
A Two-Step Algorithm for Denoising Peach Tree
Leaf Images

Abstract—In the study, we investigate and analyze different
denoising algorithms with specific application on peach tree leaf
images with mixture of Gaussian and Poisson noise. Eleven
diverse noise models and twenty-three distinct denoising filters
are reviewed in depth. We propose a novel metric function based
on three standard metrics to ensure a comprehensive evaluation
of the filters, and develop a two-step procedure from the selected
filters to reduce noise in the real image. The results demonstrated
by both the artificial and real images show the effectiveness and
viability of the approach.

Index Terms—noise, denoising, filter, Gaussian, Poisson, peach,
leaves

I. INTRODUCTION

Agriculture significantly impacts the global economy. Dig-
ital agriculture emerged as a new scientific field uses data
processing approaches to improve agricultural practice while
minimizing labor-intensive cost and environmental impact. Im-
age processing as one of the high-performance data processing
technologies, will play an important role in gaining a deeper
understanding by measuring the data, closely examining the
data, and interpreting the results. Compared to traditional
methods, image processing is more accurate and less time-
consuming in agriculture areas [1], [2].

Image noise introduces unwanted information. Therefore,
image noise processing poses a challenge in the application of
image processing technology. It is one key data preprocessing
step for any subsequent applications including tool design.
Various image denoising models have been developed. The
image denoising models are categorized into models shown
in Fig. 1 [3]–[8]. Images captures from digital cameras and
smart phones have noise originating from image sensors. The
noise is further categorized into fixed pattern noise, banding
noise, and random noise. The fixed pattern noise is from sensor
measurements, which are the stochastic nature of photon
counting. Banding noise is from a bank of analog-to-digital
(A/D) converters. Random noise is from photon emission,
intrinsic thermal and electronic fluctuations, and other sources.
In the reality, the noise distribution in camera images follows
Poisson and Gaussian distributions with intensity dependent
variance [7], [9]. The various noise modes in image processing
are listed below in Table I.

Fig. 1: The denoising categories.

TABLE I: Noise Models

Noise Model Noise Source(s)/Characteristic(s)
Gaussian Noise Noise generated by natural sources
White Noise Constant noise power spectrum

and zero auto-correlation
Fractal Noise Brownian motion

with nonstationary stochastic procedure
Salt and Pepper Noise Noisy pixel value 0 or 255
Periodic Noise Electronic interference
Quantization Noise The conversion procedure from

the analog data to digital data
Speckle Noise Coherent imaging system
Poisson Noise The statistical nature of

electromagnetic waves
Poisson-Gaussian Noise Magnetic resonance images
Gamma Noise Laser images
Raleigh Noise radar images

A. Gaussian noise model

The probability density function (PDF) is as follows.

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

where x is a variable representing the red(R), green(G),
blue(B) or gray value, σ denotes the standard deviation, and
µ represents the mean.

B. Poisson noise model

The PDF is the following.

P (x = k) =
e−λλk

k!
for k = 0, 1, 2, . . .



λ is the mean of distribution. The mean and variance of the
Poisson distribution are both equal to λ, which can be written
as:

E(x) = Var(x) = λ

The contributions of this paper include:
1) Comparative analysis of state-of-arts denoising algo-

rithms based on the real digital images noise models.
2) Propose a metric function to select the most effective

denoising algorithm.
3) Propose a two-step method to address the real image

noise
4) Application of obtained results to denoise images of the

peach tree leaves
This paper is organized as follows. In section II, twenty-three
denoising filters are reviewed with their respective formulas. In
section III, we propose a novel metric function incorporating
various metrics and real image noises. In section IV, we
propose the two-step denoising algorithms with simulations.

II. DENOISING FILTERS

Denoising filters are required for images before they are
used in applications, such as segmentation [5], [10]. Image fil-
ters are applied to reduce noise and preserve details including
edges. In this research, twenty-three denoising filters used are
discussed below. Their pros and cons are discussed in details
with their formulas.

A. Ideal frequency filter
The ideal frequency filter removes frequency with a certain

distance from the center of frequency domain. However, it has
the limitation of causing ringing artifacts [4].

H(u, v) =


1 if D(u, v) ≤ D0 − ω

2

0 if D0 − ω
2 < D(u, v) ≤ D0 +

ω
2

1 if D(u, v) > D0 +
ω
2

where u and v are the frequency coordinates, H(u, v) is the
ideal frequency filter response at (u, v), D(u, v) is the distance
between (u, v) and the cutoff frequency D0, ω is the width of
the transition region.

B. Ideal low-pass frequency filter
The ideal low-pass frequency filter in image processing

passes all low frequency components with the radius D0.
It is also subject to the limitation causing ringing artifacts.
Additionally, it has the sharp transition between the passband
and stopband [11].

H(u, v) =

{
1 if D(u, v) ≤ D0

0 if D(u, v) > D0

C. Ideal high-pass frequency filter
Compared to the ideal low-pass frequency filter, the ideal

high-pass frequency filter passes all the high-frequency com-
ponents [12]. It has the same limitation as low-pass frequency
filter.

H(u, v) =

{
0 if D(u, v) ≤ D0

1 if D(u, v) > D0

D. Ideal Notch filter

An ideal notch filter passes or rejects a narrow set of
frequencies with the center frequency (u0, v0). The frequency
centers can be more than one [13].

H(u, v) =

{
0 if D1(u, v) ≤ D0 orD2(u, v) ≤ D0

1 if otherwise

where

D1(u, v) =
[
(u− ω1/2− u0)

2
+ (v − ω2/2− v0)

2
]1/2

,

D2(u, v) =
[
(u− ω1/2 + u0)

2
+ (v − ω1/2 + v0)

2
]1/2

, and ω1 and ω2 are band width.

E. Geometric mean filter

Geometric mean filter is a non-linear filter to reduce noise.
It takes the geometric mean of the pixels in a neighbor-
hood around each pixel. It effectively reduces multiplicative
noise [14], [15].

G
′
(x, y) =

 a∏
i=−a

b∏
j=−b

G(x+ i, y + j)

 1
mn

where G
′
(x, y) is the output pixel value at position (x, y),

a,b,m,and n are the filter window sizes.

F. Median order-statistic filter

The median order-statistic filter is one non-linear filter. It re-
places each pixel value by the median value in its surrounding
area [16].

G
′
(x, y) = median {G(x+ i, y + j) : i = −a, . . . , a, j = −b, . . . , b}

G. Adaptive noise smoothing filter

The adaptive noise smoothing (ANS) filter is a nonlinear
filter used to reduce noise in an image while preserving its
edges and details [17]. One example is shown below:

h(x, y) = exp(
−d(x, y)

2
)

where h(x, y) is an ANS mask matrix coefficient.

d(x, y) =

√√√√√√
1

2
[G(x+ 1, y)−G(x− 1, y)]2+

1

2
[G(x, y + 1)−G(x, y − 1)]2



H. Adaptive median filter

The Adaptive Median Filter (AMF) is a nonlinear filter.
AMF is similar to ANS in reducing image noise while
preserving its edges and other details [18].

G
′
(x, y) =

{
zmed if zmin < z(x, y) < zmax

G(x, y) otherwise

where zmed is the median of pixels in the local window. zmin

is the minimum pixel value in the local window. zmax is the
maximum pixel value in the local window. The local window
size is adaptively increased from a minimum window size to
a maximum window size until a pixel within the window is
found whose value falls between zmin and zmax.

I. Neighborhood mean filer

The neighborhood mean file employs a modified window to
compute the mean and compare the mean and central pixel [4].
The equation is shown below.

G
′
(x, y) =



1

N

∑
(i,j)∈Sx,y

G(i, j)

if G(x, y) < (
1

N

∑
(i,j)∈Sx,y

G(i, j) + T )

G(i, j)

otherwise

where n is the number of pixels in the window, Sx,y is the
neighborhood window, and T is the threshold.

J. Harmonic mean filter

The filter operates by replacing the pixel value at each
location in the image with the harmonic mean of the pixel
values in a surrounding neighborhood [19]. The equation is
shown below.

G
′
(x, y) =

mn∑
(i,j)∈Sx,y

1
G(i,j)

K. Inverse harmonic mean filter

Inverse harmonic mean filter is a nonlinear filer. It
effectively reduces impulsive noise or salt-and-pepper
noise [4]. The equation is shown below.

G
′
(x, y) =

∑
(i,j)∈Sx,y

G(i, j)Q+1∑
(i,j)∈Sx,y

G(i, j))Q

where Q is the order of the inverse harmonic mean filter and
controls the amount of noise reduction. When Q > 0, the
filter is effective for pepper noise. When Q < 0, the filter is
effective for salt noise. When Q = 0, the inverse harmonic
mean filter reduces to the arithmetic mean filter. When Q =
−1, the inverse harmonic mean filter reduces to the harmonic
mean filter.

L. Inverse filter

The inverse filter is able to recover the original image by
undoing the blurring [20]. For the inverse filter, we have the
complex blurring function h(x, y) with the 2-D fast Fourier
transform H(u, v).

H(u, v) =

{
1

H0(u,v)
if H0(u, v) ̸= 0

0 otherwise

F (u, v) = G(u, v)×H(u, v)

G
′
(x, y) = F−1{F (u, v)}(x, y)

where G
′

is the recovering image.

M. Bilateral filter

The bilateral filter is a nonlinear image filter which smooths
the image while preserving the edges and other details [21].

G′(x, y) =

∑
(i,j)∈Sx,y

w(i, j)G(i, j)∑
(i,j)∈Sx,y

w(i, j)

where w(i, i) = ws(i, j)wr(i, j),
ws(i, j) = exp(− |i−x|2+|j−y|2

2σ2
s

)

wr(i, j) = exp(− |g(i,j)−g(x,y)|2
2σ2

r
)

σs and σr are the spatial and range standard deviations.

N. Homomorphic filter

The homomorphic filter enhances the contrast of an image
by adjusting its illumination(i(x, y)) and reflectance(r(x, y))
components [22]. r(x, y) captures edges and other details.
i(x, y) represents illumination. The equation for homomorphic
filtering isG(x, y) = i(x, y)r(x, y). In homomorphic filtering,
we first transform the multiplicative components to additive
components by moving to the log domain: ln(G(x, y)) =
ln(I(x, y)) + ln(R(x, y)). A high-pass filter (H(u, v))is ap-
plied to the image in frequency domain with the equation:
H(u, v)G(u, v) = H(u, v)I(u, v)+H(u.v)I(u.v).The homo-
morphic filter is defined as:

G
′
(x, y) = F−1H(u, v)G(u, v)

O. Morphological filter

The morphological filter is a non-linear filter with a mor-
phological operation applied to the image [23]. Four common
operations are:

• Erosion: The operation erodes away the boundaries of
objects.

• Dilation: The operation expands the boundaries and
shrinks the holes.

• Opening: The operation combines the erosion followed
by dilation. It is used to remove small objects and smooth
the boundaries of large objects.

• Closing: The operation combines the dilation followed by
erosion. It is used to fill small holes in the image.



The erosion filter is defined as:

(G⊖B)(x, y) =

{
1 if B fits G
0 otherwise

where G is the input image, B is the structuring element,
and ⊖ denotes the erosion operation.
Dilation filter is defined as:

(G⊕B)(x, y) = z|[(B̂)z
⋂

G] ⊆ G

where B̂z is the reflection of B about the origin and shift the
reflection by z.
Opening filter is defined as:

G ◦B = (G⊖B)⊕B

Closing filter is defined as:

G •B = (B ⊕B)⊖B

P. Constrained least squares Filter

Constrained least squares filter reduces noise, enhances
the quality of an image, and preserves key features and
details [24]. The transfer function in frequency domain is
the following.

G(u, v)
′
=

[
H∗(u, v)

|H(u, v)|2 + γ|P (u, v)|2

]
G(u, v)

where H(u, v) is the degradation function, H∗(u, v) is its
complex conjugate,γ is a parameter adjusted to get optimal
visual result, and P (u, v) is the Fourier transform of the
Laplacian operator p(x, y) :

p(x, y) =

 0 −1 0
−1 4 −1
0 −1 0


Q. Nonlinear complex diffusion filter

The nonlinear complex diffusion filter removes noise and
enhances details based on diffusion equation [25].

It =
dI

dt
= ∇(D(∇I)∇I)

where It is the image change with time t, ∇ is the gradient
operator, and D is the divergence operator.
D = eiθ

1+[
Im(I)

kθ ]2

where θ is a parameter that controls the amount of diffusion.
When k > 0, θ approaches zero.

R. Gabor filter

The Gabor filter enhances edges and textures in images.
It selectively passes frequencies within a certain band and
attenuates frequencies outside band [26].
The equation for the one-dimensional Gabor filter is as
follows:

G(x) =
1√
2πσ

exp

(
− x2

2σ2

)
(cos (2πw0x) + i sin (2πw0x))

where σ is the standard deviation of the Gaussian window, w0

is the center frequency.
The two-dimensional Gabor filter is defined by the following
equation.

G(x, y) =
1√

2πσxσy

exp

(
− x2

2σ2
x

− y2

2σ2
y

)
(cos (2πwx0

+ 2πwy0
x) + i sin (2πwx0

+ 2πwy0
x))

S. Wiener filter

The Wiener filter is a linear filter that minimizes the
mean squared error between the estimated signal and the
original signal. It can be applied to images with additive
noise and blurring [27]. The Wiener filter is defined as follows.

G(u, v) =
H∗(u, v)

|H(u, v)2|+ Pn(u,v)
Ps(u,v)

where H(u, v) is the Fourier transform of the point-spread
function, Ps(u, v) is the power spectrum of the signal process,
and Pn(u, v) is the power spectrum of the noise process.

T. Kuwahara filter

The Kuwahara filter reduces image noise and preserves
edges and textures. It divides the image into four non-
overlapping square regions and calculates the local mean
and variance within each region. The filtered pixel value
is then determined based on the region with the minimum
variance [28]. The output of Kuwahara filter is as follows.

ϕ (x0, y0) =
∑

i mi (x0, y0) fi (x0, y0)

fi (x0, y0) =

{
1 si (x0, y0) ⩽ sk (x0, y0) ,∀k
0 Otherwise

where i = 1, 2, 3, 4, mi is the mean value of ith local regions
centered at (x0, y0), and si is the variance.

U. Beltrami filter

For Beltrami filter, the image is embedded. For gray images,

X1 = x1

X2 = x2

X3 = I(x1 + x1)

where x1 and x2 are the space coordinates and I is the intensity
component [29].
The Beltrami flow is obtained by minimizing the area of the
image manifold.
P =

∫∫ √
gdx1dx2 where g is the metric element, given by:

g = det(G) = g11g22 − g212

V. Lucy-Richardson filter

The Lucy–Richardson filter is an iterative method for re-
covering an image blurred by a known point spread function
(PSF) [30].The equation for the Lucy-Richardson filter can be
expressed as follows:

f (k+1) = f (k) ·
[

g

(f (k) ⊗ P )
⊗ P ∗

]



where ⊗ is a 2D convolution, and P ∗ is the flipped point
spread function.

W. Non-local means (NLM) filter

The non-local means filter preserves image edges and other
important features while effectively reducing noise. It works
by averaging the pixel values in similar patches across the
image, instead of only considering local neighborhoods [31].
The equation for the non-local means filter can be represented
as follows:

NLu(x̄) =
1

C(x̄)

∫
f(d(B(x̄), B(ȳ))u(ȳ)dȳ

where d(B(x̄), B(ȳ) is the Euclidean distance between the
image patches centered at x̄ and ȳ, f is a non-increasing
function, and C(x̄) is the normalizing factor.

III. METRIC FUNCTION TO SELECT DENOISING
ALGORITHMS

In order to choose the appropriate denoising algorithms for
real images with Poisson and Gaussian distributions, three
standard metrics are considered: mean squared error (MSE),
peak signal-to-noise ratio (PSNR), and structural similarity
index measure(SSIM). These three standard metrics are used
to evaluate the performance of denoising algorithms.

A. Mean squared error

Mean squared error is a metric used to evaluate the perfor-
mance of a denoising algorithm by measuring the average dis-
crepancy between the denoised image and the original noise-
free image [32]. It quantifies the average squared difference
between corresponding pixels in the two images. It provides a
quantitative measure of denoising algorithm, with lower MSE
indicating better performance. However, MSE alone does not
capture perceptual quality without considering human visual
perception, for example, changes in the structure of the image
. The equation for MSE is represented as follows:

M1 =
1

N

N∑
i=1

(G(i)− Ĝ(i))2

where, M1 represents the Mean Squared Error, N is the total
number of pixels in the image, G(i) represents the observed
pixel value, and Ĝ(i) represents the predicted value.

B. Peak signal-to-noise ratio

The peak signal-to-noise ratio measures the ratio between
the maximum possible power of a signal and the power of
the distortion introduced by the denoising algorithm [33]. The
equation for PSNR is represented as follows:

M2 = 10 · log10
(

MAX2

M1

)
where M2 represents the PSNR, and MAX denotes the
maximum possible pixel value of the image.
The PSNR is calculated as the logarithm (base 10) of the

ratio between the squared maximum possible pixel value and
MSE. The logarithmic scale is used to provide a more per-
ceptually meaningful representation of the quality difference.
Higher PSNR values indicate better quality, as they indicate a
lower level of distortion introduced by the denoising process.
However, PSNR is not always consistent with human visual
perception, and higher PSNR values do not always guarantee
better subjective image quality. When using PSNR as a metric,
it is important to consider the limitations and drawbacks, such
as its sensitivity to minor differences and inability to capture
the structural information in the image.

C. Structural similarity index measure

The structural similarity index measure is used to assess
the quality of a denoised image by comparing it to the
original noise-free image [33]. SSIM includes both the
structural information and the perceived similarity between
the images. It measures the similarity between the local
patches of the two images, considering luminance, contrast,
and structure. The SSIM index ranges between -1 and 1, with
a value of 1 indicating a perfect similarity, 0 indicating no
similarity, and -1 indicating perfect anti-correlation. SSIM is
more reliable than metrics based solely on pixel values. The
equation for Structural Similarity Index Measure (SSIM) can
be represented as follows:

S1(x, y) =
(2µxµy + C1) · (2σx,y + C2)

(µ2
x + µ2

y + C1) · (σ2
x + σ2

y + C2)

where, S1 represents SSIM, x and y are two measure windows
with size N ×N , µx and µy denote the pixel sample means,
σ2
x and σ2

y represent the standard deviations of the x and y,
respectively, σx,y represents the cross-covariance between the
x and y, C1 and C2 are constants added to stabilize the division
and avoid division by zero.

D. Metric function

Different metrics have their limitation. It is necessary to
propose a metric function to evaluate the denoising algorithms.
Based on three metrics, the general metric function is defined
as follows.

Metric = f(w1M1, w2M2, w3S1) (1)

where wi, i = 1, 2, and3 are weight values based on the actual
application.
The general procedure to deal with the noise is by comparing
the different denoising algorithms based on proposed standards
with Gaussian and Poisson distributions, and the optimal
denoising algorithm is selected, respectively. The general
procedure is shown in Fig. 2.
In the flowchart, the values of M1,M2, and S2 are normal-

ized between [0, 1] based on the formula

normalized value =
value−minimum value

maximum value−minimum value

In equation 1, w3 is adjusted to 50% due to the similarity
between metrics MSE and PSNR. A value of f = 1 represents



Fig. 2: The selection of denoising algorithm based on value f

perfect similarity.
In the simulation sections, a peach tree leave without noise
is adopted to verify the procedure. The result is shown in
Table II. f1 is the value of f with Gaussian noise, f2 is the

TABLE II: Denoising algorithm with f values

Denoising algorithms f1 f2 fm
1 Ideal frequency filter 0.70 0.64 0.67
2 Ideal low-pass frequency filter 0.93 0.85 0.89
3 Ideal high-pass frequency filter 0.34 0.30 0.32
4 Ideal Notch filter 0.70 0.64 0.67
5 Geometric mean filter 0.79 0.97 0.88
6 Median order-statistic filter 0.49 0.46 0.48
7 Adaptive noise smoothing filter 0.82 0.74 0.78
8 Adaptive median filter 0.87 0.79 0.83
9 The neighborhood mean filter 0.87 0.79 0.83
10 Harmonic mean filter 0.75 0.96 0.85
11 Inverse harmonic mean filter 0.90 0.97 0.93
12 Inverse filter 0.24 0.21 0.22
13 Bilateral filter 0.99 0.90 0.94
14 Homomorphic filter 0.72 0.66 0.69
15 Morphological filter 0.60 0.84 0.72
16 Constrained least squares Filter 0.24 0.21 0.22
17 Nonlinear complex diffusion filter 0.85 0.78 0.81
18 Gabor filter 0.66 0.60 0.63
19 Wiener filter 0.95 0.87 0.91
20 Kuwahara filter 0.24 0.21 0.22
21 Beltrami filter 0.24 0.21 0.22
22 Lucy-Richardson filter 0.66 0.60 0.63
23 Non-local means filter 0.70 0.64 0.67

value of f with Poisson noise, fm is the mean value of f1
and f2. Based on the result, bilateral filter is identified as the
optimal denoising algorithm for the peach tree leaf with Gaus-
sian noise, and inverse harmonic mean filter (0.969858048) is
identified as the optimal algorithm with Poisson noise. The
mean value of fm is 0.65. The distribution of fm is shown in
Fig. 3, with the majority of values falling within the ranges of
[0.65, 0.72] or [0.87, 0.94].

The simulation results from a peach tree leaf are shown in
Fig. 4.

Fig. 3: The distribution of filters based on fm

IV. TWO-STEP DENOISING ALGORITHM DESIGN

Based on the simulation results from Table II, the bilateral
filter and the inverse harmonic mean filter are identified as
the optimal filters for Gaussian noise and Poisson noise ,
respectively. Based on the fm values, the inverse harmonic
mean filter, the bilateral filter, and the Wiener filter are chosen
to test the denoising effect on the images with those two types
of noise using the procedure of Fig. 5.
The simulation results for three denoising filters with their

corresponding f values are shown in Table III. The two-step
procedure can preserve image details, reduce noise artifacts,
and maintain structural integrity.
The denoising outcomes achieved for images of the peach

TABLE III: Denoising algorithms with f values and the real
image noise

Denoising algorithms f value
1 Bilateral filter 0.9420
2 Inverse harmonic mean filter 0.2836
2 Wiener filter 0.8841

tree leaf are shown in Fig. 6.

Based on obtained simulation results, two-step denoising
procedure is proposed based on the bilateral filter and Wiener
filter. Two-step denoising procedure is shown in Fig 7 on the
real image and initially validated by the artificial image.
The denoising outcome is f = 0.9449 for the artificial image,

and the figure is shown in Fig. 8.
The two-step denoising procedure is applied to the real

images. The result is shown in Fig. 9.

V. CONCLUSION

Twenty-three denoising algorithms are studied under Gaus-
sian noise and Poisson noise, which are encountered in real
images. The optimal denoising algorithm are found based on



(a)

(b)

(c)

(d)

(e)

Fig. 4: a:The image of a peach tree leaf without noise. b:
the image with Gaussian noise. c: the image with Poisson
noise. d: the image with Gaussian noise denoising with the
bilateral filter. e: the image with Poisson noise denoising with
the inverse harmonic mean filter

Fig. 5: The flow chart for the real image noise processing

each single noise with the proposed metric function based on
MSE, PSNR, and SSIM. A two-step procedure is proposed
to address the noise problem in the real image, especially for
the peach tree leaves. The result is improved compared to
noisy images, and demonstrates the effectiveness of the two-
step procedure. As part of future work, deep learning will be
integrated to enhance for the denoising procedure.
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(a)

(b)

(c)

(d)

Fig. 6: a:the image with Gaussian and Poisson noise. b: the
image with both noises after the bilateral filter denoising. c:
the image with both noises after the inverse harmonic mean
filter processing. d: the image with both noises after Wiener
filter processing

Fig. 7: The two-step denoising algorithm

Fig. 8: The image from two-step procedure



(a)

(b)

Fig. 9: a:the real image before two-step procedure. b: the real
image after two-step procedure
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