or, more generally, removing and adding
objects in a video segment.

In this work, we consider the following video editing problem. We are given
an image sequence where an object’s surface has been edited in one or
two reference frames, and a certain editing domain. We also require the
knowledge of the motion in the editing domain. The objective is then to
propagate, along motion trajectories, the edited information in the reference
frame (or frames) throughout the editing domain. The resulting editing
needs to be spatially and temporally consistent. This problem arises in
other more complex video editing tasks, such as video inpainting and object
touch-up as in Bhat et al. (2007). In what follows we discuss the concepts
of temporal and spatial consistency.
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Figure 9.1: An example of an input and output of our model. The sequence has
20 frames in total. In the first row the user edits the first and last frames of the
sequence. These are shown by the left most and right most images of the first
row. In the remaining frames, we would like to propagate the edited information
inside the area marked in red (the editing domain). In the second row, we show
the output obtained using the proposed model.

9.2 Previous work

Temporal consistency refers to a smooth transition between successive frames,
coherent with the motion in the sequence. Due to this constraint, the edit-
ing of a video cannot be reduced to a series of independent image editing
problems. The temporal interdependence imposed by the motion in the se-
quence has to be taken into account. Since we desire our propagation to be
temporally consistent, we are led to propagate the given information along
the motion trajectories of the video.

When it comes to modelling the motion of a given sequence, one can dis-
tinguish between parametric and non-parametric models.

Parametric models work under assumptions made on the geometry of the
scene. For example, the background is assumed to be static and piece-
wise planar Zhang et al. (2005); Jia et al. (2006). This model permits the
computation of a closed form mapping between any pair of frames which
can then be used to propagate information from one frame to another.

On the other hand, non-parametric models do not make assumptions on
the geometry of the scene. These models usually estimate the motion in the
sequence by the optical flow. There has been in recent years a considerable
progress in optical flow computation. For example, state-of-the-art optical
flow algorithms are able to deal with some large displacements and allow for
sharp discontinuities in the movement. This is the case for Sun et al. (2010);
Chambolle and Pock (2011); Brox and Malik (2011); Ayvaci et al. (2012)
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to name a few. These methods still suffer from the “aperture” problem:
the component of the motion vector tangent to the image level line cannot
be estimated. In practice, to alleviate this problem a smoothness term is
incorporated. The smoothness term causes a filling-in effect leading to dense
flow fields, even if the aperture problem is present. Since we do not wish to
restrict the scene geometry nor its motion, we will be using non-parametric
models for the motion in the sequence.

Several approaches have been proposed in the literature to address the prob-
lem of propagating information along the optical flow to ensure temporal
consistency. In video inpainting for example, some works inpaint first the
optical flow and then propagate information along the inpainted flow to fill-
in the inpainting domain. An optical flow with subpixel resolution requires
a frame interpolation scheme. As it has been observed by Kokaram et al.
(2005), using a bi-linear interpolation scheme to propagate the information
along the optical flow presents a considerable blur in the results after just
a few frames. In Kokaram et al. (2005), the problem is alleviated by using
a higher order interpolation scheme. However, in Shiratori et al. (2006),
the authors noted that though higher order interpolation schemes behave
better than the bi-linear one, the blur artifact still persists. In this work we
face the same problem. We address it by extending a scheme introduced in
Facciolo et al. (2011) that allows for propagation of information along the
optical flow through a large number of frames maintaining the sharpness of
the result. This scheme gives good results while using bi-linear interpola-
tion. It can also be used, providing similar or better results, with higher
order interpolation schemes at the expense of extra computational costs.

An interesting related approach is followed in Bugeau et al. (2010). They in-
tegrate the optical flow, computing a set of motion trajectories that roughly
covers the editing domain. These trajectories are then used to propagate
the known color information inside the editing domain. For the computa-
tion of these trajectories, the optical flow itself has to be interpolated at
subpixel positions. Since the optical flow is generally smoother than the
frames, the interpolation errors committed are smaller and less noticeable
in the resulting video.

Finally, let us mention the unwrap mosaics approach by Rav-Acha et al.
(2008), which is interesting because it avoids estimating frame-to-frame mo-
tion. Instead, the authors propose to compute a static unwrapped texture,
a sequence of occlusion masks, and a sequence of transformations from the
unwrapped texture to each one of the frames in the video. The editing
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is then performed directly on the unwrapped texture, and the changes are
mapped back into the video sequence using the estimated transformations.
The technique of the unwrap mosaics permits to handle a wide range of
situations including zooms, geometric deformations and occlusions. The
method relies however on a substantial algorithmic machinery including ac-
curate video segmentation, keypoints tracking and nonlinear optimization
for computing the texture and mappings. Also, since the mosaics are fixed,
the illumination changes must be managed in a post-processing step.

The above mentioned works deal with propagating color information assum-
ing that the color remains constant along trajectories. This assumption is
often referred to in the literature as the brightness constancy assumption.
However, due to shadows, reflections and other illumination changes, the
color may change along trajectories. As a consequence the propagation of
color might cause spatial inconsistencies between the editing domain and
its surrounding.

Spatial consistency refers to a seamless integration of the editing with its
spatial surrounding in each frame. In the image editing literature, spatial
consistency is usually addressed using gradient-domain methods. These
have been applied extensively for tasks such as seamless cloning and com-
positing (Pérez et al. (2003); Georgiev (2005)), shadow removal (Finlayson
et al. (2006)), HDR compression (Fattal et al. (2002)), image inpaint-
ing (Arias et al. (2011); Komodakis and Tziritas (2007)), texture synthesis
(Kwatra et al. (2005)), among others. Essentially, gradient-domain image
editing is based on the manipulation of the image gradients instead of its
grey levels. The modified gradients are then integrated to recover the re-
sulting image. Typically, this is achieved by solving a Poisson equation with
suitable boundary conditions. This procedure prevents the appearance of
seams at the boundaries of the edited region. For a more detailed intro-
duction to gradient-domain methods, the reader is referred to Agrawal and
Raskar (2007). Since we want our propagation to be spatially consistent,
we will work in the gradient-domain.

Some authors have already tackled the problem of extending gradient-
domain image editing techniques to video. In Wang et al. (2005), it has
been proposed to apply Poisson editing (Pérez et al. (2003)) directly to
video by considering a video to be a three-dimensional volume and using
the 3D-gradient to perform editing operations. Though this eliminates ar-
tifact such as flickering, it does not take motion into account.

In Bhat et al. (2007), it has been noted that using the 3D gradient leads
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to severe ghosting artifact for videos with camera motion. For this reason,
they use a 3D gradient where the temporal component is given by the con-
vective derivative, i.e. the derivative along motion trajectories. That work
deals with several video editing tasks, from which the most related to our
application is the “object touch-up”. They proceed in two steps: first they
propagate the color information (using Structure from Motion). The result
is temporally consistent in the editing domain, but may have spatial seams.
To remedy this, a second step is performed. Using the spatial gradient
of the propagated information, an energy functional is proposed with two
terms. A term performing a Poisson image editing in each frame imposing
spatial consistency; and, a term filtering along motion trajectories to further
ensure temporal consistency. These two terms are balanced by a positive
parameter. The resulting video is spatially and temporally consistent. This
work has been further elaborated into a full-framework in Bhat et al. (2010)
for image and video filtering.

A similar two step procedure was applied in Facciolo et al. (2011). The
difference with Bhat et al. (2007) is that the first step consisting of propa-
gating colors is done using the convective derivative (instead of using Struc-
ture from Motion). In Facciolo et al. (2011) a numerical scheme is used, the
de-blurring scheme for the convective derivative (DSCD), which makes the
propagation possible through a large number of frames without the blurring
artifacts noted in Shiratori et al. (2006); Kokaram et al. (2005). Then, a
similar two term energy to the one in Bhat et al. (2010) is used to remove
spatial seams in a temporally consistent manner.

In Bhat et al. (2007, 2010) and Facciolo et al. (2011), the model to impose
temporal consistency is based on the brightness constancy assumption. This
makes it hard for the system to handle fast illumination changes along
time. Furthermore, the propagation in Bhat et al. (2007, 2010) and Facciolo
et al. (2011) needs to be divided in two steps: the first one is to obtain a
temporally consistent gradient field, which is then integrated in the second
step to achieve spatial consistency.

9.3 Our contribution

In this work we first discuss a mathematical model for temporal consistency,
by generalizing the brightness-constancy assumption to allow for global ad-
ditive illumination changes. This is achieved by working in the gradient
domain. Based on this generalization, we propose an energy functional that
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can be used to propagate gradient-domain information along motion trajec-
tories. Its minimizers are temporally and spatially consistent, being able to
handle sudden illumination changes. Although it is based on a model for
temporal consistency that considers only global illumination changes, the
variational formulation allows for some spatial variation of the illumination
change.

The proposed formulation is simple, in the sense that it amounts to a
quadratic energy whose minimization is performed by solving a system of
linear equations. In addition to that, the only requirement is the knowledge
of the optical flow (or any other dense estimate of the motion field).

As a use case, we consider the application where a user edits a frame by
changing the texture of an objects’ surface. In this application, we propa-
gate the edited information throughout the rest of a given editing domain.

The proposed energy is motivated in Chapter 10, in a continuous setting.
The discrete energy is presented in Chapter 11, together with the dis-
cretized operators for the spatial gradient and the convective derivative.
The handling of occlusions in the model is also explained in that Section.
In Chapter 12 we present the de-blurring scheme for the convective deriva-
tive (DSCD), introduced in Facciolo et al. (2011). Experimental results on
real sequences and discussions about the method’s limitations are presented
in Chapter 13. Finally, Chapter 14 gives some concluding remarks.



Chapter 10

Deriving the model

In this chapter we discuss some mathematical models for temporal consis-
tency of a video. This helps motivating our energy. Throughout the text
we will use symbols with boldface to indicate vector valued quantities and
matrices. Non-boldface symbols will indicate scalar valued quantities. Let
us note that we will not make that distinction when we discuss examples of
1D videos, and in these cases we will use non-boldface symbols.

10.1 Models for temporal consistency

We consider a spatio-temporal domain Ω × [0, T ], where Ω ⊂ R2 is a rect-
angular domain, and T > 0. In some places in the text, to avoid clut-
tered equations, we will use ΩT as a notational shorthand for the video
domain Ω × [0, T ]. Let u : Ω × [0, T ] → R be a given scalar video and let
v : Ω × [0, T ] → R2 be the corresponding motion field. The value of the
motion field at (x, t) ∈ Ω × [0, T ], v(x, t), represents the velocity of the
projection of a particle in the 3D scene onto the image plane (Horn (1986)).
The trajectory of the particle can be obtained by solving the following ODE:

dx

dt
(t) = v (x(t), t) , (10.1)

where t ∈ [0, T ]. For simplicity we assume in this chapter that the functions
we consider can be differentiated as many times as needed.
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In what follows we review the brightness-constancy assumption, widely used
in the literature to compute the optical flow. Then we discuss a generaliza-
tion of this model to account for spatial global illumination changes. Hence-
forth we refer to this as the Global Brightness Change assumption (GBC).
Our variational formulation will be based on this generalization. Finally
we discuss the differences between the GBC and the gradient-constancy
assumption, also used in the context of optical flow computation.

Brightness-constancy assumption

For a Lambertian object under uniform constant illumination, the brightness
of an object’s particle does not change in time. This implies that u(x, t)
is constant along trajectories, leading to the following brightness-constancy
equation (Horn and Schunck (1981)):

0 =
d

dt
u(x(t), t) = ∇u(x(t), t) · v(x(t), t) +

∂u

∂t
(x(t), t) , (10.2)

where d
dtu is the derivative of u along trajectories x(t) and ∇u refers to the

spatial gradient of u. Let us define the convective derivative as

∂vu(x, t) := ∇u(x, t) · v(x, t) +
∂u

∂t
(x, t) . (10.3)

Notice that the convective derivative permits to express the derivative along
trajectories. We use this notation to shorten our expressions and to make
explicit its connection with the field v.

The brightness constancy assumption has been used extensively for the
computation of optical flow (Weickert et al. (2006); Baker et al. (2011)),
and recently for video interpolation given an optical flow (Kokaram et al.
(2005); Shiratori et al. (2006); Bugeau et al. (2010); Facciolo et al. (2011)).

Global brightness change assumption (GBC)

Under illumination changes, the brightness-constancy assumption does not
hold. In this section we generalize this assumption to account for spatially
constant, additive illumination changes. In that case, if we follow the tra-
jectories of two particles, the difference of their colors remains constant. We
base our model on this basic observation.
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Let us consider two particles that at time t are in positions x0 ∈ Ω and y0 ∈
Ω. We denote their trajectories by ϕ(x0, s) and ϕ(y0, s), with s ∈ [0, T ].
Then for k > 0,

u(ϕ(y0, t+ k), t+ k)− u(ϕ(x0, t+ k), t+ k) = u(y0, t)− u(x0, t) . (10.4)

This is represented by Figure 10.1c. After rearranging terms, dividing by
k, and taking k → 0 we obtain ∂vu(y0, t) = ∂vu(x0, t). Since this holds
for all x0,y0 ∈ Ω, we have that ∂vu(x, t) is a function only of t, i.e.

∂vu(x, t) = g(t) . (10.5)

Here g(t) expresses the global illumination change rate. Thus, (10.5) gen-
eralizes the brightness-constancy model taking into consideration global
changes in illumination.

Taking the spatial gradient on both sides of Eq. (10.5), we get a differential
version of (10.4)

∇∂vu(x, t) = 0 . (10.6)

Our variational model is based on this equation. A Taylor expansion of
(10.6) leads to

u(y0 + kv(y0, t), t+ k)− u(x0 + kv(x0, t), t+ k)

≈ u(y0, t)− u(x0, t) , (10.7)

which is an linearized version of (10.4).

Remark. The GBC can be regarded as a particular case of the Gen-
eralized Dynamic Image Model (GDIM) proposed by Negahdaripour Ne-
gahdaripour (1998), in the context of optical flow computation. GDIM
is a more general model for temporal consistency, accounting for addi-
tive and multiplicative illumination changes, along with their spatial vari-
ations. There, the assumption is that the convective derivative fulfills
∂vu(x, t) = m(x, t)u(x, t) + g(x, t), where m and g are referred to as the
multiplier and offset fields respectively. If we assume a spatially constant
offset field (i.e. a global additive illumination change), and a zero multiplier
field, the model reduces to the GBC model. In the next Section where we
propose an energy based on the GBC model, the restriction of a global illu-
mination change will be somewhat relaxed allowing some spatial variation
on the illumination change rate.
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Comparison with the gradient-constancy assumption

It is interesting to compare our assumption with the related assumption
where

u(ϕ(x0, t+ k) + h, t+ k)− u(ϕ(x0, t+ k), t+ k)

= u(x0 + h, t)− u(x0, t) .

Note that in this model y0 = x0 + h is mapped to the next frame using
the mapping of x0 and not its own. In this case, the underlying differential
equation is

∂v∇u(x, t) = 0 , (10.8)

which in the literature is referred to as the gradient-constancy assumption
Uras et al. (1988); Weickert et al. (2006); Papenberg et al. (2006). Clearly,
in a captured video sequence the gradient needs not to remain constant
along trajectories, except for the particular case in which the motion field
v(·, t) is constant (corresponding to a translational movement).

For the purpose of optical flow computation, as discussed in Uras et al.
(1988), even when the movement is not translational the gradient-constancy
assumption is a good approximation, since the change in the gradient along
trajectories between two consecutive frames is minor. However, in our ap-
plication where we propagate information along a large number of frames,
small changes in the gradient accumulate along a trajectory becoming sig-
nificant. Figure 10.1 illustrates the three discussed models and shows their
differences.

10.2 Proposed energy in the continuous setting

In this section we present a continuous variational model for video editing
imposing (10.6). We then derive the natural boundary conditions of the
model, and we present two application scenarios differing on the choice of
the boundary conditions.

Throughout this section we consider a continuous scalar video u0 : Ω ×
[0, T ]→ R, and an editing domain O ⊂ Ω× [0, T ] with a Lipschitz boundary
Adams (1975) (to simplify, we can consider that O has a smooth bound-
ary). As in the previous section, we will sometimes use ΩT as a notational
shorthand for the video domain Ω× [0, T ]. We denote temporal “slices” of
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(a) (b)

(c)

Figure 10.1: An illustration of the different models for temporal consistency. Ωt
and Ωt+1 refer to temporal “slices” of Ω at time t and t+ 1 respectively. (a) Shows
the brightness constancy assumption. A point and its projection by the optical flow
maintain the same color. (b) Illustrates the gradient constancy assumption. Here
c1 = u(x0+h, t)−u(x0, t) and c2 = u(x0+h+v(x0, t), t+1)−u(x0+v(x0, t), t+1)
and it is assumed that c2− c1 = 0. (c) Depicts the global brightness change model.
Here c2 = u(x0 +h+ v(x0 +h, t), t+ 1)− u(x0 + v(x0, t), t+ 1) and it is assumed
that c2 − c1 = 0. This model differs from the gradient-constancy assumption by
projecting x0 + h to the next frame using its own optical flow and not the one of
x0.

O by Ot = {x ∈ Ω : (x, t) ∈ O}. Similarly, temporal slices of Ω× [0, T ] are
denoted by Ωt : t ∈ [0, T ] representing the frames of the continuous video.
An illustration of these domains can be seen in Figure 10.2.

The proposed energy imposes the global brightness change model by penal-
izing deviations from condition (10.6):

E(u) =

∫ T

0

∫
Ot

‖∇∂vu(x, t)‖2 dxdt . (10.9)

While Eq. (10.6) implies a spatially constant illumination change, the vari-
ational model allows some spatial variation on ∂vu. This is a useful feature
in practical applications since it accounts for localized light sources, shad-
ows and reflections, as long as they manifest at the boundary of the editing
domain.
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Figure 10.2: Illustration of an editing domain O inside of the video domain
Ω× [0, T ]. Ot and Ωt are temporal slices at time t of O and Ω× [0, T ] respectively.
To simplify the figure we do not show all complexities that a general editing domain
may have (see Fig.10.3).

In the energy of Eq. (10.9) the motion field v is assumed to be known,
therefore we only work with editing tasks that do not modify the motion
field of the original video. Such tasks consist typically in changing the
texture or the appearance of an object’s surface visible in the sequence. The
editing domain O should contain the spatio-temporal volume described by
the surface to be edited. The energy (10.9) could also be applied to other
video editing tasks, such as video inpainting. In that case, the motion field
needs to be inpainted first (Kokaram et al. (2005); Shiratori et al. (2006)).

Since this is a gradient-based energy, the choice of the boundary conditions
plays an essential role in the application of the model. Before presenting
them, let us discuss the types of video editing applications we tackle using
(10.9). We consider two application settings.

In the first one, the user provides a first frame Ω0, edited with some image
editing tool (automatically or with some user intervention). Minimizing
(10.9) with the edited first frame set as a Dirichlet boundary condition on
u, propagates the edited information to the rest of the sequence. We call
this the one-lid setting where the lid refers to the first frame Ω0, containing
the information to be propagated. The other temporal end of the video
at t = T is left free. Note that one could edit the last frame ΩT and set
it as Dirichlet boundary condition, while leaving the first frame Ω0 free.
Henceforth, when we refer to the one-lid setting we always consider Ω0 to
be the lid.

For the second setting, both the first and last frames are edited and provided
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by the user. Both of them are set as Dirichlet boundary conditions. We
refer to this as the two-lid setting. In this case, minimizing (10.9) yields an
interpolation along trajectories between both lids. If the editing on both lids
is not consistent with the surface’s motion in the sequence, the solution will
present a temporal blending between the lids. The two-lid setting allows to
treat cases in which the modified surface is occluded and then dis-occluded
by another object in the sequence.

For both the one-lid and the two-lid settings, we assume that any point of
the spatio-temporal volume described by the edited surface is reachable by
at least one trajectory originating from a lid (see Figure 10.3).

We assume that the editing domain O is given. In a practical editing ap-
plication, an editing domain can be computed by tracking the portion of
the surface that the user wants to edit. An accurate subpixel tracking of
the edited surface in a general situation is a problem in itself. However,
many available tracking algorithms provide a good approximate tracking
Yilmaz et al. (2006). Thus we consider a general editing domain O without
requiring it to be a precise tracking of the actually edited surface (as long as
this surface is contained in O). As a consequence, some parts of the editing
domain may not belong to the edited surface. In these places, the original
video should be restored. This is shown in Figure 10.3. The trajectory of
the edited surface is shown in green. The gray regions of O are not intended
to be modified.

10.3 Boundary conditions

Let us first introduce some notation. Let us denote by ∂O the boundary of
O. Let ∂Ot denote the boundary of the slice Ot, t ∈ [0, T ]. Let us denote
by νO = (νOx , ν

O
t ) ∈ R3 the outer unit normal to ∂O (a vector in the unit

sphere of R3) and let νOt be the outer unit normal to ∂Ot (a vector in the
unit circle of R2). Notice that the normal νO exists at any point if ∂O is
smooth, and at almost any point with respect to the Hausdorff (surface)
measure H2 on ∂O if we assume ∂O to be Lipschitz Ambrosio et al. (2000);
Adams (1975).

Let us introduce the following decomposition of the boundary of O. We
consider the lateral boundary of O as the set

∂Olat := {(x, t) ∈ ∂O : t ∈ (0, T )}.
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(a) One-lid problem. (b) Two-lid problem.

Figure 10.3: Domains and Dirichlet boundary conditions for a one-lid (a), and
a two-lid problem (b) on a video with one spatial dimension. Trajectories of the
edited object are marked in green (middle area). Note that (b) exhibits an occlusion
and dis-occlusion of the edited object.

It corresponds to excluding the temporal ends of O, that is O0 and OT ,
from ∂O. The lateral boundary of O can be further classified into three
parts. First, the tangential boundary, given by

∂Otang = {(x, t) ∈ ∂O : νOt + v · νOx = 0},

which corresponds to the segments of ∂O that are tangential to the motion
trajectories. In the example of Fig. 10.3a the tangential boundary is the
dashed part of ∂O. Second, the vertical boundary, ∂Overt, consisting of the
segments of the lateral boundary parallel to Ω0, i.e.

∂Overt := {(x, t) ∈ ∂Olat : |νO(x, t) · et| = 1},

where et = (0, 0, 1). It is formed by the vertical walls of the boundary except
the initial and final slices O0 and OT , respectively. This is shown by the
black vertical segments in Fig. 10.3a. Third, the oblique boundary, denoted
by ∂Oobli, is the remaining non-tangential and non-vertical boundary (gray
segments of ∂O in Fig. 10.3a). That is

∂Oobli := ∂Olat \ (∂Otang ∪ ∂Overt).

Both Overt and Oobli are non-tangential. However, they have to be distin-
guished because they admit different boundary conditions, as will be seen
below.

Let us mention that a more detailed study of boundary conditions will be
given in Appendix E. For the moment we introduce and motivate them
based on more intuitive arguments.
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In what follows we use u0 to denote the original image sequence where the
editing on the lid(s) has been performed.

Boundary conditions for the one-lid setting

We impose the following boundary conditions for (x, t) ∈ (O0×{0})∪∂Olat,
excluding the points (x, t) of the lateral boundary with x ∈ ∂Ω:

u(x, 0) = u0(x, 0), x ∈ O0 (10.10)

u(x, t) = u0(x, t), (x, t) ∈ ∂Overt, (10.11)

∂vu(x, t) = g0(x, t), (x, t) ∈ ∂Otang \ ∂ΩT , (10.12)

u(x, t) = u0(x, t)
∂vu(x, t) = g0(x, t)

, (x, t) ∈ ∂Oobli \ ∂ΩT , (10.13)

where g0 is a given video. We have used the shorthand ΩT = Ω× [0, T ].

Eqs. (10.10) and (10.11) correspond to the boundary conditions on vertical
segments of the boundary. Note that they could be merged together into a
single condition as

u(x, t) = u0(x, t), t ∈ [0, T ), |νO(x, t) · et| = 1.

We write them separately to highlight the Dirichlet boundary condition that
fixes the first lid containing the editing provided by the user.

On the lateral boundary, there are boundary conditions on u and on its con-
vective derivative ∂vu. The latter specifies the rate of illumination change
at ∂O. The illumination change rate in the interior of O corresponds to
a smooth spatial interpolation of g0 given at the boundary. In a typical
editing application we set g0 = ∂vu0. In this way we impose in the editing
domain the ambient illumination change of the original sequence.

The boundary conditions on u apply only when trajectories cross the bound-
ary, leaving or entering O. Note that if O corresponds to a precise tracking
of the edited surface (the green domain in Fig. 10.3a), trajectories will only
cross the boundary at the temporal ends, O0 and OT . Therefore, all the
lateral boundary will be tangential and only Eq. (10.12) will apply, specify-
ing the illumination change rate. In this case, the only Dirichlet boundary
conditions on u are the ones at the lid. The solution is then obtained by
propagating (interpolating) the data at O0 (O0 and OT ) along trajectories,
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while accommodating for the illumination changes specified at the bound-
ary.

In a more general case, we do not require O to be a precise tracking of the
surface to be edited, as long as it contains the surface. In such cases, other
trajectories, not belonging to the target surface, are included in O, and may
leave or enter the domain through non-tangential segments of the boundary
(either at the temporal ends O0, OT or through the lateral boundary). The
Dirichlet boundary conditions of Eqs. (10.11) and (10.13) apply in these
cases.

Note that in the previous boundary conditions, none was specified on ∂Ω,
apart from the lids. These will be specified later when we derive the Euler-
Lagrange equation in Section 10.4.

Remark. Notice that the vertical and oblique parts of the boundary admit
different boundary conditions, although both of them are non-tangential.
The rigorous derivation of possible boundary conditions in the different
parts of the boundary will be given in Appendix E. But some intuition on
the reasons can be gained by looking at the cases in which the minima
are attained with zero energy. This happens only for some choices of the
boundary conditions, referred to as compatible boundary conditions. In such
cases u comes as the solution of the PDE

∇∂vu(x, t) = 0.

To solve this PDE, we proceed in two steps. In the first step we integrate
spatially the equation, to get ∂vu(x, t) = g(t). This integration is indepen-
dent for each temporal slice. It requires the value of g(t) to be specified at
the spatial boundary ∂Ot of the slice Ot. Note that, modulo sets of zero
surface measure,

⋃
t∈[0,T ] ∂Ot = ∂Otang ∪ ∂Oobli. This justifies why g has to

be specified at ∂Otang ∪ ∂Oobli, but not on ∂Overt. In the second step, we
integrate ∂vu(x, t) = g(t) along optical flow trajectories. To perform this
integration we need the value of u whenever a trajectory crosses the editing
domain, i.e. on the non-tangential components of ∂O. As an illustration,
in Appendix F we provide two analytical examples for non-zero energy so-
lutions, showing how the solution can be computed from these boundary
conditions.
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Boundary conditions for the two-lid setting

Here, in addition to the boundary conditions of the one-lid case, the frame
OT is specified as a Dirichlet boundary condition:

u(x, T ) = u0(x, T ), x ∈ OT . (10.14)

This setting is relevant to handle, for example, the case in which part of the
editing domain is occluded and then dis-occluded (see example in Figure
10.3b).

Remark. As proved in Sadek et al. (2012), the boundary conditions
(10.10), (10.11), (10.12) and (10.13) permit to prove that there is a unique
minimizer of the energy. At an intuitive level, one can say that

1. Each trajectory needs to have at least one Dirichlet boundary condi-
tion on u.

2. At each temporal slice we need that a Dirichlet condition on ∂vu is
specified on a set of positive length of the boundary of Ot.

Analogous conditions are needed in the discrete case.

As a consequence, the model cannot handle cases in which a point is dis-
occluded and occluded again, since its corresponding trajectory will not
reach a Dirichlet boundary condition on the boundary of O. To solve this,
one could partition the problem into several smaller ones fulfilling conditions
1 and 2. An example of this is given later in Section 13, Figure 13.11.

10.4 Euler-Lagrange equation

The Euler-Lagrange equation of energy (10.9) is given by the following
fourth order PDE

∂∗vdiv∇∂vu(x, t) = 0, (x, t) ∈ O, (10.15)

where div is the spatial divergence adjoint to −∇ and ∂∗v denotes the adjoint
operator of the convective derivative, given by ∂∗vf = −∂f

∂t − div(vf).
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For the one-lid setting, in addition to the Dirichlet boundary condition
discussed above, the following Neumann type boundary conditions apply
on ∂O ∩ ∂ΩT :

div∇∂vu(x, t) = 0, t = T, (10.16)

∇∂vu(x, t) · νOt(x, t) = 0, (x, t) ∈ ∂Otang ∩ ∂ΩT , (10.17)

∇∂vu(x, t) · νOt(x, t) = 0
div∇∂vu(x, t) = 0

, (x, t) ∈ ∂Oobli ∩ ∂ΩT . (10.18)

In the two-lid setting, condition (10.16) does not apply, since OT has a
Dirichlet boundary condition on u.

We refer the reader to Appendix E for a derivation of the Euler-Lagrange
equation and its boundary conditions.
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Discrete model

In this chapter we derive our discrete energy as a discretization of (10.9).
We start by deriving a discrete version of operator ∇∂v.

11.1 Discretization of operator ∇∂v

For simplicity we consider now that Ω ⊂ R, i.e. u is a one dimensional
video; the resulting discretization can be easily extended to higher spatial
dimensions (see Section 11.3). We consider a discrete video obtained by
regularly sampling the continuous one with a spatial step h and a temporal
step k. Let us approximate operator (10.6) at (x0, t0).

Using a forward difference scheme for the spatial derivative, we have

∂

∂x
∂vu(x0, t0) ≈ 1

h
[∂vu(x0 + h, t0)− ∂vu(x0, t0)] .

The convective derivatives can be approximated with a forward difference
scheme as well:

∂vu(x0 + h, t0) ≈ 1

k
[u(ϕ(x0 + h, t0 + k), t0 + k)− u(x0 + h, t0)],

where in the last term we used that ϕ(x, t0) = x. Similarly we have that

∂vu(x0, t0) ≈ 1

k
[u(ϕ(x0, t0 + k), t0 + k)− u(x0, t0)].

155
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Figure 11.1: Illustration of the proposed discrete operator. The operator com-
putes the difference between two points on a grid and their projection onto the next
frame by the optical flow. In the figure, the operator computes d1 − p1 , d2 − p2,
etc. . . Our energy is based on this operator, imposing the squared L2 norm of these
differences to be constant along the video.

The value of ϕ(x, t+ k) can be approximated as follows:

ϕ(x, t0 + k) ≈ x+ kv(x, t0) .

For subpixel motions, x+kv(x, t0) will fall outside of the sampling grid, and
u(x + kv(x, t0), t0 + k) has to be interpolated from the available samples.
We will denote by û(x + kv(x, t0), t0) the interpolated value. When using
bi-linear interpolation, this results in an upwind scheme with an adaptive
stencil for the convective derivative, as the one in Zhou et al. (1998).

Putting everything together, we have the following operator

∂

∂x
∂vu(x0, t0) ≈

1

kh
[û(x0 + h+ kv(x0 + h, t0), t0 + k)− u(x0 + h, t0)]−

1

kh
[û(x0 + kvf(x0, t0), t0 + k)− u(x0, t0)] . (11.1)

Figure 11.1 illustrates the discrete operator (11.1).

11.2 The discrete energy

In this section we propose our variational model in the discrete setting. Let
us first define the following notation. We now consider u to be a scalar
discrete video defined as a function u : Ω × {0, 1, · · · , T} → R. Here
Ω × {0, 1, · · · , T} is the discrete spatio-temporal domain, and Ω ⊂ Z2 is
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a rectangular discrete domain (the spatial domain of each frame). As in
the continuous setting, we will use ΩT as a notational shorthand for the
video domain Ω × {0, 1, . . . , T}, to avoid cluttered equations at some loca-
tions in the text. Let us also denote by O ⊂ Ω × {0, 1, · · · , T} the editing
domain. Notice that we are using the same notations both for continuous
and discrete domains. Each case will be clear from the context.

For a discrete video we use the optical flow computed on the original video
u0, as a computable approximation of the motion field. The forward optical
flow vf : Ω×{0, 1, · · · , T} → R2 establishes a correspondence between (x, t)
and (x + vf (x, t), t + k). Similarly, we define the backward optical flow as
the vector field vb : Ω× {0, 1, · · · , T} → R2. At frame t, vb(·, t) establishes
a correspondence with frame at time t− k.

We consider the discrete energy:

Eκ(u) =
∑

(x,t)∈Õ

‖κ(x, t)∇∂vu(x, t)‖2. (11.2)

The discrete gradient ∇ and convective derivative ∂v are presented in Sec-
tion 11.3. κ : Ω×{0, 1, · · · , T} → {0, 1}2×2 is an occlusion tensor which will
be defined in Section 11.4. The domain Õ ⊆ Ω× {0, 1, · · · , T} is defined as
the set of video pixels whose ∇∂v stencil intersects O. Our implementation
of the boundary conditions specified in Section 10.2 is based on this domain,
together with the operators presented next.

11.3 Definition of the operators

In what follows we define the spatial gradient and the convective derivative
operators as a generalization to two spatial dimensions of the discretizations
presented in Section 11.1, considering k = h = 1.

Our definition of the operators will integrate the different boundary condi-
tions discussed in Section 10.2. We define the operators over Ω×{0, 1, · · · , T}.
In doing so, the Dirichlet boundary conditions on ∂O are straightforwardly
implemented by assuming that u = u0 in Õ \ O. That is, if some of the
values needed by the operators fall in Õ \ O, the values of u0 are used.
The Neumann type boundary conditions on ∂Ω will be incorporated in the
definitions of the operators.

Throughout this section we will use a running example to illustrate the
definitions of the operators. Figure 11.2 shows a discrete sequence with
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Figure 11.2: Graphical representation of the discrete operators for a 1D video
sequence. The circles represent pixels of the video. Each arrow originating from
a circle at (x, t) represents the forward optical flow vf (x, t). The square attached
to the optical flow vf (x, t) represents the forward convective derivative ∂fv u(x, t),
computed as the difference between the values at both ends of the arrow, that is
û(x+ vf (x, t), t+ 1)− u(x, t). The spatial gradient of the convective derivative at
(x, t), ∇f∂fv u(x, t), is represented by the triangle connecting the squares that rep-
resent ∂fv u(x+1, t) and ∂fv u(x, t). See text for more details. Note that the domains
of ∂fv u and ∇f∂fv u are the same as the video domain, namely Ω × {0, 1, . . . , T}.
Let us stress that the squares and triangles are just a graphical representation of
the operators. The fact that they are drawn at subpixel positions does not imply
that the operators are defined on a subpixel grid.

one spatial dimension: Ω× {0, 1, . . . , T} = {0, 1, . . . , 5} × {0, 1, . . . , 5}. The
circles represent the pixels in the video. Pixels in the editing domain O are
depicted in white, whereas the black pixels correspond to Õ \ O. The rest
of the pixels in Ω that are not involved in the energy are shown as gray
circles. There is a forward optical flow vf (x, t) at each pixel, represented
by the vector (vf (x, t), 1) ∈ R2.

Convective derivative operator

Let us introduce some useful notation before presenting the definition. For
each video pixel (x, t) we define its forward interpolation neighborhood
Nf (x, t) as the set containing the grid positions surrounding (x+vf (x, t), t+
1). Analogously, N b(x, t) contains those surrounding (x + vb(x, t), t − 1).
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The values at these pixels are used to bi-linearly interpolate the subpixel
values at (x± vf/b(x, t), t± 1).

Note that, depending on the flow vector, it might happen that for a pixel
(x, t), the forward interpolation neighborhood Nf (x, t) falls partly (or com-
pletely) ouside Ωt+1 (pixels with a gray arrow in Figure 11.2). We will dis-
tinguish the set of pixels which have their full interpolation neighborhood
Nf (x, t) in Ωt+1 by defining the set Sft = {x ∈ Ωt : Nf (x, t) ⊂ Ωt+1}.
Analogously, for the backward optical flow, we define the set Sbt = {x ∈
Ωt : N b(x, t) ⊂ Ωt−1}.

The discrete forward convective derivative using the forward optical flow is
then defined at a point (x, t) ∈ Ω× {0, 1, . . . , T} as follows

∂fvu(x, t)=

{
û
(
x+ vf (x, t), t+ 1

)
− u(x, t), x ∈ Sft ,

0, x 6∈ Sft ,
(11.3)

where û(x + vf (x, t), t + 1) is the bi-linear interpolation of u( · , t + 1) at
x + vf (x, t). We will call equation (11.3) as the vf -scheme. Let us also
define the vb-scheme using the backward optical flow:

∂bvu(x, t)=

{
u(x, t)− û

(
x+ vb(x, t), t− 1

)
, x ∈ Sbt ,

0, x 6∈ Sbt ,
(11.4)

Note that when the interpolation neighborhood is not completely inside
Ω, the convective derivative is zero. This amounts to a Neumann bound-
ary condition on ∂Ω, and as will be discussed in Section 11.5, it causes a
boundary condition of the type div∇∂vu(x, t) = 0 on the Euler-Lagrange
equation (at certain parts of ∂Ω).

In the example of the Figure 11.2, each convective derivative ∂fv u(x, t) is
represented by a square node attached to the optical flow vector (vf (x, t), 1).
It computes the difference between the values of u at both ends of the arrow,
the value at the tip being given by the bi-linear interpolation (linear in this
one-dimensional example). The black squares represent known convective
derivatives (their stencil is contained in Õ \ O). These act as Dirichlet
boundary condition setting the value of ∂vu. Gray squares represent the
convective derivatives of pixels x 6∈ Sft which are set to zero in the definition.
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Adjoint of the convective derivative

To define the adjoint of the convective derivative operator, let us first in-
troduce the following expression for the bi-linear interpolation:

û(x+ vf (x, t), t+ 1) =
∑

y∈Nf (x,t)

wf (x,y)u(y, t+ 1),

where wf (x,y) are the bi-linear weights for x + vf (x, t). Note that this
expression is not limited to the bi-linear interpolation. Any other linear
interpolation scheme, e.g. bi-cubic interpolation, fits this model with a
suitable definition of the interpolation neighborhood and weights.

The adjoint of the forward convective derivative is then given by

∂fv
∗
g(x, t) = 1

Sft
(x)g(x, t)−∑

y:x∈Nf (y,t−1)

1
Sft−1

(y)wf (x,y)g(y, t− 1) , (11.5)

where for any set A ⊂ Ω, 1A(x) is the indicator function of A, returning
the value 1 if x ∈ A, and 0 otherwise.

Using the graphical representation of the operators in Figure 11.2, the con-
vective derivative operator can be thought of as acting on a video (repre-
sented by the round nodes) and returning a function represented by the

square nodes. Conversely, its adjoint operator, ∂fv
∗
, acts on functions g rep-

resented by the square nodes, and returns a function on the round nodes.
Its value at a node (x, t) can be thought of as the net outgoing flow through
the node. The outgoing flow is given by g(x, t), whereas the incoming flow is
given by the summation in (11.5), computed taking into account the values
of g at the previous frame, on the pixels whose convective derivative stencil
includes (x, t). This is illustrated in Figure 11.2: the blue squares depict

the values of g needed to compute ∂fv
∗
g(3, 3), the round node in blue.

Spatial gradient operator

Since the gradient operates on convective derivatives, we will define two
gradient operators, ∇f ,∇b : RΩT → R2×ΩT in correspondence with the
vf and vb-schemes for the convective derivative (recall that ΩT = Ω ×
{0, 1, . . . , T}). Both gradients are implemented using a forward difference
scheme (spatially).
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Let us consider first the gradient for the vf -scheme. Some care must be
taken with its definition. The spatial partial derivative in the direction
e1 = (1, 0) of the convective derivative ∂fvu is given at a point (x, t) by

[∇f∂fvu(x, t)]1 = ∂fvu(x+e1, t)−∂fvu(x, t). Thus, two convective derivatives

are needed, ∂fvu(x, t) and ∂fvu(x+e1, t). Therefore we will require that both

x and x+ e1 lie in Sft . This motivates the definition of the following sets

S̃fe1,t
= {x ∈ Sft : x+ e1 ∈ Sft }, (11.6)

S̃fe2,t
= {x ∈ Sft : x+ e2 ∈ Sft }, (11.7)

where e2 = (0, 1).

For an arbitrary video q : Ω × {0, 1, . . . , T} → R, the ith component of its
spatial gradient ∇fq is then defined at a point (x, t) ∈ Ω× {0, 1, . . . , T} as

[∇fq(x, t)]i =

{
q(x+ ei, t)− q(x, t), x ∈ S̃fei,t,
0, otherwise,

(11.8)

for i = 1, 2. This definition of the gradient implements a boundary condition
of Neumann type at the spatial boundary of Sft .

The adjoint operator is given by the negative spatial divergence imple-
mented with backward spatial differenteces. For a vector-valued video
g ∈ R2×ΩT , we will define the spatial divergence by

divfg(x, t) = 1
S̃fe1,t

(x)g(x, t)1

− 1
S̃fe1,t

(x− e1)g(x− e1, t)1

+ 1
S̃fe2,t

(x)g(x, t)2

− 1
S̃fe2,t

(x− e2)g(x− e2, t)2.

Analogously, we define a spatial gradient operator for the vb-scheme, ∇b,
with its corresponding definition domains S̃be1,t and S̃be2,t. ∇

b is implemented
with a forward difference scheme as in Eq. (11.8). The difference between

∇f and ∇b lies only in their definition domains, S̃fei,t and S̃bei,t .

In the example of Figure 11.2, the spatial gradient reduces to a forward spa-
tial derivative. It acts on convective derivatives (or functions represented by
the square nodes attached to the optical flow vectors) and returns a function
represented by the triangular nodes on the spatial edges between convective
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derivatives. Each triangle in Figure (11.2) represents a value of ∇f∂fv u, and
therefore a term in the energy. The gray triangles correspond to the spatial
gradients that are set to zero in the definition of the operator. They can
not be computed since they require a convective derivative not in Sft . The

white triangles depict the set S̃fx,t. Conversely the spatial divergence can
be thought of as acting on the triangular nodes, and returning a function
represented by the squares.

11.4 Treatment of occluded pixels

Most optical flow algorithms assign for all pixels an optical flow vector,
even if they are occluded in the adjacent frame. These “false correspon-
dences” can be detrimental to the performance of the method, and have to
be removed from the energy.

Occlusions are intrinsic to the problem of the optical flow computation. In
fact, some optical flow algorithms detect occlusions as part of the estima-
tion of the movement (Alvarez et al. (2007); Ayvaci et al. (2012)). Such
algorithms output an occlusion mask together with the optical flow. Many
optical flow algorithms however, do not provide occlusion masks. To be
able to work with such optical flows, we describe in Appendix D a simple
method to detect occlusions. Other occlusion detection methods could be
used instead.

In the following we assume that occluded pixels have been detected, either
as part of the optical flow algorithm or by a post-processing detection step.
We denote by Kf

t ,K
b
t ⊂ Ωt the sets of forward and backward occluded

pixels.

Let us consider the forward displacement from frame t to frame t+ 1. At a
pixel x ∈ Kf

t , the forward optical flow establishes a correspondence between
x, visible at t, and x+vf (x, t) which is not visible at t+ 1. The convective
derivative associated to this correspondence needs to be removed from our
energy. We achieve this by setting to zero any spatial partial derivative
involving ∂fvu(x, t). To that aim, we introduce a forward occlusion tensor
κf : Ω× {0, 1, . . . , T} → {0, 1}2×2 as the following diagonal matrix

κf (x, t) =

[
κfe1(x, t) 0

0 κfe2(x, t)

]
.
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Figure 11.3: Effect of the occlusion tensor. The image on the left shows an
output without using the occlusion tensor. On the right, the output at the same
frame with occlusion handling.

When applying κf (x, t) to ∇f∂fvu(x, t), κfe1 : Ω × {0, 1, . . . , T} → {0, 1}
acts on the spatial partial derivatives in the e1 = (1, 0) direction, whereas

κfe2 : Ω × {0, 1, . . . , T} → {0, 1} applies to the partial derivative in the
direction e2 = (0, 1).

Given Kf
t we define κfe1 as

κfe1
(x, t) =

{
0 if x ∈ Kf

t or x+ e1 ∈ Kf
t ,

1 otherwise.
(11.9)

A similar definition is given to κfe2 and the same applies for the backward
occlusion tensor κb.

Figure 11.3 gives and example of a result obtained with and without the
occlusion tensor.

Remark. The removal of the convective derivatives associated to occluded
pixels could be equally achieved by modifying the sets Sft and Sbt , without

introducing the occlusion tensors κf/b. Recall that Sft refers to the domain

of the convective derivative. In Section 11 a pixel (x, t) is excluded from Sft
whenever its forward mapping falls out of the frame domain. This situation
can indeed be regarded as an occlusion: (x+ vf (x, t), t + 1) is not visible.

Thus, the same treatment could be given for the pixels in K
f/b
t . In doing

so, the treatment of occluded pixels becomes implicit in the definition of

the operators ∂
f/b
v and ∇f/b. For the sake of clarity, we use the occlusion

tensors making the occlusion handling explicit in the energy (12.5).
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11.5 The discrete Euler-Lagrange equation

Energy (11.2) is quadratic, thus the Euler-Lagrange equation is given by
the following linear system:

∂∗vdiv(κ(x, t)∇∂vu(x, t)) = 0, (x, t) ∈ O, (11.10)

with the boundary conditions specified above (and writing u = u0 at Õ\O).
We solve this equation using the conjugate gradient method.

Let us briefly discuss the stencil that implements the Euler-Lagrange equa-
tion and its boundary conditions. For simplicity, we base this discussion on
the one dimensional sequence of Figure 11.4, and we assume that there are
no occlusions, that is κ(x, t) = 1 for all (x, t) ∈ Ω. Figure 11.4 shows the
stencil of the Euler-Lagrange equation at (x = 3, t = 3), the pixel shown
in blue. Determining ∂∗vdiv∇∂vu(x, t), requires the values of div∇∂vu at
the four blue squares. For computing these spatial divergences, ∇∂vu is
needed at the triangular nodes highlighted in blue. Now, these require the
convective derivative to be computed at the red square nodes, resulting the
stencil shown by the red circles (in addition to the original (x, t)).

If at any of these steps, one of the required quantities falls out of Ω, it is
assumed to be zero. Depending on the optical flow, this amounts to setting
to zero either (a) div∇∂vu and ∇∂vu, or (b) only ∇∂vu, or (c) only div∇∂vu.
This comes as a consequence of the definition of the adjoint operators ∂∗v
and div.
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Figure 11.4: Example of the stencil of the Euler-Lagrange equation at at (x =
3, t = 3), the pixel shown in blue. To compute ∂∗vdiv∇∂vu(x, t), the values of
div∇∂vu at the four blue squares are used. These spatial divergences require ∇∂vu
at the triangular nodes highlighted in blue. These require the convective derivative
to be computed at the red square nodes, resulting the stencil shown by the red
circles (in addition to the original (x, t)).





Chapter 12

A deblurring scheme for the
convective derivative

In Chapter 11, we presented two different schemes for the discretization of
the convective derivative, namely the vf - and vb-schemes. In the present
section we comment on the behaviour of these schemes. This discussion
will lead us to the derivation of a hybrid scheme that exploits the intrinsic
properties of the vf - and vb-schemes. The resulting hybrid scheme allows
to handle a much larger number of frames. This scheme is based on the
work presented in Facciolo et al. (2011).

12.1 A motivating example

For the sake of this discussion, we consider minimizing (11.2) with κ(x, t) =
I for all (x, t) ∈ Õ (i.e. no occlusions):

E(u) =
∑

(x,t)∈Õ

‖∇∂vu(x, t)‖2.

In a general case, the minimum energy may be non-zero due to incompat-
ible boundary conditions. Let us assume that the boundary conditions are
compatible and let u be a minimizer of E with zero energy, i.e. E(u) = 0.

167
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In this case, we have that

∂vu(x, t) = g(t), ∀(x, t) ∈ Õ , (12.1)

u(x, t) = u0(x, t), ∀(x, t) ∈ Õ \O ,

where g(t) is the constant illumination change rate at frame t obtained
from the boundary conditions. Additionally, we will assume that there is
no illumination change and therefore g(t) = 0 for all t.

Let us now consider a concrete example of a one-lid problem where we fix
the first frame t = 0 and set it as a Dirichlet boundary condition. In this
case Eq. (12.1) can be solved by propagating forward the information at the
lid sequentially from one frame to the next. In this context the vb-scheme
is an explicit scheme, whereas the vf -scheme is implicit. To see this, let
us consider that the problem is one-dimensional with constant optical flow
vf (x, t) = v0 ∈ (0, 1), and correspondingly vb(x, t) = −v0.

Let us discuss the effect of using the vb-scheme for solving (12.1). In this
case, the following recursive relation between two adjacent frames holds for
0 ≤ t < T , x ∈ O:

u(x, t+ 1)− û(x− v0, t) =

u(x, t)− [v0u(x− 1, t) + (1− v0)u(x, t)] = 0. (12.2)

Thus, the values of u(·, t + 1) are explicitly determined by applying the
averaging operator with coefficients [1 − v0, v0] to frame u(·, t). Denoting
this operator as M b, we can describe this relation as: u(·, t+1) = M bu(·, t).
It is interesting to look at the frequency response of the averaging filter M b,
given by

M b(ω) = (1− v0) + v0e
iω.

This frequency response is shown in Fig. 12.1. It has an approximately
linear phase for low frequencies with a slope of v0. Thus, the filter shifts
v0 pixels the low frequency components of the signal. Note also that there
is a significant attenuation of medium and high frequencies. By recursing
equation (12.2) we can express the solution at frame t in terms of the first
frame (the lid) as u(·, t) = (M b)tu(·, 0). Therefore, the solution while beeing
shifted according to the constant optical flow, becomes increasingly blurry
with t.
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Figure 12.1: Analysis of a zero-energy solution for a one-lid problem, with a
purely translational motion. Frequency responses of the M b and (Mf )−1 filters,
and their composition (Mf )−1M b.

A similar argument for the implicit vf -scheme reveals that for 0 ≤ t < T ,
x ∈ O we have

0 = û(x, t+ 1)− u(x, t) =

[(1− v0)u(x, t+ 1) + v0u(x+ 1, t+ 1)]− u(x, t) (12.3)

which can be written as Mfu(·, t + 1) = u(·, t), where Mf applies the
averaging operator [v0, 1 − v0] to u(·, t + 1). u(·, t + 1) is given by the
pseudo-inverse of Mf applied to u(·, t). The frequency response of the
inverse operator is given by

(Mf )−1(w) =
1

(1− v0) + v0eiω
=

1

M b(w)
,

where M b(w) denotes the convex conjugate of M b(w). Figure 12.1 shows
the modulus and phase of (Mf )−1. The phase is the same as for M b, cor-
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responding to a shift of v0 of the low frequency components. However,
the modulus is inverted: high frequencies are amplified. Therefore, the re-
peated application of the pseudo-inverse acts as an inverse smoothing, which
enhances the high frequencies in the solution (sharpening) introducing nu-
merical artifacts which accumulate along time.

It is interesting to note that the effects of the vb- and vf -schemes for dis-
cretizing the convective derivative are opposite. The vb-scheme introduces
blurring in the solution, while the vf -scheme sharpens the solution but also
introduces oscillations. This suggests that they can be combined into a
hybrid scheme with the hope that their negative effects cancel out.

12.2 The DSCD: a mixed scheme

As in Facciolo et al. (2011), we propose a mixed scheme, which we call the
deblurring scheme for the convective derivative (DSCD for short). The idea
of the DSCD is to attain this objective by alternating between the vb- and
the vf -schemes. Shortly, if from t = 0 to t = 1 we apply the vf -scheme,
then from frame t = 1 to t = 2 we apply vb-scheme and so on.

There are two ways to implement the DSCD, depending on whether it starts
at frame t = 0 with the vb or the vf -scheme. This determines the way in
which the data given at the lid is related to subsequent frames: Either with
an explicit averaging filter in the case of starting with the vb-scheme, or
with an implicit sharpening filter when starting with the vf -scheme. The
one that starts with the vf -scheme does not use the optical flows at odd
frames: It will use a vf step at t = 0 with the forward optical flow from
t = 0 to t = 1; then it will use a vb step at frame t = 2 with the backward
optical flow from t = 2 to t = 1, and so on. We call this scheme the even
assignation of the DSCD (or even DSCD). Alternatively, the odd assignation
of the DSCD (or odd DSCD) starts with the vb-scheme and only uses the
forward and backward optical flows at odd frames.

Let us discuss the resulting schemes when applied to the 1D example with
the constant translational optical flow given above. Suppose t is even, and
consider the odd DSCD. Then, between frames t and t + 1 we use the vb-
scheme, and the vf -scheme between t+ 1 and t+ 2. Following the previous
discussion, we have that, u(·, t + 2) = (Mf )−1M bu(·, t). The frequency re-
sponse of the compound filter (Mf )−1M b has a flat magnitude: the blurring
effect of M b and sharpening effect of (Mf )−1 cancel out. The phase is ap-
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proximately linear for low and medium frequencies, but now the slope is 2v0,
corresponding to the shift between two frames. The same holds for the even
DSCD, since two linear filters commute. Thus, if we apply both DSCDs to
the one-lid problem at hand, the result obtained should coincide at even
frames, but will differ at odd frames. For the odd DSCD, odd frames are
computed by a blurring M b filter of the previous even frame, whereas the
even DSCD applies a sharpening (Mf )−1 filter.

This behaviour can be appreciated in Figure 12.2. The Figure compares
the results of the vb- and vf -schemes together with both DSCDs in a one-
lid problem with a purely translational optical flow. The experiment was
artificially generated by translating an image with a constant horizontal
displacement of v0 = [−0.426, 0] px/frame. An editing domain is also gen-
erated by translating a binary mask with the same optical flow. To test
the different schemes we consider a one-lid problem on the given editing
domain. In this way we can qualitatively and quantitatively evaluate the
ability of the schemes to propagate the first frame. A good propagation
should recreate the original sequence inside the editing domain.

As expected, the vb-scheme incrementally blurs the result in the horizontal
direction. The results are not shown for the vf -scheme, since it rapidly
amplifies high horizontal frequencies, destroying the signal within just a
couple of frames. The results for both DSCD schemes perform a better
propagation throughout the whole sequence (41 frames). To better appreci-
ate the differences between the even and the odd DSCD, we show the result
for three pairs of frames formed by an even frame and the subsequent odd
frame. Both DSCDs yield very similar results at even frames, while they
differ at odd frames. In particular the even DSCD shows high frequency
artifacts due to the application of the sharpening filter (Mf )−1.

The plots in Figure 12.3 show the root mean square error (RMSE) between
the sequences obtained by each of the four propagation schemes and the
original sequence. The RMSE rapidly grows with the iterations for both
the vf - and vb-schemes. The RMSE curves for both DSCD schemes grow
considerably slower. The even DSCD shows a high RMSE at odd frames
due to high frequency artifacts. Notice that both DSCDs present a very
similar RMSE at even frames. The lowest RMSE is attained by the odd
DSCD, in accordance to the results shown in Figure 12.2.
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Figure 12.2: Results obtained for a synthetic one-lid problem with a constant
translation of v0 = [−0.425, 0] px/frame, shown at frames t = 10, 11, 18, 19, 34, 35
(columns from left to right). First four rows from top to bottom: original sequence
(ground truth), vb-scheme, even DSCD, odd DSCD. The vf -scheme is not shown
since it destroys the signal after just a couple of frames. The last two rows show
results obtained with a combination of the even and odd DSCD explained in Section
12.4. Fifth row: β = 0.05 in Eq. (12.6), i.e. a combination of 95% of even DSCD
with 5% of odd DSCD in the energy. Sixth row: same as fifth row but with
β = 0.95. These correspond to the way we propose for the DSCD to be used in
an energy. Note that the high frequency artifacts are greatly diminished, specially
with β = 0.95.

Figure 12.3: Evolution of the root mean square error w.r.t. the ground truth cor-
responding to the synthetic problem with a constant translation of v0 = [−0.425, 0]
px/frame. The sequence has 40 frames. Some frames of the result are shown in
Figure 12.2. The RMSE curves corresponding to the results shown in the last two
rows of Figure 12.2, have been omitted to avoid cluttering in the graphs. They are
shown later in 12.7.
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12.3 Scope and limitations of the previous
analysis

The preceding discussion holds only for zero-energy solutions with a purely
translational flow. However, it provides some insights on the behaviour of
the DSCD on more general cases.

One-lid problems

In a real one-lid problem, the boundary conditions may not be compatible,
and the Euler-Lagrange equation cannot be reduced to solving the PDE
∇∂vu(x, t) = 0. Furthermore the cancelation of the blurring and sharpen-
ing is exact only when the flow is translational. Still, a similar behavior of
the schemes can be observed for one-lid problems with an approximately
fronto-parallel movement, even if they do not correspond to a zero energy
solution with a pure translational flow. Both DSCDs are able to propa-
gate the information for a much larger number of frames, with much less
noticeable artifacts.

This is illustrated in Figure 12.4, for an example with a real sequence. The
editing surface is mainly translated, but also suffers mild tilts and zooms.
The optical flow was computed using the algorithm of Brox and Malik
(2011). The results shown were obtained with the energy in Eq. (11.2) for
a one-lid problem using the vb- and vf -schemes, as well as for the DSCD.
The results of the DSCD were obtained using an energy which combines the
even and odd DSCDs (Eq. (12.6), setting β = 0.02, which correspond to a
98% of even DSCD and a 2% of odd) and will be explained in Section 12.4.
Let us just say for the moment that the variational combination of even
and odd DSCD schemes greatly attenuates the formation of high frequency
artifacts in the solution. The solution obtained with the vb-scheme progres-
sively blurs the data on the lid (second row in Figure 12.4). On the other
hand, the vf -scheme gradually amplifies high spatial frequencies (third row
in Figure 12.4). The DSCD allows to propagate the logo throughout the
sequence without appreciable artifacts (fourth row in Figure 12.4). The last
two rows in Figure 12.4 will be explained below.
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Figure 12.4: Results obtained for a real one-lid problem. The lid is placed at
the first frame t = 0. The first row shows the original sequence before the editing.
The following three rows show the results obtained using bi-linear interpolation
to implement the convective derivative schemes. From top to bottom show: Re-
sults obtained with vb-scheme (explicit), vf -scheme (implicit), and DSCD hybrid
scheme. The last two rows were computed using bi-cubic interpolation. From top
to bottom: vb-scheme (explicit) and DSCD hybrid scheme. Both DSCD results
were obtained with the variational combination of the even and odd DSCD of Eq.
(12.6) with β = 0.02 (thus, mainly even DSCD), explained in Section 12.4.
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Two-lid problems

The situation for a two-lid setting is different, specially for the vf - and vb-
schemes. For these schemes, the boundary conditions at both lids are not
likely to be compatible. Consider for instance the vb-scheme. To have com-
patible lids, the second lid should not only be a transformed version of the
first lid according to the motion, but also would have to account for the blur-
ring caused scheme itself. Of course in a practical editing application, both
lids are non-blurred, thus the minimum is not a zero energy solution and the
analysis of the preceding section does not apply. Intuitively speaking, there
are two opposing effects competing: the first lid should be blurred as time
increases, whereas the second lid at t = T should be sharpened backwards
in time (and vice versa for the vf -scheme). We have observed empirically
that the averaging effect dominates, with results presenting considerable
blur at intermediate frames away from the lids. This has been observed in
the literature as well Kokaram et al. (2005); Shiratori et al. (2006).

Figure 12.5 depicts RMSE curves for the synthetic translational example
using two lids, resulting in non-compatible boundary data. We have to
distinguish two cases depending on the whether the number of frames in
the sequence is even or odd, because the behaviour of both DSCDs depend
on the parity of the number of frames. Figure 12.5a shows the RMSE curves
obtained with 41 frames (the first lid is frame t = 0 whereas the second lid
is frame t = 40). In Figure 12.5b we remove one frame and place the second
lid at frame t = 39.

The behaviour of the vb and vf schemes is roughly the same, and this is
independent on the number of frames: their RMSE curves are symmetrical,
with increasing error as we go away from the lids.

However, it can also be seen that there is a change in the behaviour of the
even and odd DSCDs. For the sequence with 41 frames, the even and the
odd DSCDs coincide at even frames, and at odd frames the even DSCD has
a higher RMSE, associated with high frequency artifacts introduced by the
sharpening step.

On the other hand, when the total number or frames is even (Figure 12.5b),
for the first 10 frames in the sequence, the behaviour of even and odd DSCDs
is similar to the one shown for an odd number of frames. But the situation
is inverted by the end of the sequence towards the second lid: the DSCDs
coincide on odd frames, and it is odd DSCD the one with high RSME at
even frames.
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(a) Two-lids case, odd number of frames. (b) Two-lids case, even number of frames.

Figure 12.5: Evolution of the root mean square error w.r.t. the ground truth
corresponding to two synthetic problems with a constant translation. In (a) the
sequence has 41 frames with an optical flow of v0 = [−0.425, 0] px/frame. In (b)
the sequence has 40 frames with an optical flow of v0 = [−0.436, 0] px/frame.

The reasons for this become clear when we write the DSCD energies in
terms of the M b and Mf interpolation filters:

Eodd
κ (u) = ‖M bu0( · , 0)− u( · , 1)‖2 + ‖u( · , 1)−Mfu( · , 2)‖2 + . . .

+

{
‖M bu( · , T − 1)− u0( · , T )‖2 if T + 1 is odd,
‖u( · , T − 1)−Mfu0( · , T )‖2 if T + 1 is even.

Eeven
κ (u) = ‖u0( · , 0)−Mfu( · , 1)‖2 + ‖M bu( · , 1)− u( · , 2)‖2 + . . .

+

{
‖u( · , T − 1)−Mfu0( · , T )‖2 if T + 1 is odd,
‖M bu( · , T − 1)− u0( · , T )‖2 if T + 1 is even.

The first term determines the nature of the connection with the first lid. The
odd DSCD enforces an explicit (averaging) link between the lid and u( · , 1).
For the even DSCD, on the other hand, the link is implicit, responsible for
the high RMSE erros at odd frames in close to the first lid.

The nature of the connection to the last lid depends on the parity of the
total number of frames T + 1. For an odd number of frames the connection
to the last lid is of the same type as the connection to the first lid. The
odd DSCD is linked to the second lid via a vf step, which when seen in
the backwards direction of propagation, is an explicit (and thus averaging)
step. The even DSCD, is linked to the last lid through a term enforcing an
implicit sharpening relation between u( · , T − 1) and the lid, when seen in
the backwards direction. This the reason for the symmetric behaviour of
both DSCD curves in Figure 12.5a.
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However, when the T + 1 is even, the situation is reversed: the odd DSCD
establishes an implicit link to the second lid, whereas the even DSCD is
linked explicitly. This explains the exchange in the behaviour of even and
odd DSCDs in Figure 12.5b.

Zooms

Let us discuss the case of sequences with significant zooms. Consider for
example a sequence consisting of a close-up on the edited object: the res-
olution of the editing should increase with each frame. In a one-lid the
scheme will propagate whatever information is available at the lid. Thus if
the lid is placed on the first frame (when the object is farther away), the
scheme will propagate a low resolution version of it. Indeed, in this case the
problem becomes one of super-resolution and the model will do as good as
the interpolation scheme used. One can avoid this problem by performing
the editing on the last high resolution frame and setting it as the lid. In
Section 13.3 we discuss further this issue in a more complex example.

Higher order interpolation

The different schemes for the convective derivative can be implemented us-
ing higher orders of interpolation to estimate u at subpixel positions in Eqs.
(11.3) and (11.4) (and similarly for both DSCD schemes). As an example,
we have computed the outputs for the vb-scheme and the DSCD using bi-
cubic interpolation. The results are shown in Figure 12.4 for the one-lid
setting. As before, the results of the DSCD correspond to energy (12.6),
which combines the even and odd DSCD (we set β = 0.02, thus a predom-
inantly even DSCD). The higher order interpolation reduces the rate at
which the vb-scheme blurs the frames, but eventually the blurring becomes
apparent (as also noted in Kokaram et al. (2005); Shiratori et al. (2006)).
The result obtained is considerably better than the one for the vb-scheme
with bi-linear interpolation, but it is still blurrier than the results obtained
with the bi-linear DSCD schemes. As with the bi-linear interpolation, the
bi-cubic vf -scheme completely destroys the signal and its result is omitted.
The bi-cubic DSCD behaves very similar to the bi-linear one. The reason
for this is that the motion is mostly fronto-parallel. Thus, by alternating
between the vb- and vf -schemes, the DSCD approximately compensates for
the blurring caused by the low-order bi-linear interpolation. For sequences
with significant zooms in which the lid is placed at a low resolution frame
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(as discussed previously), a higher order interpolation scheme yields better
results. An example is given in Chapter 13, Figure 13.12. This improve-
ment comes at the expense of a greater computation cost (e.g. the bi-cubic
interpolation uses a 16 point stencil). For most of our experiments we found
good results using the bi-linear DSCD, without the need to consider higher
order interpolators.

12.4 The discrete energy with the DSCD

In this section we present our final discrete energy. For that aim, we first
introduce the operators implementing the DSCD schemes for the convective
derivative.

Let us consider first the odd assignation and define the following hybrid
operator for the convective derivative:

hodd
v u(x, t) =

{
∂fvu(x, t), t odd,

∂bvu(x, t+ 1), t even,

=



û(x+ vf (x, t), t+ 1)− u(x, t), t odd and

x ∈ Sft ,
u(x, t+ 1)− û(x+ vb(x, t+ 1), t), t even and

x ∈ Sbt+1,

0, otherwise.

(12.4)

This operator computes the convective derivatives corresponding to the for-
ward and backward optical flows of the odd frames. Note that the backward
derivatives are shifted: ∂bvu(x, t+ 1) is assigned to location (x, t). For this
reason we do not consider hodd

v as a discretization of the convective deriva-
tive, and use the notation hv instead of ∂v. The h here stands for hybrid.

As in Section 11.3, we define a corresponding spatial gradient ∇odd which
takes into account the domain where hodd

v can be computed. For the defi-
nition of the gradient, we define the sets S̃odd

ei,t for each frame t. Recall that
these sets contain the locations x where both convective derivatives needed
to compute the partial derivative in the direction ei are computable. Due
to the definition of hodd

v it can be seen that if t is odd, S̃odd
ei,t = S̃ft , and if

t even, S̃odd
ei,t = S̃bt+1. The diagram in Figure 12.6 show how the convective

derivatives and their gradients are taken.
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Figure 12.6: The hybrid scheme hoddv for the convective derivative using the
forward and backward optical flow of odd frames, for the same one dimensional
image sequence shown in Fig. 11.2. The same graphical conventions are used. The
green arrows specify to which pixel we assign each convective derivative.

Analogously, we define the corresponding heven
v implementing the even-

assignation DSCD (using the forward and backward optical flows at even
frames), and its associated spatial gradient ∇even.

The energy with the DSCD

Based on the operator implementing the odd DSCD we define the following
energy

Eodd
κ (u) =

∑
(x,t)∈Õ

‖κodd(x, t)∇oddhodd
v u(x, t)‖2. (12.5)

Note that we consider an occlusion tensor κodd : Ω × {0, 1, . . . , T} →
{0, 1}2×2 for the forward and backward optical flows at odd frames, de-
fined in an analogous way to the forward and backward occlusion tensors
in Section 11.4. Similarly we define an energy Eeven

κ , corresponding to the
hybrid operator heven

v implementing the even-assignation DSCD (using the
forward and backward optical flows at even frames).

The proposed energy for using the DSCD considers both the odd and even
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assignations, and reads

Eβ(u) = β Eodd
κ (u) + (1− β)Eeven

κ (u), (12.6)

where β ∈ [0, 1] is a weighting coefficient. A value of β = 1 yields the
odd-assignation of the DSCD, whereas β = 0 corresponds to the even-
assignation.

Both versions of the DSCD exhibit a comparable behaviour. In general,
a vf step permits to recover the frequencies smoothed by the previous vb

step. However, as shown in Figure 12.2, it may also introduce other high
frequencies, which on the long term will build up as high frequency artifacts
(particularly for the even DSCD). These can be attenuated by adding to the
used version of the DSCD a small component of the other one, which corre-
sponds to values of β ∈ (0, 1), either close to 0 or 1. This can be understood
in the context of the previous example: we add a slight amount of averaging
to the implicit steps, and sharpening to the explicit ones. In practice we
found that for the odd-assignation setting a value of β ≈ 0.95 turns out to
alleviate the DSCD from high frequency artifacts and without introducing
much blurring (correspondingly, β ≈ 0.05 for the even-assignation).

This can be appreciated in the last two rows of Figure 12.2. These results
show that the high frequency artifacts of the “pure” DSCDs are removed (at
the expense of a mild blurring). This is also confirmed by the corresponding
RMSE curves, shown in Figure 12.7. We consider a one-lid and two two-lids
problems, with even and odd total number of frames. Note that most of
the peaks associated with the sharpening steps are highly reduced (except
for the first pair of peaks after a lid).

The use of both DSCD schemes has another advantage. Let us consider, for
example, that β = 0, i.e. only the even-assignation DSCD is used. Let us
assume as well that κeven(x, t) = I for all (x, t) ∈ Õ. Pixels on odd frames
are included in the energy only if they form part of the interpolation stencil
of a pixel in an adjacent even frame. Depending on the optical flow, it may
occur that some pixels in O only appear in the energy with a small or even
zero weight. This causes the problem to be ill-conditioned. On the other
hand, with β ∈ (0, 1) and assuming that κodd(x, t) = I, every pixel in O
is “connected” to the rest by its own forward and backward optical flows,
which results in a better conditioned system.

In the case of occlusions, the occlusion tensors remove terms from the energy
by setting them to zero (see Section 11.4). This might cause the system to
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(a) One-lid case.

(b) Two-lids case, odd number of frames. (c) Two-lids case, even number of frames.

Figure 12.7: Evolution of the root mean square error w.r.t. the ground truth cor-
responding to two synthetic problems with a constant translation. In this plots we
compare the “pure” even and odd DSCDs with the combination of both according
to energy Eβ in Eq. 12.6. We consider β = 0.05 (95% of even with 5% of odd) and
β = 0.95 (5% of even with 95% of odd). In plots (a) and (b) the sequence has 41
frames with an optical flow of v0 = [−0.425, 0] px/frame. In (c) the sequence has
40 frames with an optical flow of v0 = [−0.436, 0] px/frame. Here we only show
the graphs for the even DSCD and to β = 0.05. The ones corresponding to the odd
DSCD and to β = 0.95 correspond to a specular symmetry of the ones showed.

become ill-conditioned, even with β ∈ (0, 1). For this reason we add a
spatial regularization term. The resulting energy reads

Eβ,λ(u) =
1

2
Eβ(u) +

λ

p

∑
(x,t)∈Õ

‖∇u(x, t)‖p, (12.7)

where λ > 0 and p = 2 (the model could be formulated with a total variation
regularizer by setting p = 1, see Appendix E). If there are no occlusions, no
elements in the energy are removed and λ can be set to zero. Otherwise, λ is
set to a small value, so that the smoothing effect of the spatial regularization
is only noticeable on “weakly connected” pixels. With the addition of this
spatial regularization term, if p = 2, the solution is unique as long as there
exist at least one Dirichlet boundary condition on u in each frame (assuming
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that Ot 6= Ω for all t ∈ {0, 1, · · · , T}). The problem of existence and
uniqueness of solutions both in the continuous and discrete frameworks, and
for p ∈ {1, 2}, is considered in Sadek et al. (2012) under some assumptions
on the optical flow that amount to say that trajectories of points are well
defined. A more thorough analysis on the conditioning of the resulting
system of equations is an important issue and further study is required.

Other regularization terms could also be used. In particular, in our exper-
iments, we sometimes found better results with the addition of a tempo-
ral regularization term given by γ

∑
(x,t)∈Õ ‖∂vu(x, t)‖p, as in Bhat et al.

(2010, 2007); Facciolo et al. (2011). This term, together with the spatial

regularizer, forms a weighted 3D gradient (∇,
(γ
λ

)1/p
∂v) with the temporal

component in the direction of the optical flow. Note that this term enforces
brightness constancy. Therefore, if used in a sequence with significant illu-
mination changes, it should be given a very small weight.

Implementation

In practice we set p = 2 in the regularization terms. The resulting energy
is quadratic, and its minimizer is given by the solution of a linear system
which we solve using a conjugate gradient solver. In our implementation we
used sparse matrices to store the discrete operators described previously.
For example, ∂fv can be stored as an N ×N sparse matrix, where N is the
number of pixels in Õ. For each row in the matrix, five values have to be
stored: the four bi-linear interpolation weights and −1 at the diagonal (see
Eq. (11.3)). Storing the operators as sparse matrices, greatly simplifies
the computation of the adjoint operators, which can be computed by a
simple matrix transpose operation (e.g. the matrix associated to ∂fv

∗
is

the transpose of ∂fv ). This is important since a naive computation of ∂fv
∗

following Eq. (11.5) is quadratic in the number of pixels of a frame in the
video.

On the other hand, storing the whole operators, is quite demanding in terms
of memory. It would be interesting to use an ad-hoc solver exploiting the
structure of the problem to lower the memory requirements, for example by
working on a frame by frame basis.



Chapter 13

Experimental results

In this section we present some experimental results showing the behaviour
of the presented model in practice. We also discuss the limitations of the
method and how to address them. We consider the application of replacing
the texture of an objects’ surface throughout a video sequence. We distin-
guish the two application settings discussed in Section 10.2: the one-lid and
two-lid settings. These differ only in the choice of the boundary conditions
(see Section 10.2). Let us first describe some elements of the experimental
setup.

Color videos. In our experiments, a color video u : Ω× {0, 1, . . . , T} →
R3 is treated channel by channel, each as an independent scalar video. This
amounts to the minimization of the following energy

Ecolor
β,λ (u) =

3∑
i=1

Eβ,λ(ui), (13.1)

where Eβ,λ is defined for a scalar video in Eq. (12.7) and ui, i = 1, 2, 3 are
the color channels. Note that, although the processing of each channel is
done independently, the same optical flow (and thus the same operators)
is used for all channels. We use the RGB color space, but any other color
space could be used as well.

Optical flow. In all the sequences used, we impose no restriction on the
movement of the camera nor the movement of the objects in the scene. For
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the computation of the optical flow, except when otherwise specified, we use
the algorithm described in Sun et al. (2010) and we use the code provided
by the authors through the webpage Sun (2010). We also use the default
parameters provided with the code.

Parameters of the model. The results are obtained by minimizing the
energy in Eq. (13.1). Except when otherwise stated, we use β = 0.05, λ = 0
when no occlusions occur and λ = 0.02 otherwise. The minimization is
done with the conjugate gradient algorithm. combination of odd and even
DSCDs with β = 0.05 removes most high frequency artifacts caused by the
sharpening steps. However, for some frames in certain sequences, we have
noticed that some high frequency artifacts remain mildly apparent. For
that, we apply a linear filter to the output sequence removing very high
frequencies.

Editing domain. In a practical editing application, it is important to
automate the computation of the editing domain. In the present context,
this amounts to an approximate tracking of the portion of the surface that
the user wants to edit. In the experiments shown in this section we used
different approaches for computing the editing domain, to highlight the
flexibility of the model on this issue. For the experiments shown in Figures
13.2, 13.10, 13.12 the editing domain was determined by tracking the edited
surface. In Figures 13.1, 13.7 and 13.8, the edited surface has been tracked
as well, then manually distorted to simulate big tracking errors (although
the errors simulated never miss a portion of the edited surface). Finally, for
the rest of the experiments we used a big rectangular domain.

For tracking the edited surface any tracking algorithm can be used. Since we
are given an optical flow, the problem of tracking a certain object amounts to
propagating a binary mask of the object, specified at a lid (or the lids), along
optical flow trajectories. In our experiments we performed this propagation
using the proposed model. The output corresponds to a mask tracking the
edited surface along the video, which gives the editing domain. Note that for
the particular case of a one-lid propagation of a binary mask, the minimum
of the proposed energy can be computed efficiently by a frame by frame
propagation. The reason is that this problem has compatible boundary
conditions, thus the minimum is attained with zero energy. In a two-lid
setting (for instance in the presence of an occlusion) the solution can be
approximated by two frame by frame propagations, the first propagating
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the first lid forward, and the second, the last lid backward. These can be
combined by a point-wise maximum.

In what follows we first present four experiments for the one-lid setting, then
we present three more experiments for the two-lid setting. We then comment
briefly on the behaviour of different optical flow algorithms in the context of
this work by experimenting with several of them proposed in the literature.
Finally we discuss some practical limitations of the proposed model and we
offer ways to overcome some of them. For every experiment below we show
the original video sequence, the input to our model where the editing domain
has been painted in red indicating the absence of data, and the output video
after minimizing (13.1). Due to the difficulty of actually showing all frames
processed, we only show a few snapshots from the processed sequence. For
the full video sequences used and the results obtained, we refer the reader
to the following webpage Sadek et al. (2012).

13.1 One-lid setting

In this setting the editing is performed on the first frame. The edited
first frame is then set as a Dirichlet boundary condition and, by minimizing
energy (13.1), we obtain the output video with the editing propagated along
the remaining frames. We present four experiments.

In the first one, the video contains a newspaper placed on a table. After sev-
eral frames, a moving light starts illuminating the newspaper and a shadow
is cast by a moving person. We replace the newspaper in the first frame
of the sequence by a logo and we minimize (13.1). The result shown in
Figure 13.1 demonstrates how our model handles this complex illumination
change. The total length of the sequence is 106 frames with around 5 · 105

variables inside the editing domain.

The second experiment involves a video of a newspaper placed on a table and
the light in the room gets dimmed until its off. This causes a considerable
large and fast global illumination change. In particular, notice that due
to the change in the illumination in the room, there is a change in the
dominant color: The colors shift towards blue as the light gets dimmed.
We place a poster on top of the newspaper and minimize energy (13.1).
Figure 13.2 shows the result. It can be seen that this large and sudden
illumination change is handled by our model. The total number of frames
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Figure 13.1: The first row shows the original sequence. A person is moving
casting a shadow on the table while a light reflection is also cast on the table. The
second row shows the input sequence where the editing domain has been marked
in red. The third row shows the output of our method. From left to right, the
frames shown correspond to t = 0, 25, 50, 75 and 100 respectively.

of the sequence processed in this experiment is 30 with approximately 9 ·105

variables inside the editing domain.

For comparison purposes, we show the result obtained with the model pre-
sented in the preliminary conference version of this work Facciolo et al.
(2011), which uses a temporal consistency model based on the brightness
constancy assumption. Therefore, to account for illumination changes, the
authors in Facciolo et al. (2011) proceed in two steps (similar to Bhat et al.
(2007)). The first step propagates the information from the lid using the
brightness constancy model and the second step solves a Poisson editing
problem for each frame which takes care of the spatial consistency of the
editing. For the first step, we show the sequence obtained in the fourth
row of Figure 13.2. The inability of the brightness constancy model to
adapt to the illumination change in the scene causes spatial discontinuities
around the editing domain. To remove them the second step is performed.
The gradient of the first step’s result is used as guiding vector field for the
Poisson problems. This second step is aimed to adapt each edited frame
to its spatial context by means of the boundary conditions of the Poisson
equation, integrating the gradients of the propagated first lid. Thus, we
can interpret this two-step procedure as an implementation of the gradient-
constancy assumption. Solving a Poisson problem for each frame indepen-
dently generates a flickering artifact in the resulting sequence. To avoid it,
the brightness constancy model is used as a temporal regularizer with a low
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Figure 13.2: The first row shows the original sequence. A newspaper is filmed
while the camera moves and the light in the room is being dimmed. The second row
shows the input sequence after editing the first frame and where the editing domain
has been marked in red. The third row shows the output of our method. Note
how the resulting video accommodates this fast and sudden illumination change
along time. For comparison we show results obtained using the two-step procedure
from Facciolo et al. (2011). In the fourth row the output of the first step: it is
temporally consistent, but not spatially consistent. The fifth row shows the final
result after the second step. The spatial discontinuity around the editing domain
has been removed, but note how the new GBC model integrates the illumination
change better. From left to right, the frames shown correspond to t = 0, 11, 17, 24
and 27 respectively.

Figure 13.3: Magnitude of the illumination change rate (measured as the norm of
the convective derivative) for the results shown in Figure 13.2. The first row shows
the norm of the convective derivative for the GBC model (third row in 13.2). Last
two rows show the norm of the convective derivative for the two-step procedure of
Facciolo et al. (2011). The second row corresponds to the output of the first step
(fourth row in 13.2), and the third row to the result after the second step (fifth
row in 13.2). From left to right, the frames shown correspond to t = 1, 11, 17, 24
and 27 respectively (the frames differ from those shown in Figure 13.2).
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weight. The resulting sequence of the second step is shown in the fifth row
of Figure 13.2.

The two-step procedure in Facciolo et al. (2011) achieves a spatially and
temporally consistent editing. However, notice that the result of the GBC
model integrates much better the illumination change into the editing (in
particular notice that the colors in the editing domain shift gradually to-
wards blue, in accordance with the change in the dominant color of the
scene). The main reason for this, is the brightness-constancy-based tempo-
ral regularization term added to the second step in Facciolo et al. (2011).
Even if it has a low weight, this regularizer causes a slow reaction to fast
illumination changes. This can be better appreciated in Figure 13.3, where
we show the norm of the convective derivative for the results of Facciolo
et al. (2011) and the present model. The norm of the convective deriva-
tive measures the illumination change rate. High values (shown in white
in Figure 13.3) denote that an illumination change is happening. The re-
sult of the GBC model smoothly interpolates the illumination change rate
at the boundary of the editing domain, resulting in a better integration of
the editing with the surrounding. The result after the first step of Facciolo
et al. (2011) has an almost zero illumination change rate, as expected from
the brightness constancy model. This is corrected to some extent after the
second step, but still the result has a limited capability to adapt for high
illumination change rates.

In the third experiment we show a piece of cloth which exhibits a “wave”
like movement. We edit the first frame and we minimize (13.1). Figure 13.4
shows the result. The total number of frames processed in this sequence is
20 with approximately 10 · 105 variables inside the editing domain. Note
how the deformation of the inserted image follows the deformation of the
cloth. For this sequence the optical flow was computed using a multi-scale
Horn-Schunck optical flow algorithm Meinhardt-Llopis and Sánchez (2012).

In the last experiment we show for the one-lid setting, we consider a se-
quence taken from Liu et al. (2008a) which is available through the web-
page Liu et al. (2008b). A video of a box and of a cylindrical can is shot.
Throughout the sequence, the box and the can are occluding the background
before finally interacting when the can occludes the box. We edit the first
frame by modifying the textures on both objects and minimize (13.1). Fig-
ure 13.5 shows the result. Note that the editing domain includes large
portions that do not belong to the edited surfaces. These places should
keep the texture they had in the original video. The result shows that the
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Figure 13.4: The first row shows the original sequence of a cloth exhibiting a
“wave” like motion. The second row shows the input sequence after editing the first
frame and where the editing domain has been marked in red. The third row shows
the output after minimizing (13.1). Note how the editing done accommodates to
the movement of the cloth in the resulting video. From left to right, the frames
shown correspond to t = 0, 7, 8, 9, 10 and 20 respectively.

model has been able to reconstruct the original textures seamlessly. This
demonstrates that a precise tracking of the edited surfaces is not required.
The total number of frames in the sequence is 13 with 9 ·105 variables inside
the editing domain. The results shown are snapshots taken every two or
three frames.

13.2 Two-lid setting

In this setting the editing is performed on the first and last frames. These
are set as Dirichlet boundary conditions and, by minimizing energy (13.1),
we obtain the output video with the editing propagated into the remaining
frames. Basically, the result is a smooth interpolation between the two
edited frames along the trajectories of the optical flow.

The first experiment is shown in Figure 13.6, and uses the same sequence
of Figure 13.5. We edit the first frame as in Figure 13.5, by introducing the
yellow text on the blue box, and the formula on the can. For the last frame,
we only change the color of the formula on the can, from yellow to red. No
text is added on the box. In the resulting sequence, the formula and the
text move coherently with the can and the box respectively. While moving,
the formula changes its color smoothly from yellow to red, and the text in
the box gradually vanishes. This demonstrates the interpolation between
both lids along the optical flow trajectories. Note that the second “i” in
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Figure 13.5: The first row shows the original sequence. A box and a cylindrical
can are being filmed while the camera moves. The second row shows the input se-
quence after editing the first frame and where the editing domain has been marked
in red. The third row shows the output after minimizing (13.1). From left to right,
the frames shown correspond to t = 0, 2, 5, 9 and 12 respectively.

the text “rishi” does not vanish as expected. The reason is that this part of
the box is occluded in the last frame. In that specific location, the solution
behaves as in a one-lid setting, propagating the information from the first
frame only.

Let us note that this type of editing, in which both lids are non-consistent,
is not the main purpose of this paper. However, the inconsistent editing of
the lids in this experiment gives a good insight on the working of the model.
It puts in evidence the differences in the behaviour of trajectories reaching
both lids and those reaching only one lid. For trajectories that reach both
lids the result is a smooth interpolation between the information present
at those lids. This can be seen clearly from the smooth transition of the
formula’s color from yellow to red and the smooth vanishing of the “rish”
text. On the other hand, for trajectories that only reach a single lid (for
instance due to an occlusion) the problem becomes a one-lid problem and
the information will be transported from that lid only. This is what actually
happens with the second “i” in the text “rishi”: These trajectories do not
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Figure 13.6: The first row shows the editing done in the first and last frames
and the domain has been marked in red. The second row shows the output after
minimizing (13.1). Note how the result is a smooth interpolation between the two
lids. Let us mention that the original sequence of the experiment is the first row of
Figure 13.5. From left to right, the frames shown correspond to t = 0, 2, 5, 9 and
12 respectively.

reach the second lid, and therefore the “i” is being transported from the first
lid. As a consequence, if the purpose of the editing is to perform a blending
between two lids edited in a non-consistent manner, it is imperative that
every trajectory in the editing domain reaches both lids.

When the application is to edit an object’s surface with a non-changing
texture, the editing in both lids has to be consistent. This way, there
will be no appreciable differences between one-lid trajectories propagating
data from one of the lids, and two-lid trajectories blending data from both
lids. In this context consistent editing means consistency with the motion
in the scene, and consistency with the overall change in illumination from
the first lid to the last. The motion consistency implies that the editing
in the second lid corresponds to the warping of the editing in the first
lid according to its motion. The consistency with the illumination change
implies that the editing in the second lid suffers approximately the same
(additive) illumination change as its surrounding with respect to the first
lid. In practice, inconsistencies in the editing of both lids are tolerable.

The second experiment, shown in Figure 13.7 depicts a computer screen
which gets almost completely occluded, and then dis-occluded, by a person
moving in front of it. We replace the image on the screen by an image of
corals, both in the first and the last frames. The sequence consists of 20
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Figure 13.7: The first row shows the original sequence. A screen is filmed when
a person sitting on a chair moves in front of it. The second row shows the input
sequence after editing the first and last frames and where the editing domain has
been marked in red. The third row shows the output. From left to right, the frames
shown correspond to t = 0, 4, 12, 16 and 19 respectively.

frames with more than 4 · 105 variables in the editing domain.

Finally, in the third experiment, we edit a pen-holder lying on a table. The
pen-holder gets partially occluded then dis-occluded by a black bag. We
edit the curved surface of the pen-holder in both the first and last frames
and place the image of the corals on it. The total number of frames of this
sequence is 43 with around 106 variables in the editing domain. Figure 13.8
shows the result obtained after minimizing (13.1). For this experiment we
found better results with the addition of a temporal regularization term as
mentioned at the end of Section 12.4 with a weight γ = 0.02.

13.3 Limitations of the proposed method

In this Section we would like to discuss, with some practical details, the
limitations of the proposed method and propose ways to overcome some of
them.
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Figure 13.8: The first row shows the original sequence. A pen-holder is filmed
while it gets occluded by black bag. The second row shows the input sequence after
editing the first and last frames and where the editing domain has been marked in
red. The third row shows the output after minimizing (13.1). From left to right,
the frames shown correspond to t = 0, 16, 26, 36 and 42 respectively.

Figure 13.9: Experiment showing the behaviour of the model using four different
optical flow algorithms. We show only one frame for each result. The complete
result sequences can be found in Sadek et al. (2012). From left to right, the images
correspond to using the optical flow algorithm presented in Sun et al. (2010),
Chambolle and Pock (2011), Ayvaci et al. (2012) and Brox and Malik (2011)
respectively.
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Optical flow related

It is well known that optical flow algorithms compute apparent motion, not
the true motion of the scene. This implies that in some circumstances, as
in the presence of moving shadows, the optical flow may not give a correct
estimation of the true motion. If the apparent motion and the true motion
coincide then using the optical flow gives very good results. If not, relying
on apparent motion will likely give rise to visual artifacts. Confronting these
situations is a current trend of research in the optical flow community, for
example by incorporating gradient-based terms for handling illumination
changes, or segmenting the scene to improve the occlusion handling. These
improvements will in turn expand the applicability and performance of our
algorithm. To highlight the dependence on the optical flow, we show two
experiments.

In the first one we test four optical flow algorithms from the literature,
applying them on the two-lid editing problem shown in Figure 13.7. We
used the following optical flow algorithms: the large displacement optical
flow algorithm of Brox and Malik Brox and Malik (2011), the TV-L1 optical
flow of Chambolle and Pock Chambolle and Pock (2011), the optical flow
with sparse occlusion detection of Ayvaci et al. Ayvaci et al. (2012) and
finally the layer-based algorithm of Sun et al. Sun et al. (2010). For all
optical flows, we use the code provided by the authors with the default
parameters. For the optical flow algorithms presented in Brox and Malik
(2011), Chambolle and Pock (2011) and Sun et al. (2010), since no occlusion
masks are given by the algorithms, we use the occlusion detection method
described in Appendix D. The optical flow of Ayvaci et al. (2012) provides
occlusion masks and we use them (after a dilation of two pixels) to handle
occlusions. Figure 13.9 shows one frame from the result of our model using
the above discussed optical flow algorithms. We have chosen a frame where
the differences between the different algorithms is apparent. Let us recall
that the complete set of results can be found in Sadek et al. (2012). For all
tested optical flow algorithms, the model behaves similarly and is able to
handle the occlusion. The differences in the results are due to the differences
in the motion perceived by each optical flow method. For example some
optical flows show a “dragging” effect: parts of the screen that are about
to be occluded by the head seem to be dragged by the head instead of
being occluded. The reason is that the optical flow algorithm has assigned
the movement of the head to these parts of the screen. It might also be
interesting to test the proposed model with other optical flow methods which
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Figure 13.10: The first row shows the original sequence. A person wearing a
shirt moves by bending down and straightening back up. The second row shows
the input sequence after editing the first frame and where the editing domain has
been marked in red. The third row shows the output after minimizing (13.1).
From left to right, the frames shown correspond to t = 0, 9, 19, 26, 33, 38, 41 and 44
respectively.

incorporate the temporal consistency in the computation of the optical flow
Salgado and Sánchez (2007); Sun et al. (2012); Volz et al. (2011). It has
been reported that considering a larger number of frames improves on the
accuracy of the optical flow.

In the second experiment, in Figure 13.10 we show a different kind of arti-
facts. In this experiment, we edit a part of a shirt being worn by a person by
adding to it the “UPF” logo. The person bends over and then straightens
back up. While straightening up, the shirt suffers severe deformations. At
that point, inaccuracies in the optical flow result in unnatural distortions
of the transported texture (second half of the sequence). However, let us
note that the model correctly handles the local illumination change caused
by the shadow cast by the shirt on itself while bending. The result was ob-
tained by minimizing (13.1). The total number of frames of this sequence
is 35 with around 5 · 105 variables in the editing domain.

Multiple occlusions

So far we have covered the following basic situations:
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a) A single occlusion or dis-occlusion occurs. This can be treated as a
one-lid setting, for an occlusion the lid is placed at t = 0, and for a
dis-occlusion the lid is at t = T .

b) An occlusion followed by a dis-occlusion occurs. This can be handled
by a two-lid setting, where the lids are at t = 0 and t = T .

Cases with multiple occlusions and dis-occlusions of the edited surface can
be handled by temporally splitting the editing domain into temporal seg-
ments that fall into the above a) and b) basic cases. The splitting of the
editing domain amounts to adding lids at the splitting frames. To illustrate
this we consider a sequence taken from Liu et al. (2008a), available online
through the webpage Liu et al. (2008b). Figure 13.11 shows an experiment
with multiple occlusions of the edited surface.

A hand is moving back and forth, repeatedly dis-occluding and occluding
a disk-shaped object in the background. The Figure shows first the result
obtained by setting a lid at frame t = 8, after the first dis-occlusion. This
splits the sequence into two one-lid problems: one from t = 0 to t = 8, and
another from t = 8 to t = 44 (the last frame). In the second segment there
is still one occlusion followed by a dis-occlusion and yet another occlusion
towards the end. No trajectories from the lid reach the region that gets
dis-occluded, and we can see what sort of artifacts one expects to see in
regions where no information from the lid is arriving. As shown in the
Figure, this can be corrected by further splitting the sequence and adding
an intermediate lid before the last occlusion starts. Let us also mention that
the occlusions in this experiment have been detected using the procedure
described in Appendix D.

In summary, the rule is to ensure that all trajectories inside the editing
domain reach at least one Dirichlet boundary condition.

Big zooms and tilts

Consider the case of a one-lid setting where the editing has been performed
on the first frame and a camera is doing a big zoom-in on the edited object.
The resolution of the object increases considerably with time. The method
will propagate the low resolution information given at the lid and will not
recover a higher resolution version of the propagated information. The
resulting propagation will be blurred. However, this could be solved by
editing the last high resolution frame and propagate that editing backwards.
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Figure 13.11: The first row shows the original sequence. A hand is moving back
and forth, dis-occluding and occluding a disk-shaped object repeatedly in the back-
ground. From left to right, the frames shown correspond to t = 0, 8, 20, 26, 30, 33, 37
and 44 respectively. The second row shows the input sequence after editing frame
8 by removing the disk-shaped object and setting it as a lid. It also shows the
remaining frames and the editing domain marked in red. The third row shows the
output after removing the object in frame 8 and propagating the modification back
to frame 0, and forward until frame 44 by minimizing (13.1) in a one-lid setting.
Note that the first dis-occlusion (from 0 to 8) is correctly handled as well as the
first occlusion (from 8 to 20). But, as a new dis-occlusion starts around frame
26, no information is reaching this area from the lid (frame 8) and it appears as
if the hand spills its color into this area. This double occlusion could be handled
by editing the frame 33 and setting it as a second lid, as shown in fourth row. In
this experiment, the occlusions have been detected using the procedure described
in Appendix D.

Consider now the case where a big zoom-out is followed by a big zoom-
in. This problem can be solved in a two-lid setting where both lids are
at high resolution. Figure 13.12 shows an example where a cloth is being
laid down on a table and then taken back to its original position. This
simulates the just discussed example with an added tilt transformation as
well. We show two results in a one-lid setting with different interpolation
schemes (bi-linear and bi-cubic) and one result in a two-lid setting. Notice
how in the second half of the sequence, when zooming-in, the one-lid re-
sult presents considerable blur with the bi-linear interpolation, particularly
at the last frames where the resolution increases significantly. Using the
bi-cubic interpolation, the result is much sharper but it still suffers from
blur artifacts. Adding a second lid at the last frame solves this issue. Let
us also note that a considerable illumination change also occurs in the se-
quence and the method deals with it seamlessly. The result was obtained
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by minimizing (13.1). The total number of frames of this sequence is 53
with around 5 · 105 variables in the editing domain.

Let us note that this limitation comes as a consequence of propagating
a texture using correspondences between adjacent frames. Other methods
such as Bugeau et al. (2010); Rav-Acha et al. (2008); Sand and Teller (2008)
establish a transform between an input texture and all other frames in the
sequence. The computation of these transforms is not trivial. In the case
of Rav-Acha et al. (2008), the method relies on an accurate video segmen-
tation, keypoint tracking and non-convex optimization in order to compute
the mappings. On the other hand, and more related to this work, Bugeau
et al. (2010); Sand and Teller (2008) integrate the optical flow to compute
a set of trajectories covering the editing domain. This requires dealing with
complexities inherent to the explicit management and computation of tra-
jectories. In any case, these methods need post-processing steps in order
to deal with illumination changes and filling-in holes that are not covered
by the mapping (for instance due to occlusions). In our approach trajec-
tories are dealt with implicitly, illumination correction is intrinsic to the
model, and the filling-in of small holes caused by occlusions is taken care by
the regularization term in the energy. This is attained by a single convex
minimization process.
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Figure 13.12: An experiment simulating the case of a zoom out with tilt followed
by a zoom in and tilting back to the original position. The first row shows the
original sequence. The second row shows the input sequence after editing the first
frame and where the editing domain has been marked in red. The third row shows
the output after minimizing Eq. (13.1) in a one-lid setting. The artifacts are clear
when coming back from low-resolution to high resolution. The fourth row shows
the output when using the bi-cubic interpolation scheme in a one-lid setting as
well. It can be noticed that the artifacts diminished but they are still visible. The
last row shows the output in a two-lid setting where the artifacts have been dealt
with. From left to right, the frames shown correspond to t = 0, 16, 19, 26, 32, 39, 44
and 53 respectively.





Chapter 14

Conclusions and future work

In this work we tackle a rather fundamental mathematical problem in video
processing: the propagation gradient-domain information from one or two
key-frames through the optical flow (as a dense motion estimate). We ap-
plied the model to video editing, where a user edits one or two frames of a
video which need to be propagated throughout the remaining frames. We
demonstrate that very good results can be obtained via the minimization
of a simple quadratic energy, which amounts to solving a linear system of
equations.

The proposed model handles fast and abrupt global illumination changes.
Smooth spatial variations in the illumination change are also handled by the
model implicitly, which allows to obtain a spatial and temporal consistent
editing.

Furthermore, the model works with any dense motion estimate (such as the
optical flow) and thus is not limited to parametric motion model.

A key element in the proposed method, is the DSCD numerical scheme for
the convective derivative which allows to maintain sharpness of the texture
during the propagation along motion trajectories for a large number of
frames for relatively complicated sequences.

There are several lines of future research to better understand the model
and overcome some of its current limitations.

The model requires an estimate of the motion, which prevents its appli-
cation to problems like video inpainting in which the motion is unknown.
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Therefore, it would be interesting to test this model in conjunction with
motion interpolation techniques, for its application to video inpainting.

A related issue, is that the results provided by the model depend highly on
the quality of the optical flow used, and on the occlusions detected whether
by the optical flow algorithm or an by a posterior occlusion detection al-
gorithm. Advances in optical flow computation will help in improving the
results provided by the proposed model. But the same applies to other video
editing tasks, equally based on optical flow, which are currently included in
widely used professional video editing softwares. Such softwares have built-
in optical flow computation algorithms which allow a user to interactively
correct the errors of an automated algorithm. In this context, the proposed
model could be useful.

Another problem, also related with the practical applicability of the model,
is that for a two-lid problem, it is hard to manually edit two lids consistently.
This could be alleviated if one could find correspondences between both lids
which could be used to help the user locate how to editing the second lid
once the first one has been edited.

Regarding the numerical scheme, a more thorough analysis on the condi-
tioning of the resulting system of equations is required, particularly because
it could lead to ways to improve the conditioning, and thus accelerate the
convergence of iterative solvers.

Last but not least, the current implementation requires storing in memory
sparse matrices implementing the discrete operators. This is quite demand-
ing in terms of memory and limits the size of the problems that can handled.
It would be interesting to use an ad-hoc solver exploiting the structure of
the problem to lower the memory requirements, for example by working on
a frame by frame basis.
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Appendix D

An occlusion detection method

In this Section we discuss a two-step simple method to detect occlusions
given a dense optical flow. In the first step we aim to identify regions which
are potentially occluded. In the second step we categorize the previously
selected regions into occluded and still visible. Figure D.1 shows an example
of the two-step occlusion detection method.

The problem of occlusion detection is intrinsic to the optical flow problem.
In fact, some optical flow algorithms estimate occlusions as part of the
estimation of the movement Alvarez et al. (2007); Ayvaci et al. (2012).
Such algorithms output an occlusion mask together with the optical flow.

(a) Ωt−1 (b) Ωt (c) 1st step applied on
Ωt−1

(d) 2nd step applied
on Ωt−1

Figure D.1: The proposed two-step occlusion handling. For clarity, we show only
the processing related to the forward optical flow from Ωt−1 to Ωt. Figures (a)
and (b) show two consecutive frames. (c) shows the selection result of the first
step described in Section D. (d) shows the selection result after the second step
described in Section D. Figure 11.3 shows the output without and with occlusion
handling respectively.
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Many optical flow algorithms however, do not provide occlusion masks. To
be able to work with such optical flows, we describe a simple method to
detect occlusions. Any other occlusion detection method could be used
instead.

First step, the detection of potentially occluded regions

Let us consider two adjacent frames t−1 and t. In an ideal case the forward
optical flow from t − 1 to t should map points in t − 1 that exist in t, to
their corresponding location in t. Occluded points at t − 1, do not have
a correspondence at t, and therefore an ideal optical flow should not be
defined at these locations. The same applies for the backward optical flow.

In practice, most optical flow algorithms compute a dense correspondence
from one frame to another. Thus we have a forward dense mapping from
t−1 to t given by the forward optical flow as ϕft−1 : Ωt−1 → Ωt, as ϕft−1(x) =
(x+vf (x, t−1), t). Similarly, we have a backward dense mapping at t given
by the backward optical flow, ϕbt : Ωt → Ωt−1.

We will focus in the following on the forward mapping. An analogous dis-
cussion holds for the backward mapping.

For a given x ∈ Ωt, we consider a neighborhood Qx ⊂ Ωt given by Qx =
x+ (−1, 1)2. We denote by [ϕft−1]−1(Qx) = {z ∈ Ωt−1 : ϕft−1(z) ∈ Qx} the

pre-image of Qx under the forward mapping ϕft−1. Note that this set is also

defined even when ϕft−1 is not invertible. We define the forward area as

Aft−1(Qx) :=

∫
[ϕft−1]−1(Qx)

dz.

To compute this integral, we extend the discrete mapping ϕft−1 to a contin-
uous spatial domain using a bi-linear interpolation.

If Qx is not being occluded nor dis-occluded from t−1 to t, then [ϕft−1]−1 is
a well defined function on Qx. That is, every point in Qx has a unique pre-
image by the forward mapping ϕft−1. Furthermore, for a locally translational

flow ϕft−1 we can expect Aft−1(Qx) to be close to the area of Qx, given by
A(Qx) =

∫
Qx

dz. In the case of Qx = x+ (−1, 1)2 we have A(Qx) = 4.

Based on the comparison between Aft−1(Qx) and A(Qx) we will define po-
tentially occluded regions to be further examined. We add a small margin
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of ε = 0.5 to the comparison, to avoid marking all pixels as potentially
occluded. We consider two cases:

1. Aft−1(Qx) > A(Qx) + ε: There is an excess of points mapped into

Qx by ϕft−1. This situation may arise when there is an occlusion
from frame t − 1 to t, causing several points in Ωt−1 to be mapped
forward into the same location at frame t. Some of them are be-
ing occluded, whereas others remain visible. Therefore, we mark all
pixels in [ϕft−1]−1(Qx) as candidates for occluded regions, for fur-
ther examination. Note that there may be other reasons for which
Aft−1(Qx) > A(Qx)+ε, for example in the case of a zoom out. In this
first step, we treat all of these cases equally.

2. Aft−1(Qx) < A(Qx) − ε: Few points are mapped by ϕft−1 into Qx.
This may occur if Qx lies in an region that has been dis-occluded
from t − 1 to t. If this is the case, some points in Qx at frame t,
do not have a correspondence in t − 1, and we mark points in Qx as
candidates for dis-occluded regions (or occluded when looking from t
to t− 1). Their backward optical flow will be examined in the second
step. Note that the forward flows arriving at the dis-occluded region
might be as well wrong (no point in t−1 should have a correspondence
in a dis-occluded region at t). Thus we also mark them as candidates
for further examination.

The same process is then applied considering the backward area mapped
into frame t− 1 from t by the backward optical flow.

Figure D.1c shows an example output of the above discussed first-step oc-
clusion detection.

Remark. A more general method for detecting occlusion candidates can be
derived based on the consistency between the forward and backward optical
flows Alvarez et al. (2007). In addition to the forward area Aft−1(Qx), one
could also define the backward area as

Abt(Qx) :=

∫
ϕbt(Qx)

dz.

For an ideal optical flow, the forward and backward areas should be equal.

In an ideal case, the forward and backward flows are symmetrical (see for
instance Alvarez et al. (2007)). Thus, the area of the pre-image of Qx
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under the forward flow (Aft−1(Qx)) and the area of the image of Qx under
the backward flow (Abt(Qx)) should be equal. Therefore, differences between
these areas could be considered as evidence of occlusions or dis-occlusions.
Cases 1 and 2 in the above discussion apply, using Abt(Qx) instead of A(Qx).
In practice, for the sequences we used, both approaches behave similarly.

Second step, the categorization into occluded and still
visible regions

As a result of the first step, we have for each frame t two sets Cft , C
b
t ⊂ Ωt of

potentially occluded pixels. If a pixel x belongs to Cft , then its correspond-

ing position at Ωt+1, given by the forward optical flow ϕft (x) = x+vf (x, t),
might be occluded. Similarly, for a pixel x ∈ Cbt , its corresponding back-
ward position ϕbt(x) = x+ vb(x, t) in Ωt−1 might be occluded. In the first
step, all the analysis has been done based on the properties of the mapping
between two frames, without considering the visibility of a pixel in the next
frame. In this second step we try to determine which pixels in Cft and Cbt
are occluded and which are still visible. In what follows we describe this
procedure for Cft . The same applies to Cbt .

We base our occlusion detection on the error between a patch from frame t
centered at x ∈ Cft and its corresponding patch at frame t+ 1, centered at
x + vf (x, t). We will denote by pu(x, t) the patch at (x, t). We define the
patch error as the squared L2 distance between corresponding patches:

ef (x) = ‖pu(x, t)− pu(x+ vf (x, t), t+ 1)‖2 =∑
h∈Ωp

(u(x+ h, t)− u(x+ vf (x, t) + h, t+ 1))2, (D.1)

where Ωp ⊂ Z2 denotes the patch domain (a square neighborhood of 0 ∈ Z2

in our case).

To detect occluded regions we threshold ef . However, setting a constant
threshold that is not input sensitive might lead to undesired results. For
that, we set a dynamic threshold adapted to each image pair. Therefore,
we pose the occlusion detection as the following statistical test:

H0: the point at (x, t) is not occluded at t+ 1

H1: the point at (x, t) is occluded at t+ 1 .
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As the statistic for the test we consider the patch error ef , (we assume patch
errors at different pixels to be independent). We estimate a statistical model
for H0 by constructing a histogram of patch errors using the unlabeled
points Sft \ C

f
t .

Based on this histogram, we compute a threshold τ ft > 0 by fixing the false

alarm rate α ∈ [0, 1], i.e. τ ft such that P (ef > τ ft |H0) < α. In this way
we compute an adaptive threshold for each frame transition. Patch errors
above the threshold are considered as occluded. Let us mention that this
test is designed not to be tolerant to false negatives (i.e. occluded pixels
that have passed the test and been categorized as not occluded). Because
of that, it is bound to allow for some false positives (i.e. pixels that are not
occluded being categorized as occluded). In practice this over-estimation
does not affect the quality of the result.

After applying this second step, for each frame in the sequence, the occlusion
detection scheme yields two sets
Kf
t ,K

b
t ⊂ Ωt of forward and backward occluded pixels.

Figure D.1d shows an example output of the above discussed second-step
occlusion detection.





Appendix E

The Euler-Lagrange equation

Throughout the rest of the paper, we assume that O is a subset of ΩT =
Ω× [0, T ] with Lipschitz boundary. Then the unit normal is defined almost
everywhere on ∂O with respect to the Hausdorff measure H2 (surface mea-
sure) on ∂O. Let us denote by νO = (νOx , ν

O
t ) the outer unit normal to ∂O

(a vector in the unit sphere of R3) and νOt the outer unit normal to ∂Ot (a
vector in the unit circle of R2).

Let us compute the Euler-Lagrange equations associated to the energy

Eκ,λ(u) =

∫
O

(
1

2
‖κ(x, t)∇∂vu(x, t)‖2 +

λ

p
‖∇u(x, t)‖p

)
dxdt, (E.1)

where λ ≥ 0 and p = 1, 2. For that, assume that u : O → R is a minimum of
Eκ,λ. To compute the Euler-Lagrange equations, we consider a perturbation
ū such that Eκ,λ(ū) <∞. Since u is a minimum of Eκ,λ we have

lim
ε→0+

Eκ,λ(u+ εū)− Eκ,λ(u)

ε
=

∫
O
κ∇∂vu · κ∇∂vū dxdt

+ λ

∫
O
ξ ·∇ūdx dt = 0,

where, when λ > 0 and p = 1, ξ : O → R2 is a measurable vector field such
that ‖ξ‖∞ ≤ 1, ξ ·∇u = |∇u|, and the arguments (x, t) of the functions
are omitted for simplicity. If λ > 0 and p = 2, then ξ = ∇u. Integrating
by parts we have

0 =

∫
O
κ∇∂vu · κ∇∂vū dxdt+ λ

∫
O
ξ ·∇ūdx dt
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=

∫
O
∂∗v∇∗(κ2∇∂vu)ū dxdt+ λ

∫
O
∇∗ξ ūdx dt

+

∫
∂O

∇∗(κ2∇∂vu)(νOt + v · νOx )ū dH2 + λ

∫ T

0

∫
∂Ot

ξ · νOt ūdH1dt

+

∫ T

0

∫
∂Ot

κ2∇∂vu · νOt∂vū dH1dt,

where dH2, resp. dH1, denotes the surface measure in ∂O, resp. the length
measure in ∂Ot. We have denoted by ∇∗ (resp. ∂∗v) the adjoint operator,
that is ∇∗b = −div b for any vector field b : O → R2 (resp. ∂∗vψ = −∂ψ

∂t −
div (vψ), for any function ψ : O → R). By taking test functions that vanish
in a neighborhood of the boundary we have ū = 0, ∂vū = 0 on ∂O and we
deduce that

∂∗v∇∗(κ2∇∂vu) + λ∇∗ξ = 0 in O.

Introducing this in the above expressions we get∫
∂O

∇∗(κ2∇∂vu)(νOt + v · νOx )ū dH2

+λ

∫ T

0

∫
∂Ot

ξ · νOt ūdH1dt

+

∫ T

0

∫
∂Ot

κ2∇∂vu · νOt∂vū dH1dt = 0

(E.2)

and this holds for any admissible perturbation ū that will be clarified below.

Let us discuss the boundary conditions that can be specified for the problem.
We use the definition and notations given in Section 10.3. A set of natural
boundary conditions are those for which the identity (E.2) holds. Let us
discuss the possible choices.

Dirichlet boundary conditions. Dirichlet boundary conditions for u can be
specified on a given set A ⊂ ∂O if λ > 0 or on a subset A ⊂ ∂O \ ∂Otang if
λ = 0. Namely we can specify

u(x, t) = u0(x, t) (x, t) ∈ A. (E.3)

If u satisfies (E.3) and we take test functions ū such that ū = 0 on A, then
u+ εū satisfies (E.3) and the first and second integrals in (E.2) vanishes on
A.
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Observe that, since ∂O is Lipschitz,

{(x, t) : x ∈ ∂Ot, t ∈ (0, T )} = ∂Otang ∪ ∂Oobli,

where strictly speaking this equality holds modulo null sets with respect to
the surface measure.

Specifying ∂vu on the boundary. We can specify ∂vu on a given subset of
{(x, t) : x ∈ ∂Ot, t ∈ (0, T )}. Namely we can specify

∂vu(x, t) = g0(x, t) (x, t) ∈ B ⊂ ∂Otang ∪ ∂Oobli. (E.4)

If u satisfies (E.4) and we take test functions ū such that ∂vū = 0 on
B ⊂ ∂Otang ∪ ∂Oobli, then u + εū satisfies (E.4) and the third integral in
(E.2) vanishes on B.

Specifying other boundary conditions. We can specify the boundary condi-
tion at (x, t) ∈ A′ ⊂ ∂O

∇∗(κ2∇∂vu)νO · (v, 1) + λξ · νOt = 0 (E.5)

with the convention that ξ · νOt = 0 if (x, t) ∈ ∂Overt ∪O0 ∪OT . Then the
sum of the first and second integrals in (E.2) vanishes on A′.

Notice that if λ = 0, (E.5) reduces to

∇∗(κ2∇∂vu)νO · (v, 1) = 0 (E.6)

and is trivially satisfied if (x, t) ∈ ∂Otang since in that case νO · (v, 1) = 0.
That is, this gives no boundary condition at points (x, t) ∈ ∂Otang. Thus,
when λ = 0 we can only impose (E.6) on subsets A′ ⊂ ∂O \ ∂Otang.

If λ > 0, we can impose (E.5) on any subset A′ ⊂ ∂O, understanding that
it reduces to

ξ · νOt = 0. (E.7)

Specifying κ2∇∂vu ·νOt = 0 on the boundary. We can specify the boundary
condition at (x, t) ∈ B′ ⊂ ∂Otang ∪ ∂Oobli

κ2∇∂vu · νOt = 0.

Then the second integral in (E.2) vanishes on B′.
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Depending on the problem we choose a set of boundary conditions. The
only requirements are that

A ∪A′ = ∂O if λ > 0, or A ∪A′ = ∂O \ ∂Otang if λ = 0,

and
B ∪B′ = ∂Otang ∪ ∂Oobli.

This implies that the identity (E.2) holds.

Boundary conditions for the one-lid setting. In the context of the one-lid
problem, we choose the set of boundary conditions

u(x, 0) = u0(x, 0), x ∈ O0, (E.8)

u(x, t) = u0(x, t), (x, t) ∈ ∂Overt, (E.9)

∂vu(x, t) = g0(x, t) , (x, t) ∈ ∂Otang \ ∂ΩT , (E.10)

u(x, t) = u0(x, t)

∂vu(x, t) = g0(x, t)
, (x, t) ∈ ∂Oobli \ ∂ΩT , (E.11)

to which, when λ > 0, we add

u(x, t) = u0(x, t) (x, t) ∈ ∂Otang \ ∂ΩT , (E.12)

where the videos u0 and g0 are given. Notice that the boundary condition
(E.12) is interpreted classically if p = 2 and it has to be interpreted in a
relaxed sense if p = 1. This is discussed with more detail in Sadek et al.
(2012).

The boundary conditions on the rest of ∂O are

∇∗(κ2∇∂vu)(x, t) = 0, x ∈ OT , (E.13)

λξ · νOt(x, t) = 0

κ2∇∂vu(x, t) · νOt(x, t) = 0
, (x, t) ∈ ∂Otang ∩ ∂ΩT , (E.14)

∇∗(κ2∇∂vu)(x, t) + λξ · νOt(x, t) = 0

κ2∇∂vu(x, t) · νOt(x, t) = 0
, (x, t) ∈ ∂Oobli ∩ ∂ΩT . (E.15)

Boundary conditions for the two-lid setting. They are given by (E.8),(E.9),(E.10),(E.11),(E.14),(E.15),
and (E.13) is replaced by

u(x, T ) = u0(x, T ) in OT . (E.16)
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Let us observe that the boundary conditions (E.8),(E.9),(E.10), (E.11), and
(E.16) in the two lid-case, are specified in the set of admissible functions in
which Eκ,λ will be minimized.

Remark. Under some assumptions on the vector field v, we can prove
existence and uniqueness of minima of Eκ,λ in a suitable class of functions
(the functional space where the energy is finite and permits to incorporate
boundary conditions). In particular, this shows that the boundary condi-
tions are sufficient to determine the solution. This is discussed in detail in
Sadek et al. (2012).





Appendix F

Analytic solutions of the
Euler-Lagrange equation

To illustrate how the prescribed boundary conditions determine the solu-
tion, we compute in this section the analytic solution of the Euler-Lagrange
equation of the continuous energy Eκ,λ with λ = 0. We consider two simple
examples, one for the one-lid setting and one for the two-lid setting.

Figure F.1: Domain and boundary conditions for a one-lid problem. The optical
flow in this example is zero.

We will consider a simple case, in which v(x, t) = 0 everywhere in Ω. In
this case the convective derivative coincides with the partial derivative with
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respect to time: ∂vu = ut. The energy is therefore

E(u) =

∫
O

(uxt(x, t))
2dxdt. (F.1)

We consider an editing domain O = {(x, t) : t ∈ [0, T ], x ∈ [a(t), b(t)]},
such as the one depicted in Figure F.1. We consider a : [0, T ] → R and
b : [0, T ] → R to be functions with a continuous bounded derivative, and
such that a(t) < b(t) for t ∈ [0, T ]. We also suppose for simplicity that a is
a strictly decreasing function, whereas b is strictly increasing.

One-lid problem

For the one-lid problem, the boundary conditions are as follows:

u(x, 0) = u0(x), x ∈ [a(0), b(0)], (F.2)

u(a(t), t) = ua(t), t ∈ [0, T ], (F.3)

u(b(t), t) = ub(t), t ∈ [0, T ], (F.4)

ut(a(t), t) = ga(t), t ∈ [0, T ], (F.5)

ut(b(t), t) = gb(t), t ∈ [0, T ]. (F.6)

The minimum of the energy can be computed by solving the Euler-Lagrange
equation:

utxxt(x, t) = 0, ∀(x, t) ∈ O (F.7)

with the following additional boundary condition, stemming from the com-
putation of the first variation:

uxxt(x, T ) = 0, x ∈ [a(T ), b(T )]. (F.8)

Let us compute the solution of the PDE (F.7). Integrating it with respect
to t, between t and T yields,

uxxt(x, t) = uxxt(x, T ) = 0, ∀(x, t) ∈ O,

the last equality is due to the Neumann boundary condition at t = T . If we
now integrate w.r.t. x, between a(t) and x we obtain

uxt(x, t) = uxt(a(t), t), ∀(x, t) ∈ O.
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We integrate again on variable x:

ut(x, t)− ut(a(t), t) =

∫ x

a(t)
uxt(a(t), t)ds = uxt(a(t), t)(x− a(t)).

If we evaluate this expression on x = b(t), we can express uxt(a(t), t) in
terms of ga and gb:

uxt(a(t), t) =
ut(b(t), t)− ut(a(t), t)

b(t)− a(t)
=
gb(t)− ga(t)
b(t)− a(t)

.

Therefore we have that

ut(x, t) = ga(t) +
gb(t)− ga(t)
b(t)− a(t)

(x− a(t)). (F.9)

As a function of x, ut(x, t) is a linear function passing through (a(t), ga(t))
and (b(t), gb(t)), i.e. the rate of illumination change is a smooth interpola-
tion of the values specified at the boundary.

To obtain the solution of the PDE we now integrate with respect to t. Let
us define the function ` : [a(T ), b(T )]→ R as

`(x) =


a−1(x) if a(T ) 6 x 6 a(0),

0 if a(0) < x < b(0),

b−1(x) if b(0) 6 x 6 b(T ).

Note that (x, `(x)) with x ∈ [a(T ), b(T )], corresponds to the “left” boundary
of O, where the value of u is specified by ua, u0 and ub. We now integrate
(F.9) on t between `(x) and t, yielding

u(x, t)− u0(x, `(x))=

∫ t

`(x)
ga(s)ds+

∫ t

`(x)

gb(s)− ga(s)
b(s)− a(s)

(x− a(s))ds.

This example demonstrates that the given boundary conditions are sufficient
to compute a minimizer of the energy. It also shows how each boundary
condition is used.

In this example, for fixed t, the illumination change rate ∂vu(x, t) = ut(x, t)
is the result of a linear interpolation between the illumination change rate
given at the boundary, ga(t) and gb(t). Once the illumination change rate is
known in the whole editing domain, the solution is computed by integrating
it along the trajectories. The temporal integration starts at `(x), the time
instant where the trajectory through (x, t) reaches a point of the boundary
where u0 is specified (including the first lid where `(x) = 0). This inte-
gration starts with u0(x, `(x)) and propagates it along the trajectory, while
accommodating for the illumination changes previously computed in ut.
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Two-lid problem

For the two-lid problem, in addition to the boundary conditions of the one-
lid problem, we add the second lid:

u(x, T ) = uT (x), x ∈ [a(T ), b(T )] (F.10)

in substitution of (F.8). We use the notation of Section F.

Let us compute the solution of

utxxt(x, t) = 0, (x, t) ∈ O. (F.11)

Observe that

O = {(x, t) ∈ Ω× [0, T ] : t ≥ `(x) x ∈ [a(t), b(t)]}.

Integrating with respect to t, we have

uxxt(x, t) = uxxt(x, `(x)) (x, t) ∈ O. (F.12)

Let us denote G(x) = uxxt(x, `(x)). Integrating again with respect to t, we
get

uxx(x, t) = uxx(x, `(x)) +G(x)(t− `(x)), (x, t) ∈ O. (F.13)

For t = T and x ∈ [a(T ), b(T )] we have

uxx(x, T ) = uxx(x, `(x)) +G(x)(T − `(x)). (F.14)

Evaluating the above expression for x ∈ [a(0), b(0)], we obtain

G(x) =
1

T
(uxx(x, T )− uxx(x, 0)) x ∈ [a(0), b(0)]. (F.15)

Integrating (F.13) with respect to x, we obtain

ux(x, t) = ux(a(t), t) +

∫ x

a(t)
uxx(s, `(s)) ds

+

∫ x

a(t)
G(s)(t− `(s)) ds.

(F.16)
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Integrating (F.16) with respect to x from a(t) to x, we obtain

u(x, t) = u(a(t), t) + ux(a(t), t)(x− a(t))

+

∫ x

a(t)

∫ y

a(t)
uxx(s, `(s)) ds dy +

∫ x

a(t)

∫ y

a(t)
G(s)(t− `(s)) ds dy

(F.17)

and integrating (F.16) from x to b(t), we obtain

u(x, t) = u(b(t), t) + ux(a(t), t)(x− b(t))

−
∫ b(t)

x

∫ y

a(t)
uxx(s, `(s)) ds dy −

∫ b(t)

x

∫ y

a(t)
G(s)(t− `(s)) ds dy.

(F.18)

Evaluating (F.17) for x = b(t) we obtain

ub(t) = ua(t) + ux(a(t), t)(b(t)− a(t))

+

∫ b(t)

a(t)

∫ y

a(t)
uxx(s, `(s)) ds dy +

∫ b(t)

a(t)

∫ y

a(t)
G(s)(t− `(s)) ds dy.

(F.19)

Using (F.14) we obtain

(t− T )

∫ b(t)

a(t)

∫ y

a(t)
G(s) ds dy = A(t), (F.20)

where

A(t) := ub(t)− ua(t)− ux(a(t), t)(b(t)− a(t))

−
∫ b(t)

a(t)

∫ y

a(t)
uxx(s, T ) ds dy.

(F.21)

Notice that by differentiating (F.3) with respect to t and using (F.5) we
obtain

ux(a(t), t) =
1

a′(t)
(u′a(t)− ga(t)). (F.22)

Similarly, we obtain

ux(b(t), t) =
1

b′(t)
(u′b(t)− gb(t)). (F.23)
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Now, taking derivatives with respect to t in (F.18) and evaluation the ex-
pression for x = b(t) we obtain

(ux(a(t), t)− ux(b(t), t)− ux(a(t), T ) + ux(b(t), T ))b′(t)

= −
∫ b(t)

a(t)
G(s)(T − `(s)) ds−

∫ b(t)

a(t)
G(s)(t− `(s)) ds.

(F.24)

Let B(t) be the left hand side of (F.24). By differentiating twice (F.20)
with respect to t, we get

G(b(t))b′(t)−G(a(t))a′(t) = Q′(t), (F.25)

where

Q(t) =
1

(t− T )b′(t)

(
A′(t)− A(t)

(t− T )

)
.

By differentiating (F.24) with respect to t, we get

G(b(t))b′(t)−G(a(t))a′(t) =
B′(t) +Q(t)

t− T
. (F.26)

From (F.25), (F.26) we get G(a(t)) and G(b(t)). Together with G(x), x ∈
[a(0), b(0)] we have G(x) for all x ∈ [a(T ), b(T )].

From (F.14) we obtain uxx(x, `(x)). Then we have all ingredient to evaluate
u(x, t) using (F.17).

This example illustrates in a simple case how the boundary conditions are
used to determine the solution in the two-lid setting.
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