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è
MAP5 (CNRS UMR 8145) 

45, rue des Saints-P resè
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Preface

The theory in these notes was taught between 2002 and 2005 at the graduate schools

of Ecole Normale Supérieure de Cachan, Ecole Polytechnique de Palaiseau, Uni-

versitat Pompeu Fabra, Barcelona, Universitat de les Illes of Balears, Palma, and

University of California at Los Angeles. It is also being taught by Andrès Almansa

at the Facultad de Ingeneria, Montevideo.

This text will be of interest to several kinds of audience. Our teaching experience

proves that specialists in image analysis and computer vision find the text easy at the

computer vision side and accessible on the mathematical level. The prerequisites are

elementary calculus and probability from the first two undergraduate years of any

science course. All slightly more advanced notions in probability (inequalities, sto-

chastic geometry, large deviations, etc.) will be either proved in the text or detailed

in several exercises at the end of each chapter. We have always asked the students

to do all exercises and they usually succeed regardless of what their science back-

ground is. The mathematics students do not find the mathematics difficult and easily

learn through the text itself what is needed in vision psychology and the practice of

computer vision. The text aims at being self-contained in all three aspects: mathe-

matics, vision, and algorithms. We will in particular explain what a digital image is

and how the elementary structures can be computed.

We wish to emphasize why we are publishing these notes in a mathematics col-

lection. The main question treated in this course is the visual perception of geometric

structure. We hope this is a theme of interest for all mathematicians and all the more

if visual perception can receive –up to a certain limit we cannot yet fix– a fully math-

ematical treatment. In these lectures, we rely on only four formal principles, each

one taken from perception theory, but receiving here a simple mathematical defi-

nition. These mathematically elementary principles are the Shannon-Nyquist prin-

ciple, the contrast invariance principle, the isotropy principle and the Helmholtz

principle. The first three principles are classical and easily understood. We will just

state them along with their straightforward consequences. Thus, the text is mainly

dedicated to one principle, the Helmholtz principle. Informally, it states that there

is no perception in white noise. A white noise image is an image whose samples

v



vi Preface

are identically distributed independent random variables. The view of a white sheet

of paper in daylight gives a fair idea of what white noise is. The whole work will

be to draw from this impossibility of seing something on a white sheet a series of

mathematical techniques and algorithms analyzing digital images and “seeing” the

geometric structures they contain.

Most experiments are performed on digital every-day photographs, as they

present a variety of geometric structures that exceeds by far any mathematical mod-

eling and are therefore apt for checking any generic image analysis algorithm. A

warning to mathematicians: It would be fallacious to deduce from the above lines

that we are proposing a definition of geometric structure for all real functions. Such

a definition would include all geometries invented by mathematicians. Now, the

mathematician’s real functions are, from the physical or perceptual viewpoint, im-

possible objects with infinite resolution and that therefore have infinite details and

structures on all scales. Digital signals, or images, are surely functions, but with the

essential limitation of having a finite resolution permitting a finite sampling (they

are band-limited, by the Shannon-Nyquist principle). Thus, in order to deal with

digital images, a mathematician has to abandon the infinite resolution paradise and

step into a finite world where geometric structures must all the same be found and

proven. They can even be found with an almost infinite degree of certainty; how

sure we are of them is precisely what this book is about.

The authors are indebted to their collaborators for their many comments and

corrections, and more particularly to Andrès Almansa, Jérémie Jakubowicz, Gary

Hewer, Carol Hewer, and Nick Chriss. Most of the algorithms used for the exper-

iments are implemented in the public software MegaWave. The research that led

to the development of the present theory was mainly developed at the University

Paris-Dauphine (Ceremade) and at the Centre de Mathématiques et Leurs Applica-

tions, ENS Cachan and CNRS. It was partially financed during the past 6 years by

the Centre National d’Etudes Spatiales, the Office of Naval Research, and NICOP

under grant N00014-97-1-0839 and the Fondation les Treilles. We thank very much

Bernard Rougé, Dick Lau, Wen Masters, Reza Malek-Madani, and James Greenberg

for their interest and constant support. The authors are grateful to Jean Bretagnolle,

Nicolas Vayatis, Frédéric Guichard, Isabelle Gaudron-Trouvé, and Guillermo Sapiro

for valuable suggestions and comments.
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Chapter 1

Introduction

1.1 Gestalt Theory and Computer Vision

Why do we interpret stimuli arriving at our retina as straight lines, squares, circles,

and any kind of other familiar shape? This question may look incongruous: What is

more natural than recognizing a “straight line” in a straight line image, a “blue cube”

in a blue cube image? When we believe we see a straight line, the actual stimulus

on our retina does not have much to do with the mathematical representation of

a continuous, infinitely thin, and straight stroke. All images, as rough data, are a

pointillist datum made of more or less dark or colored dots corresponding to local

retina cell stimuli. This total lack of structure is equally true for digital images made

of pixels, namely square colored dots of a fixed size.

How groups of those pixels are built into spatially extended visual objects is,

as Gaetano Kanizsa [Kan97] called it, one of the major “enigmas of perception.”

The enigma consists of the identification performed between a certain subgroup of

the perceptum (here the rough datum on the retina) and some physical object, or

even some geometric abstraction like a straight line. Such identification must obey

general laws and principles, which we will call principles of visual reconstruction

(this term is borrowed from Gombrich [Gom71]).

There is, to the best of our knowledge, a single substantial scientific attempt

to state the laws of visual reconstruction: the Gestalt Theory. The program of this

school is first given in Max Wertheimer’s 1923 founding paper [Wer23]. In the

Wertheimer program there are two kinds of organizing laws. The first kind are

grouping laws, which, starting from the atomic local level, recursively construct

larger groups in the perceived image. Each grouping law focuses on a single quality

(color, shape, direction...). The second kind are principles governing the collabora-

tion and conflicts of gestalt laws. In its 1975 last edition, the gestalt “Bible” Gesetze

des Sehens, Wolfgang Metzger [Met75] gave a broad overview of the results of

50 years of research. It yielded an extensive classification of grouping laws and

many insights about more general gestalt principles governing the interaction (col-

laboration and conflicts) of grouping laws. These results rely on an incredibly rich

and imaginative collection of test figures demonstrating those laws.

1
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At about the same time Metzger’s book was published, computer vision was an

emerging new discipline at the meeting point of artificial intelligence and robotics.

Although the foundation of signal sampling theory by Claude Shannon [Sha48] was

already 20 years old, computers were able to deal with images with some efficiency

only at the beginning of the seventies. Two things are noticeable:

– Computer Vision did not at first use the Gestalt Theory results: David Marr’s

[Mar82] founding book involves much more neurophysiology than phenomenol-

ogy. Also, its program and the robotics program [Hor87] founded their hopes on

binocular stereo vision. This was in contradiction with the results explained at

length in many of Metzger’s chapters dedicated to Tiefensehen (depth percep-

tion). These chapters demonstrate that binocular stereo vision is a parent pauvre

in human depth perception.

– Conversely, Shannon’s information theory does not seem to have influenced

gestalt research as far as we can judge from Kanizsa’s and Metzger’s books.

Gestalt Theory does not take into account the finite sampled structure of digi-

tal images! The only brilliant exception is Attneave’s attempt [Att54] to adapt

sampling theory to shape perception.

This lack of initial interaction is surprising. Both disciplines have attempted to

answer the following question: how to arrive at global percepts — be they visual

objects or gestalts — from the local, atomic information contained in an image?

In these notes, we tentatively translate the Wertheimer program into a mathe-

matics and computer vision program. This translation is not straightforward, since

Gestalt Theory did not address two fundamental matters: image sampling and im-

age information measurements. Using them, we will be able to translate qualitative

geometric phenomenological observations into quantitative laws and eventually to

numerical simulations of gestalt grouping laws.

One can distinguish at first two kinds of laws in Gestalt Theory:

– practical grouping laws (like vicinity or similarity), whose aim it is to build up

partial gestalts, namely elementary perception building blocks;

– gestalt principles like masking or articulazione senza resti, whose aim it is to

operate a synthesis between the partial groups obtained by elementary grouping

laws.

See Figure 1.1 for a first example of these gestalt laws. Not surprisingly, phenomeno-

logy-styled gestalt principles have no direct mathematical translation. Actually,

several mathematical principles were probably too straightforward to be stated by

psychologists. Yet, a mathematical analysis cannot leave them in the dark. For in-

stance, no translation invariance principle is proposed in Gestalt Theory, in contrast

with signal and image analysis, where it takes a central role. Gestaltists ignored the

mathematical definition of digital image and never used resolution (for example) as

a precise concept. Most of their grouping laws and principles, although having an

obvious mathematical meaning, remained imprecise. Several of the main issues in

digital image analysis, namely the role of noise and blur in image formation, were

not quantitatively and even not qualitatively considered.
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Fig. 1.1 A first example of the two kinds of gestalt laws mentioned. Black dots are grouped to-

gether according to elementary grouping laws like vicinity, similarity of shape, similarity of color,

and good continuation. These dots form a loop-like curve and not a closed curve plus two small

remaining curves: This is an illustration of the global gestalt principle of articulazione senza resti.

1.2 Basic Principles of Computer Vision

A principle is merely a statement of an impossibility (A. Koyré). A few principles

lead to quantitative laws in mechanics; their role has to be the same in computer

vision. Of course, all computer vision algorithms deriving from principles should

be free of parameters left to the user. This requirement may look straightforward

but is not acknowledged in the Computer Vision literature. Leaving parameters to

the user’s choice means that something escaped from the modeling — in general, a

hidden principle.

As we mentioned earlier, the main body of these lectures is dedicated to the

thorough study of the consequences of Helmholtz’s principle, which, as far as we

know, receives its first mathematical systematic study here. The other three basic and

well-known principles are the Shannon sampling principle, defining digital images

and fixing a bound to the amount of information contained in them, the Wertheimer

contrast invariance principle, which forbids taking literally the actual values of gray

levels, and the isotropy principle, which requires image analysis to be invariant with

respect to translations and rotations.

In physics, principles can lead to quantitative laws and very exact predictions

based on formal or numerical calculations. In Computer Vision, our aim is to predict

all basic perceptions associated with a digital image. These predictions must be

based on parameter-free algorithms (i.e., algorithms that can be run on any digital

image without human intervention).

We start with an analysis of the three basic principles and explain why they yield

image processing algorithms.

Principle 1 (Shannon-Nyquist, definition of signals and images) Any image or

signal, including noisy signals, is a band-limited function sampled on a bounded,

periodic grid.

This principle says first that we cannot hope for an infinite resolution or an infi-

nite amount of information in a digital image. This makes a big difference between
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1-D and 2-D general functions on one side and signals or images on the other. We

may well think of an image as mirroring physical bodies, or geometric figures, with

infinite resolution. Now, what we observe and register is finite and blurry informa-

tion about these objects. Stating an impossibility, the Shannon-Nyquist principle

also opens the way to a definition of an image as a finite grid with samples, usually

called pixels (picture elements).

The Shannon-Nyquist principle is valid in both human perception and computer

vision. Retina images, and actually all biological eyes from the fly up, are sampled

in about the same way as a digital image. Now, the other statement in Shannon-

Nyquist principle, namely the band-limitedness, allows a unique reconstruction of a

continuous image from its samples. If that principle is not respected, the interpolated

image is not invariant with respect to the sampling grid and aliasing artifacts appear,

as pointed out in Figure 1.2.

Algorithm 1 Let u(x,y) be a real function on the plane and û its Fourier transform.

If Support(û) ⊂ [−π,π]2, then u can be reconstructed from the samples u(m,n) by

u(x,y) = ∑
(m,n)∈Z2

u(m,n)
sin
(
π(x−m)

)

π(x−m)

sin
(
π(y−n)

)

π(y−n)

In practice, only a finite number of samples u(m,n) can be observed. Thus, by the

above formula, digital images turn out to be trigonometric polynomials.

Since it must be sampled, every image has a critical resolution: twice the distance

between two pixels. This mesh will be used thoroughly in these notes. Consequently,

Fig. 1.2 On the left, a well-sampled image according to the Shannon-Nyquist principle. The rela-

tions between sample distances and the Fourier spectrum content of the image are in conformity

with Principle 1 and Algorithm 1. If these conditions are not respected, the image may undergo

severe distortions, as shown on the right.
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there is a universal image format, namely a (usually square or rectangular) grid

of “pixels”. Since the gray level at each point is also quantized and bounded, all

images have a finite maximum amount of information, namely the number of points

in the sampling grid (the so-called pixels = picture elements) multiplied by roughly

8 bits/pixel (gray level) or 24 bits in case of color images. In other terms, the gray

level and each color is encoded by an integer ranging from 0 to 255.

Principle 2 (Wertheimer’s contrast invariance principle) Image interpretation

does not depend on actual values of the gray levels, but only on their relative values.

Again, this principle states an impossibility, namely the impossibility of taking

digital images as reliable physical measurements of the illumination and reflectance

materials of the photographed objects. On the positive side, it tells us where to look

to get reliable information. We can rely on information that only depends on the

order of gray levels — that is to say, contrast invariant information.

The Wertheimer principle was applied in Computer Vision by Matheron and

Serra [Ser82], who noticed that upper or lower level sets and the level lines of an

image contain the shape information, independently of contrast information. Also,

because of the same principle, we will only retain the gradient orientation and not

the modulus of gradient as relevant information in images. For Matheron and Serra,

the building blocks for image analysis are given, for example, by the upper level

sets. As usual with a good principle, one gets a good simple algorithm. Wertheimer’s

principle yields the basic algorithm of mathematical morphology : it parses an im-

age into a set of sets, the upper level sets. These sets can be used for many tasks,

including shape analysis.

Algorithm 2 Let u(x,y) be a gray-level image. The upper level sets of u are defined

by

χλ (u) = {(x,y), u(x,y) ≥ λ}.

The set of all level sets {χλ , λ ∈R} is contrast invariant and u can be reconstructed

from its level sets by

u(x,y) = sup{λ , (x,y) ∈ χλ (u)}.

A still better representation is obtained by encoding an image as the set of its level

lines, the level lines being defined as the boundaries of level sets. The interpolated

digital image being smooth by the Shannon-Nyquist principle, the level lines are

Jordan curves for almost every level (see Figure 1.3).

Principle 3 (Helmholtz principle, first stated by D. Lowe [Low85]) Gestalts are

sets of points whose (geometric regular) spatial arrangement could not occur in

noise.

This statement is a bit vague. It is the aim of the present notes to formalize it. As

we will prove in detail with geometric probability arguments, this principle yields



6 1 Introduction

Fig. 1.3 Contrast invariant features deriving from Wertheimer’s principle: On the right, some im-

age level lines, or isophotes, corresponding to the gray level λ = 128. According to Wertheimer’s

principle, the level lines contain the whole shape information.

algorithms for all grouping laws and therefore permits us to compute what we will

call “partial gestalts”. A weaker form of this principle can be stated as “there is no

perceptual structure in white noise”.

In other terms, every structure that shows too much geometric regularity to be

found by chance in noise calls attention and becomes a perception. The Helmholtz

principle is at work in Dostoievsky’s The Player, where specific sequences of black

or red are noticed by the players as exceptional, or meaningful, at roulette: If a

sequence of 20 consecutive “red” occurs, this is considered noticeable. Yet, all other

possible red and black sequences of the same length have the same probability. Most

of them occur without raising interest: Only those corresponding to a “grouping

law” — here the color constancy — impress the observer. We will analyze with

much detail this example and other ones in Chapter 3. The detection of alignments

in a digital image is very close to the Dostoievsky example.

An alignment in a digital image is defined as a large enough set of sample points

on a line segment at which the image gradient is orthogonal enough to the segment

to make this coincidence unlikely in a white noise image.

The algorithm to follow is, as we will prove, a direct consequence of the three

basic principles, namely the Shannon-Nyquist interpolation and sampling principle,

Wertheimer’s contrast invariance principle, and the Helmholtz grouping principle.

It summarizes the theory we will develop in Chapters 5 and 6.

Algorithm 3 (Computing Alignments)

– Let NS be the number of segments joining pixels of the image.

– Let 0 ≤ p ≤ 1 be an angular precision (arbitrary).

– Let S be a segment with length l and with k sample points aligned at precision p.
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Fig. 1.4 Left: original aerial view (source: INRIA); middle: maximal meaningful alignments;

right: maximal meaningful boundaries.

– Then the number of false alarms of this event in a noise Shannon image of the

same size is

NFA(l,k, p) = NS

l

∑
j=k

(
l

j

)

p j(1− p)l− j.

– An alignment is meaningful if NFA(l,k, p) ≤ 1.

We will apply exactly the same principles to derive a definition of “perceptual

boundaries” and an unsupervised algorithm computing them in a digital image. The

next informal definition will be made rigorous in Chapter 9.

A perceptual boundary is defined as a level line whose points have a “large

enough” gradient, so that no such line is likely to occur in a white noise with the

same overall contrast.

Figure 1.4 shows meaningful alignments and meaningful boundaries detected ac-

cording to the preceding definitions. The notion of “maximal meaningfulness” will

be developed in Chapter 6. In addition to the Helmholtz principle, Figure 1.4 and

all experiments in the book will extensively use the exclusion principle, presented

in Chapter 6. Roughly speaking, this principle forbids a visual object to belong to

two different groups that have been built by the same grouping law. This implies,

for example, that two different alignments, or boundaries, cannot overlap. Here is

our plan.

– Chapter 1 is the present short introduction.

– Chapter 2 is dedicated to a critical description of gestalt grouping laws and gestalt

principles.

– Chapter 3 states and formalizes the Helmholtz principle by discussing several

examples, including the recognition of simple shapes, Dostoievsky’s roulette,

and alignments in a image made of dots.

– Chapter 4 gives estimates of the central function in the whole book, the so-called

“number of false alarms” (NFA), which in most cases can be computed as a tail

of a binomial law.
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– Chapter 5 defines “meaningful alignments” in a digital image and their number

of false alarms as a function of three (observed) parameters, namely precision,

length of the alignment, and number of aligned points. This is somehow the cen-

tral chapter, as all other detections can be viewed as variants of the alignment

detection.

– Chapter 6 is an introduction to the exclusion principle, followed by a definition of

“maximal meaningful” gestalts. In continuation, it is proven that maximal mean-

ingful alignments do not overlap and therefore obey the exclusion principle.

– Chapter 7 treats the most basic grouping task: how to group objects that turn

out to have one quality in common, be it color, orientation, size, or other quali-

ties. Again, “meaningful groups” are defined and it is again proved that maximal

meaningful groups do not overlap.

– Chapter 8 treats the detection of one of the relevant geometric structures in paint-

ing, also essential in photogrammetry: the vanishing points. They are defined as

points at which exceptionally many alignments meet. This is a “second-order”

gestalt.

– Chapter 9 extends the theory to one of the most controversial detection problems

in image analysis, the so-called segmentation, or edge detection theory. All state-

of-the art methods depend on several user’s parameters (usually two or more).

A tentative definition of meaningful contours by the Helmholtz principle elimi-

nates all the parameters.

– Chapter 10 compares the new theory with the state-of-art theories, in particular

with the “active contours” or “snakes” theory. A very direct link of “meaningful

boundaries” to “snakes” is established.

– Chapter 11 proposes a theory to compute, by the Helmholtz principle, clusters in

an image made of dots. This is the classical vicinity gestalt: Objects are grouped

just because they are closer to each other than to any other object.

– Chapter 12 addresses a key problem of photogrammetry: the binocular stereo

vision. Digital binocular vision is based on the detection of special points like

corners in both images. These points are grouped by pairs by computer vision

algorithms. If the groups are right, the pairs of points define an epipolar geometry

permitting one to build a line-to-line mapping from one image onto the other one.

The main problem turns out to be, in practice, the large number of wrong pairs.

Using the Helmholtz principle permits us to detect the right and more precise

pairs of points and therefore to reconstruct the epipolar geometry of the pair of

images.

– Chapter 13 describes two simple psychophysical experiments to check whether

the perception thresholds match the ones predicted by the Helmholtz principle.

One of the experiments deals with the detection of squares in a noisy environment

and the other one deals with alignment detection.

– Chapter 14 presents a synopsis of results with a table of formulas for all gestalts.

It also discusses some experiments showing how gestalt detectors could “collab-

orate”. This chapter ends with a list of unsolved questions and puzzling experi-

ments showing the limits in the application of the found principles. In particular,



1.2 Basic Principles of Computer Vision 9

the notion of “conflict” between gestalts, raised by gestaltists, has no satisfactory

formal answer so far.

– Chapter 15 discusses precursory and alternative theories. It also contains sections

about the relation between the Number of False Alarms and the classical statis-

tical framework of hypothesis testing. It ends with a discussion about Bayesian

framework and the Minimum Description Length principle.





Chapter 2

Gestalt Theory

In this chapter, we start in Section 2.1 with some examples of optic-geometric illu-

sions and then give, in Section 2.2, an account of Gestalt Theory, centered on the

initial 1923 Wertheimer program. In Section 2.3 the focus is on the problems raised

by the synthesis of groups obtained by partial grouping laws. Following Kanizsa,

we will address the conflicts between these laws and the masking phenomenon. In

Section 2.4 several quantitative aspects implicit in Kanizsa’s definition of masking

are indicated. It is shown that one particular kind of masking, Kanizsa’s masking by

texture, may lead to a computational procedure.

2.1 Before Gestaltism: Optic-Geometric Illusions

Naturally enough, the study of vision started with a careful examination by physi-

cists and biologists of the eye, thought of as an optical apparatus. Two of the most

complete theories come from Helmholtz [vH99] and Hering [Her20]. This analy-

sis naturally led to checking how reliably visual percepts related to the physical

objects. This led to the discovery of several now-famous aberrations. We will not

explain them all, but just those that are closer to our subject, namely the geometric

aberrations, usually called optic-geometric illusions. They consist of figures with

simple geometric arrangements, that turn out to have strong perceptive distortions.

The Hering illusion (Figure 2.1) is built on a number of converging straight lines,

together with two parallel lines symmetric with respect to the convergence point.

Those parallel straight lines look curved to all observers in frontal view. Although

some perspective explanation (and many others) have been attempted for this illu-

sion, it must be said that it has remained a mystery.

The same happens with the Sander and the Müller-Lyer illusions, which may

also obey some perspective interpretation. In the Sander illusion, one can see an

isosceles triangle abc (Figure 2.2(b)) inscribed in a parallelogram (Figure 2.2(a)).

In Figure 2.2(a) the segment [a,b] is perceived as smaller than the segment [b,c].
Let us attempt a perspective explanation. When we see Figure 2.2(a), we actually

11
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a b

Fig. 2.1 Hering illusion: The straight lines a and b look curved in the neighborhood of a vanishing

point.

a

b

c a

b

c

a’ c’

(a)
(b)

(c)

a

b

c

a’ c’

Fig. 2.2 Sander illusion: In (a), the segment [a,b] looks smaller than the segment [b,c]. Now, the

isosceles triangle abc is the same in (a) and (b). A perspective interpretation of (a) like the one

suggested in (c), where the parallelogram is thought of as a rectangle, might give some hint.

a b c d

(a) (b)

Fig. 2.3 Müller-Lyer illusion: The segment [a,b] looks smaller than [c,d].

automatically interpret the parallelogram as a rectangle in slanted view. In this in-

terpretation, the physical length ab should indeed be shorter than bc (Figure 2.2(c)).

A hypothetical compensation mechanism, activated by a perspective interpreta-

tion, might explain the Müller-Lyer illusion as well (Figure 2.3). Here, the segments

[a,b] and [c,d] have the same length but [a,b] looks shorter than [c,d]. In the per-
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Fig. 2.4 Zoellner illusion: The diagonals inside the square are parallel but seem to alternately

converge or diverge.

spective interpretation of these figures (where the trapezes are in fact rectangles in

perspective), [a,b] would be closer to the observer than [c,d] and this might entail a

difference in our appreciation of their size as actual physical objects.

As the Hering illusion, the Zoellner illusion (Figure 2.4) has parallel lines, but

this time they sometimes look converging and sometimes diverging. Clearly, our

global interpretation of their direction is influenced by the small and slanted straight

segments crossing them. In all of these cases, one can imagine such explanations, or

quite different ones based on the cortical architecture. No final explanation seems

for the time being to account for all objections.

2.2 Grouping Laws and Gestalt Principles

Gestalt Theory does not continue on the same line. Instead of wondering about such

or such distortion, gestaltists more radically believe that any percept is a visual illu-

sion no matter whether or not it is in good agreement with the physical objects. The

question is not why we sometimes see a distorted line when it is straight; the ques-

tion is why we do see a line at all. This perceived line is the result of a construction

process whose laws it is the aim of Gestalt Theory to establish.

2.2.1 Gestalt Basic Grouping Principles

Gestalt Theory starts with the assumption of active grouping laws in visual percep-

tion [Kan97, Wer23]. These groups are identifiable with subsets of the retina. We

will talk in the following of points or groups of points that we identify with spa-

tial parts of the planar rough percept. In image analysis we will identify them as

well with the points of the digital image. Whenever points (or previously formed

groups) have one or several characteristics in common, they get grouped and form

a new, larger visual object, a gestalt. The list of elementary grouping laws given

by Gaetano Kanizsa in Grammatica del Vedere, page 45ff [Kan97] is vicinanza,

somiglianza, continuita di direzione, completamento amodale, chiusura, larghezza
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constante, tendenza alla convessita, simmetria, movimento solidale, and esperienza

passata – that is, vicinity, similarity, continuity of direction, amodal completion, clo-

sure, constant width, tendency to convexity, symmetry, common motion, and past

experience. This list is actually very close to the list of grouping laws considered

in the founding paper by Wertheimer [Wer23]. These laws are supposed to be at

work for every new percept. The amodal completion – one of the main subjects of

Kanizsa’s books – is, from the geometric viewpoint, a variant of the good continu-

ation law. (The good continuation law has been extensively addressed in Computer

Vision, first by Montanari in [Mon71], later by Sha’Ashua and Ullman in [SU88],

and more recently by Guy and Medioni in [GM96]. An example of a Computer

Vision paper implementing “good continuation”, understood as being a “constant

curvature”, is the paper by Wuescher and Boyer [WB91]).

The color constancy law states that connected regions where luminance (or color)

does not vary strongly are unified (seen as a whole, with no inside parts). For exam-

ple, Figure 2.5 is seen as a single dark spot. The vicinity law applies when distance

between objects is small enough with respect to the rest (Figure 2.6).

The similarity law leads us to group similar objects into higher-scale objects. See

Figures 2.7 and 2.8. But probably one of the most pregnant and ancient constitution

laws is Rubin’s closure law, which leads us to see as an object the part of the plane

Fig. 2.5 With the color constancy law we see here a single dark spot rather than a number of dark

dots.

Fig. 2.6 The vicinity law entails the grouping of the dark ellipses into two different objects.

Fig. 2.7 The similarity law leads us to interpret

this image as composed of two homogeneous re-

gions: one in the center made of circles and a

peripheral one built of rectangles.

Fig. 2.8 The similarity law separates this image

into two regions with different “textures”. Con-

trarily to what happens in Figure 2.7, the shape

of the group elements (squares) is not immedi-

ately apparent because of a masking effect (see

Section 2.2.2).
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Fig. 2.9 Because of Rubin’s closure law, the interior of the black curve is seen as an object and its

exterior as the background.

T-junctions

Fig. 2.10 T-junctions entail an amodal completion and a completely different image interpretation.

surrounded by a closed contour. The exterior part of the plane is then assimilated to a

background. As can be appreciated in Figure 2.9, an illusory color contrast between

foreground and background is often perceived.

The amodal completion law applies when a curve stops on another curve, thus

creating a “T-junction”. In such a case, our perception tends to interpret the inter-

rupted curve as the boundary of some object undergoing occlusion. The leg of the

T is then extrapolated and connected to another leg in front whenever possible. This

fact is illustrated in Figure 2.10 and is called “amodal completion”. The connection

of two T-legs in front obeys the “good continuation” law. This means that the re-

created amodal curve is as similar as possible to the pieces of curve it interpolated

(same direction, curvature, etc.).

In Figure 2.10 we see first four black butterfly-like shapes. By superposing

on them four rectangles, thanks to the amodal completion law, the butterflies are

perceptually completed into disks. By adding instead a central white cross to the

butterflies, the butterflies contribute to the perception of an amodal black rectangle.

In all cases, the reconstructed amodal boundaries obey the good continuation law,

namely they are as homogeneous as possible to the visible parts (circles in one case,

straight segments in the other).

“X-junctions” may also occur and play a role as a gestalt reconstruction tool.

When two regular curves cross in an image, the good continuation law leads us to see

two overlapping boundaries and a transparency phenomenon occurs (Figure 2.11).

Each boundary may be seen as the boundary of a transparent object across which

the boundary of the other one still is visible. Thus, instead of dividing the image into
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d

b
a

c

Fig. 2.11 The transparency phenomenon in the

presence of an “X”-junction: We see two over-

lapping regions and two boundaries rather than

four: region (a) is united with (d) and region (c)

with (b).

Fig. 2.12 Two parallel curves: The width con-

stancy law applies.

Fig. 2.13 Perceptive grouping by symmetry. Fig. 2.14 White ovals on black background or

black triangles on white background? The con-

vexity law favors the first interpretation.

four regions, our perception only divides it into two overlapping regions bounded

by both curves of the “X”.

The constant width law applies to group the two parallel curves, perceived as the

boundaries of a constant width object (Figure 2.12). This law is constantly in action

since it is involved in the perception of writing and drawing.

The symmetry law applies to group any set of objects that is symmetric with

respect to some straight line (Figure 2.13).

The convexity law, as the closure law, intervenes in our decision on the figure-

background dilemma. Any convex curve (even if not closed) suggests itself as the

boundary of a convex body. Figure 2.14 strikingly evidences the strength of this law

and leads us to see illusory convex contours on a black background.

The perspective law has several forms. The simplest one was formalized by the

Renaissance architect Brunelleschi. Whenever several concurring lines appear in

an image, the meeting point is perceived as a vanishing point (point at infinity)

in a 3-D scene. The concurring lines are then perceived as parallel lines in space

(Figure 2.15).

There is no more striking proof of the strength of gestalt laws than the inven-

tion of “impossible objects”. In such images, gestalt laws lead to an interpretation

incompatible with physical common sense. Such is the effect of T-junctions in the

famous “impossible” Penrose triangle and fork (Figures 2.16 and 2.17).
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a

b

c

d

Fig. 2.15 The Y-junctions and the vanishing point d yield a 3-D-interpretation of this figure.

j

k

l

j

Fig. 2.16 The Penrose “impossible” triangle. Notice the T- and Y-junctions near the corners j,k,

and l.

Fig. 2.17 The impossible Penrose fork. Hiding the left-hand part or the right-hand part of it leads

to different perspective interpretations.

2.2.2 Collaboration of Grouping Laws

Figure 2.18 illustrates many of the grouping laws stated above. Most people would

describe such a figure as “three letters X” built in different ways.

Most grouping laws stated above work from local to global. They are of mathe-

matical nature, but must actually be split into more specific grouping laws to receive

a mathematical and computational treatment:

– Vicinity, for instance, can mean: connectedness (i.e. spots glued together) or clus-

ters (spots or objects that are close enough to each other and apart enough from

the rest to build a group). This vicinity gestalt is at work in all subfigures of

Figure 2.19.

– Similarity can mean: similarity of color, shape, texture, orientation, and so forth.

Each one of these gestalt laws is very important by itself (see Figure 2.19).

– Continuity of direction can be applied to an array of objects (Figure 2.19). Let us

add to it alignments as a grouping law by itself (constancy of direction instead of

continuity of direction).

– Constant width is also illustrated in Figure 2.19 and is very relevant for drawings

and all kinds of natural and artificial form.
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Fig. 2.18 Building up a gestalt: X-shapes. Each one is built up with branches that are themselves

groups of similar objects; the objects, rectangles or circles are complex gestalts, since they combine

color constancy, constant width, convexity, parallelism, past experience, and so forth.

Fig. 2.19 Illustration of gestalt laws. From left to right and top to bottom: color constancy +

proximity; similarity of shape and similarity of texture; good continuation; closure (of a curve);

convexity; parallelism; amodal completion (a disk seen behind the square); color constancy; good

continuation again (dots building a curve); closure (of a curve made of dots); modal completion –

we tend to see a square in the last figure and its sides are seen in a modal way (subjective contour).

Notice also the texture similarity of the first and last figures. Most of the figures involve constant

width. In this complex figure, the subfigures are identified by their alignment in two rows and their

size similarity.

– Notice in the same spirit that convexity, also illustrated, is a particularization of

both closure and good continuation laws.

– Past experience: In the list of partial gestalts that are looked for in any image, we

can have generic shapes such as circles, ellipses, rectangles, and also silhouettes

of familiar objects such as faces, cats, chairs, and so forth.

All of the above listed grouping laws belong, according to Kanizsa, to the so-

called processo primario (primary process), opposed to a more cognitive secondary

process. Also, it may of course be asked why and how this list of geometric qualities

has emerged in the course of biological evolution. Brunswick and Kamiya [BK53]

were among the first to suggest that the gestalt grouping laws were directly related

to the geometric statistics of the natural world. Since then, several works have ad-

dressed, from different viewpoints, these statistics and the building elements that

should be conceptually considered in perception theory and/or numerically used in

Computer Vision [BS96], [OF96], [GPSG01], [EG02].

The grouping laws usually collaborate to the building up of larger and larger ob-

jects. A simple object such as a square whose boundary has been drawn in black
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Fig. 2.20 Recursivity of gestalt laws: Here, constant width and parallelism are applied at different

levels in the building up of the final group not less than six times, from the smallest bricks, which

are actually complex gestalts, being roughly rectangles, up to the final rectangle. Many objects can

present deeper and more complex constructions.

with a pencil on a white sheet will be perceived by connectedness (the boundary is a

black line), constant width (of the stroke), convexity and closure (of the black pen-

cil stroke), parallelism (between opposite sides), orthogonality (between adjacent

sides), and again constant width (of both pairs of opposite sides).

We must therefore distinguish between global gestalt and partial gestalt.

A square alone is a global gestalt, but it is the synthesis of a long list of concurring

local groupings, leading to parts of the square endowed with some gestalt quality.

Such parts we will call partial gestalts. The sides and corners of the square are

therefore partial gestalts.

Notice also that all grouping gestalt laws are recursive: They can be applied first

to atomic inputs and then in the same way to partial gestalts already constituted. Let

us illustrate this by an example. In Figure 2.20 the same partial gestalt laws, namely

alignment, parallelism, constant width, and proximity, are recursively applied not

less than six times: the single elongated dots first aligned in rows, these rows in

groups of two parallel rows, these groups again in groups of five parallel horizontal

bars, these groups again in groups of six parallel vertical bars. The final groups ap-

pear to be again made of two macroscopic horizontal bars. The whole organization

of such figures is seeable at once.

2.2.3 Global Gestalt Principles

Although the partial, recursive, grouping gestalt laws do not bring as much doubt

about their definition as a computational task from atomic data, the global gestalt

principles are by far more challenging. For many of them we do not even know
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Fig. 2.21 Inheritance by the parts of the overall group direction: Each black bar has its own vertical

orientation but also inherits the overall group direction, which is horizontal.

Fig. 2.22 Tendency to structural coherence and maximal regularity: The left figure is interpreted

as two overlapping squares and not as the juxtaposition of the two irregular polygons on the right.

whether they are properly constitutive principles or an elegant way of summarizing

various perception processes. They constitute, however, the only cues we have about

the way the partial gestalt laws could be derived from a more general principle. On

the other hand, these principles are absolutely necessary in the description of the

perception process since they should fix the way grouping laws interact or compete

to create the final global percepts – that is, the final gestalts. Let us go on with the

gestalt principles list that can be extracted from [Kan97].

– Inheritance by the parts of the overall group direction (ragruppamento secondo

la direzionalita della struttura), Kanizsa, Grammatica del Vedere [Kan97] p. 54.

This is a statement that might find its place in Plato’s Parmenides: “the parts

inherit the whole’s qualities”. See Figure 2.21 for an illustration of this principle.

– Pregnancy, structural coherence, unity (pregnanza, coerenza strutturale, carat-

tere unitario, [Kan97] p. 59), tendency to maximal regularity ([Kan97] p. 60),

articulation whole/parts (in German, Gliederung), articulation without remain-

der ([Kan97] p. 65). These seven gestalt laws are not partial gestalts; in order to

deal with them from the Computer Vision viewpoint, one has to assume that all

partial grouping laws have been applied and that a synthesis of the groups into the

final global gestalts must be thereafter performed. Each principle describes some

aspect of the synthesis made from partial grouping laws into the most whole-

some, coherent, complete, and well-articulated percept. See Figure 2.22 for an

illustration of this principle of structural coherence.
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2.3 Conflicts of Partial Gestalts and the Masking Phenomenon

With the computational discussion in mind, we wish to examine the relationship

between two important technical terms of Gestalt Theory, namely conflicts and

masking.

2.3.1 Conflicts

The gestalt laws are stated as independent grouping laws. They start from the same

building elements. Thus, conflicts between grouping laws can occur and therefore

also conflicts between different interpretations. These different interpretations may

lead to the perception of different and sometimes incompatible groups in a given

figure. Here are three cases.

(a) Two grouping laws act simultaneously on the same elements and give rise to

two overlapping groups. It is not difficult to build figures where this occurs, as in

Figure 2.23. In this example, we can group the black dots and the white dots by

similarity of color. All the same, we see a rectangular grid made of all the black

dots and part of the white ones. We also see a good continuing curve with a loop

made of white dots. These groups do not compete.

(b) Two grouping laws compete and one of them wins. The other one is inhibited.

This case is called masking and will be discussed thoroughly in Section 2.3.2.

(c) Conflict: In that case, both grouping laws are potentially active, but the groups

cannot exist simultaneously. In addition, none of the grouping laws wins clearly.

Thus, the figure is ambiguous and presents two or more possible interpretations.

A large section of Kanizsa’s second chapter [Kan97] is dedicated to gestalt con-

flicts. Their study leads to the invention of tricky figures where an equilibrium is

maintained between two conflicting gestalt laws struggling to give the final figure

organization. The viewers can see both organizations and perceive their conflict. A

seminal experiment due to Wertheimer [Wer23] gives an easy way to construct such

Fig. 2.23 Gestalt laws in simultaneous action without conflict: the white dots are elements of the

grid (alignment, constant width) and simultaneously belong to a good continuing curve.
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Fig. 2.24 Conflict of similarity of shapes with vicinity. We can easily view the left-hand figure as

two groups by shape similarity: one made of rectangles and the other one of ellipses. On the right,

two different groups emerge by vicinity. Vicinity “wins” against similarity of shapes.

Fig. 2.25 A “conflict of gestalts”: Do we see two overlapping closed curves or, as suggested on

the right, two symmetric curves that touch at two points? We can interpret this experiment as a

masking of the symmetry law by the good continuation law. (From Kanizsa [Kan97] p. 195.)

conflicts. In Figure 2.24 we see on the left a figure made of rectangles and ellipses.

The prominent grouping laws are as follows: (a) shape similarity, which leads us

to group the ellipses together and the rectangles as two conspicuous groups; (b) the

vicinity law, which makes all of these elements build a unified cluster. Thus, on

the left figure both laws coexist without real conflict. On the right figure, however,

two clusters are present. Each one is made of heterogeneous shapes, but they fall

apart enough to enforce the splitting of the ellipse group and of the rectangle group.

Thus, on the right, the vicinity law dominates. Such figures can be varied by chang-

ing, for example, the distance between clusters until the final figure presents a good

equilibrium between conflicting laws.

Some laws, like good continuation, are so strong that they almost systematically

win, as is illustrated in Figure 2.25. Two figures with a striking axial symmetry are

concatenated in such a way that their boundaries are put in “good continuation”. The

result is a different interpretation where the symmetric figures literally disappear.

This is a conflict, and one with a total winner. It therefore is in the masking category.

2.3.2 Masking

Masking is illustrated by many puzzling figures, where partial gestalts are literally

hidden by other partial gestalts giving a better global explanation of the final figure.

The masking phenomenon can be generally described as the outcome of a conflict

between two grouping laws L1 and L2 struggling to organize a figure. When one

of them, L1, wins, a striking phenomenon occurs: The other possible organization,

which would result from L2, is hidden. Only an explicit comment can remind the

viewer of the existence of the possible organization under L2: The parts of the figure
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that might be perceived by L2 have become invisible, masked in the final figure,

which is perceived under L1 only.

Kanizsa considers four kinds of masking: masking by embedment in a texture;

masking by addition (the Gottschaldt technique); masking by subtraction (the Street

technique); masking by manipulation of the figure-background articulation. This

last manipulation is central in Rubin’s theory [Rub15] and in the famous Escher’s

drawings. The first technique we will consider is masking in texture. Its principle is

a geometrically organized figure embedded into a texture –that is, a whole region

made of similar building elements. This masking may well be called embeddedness

as suggested by Kanizsa in [Kan91] p. 184. Figure 2.26 gives a good instance of the

power of this masking, which has been thoroughly studied by the schools of Beck

and Juslesz [BJ83]. In this clever figure, the basis of a triangle is literally hidden in

a set of parallel lines. We can interpret the texture masking as a conflict between an

arbitrary organizing law L2 and the similarity law, L1. The masking technique works

by multiple additions embedding a figure F organized under some law L2 into many

elements that have a shape similar to the building blocks of F .

The same masking process is at work in Figure 2.27. A curve made of roughly

aligned pencil strokes can be embedded and masked in a set of many more parallel

strokes.

In the masking by addition technique due to Gottschaldt, a figure is concealed

by the addition of new elements, which create another more powerful organization.

Here, L1 and L2 can be any organizing law. In Figure 2.28, a hexagon is thoroughly

concealed by the addition to the figure of two parallelograms that include in their

sides the initial sides of the hexagon. Noticeably, the “winning laws” are the same

that made the hexagon so conspicuous before masking, namely closure, symmetry,

convexity, and good continuation.

Fig. 2.26 Masking by embedding in a texture. The basis of the triangle becomes invisible as it is

embedded in a group of parallel lines. (Galli and Zama, quoted in [Kan91]).

Fig. 2.27 Masking by embedding in a texture. On the right is a curve created from strokes by “good

continuation”. This curve is present, but masked on the left. This can be thought of as a conflict

between L2, “good continuation” and L1, similarity of direction. The similarity of direction is more

powerful because it organizes the full figure (articulazione senza resti principle).
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Fig. 2.28 Masking by concealment (Gottschaldt 1926). The hexagon on the left is concealed in

the figure on the right and still more concealed in the bottom figure. The hexagon was built by the

closure, symmetry, and convexity gestalt laws. The same laws plus the good continuation form the

winner figures. They are all parallelograms.

Fig. 2.29 Masking of circles in good continuation or conversely masking of good continuation by

closure and convexity. We do not really see arcs of circles on the left, although significant and

accurate parts of circles are present: We see a smooth curve. Conversely, we do not see the left

“good” curve as a part of the right figure. It is nonetheless present.

Fig. 2.30 Masking by the Street subtraction technique (1931), inspired from Kanizsa [Kan91]

p. 176. Parts are removed from the black square. When this is done in a coherent way, a new shape

appears (a rough cross in the second subfigure, four black spots in the last one) and the square is

masked. It is not masked at all in the third though, where the removal has been done randomly and

does not yield a competing interpretation.

As Figure 2.29 shows, L1 and L2 can reverse their roles. On the right, the curve

obtained by good continuation is made of perfect half-circles concatenated. This

circular shape is masked in the good continuation. Surprisingly enough, the curve

on the left is present in the figure on the right, but masked by the circles. Thus, on the

left, good continuation wins against our past experience of circles. On the right, the

converse occurs; convexity, closure and circularity win against good continuation

and mask it.

The third masking technique considered by Kanizsa is subtraction (Street tech-

nique) – that is, removal of parts of the figure. As is apparent in Figure 2.30, where

a square is amputated in three different ways, the technique is effective only when

removal creates a new gestalt. The square remains in view in the third figure from

the left, where the removal has been made at random and is assimilable to a random
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perturbation. In the second and fourth figure, the square disappears although some

parts of its sides have been preserved.

We should not end this section without considering briefly the last category of

masking mentioned by Kanizsa: the masking by inversion of the figure-background

relationship. This kind of masking is well known thanks to the famous Escher draw-

ings. Its principle is “the background is not a shape” (il fondo non é forma). When-

ever strong gestalts are present in an image, the space between those conspicuous

shapes is not considered as a shape, even when it has a familiar shape like a bird, a

fish, or a human profile. Again here, we can interpret masking as the result of a con-

flict of two partial gestalt laws: one building the form and the other one, the loser,

not allowed to build the background as a gestalt.

2.4 Quantitative Aspects of Gestalt Theory

In this section we open the discussion on quantitative laws for computing partial

gestalts. We shall first consider some numerical aspects of Kanizsa’s masking by

texture. We shall also make some comments on Kanizsa’s paradox and its answer

pointing out the involvement of a quantitative image resolution. These comments

lead to Shannon’s sampling theory.

2.4.1 Quantitative Aspects of the Masking Phenomenon

In his fifth chapter of Vedere e pensare [Kan91], Kanizsa points out that “it is reason-

able to imagine that a black homogeneous region contains all theoretically possible

plane figures, in the same way as with Michelangelo a marble block virtually con-

tains all possible statues.” Thus, these virtual statues could be considered masked.

This is after Vicario called Kanizsa’s paradox. Figure 2.31 shows that one can ob-

tain any simple enough shape by pruning a regular grid of black dots. In order to go

further, it seems advisable to the mathematician to make a count. How many squares

could we see, for example, in such a figure? Characterizing the square by its upper

Fig. 2.31 According to Kanizsa’s paradox, the figure on the right is potentially present in the

figure on the left and would indeed appear if we colored the corresponding dots. This illustrates

the fact that the figure on the left contains a huge number of possible different shapes.
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left corner and its side length, the number of squares whose corners lie on the grid

is roughly 400. The number of curves with “good continuation” made of about 20

points like the one drawn on the right of Figure 2.31 is still much larger. One indeed

has 80 choices for the first point and about 5 points among the neighbors for the

second point, and so forth. Thus, the number of possible good curves in our figure is

grossly 80×520 if we accept the curve to turn strongly and about 80×320 if we ask

the curve to turn at a slow rate. In both cases, the number of possible “good” curves

in the grid is huge.

This multiplicity argument suggests that a grouping law can be active in an im-

age only if its application would not create a huge number of partial gestalts. To

put it another way, the multiplicity implies a masking by texture. Masking of all

possible good curves in the grid of Figure 2.31 occurs just because too many such

curves are possible. In Figure 2.27, we can use the same quantitative argument. In

this figure the left-hand set of strokes actually invisibly contains the array of strokes

on the right. This array of strokes is obviously organized as a curve (good contin-

uation gestalt). This curve becomes invisible on the left-hand figure just because it

gets endowed in a more powerful gestalt, namely parallelism (similarity of direc-

tion). As we will see in the computational discussion, the fact that the curve has

been masked is related to another fact that is easy to check on the left-hand part

of the figure: Many curves of the same kind as the one given on the right can be

selected.

In short, we do not consider Kanizsa’s paradox a hard problem but, rather, an

arrow pointing toward the computational formulation of gestalt: We will define a

partial gestalt as a structure that is not masked in texture.

We will therefore not rule out the extreme masking case, in contradiction to

Vicario’s principle é mascherato solo ciò che può essere smascherato (masked is

only what can be unmasked). Clearly, all psychophysical masking experiments must

be close enough to the “conflict of gestalts” situation, where the masked gestalt is

still attainable when the subject’s attention is directed. Thus, psychological mask-

ing experiments must remain close to the nonmasking situation and therefore satisfy

Vicario’s principle. Yet from the computational viewpoint, Figures 2.31 and 2.27 are

nothing but very good masking examples.

In this masking issue, one feels the necessity to go from qualitative to quanti-

tative arguments since a gestalt can be more or less masked. How to compute the

right information to quantize this “more or less”? It is actually related to a precision

parameter. In Figure 2.32 we constructed a texture by addition from the alignment

drawn below. Clearly, some masking is at work and we would not notice immedi-

ately the alignment in the texture if our attention were not directed. All the same,

the alignment remains somewhat conspicuous and a quick scan may convince us

that there is no other alignment of such accuracy in the texture. Thus, in this case,

alignment is not masked by parallelism. Yet one can now suspect that this situation

can be explained in quantitative terms. The alignment precision matters here and

should be evaluated. Precision will be one of the three parameters we shall use

when computing gestalts in digital images.
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Fig. 2.32 Bottom: an array of roughly aligned segments. Above the same figure is embedded into

a texture in such a way that it still is visible as an alignment. We are in the limit situation associated

with Vicario’s proposition: “masked is only what can be unmasked”.

2.4.2 Shannon Theory and the Discrete Nature of Images

The preceding subsection introduced two of the parameters we will have to deal with

in computations, namely the number of possible partial gestalts and a precision pa-

rameter. Before proceeding to any computation, the computational nature of digital

and biological images as raw datum must be clarified. Kanizsa addresses briefly this

problem in the fifth chapter of Vedere e pensare [Kan91], in his discussion of the

masking phenomenon: “We should not consider elements to be masked, which are

too small to attain the visibility threshold.” Kanizsa was aware that the number of

visible points in a figure is finite: “non sono da considerare mascherati gli elementi

troppo piccoli per raggiungere la soglia della visibilita”. He explains in the same

chapter why this leads to working with figures made of dots. This decision can be

seen as a way to quantize geometric information.

In order to define mathematically an image – be it digital or biological – in the

simplest possible way, we just need to fix a point of focus. Assume all photons con-

verging toward this focus are intercepted by a surface that has been divided into

regular cells, usually squares or hexagons. Each cell counts its number of photon

hits during a fixed exposure time. This count gives a gray-level image – that is,

a rectangular (roughly circular in biological vision) array of gray-level values on

a grid. Digital images are produced by artificial retinas or CCD’s, which are rec-

tangular grids made of square captors. In the biological case, the retina is divided

into hexagonal cells with growing sizes from the fovea. Thus, in all cases, a digital

or biological image contains a finite number of values on a grid. Shannon [Sha48]

made explicit the mathematical conditions under which a continuous image can be

reconstructed from this matrix of values. By Shannon’s theory, one can compute

the gray level at all points, not only at the points of the grid. Of course, when we

zoom in on the interpolated image, it looks blurrier: The amount of information in a

digital image is indeed finite and the resolution of the image is bounded. The points

of the grid together with their gray-level values are called pixels, an abbreviation for

picture elements.
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Fig. 2.33 When the alignment present in Figure 2.32 is made less accurate, the masking by texture

becomes more efficient. The precision plays a crucial role in the computational Gestalt Theory

outlined in Chapter 3.

The pixels are the computational atoms from which gestalt grouping procedures

can start. Now, if the image is finite, and therefore blurry, how can we infer sure

events such as lines, circles, squares, and whatsoever gestalts from discrete

data? If the image is blurry, all of these structures cannot be inferred as com-

pletely sure; their presence and exact location must remain uncertain. This is crucial:

All basic geometric information in the image has a precision. It is well known by

gestaltists that a right angle “looks right” with some ±3 degrees precision, and oth-

erwise does not look right at all. Figure 2.32 shows it plainly. It is easy to imagine

that if the aligned segments, still visible in the figure, are slightly less aligned, then

the alignment will tend to disappear. This is easily checked with Figure 2.33, where

we moved the aligned segments slightly up and down.

Let us now say briefly which local atomic information can be the starting point

of computations. Since every local information about a function u at a point (x,y)
boils down to its Taylor expansion, we can assume that this atomic information is:

– the value u(x,y) of the gray level at each point (x,y) of the image plane. Since

the function u is blurry, this value is valid at points close to (x,y);
– the gradient of u at (x,y), the vector

Du(x,y) =

(
∂u

∂x
,

∂u

∂y

)

(x,y);

– the direction at (x,y);

dir(x) =
1

‖Du(x,y)‖

(

−∂u

∂y
,

∂u

∂x

)

(x,y).

This vector is visually intuitive since it is tangent to the boundaries one can see

in an image. This local information is known at each point of the grid and can

be computed at any point of the image by Shannon interpolation. It is quantized,

having a finite number of digits, and therefore noisy. Thus, each one of the preceding

measurements has an intrinsic precision. The direction is invariant when the image

contrast changes (which means that it is robust to illumination conditions). Bergen

and Julesz [BJ83] refer to it for shape recognition and texture discrimination theory.
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Gray level, gradient, and direction are the only local information we will retain for

the numerical experiments in the next chapters, together with their precisions.

The aspects of Gestalt Theory that will be mathematically modeled in this book

are the definition and the detection of partial gestalts such as alignment, similarity

of a scalar quality (gray level, orientation, length, etc.), contrasted edges, vanishing

points, and vicinity. We will see that a common framework (called a-contrario1 de-

tection method) can be used for all partial gestalts, but that each one of them will

require a specific treatment. At the end of the book, in Chapter 14, we will present

a synopsis of results with a table of formulas for all partial gestalts. It will also dis-

cuss some experiments showing how partial gestalt detectors could “collaborate”.

We will end this chapter with a list of unsolved questions and puzzling experiments

showing the limits in the application of the found principles. In particular, the no-

tion of “conflict” between gestalts, raised by gestaltists, has no satisfactory formal

answer so far.

2.5 Bibliographic Notes

This chapter is in the form of a quick review of Gestalt Theory and contains many

references. Its plan and many ideas and figures come from [DMM04] and the papers

of J.-P. d’Alès, J. Froment and J.-M. Morel [dFM99], and J. Froment, S. Masnou,

and J.-M. Morel [FMM98].

2.6 Exercise

2.6.1 Gestalt Essay

In this informal but important exercise, you are asked to write a gestalt commentary

of the enclosed image (Figure 2.6.1). Actually any photograph can be chosen for

performing the same task. The point is to forget about the meaning of the photograph

and do perceptual introspection about what elementary gestalts are really perceived.

It may be useful to put the photograph upside down to get a more abstract view of it.

1) Make an exhaustive list of all elementary gestalts you see in the image: curves,

boundaries, alignments, parallelism, vanishing points, closed curves, convex curves,

constant width objects, empirically know shapes (such as circles of letters), and

symmetries.

2) Find T-junctions, X-junctions, and subjective contours.

1 Because of our specific usage of the Latin expression a contrario, we choose to write it

“a-contrario” whenever it is used as an adjective.
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Fig. 2.34 A gestalt essay on this picture?

3) Discuss conflicts and masking effects between elementary gestalts as well as the

figure-background dilemmas occurring in this photograph.

4) Point out the many cases where gestalts collaborate to build up objects.

Discuss



Chapter 3

The Helmholtz Principle

The Helmholtz principle can be formulated two ways. The first way is common-

sensical. It simply states that we do not perceive any structure in a uniform random

image. In this form, the principle was first stated by Attneave [Att54]. This gestaltist

was to the best of our knowledge the first scientist to publish a random noise dig-

ital image. This image was actually drawn by hand by U.S. Army privates using a

random number table. In its stronger form, of which we will make great use, the

Helmholtz principle states that whenever some large deviation from randomness

occurs, a structure is perceived. As a commonsense statement, it states that “we im-

mediately perceive whatever could not happen by chance”. Our aim in this chapter is

to discuss several intuitive and sometimes classical examples of exceptional events

and their perception. We will see how hard it can be to calculate some rather sim-

ple events. This difficulty is solved by introducing a universal variable adaptable to

many detection problems, the Number of False Alarms (NFA). The NFA of an event

is the expectation of the number of occurrences of this event. Expectations are much

easier to compute than probabilities because they add. After we have treated three

toy examples in Section 3.1, we will define in Section 3.2 what we call ε-meaningful

events, namely events whose NFA is less than ε . This notion is then applied to a first

realistic problem: the dot alignment detection in an image.

3.1 Introducing the Helmholtz Principle: Three Elementary

Examples

3.1.1 A Black Square on a White Background

Assume two scholars are looking at a picture of, say, 100×100 size, namely 10,000

pixels. Assume the figure contains somewhere a 10 × 10 black square; all other

pixels are white (see Figure 3.1). Common sense tells us that such a figure could not

arise just by chance: We are “sure” that this organization corresponds to an intention;

somebody drew a square there and this is why we see it. Now, the obvious intuition

31
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Fig. 3.1 A grid of size 100×100 containing a 10×10 square of blackened pixels; all other pixels

are white. The probability of this particular configuration is 2−10,000, assuming that the pixels are

independent and black or white with probability 1/2.

that, for example, white noise cannot generate the black square must be quantified. It

is actually possible that a white noise generates a black square, particularly if we are

allowed to repeat the same experiment many times. As the following dialogue will

show, there are many difficulties to overcome before we can “prove” the existence

of the square as a meaningful event. Our dialogue takes place between a sceptic and

an enthusiast. The enthusiast is sure that he sees a square and that its existence can

be proven by probabilistic arguments. The sceptic will try to find, and will succeed

in finding, many objections.

— Sceptic: “You think you see a square; but, all I see is a set of white or black

pixels. They just fell together by chance and built this square just by chance.”

— Enthusiast: “Anybody looking at a picture and knowing what a square is will

claim “This is a square”. Now, why are they so sure? Since you talk about chances,

let us interpret their decision in a probabilistic way: Assume indeed that the pixels

are white or black just by chance. Assume black and white have a probability of

1/2. Then the probability of the black square appearing is just (1/2)10,000 that is,

about 10−3000. Thus, the event is very, very, very unlikely.”

— Sceptic: “Your calculation is wrong: I never said that the probabilities for white

and black are equal. Any Bernoulli distribution is possible.”

— Enthusiast: “Well, I am pretty sure you remember enough of your Feller reading

to acknowledge that when 10,000 samples have been observed, 100 of which were

black and 9900 white, then the probability of a pixel being black is likely to be close
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to 1/100, is not true? So, the probability of the square happening just by chance is

just about (1/100)100(99/100)9900 and it’s still very small.”

— Sceptic: “I concede that whatever probability p for the black you assume, the

probability of the observed square is p100(1− p)9900 and therefore very small. But

you’ve made a beginner’s mistake. You know very well that probabilities must be

calculated a priori. So you are not allowed to compute a posteriori the probability

that particular square happened. You indeed ignored a priori where and what it was.”

— Enthusiast: “I knew you would raise this objection! But it’s easily fixed. I won’t

compute the probability of that particular square happening, but the probability of

any square happening! Let us call k the square’s side. Let’s call (x,y) the position

of its top-left corner: There are (100− k + 1)2 possible positions for this corner.

Since all square events are disjoint, I can compute the probability that “some square

appears somewhere in the image” and this number will be very small anyway. You

will agree that the events “a square of side-length k appears at position (x,y)” are all

disjoint when k varies. So I can just sum up their probabilities and I get

P(any square happening) =
k=100

∑
k=1

(100− k +1)2 pk2

(1− p)10,000−k2

.

With p = 1/100, you’ll agree it’s a very small number anyway.”

— Sceptic: “Ha! The more complicated you make it, the more objections you’ll

have. First of all, p depends on k. Are you forgetting that p is just an a posteriori

estimate of the chances of a pixel being black, drawn from actual observation?”

— Enthusiast: “Well, all right then. Let’s take the “unbiased estimate” of p. It’s

pk = k2/10,000. We can just replace p by pk in my formula. And the sum is still

very, very small.”

— Sceptic: “No, it’s not! Let’s see... the largest term must be the first one. It’s

104 × 10−4(1− 10−4)9999 ≈ e−1 ≥ 1/3. Do you call 1/3 very small? Forget about

your complicated formulas and use your own common sense if you have any left: If

you are observing a single black pixel, are you allowed to call it a square? A dot has

no shape.”

— Enthusiast: “I went too far, I confess. But there must be a minimal size above

which we are sure we see a square. So, I propose finding the minimal size k above

which we are sure we see a square. My feeling is that if k exceeds, say 10, we are

already sure we see a square. This is common sense as you call it! So I claim that

the following number is very small for kmin ≥ 10:

P(any square happening of size larger than kmin)

=
k=100

∑
k=kmin

(100− k +1)2 pk2

kmin
(1− pkmin

)10,000−k2

.”
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— Sceptic: “I’m sure you agree this computation isn’t quite convincing: to start

with, p is assumed to depend upon k, as p(k) = k2/10,000. So you cannot fix a

single kmin. Clearly, kmin depends on k. Now I’ll be fair: There might be something

out there. This probability you propose is indeed very small. What do you say to my

next objection: The square is nothing special in your computations. You could do

the same computations about any configuration of black pixels. So whatever random

image might be presented to me, I can, by your very same computations, claim that

its probability was a priori very low and deduce that I see something exceptional.

Let me be more specific: Any realization of white noise has an equally low proba-

bility! In the case p = 1/2, all configurations have probability 2−10,000. So any one

of them is “exceptional” along your line of thought since it has this low probability.

All the same, one of them will occur. Since there are 210,000 possible configura-

tions, the sum of their probabilities is 1. So the event of “one of these exceptional

configurations occurring” has probability 210,000 ×2−10,000 = 1. No surprise there!”

— Enthusiast: “Hm, You know what? This objection poses a real problem and all

the other ones were mere child’s play. So I feel forced to enlarge and simplify my

model. You’ll agree that we do not usually recognize shapes in a white noise image.

What I claim is this: The number of shapes known to humans is limited. Let us

say there are as many objects as words in a good dictionary, namely 105. Let’s

assume 1010 aspects of the same object due to different pauses and ways it was

built, angles of view, and so forth. Let’s allow also for 103 different ways light can

be shed on the same object. This means that the number of all possible black and

white silhouettes of all world objects is about 1018. All the same, this number is very

small with respect to 210,000. So, if we see the silhouette of a known object inside

our 100× 100 image, we’ll immediately recognize it. The probability of each one

of the familiar silhouettes occurring is 2−10,000, so the probability of any one of the

silhouettes occurring is less than 2−10,000.1018 which is again a very small number.

So, you see, I stand my ground, since a 10×10 black square simply is one of those

familiar silhouettes.”

— Sceptic: “As the French say, vous vous échappez par les branches. We were

talking about a square, and all of a sudden you start talking about all shapes in

the world and making fantastic estimates about their number. I really don’t think

we’re on the same page!”

3.1.2 Birthdays in a Class and the Role of Expectation

Black squares on a white background are a tough and abstract subject. So let us

return to a more familiar problem: the classical problem of shared birthdays in a

class. Is it surprising that two alumni have the same birthday in a class of 30? And

if not, would it be surprising to observe three alumni having the same birthday?

Even such a simple situation can be formalized in different ways, depending on the

various answers we may put forth.
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We have looked at a class of 30 students. Let us assume that their birthdays

are independent and uniformly distributed variables over the 365 days of the year.

We call, for 1 ≤ n ≤ 30, Cn the number of n-tuples of students in the class having

the same birthday (this number is computed exhaustively by considering all possible

n-tuples. If, for example, students 1, 2, and 3 have the same birthday, then we count

three pairs (1,2), (2,3), and (3,1)). We also consider Pn, the probability that there

is at least one n-tuple with the same birthday and pn, the probability that there is at

least one n-tuple and no (n + 1)-tuple. In other terms, Pn is the probability of the

event “Cn ≥ 1”, that is, “there is at least one group of n alumni having the same

birthday” and pn the probability of the event “the largest group of alumni having the

same birthday has cardinality n”. We are primarily interested in the evaluation of Pn

and of the expectation ECn as good indicators for the exceptionality of the event.

Proposition 1 The probability that no two alumni have the same birthday in a class

of 30 is (365×364× . . .×336)/(36530) ≈ 0.294. The probability that at least two

alumni were born on the same day therefore is

P2 ≈ 0.706.

Proof — Number the alumni from 1 to 30. Given any date among the 365 possible,

the probability that alumnus 1 has this birthday is 1/365. So the probability that

alumnus 2 has the same birthday as alumnus 1 is 1/365. The probability that their

birthdays differ therefore is 1−1/365 = 364/365. In the same way the probability

that alumnus 3 has a birthday different from alumni 1 and 2 is 1−2/365 = 363/365.

Since the birthdays are supposed independent (no twins in the class), we arrive at

the expected result. �

At this point, we notice that without a computer, we would have been in some

pain to compute a good approximation of this probability. There is, however, another

way to demonstrate the likeliness of two alumni having the same birthday. As usual,

when a probability is difficult to compute, we may compute an expectation. By the

Markov inequality, expectations give hints on probabilities.

Proposition 2 The expectation of the number of pairs of alumni having the same

birthday in a class of 30 is EC2 = 30×29
2×365

≈ 1.192. The expectation of the number

of n-tuples is ECn = 1
365n−1

(
30
n

)
. By an easy calculation, EC3 ≈ 0.03047 and EC4 ≈

5.6×10−4.

Proof — Enumerate the students from i = 1 to 30 and call Ei j the event “students i

and j have the same birthday”. Also, call χi j =1Ei j
. Clearly, P(Ei j) = Eχi j = 1/365.

Thus, the expectation of the number of pairs of students having the same birthday is

EC2 = E

(

∑
1≤i< j≤30

χi j

)

= ∑
1≤i< j≤30

Eχi j =
30×29

2

1

365
≈ 1.192.

The general formula follows by analogous reasoning. �

“On the average”, we can expect to see 1.192 pairs of alumni with the same

birthday in each class. Unfortunately, this information is a bit inaccurate, since the



36 3 The Helmholtz Principle

large number of pairs on the average could be due to exceptional cases where one

observes a lot of pairs. We only know by Markov inequality that P2 ≤ EC2. The

situation would be quite different if ECn were small. In that case, an estimate on

ECn will give us a “cheap” estimate on Pn. This is what we get from the estimates

of EC3 and EC4. Both tell us immediately that triplets or quadruplets are not likely.

They also yield an estimate of P3 and P4 from above. How good that estimate is can

be derived from the following results (see Exercise 3.4.1 at the end of the chapter).

p2 =
1

36530

15

∑
i=1

[

∏i−1
j=0

(
30−2 j

2

)

i!

29−i

∏
k=0

(365− k)

]

≈ 0.678

and, after a brave computation, P3 ≈ 0.0285. In the same way,

p3 =
1

36530

10

∑
i=1

∏i−1
j=0

(
30−3 j

3

)

i!

×

⎡

⎣

29−2i

∏
k=0

(365− k)+
[ 30−3i

2 ]

∑
l=1

∏l
m=1

(
30−3i+2−2m

2

)

l!

29−2i−l

∏
n=0

(365−n)

⎤

⎦

so that p3 ≈ 0.027998 and P4 ≈ 5.4×10−4. (We denote by [r] the integer part of a

real number r.) To summarize, the value of P2 told us that it is likely to have two

alumni with the same birthday. The value of P3 tells us that it is rare to observe

triplets and the value of P4 tells us that quadruplets are very unlikely. It is, however,

noticeable how complicated the computation of P3 or P4 has been. Of course, the

formulas of Pn are worse and rather counterintuitive. At this point, it is noticeable

how simple and intuitive the computation of ECn is. For n ≥ 3, this computation

gives us exactly the same information as the computation of Pn, namely the unlike-

liness of n-uplets. More striking is that the values of Pn and ECn differ by a very

small amount. They actually give exactly the same orders of magnitude! (See the

table in Exercise 3.4.1.)

3.1.3 Visible and Invisible Alignments

We return now to more visual examples. Our aim is to evaluate how well vision, put

in a random environment, perceives meaningful deviations from randomness. We

will try to see where the threshold stands between visible and masked alignments.

On the left of Figure 3.1.3, we display roughly 400 segments. This image has size

N1 ×N2 = 1000×600 pixels, and the mean length of the segments is l ≃ 30 pixels.

Thus, their directional accuracy (computed as the width-length ratio) is ±2/l, which

corresponds to about ±4 degrees. Assuming that the directions and the positions of

the segments are independent and uniformly distributed, we can compute a rough

estimate for the expectation of the number of alignments of four segments or more

(we say that segments are aligned if they belong to the same line, up to a given
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α

w

l

Fig. 3.2 The length l segment is said to be aligned with the dashed line with an accuracy w if the

angle α is such that l
2
|sinα| ≤ w

2
. Since l is much larger than w and since α is assumed to be

uniformly distributed in [− π
2
, π

2
], the probability of this event is roughly equal to 2w

lπ .

accuracy). Let M denote the number of segments, and let w denote the accuracy of

the alignments (see Figure 3.2 for an illustration of this). In the following computa-

tions, we will take w = 6 pixels. If we consider a set of four segments denoted by

S1, S2, S3, and S4, then the probability that they are aligned is roughly given by the

probability that the centers of S3 and S4 fall at a distance less than w/2 from the

line defined by the centers of S1 and S2. The relative area of the strip thus defined is

approximatively w/max(N1,N2). Thus, this probability is (w/max(N1,N2))
2, times

the probability that the directions of the four segments are aligned with the direction

of the strip. Since the segments are independent and the directions uniform, this last

probability is (2w/(lπ))4. Thus, a rough estimate of the expectation of the number

of alignments of four segments or more is

(
M

4

)

×
(

w

max(N1,N2)

)2

×
(

2w

lπ

)4

.

For the left image in Figure 3.1.3, the number of segments is M = 400. Using

the previous formula, the expectation of the number of aligned 4-tuples of segments

is about 10. It shows that we can expect some such alignments of four segments in

this image. They are easily found by a computer program. Do you see them? On

the right image, we performed the same experiment with about M = 30 segments,

with the same accuracy. The expectation of the number of groups of four aligned

segments is about 1/4000. Most observers detect them immediately.

3.2 The Helmholtz Principle and ε-Meaningful Events

The three preceding examples have illustrated the promises of a general perception

principle that we call the Helmholtz principle. We refer to Figure 3.2.2 for another

illustration. The Helmholtz principle can be stated in the following generic way.
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Fig. 3.3 The Helmholtz principle in human perception:

A group of four aligned segments exists in both images, but it can hardly be seen on the left-hand

side image. Indeed, such a configuration is not exceptional in view of the total number of segments.

In fact, the expectation of the number of aligned segments 4-tuples is about 10. In the right-hand

image, we immediately perceive the alignment as a large deviation from randomness that could

hardly happen by chance. In this image, the expectation of the number of groups of four aligned

segments is about 1/4000.

Assume that atomic objects O1, O2, . . . ,On are present in an image. Assume that k

of them, say O1, . . . ,Ok, have a common feature (same color, same orientation, po-

sition, etc.). We then face a dilemma: Is this common feature happening by chance

or is it significant and enough to group O1, . . . , Ok? To answer this question, let us

make the following mental experiment: Assume a priori that the considered quality

had been randomly and uniformly distributed on all objects O1, . . . , On. In the men-

tal experiment, the observed position of objects in the image is a random realization

of this uniform process. We finally ask the question: Is the observed repartition

probable or not? If not, this proves a contrario that a grouping process (a gestalt)

is at play. The Helmholtz principle states roughly that in such mental experiments,

the numerical qualities of the objects are assumed to be uniformly distributed and

independent.

Definition 1 (ε-meaningful event [DMM00]). We say that an event that is ε-

meaningful if the expectation of the number of occurrences of this event is less than

ε under the a-contrario random assumption. When ε ≤ 1, we simply say that the

event is meaningful.

This definition is very generic. It must be completed by a discussion of perceptually

relevant events. Adequate a-contrario models must also be given. In many cases, the

a-contrario random assumption is that numerical qualities of objects are independent

and uniformly distributed, but the a-contrario model can be more general.

If the Helmholtz principle is true, we perceive events if and only if they are

meaningful in the sense of the preceding definition. The alignment in Figure 3.1.3

(right) is meaningful, whereas the left-hand figure contains no meaningful alignment

of 4 segments.

The example of birthdays has explained why we prefer to detect unlikely events

by estimating the expectation of their number instead of their probability. As an ex-



3.2 The Helmholtz Principle and ε-Meaningful Events 39

ample of generic computation that we can do with the ε-meaningfulness definition,

let us assume that the probability that a given object Oi has the considered quality is

equal to p. In the case of birthdays, we had p = 1
365

and in the black square example,

p = 1
2
.

Under the independence assumption, the probability that at least k objects out of

the observed n have this quality is

B(n,k, p) =
n

∑
i=k

(
n

i

)

pi(1− p)n−i

that is, the tail of the binomial distribution. To get an upper bound for the number

of false alarms (i.e. the expectation of the number of geometric events happening

by pure chance), one simply multiplies the above probability by the number of tests

performed on the image. This number of tests Nconf corresponds to the number of

different possible configurations one could have for the searched gestalt. Thus, in

most cases that we will consider in the next sections, a considered event will be

defined as ε-meaningful if

NFA = Ncon f ·B(n,k, p) ≤ ε.

We call NFA the left-hand member of this inequality. It stands for “number of false

alarms”. The NFA of an event measures the “meaningfulness” of this event. The

smaller it is, the more meaningful the event is. (Good things come in small pack-

ages.)

The definition of meaningful events is, of course, related to the statistical frame-

work of hypothesis testing and of multiple tests. We will discuss this link and also

explain the differences in Chapter 15.

3.2.1 A First Illustration: Playing Roulette with Dostoievski

Dostoievski’s The Player is all about the links of chance and destiny. The hero of

the novel believes in some regularities in chance and also believes that he can detect

them and win a long series. Twice in the novel, he comments on the exceptional

event that on some day red came in 22 times in a row, which was unheard of. We

quote from [Dos69]. We translate it as follows:

That time, as if on purpose, a circumstance arose which, incidentally, recurs

rather frequently in gambling. Luck sticks, for example, with red and does not leave

it for ten or even fifteen turns. Only two days before, I had heard that red had come

out twenty two times in a row in the previous week. One could never recall a similar

case at roulette and it was spoken of with astonishment.
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And earlier in the novel he writes:

In the succession of fortuitous events, there is, if not a system, at least some kind

of order. (...) It’s very odd. On some afternoon or morning, black alternates with

red, almost without any order and all the time. Each color only appears two or

three times in a row. The next day or evening, red alone turns, for example, up to

twenty times in a row.

Why 22? The probability that red appears 22 times in a row is
(

18
37

)22
, namely

about 10−7. The computation of the probability that this happens in a series of n

trials may be a bit intricate. We can, instead, directly compute the expected number

of occurrences of the event as NFA(n) = (n− 21)×
(

18
37

)22
. The event is likely to

happen if its NFA is larger than 1, which yields roughly n ≥ 107. Thus, we are led to

compute how many trials a passionate gambler may have done in his life. Consider-

ing that a professional gambler would play roulette at 100 evenings of 5 hours a year

for 20 years, estimating in addition that a roulette trial may take about 30 seconds,

we deduce that an experienced gambler would observe at the most, in his gambling

life span, about n = 20×100×5×120 ≃ 106 trials. We deduce that 1 out of 10 pro-

fessional gamblers can have observed such a series of 22. Actually, Dostoievski’s

information about the possibility of 22 series is clearly based on conversations with

specialists. The hero says:

I own a good part of these observations to Mr. Astley, who spends all of his

mornings by the gambling tables but never gambles himself.

If this professional observer spent his time by several tables, maybe 10 simul-

taneously, he is, according to our computations, likely to have observed a series of

22. As we computed, 22 is somewhat a limit for an observable series. On the other

hand, the hero mentions this occurrence as having happened just a few days before

he was playing. There is no contradiction here, since, according to Aristotle, it is a

rule of poetry, epics, and tragedy to put their heroes in exceptional situations. As he

notices in his Poetics, exceptional situations do happen. Dostoievski twice puts his

hero in an unlikely, but not impossible, situation. First, as we mentioned, is when

a series of 22 occurs just a few days before the hero gets interested in roulette,

second, a few days later, is when the hero observes a series of 14 reds and takes

advantage of it to win a fortune. A series of 14 is unlikely to be observed by a be-

ginner. The NFA of this happening to the hero during the three evenings he plays

at the Roulettenbourg casino is, by the same kind of calculations as above, about

NFA = 3× 5× 120×
(

18
37

)14 ≃ 4.10−3. Thus, this event is unlikely, yet, again, not

impossible and therefore fits Aristotle’s criterion.

Our comments would be incomplete if we did not also notice that the gambler’s

perception obeys gestalt laws. According to Dostoievski, most of their observations

of roulette focus on a very small number of specific kinds of series that are clearly

the only ones likely to be perceived as exceptional. These specific series are, accord-

ing to Dostoievski’s comments, the following:
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– long monochromatic series (reds or blacks);

– periodic or quasi-periodic series, namely two or three reds alternating with two

or three blacks all the time.

Thus, we can rule out the main objection raised by the sceptic of NFA calculations.

He argued that all possible long sequences are equally exceptional since they all

have a very low probability. There would therefore be no surprise in an exceptional

one happening, since one of the sequences must happen. In fact, the observers have

a very small list of gestalts and perceive all other sequences as usual and not to

be noticed. Our preceding estimates should, however, take into account the number

of possible gestalts, not just monochromatic series. Following Dostoievski, we can

estimate to 10 the various gambler’s gestalts, namely:

– long enough series of red;

– long enough series of black;

– long enough series of alternate black and red;

– long enough series of alternate pairs black-black-red-red;

– long series of alternate triples;

– long enough series alternating one red and two blacks;

– long enough series alternating one black and two reds.

There may be a few more, but little more. Let us call Ng the number of such gestalts.

Then we can calculate again the NFA of the event that “any of those gestalts is ob-

served”. This NFA simply is the former NFA multiplied by Ng and our conclusions

remain valid.

3.2.2 A First Application: Dot Alignments

Dots in a dot image will be called aligned if they all fall into a strip thin enough

and in sufficient number (see Figure 3.2.2.) Of course, the Helmholtz a-contrario
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Fig. 3.4 The Helmholtz principle:

Noncasual alignments are automatically detected by the Helmholtz principle as a large deviation

from randomness. Left: 20 uniformly randomly distributed dots and 7 aligned added. Middle: This

meaningful and visible alignment is detected as a large deviation from randomness. Right: same

alignment added to 80 random dots. The alignment is no more meaningful (and no longer visible).

In order to be meaningful, it would need to contain at least 12 points.
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assumption is that the dot positions are uniform, independent random variables,

namely a uniform (Poisson) spatial distribution.

Let M be the number of dots in the image. The precision of the alignment is

measured by the width of the strip. Let S be a strip of width a. Let p(S) denote the

prior probability for a point to fall in S, and let k(S) denote the number of points

(among the M) that are in S.

Definition 2. A strip S is ε-meaningful if

NFA(S) = Ns ·B(M,k(S), p(S)) ≤ ε,

where Ns is the number of considered strips.

3.2.3 The Number of Tests

We now have to discuss what the considered strips will be, since we have to evaluate

their number. A simple tiling argument shows that if the strip width is small with

respect to the size of the image, then Ns ≃ 2π(R/a)2, where R is the diameter of the

image domain Ω and a is the minimal width of a strip. There is indeed about that

number of strips to be tested if we want to ensure that any rectangle of the image

with width less than a/2 is contained in at least one of the strips with width a. To

be more generic, we should not, however, fix an arbitrary a. So one can sample all

considered strip widths a in a finite logarithmic scale up to the smallest possible

width. Thus, one obtains Ns as the total number of strips of all possible (quantized)

widths. Then the final number of strips Ns only depends on the size of the image and

this yields an unsupervised detection method. This is the first way to compute and

test the possible strips.

Second testing method. Another way to define the actual tests that speeds up

detection considerably and makes it perceptually realistic is to only consider strips

whose endpoints are observed dots. In such a case, we obtain

Ns = α
M(M−1)

2
,

where α denotes the number of considered widths (about 10) and
M(M−1)

2
is the

number of pairs of points. Both methods for computing Ns are valid, but they do not

give the same result! Clearly, the first method would be preferable in the case of a

very dense set of points, assimilable to a texture, and the second method when the

set of points is sparse. Notice, however, the slight obvious change in the computation

of k(S). It denotes the number of dots that fell into the strip, with the exception, of

course, of the two endpoints defining the strip.

At this point, we must address an objection: are we not cheating and choosing

the theory that gives the better result? We have two possible values for Ns and the

smallest Ns will give the largest number of detections. When two testing methods are
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available, perception must obviously choose the one giving the smaller test number.

Indeed, there is perceptual evidence that grouping processes may depend on den-

sity and that different methods could be relevant for dense and for sparse patterns.

Hence, the second testing method should be preferred for sparse distributions of

points, whereas the initial model based on density would give a smaller number

of tests when the number of points is large. This economy principle in the number

of tests has been developed in recent works by Donald Geman and his collaborators

[FG01][BG05].

Let us compare both definitions of object alignments in the examples of Figure

3.2.2. When we use the larger Ns corresponding to the all strips with all widths (from

2 to 12 pixels), we simply do not detect any alignment. Indeed, for this image (size

100×100), we have R = 100
√

2 and thus Ns = ∑12
a=2 2π(R/a)2 ≃ 105. On the other

hand the alignment of 7 points is included in a strip with width a = 3 and thus has

a probability B(M,7,a/100), which has value ≃10−5 when M = 27 and has value

≃10−2 when M = 87. Thus, in both cases, the alignment is not meaningful. This

is due to the testing overdose: We have tested many times the same alignments and

have also tested many strips that contained no dots at all. The second definition of

Ns happens to give a perceptually correct result. One has Ns ≃ 3×103 for the image

with M = 27 points and thus the alignment becomes meaningful. For the image

with M = 87 points Ns ≃ 4×105 and the alignment is not meaningful since its NFA

is larger than 1. This result is displayed in Figure 3.2.2 in the middle, where we

see the only detected strip. This same alignment is no more detectable on the right.

The tested widths range from 2 to 12; strips thinner than 2 pixels are nonrealistic in

natural (nonsynthetic) images and strips larger than 12 no longer give the appearance

of alignments in a 100×100 image.

3.3 Bibliographic Notes

The program stated here has been proposed several times in Computer Vision.

We know of at least two instances: David Lowe [Low85] and Witkin-Tenenbaum

[WT83]. Here we quote extensively David Lowe’s program, whose mathematical

consequences are developed in this book.

We need to determine the probability that each relation in the image could have

arisen by accident, P(a). Naturally, the smaller that this value is, the more likely

the relation is to have a causal interpretation. If we had completely accurate image

measurements, the probability of accidental occurrence could become vanishingly

small. For example, the probability of two image lines being exactly parallel by ac-

cident of viewpoint and position is zero. However, in real images there are many

factors contributing to limit the accuracy of measurements. Even more important is

the fact that we do not want to limit ourselves to perfect instances of each relation in

the scene – we want to be able to use the information available from even approxi-

mate instances of a relation. Given an image relation that holds within some degree
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of accuracy, we wish to calculate the probability that it could have arisen by acci-

dent to within that level of accuracy. This can only be done in the context of some

assumption regarding the surrounding distribution of objects, which serves as the

null hypothesis against which we judge significance. One of the most general and

obvious assumptions we can make is to assume that a background of independently

positioned objects in three-space, which in turn implies independently positioned

projections of the objects in the image. This null hypothesis has much to recommend

it. (...) Given the assumption of independence in three-space position and orienta-

tion, it is easy to calculate the probability that a relation would have arisen to within

a given degree of accuracy by accident. For example if two straight lines are paral-

lel to within 5 degrees, we can calculate that the chance is only 5/180 = 1/36 that

the relation would have arisen by accident from two independent objects.

Some main points of the program that we will mathematically develop are con-

tained in the preceding quotation, particularly, the idea that significant geometric

objects are the ones with small probability and the idea that this probability is any-

way never zero because of the inherent lack of accuracy of a digital image. However,

the preceding program is not accurate enough to give the right principles for com-

puting gestalt. The above-quoted example is not complete. Indeed we simply cannot

fix a priori an event such as “these two lines are parallel” without merging it into

the set of all events of the same kind – that is, all possible groups of parallel lines

in the considered image. If the image has many lines, it simply likely that two of

them will be quite parallel. So we have to take into account the number of possible

pairs of parallel lines. If this number is large, then we will, in fact, detect many non-

significant pairs of parallel lines. Only if the expected number of such pairs is much

below 1, can one decide that the observed parallelism makes sense. Although, in

accordance with the former quotation, the general principle proposed in this chapter

should be attributed to Lowe, it is also stated by Zhu in [Zhu99] and attributed to

Helmholtz [vH99]: Besides Gestalt Psychology, there are two other theories for per-

ceptual organization. One is the likelihood principle [vH99] which assigns a high

probability for grouping two elements such as line segments, if the placement of the

two elements has a low likelihood of resulting from accidental arrangement. Viewed

that way, the Helmholtz principle is exactly opposite to the so-called Prägnanz prin-

ciple in gestalt psychology : “...of several geometrically possible organizations that

one will actually occur which possesses the best, simplest and most stable shape”,

quoted in [Zhu99] from Koffka’s book [Kof35].

3.4 Exercise

3.4.1 Birthdays in a Class

Consider a class of 30 students and assume that their birthdays are independent and

uniformly distributed variables over the 365 days of the year. We call, for 1 ≤ n ≤
30, Cn the number of n-tuples of students of the class having the same birthday.
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(This number is computed exhaustively by considering all possible n-tuples. If (for

example) students 1, 2, and 3 have the same birthday, then we count three pairs,

(1,2), (2,3), (3,1).) We also consider Pn = P(Cn ≥ 1), the probability that there is

at least one n-tuple with the same birthday and pn, the probability that there is at

least one n-tuple and no (n+1)-tuple.

1) Prove that Pn = 1−∑n−1
i=1 pi and Pn = Pn−1 − pn−1.

2) Prove that ECn = 1
365n−1

(
30
n

)
. Check that EC2 ≈ 1.192, EC3 ≈ 0.03047,and

EC4 ≈ 5.6×10−4.

3) Prove that P(C2 = 0) = 365×···×336
36530 ≈ 0.294. Deduce that P2 ≈ 0.706.

4) Prove that

p2 =
1

36530

15

∑
i=1

∏i
j=1

(
32−2 j

2

)

i!

29−i

∏
k=0

(365− k).

5) Compute by a small computer program (in Matlab for example): p2 ≈ 0.678.

6) Deduce that P3 ≈ 0.0285.

7) We denote by [r] the integer part of a real number. Prove that

p3 =
1

36530

10

∑
i=1

∏i
j=1

(
33−3 j

3

)

i!

×

⎡

⎣

29−2i

∏
k=0

(365− k)+
[ 30−3i

2 ]

∑
l=1

∏l
m=1

(
30−3i+2−2m

2

)

l!

29−2i−l

∏
n=0

(365−n)

⎤

⎦ .

8) Deduce by a computer program that p3 ≈ 0.027998 and P4 ≈ 5.4×10−4.

9) Be courageous and give a general formula for pn.

10) Prove that EC30 = P30 = 1
36529 , EC29 = 30

36528 , and P29 = 30×364+1
36529 .

11) The following table summarizes the comparative results for ECn and Pn as well

as the relative differences. Check it.

n ECn Pn
ECn−Pn

Pn

2 1.192 0.706 68.84%

3 0.0347 0.0285 21.75%

4 5.6×10−4 5.3×10−4 5.66%

. . . . . . . . . . . .

29 30
36528

30×364+1
36529 0.27%

30 1
36529

1
36529 0%

12) Explain why Pn and ECn are so close for n ≥ 3.





Chapter 4

Estimating the Binomial Tail

We saw in the previous chapter that the Helmholtz principle in his generic form leads

us to the computation of the probability of events of the type “at least k objects out

of l have a considered quality”. When the a-contrario assumption is that objects are

independent and have the same probability p to have the quality, the probability

of this event is given by the binomial distribution. In this chapter, we will give

different inequalities and asymptotic results for the binomial tail. Such results are

useful mainly because they help us to understand the “meaningfulness” of an event

as a function of l, k, and p. The results given in this chapter will be used through the

rest of the book.

4.1 Estimates of the Binomial Tail

The Helmholtz principle leads us to evaluate a number of false alarms

NFA(l,k, p) = Ntest ·P [Sl ≥ k],

where

Sl =
l

∑
i=1

Xi

and Xi are independent Bernoulli random variables with parameter p, namely

P [Xi = 1] = p and P [Xi = 0] = 1− p (see Exercise 4.3.1 at the end of the chap-

ter). The number of tests Ntest being generally easy to calculate (but not always, it

depends on the considered geometric configurations. We will see that it requires a

different computation for each different elementary gestalt), the estimation of the

NFA boils down to an estimate of the tail of the binomial law,

B(l,k, p) =
l

∑
i=k

(
l

i

)

pi(1− p)l−i.

47
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In this estimation problem, p is fixed, l is rather large, and k in excess with respect

to its expected value pl since we look for meaningful events. The number of tests

usually will be very large and the NFA is interesting mainly when it is smaller than

1; so we are primarily interested in good estimates of B(l,k, p) when this quantity

is very small. There are several tools available to do so.

– The first one is, of course, the law of large numbers, which tells us that

B(l,k, p) = P [Sl ≥ k] → 0 whenever k
l
≥ r > p and l → ∞. This result yields

no order of magnitude for B(l,k, p).
– Large deviations techniques give asymptotic estimates of B(l,k, p) when k is

roughly proportional to l, namely k ≃ rl with r > p.

– The Central Limit Theorem also gives estimates for smaller deviations from

the mean, namely when k ≃ pl +C
√

l.

We will state these estimates along with some more precise variants. Notice that

our estimation problem is not an asymptotic problem. We need a nonasymptotic pre-

cise evaluation of B(l,k, p) valid if possible for all values of l,k, and p and accurate

whenever B(l,k, p) happens to be small.

For practical purposes, it seems that we could give up any estimate of the bino-

mial tail and simply compute exact numerical values of B(l,k, p). These values can

even be tabulated once and for all. In practice as well as in theory we also are in-

terested in explicit formulas of the order of magnitude of the minimal value k(l) for

which a gestalt with parameters (l,k(l), p) becomes detectable. Such formulas will

be useful, for example, in Chapter 5,which is dedicated to the detection of align-

ments in a digital image. They will indeed yield an accurate estimate of the minimal

number k(l) of aligned points in a segment of length l leading to an alignment per-

ception. This estimate will be a simple explicit function of l and p. In Chapter 7,

dedicated to the detection of modes in a histogram, l is so large that the actual com-

putation of B with computers becomes cumbersome and the large deviation estimate

becomes useful. Finally, in Chapters 6 and 7, we will deal with structural properties

of meaningful gestalts which can only be proved with the close formula estimates

and formal properties of B(l,k, p).
As we mentioned earlier, there are several theories giving asymptotic estimates

of B(l,k, p) and, luckily enough, there also are inequalities that give good lower

and upper estimates of B(l,k, p), namely the Hoeffding and Slud inequalities. We

will mainly use the asymptotic estimates to evaluate how good these nonasymptotic

inequalities are.

A unified format is needed to compare these inequalities. In what follows we will

compare the estimated values of

−1

l
logB(l,k, p).
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4.1.1 Inequalities for B(l,k,p)

Proposition 3 (Hoeffding inequalities [Hoe63]) Let X1, . . . ,Xl be independent

random variables such that 0 ≤ Xi ≤ 1. We set Sl = ∑l
i=1 Xi and p = E

[
Sl
l

]

. Then,

for pl < k < l,

P [Sl ≥ k] ≤
(

p

k/l

)l( k
l
)
(

1− p

1− k
l

)l(1−k/l)

.

In other terms, setting r = k/l,

P [Sl ≥ k] ≤ e
−l
(

r log r
p +(1−r) log 1−r

1−p

)

.

In addition, the right-hand term of this inequality satifies

e
−l
[

r log r
p +(1−r) log 1−r

1−p

]

≤ e−l(r−p)2h(p) ≤ e−2l(r−p)2

,

where

h(p) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1

1−2p
log

1− p

p
if 0 < p < 1

2
,

1

2p(1− p)
if 1

2
≤ p < 1.

We refer to Figure 4.1 for the graph of the function p 
→ h(p). A more general

version of this inequality is proved in Exercise 4.3.2 at the end of this chapter. In the

particular case where the Xi are Bernoulli variables, this inequality is also known as

the Chernoff inequality [Che52].

0.50 1

2

Fig. 4.1 The graph of the function p 
→ h(p) involved in Hoeffding inequality.
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Theorem 1 ((Slud’s Theorem [Slu77])) If 0 < p ≤ 1/4 and pl ≤ k ≤ l, then

P [Sl ≥ k] ≥ 1√
2π

∫ +∞

α(l,k)
e−x2/2 dx where α(l,k) =

k− pl
√

l p(1− p)
.

The assumption 0 < p ≤ 1/4 is not a strong condition for us. It will be true for

roughly all applications we consider.

4.1.2 Asymptotic Theorems for B(l,k,p) = P [Sl ≥ k]

Proposition 4 (Law of large numbers) Let Xi be Bernoulli i.i.d. random variables

with parameter p and Sl = ∑l
i=1 Xi. Then

P

[
Sl

l
−→
l→∞

p

]

= 1.

As a consequence, for every r > p and l → ∞,

P [Sl ≥ rl] → 0, that is, B(l, [rl], p) → 0

(where [s] denotes the integer part of a real number s.)

Proposition 5 (Generalized Central Limit Theorem) Let Xi be Bernoulli i.i.d.

random variables with parameter p and let Sl = ∑l
i=1 Xi. If α(l)6/l → 0 as l →+∞,

then

P
[

Sl ≥ pl +α(l)
√

l · p(1− p)
]

∼ 1√
2π

∫ +∞

α(l)
e−x2/2 dx. (4.1)

The original De Moivre-Laplace formula corresponds to the case where α is

a constant, which is allowed by the preceding proposition. It can be proven in

a slightly more general setting (see Exercise 4.3.6). For the general case, see

[Fel68].

Proposition 6 (Cramér large deviations theorem) Let Xi be Bernoulli i.i.d. with

parameter p and Sl = ∑l
i=1 Xi. Let p < r < 1, then, as l → +∞,

−1

l
logP [Sl ≥ rl] ∼ r log

r

p
+(1− r) log

1− r

1− p
.

For a proof of this theorem in a more general setting, see Problem 4.3.5.

4.1.3 A Brief Comparison of Estimates for B(l,k,p)

As said, we will compare the asymptotic estimates of − 1
l

logB(l,k, p) given by all

of the preceding propositions put in a uniform format.
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Proposition 7 Let Xi, i = 1, . . . , l be independent Bernoulli random variables with

parameter 0 < p < 1
4

and let Sl = ∑l
i=1 Xi. Consider a constant p < r < 1 or a real

function p < r(l) < 1. Then B(l,k, p) = P [Sl ≥ k] satisfies

(Slud) − 1
l

logP [Sl ≥ rl] ≤ (r− p)2

p(1− p)
+O(

log l

l
), (4.2)

(Hoeffding-bis) − 1
l

logP [Sl ≥ rl] ≥ (r− p)2
log

1−p
p

1−2p
+O(

1

l
), (4.3)

(Central limit) − 1
l

logP [Sl ≥r(l)l] ∼ (r(l)−p)2

p(1−p)
if (r(l)−p)l

1
3 −→

l→∞
0, (4.4)

(Hoeffding) − 1
l

logP [Sl ≥ rl] ≥ r log
r

p
+(1− p) log

1− r

1− p
, (4.5)

(Large deviation) − 1
l

logP [Sl ≥ rl] ∼ r log
r

p
+(1− p) log

1− r

1− p
, (4.6)

where the last equivalence holds when r is fixed and l tends to infinity.

Proof — The first announced inequality immediately follows from Slud’s Theorem

1 and the following inequality:

x

1+ x2
e−

x2

2 ≤
∫ +∞

x
e−

y2

2 dy . (4.7)

This inequality is proven in Exercise 4.3.7 and we have set in Slud’s theorem

α(k, l) =
k− pl

√

l p(1− p)
=

(r− p)
√

l
√

p(1− p)
.

The second and fourth inequalities immediately derive from the first and second

forms of Hoeffding’s inequality (Proposition 3) and the third and last inequalities

are a mere reformulation of Propositions 5 and 6. More precisely, we have set in

Camér’s theorem, r(l)l = pl +α(l)
√

l p(1− p). �

We have put all asymptotic and nonasymptotic estimates in a homogeneous form

that makes their comparison easier. The Slud and Hoeffding inequalities are precise

nonasymptotic ones. In order to extract their main terms, we had to introduce an

asymptotic term O( 1
l
) or O( log l

l
). Now, both terms are easily estimated with sharp

constants, which prove them to be negligible when, say, l exceeds 100 independently

of r and p. So in these inequalities, r and l can vary in anyway without any constraint

provided that l is realistically large. In the Central Limit Theorem instead, r(l) must

be so that r(l)− p tends to zero fast enough, but we can anyway compare (Slud)
and (Central limit) under this condition: then we see that the estimates obtained are

exactly the same up to some O( log l
l

). We conclude that Slud’s theorem cannot be

improved. The three first estimates given in Proposition 7 are of the same form and

give as the main term an (r − p)2 term multiplied by a p dependent function. So,

as we will see in the next chapter (Chapter 5), they will yield the same orders of

magnitude for the detection thresholds of alignments. Finally, the most striking fact

comes from the classical comparison of (Hoeffding) and (Large deviation). Both



52 4 Estimating the Binomial Tail

give exactly the same estimate of the binomial tail when r is fixed and l tends to

infinity. This makes a strong argument in favor of the use of the Hoeffding inequality

as a general estimate for the binomial tail. We will see in Chapter 7 that this estimate

has outstanding structural properties.

In the exercises at the end of the chapter, we give the proofs of two Hoeffding

inequalities, of the large deviations theorem, and of the Central Limit Theorem.

Such results are very general (the binomial tail is just a particular case), and thus

they can be used in applications where a distribution different from the binomial

one is involved.

4.2 Bibliographic Notes

Upper bounds for P [Sl ≥ k] were obtained by Bernstein in 1946 and Bennett in

1962 [Ben62] before Hoeffding [Hoe63] proved Proposition 3 in 1963. In the case

of Bernouilli i.i.d. random variables (i.e., Sl follows a binomial law), Hoeffding’s

inequality was implicitly contained in a paper published by Chernoff [Che52] in

1952. The second part of Hoeffding’s inequality (obtained thanks to the fact that

h(p) ≥ 2 for all p) was proven by Okamoto [Oka58] in 1958 in the binomial case

when p ≥ 1/2 (which is not really the case in which we are interested).

Hoeffding seemed to close the subject since his upperbound was in a certain

sense optimal. However, in 1995, Talagrand showed in [Tal95] that the exponential

term of Hoeffding’s inequality could be refined by means of a “missing factor.”

The problem of asymptotic estimates of P [Sl ≥ k] as l tends to infinity was ad-

dressed by Laplace (for p fixed and k in a range of the form [l p+α
√

l p(1− p), l p+

β
√

l p(1− p)]). Prohorov (1961) investigates in [Pro61] this problem for all values

of k and p, but in a way depending on the relative values of p and n. In 1969,

Littewood [Lit69] gave an asymptotic estimate valid for p fixed and k in the range

[p, 3(1−p)
4p

]. A review of these results and more recent and precise estimates, valid

for a larger range of values for k, can be found in [Moi01], where the asymptotic

results of Bahadur [Bah60] are improved for “very large deviations” (k ≃ n).

4.3 Exercises

4.3.1 The Binomial Law

Let X1, . . . ,Xn be i.i.d. Bernoulli variables, that is, independent variables such that

X j ∈ {0, 1} and

P [X j = 1] = p, P [X j = 0] = 1− p = q.

We set Sn = X1 + · · ·+Xn.

1) Prove that for 1 ≤ k ≤ n,
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(
n+1

k

)

=

(
n

k

)

+

(
n

k−1

)

.

Give an interpretation of this formula.

2) Prove that for 0 ≤ k ≤ n,

P [Sn = k] =

(
n

k

)

pk(1− p)n−k =
n!

k!(n− k)!
pk(1− p)n−k.

This law is called the binomial law with size n and parameter p and we denote by

B(n, p) the probability distribution defined by

pk =
n!

k!(n− k)!
pk(1− p)n−k.

3) Compute the mean and the variance of a random variable X with binomial B(n, p)
law (answers: np and npq.)

4.3.2 Hoeffding’s Inequality for a Sum of Random Variables

Let (Ω ,F ,P) be a probability space. It is recalled that if X1 and X2 are independent

variables, and if f and g are two measurable functions from R to R, then f (X1) and

g(X2) are also independent. It is also recalled that if X1, . . . , Xl are independent,

then E(X1 . . .Xl) = (EX1) . . .(EXl). Let X1, . . . ,Xl be independent random variables

such that 0 ≤ Xi ≤ 1. We set Sl = ∑l
i=1 Xi and p = E

[
Sl
l

]

. We will prove that for

0 < t < 1− p,

P [Sl ≥ (p+ t)l] ≤
(

p

p+ t

)l(p+t)(
1− p

1− p− t

)l(1−p−t)

≤ e−lt2h(p) ≤ e−2lt2

, (4.8)

where

h(p) =
1

1−2p
log

1− p

p
if 0 < p <

1

2

and h(p) =
1

2p(1− p)
if

1

2
≤ p < 1.

This kind of inequality is called a “large deviation inequality”. To understand its

meaning in a more particular setting, assume that the Xi are i.i.d.. Then when l is

large, we know by the law of large numbers that
Sl
l
→ p almost surely. Thus, the

Hoeffding inequality estimates an event that is less and less likely when l tends to

infinity, namely the event that the mean
Sl
l

exceeds p by a positive value t.

1) To understand the meaning of the inequality, draw the graph of the function h(p).
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2) Let X be a random variable such that a ≤ X ≤ b. Let λ be a positive real number.

By using the convexity of the exponential function x 
→ eλx, prove that

E
[

eλX
]

≤ b−E [X ]

b−a
eλa +

E [X ]−a

b−a
eλb.

3) The main trick of large deviation estimates is to use the very simple inequality

1x≥0 ≤ eλx, true for λ > 0. Prove this inequality. Then apply it to 1{Sl−E[Sl ]−lt≥0}
and deduce that

P [Sl ≥ (p+ t)l] ≤ e−λ (p+t)l
l

∏
i=1

E
[

eλXi

]

.

4) Set pi = E [Xi]. Applying question 2 with a = 0 and b = 1, deduce that

l

∏
i=1

E
[

eλXi

]

≤
l

∏
i=1

(1− pi + pie
λ ).

Be sure to check that this inequality becomes an identity when the Xi’s are Bernoulli

random variables.

5) Prove the geometric-arithmetic mean inequality: if a1, . . . , al are positive real

numbers, then
(

l

∏
i=1

ai

)1/l

≤ 1

l

l

∑
i=1

ai.

6) Deduce that ∏l
i=1 E

[
eλXi
]
≤ (1− p+ peλ )l .

7) Combine questions 3 and 6 and get an inequality. Prove that the right-hand side of

this inequality is minimal for λ = log
(1−p)(p+t)
(1−p−t)p

. Check that this number is positive

when 0 < t < 1− p and obtain the first Hoeffding inequality (left inequality in (4.8))

by taking this value for λ in the inequality.

8) To prove the second inequality of (4.8), one can remark that the first proved upper

bound has a form e−lt2G(t,p), where G(t, p) is defined by

G(t, p) =
p+ t

t2
log

p+ t

p
+

1− p− t

t2
log

1− p− t

1− p
.

Thus it is enough to show that h(p) ≤ inf0<t<1−p G(t, p). First check that

t2 ∂

∂ t
G(t, p) =

(

1−2
1− p

t

)

log

(

1− t

1− p

)

−
(

1−2
p+ t

t

)

log

(

1− t

t + p

)

= H

(
t

1− p

)

−H

(
t

t + p

)

,

where H(x) = (1− 2
x
) log(1− x). Continuing, show that
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H(x) = 2+

(
2

3
− 1

2

)

x2 +

(
2

4
− 1

3

)

x3 +

(
2

5
− 1

4

)

x4 + ...

Deduce that H(x) is increasing for 0 < x < 1 and that ∂
∂ t

G(t, p) > 0 if and only if
t

1−p
> t

p+t
, which means t > 1− 2p. Deduce that, when 1− 2p > 0, the function

G(t, p) attains its minimum for t = 1− 2p and the corresponding minimal value is

h(p) = 1
1−2p

log
1−p

p
.

9) Prove that if 1−2p ≤ 0, then G(t, p) attains its minimum when t → 0 and that in

such a case,

lim
t→0

G(t, p) =
1

2p(1− p)
= h(p).

Check that h(p) ≥ h( 1
2
) = 2 and the proof of the announced Hoeffding inequalities

is complete.

4.3.3 A Second Hoeffding Inequality

We now consider independent bounded random variables with different bounds,

namely ai ≤ Xi ≤ bi. We set Sl = ∑l
i=1 Xi and p = E

[
Sl
l

]

. Then we will prove that

for every t > 0,

P [Sl ≥ (p+ t)l] ≤ exp

(

− 2l2t2

∑l
i=1(bi −ai)2

)

.

1) Set pi = E [Xi]. Prove that for all λ > 0,

P [Sl ≥ (p+ t)l] ≤ e−λ lt
l

∏
i=1

E
[

eλ (Xi−pi)
]

.

2) Using question 2 of Exercise 4.3.2, show that

E
[

eλ (Xi−pi)
]

≤ e−λ (pi−ai)

(
bi − pi

bi −ai

+
pi −ai

bi −ai

eλ (bi−ai)

)

.

3) Set λi = λ (bi −ai) and qi = pi−ai

bi−ai
. We denote by L(λi) the logarithm of the right-

hand side of the preceding inequality. Then

L(λi) = −λiqi + log(1−qi +qie
λi).

Prove that L′′(λi) ≤ 1
4
. Using a Taylor-MacLaurin expansion, deduce that

L(λi) ≤ L(0)+λiL
′(0)+

1

8
λ 2

i =
1

8
λ 2(bi −ai)

2.

4) Finally, prove that P [Sl ≥ (p+ t)l] ≤ exp
(
−λ lt + 1

8
λ 2 ∑l

i=1(bi −ai)
2
)
. Choose

the best value for λ > 0 to deduce the expected inequality.
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4.3.4 Generating Function

We call generating function of a random variable X with mean µ the function M :

R→R+ defined by M(t) = E
[
etX
]
. In all that follows, we assume for all considered

random variables that M(t) is bounded on an open interval I ⊂ R, containing 0.

1) Prove that for all x real, |x|k ≤ ε−kk!(eεx + e−εx). Deduce that X has moments

E
[
Xk
]

of any order.

2) Use the asymptotic expansion of the exponential function to prove that

M(t) =
∞

∑
k=0

E
[
Xk
]

k!
tk

on I and that

E [X ] = M′(0), E
[

Xk
]

= M(k)(0), M′(t) = E
[
XetX
]
, M′′(t) = E

[
X2etX

]
.

Hint: To exchange sum and integral by bounded convergence theorem (Lebesgue

theorem), use the fact that

n

∑
k=1

((t|X |)k)/k! ≤ e|tX | ≤ etX + e−tX .

3) We set Λ(t) = logM(t). Prove that

Λ(0) = logM(0) = 0, Λ ′(0) =
M′(0)

M(0)
= µ .

4) Show that Λ(t) is convex on I. More precisely, prove by the Cauchy-Schwartz

inequality that

Λ ′′(t) =
M(t)M′′(t)−M′(t)2

M(t)2
≥ 0.

5) Cauchy-Schwartz’s inequality (E [XY ]2 ≤ E
[
X2
]
E
[
Y 2
]
) is an equality if and

only if there is a λ ∈ R such that X = λY . Deduce from this fact that if X has

nonzero variance, then Λ(t) is strictly convex on I.

6) The Fenchel-Legendre transform of Λ is defined by

Λ ∗(a) = sup
t∈R

(at −Λ(t)), a ∈ R.

Prove that Λ ∗ is convex.
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4.3.5 Large Deviations Estimate

This section is devoted to the detailed proof of the following large deviation theo-

rem. The exercise exactly follows the notations and the steps of the proof given in

the Grimmett and Stirzaker book [GS01].

Theorem 2 Let X1, X2,... be i.i.d. random variables with mean µ and such that

M(t) = E
[
etX
]

is finite on an open interval containing zero. We set Sn = X1 + · · ·+
Xn. Let a > µ be such that P [X > a] > 0. Then Λ ∗(a) > 0 and

−1

n
logP [Sn > an] → Λ ∗(a) when n → ∞.

Comments: The large number law tells us that 1
n
Sn → µ almost surely. The Cen-

tral Limit Theorem asserts that typical deviations of Sn −nµ must be of order c
√

n.

Thus, the probabilities P [Sn −nµ ] ≥ nα) with α > 1
2

must be small and the preced-

ing theorem yields a precise asymptotic estimate of this smallness when α = 1.

As a preliminary question, let us examine the meaning of this theorem when Xi are

Bernoulli with parameter p = µ . In that case, P [Sn > an] = B(n,an, p) and M(t) =
E
[
etX
]
= pet +(1− p). Thus, Λ(t) = log(pet +(1− p)). Now,

argmax
t>0

(at −Λ(t)) = log
q

p
+ log

a

1−a

and, finally,

Λ ∗(a) = a log
a

p
+(1−a) log

1−a

q
.

So the large deviation theorem yields

−1

n
logP(Sn > an) → a log

a

p
+(1−a) log

1−a

1− p
when n → ∞.

Thus, for the binomial law, Hoeffding’s inequality and the large deviation behavior

yield exactly the same estimate. In this particular framework, Hoeffding’s inequality

is also known as Bernstein’s inequality.

FIRST PART

1) Prove that we can take µ = 0 without loss of generality.

Hint: Assume that the theorem is proved in that particular case and replace X by

Xi −µ .

2) By changing Xi into −Xi and by applying the theorem, give the limit of 1
n

log

P [Sn < na], for a < µ .

3) Let us prove that Λ ∗(a) > 0. Let σ2 = var(X). Prove that

at −Λ(t) = log

(
eat

M(t)

)

= log
1+at +o(t)

1+ 1
2
σ2t2 +o(t2)

for t small and deduce that Λ ∗(a) > 0.
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4) Use Λ ′(0) = E [X ] = 0 and get

Λ ∗(a) = sup
t>0

(at −Λ(t)), a > 0.

5) In this question and the following ones, one proceeds as for Hoefdding’s inequal-

ity. Remark that etSn > enat
1Sn>na and derive

P [Sn > na] ≤ e−n(at−Λ(t)).

6) Deduce that

1

n
logP [Sn > na] ≤−sup

t>0

(at −Λ(t)) = −Λ ∗(a).

This upper bound brings us halfway to the proof. Now we need a lower bound.

SECOND PART

In this part, we make an assumption on Λ ∗ which is in practice always satisfied.

Definition 3. We will say that we stand in the “regular case” at a if the maximum

value defining Λ ∗(a) is attained at a point t in the interior of I, the definition interval

for the generating function M. We denote by τ = τ(a) this value of t.

Let us also define T = sup{t, M(t) < ∞.}.
1) Check that

Λ ∗(a) = aτ −Λ(τ), Λ ′(τ) = a.

2) We set F(u) = P [X ≤ u], the distribution function of X . We will associate with

this function an auxiliary function defined as follows. Set dF̃(u) = eτu

M(τ)dF(u), or,

in other terms,

F̃(y) =
1

M(τ)

∫ y

−∞
eτu dF(u).

Consider X̃1, X̃2, . . . independent random variables all having F̃ as distribution func-

tion and set S̃n = X̃1 + · · ·+ X̃n.

3) By using the general formula M(t) = E
[
etX
]
=
∫

R etu dF(u), prove that

M̃(t) =
M(t + τ)

M(τ)
.

4) Deduce that

E
[
X̃i

]
= M̃′(0) = a,

var(X̃i) = E
[
X̃2

i

]
−E
[
X̃i

]2
= M̃′′(0)− M̃′(0)2 = Λ ′′(τ).
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5) Prove that the generating function of S̃n is

(
M(t + τ)

M(τ)

)n

=
1

M(τ)n

∫

R
e(t+τ)udFn(u),

where Fn is the distribution function of Sn. Deduce that the distribution function F̃n

of S̃n satisfies

dF̃n(u) =
eτu

M(τ)n
dFn(u).

6) Let b > a. Deduce from the preceding question that

P [Sn > na] ≥ e−n(τb−Λ(τ))P
[
na < S̃n < nb

]
.

7) By using the fact that the mean of X̃i is a, the law of large numbers, and the

Central Limit Theorem, prove that P
[
na < S̃n < nb

]
→ 1

2
. Deduce from this fact

and from the preceding question that

lim inf
n→∞

1

n
logP [Sn > na] ≥−(τb−Λ(τ)) →−Λ ∗(a) when b → a.

THIRD PART

1) We make the same assumptions as in the preceding part, but we are now in the

nonregular case. In order to get back to the regular case, we fix c > a and we set

Xc = inf(X ,c). Denote by Mc(t) the associated generating function and set Λ c(t) =
logMc(t).

2) Prove that Mc(t) < ∞ for every t > 0 and that E [Xc] → 0 when c → ∞ and

E [Xc] ≤ 0.

3) Show that there exists b ∈ (a,c) such that P [X > b] > 0 and deduce that

at −Λ c(t) ≤ at − log(etbP [X > b]) →−∞ when t → ∞.

4) Conclude that the sequence Xc
i stands in the “regular case” –in other terms that

the supremum of (at−Λ c(t)) for t > 0 is attained at a value τc ∈ (0,∞)– and, finally,

that

1

n
logP

[
n

∑
i=1

Xc
i > na

]

→−(Λ c)∗(a) when t → ∞.

(We set Λ c∗ = supt>0 (at −Λ c(t)) = aτc −Λ c(τc).)

5) Prove that Λ c∗(a) ↓ Λ ∞∗ when c → +∞. and 0 ≤ Λ ∞∗ < ∞.

6) Prove that

1

n
logP [Sn > na] ≥ 1

n
logP

[
n

∑
i=1

Xc
i > na

]

.
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7) Explain why it suffices to prove that Λ ∞∗ ≤ Λ ∗(a) in order to conclude the proof

of the theorem in the irregular case.

8) To show this last relation, prove that the set Ic = {t ≥ 0, at−Λ c(t)≥Λ ∞∗} is not

empty. Prove that Ic is a compact interval. Prove that the intervals Ic decrease (by

inclusion) as c grows and deduce that there is some ζ ∈ ∩c>aIc. Finally, show that

Λ c(ζ ) → Λ(ζ ) when c → ∞ and that aζ −Λ(ζ ) = limc→∞(aζ −Λ c(ζ )) ≥ Λ ∞∗.

Conclude the proof.

4.3.6 The Central Limit Theorem

4.3.6.1 Some Basics on the Characteristic Function of a Random Variable

and on the Gauss Function

Let X be a random variable with values in Rd . For t ∈ Rd , let

ϕX (t) = E
[
eit.X
]
=
∫

Rd
eit.x dµX (dx) =

∫

Rd
eit.x fX (x)dx

be its characteristic function where it is assumed that the random variable X has a

density fX (t) with respect to the Lebesgue measure and t · x =< t,x >= ∑d
i=1 tixi

denotes the scalar product of t and x.

Briefly prove the following properties (ϕ is written for ϕX ):

1. ϕ(0) = 1.

2. ∀t, |ϕ(t)| ≤ 1.

3. t → ϕ(t) is continuous (use Lebesgue dominated convergence theorem).

4. ϕ(−X)(t) = ϕX (t).

5. ϕaX+b(t) = eib.tϕX (at), (a ∈ R, b ∈ Rd).

6. If X and Y are independent, ϕX+Y = ϕX ϕY .

Prove the following properties of Gaussian distributions:

1. If X is Gaussian and has density 1

σ
√

2π
e
− (x−µ)2

2σ2 , then ϕX (t) = eiµt− σ2t2

2 .

Hint: Prove this result first when µ = 0 and σ = 1. Set ϕ(t) = 1√
2π

∫
e−itxe−

x2

2 dx

and prove that ϕ ′(t) = tϕ(t), ϕ(0) = 1. It will follow that ϕ(t) = e−
t2

2 .
2. The variance of X is σ2 and its mean is µ .

3. If X1 and X2 are Gaussian independent, then X1 + X2 also is Gaussian: Compute

the mean and variance of X1 +X2 as a function of those (µi, σ2
i ), i = 1, 2, of X1

and X2.
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4.3.6.2 Asymptotic Expansion of the Characteristic Function

Let X be a random variable with values in Rd and admitting an order 2 moment (i.e.,

E
[
X2
]
=
∫

Rd x2 dµX (x) < ∞).

1)Prove that for every real number x,

exp(ix) = 1+ ix− x2
∫ 1

0
(1−u)exp(iux)du.

2) Deduce that
∣
∣exp(ix)−

(
1+ ix− x2/2

)∣
∣≤ x2.

3) By applying the method of the two preceding questions, prove that

∣
∣exp(ix)−

(
1+ ix− x2/2

)∣
∣≤ |x|3/6.

4) Deduce that
∣
∣exp(ix)− (1+ ix− x2/2)

∣
∣≤ inf(x2, |x|3/6)

and ∣
∣
∣
∣
∣
ϕX (t)−

(

1+ itE [X ]− t2

2
E
[
X2
]

)∣
∣
∣
∣
∣
≤ t2E

[
inf(X2, |t||X |3/6)

]
.

By applying the Lebesgue theorem to the right-hand term, deduce an asymptotic

expansion of order 2 of ϕX (t) at t = 0.

4.3.6.3 Central Limit Theorem

We shall prove the following theorem (Central limit theorem in Rd):

Theorem 3 Let (Xn)n≥1 be a sequence of random variables defined on the same

probability space (Ω ,F ,P), with values in Rd . We assume that they are indepen-

dent and identically distributed and that E
[
‖ Xi ‖2

]
< +∞. Then the sequence Yn

defined by

Yn =
1√
n

n

∑
j=1

(X j −E [X j])

converges in law toward a d-dimensional Gaussian distribution with zero mean and

whose covariance matrix is the same as the one of the Xi’s.

We recall that a sequence of random variables is said to converge in law toward

a random variable X if for every continuous and bounded function g on Rd , one has

∫

Rd
g(x)d µXn(x) →

∫

Rd
g(x)d µX (x).



62 4 Estimating the Binomial Tail

We will, however, use a convergence in law criterion, Lévy’s theorem, whose state-

ment is given in question 5.

1) Prove that the characteristic function of Yn is given by:

ϕYn(t) =

[

ϕ<X1−E[X1],t>

(

1√
n

)]n

.

2) By using the results we just proved on the asymptotic expansion of the character-

istic function, deduce that

ϕYn(t) =

[

1− 1

2n
E
[
< X1 −E [X1], t >2

]
+o

(

1

n

)]n

.

3) Prove that for every z ∈ C,

lim
n→+∞

(

1+
z

n

)n

= exp(z),

the convergence being uniform on every bounded set. (Use the complex logarithm

and an asymptotic expansion of order 1.)

Detailed hint for question 3: The principal determination of the logarithm, denoted

by log(z), can be used. It satisfies elog(z) = z if |z−1| < 1 and its asymptotic expan-

sion yields log(1+z) = z− 1
2
z2 + 1

3
z3 + · · · . Thus, for |z| ≤ A and for n large enough

(n > A),

∣
∣
∣log
(

1+
z

n

)n

− z

∣
∣
∣=

∣
∣
∣
∣
− z2

2n
+

z3

3n2
− z4

4n3
+ . . .

∣
∣
∣
∣
≤ A2

n

(
1

2
+

A

3n
+

A2

4n2
+ · · ·

)

→ 0

when n → ∞. Thus, log(1 + z
n
)n → z uniformly for |z| < A when n → ∞. From this

inequality also follows that | log(1+ z
n
)n| ≤ A+1 for n large enough. The exponen-

tial function being uniformly continuous on the set {|z| ≤ A+1}, the result follows.

4) Deduce that

lim
n→+∞

ϕYn(t) = exp

[

−1

2
< Ct, t >

]

,

where C is the covariance matrix of X1.

5) Conclude by applying Lévy’s theorem: If Xn are real random variables such that

ϕXn → ϕ and if ϕ is a continuous function at 0, then there exists a random variable

X such that ϕX = ϕ and the sequence Xn converges in law to X .
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4.3.7 The Tail of the Gaussian Law

In this exercise, we set φ(y) = (2π)−1/2 exp(−y2/2) and Φ(x) =
∫ x
−∞ φ(y)dy. We

consider a random variable X with density law φ .

1) Remark that φ
′
(y) = −yφ(y) and deduce that for every x > 0,

x−1φ(x) ≥ (1−Φ(x)).

2) Remark that (y−1φ(y))
′
= −(1+ y−2)φ(y) and show that for every x > 0,

φ(x) ≤ (x+ x−1)(1−Φ(x)).

3) Deduce upper and lower bounds for P(X > x) for x > 0.





Chapter 5

Alignments in Digital Images

Digital images usually have many alignments due to perspective, human made ob-

jects, and so forth. Can they and only they be detected? There should be detection

thresholds telling us whether a particular configuration of points is aligned enough

to pop out as an alignment. Alignments are not trivial events. They depend a priori

on four different parameters, namely the total length l of the alignment, the number k

of observed aligned points in it, the precision p of the alignment, and the size of the

image N. So a decision threshold function kmin(l, p,N) is needed and will be estab-

lished by the Helmholtz principle. In its weak formulation, this principle common-

sensically formulates that kmin should be fixed in such a way as to seldom detect any

alignment in a white noise image. In the stronger formulation, the Helmholtz prin-

ciple tells us that whenever a configuration occurs, which could not arise by chance

in white noise, this configuration is perceived and must be detected by a Computer

Vision algorithm. In Section 5.1, we define and analyze the white noise image a

contrario and show how to compute detection thresholds kmin(l, p,N) discarding

alignments in white noise. Section 5.2 is devoted to the analysis of the Number of

False Alarms (NFA) of an alignment and the rest of the chapter considers several

estimates of the detection threshold kmin. Finally, several consistency problems as-

sociated with the definition of meaningfulness are considered. In Section 5.5, the

important problem of choosing the precision p is finally addressed.

5.1 Definition of Meaningful Segments

Alignments in digital images are usually not dot alignments but correspond to seg-

ments where the gradient is observed to be roughly orthogonal to the segment’s

direction. The first question is how to compute the gradient and how to sample the

segments (how many different points can be counted on a digital segment?).

65
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5.1.1 The Discrete Nature of Applied Geometry

Perceptual and digital images are the result of a convolution followed by a spa-

tial sampling, as described in the Shannon-Whittaker theory. From the samples, a

continuous image may be recovered by Shannon interpolation, but the samples by

themselves contain all of the image information. From this point of view, one could

claim that no absolute geometric structure is present in an image, (e.g. no straight

line, no circle, no convex set, etc). We claim in fact the opposite and the following

definition will explain how we can be sure that a line is present in a digital image.

Consider a gray-level image of size N (i.e. a regular grid of N2 pixels). At each

point x, or pixel, of the discrete grid, there is a gray level u(x) that is quantized and

therefore inaccurate. We may compute at each point the direction of the gradient,

which is the simplest local contrast invariant information (local contrast invariance is

a necessary requirement in image analysis and perception theory [Met75], [Wer23]).

The direction of the level line passing by the point can be calculated on a q×q pixels

neighborhood (generally, q = 2).

The computation of the gradient is based on an interpolation (we have q = 2). We

define the direction at pixel (n,m) by rotating by π/2 the direction of the gradient

of the order 2 interpolation at the center of the 2×2 window made of pixels (n,m),
(n+1,m), (n,m+1), and (n+1,m+1). We get

dir(n,m) =
1

‖ Du(n,m) ‖Du(n,m)⊥, (5.1)

where

Du(n,m) =
1

2

(
[u(n+1,m)+u(n+1,m+1)]+ [u(n,m)+u(n,m+1)]
[u(n,m+1)+u(n+1,m+1)]− [u(n,m)+u(n+1,m)]

)

.

(5.2)

Formula (5.2) can be interpreted as the exact gradient Dũ(n + 1/2,m + 1/2) when

ũ is the bilinear interpolate of u. This interpolate is defined in [n,n+1]× [m,m+1]
by

ũ(x,y) = (y−m)
(

(x−n)X4 +(1− x+n)X3

)

+(1− y+m)
(

(x−n)X2 +(1− x+n)X1

)

,

where X1 = u(n,m), X2 = u(n+1,m), X3 = u(n,m+1), and X4 = u(n+1,m+1).
We say that two points X and Y have the same direction with precision 1/n if

|Angle(dir(X),dir(Y ))| ≤ π

n
. (5.3)

In agreement with psychophysics and numerical experimentation, realistic values

of n range from 32 to 4 and it is, in general, useless to consider larger values of n.

Nothing hinders, however, the consideration of larger n’s for very well-sampled

images for special scientific or technical applications.
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5.1.2 The A Contrario Noise Image

In line with the Helmholtz principle, an alignment in a digital image is meaningful

if it could not happen in a same size white noise image. Following Attneave [Att54]

and Shannon [Sha48], an image is a “white noise” if the values at each pixel are

independent and identically distributed random variables. The joint distribution of

the gray-level at each pixel is ideally Gaussian or uniform. Actually, the following

proposition proves that the direction at each point in the noise image is a uniformly

distributed random variable on [0, 2π] when the gray level distribution is Gaussian.

It is also nearly uniform when the gray-level distribution is uniform.

Proposition 8 Let u be a gray-level image. Let Du denote the gradient of u com-

puted according to Equation (5.2). We use complex numbers notations and write

Du = Rexp(iθ), where R = |Du| is the modulus of Du and θ its argument. Then the

following hold:

1. If u is a Gaussian white noise, which means that the gray levels at all of the

pixels are independent and identically Gaussian N (µ ,σ2) distributed, then θ is

uniformly distributed on [0,2π].
2. If u is a uniform white noise, which means that the gray levels at all of the pixels

are independent and identically uniformly distributed on [− 1
2
, 1

2
], then the law

of θ is given by the density function g, π/2-periodic and whose restriction to

[−π/4,π/4] is

g(θ) =
1

12

(

1+ tan2
(π

4
−|θ |

))(

2− tan
(π

4
−|θ |

))

(see Figure 5.1).
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Fig. 5.1 Law of θ on [−π,π] when the image is a uniform noise, and comparison with the uniform

distribution on [−π,π] (dotted line).
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Proof — According to Equation (5.2), the gradient Du at a pixel (n,m) is defined

by

Du(n,m) =

(
ux

uy

)

:=
1

2

(
X2 +X4 −X1 −X3

X1 +X2 −X3 −X4

)

, (5.4)

where X1 = u(n,m), X2 = u(n+1,m), X3 = u(n,m+1), and X4 = u(n+1,m+1).
Set A = X2 −X3 and B = X1 −X4. We have ux = A−B

2
and uy = A+B

2
. Since Du =

ux + iuy = Rexp(iθ), we also have

A+ iB = R
√

2 · exp
[

i(θ −π/4)
]

. (5.5)

Let us assume here that X1, X2, X3, and X4 are independent random variables

with the same Normal distribution N (µ ,σ2). Then A and B are independent and

have both the same Gaussian distribution of mean 0 and variance 2σ2. The law of

the couple (A,B) is given by the density function

f (a,b) =
1

4πσ2
exp

(

−a2 +b2

4σ2

)

.

Thus, using the polar coordinates, the density of the couple (R,θ) is

h(r,θ) =
r

4πσ2
exp

(

− r2

4σ2

)

1[0,2π](θ),

which shows in particular that θ is almost surely defined. It also shows that R and θ
are independent and the law of θ is uniform for every given R = r. This proves the

first part of the proposition.

Let us now assume that X1, X2, X3, and X4 are independent random variables

uniformly distributed on [− 1
2
, 1

2
]. Then the random variables A = X2 −X3 and B =

X1 −X4 are independent and have the same density h(x) = 1− |x| for |x| ≤ 1, and

h(x) = 0 otherwise. This density is obtained by convolution of the characteristic

function of the interval [− 1
2
, 1

2
] with itself. Let us compute the law of α = θ −π/4.

Due to Equation (5.5), B = A tan(α). First, consider the case 0 ≤ α ≤ π/4. The

distribution function of α is F(α) = P [0 ≤ B ≤ A tanα]; that is,

F(α) =
∫ 1

x=0

(∫ x tanα

y=0
(1− y)d y

)

(1− x)dx.

Hence, the law of α ∈ [0,π/4] is given by the density function

f (α) = F ′(α)=
∫ 1

0
x(1+ tan2 α)(1−x tanα)(1−x)dx =

1

12
(1+ tan2 α)(2− tanα).

Finally, since α = θ − π/4 and using symmetries, we obtain the announced law

for θ . �

The histogram of the gradient orientation is very sensitive to quantization of the

gray levels of the image. Think of the extreme case of a binary image u, where the
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(a) White noise: no alignment detected (ε = 1) (b) Convolution of image (a) with a Gaussian

kernel with standard deviation of 4 pixels: no

alignment detected (ε = 1)

Fig. 5.2 The weak Helmholtz principle: “no detection in noise”. According to Attneave [Att54]

and Shannon [Sha48], an image is a white noise if the values at each pixel are independent and

identically distributed random variables. No geometric structure arises in such images at first

sight – in particular, no alignment. This demonstrates experimentally the validity of the Helmholtz

principle. The left-hand image is a white noise. The right-hand image is a white noise image blurred

by the convolution with a Gaussian of 4 pixels size standard deviation. The alignment detector

defined in the present chapter did not detect any 1-meaningful alignment in these images. This

algorithm is actually designed to detect at most one alignment on average in white noise.

gradient orientation θ computed by formulas (5.1)–(5.3) takes only eight values,

all multiples of π/4. Digital images usually contain many flat regions and, in these

regions, gray levels take a few quantized values. Consequently, the gradient orienta-

tion is very quantized and will thus be responsible for false alignment detection. In

order to avoid this problem, a dequantization has to be performed. One possible de-

quantization method (a Shannon ( 1
2
, 1

2
)-translation of the image) has been proposed

and studied in [DLMM02].

In such images as the ones presented in Figure 5.2, no geometric structure can be

seen and, in particular, no alignment. This illustrates the validity of the Helmholtz

principle in its weak form. Applying the stronger form, we will detect an alignment

in a digital image if and only if it could hardly occur in a white noise image of the

same size. Of course, if we do many experiments, we will end up with a noise image

showing some geometric structure and the same occurs if we take a very large noise

image. In the former informal definition, it is therefore important to mention that

the a-contrario noise image has the same size as the original image.

In the following, we assume that the accuracy parameter n is larger than 2 and we

set p = 1
n
< 1

2
; p is the accuracy of the direction. We can interpret p as the probability

that two independent points have the same direction with the given accuracy p.

In a white noise image, two pixels at a distance larger than 2 have independent
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directions when this direction is computed by formulas (5.1)–(5.3) and, according to

Proposition 8, this direction is uniformly distributed on [0,2π]. Let A be a segment

in the a-contrario noise image made of l independent pixels. This means that the

distance between two consecutive points of A is 2 and so the length of A is 2l. We

are interested in the number of points of A having their direction aligned with the

direction of A for the precision p. Such points of A will simply be called aligned

points of A.

Our aim is to compute the minimal number k(l) of aligned points that must be

observed on a length l segment to make the alignment meaningful.

5.1.3 Meaningful Segments

Let A be a straight segment with length l and x1, x2, . . . ,xl be the l (independent)

points of A. Let Xi be the random variable whose value is 1 when the direction at

pixel xi is aligned with the direction of A for the precision p, and 0 otherwise. We

then have the following Bernoulli distribution for Xi:

P [Xi = 1] = p and P [Xi = 0] = 1− p.

The random variable representing the number of xi having the right direction is

Sl = X1 +X2 + · · ·+Xl .

Because of the independence of the Xi’s, the law of Sl is given by the binomial

distribution

P [Sl = k] =

(
l

k

)

pk(1− p)l−k.

Given a length l segment we want to know whether it is ε-meaningful among all of

the segments of the image (not just among the segments having the same length l).

Let m(l) be the number of oriented segments of length l in the N ×N noise image.

Define the total number of oriented segments in a N ×N image as the number of

couples (x,y) of points in the image (an oriented segment is given by its starting

point and its ending point) and thus we have

lmax

∑
l=1

m(l) = N2(N2 −1) ≃ N4.

For the sake of simplicity, the value N4 is kept as an order of magnitude for the

number of segments. All segments in the N ×N image are numbered from i = 1 to

i = N4.

Definition 4 (Detection thresholds). We call detection thresholds a family of posi-

tive values w(l,ε,N), 1 ≤ l ≤ lmax, such that

lmax

∑
l=1

w(l,ε,N)m(l) ≤ ε.
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Definition 5 (General definition of an ε-meaningful segment). A length l segment

is ε-meaningful in a N ×N image if it contains at least k(l) points having their

direction aligned with the one of the segment, where k(l) is given by

k(l) = min{k ∈ N, P [Sl ≥ k] ≤ w(l,ε,N)} .

Let us develop and explain this definition. For 1 ≤ i ≤ N4, let ei be the event “the

i-th segment is ε-meaningful” and χei
denote the characteristic function of the event

ei. We have

P [χei
= 1] = P

[
Sli ≥ k(li)

]
,

where li is the length of the i-th segment. Notice that if li is small, we may have

P
[
Sli ≥ k(li)

]
= 0. Let R be the random variable representing the exact number of ei

occurring simultaneously in a trial. Since R = χe1
+χe2

+ · · ·+χe
N4

, the expectation

of R is

E [R] = E [χe1
]+E [χe2

]+ · · ·+E
[

χe
N4

]

=
lmax

∑
l=0

m(l)P [Sl ≥ k(l)].

We compute here the expectation of R but not its law because it depends a lot on

the relations of dependence between the ei. The main point is that segments may

intersect and overlap, so that the ei events are not independent and may even be

strongly dependent.

By definition we have

P [Sl ≥ k(l)] ≤ w(l,ε,N),

so that

E [R] ≤
lmax

∑
l=1

w(l,ε,N)m(l) ≤ ε. (5.6)

This means that the expectation of the number of ε-meaningful segments in an im-

age is less than ε . The question now is how to set the detection thresholds. The

number of discrete segments with length l in a digital N ×N image has N3 order

of magnitude. There are indeed approximately N2 possible discrete straight lines in

a N ×N image, and on each discrete line there are about N choices for the starting

point of the segment. So m(l) ≃ N3. If we were interested in segments with length

l only, we should take w(l,ε,N) = ε
N3 . There is no reason to be more interested in

large segments than in short ones. Thus, a uniform weighting over lengths is sound.

Our final definition of an ε-meaningful segment will therefore admit this uniformity

principle:

∀ l ≥ 1, w(l,ε,N) =
ε

N4
.

This leads to the final simpler definition of ε-meaningful segments.

Definition 6 (ε-meaningful segment: final definition). A length l segment is

ε-meaningful in a N × N image if it contains at least k(l) points having their

direction aligned with the one of the segment, where k(l) is given by

k(l) = min
{

k ∈ N, P [Sl ≥ k] ≤ ε

N4

}

. (5.7)
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(a) The original image. (b) Maximal ε-meaningful segments, for

ε = 1/10.

(c) Maximal ε-meaningful segments, for

ε = 1/100.

(d) Maximal ε-meaningful segments, for

ε = 1/1000.

Fig. 5.3 Airport image (size 510×341). This digital image has a noticeable aliasing distortion cre-

ating horizontal and vertical dashes along the edges. We display in image (b) all maximal mean-

ingful segments for ε = 1/10 (as we already mentioned, maximal meaningful segments will be

defined in Chapter 6; they are in some sense the “best representatives” of the set of all mean-

ingful segments). Images (c) and (d) show the result of the same experiment for ε = 1/100 and

ε = 1/1000. The very similar results illustrate the logε dependence of detection: We get almost

the same detections when changing ε by one or two orders of magnitude. This stability is all the

more true because alignments in a digital image use to be much longer than needed to be detected.

In the following, we write B(l,k) for B(l,k, p) = P [Sl ≥ k]; that is, we omit men-

tioning p in the arguments of B when p is fixed.

First examples of meaningful segments in an image are displayed and com-

mented in Figures 5.3 and 5.4. These figures display first all meaningful segments

and then a more accurate selection, the maximal meaningful segments. This selec-

tion process will be described in Chapter 6.

5.1.4 Detectability Weights and Underlying Principles

Before proceeding with the properties of meaningful segments, we should further

discuss the choice of “detection thresholds”. Consider a fixed length l. It is apparent

by an obvious translation and rotation invariance principle that all segments with
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Fig. 5.4 Meaningful segments on a simple example. On the first row, we show on the left the

original image of a uniform square on a uniform background (its size is 256×256). On the right,

we have a noisy version of this image (degraded by an additive Gaussian noise). The second row

contains all the meaningful segments of each image. One can clearly see that, since noise creates

pixels with horizontal and vertical orientations in the background and since the boundaries of the

square are very meaningful segments, they can be extended in the background while being still

meaningful. The third row presents the maximal meaningful segments of each image: They are

defined as the segments which have the lowest number of false alarms among the set of segments

which are contained in or contain them. These maximal meaningful segments are in some sense

the “best representatives” of the set of all meaningful segments. Their definition and their prop-

erties will be detailed in Chapter 6. In the experiments we will generally only display maximal

meaningful segments since with all meaningful segments, the image is almost entirely covered by

segments!

the same orientation should have the same chances to be detected. This is why the

above definition of detection thresholds made them depend only on the length l, the

image size N, and the allowed expectation of “false alarms”, ε . In the final Defin-

ition 6 of ε-meaningful segments, the requirement that w(l,N,ε) is independent of
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the length l has been added. This looks pretty arbitrary. We might be more inter-

ested, for example, in longer segments than in shorter ones. The choice of w might

allow for more false alarms for longer l’s and less for smaller l’s. The estimates

given in the next section will show that this discussion is futile. Let us deal with

orders of magnitude. There are roughly N3 segments with length l and N4 segments

of any length. If the global false alarm rate is equal to ε , one must always have

ε

N4
≤ w(l,N,ε) ≤ ε

N3
.

The right-hand case corresponds to the extreme case where we only look for seg-

ments of length l and the left-hand case corresponds to our choice, which does not

favor any length. Section 5.3 shows that this freedom has almost no influence in the

detection. Indeed, the minimal number of aligned points kmin(l) will be proven to be

proportional to log( ε
N4 ) in the first case and to log( ε

N3 ) in the second case. This will

mean in practice that the detected segments are roughly the same.

5.2 Number of False Alarms

In this section the “number of false alarms” is defined and the consistency of this

definition is checked.

5.2.1 Definition

Definition 7 (Number of false alarms). Let A be a segment of length l0 with k0

points having their direction aligned with the direction of A. We define the number

of false alarms of A as

NFA(l0,k0) = N4 ·P
[
Sl0 ≥ k0

]
= N4 ·

l0

∑
k=k0

(
l0

k

)

pk(1− p)l0−k.

Proposition 9 Let A = (l0,k0) be a segment. Then the segment A is ε-meaningful

if and only if NFA(A) ≤ ε . In other words, NFA(A) is the smallest value of ε such

that A is ε-meaningful.

Proof — By definition of NFA(A), we have N4 · P
[
Sl0 ≥ k0

]
= NFA(l0,k0) and

therefore

P
[
Sl0 ≥ k0

]
=

NFA(l0,k0)

N4
.

By the definition (5.7) of k(l) and since P [Sl ≥ k] is decreasing with respect to

k, k0 = k(l0). Thus, A is NFA(l0,k0)-meaningful and is no more ε-meaningful if

ε < NFA(l0,k0). �
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In all of the following, a function called NFA will always satisfy a property like

Proposition 9; that is, any event A such that NFA(A)≤ ε will be ε-meaningful. This

property can even be taken as a definition of a NFA, as done recently in [GM06].

This point is discussed in Section 5.6.

5.2.2 Properties of the Number of False Alarms

Proposition 10 The number of false alarms NFA(l0,k0) has the following proper-

ties:

1. NFA(l0,0) = N4, which proves that the event for a segment to have more than

zero aligned points is never meaningful!

2. NFA(l0, l0) = N4 · pl0 , which shows that a segment where all points have the

“good” direction is ε-meaningful if its length is larger than (−4logN + logε)/
log p.

3. NFA(l0,k0 + 1) < NFA(l0,k0). In other terms, if two segments have the same

length l0, the more meaningful is the one that has the more aligned points.

4. NFA(l0,k0) < NFA(l0 + 1,k0). This property can be illustrated by the following

figure of a segment (where a • represents a misaligned point and a → represents

an aligned point):

→→ • →→ •• →→→→→ •
If we remove the last point on the right that is misaligned, the new segment is less

probable and therefore more meaningful than the considered one.

5. NFA(l0 +1,k0 +1) < NFA(l0,k0). Again, we can illustrate this property:

→→ • →→ •• →→→→→→

If we remove the last aligned point (on the right), the new segment is more prob-

able and therefore less meaningful than the considered one.

Proof — This proposition is an easy consequence of the definition and properties of

the binomial distribution (see [Fel68]). A detailed proof is given in Exercise 4.3.1

at the end of the chapter. �

Now, consider a length l segment (made of l independent pixels). The expectation

of the number of points of the segment having the same direction as the segment is

simply the expectation of the random variable Sl

E [Sl ] =
l

∑
i=1

E [Xi] =
l

∑
i=1

P [Xi = 1] = p · l.

The ε-meaningful segments, whose NFA is less than ε , have a probability less than

ε/N4. Since they represent alignments (deviations from randomness), they should

contain more aligned points than the expected number computed above. This remark

is the main point of the following proposition.
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Proposition 11 Assume that p ≤ 1
2
. Let A be a segment of length l0 ≥ 1 containing

at least k0 points having the same direction as the one of A. If NFA(l0,k0) ≤ p ·N4

(which is the case when A is 1-meaningful because N is very large and thus,

pN4 >1), then

k0 ≥ pl0 +(1− p).

This is a “sanity check” for the model. This proposition will be proven by Lemma 2.

5.3 Orders of Magnitudes and Asymptotic Estimates

In this section precise asymptotic and nonasymptotic estimates of the thresholds

k(l) will be given. They roughly say that

k(l) ≃ pl +

√

C · l · log
N4

ε
,

where 2p(1− p) ≤C ≤ 1
2
. Some of these results are illustrated in Figure 5.5. These

estimates are not necessary for the algorithm (because B(l,k)) is easy to compute),
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Fig. 5.5 Estimates for the threshold of meaningfulness k(l): The middle (stepcase) curve repre-

sents the exact value of the minimal number of aligned points k(l) to be observed on a 1-meaningful

segment of length l in an image of size 512, for a direction precision of 1/16. The upper and lower

curves represent estimates of this threshold obtained by Proposition 12 and Proposition 14.
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but they do provide an interesting order of magnitude for k(l). In particular, we will

see how the theory of large deviations and other inequalities concerning the tail of

the binomial distribution can provide a sufficient condition of meaningfulness. Two

main outcomes of these estimates are as follows:

– The log(ε) and log(N) dependence of this definition. In the experiments ε = 1,

therefore allowing less than one false detection on the average. Now, the log

ε-dependence guarantees that fixing a smaller or larger value for ε will change

the detection result only if we change the order of magnitude of ε .

– Detection is possible with a
√

l excess of alignments in a length l segment.

Let us start with an estimate of the smallest length l of a detected alignment. The

first simple necessary condition we can get is a threshold on the length l. For an

ε-meaningful segment, one has

pl ≤ P [Sl ≥ k(l)] ≤ ε

N4
,

so that

l ≥ −4logN + logε

log p
. (5.8)

Let us give a numerical example: If the size of the image is N = 512, and if

p = 1/16 (which corresponds to 16 possible directions), the minimal length of a

1-meaningful segment is lmin = 9.

5.3.1 Sufficient Condition of Meaningfulness

In this subsection, we will see how the theory of large deviations and the inequal-

ities concerning the tail of the binomial distribution (see the previous chapter) can

provide a sufficient condition of meaningfulness. The key point here is the result

due to Hoeffding [Hoe63] (see the previous chapter: Proposition 3 and the proof in

Exercise 4.3.2). They will be used to deduce a sufficient condition for a segment to

be meaningful. The size N of the image and the precision p are fixed.

Proposition 12 (Sufficient condition of ε-meaningfulness) Let S be a length l

segment, containing at least k aligned points. If

k ≥ pl +

√

4logN − logε

h(p)

√
l,

where p 
→ h(p) is the function defined as in Proposition 3 by

h(p) =
1

1−2p
log

1− p

p
i f 0 < p <

1

2
,

h(p) =
1

2p(1− p)
if

1

2
≤ p < 1,

then S is ε-meaningful.
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Proof — Let S be a length l segment, containing at least k aligned points, where k

and l are such that

k ≥ pl +

√

4logN − logε

h(p)

√
l.

If we denote r = k/l, then r ≥ p and

l(r− p)2 ≥ 4logN − logε

h(p)
.

By Proposition 3 we deduce that

P [Sl ≥ k] ≤ exp(−l(r− p)2h(p)) ≤ exp(−4logN + logε) =
ε

N4
,

which means by definition that the segment S is ε-meaningful. �

Corollary 1. Let S be a length l segment, containing at least k aligned points. If

k ≥ pl +

√

l

2
(4logN − logε),

then S is ε-meaningful.

Proof — This result is a simple consequence of Proposition 12 and of the fact that

for p in (0,1), h(p) ≥ 2 (see Proposition 3 and Figure 4.1 in the previous chapter).

�

5.3.2 Asymptotics for the Meaningfulness Threshold k(l)

In this section ε and p are fixed. We will work on asymptotic estimates of k(l) when

l is “large”. For this, we could use the following proposition, which is the Central

Limit Theorem in the particular case of the binomial distribution (see [Fel68]).

Proposition 13 (De Moivre-Laplace limit theorem) If α is a fixed positive num-

ber, then as l tends to +∞,

P
[

Sl ≥ pl +α
√

l · p(1− p)
]

−→ 1√
2π

∫ +∞

α
e−x2/2 dx.

Now, the problem is that if l tends to infinity, we also have to consider that N

tends to infinity (indeed, since l is the length of a segment in a N ×N image, l ≤√
2N). And so the parameter α used in the De Moivre-Laplace theorem will depend

on N. This is why a stronger version of the previous theorem, Proposition 5, is

useful.
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Proposition 14 (Asymptotic behavior of k(l)) When N → +∞ and l → +∞ in

such a way that l/(logN)3 → +∞, then

k(l) = pl +

√

2p(1− p) · l ·
(

log
N4

ε
+O(log logN)

)

.

Proof — We define, for i ∈ {0,1},

αi(l,N) =
k(l)− i− pl
√

l p(1− p)
.

Corollary 1 implies that

k(l) ≤ pl +

√

l

2
(4logN − logε)+1

from which we deduce that

α6
i (l,N)

l
≤C

(4logN − logε)3

l
,

where C is a constant. Since ε is fixed and l/(logN)3 → +∞, we get that α6
i (l,N)/

l → 0. Hence, we can apply the generalized Central Limit Theorem (Proposition 5)

to obtain

∀i ∈ {0,1}, P
[

Sl ≥ pl +αi(l,N)
√

l · p(1− p)
]

∼
l→+∞

1√
2π

∫ +∞

αi(l,N)
e−x2/2 dx.

(5.9)

For i = 0 (resp. for i = 1), the left-hand term of (5.9) is smaller (resp. larger) than

ε/N4. Additionnaly, the right-hand term is equivalent to

1√
2παi(l,N)

e−α2
i (l,N)/2.

For i = 0, we deduce that

1√
2π

1

α0(l,N)
e−α2

0 (l,N)/2(1+o(1)) ≤ ε

N4
,

which implies

O(1)+O(log(α0(l,N)))− α2
0 (l,N)

2
+o(1) ≤ log

ε

N4

and, finally,

α0(l,N)2 ≥ 2log
N4

ε
+O(log logN)
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that is

k(l) ≥ pl +

√

2p(1− p) · l ·
(

log
N4

ε
+O(log logN)

)

. (5.10)

The case i = 1 gives, in a similar way,

k(l)−1 ≤ pl +

√

2p(1− p) · l ·
(

log
N4

ε
+O(log logN)

)

. (5.11)

Finally (5.10) and (5.11) yield the estimate of k(l) announced in Proposition 14. �

5.3.3 Lower Bound for the Meaningfulness Threshold k(l)

In this part, a necessary condition of ε-meaningfulness is obtained by using the

comparison between the binomial and the Gaussian laws given in Slud’s Theorem 1.

Proposition 15 (Necessary condition of meaningfulness) We assume that p and

N are fixed, with 0 < p ≤ 1/4 and pN4 > 1. If a segment S with length l and con-

taining k aligned points is ε-meaningful, then

k ≥ pl +α(N)
√

l p(1− p),

where α(N) is uniquely defined by

1√
2π

∫ +∞

α(N)
e−x2/2 dx =

ε

N4
.

Proof — This proposition is a direct consequence of Proposition 11 (which implies

that k > pl) and of Slud’s theorem (Theorem 1). The assumption 0 < p ≤ 1/4 is not

a strong condition since it is equivalent to considering that the number of possible

oriented directions is larger than 4. Let us denote

β (k, l) =
k− pl

√

l p(1− p)
.

Then

ε

N4
=

1√
2π

∫ +∞

α(N)
e−

x2

2 dx ≥ P [Sl ≥ k] ≥ 1√
2π

∫ +∞

β (k,l)
e−

x2

2 dx, (5.12)

where the first equality defines α(N), the second inequality traduces that the seg-

ment S is ε-meaningful, and the third inequality follows from Slud’s theorem. This

implies β (k, l) ≥ α(N), which is the announced inequality. �
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5.4 Properties of Meaningful Segments

5.4.1 Continuous Extension of the Binomial Tail

Following [Fel68], the discrete function B(l,k) will be extended to a continuous

domain. This is done by introducing a new function B̃(l,k), which is called the

“incomplete Beta function” in the literature.

Lemma 1 The map

B̃ : (l,k) 
→

∫ p

0
xk−1(1− x)l−k dx

∫ 1

0
xk−1(1− x)l−k dx

(5.13)

is continuous on the domain
{
(l,k) ∈ R2, 0 ≤ k ≤ l < +∞

}
, decreasing with re-

spect to k, increasing with respect to l, and for all integer values of k and l, one has

B̃(l,k) = B(l,k).

Proof — More details are available in Exercise 5.7.2 at the end of the chapter.

The continuity results from classical theorems on the regularity of parameterized

integrals. Notice that the continuous extension of B̃ when k = 0 is B̃(l,0) = 1. Let us

prove that B̃(l,k) is decreasing with respect with k. The proof involves the function

A(l,k) =

∫ p

0
xk−1(1− x)l−k dx

∫ 1

p
xk−1(1− x)l−k dx

.

Notice that 1/B̃ = 1+1/A. It must be proven that A decreases with respect with k.

Computing

1

A

∂A

∂k
(l,k) =

∫ p

0
xk−1(1− x)l−k · log

x

1− x
dx

∫ p

0
xk−1(1− x)l−k dx

−

∫ 1

p
xk−1(1− x)l−k · log

x

1− x
dx

∫ 1

p
xk−1(1− x)l−k dx

,

and applying the Mean Value Theorem implies the existence of (α,β ) such that

0 < α < p < β < 1 and
1

A

∂A

∂k
(l,k) = log

α

1−α
− log

β

1−β
.

The right-hand term being negative, the proof is complete. The proof that B in-

creases with respect with l is similar, the increasing map x 
→ log x
1−x

being re-

placed by the decreasing map x 
→ log(1− x). Finally, the fact that B̃(l,k) = B(l,k)
for integer values of k and l is a consequence of the relation B̃(l + 1,k + 1) =
pB̃(l,k)+(1− p)B̃(l,k +1) (see [Fel68] for example). �
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Remark: The properties of B̃ guarantee that B̃ is a good interpolate of B in the sense

that the monotonicity of B in both variables l and k is extended to the continuous

domain. Notice that a proof based on the same method (using that x 
→ logx is

increasing) will establish that

∂ B̃
∂ l

+
∂ B̃
∂k

≤ 0,

which is the natural extension of the property B(l +1,k+1)≤B(l,k) previously es-

tablished in Proposition 10. The following property is a good example of the interest

of the continuous extension of B. It yields a proof of Proposition 11.

Lemma 2 If l ≥ 1 and p ≤ 1
2
, then p ≤ B̃(l, p(l −1)+1) ≤ 1

2
.

Proof — Using A(l,k) as in Lemma 1, one sees that it is sufficient to prove that if

k−1 = p(l −1), then

p

1− p

∫ 1

p
xk−1(1− x)l−k dx ≤

∫ p

0
xk−1(1− x)l−k dx ≤

∫ 1

p
xk−1(1− x)l−k dx. (5.14)

For this purpose, let us write f (x) = xk−1(1− x)l−k and study the map

g(x) =
f (p− x)

f (p+ x)
.

By a simple computation one sees that g′(x) has the sign of

2x2(k−1− (1− p)(l−1))−2p(1− p)(k−1− p(l−1))

and since k− 1 = p(l − 1) and p ≤ 1/2, we obtain g′ ≤ 0 on ]0, p]. Hence, g(x) ≤
g(0) = 1 on ]0, p] which implies

∫ p

0
f (x)dx =

∫ p

0
f (p− x)dx ≤

∫ p

0
f (p+ x)dx =

∫ 2p

p
f (x)dx ≤

∫ 1

p
f (x)dx

and the right-hand side of (5.14) is proven.

For the left-hand side, one can follow the same reasoning with the map

g(x) =
f (p− x)

f (p+ 1−p
p

x)
.

After a similar computation, one obtains g′ ≥ 0 on ]0, p], so that f (p− x) ≥ f (p +
1−p

p
x) on ]0, p]. Integrating this inequality yields

∫ p

0
f (x)dx =

∫ p

0
f (p− x)dx ≥

∫ p

0
f

(

p+
1− p

p
x

)

dx =
p

1− p

∫ 1

p
f (x)dx,

which proves the left-hand side of (5.14). �



5.4 Properties of Meaningful Segments 83

5.4.2 Density of Aligned Points

In general, it is not easy to compare B(l,k) and B(l′,k′) by performing simple com-

putations on k, k′, l, and l′. Assume that we have observed a meaningful segment S in

a N×N image. Let l denote the length of this segment and let k denote the number of

aligned points it contains. For simplicity, the segment S will be denoted by S = (l,k).
Assume also that we have been able take a better photograph that increases the res-

olution of the image. The new image has size λN ×λN, with λ > 1. Assume that

the relative density of the aligned points on the segment does not change in the more

resolute image. The considered segment is therefore Sλ = (λ l,λk). Our aim is to

compare the NFAs of S and Sλ . This leads one to compare

N4 · B̃(l,k) and (λN)4 · B̃(λ l,λk).

The result given in the following theorem shows that

NFA(Sλ ) < NFA(S).

This is a consistency check for the Helmholtz principle, since a better view must

increase the detection rate and therefore decrease the NFA!

Theorem 4 Let S = (l,k) be a 1-meaningful segment of a N×N image (with N ≥ 6).

Then the function defined for λ ≥ 1 by

λ 
→ (λN)4 · B̃(λ l,λk)

decreases.

This theorem has the following corollary, which enables us to compare the

“meaningfulness” of two segments of the same image.

Corollary 2. Let A = (l,k) and B = (l′,k′) be two 1-meaningful segments of a N×N

image (with N ≥ 6) such that

k′

l′
≥ k

l
and l′ > l.

Then B is more meaningful than A; that is, NFA(B) < NFA(A).

Proof — Indeed, we can take λ = l′/l > 1, so that k′ ≥ λk. We then have by

Theorem 4

(λN)4B̃(l′,k′) ≤ N4B̃(l,k),

and therefore N4B̃(l′,k′) < N4B̃(l,k) (i.e., NFA(B) < NFA(A)). �

An interesting application of Corollary 2 is the concatenation of meaningful seg-

ments. Let A = (l,k) and B = (l′,k′) be two meaningful segments lying on the same

line. Assume that A and B are consecutive, so that A∪B is simply a (l + l′,k + k′)
segment. Then since
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k + k′

l + l′
≥ min

(
k

l
,

k′

l′

)

,

we deduce, thanks to the above corollary, that

NFA(A∪B) < max(NFA(A),NFA(B)).

This proves the following corollary.

Corollary 3. The concatenation of two meaningful segments is more meaningful

than the least meaningful of both.

The next lemma is useful to prove Theorem 4.

Lemma 3 Define for p < r ≤ 1, B(l,r) = B̃(l,rl). Then

1

B

∂B

∂ l
<

1

l
− (gr(r)−gr(p)),

where gr is the function defined by x 
→ gr(x) = r logx+(1− r) log(1− x).

Proof — We first write the Beta integral in terms of the Gamma function (see, e.g.,

[Ana65]),
∫ 1

0
tx−1(1− t)y−1

dt =
Γ (x)Γ (y)

Γ (x+ y)
.

Thanks to the definition of B̃(l,rl), this yields

B(l,r) =
Γ (l +1)

Γ (rl)Γ ((1− r)l +1)

∫ p

0
xrl−1(1− x)(1−r)l dx. (5.15)

We now use the expansion (see [Ana65])

d logΓ (x)

dx
= −γ − 1

x
+

+∞

∑
n=1

(
1

n
− 1

x+n

)

, (5.16)

where γ is Euler’s constant. Using (5.15) and (5.16), we obtain

1

B

∂B

∂ l
= −γ − 1

l +1
+

+∞

∑
n=1

(
1

n
− 1

l +1+n

)

− r

[

− γ − 1

rl
+

+∞

∑
n=1

(
1

n
− 1

rl +n

)]

−(1− r)

[

− γ − 1

(1− r)l +1
+

+∞

∑
n=1

(
1

n
− 1

(1− r)l +1+n

)]

+

∫ p

0
(r logx+(1− r) log(1− x))xrl−1(1− x)(1−r)l dx

∫ p

0
xrl−1(1− x)(1−r)l dx

.
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The function x 
→ r logx + (1− r) log(1− x) is increasing on (0,r) and we have

p < r, so

∫ p

0
(r logx+(1− r) log(1− x))xrl−1(1− x)(1−r)l dx

∫ p

0
xrl−1(1− x)(1−r)l dx

≤ r log p+(1− r) log(1− p) .

Then

1

B

∂B

∂ l
≤ 1

l
+

+∞

∑
n=1

(
r

rl +n
+

1− r

(1− r)l +n
− 1

l +n

)

+ r log p+(1− r) log(1− p) .

Now, let us consider the function

f : x 
→ r

rl + x
+

1− r

(1− r)l + x
− 1

l + x

defined for all x > 0 . Since 0 < r ≤ 1, we have rl +x ≤ l +x and (1−r)l +x ≤ l +x,

so that f (x) ≥ 0 and

f ′(x) = − r

(rl + x)2
− 1− r

((1− r)l + x)2
+

1

(l + x)2
≤ 0.

We deduce that for N integer larger than 1,

N

∑
n=1

f (n) ≤
∫ N

0
f (x)dx .

A simple integration gives

∫ N

0
f (x)dx = r log

(

1+
rl

N

)

+(1− r) log

(

1+
(1− r)l

N

)

− log

(

1+
l

N

)

− r logr− (1− r) log(1− r).

Finally,

+∞

∑
n=1

(
r

rl +n
+

1− r

(1− r)l +n
− 1

l +n

)

≤−r logr− (1− r) log(1− r),

which yields

1

B

∂B

∂ l
≤ 1

l
− r logr− (1− r) log(1− r)+ r log p+(1− r) log(1− p)

=
1

l
−gr(r)+gr(p).

�
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Proof of Theorem 4 — Let us define r = k/l. Since S is 1-meaningful, we have

r > p and also (see Lemma 4 in Exercise 5.7.3)

gr(r)−gr(p) ≥ 3logN

l
.

Let f be the function defined for λ ≥ 1 by f (λ )= (λN)4B̃(λ l,λk)= (λN)4B(λ l,r).
If we compute the derivative of f and use Lemma 3, we get

∂ log f

∂λ
=

4

λ
+ l

∂ logB

∂ l
(λ l,r)

<
4

λ
+ l

(
1

λ l
−gr(r)+gr(p)

)

<
5

λ
−3logN,

which is negative thanks to the hypothesis N ≥ 6. �

Remark: For the approximation of B̃(l,k) given by the Gaussian law

G(l,k) =
1√
2π

∫ +∞

α(l,k)
e−

x2

2 dx where α(l,k) =

(
k

l
− p

)
√

l

p(1− p)
,

we immediately have the result that G(l′,k′) < G(l,k) when k′/l′ ≥ k/l > p and

l′ > l.

5.5 About the Precision p

In this subsection the problem of the choice of the precision p is addressed. It will

be shown that it is useless to make p too small; this would yield no better detection

rates.

Consider a segment S of length l. We can assume that the direction of the seg-

ment is θ = 0. Suppose that among the l points one observes k aligned points with

given precision p (i.e., k points having their direction in [−pπ,+pπ]). Now, what

happens if we change the precision p into p′ < p? Knowing that there are k points

with direction in [−pπ,+pπ], we can assume (by the Helmholtz principle) that the

average number of points having their direction in [−p′π, p′π] is k′ = p′
p

k. Our aim

is to compare

B̃(l,k, p) and B̃(l,k′, p′),

where B̃(l,k, p) denotes what we wrote anteriorly B̃(l,k), when p was fixed. Since

we are interested in meaningful segments, we will only consider the case

λ =
k

l · p
=

k′

l · p′
> 1.
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One is led to study the function p 
−→ B̃(l,λ l p, p) and check that it is decreasing.

This question is open. Fortunately, an analogous statement using the large deviations

estimate of the binomial tail (Proposition 6) is accessible.

Proposition 16 Consider the large deviations estimate of Proposition 6, given by

L(l,k, p) = −l

(

k

l
log

k

l p
+

(

1− k

l

)

log
1− k

l

1− p

)

;

then for any λ > 1, the map p 
→ L(l,λ l p, p) is decreasing with respect to p.

Proof — One can easily prove that the function

p 
−→ λ p logλ +(1−λ p) log
1−λ p

1− p

increases (for λ > 1). Consequently,

p 
−→ L(l,λ l p, p) = −l

(

λ l p

l
log

λ l p

l p
+

(

1− λ l p

l

)

log
1− λ l p

l

1− p

)

decreases. �

This result is experimentally checked in Figure 5.6, where we compute the max-

imal meaningful alignments of an image first for the usual precision p = 1/16 and

then for p = 1/32. Almost all of the alignments detected at precision 1/32 are al-

ready detected at precision 1/16. The previous argument shows that we must al-

ways take the precision as coarse as possible. In fact, there is another inconvenience

in choosing very fine precisions such as p = 1/64. Spurious meaningful alignments

are then detected. They are due to the quantization of gray levels of the image, which

creates a quantization of the orientations. This problem is addressed in [DLMM02].

5.6 Bibliographic Notes

The notion of ε-meaningful segments has to be related to the classical

“α-significance” in statistics, where α is simply w(l,ε,N) = ε
N4 . The reason lead-

ing us to a slightly different terminology is that we are not in a position to assume

that segments detected as ε-meaningful are independent. Indeed, if a segment is very

meaningful, it will be contained in many larger segments that also are ε-meaningful.

Thus, it is convenient to compare the number of detected segments to the expectation

of this number. This is not exactly the same situation as in failure detection, where

the failures are somehow disjointed and rare events. This new definition overcomes a

difficulty raised by Stewart [Ste95] in his seminal work on the ‘MINPRAN” method.

The method was presented as a new paradigm and applied to the 3-D alignment

problem. It is worth describing the method in some detail and explaining what is
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(a) The original image. (b) Maximal meaningful segments

for precision p = 1/16.

(c) Maximal meaningful segments

for precision p = 1/32.

Fig. 5.6 Increasing the precision: p = 1/16 and p = 1/32. Almost all of the alignments detected

at precision 1/32 are already detected at precision 1/16. In this figure, only maximal meaningful

segments are displayed. They will be defined in Chapter 6 and they are in some sense the “best

representatives” of the set of all meaningful segments.

being added to it. To start with, a hypothesis of 3-D alignment on a plane P is gener-

ated. Let us call r the distance to the plane and consider the event “at least k points

among the N randomly fall within the range P±r” (i.e. at a distance less than r from

P). The probability of the event is, calling the maximal distance to the plane z0,

B
(

N,k,
r

z0

)

=
N

∑
i=k

(
N

i

)(
r

z0

)i(

1− r

z0

)N−i

.
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Then for a given plane P, Stewart computes the minimal probability of alignment

over all r’s; that is,

H(P,N) = min
r

B
(

N,kP,r,
r

z0

)

.

Then the number of hypothesized planes S is fixed. We quote:

MINPRAN accepts the best fit from S samples as correct if

min
1≤ j≤S

H(Pj,N) < H0,

where H0 is a threshold based on the probability P0 that the best fit to N uniformly distrib-

uted outliers is less than H0. Intuitively, P0 is the probability MINPRAN will hallucinate

(sic) a fit where there is none. Thus, for a user defined value of P0 (for example P0 = 0.05)

we establish our threshold value H0 (...) To make the analysis feasible, we assume the S fits

and their residuals are independent. Strictly speaking, this assumption is not correct since

the point set is the same for all fits. It is reasonable for relatively small values of S (...).

Doing this requires several parameters to be specified by the user. These parameters (...)

are the estimated maximum fraction of true outliers (...), the minimum number of points to

be allowed in a fit, and the estimated maximum number of correct fits.

Stewart’s method starts exactly as the method introduced here. Stewart addresses

but does not solve the two problems overcome in the present chapter. One is the

generation of the set of samples, which in Stewart’s method leads to the involve-

ment of at least three user’s parameters. The second one is the severe restriction

about the independence of samples. Both difficulties were simultaneously solved in

this chapter by introducing the number of samples as an implicit parameter of the

method (computed from the image size and Shannon’s principles) and by replacing

in all calculations the “probability of hallucinating a wrong event” by the “expec-

tation of the number of such hallucinations” or false alarm rate. Here is how this

chapter’s method would find “alignments” on planes. It would first sample the set of

all planes, according to the accuracy of the image. Then the NFA of a given plane

P would be NFA(P) = NH(P,N), where N is the number of hypothesized planes.

A plane P is ε-meaningful if NFA(P) < ε and the whole former theory applies. The

parameter ε plays the role of P0. The term ε-meaningful is related to the classical

p-significance in statistics; ε can also be seen as the equivalent of the risk level in

statistical hypothesis testing. We refer to [DMM00] and [DMM03c] as the main

source of this chapter.

As we mentioned previously, it is possible to define a number of false alarm in a

general way, as done recently in [GM06]. According to their formulation, a function

F(i,x) is a NFA associated to the random variables (Xi)i∈I as soon as one has

∀ε > 0, E
[ ∣
∣
∣{i, F(i,Xi) ≤ ε}

∣
∣
∣

]

≤ ε. (5.17)

Then, thanks to the subuniform distribution of p-values, one can see easily that the

function

F(i,xi) = ni ·P [Xi ≥ xi]
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is a NFA as soon as

∑
i∈I

1

ni

≤ 1, (5.18)

which yields a single proof for all of results like Proposition 9. Moreover, if (5.18)

is an equality and the Xi’s admit density functions, then (5.17) is also an equality.

The detection of alignments is made in image analysis by using the Hough Trans-

form (see [Mai85]). More generally, the detection of globally salient structures has

been addressed by Sha’Ashua and Ullman (see [SU88]). Let us also mention the

Extension Field of Guy and Medioni (see [GM96]) and the Parent and Zucker curve

detector (see [PZ89]). These methods have, however, the same drawback as most

image analysis methods. They a priori suppose that what they want to find (lines,

circles, curves, etc.) is in the image. So they may find too many or too little such

structures in the image and therefore do not yield an existence proof for the found

structures. Let us describe in more detail the Hough Transform. Assume that the

image under analysis is made of dots, that may create aligned patterns or not. The

result of the Hough Transform is a map associating with each line its number of

dots. The peaks of the Hough Transform indicate the lines that have more dots.

Which peaks are significant? Clearly, a threshold must be used and we are led back

to the problems addressed here. The analysis of the Hough Transform performed by

Kiryati, Eldar, and Bruckstein [KEB91] and by Shaked, Yaron, and Kiryati [SYK96]

is very close to the analysis in this chapter. These authors prove by large deviations

estimates that lines in an image detected by the Hough Transform could be detected

as well in an undersampled image without increasing significantly the false alarm

rate. They view this method as an accelerator tool, whereas it is developed it here as

a detection tool. The essentials of their analysis are contained in Section 5.4.2. They

can be summarized as: the closer one sees, the better one detects.

A clear limitation of the alignment detection method developed in this chapter

is the use of binary variables for point alignments, depending on the precision pa-

rameter p. The event that k among l points are aligned at precision p does not take

advantage of the fact that many of the k points may be much more precisely aligned

than the bound p. Thus, it seems useful to define a soft threshold function f (θi),
where θi is the angle between the gradient at a point i of the considered segment and

the normal to the segment. A soft threshold is an even function [−π,π]→ [0,1] such

that f (0) = 0, f (±π) = 1, and f is increasing on [0,π]. An ε-meaningful alignment

is a segment such that N4P(∑l
i=1 f (θi)≤ η)≤ ε , where the θi are the random orien-

tation variables, uniformly distributed in the a-contrario model and η is the observed

value on the considered segment of ∑l
i=1 f (θi). In [Igu06], this idea is developed and

leads to the definition of a “continuous” NFA. An accurate enough estimate of the

law of ∑l
i=1 f (θi) is obtained by a generalization of Hoeffding’s inequality.

In [AFI+06], the authors have applied 3-D alignment detection in the spirit of the

present chapter to recover urban models from noisy 3-D data. They apply a region

merging technique. The merging criterion involves the NFA of the hypothesis: “All

points in the region are aligned with a plane.”
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5.7 Exercises

5.7.1 Elementary Properties of the Number of False Alarms

Set B(l,k0, p) = ∑l
k=k0

(
l
k

)
pk(1− p)l−k = P [Sl ≥ k] and NFA(l,k) = N4B(l,k, p).

This last number is called “number of false alarms for an alignment of k points

among l with precision p in a N2 pixels image”. Prove and interpret in this frame-

work the following properties:

1. NFA(l,0) = N4.

2. NFA(l, l) = N4 pl . Compute the minimal size of a 1-meaningful segment having

all points aligned when N = 512, p = 1
16

.

3. NFA(l,k +1) < NFA(l,k).
4. NFA(l,k) < NFA(l +1,k).
5. NFA(l +1,k +1) < NFA(l,k).

5.7.2 A Continuous Extension of the Binomial Law

The parameter p being fixed, we set B(l,k) = P [Sl ≥ k] and

B̃(l,k) =

∫ p

0
xk−1(1− x)l−k dx

∫ 1

0
xk−1(1− x)l−k dx

. (5.19)

1) Prove that B̃ is continuous in the domain
{
(l,k) ∈ R2, 0 ≤ k ≤ l < +∞

}
. (You

will have to define B̃(l,0) as a limit when l tends to zero).

2) Check that B̃ is decreasing with respect to k. Hint: Set

A(l,k) =

∫ p

0
xk−1(1− x)l−k dx

∫ 1

p
xk−1(1− x)l−k dx

and notice that 1/B̃ = 1+1/A. Show that

1

A

∂A

∂k
(k, l) =

∫ p

0
xk−1(1− x)l−k · log

x

1− x
dx

∫ p

0
xk−1(1− x)l−k dx

−

∫ 1

p
xk−1(1− x)l−k · log

x

1− x
dx

∫ 1

p
xk−1(1− x)l−k dx

.
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By applying the Mean Value Theorem for integrals, deduce that there are (α,β )
such that

0 < α < p < β < 1 and
1

A

∂A

∂k
(k, l) = log

α

1−α
− log

β

1−β
.

3) Prove that B̃ is increasing with respect to l. Hint: Proceed like in question 2 and

use x 
→ log(1− x) instead of x 
→ log x
1−x

.

4) Prove that for all integer values of l and k, B̃(l,k) = B(l,k). Hint: Set B̃(l,k) =
A(l,k)
D(l,k) and prove by integration by parts that

A(l,k−1) =
l − k +1

k−1
A(l,k)+

pk−1(1− p)l−k+1

k−1
,

D(l,k) =
1

k
(

l
k

) =
k−1

l − k +1
D(l,k−1).

Deduce that

B̃(l,k−1) = B̃(l,k)+

(
l

k−1

)

pk−1(1− p)l−k+1.

Find a formula for B̃(l, l) and deduce recursively for k = l, l −1, ..., that B̃(l,k) =
B(l,k) for l,k ∈ N.

5.7.3 A Necessary Condition of Meaningfulness

Let 0 < r < 1 be a real number and let gr be the function defined on (0,1) by

gr(x) = r logx+(1− r) log(1− x) .

1) Prove that gr is concave and has its maximum at point x = r. Moreover, prove

that if 0 < p ≤ r, then

2(r− p)2 ≤ gr(r)−gr(p) ≤ (r− p)2

p(1− p)
.

The aim of this exercise is to prove the following result.

Lemma 4 If N ≥ 5 and if S is an ε-meaningful segment with length l and with

1 ≤ k ≤ l aligned points according to precision p, then if we denote r = k/l, we

have

gr(r)−gr(p) >
3logN − logε

l
.
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2) Prove that (
l

k

)

pk(1− p)l−k ≤ B(l,k, p) ≤ ε

N4
.

3) We assume that k ≤ l−1. Use the following inequalities (refinement of Stirling’s

formula, see [Fel68] for example), valid for n integer larger than 1:

nne−n
√

2πne1/(12n+1) ≤ n! ≤ nne−n
√

2πne1/12n,

to prove that
(

l

k

)

pk(1− p)l−k ≥ 2√
2πl

e−1/6el(gr(p)−gr(r)).

4) Prove the announced result in the case k ≤ l −1.

Hint: Since the size of the considered image is N ×N and l is a length of a segment

of the image, we have l ≤
√

2N.

5) Prove directly the result when k = l.

6) A sufficient condition of meaningfulness.

Let S be a segment of length l containing k aligned points. Assume that k ≥ pl and

that

gr(r)−gr(p) >
4logN − logε

l
.

Then, using Hoeffding inequality, prove that S is ε-meaningful.





Chapter 6

Maximal Meaningfulness and the Exclusion
Principle

6.1 Introduction

Alignments have been defined as segments with enough aligned points. This defini-

tion leads to a plethoric detection. Indeed, if a segment S has been detected and had

a lot of aligned points, larger segments containing S also will be counted as align-

ments. If, in addition, the image is blurry, as it must be by the Shannon-Nyquist prin-

ciple, the alignments seen in an image correspond roughly to rectangles of aligned

points with 2 pixels width. Thus, the presence of a very meaningful segment will

actually lead to the detection of many longer, shorter, and slanted segments, a whole

bundle of meaningful segments where in fact we would be interested in only one:

the best representative of the alignment. In such a case, our perception uses an econ-

omy principle and retains only the “best” alignment: the one that stands for all the

other detectable ones. This question is illustrated in Figures 6.1 and 6.2, displaying

all meaningful segments of a digital image. They form bundles of slanted and ex-

cessively elongated segments. The digital image in Figure 6.1 was first drawn with

a ruler and pencil on a standard A4 white sheet of paper and then scanned into a

478× 598 digital image. The scanner’s apparent blurring kernel is about 2 pixels

wide and some aliasing is also perceptible, making the strokes somewhat dashed.

Two pairs of pencil strokes are aligned on purpose. In the middle image of this ex-

periment, we display all ε-meaningful segments for ε = 10−3. For ε = 1, we would

have some still longer and more slanted segments. We took a value of ε smaller

than 1 just to show that finding the best alignments is not solved by just decreasing

ε . Three phenomena occur that are very apparent in this simple example and which

are perceptible in all further experiments:

– Too long meaningful alignments. We commented on this above. Clearly, the pen-

cil strokes boundaries are very meaningful, thus generating larger meaningful

segments that contain them.

– Multiplicity of detected segments. On both sides of the strokes we find several

parallel segments (reminder: the orientation of lines is modulo 2π). These paral-

lel segments are due to the blurring effect of the scanner’s optical convolution.

95
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Fig. 6.1 Left: the original pencil strokes image. Middle: ε-meaningful alignments with ε = 10−3.

Right: maximal meaningful alignments. Maximal meaningfulness selects the right alignments on

each line, but does not completely eliminate the plurality of detections for each single perceptual

alignment. This will be solved by a more general version of the exclusion principle.

Fig. 6.2 Parallelism against alignment. Top: original Brown image. Bottom-left: maximal mean-

ingful alignments as defined in Section 6.3. Here, since many parallel alignments are present,

secondary parasite slanted alignments are also found. Bottom-right: alignments finally obtained by

the exclusion principle, explained in Section 6.2, which eliminates the remaining spurious align-

ments. The experiment proves that maximal meaningfulness by itself cannot remove the slanted

alignment detections that arise from bundles of parallel alignments. The more general exclusion

principle is therefore necessary.

Classical edge detection theory would typically select the best one in terms of

contrast.

– Lack of accuracy of the detected directions. We do not check whether the di-

rections along a meaningful segment are distributed on both sides of the line’s
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direction. Thus, it is to be expected that lines that are actually slanted with re-

spect to the edge’s “true” direction are detected. Typically, a blurry edge will

generate several parallel and more or less slanted alignments.

On the right image of Figure 6.1 are displayed the maximal meaningful segments.

These are selected from the meaningful segments in the middle by an economy prin-

ciple. Now, perception must obey an economy principle, which we call the exclusion

principle. According to this principle “two alignments cannot overlap”.

In order to explain the generality of the principle, we will proceed in two direc-

tions. In the one way, specific to alignments, we will define “maximal meaningful

segments” as segments that are local maxima of the NFA for inclusion – in other

words the most meaningful segments in a list of segments ordered by inclusion.

We will prove that the maximal meaningful segments indeed satisfy an exclusion

principle: they never overlap. This solves completely and elegantly the problem for

segments contained in a single line, but not for slanted segments sharing some of

the same pixels. So we need a more general version of the exclusion principle than

just maximality. We will state in Section 6.2 such a general principle and give an

algorithm. The full problem and its solution in the case of alignments is illustrated

in Figure 6.2, where we present first only maximal meaningful segments on each

line. Clearly, overlapping slanted alignments are left. Those are easily removed by

application of the exclusion principle.

Taking the easiest first, we shall define the exclusion principle and its algo-

rithm in Section 6.2. Section 6.3 is devoted to the treatment of maximal mean-

ingfulness of alignments, which turns out to be mathematically tricky and which

leaves a mathematical conjecture open. We have added an experimental section to be

able to show several experiments validating the relatively sophisticated approach

(Section 6.4).

6.2 The Exclusion Principle

The general exclusion principle we will state here is applicable in a very wide set of

situations.

6.2.1 Definition

Principle 4 (Exclusion principle) Let A and B be groups obtained by the same

gestalt law. Then no point x is allowed to be taken into account for both A and B

when computing their NFA. In other words, each point must either “vote” for A or

for B.

The exclusion principle defines directly an algorithm.
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Algorithm 4 (Computing disjoint groups with small NFA by exclusion principle)

Consider any gestalt grouping quality and let O1, . . .On be groups of pixels of the

image that are meaningful with respect to this quality. Such groups can overlap. The

algorithm defines from them a new set of exclusive groups with smallest NFA.

– For each x ∈ ⋃i Oi, fix an index i(x) such that NFA(Oi(x)) is minimal among all

meaningful objects containing x.

– Define for every k = 1, . . . , n, Õk = {x ∈ Ok, i(x) = k}. All Õk are then pairwise

disjoint.

– Compute NFA(Õk) (which is larger than NFA(Ok)) for every k and keep only the

meaningful ones.

There is still a simpler algorithm ensuring the exclusion principle.

Algorithm 5 (Exclusion principle (EP-bis)) In the same situation as for Algo-

rithm 4:

– Pick Õ1 = Ok1
where NFA(Ok1

) achieves the minimal NFA among the Ok’s.

– Set for every k, O1
k = Ok \ Õ1 (so that O1

k1
is no longer in the list.)

– In the same way, pick Õ2 = O1
k2

where NFA(O1
k2

) achieves the minimal NFA

among the O1
k’s. If Õ2 is not meaningful, stop. Otherwise, set, for every k, O2

k =
O1

k \ Õ2.

– Iterate until the list of objects is empty or none of them is meaningful. Keep

Õ1, Õ2, . . . as the final groups according to the considered quality.

In a nutshell, this algorithm takes out iteratively the most meaningful groups.

Both algorithms 4 and 5 achieve the exclusion principle and we will not decide

between them. The second one may seem more intuitive but the algorithm 4 yields

good results for all gestalts considered in this book. It can be applied for all gestalts

treated in these lectures and we will in particular apply it to vanishing points in

Chapter 8.

6.2.2 Application of the Exclusion Principle to Alignments

As we saw in the introduction, one problem with the detection of meaningful align-

ments is that we may obtain several candidates for each perceptual segment. This

is because correctly sampled images are slightly blurred, which means that edges

are a little bit thicker than 1 or 2 pixels. Hence, most thin segments contained in

the actual thick segment are meaningful. Among all of these segments, we are in-

terested in selecting a single one, namely the one that best estimates its position and

orientation. The exclusion principle applies to this problem.
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Algorithm 6 (Exclusion principle for thick segments)

– Compute all meaningful segments.

– Assign each pixel x to a segment A achieving minNFA(B) among all meaningful

segments B lying at a distance less than r from x.

– Compute NFA(A) for each meaningful segment A. Instead of the number k of

observed aligned points in A, use the number k′ ≤ k of aligned points in A that

in addition have been assigned to the segment. Therefore, NFA(A) increases. If

NFA(A) is still smaller than ε , the segment is called a maximal-EP meaningful

segment.

In a more accurate variant, this algorithm start with the maximal meaningful seg-

ments as defined in the Section 6.3, Definition 8. Figure 6.2 illustrates the thick

alignment problem and its solution by exclusion principle. In the middle, we see all

detected alignments in the Brown image on the left. Clearly, those alignments make

sense, but many of them are slanted. Straight edges are indeed blurry and therefore

constitute a rectangular region where all points have roughly the same direction.

Thus, the straight alignments are mixed up with slanted alignments, which still re-

spect the precision bound p. We can interpret the situation as a conflict between

alignment and parallelism, as already illustrated in Figure 2.27. In the right-hand

image of Figure 6.2, the spurious slanted alignments are eliminated by Algorithm 6.

Figures 6.3 and 6.4 are other excellent examples of the result of Algorithm 6, where

all spurious segments are eliminated and only the perceptually correct ones are kept.

Fig. 6.3 Exclusion Principle (Algorithm 6) applied to the noisy square image. Only four segments

are found corresponding to the four sides of the square. Compare this to Figure 5.4 in the previous

chapter where all meaningful and all maximal meaningful segments (Algorithm 7) were computed.
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Fig. 6.4 Part of original Uccello’s painting image. This small image has size 216×162 pixels. We

show respectively: all meaningful segments, maximal meaningful segments (Algorithm 7), and

meaningful segments obtained thanks to the general exclusion principle (Algorithm 6).

6.3 Maximal Meaningful Segments

It is possible to get a complete and fully satisfactory mathematical theory supporting

the exclusion principle (Algorithm 5) when applied inside a straight line. It is based

on the following intuitive definition.

Definition 8 (Maximal meaningful segment). A segment A is maximal if the fol-

lowing hold

1. It does not contain a strictly more meaningful segment: ∀B ⊂ A, NFA(B) ≥
NFA(A).

2. It is not contained in a more meaningful segment: ∀B ⊃ A, NFA(B) > NFA(A).

We say that a segment is maximal meaningful if it is both maximal and meaningful.

Figure 6.5 gives all maximal meaningful segments detected in a road perspec-

tive image. We are not expecting that all detected alignments correspond to per-

ceptual straight contours. In this example, some of the maximal meaningful align-

ments are simply due to the slanted view, which squeezes all objects in the horizon

direction.
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(a) The original image.

(b) Maximal meaningful segments (c) Meaningful segments whose length is less

than 60 pixels

Fig. 6.5 (a) A road (courtesy of INRETS), size 256×256; (b) all maximal meaningful segments;

(c) all meaningful segments with length less than 60. The detected horizontal lines in (b) corre-

spond to horizon lines (i.e., lines parallel to the horizon). These detections are due to a perspective

effect. Indeed, all visual objects on the road (shadows, spots, etc.) are seen in a very slanted view.

Thus, their contours are mostly parallel to the horizon and generate “perspective alignments”. The

darker dots on each gray segment indicate the aligned points.

Proposition 17 (Properties of maximal segments) Let A be a maximal segment,

then the following hold.

1. The two endpoints of A have their direction aligned with the direction of A.

2. The two points next to A (one on each side) do not have their direction aligned

with the direction of A.

Both properties follow from Proposition 10.
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6.3.1 A Conjecture About Maximality

We now study the structure of maximal segments and give some evidence that two

distinct maximal segments on a same straight line have no common point.

Conjecture 1 (min /max inequality for the Binomial tail) If (l, l′, l′′) ∈ [1,+∞)3

and (k,k′,k′′) ∈ [0, l]× [0, l′]× [0, l′′], then

min
(

p,B(l,k),B(l + l′ + l′′,k + k′ + k′′)
)

< max
(

B(l + l′,k + k′),B(l + l′′,k + k′′)
)

. (6.1)

This conjecture can be deduced from a stronger (but simpler) conjecture about

the concavity in a particular domain of the level lines of the natural continuous

extension of B involving the incomplete Beta function (see Lemma 1). Let us state

immediately some relevant consequences of Conjecture 1.

Corollary 4 (Union and intersection). If A and B are two segments on the same

straight line, then under Conjecture 1,

min
(

pN4,NFA(A∩B),NFA(A∪B)
)

< max
(

NFA(A),NFA(B)
)

.

This is a direct consequence of Conjecture 1 for integer values of k,k′,k′′, l, l′, and

l′′. This conjecture was checked on the computer for all segments A and B such that

|A∪B| ≤ 256. For p = 1/16, the computation yields

min
|A∪B|≤256

max
(

(NFA(A),NFA(B)
)

−min
(

pN4,NFA(A∩B),NFA(A∪B)
)

max
(

(NFA(A),NFA(B)
)

+min
(

pN4,NFA(A∩B),NFA(A∪B)
)

≃ 0.000754.

The minimum is independent of N and attained for A = (23,243), B = (23,243), and

A∩B = (22,230). As usual, the couple (l,k) attached to each segment represents

the number of aligned points (k) and the segment length (l).

Theorem 5 (Maximal segments are disjoint under Conjecture 1) Suppose that

Conjecture 1 is true. Then any two maximal segments lying on the same straight

line have no intersection.

Proof — Suppose that one can find two maximal segments (l + l′,k + k′) and (l +
l′′,k + k′′) that have a nonempty intersection (l,k) Then according to Conjecture 1,

min
(

p,B(l,k),B(l+l′+l′′,k+k′+k′′)
)

< max
(

B(l + l′,k + k′),B(l + l′′,k + k′′)
)

.

If the left-hand term is equal to p, we get a contradiction since one of (l + l′,k + k′)
or (l + l′′,k + k′′) is strictly less meaningful than the segment (1,1) it contains.
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If not, we have another contradiction because one of (l + l′,k+k′) or (l + l′′,k+k′′)
is strictly less meaningful than one of (l,k) or (l + l′ + l′′,k + k′ + k′′). �

Remark: The numerical check of Conjecture 1 ensures that for p = 1/16, two max-

imal meaningful segments with total length smaller than 256 are disjoint. This is

enough for most practical applications. Theorem 5 yields an easy algorithm for com-

puting all meaningful alignments in a line.

Algorithm 7 (Exclusion principle for alignments in a line)

1. Establish a candidate list of all intervals I on the line that start by an aligned

point preceded by a nonaligned one and end up with an aligned point followed

by a nonaligned point.

2. Consider in turn all pairs (I,J) where I and J belong to the list of candidates

and satisfy I ⊂ J. If J is more meaningful than I or equally meaningful, remove I

from the list. Iterate until no pair is left.

Corollary 5. Algorithm 7 computes all of the maximal meaningful segments of the

line and they are disjoint.

Proof — This is a direct application of the definition of maximal meaningful inter-

vals and of Theorem 5. If two of the remaining intervals met, this would mean that

the conjecture is wrong. The fact that only intervals with an aligned point followed

by an nonaligned one can be candidates is a direct application of Proposition 10,

items 4 and 5. �

6.3.2 A Simpler Conjecture

The rest of the section is dedicated to partial results about Conjecture 1. In this

subsection, we state a simple geometric property entailing Conjecture 1.

Definition 9 (Curvature). Let f (x,y) be a real-valued function defined on some

open set of R2. At each point where f is C2, the curvature of f is defined by

curv( f ) =
fxx f 2

y −2 fxy fx fy + fyy f 2
x

( f 2
x + f 2

y )
3
2

. (6.2)

Note that the curvature of f at point (x0,y0) is nothing but the local curvature of

the level line {(x,y), f (x,y) = f (x0,y0)} at this point.

Conjecture 2 (curvature of the extended Binomial tail) The map (l,k) 
→ B̃(l,k)
defined in Lemma 1 has negative curvature on the domain

Dp = {(l,k) ∈ R2, p(l −1)+1 ≤ k ≤ l}.
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It is equivalent to say that the level curves l 
→ k(l,λ ) of B̃ defined by B̃(l,k
(l,λ )) = λ are concave; that is, they satisfy

∀(l0,k0) ∈ Dp,
∂ 2k

∂ l2
(l0, B̃(l0,k0)) < 0.

Remark: All numerical computations that we have realized so far for the function

B̃(l,k) have been in agreement with Conjecture 2 . Concerning theoretical results,

we will see in the next section that this conjecture is asymptotically true. For now,

the following results show that Conjecture 2 is satisfied for the Gaussian approxi-

mation of the binomial tail (correct for small deviations i.e., k ≃ pl +C
√

l) and also

for the large deviations estimate given by Proposition 6.

Proposition 18 The approximation of B(l,k) given by the Gaussian law

G(l,k) =
1√
2π

∫ +∞

α(l,k)
e−

x2

2 dx where α(l,k) =
k− pl

√

l p(1− p)

has negative curvature on the domain Dp.

Proof — The level lines G(l,k) = λ of G(l,k) can be written under the form

k(l,λ ) = pl + f (λ )
√

l,

with f > 0 on the domain {k > pl}. Hence, we have

∂ 2k

∂ l2
(l,λ ) = − f (λ )

4l3/2

and, consequently, curv(G) < 0 on Dp. �

We will investigate Conjecture 2 with several large deviations arguments.

Cramér’s theorem about large deviations (Proposition 6 and Exercise 4.3.5, or see

[DZ93], for example) applied to Bernoulli random variables yields the following

result: Let r be a real number such that 1 ≥ r > p; then

lim
l→+∞

1

l
logP [Sl ≥ rl] = −r log

r

p
− (1− r) log

1− r

1− p
.

Theorem 6 The large deviations estimate of logB(l,k) (Proposition 6) given by

H(l,k) = −k log
k

pl
− (l − k) log

l − k

(1− p)l

has negative curvature on the domain {pl ≤ k ≤ l}.

Proof — The level lines of H(l,k) are defined by

k(l,λ ) log
k(l,λ )

pl
+(l − k(l,λ )) log

l − k(l,λ )

(1− p)l
= λ .
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We fix λ and we just write k(l,λ ) = k(l). If we compute the first derivative of the

above equation and then simplify, we get

k′(l) logk(l)−k′(l) log(pl)+(1−k′(l)) log(l−k(l))−(1−k′(l)) log((1− p)l) = 0.

Again, by differentiation,

k′′(l) log
(1− p)k(l)

p(l − k(l))
− 1

l
+

k′(l)2

k(l)
+

(1− k′(l))2

l − k(l)
= 0,

which is equivalent to

k′′(l) log
(1− p)k(l)

p(l − k(l))
= − (k(l)− k′(l)l)2

lk(l)(l − k(l))
.

This last relation shows that H(l,k) has negative curvature on the domain pl ≤ k ≤ l.

�

6.3.3 Proof of Conjecture 1 Under Conjecture 2

Lemma 5 (Under Conjecture 2) If k−1 > p(l −1) and µ > 0, then the map

x 
→ B̃(l + x,k + µx)

has no local minimum at x = 0.

Proof — Call f this map. It is sufficient to prove that either f ′(0) �= 0 or ( f ′(0) = 0

and f ′′(0) < 0). If f ′(0) = 0, then

µ = − B̃l

B̃k

(l,k),

so that

f ′′(0) = µ2B̃kk +2µB̃kl + B̃ll = curv(B̃)(l,k) · (B̃
2
k + B̃2

l

)3/2

B̃2
k

< 0

thanks to Conjecture 2. �

We now can prove Conjecture 1 under Conjecture 2.

Proof — Because the inequality we want to prove is symmetric in k′ and k′′, we can

suppose that k′′/l′′ ≥ k′/l′. If k+k′−1 ≤ p(l + l′−1), then B̃(l + l′,k+k′) > p and

we have finished. Thus, in the following we assume k + k′− 1 > p(l + l′− 1). Let

us define the map

f (x) = B̃
(
l + x(l′ + l′′),k + x(k′ + k′′),

)
for x ∈ [0,1].
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Remark that for x0 = l′/(l′ + l′′) ∈ (0,1),

k + x0(k
′ + k′′) = k +

l′

l′ + l′′
(k′ + k′′) ≥ k +

l′

l′ + l′′

(

k′ +
k′l′′

l′

)

= k + k′,

which implies that B̃(l + l′,k + k′) ≥ f (x0). Hence, it is sufficient to prove that

min
(

p, f (0), f (1)
)

< f (x0).

The set

S =
{

x ∈ [0,1], k + x(k′ + k′′)−1− p
(
l + x(l′ + l′′)−1

)
> 0
}

is a connected segment that contains x0 because

k + x0(k
′ + k′′)−1 ≥ k + k′−1 > p(l + l′−1) = p

(
l + x0(l

′ + l′′)−1
)
.

Moreover, S contains 0 or 1 because the linear function involved in the definition of

S is either 0 or vanishes only once. By Lemma 5, f has no local minimum on S. We

conclude as stated that

f (x0) > min
x∈S

f (x) = min
x∈∂S

f (x) ≥ min(p, f (0), f (1)) ,

since if x ∈ ∂S∩ (0,1), then f (x) ≥ p by Lemma 2. �

Remark: This proof (and the proof of Lemma 5) only relies on the fact that there

exists some smooth interpolation of the discrete B(l,k) that has negative curvature

on the domain Dp. There are good reasons to think that the B̃(l,k) approximation

satisfies this property, but it could be that another approximation also does, even

though we did not find any (e.g., the piecewise bilinear interpolation of B(l,k) is

not appropriate).

In Figure 6.6, we give the geometric idea underlying the proof of Conjecture 1

under Conjecture 2.

6.3.4 Partial Results About Conjecture 2

In this subsection we will give an asymptotic proof of Conjecture 2. In all of the

following we assume that p and r satisfy 0 < p < r < 1 and p < 1/2. The proof relies

on the two following technical propositions: Proposition 19 and Proposition 20,

which are actually interesting by themselves as they provide a much more precise

versions of Hoeffding’s inequality.
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k

l

0

k-1=p(l-1)

.

(k+k’,l+l’)

(k+k’’,l+l’’)

.

.

. (k+k’+k’’,l+l’+l’’)

(k,l)

Fig. 6.6 Geometric idea of the proof of Conjecture 1 under Conjecture 2. Assume that B̃(l + l′′,k+
k′′) ≤ B̃(l + l′,k + k′). Represent the concave level line of B̃ passing by (l + l′,k + k′). The point

(l + l′′,k + k′′) is above this level line (indeed, ∂ B̃
∂k

< 0). Since the segments [(l + l′,k + k′),(l +
l′′,k + k′′)] and [(l,k),(l + l′ + l′′,k + k′ + k′′)] have the same middle point, one of the points (l,k)
and (l + l′ + l′′,k + k′ + k′′) must lie above the concave level line.

Proposition 19 (Precise large deviations estimate) Let

D(l +1,rl +1) =
p(1− p)

(r− p)
√

2πlr(1− r)
exp

[

−l

(

r log
r

p
+(1− r) log

1− r

1− p

)]

.

(6.3)

Then, for any positive p,r, l such that p < r < 1 and p < 1/2, one has

1− 4r

(r− p)2l(1− p)

1+
1

r(1− r)
√

2πlr(1− r)

≤ B̃(l +1,rl +1)

D(l +1,rl +1)
≤ 1

1− 2
√

2πlr(1− r)

. (6.4)

In particular

B̃(l +1,rl +1) ∼
l→+∞

D(l +1,rl +1)

uniformly with respect to r in any compact subset of (p,1).

Notice that the exponential term in (6.3) corresponds to Hoeffding’s inequality (see

Proposition 3).
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Proposition 20 For any λ ∈ [0,1] and l > 0, there exists a unique k(l,λ ) such that

B̃(l +1,k(l,λ )+1) = λ . (6.5)

Moreover,

∂ 2k

∂ l2

(
l, B̃(l +1,rl +1)

)
∼

l→+∞
−

(

r log
r

p
+(1− r) log

1− r

1− p

)2

l · r(1− r) ·
(

log
r(1− p)

(1− r)p

)3
. (6.6)

uniformly with respect to r in any compact subset of (p,1).

We will not prove these results here. The proof and more precise results are given

in [Moi01]. It is interesting to note that (6.6) remains true when k(l,λ ) is defined not

from B̃ but from its estimate D given by (6.3). In the same way, one can prove that

∂k

∂ l

(
l, B̃(l +1,rl +1)

)
−→

l→+∞

log
1− p

1− r

log
r(1− p)

(1− r)p

is satisfied by both definitions of k(l,λ ). This proves that (6.3) actually gives a very

good estimate of B̃, since it not only approximates the values of B̃ but also its level

lines up to second order.

Theorem 7 (Asymptotic proof of Conjecture 2) There exists a continuous map

L : (p,1) → R such that (l,k) 
→ B̃(l,k) has negative curvature on the domain

DL
p =
{

(l +1,rl +1), r ∈ (p,1), l ∈ [L(r),+∞)
}

.

This result is illustrated on Figure 6.3.4.

Proof — Define k(l,λ ) by (6.5). Thanks to Proposition 20, the function

r 
→ ∂ 2k

∂ l2

(
l, B̃(l +1,rl +1)

)
·

l · r(1− r) ·
(

log
r(1− p)

(1− r)p

)3

(

r log
r

p
+(1− r) log

1− r

1− p

)2

tends to −1 as l goes to infinity and the convergence is uniform with respect to r in

any compact subset of (p,1). Thus, we deduce that the map

r 
→ l(r) = inf
{

l0 > 0, ∀l ≥ l0, curv B̃(l +1,rl +1) < 0
}
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k

l

1

k-1=r(l-1)

0 1

Dp

D
L

p

k-1=p(l-1)

Fig. 6.7 Conjecture 2 is proven on a subdomain DL
p of Dp.

is bounded on any compact subset of (p,1). Now, defining L(r) as a continuous

upper bound for l(r) yields the desired result. For example, one can take

L(r) = sup
n∈Z

dn(r),

where dn is the unique linear function passing through the points
(

an−1, max
t∈[an−2,an]

l(t)

)

and

(

an, max
t∈[an−1,an+1]

l(t)

)

,

and (an)n∈Z is an increasing sequence such that limn→−∞ an= p and limn→+∞ an=1.

�

6.4 Experimental Results

In all of the experiments, the direction of image pixels is computed on a 2×2 neigh-

borhood with the method described by (5.1) in Chapter 5, with precision p = 1/16.

The length l of each segment (l,k) is counted in independent pixels, which means

that the real length of the segment is 2l. The number of points having their direc-

tion aligned with the direction of the segment with precision p is denoted by k. The

algorithm used to find the meaningful segments is the following:
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– For each pixel on the boundary of the image and for every line passing by this

pixel and having an orientation multiple of π/200:

– Compute all meaningful segments of the line. This is done by computing B(l,k)
for each segment (l,k). If this quantity is less than ε

N4 , the segment is

ε-meaningful.

– Apply Algorithm 7 to select the maximum ε-meaningful segments of the line.

Notice that B(l,k) can be simply tabulated at the beginning of the algorithm using

the relation
B(l +1,k +1) = pB(l,k)+(1− p)B(l,k +1).

The only parameter of the algorithm, fixed for all experiments, is the precision p =
1/16. This value corresponds to the very rough accuracy of 22.5 degrees. Thus two

points can be considered as aligned with a direction if their angles with this direction

differ by up to ±22.5 degrees!

In a first experiment (Uccello’s painting, Figure 6.8), we see the result of a low-

resolution scan of Uccello’s “Presentazione della Vergine al tempio” (from the book

L’opera completa di Paolo Uccello, Classici dell’arte, Rizzoli). The size of the dig-

ital image is 467× 369. All maximal ε-meaningful segments with ε = 10−6 are

displayed. Notice how maximal segments are detected on the staircase in spite of

the occlusion by the child going up the steps. All remarks made for Figures 6.1 and

6.2 also apply here. Let us mention in particular the creation by the blur of several

parallel alignments at places where a single perceptual alignment is visible.

The experiments of Figures 6.9 and 6.10 first use Algorithm 7 inside each straight

line, which keeps only disjoint maximal meaningful segments. Then they apply the

general exclusion Algorithm 6 to the whole image and therefore eliminates spurious

slanted segments and the effect of blur. The results are self-explanatory.

(a) The original image: Uccello’s painting (b) Maximal ε-meaningful segments for

ε = 10−6

Fig. 6.8 Uccello’s painting: maximal meaningful alignments. They result from the application of

the exclusion principle (Algorithm 7) inside each line. There are many slanted lines detected due to

the blur and the low precision. Such slanted alignments can be eliminated by the general exclusion

principle.
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Fig. 6.9 An image of straw: size 512×512. This figure illustrates the accuracy and economy gain

in the detection of alignments by applying the exclusion principle. The second image displays

all maximal meaningful alignments, obtained by application of Algorithm 7 in each line. Since

the image has many parallel alignments, this leads to the detection of many slanted alignments.

Indeed, whenever a segment meets many alignments with a small enough angle, it can become

meaningful. The way out is given by the general exclusion principle Algorithm 6 which makes

each point participate with at most one alignment. Once the exclusion principle has been applied,

the set of detected alignments is cleaned up, as displayed in the third image. Notice how two

detected alignments may cross.

Notice that the algorithm can also be used for straight contour completion. This

is illustrated in Figure 6.8 where the stairs are completed accross the occlusion and

in Figure 6.10 where different aligned windows are found on the same maximal

meaningful alignment. In the exercise at the end of the chapter, some computations

about this property of straight contour completion will be worked out.
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(a) A Cachan building

(b) By application of Algorithm 7 on each

line, maximal ε-meaningful alignments with

ε = 10−6.

(c) Maximal meaningful segments remain-

ing after application of Algorithm 6 extend-

ing the exclusion principle.

Fig. 6.10 (a) Building in Cachan. The size of this image is 901 × 701. (b) All maximal ε-

meaningful segments for ε = 10−6. Notice that many slanted maximal alignments are found. The

presence of many long and parallel alignments (e.g., at the top of the building) entails the detection

of slanted alignments. (c) Segments found after application of the exclusion principle, Algorithm 6.

6.5 Bibliographical Notes

In [GK86], Gerig and Klein have introduced an algorithm for processing an Hough

Transform (HT) array before thresholding. The idea of their methods looks very

much like the exclusion principle proposed in this chapter. Let us quote Pricen et al.

[PIK94] describing the work of Gerig and Klein:
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their scheme is quite general and can be applied in cases where a single feature point

contributes positive weight to a number of samples in the final array. As a result, it is

equally applicable to HT and hypothesis testing. The general idea is that a single edge

point should only be a part of one feature in the image. The Gerig and Klein algorithm is a

post-processing step that associates each feature point explicitly with the parameter value,

out of those to which it contributed a positive weight, which has a maximum value. It can

be used for instance to give a precise edge direction to each point by looking along the

voting pattem of a point for the minima (maxima) and giving the edge point the appropriate

direction. Once this association is made, a new array is reaccumulated using only the single

edge direction. The result is an extremely sparse set of peaks in the array. These peaks are

processed using a simple 3×3 local maximum detector, and a threshold test is applied.

The exclusion principle used in this chapter was proposed in [DMM04], and

a complete study of maximal meaningful segments (first defined in [DMM00])

was developed in [DMM03c]. For a more extended discussion of the links be-

tween the exclusion principle, the NFA and variational methods, see Section 15.5 of

Chapter 14.

A first implementation of the exclusion principle in the align-mdl modulus of

the public software MegaWave, due to Andres Almansa and Lionel Moisan, does a

simultaneous assignment of every point to the alignment with the best NFA contain-

ing it. This simultaneity can lead to the loss of meaningful segments. This drawback

can be avoided by an iterative procedure where the most meaningful segment is first

computed. Then its points are removed from the other segments, the most meaning-

ful segments among them is computed, and so on. In [Fer06], Fernando Fernandez

proposed a fast clever iterative procedure implementing the exclusion principle. He

shows that losses of meaningful segments are avoided that way.

6.6 Exercise

6.6.1 Straight Contour Completion

Assume that we have two length l segments on the same line, such that: all of the
points belonging to the segments are aligned and that all the points in the length g
gap between the segments are not aligned.

→→→→→→→→→→→→→→
︸ ︷︷ ︸

l

• • • • • • • • •
︸ ︷︷ ︸

g

→→→→→→→→→→→→→→
︸ ︷︷ ︸

l

In other words, it means that if A1 and A2 denote the two segments, then NFA(A1) =
NFA(A2) = N4B(l, l, p) = N4 pl . Also, if Sg denotes the whole segment obtained as

the union of the segments A1, A2, and the gap, then NFA(Sg) = N4B(2l +g,2l, p).
The aim of this exercise will be to give conditions on the length g of the gap such

that (a) Sg is not a meaningful segment or (b) Sg is more meaningful than A1 and A2.

In this last case, straight contour completion is achieved.

1) Prove that if g > 2
1−p

p
l then Sg is not meaningful. Notice that when p = 1/16,

this condition means g > 30l. We will refine this condition in the next question.



114 6 Maximal Meaningfulness and the Exclusion Principle

2) Let α(ε,N4) be the real number defined by 1√
2π

∫ +∞
α(ε ,N4)

e−x2/2dx = ε
N4 . Use

Slud’s inequality (Theorem 1) to prove that if g is such that

p(2l +g)+α(ε,N4)
√

(2l +g)p(1− p) > 2l,

then Sg is not ε-meaningful.

3) Let us denote µ = g/l, and r = 2/(2+ µ). Use Hoeffding’s inequality (Proposi-

tion 3) to prove that if

(2+ µ)

[

r log
r

p
+(1− r) log

1− r

1− p

]

≥ log
1

p
,

then Sg is maximal meaningful (it is more meaningful than A1 or A2).

Numerical values: Prove that if p = 1/16, the above condition holds for µ = 2. Use a

computer program (e.g., Matlab or Scilab) to prove that the above inequality implies

that when p = 1/16, then µ < ∼2.2, and that when p = 1/8 then µ < ∼1.3.



Chapter 7

Modes of a Histogram

7.1 Introduction

The global analysis of digital images can involve the histograms of variables like

the gray level or the orientation. Usually histograms are not flat. Peaks and lacu-

nary parts are observed. The peaks can correspond to meaningful groups and the

lacunary intervals correspond to separations between them. We will call the peaks

modes of the histogram. Lacunary intervals are called gaps. Since their analysis will

in essence be symmetric, we will focus on the modes. How can we decide whether

a mode or a gap is meaningful or not? This problem is very similar to the alignment

detection problem. As in the meaningful alignment theory, the Helmholtz principle

can be adopted. There is indeed no a priori knowledge about the histogram model.

Thus meaningfulness can be computed as though all samples were uniformly and

independently distributed. Meaningful modes will be defined as counterexamples to

this uniformity assumption and maximal meaningful modes will be the best coun-

terexamples to uniformity. The exclusion principle will be involved again. It will

be proven that maximal meaningful modes of the histogram are disjoint. This will

give an algorithm that can be immediately applied to image analysis. Can such a

detection theory give an account of the so-called “visual pyramid”? According to

the visual pyramid doctrine geometric events (gestalts) are grouped recursively at

different scales (see Chapter 1). This pyramidal assumption can be confirmed only

if the detection of geometric events is robust enough. A first test of visual pyramid

(i.e., a combination bottom up of gestalt grouping), is given in the last section. All

maximal meaningful alignments of an image will be computed and the obtained

segments grouped according to the mode of the orientation histogram to which they

belong. This yields an implementation of the parallelism gestalt.

7.2 Meaningful Intervals

The gray levels of a digital image give a good example of a histogram. The image

has M pixels and their values range from 1 to L. In the histogram, the pointwise

115
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association of pixels with values is forgotten. For each value a in {1, . . . ,L}, the

histogram only retains the number of points k(a) assuming the gray level a. For

each discrete interval of values [a,b], let k(a,b) be the number of points (among the

M) with value in [a,b], and let p(a,b) = (b− a + 1)/L. This represents the prior

probability for a point to have value in [a,b].
Histogram modes are defined as intervals [a,b] that contain significantly more

points than expected. Adopting the same definition as for alignments, the NFA of an

interval [a,b] can be defined as

NFA1([a,b]) =
L(L+1)

2
B(M,k(a,b), p(a,b)), (7.1)

where B(n,k, p) = ∑n
j=k

(
n
j

)
p j(1− p)n− j denotes the tail of the binomial distribution

of parameters n and p and where L(L+1)/2 is the total number of possible intervals.

The NFA is interpreted as in Chapter 5, as the expected number of intervals as

meaningful as the one being observed.

Definition 10. An interval [a,b] is said ε-meaningful if NFA([a,b]) ≤ ε; that is,

B(M,k(a,b), p(a,b)) <
2ε

L(L+1)
.

Another interpretation already given in Proposition 9 is the following.

Proposition 21 NFA1([a,b]) is the smallest value of ε such that [a,b] is

ε-meaningful.

Notice that in Definition 10 (compared to the definition of meaningful alignment),

the binomial distribution is used in different ways:

– For histograms: B
(
M,k(a,b), b−a+1

L

)
;

– For alignments: B(l,k, p).

In the first case, M is fixed. The other arguments, including the probability

p(a,b) =
b−a+1

L
(7.2)

depend on [a,b]. In the second case, the precision p is fixed and the length l of the

segment is a variable first argument of B. All the same, meaningfulness and maximal

meaningfulness will receive quite analogous treatment.

Proposition 22 Let [a,b] be a 1-meaningful interval; then

r(a,b) =
k(a,b)

M
> p(a,b),

and by Hoeffding’s inequality,

B(M,k(a,b), p(a,b))

≤ exp

(

−M

[

r(a,b) log
r(a,b)

p(a,b)
+(1− r(a,b)) log

1− r(a,b)

1− p(a,b)

])

.
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Proof — This is a direct application of Lemma 2 and of Hoeffding’s inequality

(Proposition 3). Lemma 2 provides the needed inequalities for the binomial distrib-

ution only when p ≤ 1/2. To have the corresponding inequalities for p > 1/2 use

B(l,k, p) = 1−B(l, l − k +1,1− p)

and the relation

B(M,k(a,b), p(a,b)) <
2

L(L+1)
< min

(

p(a,b),
1

2

)

.

�

We are interested in a close formula for the detection threshold k(l), namely the

minimal number of points making [a,b] 1-meaningful. Let us evaluate how well

Hoeffding’s inequality performs to give this estimate. In a realistic numerical set-

ting, consider a discrete 256× 256 image. The numerical values for M and L are

M = 2562 and L = 256. The detection threshold k(l) is defined as the smallest inte-

ger such that

B
(

M,k(l),
l

L

)

<
2

L(L+1)
.

One can also compute the detection thresholds kd(l) given by the large deviations

estimate of the binomial tail (see Proposition 6). This means that kd(l) is defined as

the smallest integer above M× l/L such that

kd(l)

M
log

kd(l)L

Ml
+

(

1− kd(l)

M

)

log
1− kd(l)/M

1− l/L
>

1

M
log

L(L+1)

2
.

Thanks to Hoeffding’s inequality (Proposition 3), kd(l) ≥ k(l) > Ml/L.

In Figure 7.1 are plotted k(l), kd(l) (dotted curve), and M × l/L (dashed line)

for l in [1,10]. The maximal value of the relative error l 
→ (kd(l)− k(l))/k(l) for

l ∈ [1,256] is about 3% and is attained for small values of l.

These numerical experiments justify adopting the large deviations estimate given

by Proposition 6 to define meaningful and maximal meaningful intervals. In prac-

tice, B(M,k, p) is not easily computable when M exceeds 5122.

Definition 11 (Relative entropy). The relative entropy of an interval [a,b] (with

respect to the prior uniform distribution p) is defined by

H([a,b]) =

{

0 if r(a,b) ≤ p(a,b)

r(a,b) log
r(a,b)
p(a,b) +(1− r(a,b)) log

1−r(a,b)
1−p(a,b) otherwise.

If I = [a,b] is an interval with probability p = p(I) and density r = r(I), we note

H(I) = H(r(I), p(I)) = H(r, p).

In the case r(a,b) > p(a,b), the relative entropy H([a,b]) is also called the

Kullback-Leibler distance between the two Bernoulli distributions of respective pa-

rameter r(a,b) and p(a,b) (see [CT91]).



118 7 Modes of a Histogram
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Fig. 7.1 The detection thresholds k(l) and kd(l) (dotted curve) and Ml/L (dashed line) for

1≤ l≤10.

Remark: The above definition can be interpreted in information theory [CT91] as

follows. Consider a M points histogram distributed on a length L reference interval.

Let I be an interval of length l ≤ L and k(I) be the number of points it contains.

Assume one wants to encode for each point the information of whether it belongs

to the fixed interval I or not. Since the prior probability for a point to be in I is l/L,

the prior expected bit length needed to encode this information is

−k log2

l

L
− (M− k) log2

(

1− l

L

)

.

Indeed, by Shannon’s first coding theorem, the optimal average bit length per sym-

bol for encoding the output of a Bernouilli source with parameter p is −p log2(p)−
(1− p) log2(1− p). On the other hand the posterior probability for a point to be

in I is k/M. Thus, the posterior expected bit length needed to encode the binarized

histogram is

−k log2

k

M
− (M− k) log2

(

1− k

M

)

.

The code length gain is the difference between both bit lengths:

M

(

r log2

r

p
+(1− r) log2

1− r

1− p

)

.

where r = k/M and p = l/L. Thus, the relative entropy measuring the meaningful-

ness of an interval is equal to the bit length gain between prior and posterior coding

of the interval. The higher the gain, the more meaningful the interval.
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Definition 12 (Meaningful interval, large deviation framework). An interval

[a,b] is said to be ε-meaningful in the large deviation sense if its relative entropy

H([a,b]) is such that

H([a,b]) >
1

M
log

L(L+1)

2ε
.

From now on we adopt this definition of meaningfulness for intervals. It is slightly

less accurate than Definition 10 but quite rewarding in structural properties and com-

putationally affordable.

7.3 Maximal Meaningful Intervals

Maximal meaningful intervals must be introduced for the very same reasons given

in Chapter 6 for maximal meaningful alignments.

Definition 13 (Maximal meaningful interval). An interval I = [a,b] is maximal

meaningful if it is meaningful and if

∀J ⊂ I, H(J) ≤ H(I)

and ∀J � I, H(J) < H(I).

The natural question then becomes: Does again maximality imply exclusion? In

other words, are two maximal meaningful intervals constrained to have no intersec-

tion? The following theorem and its corollary assert that, as in the case of align-

ments, the answer is yes. However, notice that the framework is different. Indeed, in

the case of alignments, the probability p was a fixed number and the variables were

the length l of the segment and the number k of aligned points on the considered

segment. In the case of histograms, the total number of points is a fixed number N

and the variables are the prior probability p(I) of interval I and the number k(I) of

points in I.

Theorem 8 Let I1 and I2 be two meaningful intervals such that I1 ∩ I2 �= /0; then

max(H(I1 ∩ I2),H(I1 ∪ I2)) ≥ min(H(I1),H(I2))

and the inequality is strict when I1 ∩ I2 �= I1 and I1 ∩ I2 �= I2.

Corollary 6. Let I and J be two meaningful intervals such that

H(I) = H(J) = max
K⊂[0,L]

H(K).

Then either I ⊂ J, or J ⊂ I, or I ∩ J = /0.



120 7 Modes of a Histogram

Proof — By Theorem 8, if I ∩ J �= /0, I �⊂ J and J �⊂ I, then H(I ∩ J) or H(I ∪ J)
exceeds H(I) = H(J), which is a contradiction. �

Proof of Theorem 8 — For an interval I, let r(I) be the proportion of points it

contains and p(I) be its relative length. Then the relative entropy of the interval is,

according to Definition 11,

H(I) =

{
0 if r(I) ≤ p(I)
F(r(I), p(I)) otherwise,

where F is defined on [0,1]× [0,1] by

F(r, p) = r logr +(1− r) log(1− r)− r log p− (1− r) log(1− p).

For all (r, p)∈ [0,1]× [0,1], F(r, p) is positive and it is zero if and only if r = p. The

partial derivatives of F are

∂F

∂ r
= log

r

1− r
− log

p

1− p
and

∂F

∂ p
=

p− r

p(1− p)
.

∂ 2F

∂ r2
=

1

r(1− r)
,

∂ 2F

∂ r∂ p
=

−1

p(1− p)
and

∂ 2F

∂ p2
=

r

p2
+

(1− r)

(1− p)2
.

Thus

∂ 2F

∂ r2
> 0 and det(D2F) =

∂ 2F

∂ r2
× ∂ 2F

∂ p2
−
(

∂ 2F

∂ r∂ p

)2

=
(r− p)2

r(1− r)p2(1− p)2
≥ 0

which shows that F is convex. Then the continuous function H(r, p) defined by

F(r, p) if r ≥ p and zero otherwise is also convex (the partial derivatives are contin-

uous). By hypothesis, I1 ∩ I2 �= /0. Let us denote I = I1 ∩ I2 and J = I1 ∪ I2. Then

{
r(I)+ r(J) = r(I1)+ r(I2),
p(I)+ p(J) = p(I1)+ p(I2)

(7.3)

and {
r(I) ≤ min(r(I1),r(I2)) ≤ max(r(I1),r(I2)) ≤ r(J),
p(I) ≤ min(p(I1), p(I2)) ≤ max(p(I1), p(I2)) ≤ p(J).

(7.4)

We want to show that

min(H(I1),H(I2)) ≤ max(H(I),H(J))

and that the inequality is strict when I1 ∩ I2 �= I1 and I1 ∩ I2 �= I2. In the plane R2,

consider the set R of points (r, p) such that r(I) ≤ r ≤ r(J) and p(I) ≤ p ≤ p(J).
Then R is a rectangle and, by (7.4), it contains the points X1 = (r(I1), p(I1)) and

X2 = (r(I2), p(I2)). Let A be the following set of points:

A = {(r, p)/H(r, p) ≤ max(H(I),H(J))}.
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Fig. 7.2 Representation in the plane (r, p) of the intervals I1, I2, I = I1 ∩ I2, and J = I1 ∪ I2.

We just have to prove that A contains one of I1 and I2. A is a convex set because H

is a convex function. Let X = (r(I), p(I)) and Y = (r(J), p(J)); then A contains the

segment [X ,Y ]. Since ∂F
∂ r

= ∂H
∂ r

≥ 0 for r ≥ p, the set A contains R∩{r ≥ p}∩P+,

where P+ is the half-plane above the line (X ,Y ) (see Figure 7.2.)

I1 and I2 being meaningful, the points X1 and X2 belong to R∩{r > p}. Since the

middle point of segment [X1,X2] also is the middle point of segment [X ,Y ] by (7.3),

one of X1 and X2 belongs to P+. Thus, X1 or X2 belongs to A, which shows that

min(H(I1),H(I2)) ≤ max(H(I),H(J)).

If I �= I1 and I �= I2, then the inequality is strict, due to the fact that for r > p, ∂F
∂ r

> 0.

�

Proposition 23 Let I1 and I2 be two different maximal meaningful intervals; then

I1 ∩ I2 = /0.

Proof — Assume that I = I1 ∩ I2 �= /0. If I �= I1 and I �= I2 then by Theorem 8

max(H(I1 ∩ I2),H(I1 ∪ I2)) > min(H(I1),H(I2)),

which is a contradiction with the fact that I1 and I2 are maximal meaningful. If, for

example, I = I1 ∩ I2 = I1, then I1 ⊂ I2. Since, by hypothesis, I1 and I2 are maximal

meaningful, we get, by definition of the maximality, H(I1) ≤ H(I2) and H(I2) <
H(I1), which is again a contradiction. �
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7.4 Meaningful Gaps and Modes

In the previous section, we were interested in meaningful intervals. These intervals

contain more points than the expected average in the sense that

B(M,k(a,b), p(a,b)) <
2

L(L+1)
.

In this section we look for gaps (i.e., intervals which contain fewer points than

the expected average). Let [a,b] be an interval with prior probability p(a,b) =
(b−a+1)/L. Let k be an integer such that 0 ≤ k ≤ M. Then the probability that the

interval [a,b] contains less than k points (among the total number M of points) is

k

∑
j=0

(
M

j

)

p(a,b) j(1−p(a,b))M− j=B(M,M−k,1−p(a,b))= 1−B(M,k+1, p(a,b)).

An interval [a,b] containing k(a,b) points is said to be a meaningful gap if

B(M,M− k(a,b),1− p(a,b)) <
2

L(L+1)
.

Proposition 24 An interval cannot be at the same time a meaningful interval and a

meaningful gap.

Proof — Let [a,b] be a meaningful gap; then, as in the proof of Proposition 22,

thanks to Lemma 2,

M− k(a,b) > M · (1− p(a,b)),

(i.e., r(a,b) = k(a,b)/M < p(a,b)). This shows that [a,b] cannot be a meaningful

interval. �

This result shows the consistency of the definition of gaps and modes. From now

on, and by exactly the same arguments as in the previous section, the large deviation

estimate will be adopted for defining meaningful gaps.

Definition 14 (Meaningful gap). An interval [a,b] containing k(a,b) points is said

to be a meaningful gap (in the large deviations framework) if and only if r(a,b) =
k(a,b)/M < p(a,b) and

r(a,b) log
r(a,b)

p(a,b)
+(1− r(a,b)) log

1− r(a,b)

1− p(a,b)
>

1

M
log

L(L+1)

2
.

In the large deviation framework, it follows immediately from Definitions 14 and

12 that an interval cannot be both a gap and a mode.

Definition 15 (Meaningful mode). An interval is a meaningful mode if it is a mean-

ingful interval and if it does not contain any meaningful gap.
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(a) The original histogram
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(c) Maximal meaningful modes

Fig. 7.3 Comparison between maximal meaningful intervals and maximal meaningful modes.

Definition 16 (Maximal meaningful mode). An interval I is a maximal meaningful

mode if it is a meaningful mode and if for all meaningful modes J ⊂ I, H(J) ≤ H(I)
and for all meaningful modes J � I, H(J) < H(I).

When I ⊂ J and if I and J are equally meaningful (H(I) = H(J)), the larger interval

J is maximal meaningful. Figure 7.4 illustrates the difference between meaning-

ful intervals and modes. Figure 7.4(a) is the original histogram with L = 60 and

M = 920. Figure 7.4(b) shows that this histogram has only one maximal meaningful

interval: the interval [10,22]. The second peak, [40,50], is not maximal meaningful

because

NFA([10,22]) < NFA([10,50]) < NFA([40,50]).

In Figure 7.4(c) two maximal meaningful modes are obtained: the intervals [10,22]
and [40,50].

7.5 Structure Properties of Meaningful Intervals

7.5.1 Mean Value of an Interval

The aim here is to compare the relative entropy of two intervals that have the

same mean value. The normalized mean value of an interval [a,b] is defined as

r(a,b)/p(a,b), where r(a,b) = k(a,b)
M

and p(a,b) = b−a+1
L

. Notice that the normal-

ized mean value of a meaningful interval is always larger than 1.

Proposition 25 Let I and J be two intervals with the same mean value

λ =
r(I)

p(I)
=

r(J)

p(J)
> 1.

If p(I) > p(J), then

H(I) > H(J).

In other words, when the average is fixed, the more meaningful interval is the longer

one.
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Proof — Fix λ > 1. For p in (0,1) such that r = λ p ≤ 1, consider the function

g(p) = F(λ p, p) = λ p logλ +(1−λ p) log
1−λ p

1− p
.

Then g is increasing. Indeed,

g′(p) = λ

[

logλ − log
1−λ p

1− p

]

+
1−λ p

1− p
−λ = λ [logλ − logα]− (λ −α),

where α = (1−λ p)/(1− p). Then λ > 1 > α and there exists c ∈ (α,λ ) such that

logλ − logα = 1
c
(λ −α), which shows that

g′(p) =
λ

c
(λ −α)− (λ −α) > 0.

�

Corollary 7. Let [a,b] and [b+1,c] be two consecutive meaningful intervals, then

H(a,c) ≥ min[H(a,b),H(b+1,c)].

In other words, [a,c] is more meaningful than at least one of [a,b] and [b+1,c].

Proof — Since r(a,c) = r(a,b) + r(b + 1,c) and p(a,c) = p(a,b) + p(b + 1,c),
we get

r(a,c)

p(a,c)
≥ min

[
r(a,b)

p(a,b)
,

r(b+1,c)

p(b+1,c)

]

and then the result is a direct consequence of the previous proposition. �

As a consequence, maximal meaningful intervals cannot be consecutive.

7.5.2 Structure of Maximal Meaningful Intervals

Theorem 9 Let h be a histogram defined on a finite set of values {1, ...,L}. If [a,b]
is a maximal meaningful interval such that 1 < a < b < L, then

h(a−1) < h(a) and h(b+1) < h(b),

h(a) > h(b+1) and h(b) > h(a−1).

Figure 7.4 illustrates the theorem by presenting the typical structure of a maximal

meaningful interval. These compatibility conditions for the endpoints of maximal

meaningful interval permit one to speed up the computation.

Proof — Let M = ∑L
i=1 h(i) be the total mass of the histogram. For each interval

[i, j]

p(i, j) =
j− i+1

L
and r(i, j) =

j

∑
x=i

h(x)

M
.
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Fig. 7.4 Maximal meaningful interval of a discrete histogram.

The relative entropy H([i, j]) = H(r(i, j), p(i, j)) of the interval [i, j] is 0 if

r(i, j) < p(i, j)
and

r(i, j) logr(i, j)+(1− r(i, j)) log(1− r(i, j))− r(i, j) log p(i, j)

+(1− r(i, j)) log(1− p(i, j))

otherwise. The proof of the theorem mainly uses the fact that the function

(r, p) 
→ H(r, p) is convex (see the proof of Theorem 8) and that ∂H
∂ r

≥ 0 for r ≥ p.

Let [a,b] be a maximal meaningful interval. We shall prove that h(a−1) < h(a)
(the proof is exactly the same for the other inequalities). Assume by contradiction

that h(a− 1) ≥ h(a). Since [a,b] is a meaningful interval, then r(a,b) > p(a,b).
Using the strict convexity of H(r, p) for r > p,

H(a,b)<max

(

H

(

r(a,b)−h(a)

M
, p(a,b)− 1

L

)

,H

(

r(a,b)+
h(a)

M
, p(a,b)+

1

L

))

.

Since [a,b] is maximal,

H(a+1,b) = H

(

r(a,b)− h(a)

M
, p(a,b)− 1

L

)

≤ H(a,b).

Thus,

H(a,b) < H

(

r(a,b)+
h(a)

M
, p(a,b)+

1

L

)

.

This shows that r(a,b)+ h(a)/M > p(a,b)+ 1/L. Using the fact that ∂H
∂ r

≥ 0 for

r ≥ p, one gets

H(a−1,b)=H

(

r(a,b)+
h(a−1)

M
, p(a,b)+

1

L

)

≥H

(

r(a,b)+
h(a)

M
, p(a,b)+

1

L

)

.

Thus,

H(a−1,b) > H(a,b),

which is a contradiction with the maximality of [a,b]. �
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7.5.3 The Reference Interval

The problem addressed here is the choice of the reference interval. Assume, for ex-

ample, that we observe the gray-level histogram of an image. We a priori know that

gray levels have value in [0,255]. Now suppose that the resulting histogram has, for

example, support in [50,100]. If we want to detect meaningful and maximal mean-

ingful intervals and modes, which reference interval should we consider? Should we

work on [0,255] or on the support of the histogram? To answer this question we can

first ask what happens when the length of the reference interval becomes very large

compared to the fixed length of the support of the histogram.

Let h be a discrete histogram a priori defined on a finite set of values {1, ...,L}.

Assume that the support of the histogram is [1,n] (i.e., h(1) > 0, h(n) > 0 and

h(x) = 0 for x > n). For a discrete interval [a,b] ⊂ [1,n], let HL([a,b]) denote its

relative entropy when the reference interval is [1,L] and let H([a,b]) denote its rela-

tive entropy when the reference interval is [1,n] (i.e., the support of the histogram).

Proposition 26 Let h be a discrete histogram with support [1,n]. Let L be the length

of the reference interval. Then there exists L0 such that

∀L ≥ L0, ∀[a,b] �= [1,n], HL([a,b]) < HL([1,n]).

This means that when the length of the reference interval is large enough, the sup-

port of a discrete histogram is maximal meaningful (and it is the only one).

Proof — For a discrete interval [a,b] ⊂ [1,n], let p(a,b) denote its relative length

and r(a,b) its relative weight when the reference interval is the support [1,n]. Let

pL(a,b) denote its relative length and rL(a,b) its relative weight when the reference

interval is the support [1,L]. We then have

pL(a,b) =
n

L
p(a,b) and rL(a,b) = r(a,b).

Thus,

HL([a,b]) = H([a,b])+ r(a,b) log
L

n
+(1− r(a,b)) log

1− p(a,b)

1−np(a,b)/L
. (7.5)

In particular, HL([1,n]) = log(L/n) and the last term of (7.5) being negative (because

L ≥ n), we get

HL([a,b]) ≤ H([a,b])+ r(a,b) log
L

n
.

If [a,b] �= [1,n], then 1− r(a,b) > 0. Consequently, there exists a constant C such

that

∀[a,b] �= [1,n],
H([a,b])

1− r(a,b)
< C.

This shows that for all L such that log(L/n) > C, then HL([a,b]) < HL([1,n]) for all

[a,b] �= [1,n]. �
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(a) The original road image

(b) Grey-level histogram with maximal

meaningful interval

(c) Quantized image

Fig. 7.5 Maximal meaningful modes and optimal gray level quantization of a digital image. (a)

Original image; (b) histogram of gray-levels of the image with its single maximal meaningful

interval [69,175] (between the dotted lines); (c) quantized image: black points represent points in

the original image with gray level in [0,68], gray points represent points with gray level in the

maximal meaningful interval [69,175] and white points represent points with gray level larger than

176.

7.6 Applications and Experimental Results

A first application is the study of an image gray-level histogram. Looking for the

maximal meaningful intervals is a way to obtain a gray-level quantization (Figure

7.5.) This section also illustrates some joint applications of meaningful alignments

and modes. The ultimate goal of Computer Vision systems is to combine elementary

detection modules as the ones we defined in this book into more and more sophis-

ticated geometric interpretation. Being able to combine alignment detection with

parallelism detection is a sanity check. The maximal meaningful alignments of a

digital image are a finite set of segments. Each one has a length and an orientation

(valued in [0,2π) because segments are oriented). The precision of the direction of

the segment is related to its length: If l denotes the length of the segment, measured

as usual with the pixel size as unit, the precision of its direction is 1/l.
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(a) The original image: Uccello’s painting (b) Maximal ε-meaningful segments for

ε = 10−6
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(c) The orientation histogram measured in de-
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(d) Maximal meaningful modes filled in

black

Fig. 7.6 Uccello’s painting: maximal meaningful alignments and histogram of orientations. Two

maximal meaningful modes are found corresponding respectively to the horizontal and vertical

segments.

To build the discrete histogram of the orientations of detected alignments, the

interval [0,2π) is decomposed into n = 2πlmin bins, where lmin is the minimal length

of the detected segments. Thus, the size of a bin is 1/lmin. One can then compute

the maximal meaningful modes of this orientation histogram. The framework is

slightly different from what we have defined in this chapter. Indeed, a histogram

of orientations is defined on the “circular” interval [0,2π). Thus intervals [a,b] can

have 0 ≤ a ≤ b < 2π , but also 0 ≤ b ≤ a < 2π . An interval [a,b] such that 0 ≤ b ≤
a < 2π is defined as the union [a,2π)∪ [0,b]. This does not alter the validity of

the meaningfulness definitions, provided the number of considered intervals in the

definition of the NFA is changed accordingly.

A first example is treated in Figure 7.6. In Figure 7.6(b), all the 2925 maximal

ε-meaningful segments with ε = 10−6 are displayed. In Figure 7.6(c) the histogram

of the orientations modulo π is shown. The orientation is measured in degrees and

the [−90,90] degrees interval is divided into 85 bins. In Figure 7.6(d) one can see
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the maximal meaningful modes of the orientation histogram (filled in black). There

are two maximal meaningful modes: [−6.5;8.5] (corresponding to all the horizontal

segments) and [85;−85] (corresponding to the vertical ones).

7.7 Bibliographic Notes

In histogram analysis there are several classes of algorithms computing modes. First,

a parametric model can be at hand, ensuring, for example, that the histogram is an

instance of k Gaussian random variables whose average and variance have to be es-

timated from the histogram ([DH73], [TC92], [PHB99]). Optimization algorithms

can be defined for this problem and, if k is unknown, it may be found by using

variants of the Minimal Description Length Principle [Ris89]. Many theories intend

to threshold a histogram in an optimal way (i.e., to divide the histogram into two

modes according to some criterion). The most popular criterion is based on entropy

(see [Pun81], [Abu89], [KSW85], [CCJA94]). These authors try to find a threshold

value m such that the entropy of the bimodal histogram is maximal. An obvious

generalization finds multiple thresholds by entropy criteria. This threshold problem

turns out to be very useful and relevant in image analysis, since it leads to the prob-

lem of optimal quantization of the gray levels. However, here again, the proposed

thresholds are not proved to be relevant nor to separate meaningful modes of the

histogram. To take an instance, if the histogram is constant, the optimal threshold

given by the mentioned methods is the median value. Now, a constant histogram is

not bimodal.

Generalizations (in particular, recursive applications) of the detection of mean-

ingful modes and gaps of an histogram have been developed by Delon, Desolneux,

Lisani, and Petro in [DDLP07b] (also in [DDLP04] with application to fast camera

stabilization) and in [DDLP07a] (with application to an automatic color palette).

See also the exercises of Section 7.8 for more references in statistics about

histograms (in particular about Grenander estimator and unimodal densities esti-

mation).

7.8 Exercises

7.8.1 Kullback-Leibler Distance

Let P and Q be two discrete probability distributions on the finite set Ωn =
{1,2, . . . ,n}. The relative entropy or Kullback-Leibler distance between P and Q

is defined by

KL(P||Q) =
n

∑
k=1

P(k) log
P(k)

Q(k)
.
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1) Use an inequality of convexity to prove that KL(P||Q)≥ 0 and that KL(P||Q) = 0

if and only if P = Q. Notice that, in general, one has KL(P||Q) �= KL(Q||P). Hence,

the Kullback-Leibler distance is not a “true” distance.

2) Prove that the function (P,Q) 
→ KL(P||Q) is a convex function.

3) Let a1, . . . ,am and b1, . . . ,bm be non-negative numbers. Prove the following log-

sum inequality:
m

∑
i=1

ai log
ai

bi

≥
(

m

∑
i=1

ai

)

log
∑m

i=1 ai

∑m
i=1 bi

.

4) Let p and q be two real numbers in [0,1] such that p ≥ q. Prove that

p log
p

q
+(1− p) log

1− p

1−q
≥ 2(p−q)2.

(Hint: Consider the difference of the two terms and compute the partial derivative

with respect to q).

5) Let the L1-distance between the two probability distributions P and Q be defined

by

‖ P−Q ‖1=
n

∑
k=1

|P(k)−Q(k)|.

Let Ω+ = {k |P(k) > Q(k)} and let p+ = ∑k∈Ω+
P(k) and q+ = ∑k∈Ω+

Q(k).
Prove first that

‖ P−Q ‖1= 2(p+ −q+).

Then prove (using questions 3 and 4) that

KL(P||Q) ≥ 1

2
‖ P−Q ‖2

1 .

Many results about the Kullback-Leibler distance and links to Information The-

ory can be found in the book of Cover and Thomas [CT91].

7.8.2 A Qualitative a Contrario Hypothesis

Let r be a discrete observed normalized histogram on {1, . . . ,L}. Instead of asking

“does this histogram have meaningful modes or gaps according to the a-contrario

uniform hypothesis?” which was the question addressed in this chapter, we want

to ask: “is this histogram meaningfully decreasing?”, in other words: “does it have

meaningful gaps or modes according to the a-contrario hypothesis of decrease?”

Let us first introduce some notations. Let P(L) denote the space of probability

distributions on {1,2, ...,L} (i.e., the vectors p = (p1, ..., pL) such that ∀i, pi ≥ 0 and

∑L
i=1 pi = 1). Let D(L) denote the space of probability distributions on {1,2, ...,L}

that have the property of being decreasing: pi ≥ pi+1 for all i ≤ L−1.
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1) Prove that there exists a unique r ∈ D(L) that achieves the minimal Kullback-

Leibler distance from r to D(L); that is,

KL(r||r) = min
p∈D(L)

KL(r||p),

where ∀p ∈ D(L), KL(r||p) = ∑L
i=1 ri log(ri/pi).

The distribution r is known as the Grenander estimator of r. Introduced by

Grenander ([Gre80]), this estimator is defined as the non-parametric maximum like-

lihood estimator restricted to decreasing densities on the line. Grenander shows in

[Gre80] (see also [BBBB72]) that r is merely “the slope of the smallest concave

majorant function of the empirical repartition function of r”.

2) Pool Adjacent Violators Algorithm

Let r = (r1, ...,rL) ∈ P(L) be a normalized histogram. We consider the operator

D : P(L) → P(L) defined by the following: For r ∈ P(L), and for each interval

[i, j] on which r is increasing (i.e., ri ≤ ri+1 ≤ ·· · ≤ r j and ri−1 > ri and r j+1 < r j),

we set

D(r)k =
ri + ...+ r j

j− i+1
for k ∈ [i, j], and D(r)k = rk otherwise.

This operator D replaces each increasing part of r by a constant value (equal to the

mean value on the interval). Prove that after a finite number (less than the size L of

r) of iterations of D we obtain the decreasing distribution r:

r = DL(r).

The above algorithm is called “Pool Adjacent Violators Algorithm” (see

[ABE+55], [Bir89] for more details). Its generalization to unimodal densities es-

timation can be found in [Bir97].

3) Prove that r also achieves the minimal L2-distance from r to D(L).

The definitions of meaningful intervals and gaps for the a-contrario decreasing

hypothesis are analogous of the ones given in this chapter: We just replace the

uniform distribution by the decreasing distribution r. This leads to the following

definition:

Definition 17. Let r be an observed normalized histogram. We say that an interval

[a,b] is meaningful for the decreasing hypothesis (resp. a meaningful gap for the

decreasing hypothesis) if r(a,b) > r(a,b) (resp. r(a,b) < r(a,b)) and

Hr([a,b]) ≥ 1

M
log

L(L+1)

2
,

where M is the number of samples and

Hr([a,b]) = r(a,b) log
r(a,b)

r(a,b)
+(1− r(a,b)) log

1− r(a,b)

1− r(a,b)
.





Chapter 8

Vanishing Points

8.1 Introduction

Sets of parallel lines in 3-D space are projected into a 2-D image to a set of concur-

rent lines. The meeting point of these lines in the image plane is called a vanishing

point. It can belong to the line at infinity of the image when the 3-D lines are parallel

to the image plane. Even though concurrence in the image plane does not necessar-

ily imply parallelism in 3-D, the counterexamples for this implication are rare in

real images. Thus, the problem of grouping sets of parallel lines in 3-D is reduced

to finding significant sets of concurrent lines in the image plane.

In this chapter we will explain how vanishing points can be reliably and auto-

matically detected with a low number of false alarms (NFA) and a high precision

level without using any a priori information on the image or calibration parame-

ters and without any parameter tuning. On the contrary, a vanishing point detector

can be used to determine some calibration parameters of the camera or for other

applications such as single-view metrology.

8.2 Detection of Vanishing Points

As in the case of alignments, a meaningful vanishing point can be defined in terms of

the Helmholtz principle. The objects undergoing grouping will be the meaningful

segments (Chapter 5) obtained by the final method presented in Chapter 6. The

common property of some of these segments is a common point v∞ met by their

supporting lines.1 Due to measurement errors, there will never be a large number

of segments intersecting at a single point v∞; rather, there will be a family of lines

meeting a more or less small subset V of the image plane, which will be called the

1 If the segments are pinhole projections of 3-D lines with a common orientation d∞, then this

point v∞ is the pinhole projection of the 3-D orientation d∞.
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134 8 Vanishing Points

vanishing region. To consider all possibilities, we need to define a finite family of

such regions {Vj}M
j=1 covering the whole (infinite) image plane, that is,

M⋃

j=1

Vj = R2. (8.1)

8.2.1 Meaningful Vanishing Regions

Let N denote the final number of meaningful segments detected in the image after

one has applied the exclusion principle (Chapter 6). Here, the Helmholtz princi-

ple is adapted to the case in which the objects that are observed are the supporting

lines l1, l2, . . . , lN of the N line segments obtained. The common property tested

for is whether a group of k such lines intersects one of the vanishing regions Vj.

Figure 8.1(a) illustrates this construction. Under the assumption that all lines are in-

dependent with the same distribution, the probability of such an event is B(N,k, p j),
where p j is the probability that a line meets the vanishing region Vj. Moreover, since

the M regions Vj are chosen to sample all possible vanishing regions, we are making

Ω

V

N segments

(a) Vanishing region V and a set of lines meeting it.

Ω

Vj

G

(b) Interior vanishing region.

Ω

VjG
Li

Le

(c) Exterior vanishing region.

Fig. 8.1 Meaningful vanishing regions. (a) The problem consists of estimating the expected num-

ber of occurrences of the event “at least k out of N lines meet a vanishing region Vj ,” given that

the lines meet (are visible in) the image domain Ω . In order to compute the associated proba-

bilities p = P [G meets Vj |G meets Ω ] we distinguish two cases: (b) interior vanishing regions

Vj ⊆ Ω : in this case, p = Per(Vj)/Per(Ω); (c) exterior vanishing regions Vj ∩Ω = /0: in this case,

p = (Li −Le)/Per(Ω).
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NT = M such tests. Thus, the number of false alarms for a vanishing region Vj can

be defined as

NFA(Vj) = MB(N,k, p j), (8.2)

and, as usual, the vanishing region is ε-meaningful if k is sufficiently large to have

NFA(Vj) ≤ ε .

In order to actually find the value of NFA and the value of the minimal value

k( j,ε) of k such that Vj becomes meaningful, the probabilities p j have to be com-

puted. This is the subject of the next subsection.

8.2.2 Probability of a Line Meeting a Vanishing Region

Up to this point, the analysis has been formally almost equivalent to the case of

meaningful alignments, stressing the duality of the events “n lines meet at a point”

and “n points belong to a single line.” The threshold k( j,ε) is computed in the

same manner and from the same binomial tail as in the alignment case. The only

difference is the interpretation of the parameters. Here the total number of segments

N plays the role of the length of the segment in the case of alignments. The number

of events M represents the total number of possible vanishing regions (instead of the

total number of possible segments). The specific geometry of the vanishing point

problem comes into play only at this point in computing the probability p j that a

random line of the plane hits simultaneously the image and a vanishing region Vj.

Thankfully, this geometric probability problem can be elegantly solved (see

[San76]), yielding a closed-form formula in terms of the internal and external

perimeters of both regions. Here we state the main result from integral geometry

that is needed to compute p j. We refer the reader to the exercises at the end of

the chapter for the proofs and to the treatise by Santalo [San76] for a complete de-

velopment of the theory leading to this and other interesting results in stochastic

geometry.

First, the polar coordinates parameterization for a random line on the plane G is

considered (see Figure 8.2(a)):

G(ρ,θ) = {(x,y) ∈ R2 : xcosθ + ysinθ = ρ}, (8.3)

and it is shown (see Exercise 8.5.1) from symmetry arguments that the only transla-

tion and rotation invariant measure for sets of lines is dG = dρ dθ (up to an irrelevant

multiplicative constant). The main result from integral geometry that will be used

here is the following (see Exercise 8.5.3).

Proposition 27 Consider two convex sets K1 and K2 of the plane. Assume that they

are bounded, closed, and with nonempty interior. Let Per(K1) and Per(K2) denote

their respective perimeters. Then the measure of all lines meeting both sets is

µ [G∩K1 �= /0 and G∩K2 �= /0] =

⎧

⎪⎨

⎪⎩

Per(K1) if K1 ⊆ K2

Li −Le if K1 ∩K2 = /0

Per(K1)+Per(K2)−Le otherwise,

(8.4)
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G

ρ

θ

(a) Parameterization of a random line

G(ρ,θ) in the plane.

G

p(θ)

θ

K

(b) Support function p(θ) of a convex

set.

Fig. 8.2 (a) With the line parameters (ρ,θ) illustrated in this figure, the measure dG = dρ dθ be-

comes translation and rotation invariant. (b) The support function p(θ) defined in Equation (8.13)

uniquely determines the convex set K and plays a central role in computing the probability that a

line meets a convex set K.

where the external perimeter Le is the perimeter of the convex hull of K1 and K2 and

the internal perimeter Li is the length of the “internal envelope” of both sets, which

is composed of the internal bitangents to K1 and K2 and parts of their perimeters.

Figure 8.1(c) illustrates this construction for K1 = Ω and K2 = Vj.

This result can be directly applied to the problem of determining p j in the case

that the vanishing region Vj ⊆ Ω is contained in the (convex) image domain Ω .

Since the only observed line segments meet the image domain, the probability we

are interested in is actually

p j = P [G∩Vj �= /0 | G∩Ω �= /0]

=
µ [G∩Vj �= /0 and G∩Ω �= /0]

µ [G∩Ω �= /0]

=
µ [G∩Vj �= /0]

µ [G∩Ω �= /0]

=
Per(Vj)

Per(Ω)
.

(8.5)

For vanishing regions external to the image domain (Vj ∩Ω = /0), using the second

case of (8.4), the probability becomes

p j = P [G∩Vj �= /0 | G∩Ω �= /0]

=
µ [G∩Vj �= /0 and G∩Ω �= /0]

µ [G∩Ω �= /0]

=
Li −Le

Per(Ω)
.

(8.6)

Note that the intermediate case, in which there is an intersection but no inclusion, is

treated as this second case with Li = Per(K1)+Per(K2), which is true in the limiting
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case when K2 is tangent but exterior to K1. In the other limiting case, when K2 is

tangent but interior to K1, we still have Li = Per(K1)+ Per(K2), but Le = Per(K1),
so Li −Le = Per(K2) and we are back to the first case.

8.2.3 Partition of the Image Plane into Vanishing Regions

In this subsection the problem of choosing a convenient partition of the image plane

into vanishing regions is addressed. The following criteria are used:

Equal probability

The partition has to be such that the probability p j = P [G∩Vj �= /0] that a random

line G of the image meets a vanishing region Vj is constant for all regions. Without

this equiprobability condition, certain vanishing regions would require many more

meeting lines to become meaningful than others, that is, they would not be equally

detectable, which is not desirable.2

This equiprobability condition and the results of the previous subsection imply

that the size of Vj increases dramatically with its distance from the image, which

agrees with the fact that the localization error of a vanishing point increases with its

distance from the image. Thus, with the equiprobability condition, the localization

error of the vanishing points is obtained as a consequence of their detectability.

Angular precision

The size and shape of the vanishing regions should be in accordance with the angular

precision of the detected line segments. Because of the discrete character of the

digital image, the supporting line of a segment must be considered as a cone with

angle θ = arcsin(1/l) (see Figure 8.3). If an alignment has a sufficiently precise

orientation for its uncertainty cone to be completely cut by a vanishing region, then

this intersection event is counted. Otherwise, the event is uncertain and the segment

line is not counted as meeting the vanishing region. Thus, the vanishing regions

must have a size comparable to the width of the corresponding vanishing cones.

2 For instance, the partition into regions whose projection into the Gaussian sphere has con-

stant area does not necessarily satisfy this equal-probability condition. This was observed in

[LMLK94] in the case of uniformly distributed 3-D lines. In this case, lines almost parallel

to the image plane become much less probable than lines that are almost orthogonal. Despite

the correction proposed in [LMLK94], this still leads to problems in the detection of vanishing

points when the perspective effect is very low (distant vanishing points, or lines almost parallel

to the image plane), as observed in [Shu99].
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l/2

1 pixel

θ

Fig. 8.3 Uncertainty cone of a line segment [Shu99]. The position of the endpoints of a length l

segment has a half-pixel error margin. Hence, the supporting line of this segment lies within an

uncertainty cone centered at the segment barycenter with angle dθ = arcsin(1/l).

Geometric construction

The partition is composed of two families of vanishing regions {V
(i)
j } and {V

(e)
j }.

The first one consists of interior regions entirely contained in the image domain

Ω . The second one consists of exterior regions lying outside the image domain.

For simplicity, the image domain Ω is approximated by its circumscribed circle

with radius R. To meet the angular-precision requirement, all exterior regions V

will be portions of sectors of angle 2θ lying between distances d and d′ from the

image center O. Figure 8.5 illustrates this construction and Figure 8.4 illustrates the

trigonometric calculation of the probability that a random line meeting the image

domain Ω also meets V . In the case of exterior tiles of angular precision 2θ at

distances d and d′, this probability becomes

pe(d,d′) =
Li −Le

Per(Ω)

=
1

π

(

2θ +

[

β +
1

cosβ
− tanβ

]β=arccos(Rcosθ/d′)

β=arccos(Rcosθ/d)

)

=
1

π

⎛

⎝2θ +

[

arccos

(
1

q

)

+q−
√

q2 −1

]q= d′
Rcosθ

q= d
Rcosθ

⎞

⎠ . (8.7)

Note that it may be occasionally handier to think of pe as a function of the angles

β = arccos(Rcos(θ)/d) and β ′ = arccos(Rcos(θ)/d′)

instead of the distances d and d′ (see Figure 8.4) .

Concerning the interior regions, the disk Ω is simply partitioned into square tiles.

The side of each square is chosen to be equal to the side of the exterior tiles closest

to the image domain (i.e. 2Rsinθ ). The perimeter of the interior regions is therefore

equal to 8Rsinθ , and the probability that a line meets an interior vanishing region is

pi =
Per(V )

Per(Ω)
=

4sinθ

π
. (8.8)
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d

d

Vi

Vj

Ω

li

le

β

β

α

2θ

Fig. 8.4 Construction of the exterior vanishing regions Vj , and computation of the corresponding

probability (Li −Le)/Per(Ω) that a random line meeting the image domain Ω also meets Vj . To

compute the probability pe of a line meeting an external tile Vj observe that Li −Le is composed of

two arcs of circle of angle α , the upper and lower sides of Vj of length q′−q = (d′−d)/cosθ , and

two line segments of length li − le. Hence, Li −Le = 2(Rα +q′−q+ li − le). Observing two right

triangles with angles β and β ′ leads to li = R tanβ and le = R tanβ ′. Finally, since α +β = 2θ +β ′

and Per(Ω) = 2Rπ , substituting all equations into (8.6) yields (8.7).

This ensures that all interior regions have the same probability and that their size

is in accordance with the coarsest angular precision θ of the line segments. Then

the values of d and d′ are chosen to ensure that all exterior regions have the same

probability pe = pi. One way to do so is to start with the first ring of exterior regions

setting d1 = R, and then choose d′
1 by solving the equation pe(d1,d

′
1) = pi for d′

1.3

Then the second ring of exterior tiles is filled by setting d2 = d′
1 and solving the

equation pe(d2,d
′
2) = pi for d′

2. This process is iterated until d′ ≥ d∞, where d∞ is

such that

lim
d′→∞

pe(d∞,d′) = pi. (8.9)

To compute this limit, observe that for d′ → ∞ we have β ′ → π/2 and then

(1/cosβ ′− tanβ ′) → 0; hence,

3 This can be formulated as finding the zero of a convex function of β ′
1 with a known derivative.

A modified Newton method can be applied that ensures a solution within a given precision on

both the x and y axes.
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Fig. 8.5 Tilings of the image plane by equal-probability vanishing regions for different angular-

precision levels. Only the exterior tiles are shown, except for the last ring of unbounded tiles,

whose probability may be smaller. The interior tiles form a regular square partition of the circle

with squares of size comparable to the “innermost ring” of exterior tiles. Observe how the size of

the tiles increases for the more distant tiles. The axes represent distances relative to the radius of

the circular image domain. Note that for higher angular precisions, the image has been zoomed out

to allow the visualization of the more distant tiles.

lim
d′→∞

pe(d,d′) =
1

π

(

2θ +
π

2
−β − 1

cosβ
+ tanβ

)

, where β = arccos

(
Rcosθ

d

)

.

From the previous equation it can easily be deduced that the value of d∞ satisfying

Equation (8.9) is finite and satisfies

4sinθ = 2θ +
π

2
−β∞ − 1

cosβ∞
+ tanβ∞, where β∞ = arccos

(
Rcosθ

d∞

)

.

(8.10)

Regions in the last ring will then be unbounded, with probability less than pi. They

represent parallel lines in the image plane. Figure 8.5 shows some examples of this

partition of the image plane for different precision levels θ .
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8.2.4 Final Remarks

This subsection introduces some additional criteria to suppress spurious vanishing

points and to eliminate the angular-precision parameter θ .

Multiprecision analysis

The choice of a fixed value for the angular-precision parameter θ requires a com-

promise between detectability and the localization error of vanishing points. We aim

at the highest possible precision level (i.e., the smallest localization error of vanish-

ing points). On the other hand, if the precision level is too fine with respect to the

angular precision of the segments, the vanishing region will be hardly detected. The

optimal level will approximately match the precision of the segments converging

to this vanishing point, and the strategy will be to try to adjust the precision level

automatically to this value. Figure 8.6 shows the value of the minimal number of
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Fig. 8.6 Detection thresholds k for vanishing regions as a function of the total number N of lines

detected in the image. These thresholds depend on the joint precision level θ = 2−sπ (for s =
4,5, . . . ,10) of the alignments and regions. N denotes the number of random lines meeting the

image domain Ω . The seven curves plot the minimal number k(N) of lines that should meet Vj for

Vj to be 1-meaningful for seven precision levels s. Taking (for example) N = 10, the plot shows that

at high precision (bottom curve, angular precision = 1024) only four lines are necessary to create

a vanishing point. Unfortunately, the low precision of the top curves (small angular precisions) is

more realistic.
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concurrent lines needed for the vanishing region to be 1-meaningful, as a function

of the total number N of lines in the image for several angular precisions θ . This

figure, or simple calculations using the definition of the NFA, shows that for a total

N = 1000 lines, about 300 concurrent lines are needed to be meaningful at preci-

sion θ = π
16

, whereas only 15 concurrent lines are enough at precision θ = π/1024.

However, only 7 concurrent lines would be needed if the total number of lines were

N = 100. This discussion leads to the procedure described below.

As in the case of alignments, instead of fixing a single angular-precision level,

multiple dyadic-precision levels θ = 2−sπ , for n different values of s in a certain

range [s1,sn], have to be considered. In the experiments, s = 4,5,6,7 proved to be

the most useful range, but this can be adjusted to the range of precision levels of

the extracted segments. According to the above discussion, at each precision level

θs = 2−sπ , only those segments with a precision level no coarser than θs are kept.

Let Ns denote their number and let Ms denote the number of vanishing regions ob-

tained by the construction described in the previous subsection with angular pre-

cision θs. Segments with precision coarser than θs are not kept, since they would

significantly increase Ns (thus increasing the detection threshold k) without signif-

icantly increasing the number k of lines meeting the vanishing region. Now the

previously described method for all precision levels can be applied. This procedure,

however, multiplies the number of tests. Therefore, to keep the total number of false

alarms smaller than ε , Equation (8.2) has to be modified as follows:

NFA(Vj,s) = (Ms1
+ · · ·+Msn)B(Ns,k, ps). (8.11)

The vanishing region is considered ε-meaningful if k is large enough to obtain

NFA(Vj,s) ≤ ε . With this definition, the total expected number of false alarms from

this multiprecision analysis can be easily shown to be no larger than ε . The rem-

nant problem is that a single vanishing point may be meaningful at several different

precision levels.

Local maximization of meaningfulness

When a huge number of segments meet a vanishing region Vj,s, they also meet some

of the neighboring regions at the same precision level s, as well as all coarser regions

Vj,s′ ⊇Vj,s and some finer regions Vj,s′′ ⊆Vj,s. Therefore, these neighboring regions

are likely to become meaningful but are not necessarily the best representatives of

the vanishing point. To choose the best one among them, the following maximality

concept is introduced. A vanishing region Vj,s from a multiprecision family of par-

titions of the image plane is maximal if it is more meaningful than any other region

intersecting it. More precisely, Vj,s is maximal if

∀s′ ∈ [s1,sn],∀ j′ ∈ {1, . . . ,Ms′}, Vj′,s′ ∩Vj,s �= /0 =⇒ NFA(Vj′,s′)≥ NFA(Vj,s),

(8.12)
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where A denotes the closure of a set A. Note that the condition Vj′,s′ ∩Vj,s �= /0 in-

cludes both neighboring regions at the same level, as well as coarser regions con-

taining Vj,s and finer regions contained in it.4

Exclusion principle for vanishing regions

Figure 8.7 shows all the maximal 1-meaningful vanishing regions that are detected

in the photograph of a building. Clearly, the first three correspond to real orientation

in the 3-D scene, whereas the other three are an artificial mixture of different orienta-

tions. Observe that these mixtures are less meaningful than the original ones because

100 200 300 400 500 600 700 800

100

200

300

400

500

600

(a) Original image with detected segments

−log
10

(NFA) = 90.7943, angular precision = 256

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

(b) First maximal-EP vanishing region

−log
10

(NFA) = 37.8879, angular precision = 256

0 500 1000 1500 2000

−400

−200

0

200

400

600

800

1000

1200

(c) Second maximal-EP vanishing region

−log
10

(NFA) = 6.34396, angular precision = 256

−200 −100 0 100 200 300 400 500 600 700 800

−100

0

100

200

300

400

500

600

700
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Fig. 8.7 Detected line segments for a building image and the only three maximal-EP meaningful

vanishing regions that are detected. They correspond to the two horizontal orientations and to one

vertical orientation. After this detection, an orthogonality hypothesis between vanishing points

could be used to calibrate some camera parameters. For each vanishing region, only the segments

that contributed to this region are shown.

4 This condition is used instead of inclusion, because the equal-probability constraint that is used

to construct the partition implies that regions at precision level s + 1 cannot always be com-

pletely included in a single region at the coarser precision level s. In this situation, the proposed

nonempty intersection-type condition is better suited.
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only a small portion of the segments in each direction can participate. Therefore,

these artificial vanishing regions can be filtered out by the exclusion principle in a

way similar to the one used for segments. Among all maximal meaningful vanishing

regions, a contest can be organized, based on the principle that each segment has to

choose a single vanishing region that best explains its orientation. More precisely,

a segment with supporting line l is assigned to the vanishing region Vj,s such that

NFA(Vj,s) is smallest among all regions Vj,s met by l. Then NFA(Vj,s) is recomputed

for all meaningful segments using Equation (8.11) with the only modification that

instead of k, we consider k′ ≤ k, which is the number of lines that not only meet Vj,s

but also have been assigned to the vanishing region Vj,s. We say that the resulting

vanishing regions are maximal for the exclusion principle, and maximal meaningful

when their NFA is smaller than ε .

8.3 Experimental Results

The total number N of lines is usually of the order of some hundreds, and the prob-

ability parameter ps = 4sin(2−sπ)/π can become very small. Thus, the binomial

distribution B(N,k, ps) can be replaced by its Poisson approximation with parame-

ter λs = N ps.

Figures 8.7, 8.9, and 8.11 show the results of detecting vanishing points in sev-

eral images.5 In man-made environment images, the most relevant orientations are

detected without any false alarms. Figure 8.8 illustrates the need for the exclusion

principle in order to filter out artificial vanishing points that may appear when the

real vanishing points are extremely meaningful. Note that after applying the exclu-

sion principle (Figures 8.7(b) to 8.7(d)), only the main three directions (two hori-

zontal and one vertical) are obtained.

Figure 8.10 illustrates the masking phenomenon. Here the less meaningful direc-

tions corresponding to the wall are masked by the many segments in the horizontal

and vertical directions, but they can be unmasked. See the figure caption for a more

detailed explanation.

Finally, Figure 8.11 shows the limitations of the proposed method when applied

to natural images not containing vanishing points (see caption for details). This and

other similar experiments further enforce the conclusion of the previous chapters on

the importance of addressing the conflicts between gestalts. Indeed, if we were able

to solve the conflict between the alignment and the curved boundary gestalts, we

would eliminate many wrong line segments and thus further reduce the NFA in the

vanishing-point-detection phase.

5 In all of the experiments, ε = 1. A much smaller value could have been used. Indeed, in all of

the examples presented here, all real vanishing points have NFA < 0.0001. Furthermore, ε = 1

means that we can expect, on average, one vanishing point in a random segment distribution.

This yields a quite high error rate. Indeed, only a few vanishing points are usually found in a

digital image.
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Fig. 8.8 Before applying the exclusion principle, some spurious vanishing regions remain. Note

that they arise from mixtures of real vanishing regions, and that they are significantly less meaning-

ful and less precise than the real vanishing regions. Therefore, during the exclusion principle step,

most segments vote for the real vanishing region instead of these mixed ones. Thus, after exclusion

principle, their NFA increases and they are no longer meaningful.

8.4 Bibliographic Notes

This chapter is based on the work of Almansa et al. [ADV03].

Why are vanishing points needed?

The usefulness of precise measurements of vanishing points, among other geometric

primitives, has been demonstrated in many different frameworks [CRZ00, LCZ99,

FL01, JR95].

A common situation in architectural environments is to find a set of three or-

thogonal dominant orientations. If the corresponding vanishing points are detected

in the image, they provide three independent constraints on the five internal cali-

bration parameters of the camera [LCZ99]. More importantly, it is very common
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Fig. 8.9 Only two maximal-EP vanishing points are detected. Note that the vanishing points corre-

sponding to the oblique wall and the staircase are missing. Indeed, both the alignment detection and

the vanishing point detection are global, and the less-meaningful segments and vanishing points

are masked by the more-meaningful horizontal and vertical orientations (see Figure 8.10).

to have cameras with zero skew and aspect ratio equal to 1 (a natural camera). In

this case, the internal parameters are reduced to three, namely the focal length and

the 2-D position of the principal point (the orthogonal projection of the focal point

into the image plane). Then the camera can be calibrated from a single image of

a building – for instance, with the only assumption that the walls and the floor are

orthogonal to each other [LCZ99].

Even more impressive is the result described in [CRZ00], where it is shown that

(without any knowledge of camera calibration or position) the ratios of lengths be-

tween two parallel segments in 3-D can be computed from the lengths of the imaged

segments if we know only the vanishing line of a plane containing one of the end-

points of both segments and the vanishing point of the two parallel segments. A

typical application of this result is to measure the height of objects standing ver-

tically on the floor relative to a reference object standing vertically on the floor



8.4 Bibliographic Notes 147

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

(a) Original image with detected segments

−log
10

(NFA) = 4.75545, angular precision = 256

−50 0 50 100 150 200 250

0

50

100

150

200

(b) First maximal-EP vanishing region

−log
10

(NFA) = 12.4332, angular precision = 256

0 50 100 150 200 250

0

50

100

150

200

(c) Second maximal-EP vanishing region

Fig. 8.10 Illustration of the masking phenomenon. When we select the wall subimage in Figure

8.9, more alignments are detected and a new vanishing point that was masked in the global image

becomes meaningful. This is due to two cooperating effects. First, the masking phenomenon at the

alignment-detection level means that we detect in this subimage more-meaningful segments than

in the global image. Second, at the vanishing-point-detection level, the total number of segments

is smaller, which means that the required number of concurrent lines for a vanishing region to

become meaningful is smaller. A similar result may be obtained by applying a second iteration of

the exclusion principle after all segments contributing to the first iteration have been removed.

parallel to them.6 The only points that are required are two horizontal vanishing

points, a vertical vanishing point, and the endpoints of the target and reference seg-

ments. Then the computations involve only measuring ratios of lengths of segments

defined by these points.

Finally, when using vanishing points in conjunction with other properties such as

orthogonality, common segments between planes, and a few length ratio, full 3-D

6 Note that here we used the word “vertical” for clarity and to fix ideas, but actually no orthogo-

nality relationship is required, only 3-D parallelism.
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Fig. 8.11 Accidental vanishing points. When applied to images of man-made environments that

actually contain vanishing points, the method very rarely detects accidental vanishing points. How-

ever, this does happen in natural images in which we do not perceive such vanishing points. Here

we show one of the worst such examples that we found in experiments. In this case, the detected

vanishing points are probably not perceived because they are made up mostly of segments that are

not perceived as straight lines in the first place. Many of these segments would be better explained

as meaningful curved boundaries, and therefore will never give rise to vanishing points. Hence, the

false alarms in the vanishing-point-detection phase are here to some extent the result of some spe-

cial kind of false alarms in the alignment detection phase. Further experiments on natural images

showed this kind of false alarm of vanishing points (due to some false alarms in line segments that

are actually curved boundaries) to be the most prominent one.

reconstructions are possible from a single view, even from Renaissance paintings

with carefully respected perspective laws [LCZ99].

When several views are available, vanishing point correspondences can be help-

ful in determining the epipolar geometry or fundamental matrix [FL01]. Alterna-

tively, if the intrinsic parameters are known, vanishing points can be used to find

some information about extrinsic parameters (i.e., the relative position of the two
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cameras). In [AT00], for instance, vanishing points were used to decouple the rela-

tive rotation between the two cameras from the relative translation to which vanish-

ing points are insensitive.

Available methods for vanishing point detection

Since the seminal work of Barnard [Bar83], automated computational methods for

vanishing point detection in digital images have been based on some variation of

the Hough Transform in a conveniently quantized Gaussian sphere. Several re-

finements of these techniques followed, but most recent work suggests that this

simple technique often leads to spurious vanishing points [Shu99]. To eliminate

these false alarms, most authors considered some kind of joint gestalt combin-

ing some other property with 3-D parallelism such as coplanarity and equal dis-

tance between lines [SZ00] or orthogonality between the three main 3-D directions

[LMLK94, Shu99, Rot00]. In addition, knowledge of the intrinsic camera calibra-

tion parameters is commonly assumed [LMLK94, AT00] by these methods, or they

are designed mostly for omnidirectional images [AT00]. To the best of our knowl-

edge, the question of reliably determining whether an image actually contains some

vanishing points and its number had not been addressed systematically before the

work of Almansa et al. [ADV03].

Let us mention [TPG97] for proposing a partition of the plane assigning the same

precision to all 3-D orientations. The drawback of the method is that it requires

knowledge of the internal camera calibration parameters. Most other works use a

partition of the image plane such that the projection of each vanishing region on the

Gaussian sphere has a quasi-constant area [Bar83, LMLK94, Shu99, Rot00].

It is quite difficult to build an experimental setup that fairly compares the method

described here with previously proposed ones. The reason is that the assumptions

are quite different, since the treated problem is not the same. Whereas most previous

works [LMLK94, Shu99, Rot00, SZ00] look for joint gestalts that combine 3-D

parallelism with some other property, here it was attempted to push the pure partial

gestalt of 3-D parallelism to its limits.

An exception is the recent work in [AT00], which relies only on 3-D parallelism

and has been shown to produce highly accurate vanishing points. However, it as-

sumes knowledge of the camera calibration parameters and omnidirectional images.

The importance of this knowledge is not thoroughly discussed in [AT00] but was

crucial in [LMLK94] in order to reduce spurious responses. The work in [AT00]

relies on a Hough Transform as in [LMLK94] to determine the number of van-

ishing points and is therefore prone to the same sensitivity to internal calibration

parameters. For this reason, the method proposed in [AT00] can be considered as

complementary to the method described in this chapter. It could be used either in

the initialization step to determine the number and approximate positions of van-

ishing points more reliably or as a validation step to reduce the number of false

alarms.



150 8 Vanishing Points

8.5 Exercises

8.5.1 Poincaré-Invariant Measure on the Set of Lines

Let G denote the set of lines in the plane R2. A line G ∈ G is parameterized by its

polar coordinate (ρ,θ), which means that it is defined by

G = G(ρ,θ) = {(x,y) ∈ R2 : xcosθ + ysinθ = ρ}.

We consider all of the measures µ on G that are of the form dµ = f (ρ,θ)dρ dθ ,

where f ≥ 0 is defined and integrable on R+× [0,2π). Prove that µ(T (X)) = µ(X)
for all measurable X ⊂ G and all translations and rotations T , if and only if f is a

constant.

This means that the only translation and rotation invariant measure is, up to a

multiplicative constant,

dG = dρ dθ .

8.5.2 Perimeter of a Convex Set

Let K ⊂ R2 be a closed bounded convex set with nonempty interior
◦
K. Assume that

the origin 0 belongs to
◦
K. The support function θ 
→ p(θ) of K being defined by

∀θ ∈ [0,2π], p(θ) = max
(x,y)∈K

(xcosθ + ysinθ) = max
(x,y)∈∂K

(xcosθ + ysinθ), (8.13)

show that the perimeter of K, denoted by Per(K), is given by the Poincaré formula

Per(K) =
∫ 2π

0
p(θ)dθ .

Hint: Start with the proof of this formula for a polygon.

8.5.3 Crofton’s Formula

We use the notation of the two previous exercises. Let µ denote the measure on the

set of lines defined by dµ = dρ dθ . Let K be a closed bounded convex set with a

nonempty interior, and assume that the origin 0 belongs to
◦
K. For a set A ⊂ R2, we

will denote by GA the set of lines meeting A.

1) Use the result of the previous exercise to prove Crofton’s formula:

µ(GK) = µ [G : G∩K �= /0] = Per(K).



8.5 Exercises 151

C

C1

C2

D

Ci

Ce

Fig. 8.12 Two convex sets C1 and C2, their convex hull Ce, and their “internal envelope” Ci, which

is the union of the two convex sets C and D.

2) Let C1 and C2 be two closed bounded convex sets such that C1 ⊆ C2. Show that

the measure of all lines meeting both sets is

µ(GC1
∩GC2

) = µ [G∩C1 �= /0 and G∩C2 �= /0] = Per(C1).

3) Let C1 and C2 be two closed bounded convex sets such that C1 ∩C2 = /0. Let Ce

denote the convex hull of C1 and C2, and let Ci denote their “internal envelope.”

Then Ci is the union of the two convex sets C and D (see Figure 8.12).

First, prove that the measure of the set of all lines meeting both sets is

µ(GC1
∩GC2

) = µ(GC ∩GD).

Then prove that

µ(GC ∩GD) = µ(GC)+ µ(GD)−µ(GCe).

Finally, conclude that

µ(GC1
∩GC2

) = Per(Ci)−Per(Ce).

4) General case: Let C1 and C2 be two closed bounded convex sets. Let Ce denote

the convex hull of C1 ∪C2. Prove that

µ(GC1
∩GC2

) = Per(C1)+Per(C2)−Per(Ce).





Chapter 9

Contrasted Boundaries

9.1 Introduction

Among gestalt principles, the color constancy principle is probably the most basic

principle and the easiest to simulate. It states that points with the same color (or

gray level) that touch each other are automatically grouped. Since by the Shannon

principle an image is a continuous function, we can definitely apply this principle

to the level lines of the image, namely the curves along which the gray level u(x,y)
is constant.

Looking at the level lines of several images will convince us that noncontrasted

level lines are masked and do not contribute to the geometric perceptual organiza-

tion. This organization is, instead, conspicuous in contrasted level lines and also

leads to an easy visual detection of T- and X-junctions. Thus, we intend to define a

contrasted level line detector picking out only unmasked level lines. As in the former

chapters, this gestalt will be defined a contrario. A contrasted level line is a gestalt

if and only if it could not happen by chance in a noise image. The next chapter will

provide a detailed comparison of this method with earlier and now classical edge

detection methods such as the active contours method. All that we will say will be

restricted to gray-level images but easily extended to color images.

9.2 Level Lines and the Color Constancy Principle

Level lines have several structural properties that make them particularly fit for

gestalt analysis. By the Shannon principle, the image is a C∞ interpolation of the

pixels, so that Sard’s theorem ensures existence of a finite number of regular level

lines at almost all levels. This construction can be made much more explicit if we

use a simpler and more local interpolation. All experiments displayed here will show

level lines computed by the bilinear interpolation. All of the level lines obtained by

153
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this particular method have the following properties (for the proof, see Exercise

9.7.1 at the end of this chapter):

– Level lines are closed Jordan curves.

– Two level lines at different levels do not meet.

– Thanks to the Jordan curve theorem, level lines therefore form a set partially

ordered by the order C ≤C′ if the Jordan curve C is surrounded by C′.
– We call the set of level lines (along with their levels) a topographic map; this

partially ordered set is a tree.

– The image can be reconstructed from the topographic map.

We call the whole set of level lines at quantized levels, computed by bilinear in-

terpolation, a digital topographic map of the digital image. In the topographic map,

the orientation of each level line given by the gradient is also kept. Since the images

are usually quantized with 256 levels, we will take 256 levels. A representation with

more levels would be redundant. The graphic representation will be by far visually

more understandable if we only present quantized versions where only levels mul-

tiple of 20 or 30 are displayed. Otherwise, since the set of level lines is essentially

dense, one only sees a black bunch of curves. Of course, algorithms dealing with the

topographic map will keep all levels. Quantization is just a trick to better understand

the geometric organization of the topographic map.

Figure 9.2 gives the topographic map of a digitized geometric drawing (Figure

9.1). As usual for visibility, we only show quantized levels at gray-level values mul-

tiple of 20. This image is a digitization of a part of Figure 2.10. More intricate

examples are given in Figures 9.4, 9.5, 9.7 and 9.8.

Fig. 9.1 A piece of Figure 2.10 page 15 has been digitized to yield a numerical image.
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Fig. 9.2 Topographic map of the image in Figure 9.1. For visibility, only 12 levels of the 256 level

have been drawn, namely 20, 40, . . . , 240. Many level lines seen here are masked, invisible in the

original. They have low contrast, are usually short, and show no geometric structure. Thus, they

look like level lines in noise and should not be perceived by Helmholtz principle (and they are not).

Only the longer and more contrasted level lines can be perceived (see Figure 9.3).

Fig. 9.3 Topographic map of the image in Figure 9.1. Only long level lines of the medium level

128 have been kept. They correspond to visible, unmasked contours in the original. They have

a high contrast, are smooth, and contain the essential geometric information of the image. This

experiment illustrates the conjecture that image geometry is contained in an adequate choice of

image level lines.
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Fig. 9.4 A digital image of peppers with 256 gray levels.

Fig. 9.5 Topographic map of the peppers image with quantization step q = 20. Most of the revealed

level lines look like noise and are perceptually masked in agreement with the Helmholtz principle.

Some level lines correspond to object contours. They are smoother and more contrasted. Since they

are unlikely in noise, they can be detected by the Helmholtz principle.

The visualization of the topographic map reveals gestalt principles. The most

contrasted contours can be seen as bunches of level lines very close to each other.

Notice that most of these contrasted level lines are piecewise regular and therefore
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doubly conspicuous, first as contrasted and second as smooth. On the other hand,

isolated level lines are irregular. Their erratic behavior does not obey any good

continuation principle. Consequently, such low-contrasted level lines are usually

masked and therefore invisible in the digital image.

These experiments give two guidelines in gestalt analysis of digital images:

1. All useful gestalt information is contained in some level lines.

2. Analysis can be restricted to contrasted or smooth enough level lines. The other

ones offer limited perception and could appear in a noise image.

A last illustration of the level line selection problem is given in Figure 9.9. It

shows the level lines at three levels of Figure 9.7. Some of them are smooth and

straight and can be seen as contours in the original image. The others are long,

oscillating, and thoroughly masked in the original.

The closure principle, according to which we tend to group all points surrounded

by a closed curve as parts of the same object, fits well with the level line represen-

tation. Indeed, image level lines are closed curves. When they are contrasted, they

surround a perceptual object. The topographic maps of Figures 9.2, 9.3, 9.5 and 9.6

(T-junctions) and of Figures 9.8 and 9.9 (X-junctions) show how level lines arrange

themselves in T-junctions or X-junctions and contain a signature of occlusion and

transparency phenomena. We refer to Chapter 2 for the definition of these gestalts.

Fig. 9.6 Topographic map of Figure 9.4 with quantization step q = 30. The geometric organization

of level lines is put in evidence by only conserving those long enough and putting the quantization

step to 30 (only 8 equally spaced levels are therefore represented). Notice how T-junctions become

apparent (e.g., at points A, B, C and D). These T-junctions, according to Kanizsa, are perceptual

cues to the presence of hidden parts. The T-junction at B was not even visible in the original image.
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Fig. 9.7 This image has been obtained by digitization on 256 gray levels of a photograph of an

envelope partially covered by a transparent slide.

Fig. 9.8 Topographic map of the image in Figure 9.7. Level lines are drawn with a 20 quantization

step. Two X-junctions are at sight. According to Kanizsa, such X-junctions are responsible for

transparency perception.
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Fig. 9.9 Topographic map of Figure 9.7. Quantization step is q = 30 (level lines of levels 30, 60,

etc.) We only display long level lines. A single X-junction remains at sight (in A).

9.3 A Contrario Definition of Contrasted Boundaries

We call contrasted boundary any closed curve, long enough, with strong enough

contrast, and fitting well to the geometry of the image. This last requirement is

ideally met when the curve is orthogonal to the gradient of the image at each one

of its points. In that case, the curve is a level line. We will first define ε-meaningful

contrasted boundaries and then maximal meaningful contrasted boundaries. This

definition depends on two thresholds (long enough, contrasted enough) that usually

remain free in a Computer Vision algorithm. Our aim is to get rid of these parameters

and to derive a parameter-free boundary detector. By the Helmholtz principle, we

are led to compute the number of false alarms (NFA) of the event “at each point of

a length l part of a level line the contrast is larger than µ”.

9.3.1 Meaningful Boundaries and Edges

Let u be a N ×N digital image. The level lines are computed at quantized levels

λ1, . . . ,λk. The quantization step q is chosen in such a way that the level lines make

a dense covering of the image. For example, this quantization step q is 1 when the

natural image ranges from 0 to 255. A level line can be computed as a Jordan curve

contained in the boundary of a level set with level λ ,

χλ = {x, u(x) ≤ λ}
(

or χλ = {x, u(x) ≥ λ}
)

.

The interpolation considered in all experiments below is the bilinear interpolation

(see Exercise 9.7.1 at the end of the chapter).
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Let L be a level line of the image u. We denote by l its length counted in inde-

pendent points. In the a-contrario noise model, points at a geodesic distance along

the curve larger than 2 are independent. In particular, the gradients at these points

are independent random variables. Let x1, x2, . . . , xl denote the l considered points

of L. For x ∈ L, denote by c(x) the contrast at x defined by

c(x) = |Du|(x), (9.1)

where Du can be computed by a standard finite difference on a 2×2 neighborhood

(see Equation (5.2)). Notice that the term “contrast” used here is just the name given

to the norm of the gradient at a point (it does not necessarily match its usual defi-

nition in perception theories). For µ > 0, consider the event that for all 1 ≤ i ≤ l,

c(xi) ≥ µ (i.e. each point of L has a contrast larger than µ). From now on, all com-

putations are performed in the Helmholtz framework. We make all computations as

though the image were noise and contrast observations at xi mutually independent.

Thus, the probability of the event is

P [c(x1) ≥ µ ] ·P [c(x2) ≥ µ ] · · · · ·P [c(xl) ≥ µ ] = H(µ)l , (9.2)

where H(µ) is the probability for a point on any level line to have a contrast larger

than µ . An important question here is the choice of H(µ). Should we consider that

H(µ) is given by an a priori probability distribution, or should it be estimated from

the image itself (e.g., from the histogram of the gradient norm in the image)? In

the case of alignments, by the Helmholtz principle, the orientation at each point of

the image was a random, uniformly distributed variable on [0,2π]. In the case of

contrast, it does not seem sound at all to take a uniformly distributed contrast. The

observation of the histogram of the gradient norm of a natural image (see Figure

9.10) shows that most of the points have a “small” contrast (between 0 and 3), and

that only a few points are highly contrasted. This is explained by the fact that a

natural image contains many flat regions (the so-called “blue sky effect”, [HM99]).

In the following, we will consider that H(µ) is given by the image itself, which

means that

H(µ) =
1

M
#{x, |Du|(x) ≥ µ}, (9.3)

where M is the number of pixels of the image where Du �= 0.

Definition 18 (Number of false alarms). Let L be a level line with length l, counted

in independent points. Let µ be the minimal contrast of the points x1, . . . , xl of L.

The number of false alarms of this event is defined by

NFA(L) = Nll · [H(µ)]l , (9.4)

where Nll is the number of level lines in the image.

Here, the a-contrario model for the Helmholtz principle is a set of Nll curves, for

which at each pixel a random variable is given that follows the repartition function

H and such that pixels at a distance larger than 2 are independent. Notice that there
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Fig. 9.10 Top: the original image. Bottom-left: histogram of the norm of the gradient. Bottom-

right: its repartition function (µ 
→ P [|Du| ≥ µ]).

is no noise image here; there is only a noise model. It is generally not possible to

build a noise image with a prescribed gradient norm histogram and such that pixels

at a distance larger than 2 have independent gradient. Moreover, the level lines in

a noise image have a behavior (their number, their length, etc.) that is completely

different from the one of level lines in a “natural image” of the same size.

Definition 19 (ε-meaningful boundary). A level line L with length l and minimal

contrast µ is an ε-meaningful boundary if

NFA(L) = Nll · [H(µ)]l ≤ ε. (9.5)

Notice that the number Nll of level lines is provided by the image itself. The above

definitions involve two variables: the length l of the level line and its minimal con-

trast µ . The NFA of an event measures the “meaningfulness” of this event. The

smaller it is, the more meaningful the event.
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Let us now proceed to define “edges”. Nll p denotes the number of pieces of level

lines in the image.

Definition 20 (ε-meaningful edge). A piece of level line E with length l and mini-

mal contrast µ is an ε-meaningful edge if

NFA(E) = Nll p · [H(µ)]l ≤ ε. (9.6)

Let us give some details on the computation of Nll p. Level lines are computed at uni-

formly quantized levels. The gray-level quantization step is 1 and generally ranges

from 1 to 255. For each level line Li with length li, its number of pieces sampled at

pixel rate is

Nll p = ∑
i

li(li −1)

2
.

Clearly, the aim so far is detection and not optimization of the detected edge. In fact,

according to Shannon conditions, the image is blurry and edges have a 2 or 3 pixel

width. The right selection will be made by a maximal meaningfulness argument.

9.3.2 Thresholds

Let us denote the number of false alarms of a level line of length l and minimal

contrast µ by

F(µ , l) = Nll · [H(µ)]l . (9.7)

The function µ 
→H(µ) = P [c(x) ≥ µ ] is decreasing, and for all µ , H(µ)≤ 1. Thus,

we get two useful elementary properties.

Lemma 6 If l ≤ l′, then F(µ , l) ≥ F(µ , l′). Thus, if two level lines have the same

minimal contrast the more meaningful one is the longer one. If µ ≤ µ ′, then

F(µ , l) ≥ F(µ ′, l); that is, if two level lines have the same length, the more mean-

ingful is the one with higher contrast.

When the contrast µ is fixed, the minimal length lmin(µ) of an ε-meaningful level

line with contrast µ is

lmin(µ) =
logε − logNll

logH(µ)
. (9.8)

Conversely, if the length l is fixed, the minimal ε-meaningfulness contrast µmin(l) is

µmin(l) = H−1
(

[ε/Nll ]
1/l
)

. (9.9)

In practice, these thresholds allow very short contrasted and long level lines with

low contrast.
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9.3.3 Maximality

In this subsection we address the usual multiple detection problem and try to solve

it by a maximal meaningfulness property permitting a selection. Let us start with

boundaries. If a level line is meaningful, the nearest level lines are likely to be mean-

ingful too. A natural relation between closed level lines is given by their inclusion

[Mon00]. If C and C′ are two different closed level lines, then C and C′ cannot inter-

sect. Let D and D′ denote the bounded domains surrounded by C and C′. Then either

D∩D′ = /0 or (D ⊂ D′ or D′ ⊂ D). Thus, any set of level lines has an inclusion tree

structure. Consider the subtree of ε-meaningful level lines satisfying F(µ , l) ≤ ε .

On this subtree, one can, following Monasse define monotone branches–that is se-

quences of level curves Ci, i ∈ [1,k], such that the following hold:

– For i ≥ 2, Ci is the unique son of Ci−1 in the tree.

– The gray levels of Ci are either decreasing from 1 to k, or increasing from 1 to k.

– The branch is maximal (not contained in a longer one).

Many such monotone branches of meaningful curves can be seen in the experiments

as bunches of well-contrasted level lines along the image boundaries.

Definition 21. A level curve of a branch is called an optimal boundary if its false

alarms number F(µ , l) is minimal in the branch. We call the optimal boundary map

of an image the set of its optimal boundaries.

The optimal boundary map will be compared in the experiments with classical edge

detectors or segmentation algorithms.

We now address the problem of finding optimal edges among the detected ones.

We will not be able to proceed as we did for the boundaries. Although the pieces of

level lines inherit an inclusion structure from level lines, we cannot compare two of

them belonging to different level curves. Indeed, they can have different positions

and lengths. We can, instead, compare two edges belonging to the same level curve.

The main aim is to define on each curve a set of disjoint maximally detectable edges.

Let us denote by NFA(E) = F(µ , l) the false alarm number of a given edge E with

a minimal gradient norm µ and length l.

Definition 22 (Maximal meaningful edge). An edge E is maximal meaningful if

for any other edge E ′ on the same level curve such that E ⊂ E ′ (resp. E ′ ⊂ E) one

has NFA(E ′) > NFA(E) (resp. NFA(E ′) ≥ NFA(E)).

This definition follows exactly the definitions of maximality already given in the

case of alignments (Chapter 6) and in the case of histogram modes (Chapter 7).

Proposition 28 Two maximal edges cannot meet.

Proof — Let E and E ′ be two maximal distinct and nondisjoint meaningful edges in

a given level curve and µ and µ ′ be the respective minima of gradient of the image

on E and E ′. Assume, for example, that µ ′ ≤ µ . Then E∪E ′ has the same minimum

as E ′ but is longer. By Lemma 6, F(µ ′, l + l′) < F(µ ′, l′), which implies that E ∪E ′

has a smaller NFA than E ′. Thus, E ′ is not maximal. �
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9.4 Experiments

• INRIA desk image (Figure 9.11)

In this experiment, the meaningful boundary method is compared with two

other boundary detection methods: the Mumford-Shah image segmentation and the

Canny-Deriche edge detector.

In the simplified Mumford-Shah model [MS85], an image u defined on a domain

D is approximated by a piecewise constant image v minimizing the functional

E(v) =

∫

D
|v−u|2 +λ length

(
K(v)
)
,

where length
(
K(v)
)

is the length of the discontinuity set of v and λ is a user pa-

rameter. This energy is a balance between a fidelity term (the approximation error

in L2 norm) and a regularity term (the total length of the boundaries). The result v,

called a segmentation of u, depends on the scale parameter λ . As shown in Figure

9.11, the Mumford-Shah model generally produces reasonable boundaries, except

in smooth zones where spurious boundaries often appear (see the front side of the

desk for example). This is easily explained: The a priori model is that the image

is piecewise flat with boundaries as short as possible. The image does not fit ex-

actly the model. The desk in the image is smooth but not flat. The detected wrong

boundary decreases the functional by dividing the desk into flat regions. The same

phenomenon occurs in the sky of Figure 9.12.

The Canny-Deriche filter [Can86, Der87] is an optimization of Canny’s well-

known edge detector, roughly consisting in the detection of maxima of the gradient

norm in the direction of the gradient. Notice that in contrast with the Mumford-

Shah model and with the model of meaningful edges or boundaries, it does not

produce a set of boundaries (i.e., one-dimensional structures) but a discrete set of

points that still are to be connected. This edge set depends on two parameters: the

image previous blurring parameter and a threshold on the norm of the gradient that

selects candidates for edge points. As we can see in Figure 9.11, the result is very

dependent on this threshold. Notice that many Canny edges are found in flat regions

of the image where no perceptual boundary is present. If the threshold is increased

as shown on the right, the detected edges look perceptually more correct but are

broken.

• Cheetah image (Figure 9.12)

This experiment compares the meaningful edge detector with the Mumford-Shah

model. The Mumford-Shah model follows an economy principle and detects less

boundaries. Yet it finds spurious boundaries in the sky due to the inadequacy of the

piecewise constant model. In the experiment, we display all meaningful boundaries,

not just the optimal ones.

• DNA image (Figures 9.13 and 9.14)

This experiment illustrates the concept of optimal boundaries. Each spot in the

image produces several parallel meaningful boundaries due to its important blur.
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Fig. 9.11 First row: left: original image; right: boundaries obtained with the Mumford-Shah model

(1000 regions). Second row: edges obtained with Canny-Deriche edge detector for two different

threshold values (2 and 15). Third row: meaningful edges (left) and meaningful boundaries (right)

obtained with ε = 1. Fourth row: reconstruction with the Mumford-Shah model (left) and with the

set of meaningful boundaries (right). This last reconstruction is easily performed by the following

algorithm: Attribute to each pixel x the level of the smallest (for inclusion) meaningful level line

surrounding x (see [Mon00]).



166 9 Contrasted Boundaries

Fig. 9.12 First row: original image (left) and boundaries obtained with the Mumford-Shah model

with 1000 regions (right). Second row: maximal meaningful edges (left) and meaningful bound-

aries (right) obtained with ε = 1.

With the definition of maximality, exactly one optimal boundary for each spot is se-

lected. In the second experiment, we compute meaningful boundaries on a subpart

of the image containing some digits.

• Segments image (Figure 9.15)

As in the DNA experiment, the optimal boundaries correspond to exactly one

boundary per object (here, hand-drawn segments). In particular, the number of ob-

tained boundaries (21) counts exactly the number of segments.
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Fig. 9.13 From top to bottom: 1. original image; 2. all meaningful boundaries; 3. optimal mean-

ingful boundaries. The oval blurry spots are surrounded by many meaningful boundaries but by

exactly one optimal boundary.
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Fig. 9.14 Subimage of the original DNA image. This small image has size 133 × 114 pixels.

We display all meaningful boundaries (ε = 1), optimal meaningful boundaries, and optimal

ε-meaningful boundaries for ε = 10−25. This experiment shows that the boundaries of the dig-

its have very low NFA, and that with a small ε , exactly one curve is obtained for each digit. The

curves shown in these figures are level lines of the bilinear interpolation of the image (see the

exercise at the end of the chapter).

• Noise image (Figure 9.16)

This image is a Gaussian noise simulation with standard deviation 40. For ε = 1 and

ε = 10, no boundaries are detected. For larger values of ε , some boundaries begin

to be detected: 7 for ε = 100 (see Figure 9.16), 148 for ε = 1000, and 3440 for

ε = 10,000. The number of ε-meaningful boundaries is on the average less than ε .

9.5 Twelve Objections and Questions

Let us address objections and comments made by the anonymous referees of the

original paper [DMM01b] and also by José-Luis Lisani, Yves Meyer and Alain

Trouvé. In all that follows, we call respectively “boundary detection algorithm” and

“edge detection algorithm” the algorithms proposed in this chapter. The other edge

or boundary detection algorithms put into the discussion will be called by their

author’s names (Mumford-Shah, Canny).
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Fig. 9.15 Top-left: original image. Top-right: all the level lines with gray-level step equal to 5.

Bottom-left: all meaningful boundaries. Due to the image blur several ones surround each pencil

stroke. Bottom-right: optimal meaningful boundaries. Only one is left for each pencil stroke.

Objection 1. The blue sky effect

If a significant part of a natural image happens to be very flat because of some blue

sky effect, then most level lines of the image will be detected as meaningful. If, for

example, one-tenth of the image is a black flat region, then the gradient histogram

has a huge peak near zero. Thus, all gradients slightly above this peak will have a

probability 9
10

, a number significantly smaller than 1. As a consequence, all level

lines long enough (with length larger than, say, 30 pixels) will be meaningful. In

practice, this means that the image will be plagued with detected level lines with a

small contrast.
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Fig. 9.16 Left: an image of a Gaussian noise with standard deviation 40. Right: the meaningful

boundaries found for ε = 100 (no boundaries are found for ε = 1). This agrees with the Helhmholtz

principle that, on average, no detection should occur in noise.

Answer 1. If the image has a wide blue sky, then most level lines of the ground

are meaningful because any strong deviation from zero becomes meaningful. This

effect can be checked in Figure 9.12: The structured and contrasted ground has many

detected boundaries (and the sky has none). This outcome can be interpreted in the

following way. When a flat region is present in the image, it gives, via the gradient

histogram, an indirect noise estimate. Every gradient that is above the noise gradient

of the flat region is meaningful.

Question 2. Why not use global known statistics of images?

Instead of using the histogram of the norm of the gradient in the image, one could

use some known global statistics about the gradient in natural images (as it is for

instance done in the paper of Simoncelli and Adelson [SA96] for noise removal or

in the paper of Heiler and Schnörr [HS05] for image segmentation).

Answer 2. In the definition of meaningful boundaries, we can, of course, replace

the term H(µ) by an estimate (from a large database of natural images) of the prob-

ability to have a gradient norm larger than µ . Then the detection thresholds will

no longer depend on each image. However, this is rather a drawback: If the image

is almost flat everywhere and contains just an object with very low contrast, then

nothing will be meaningful according to global statistics, whereas the boundary of

the object will become meaningful according to the statistics of the image. This cor-

responds also to our perception: When looking at an image, we adapt our detection

thresholds to this image.

Objection 3. Dependence on windows

The detection of a given edge depends on the window containing the edge on which

the algorithm is applied?

Answer 3. Yes, the algorithm is global and is affected by reframing the image. For

example more edges will be detected in a low-contrasted window (see Figure 9.17).



9.5 Twelve Objections and Questions 171

Fig. 9.17 Edge detection is context dependent. First row left: original image (Chinese landscape);

right: maximal meaningful edges for ε = 1. Second row: the same algorithm, but run on a sub-

window (drawn on the left image); right: the result in black, with in light gray the edges that were

detected in the full image.

Question 4. How do you compute edges with multiple windows?

With such a theory, one can apply the detection algorithm on many overlapping win-

dows of the image and in that way let edges multiply!

Answer 4. If a window is too small, no edge at all will be detected in it. If the

algorithm is applied to say 100 windows, the number of tests is increased. Thus, the

value of ε in each window must decrease accordingly. One can take on each one

ε = 1/100. Then the global number of false alarms over all windows remains equal

to 1. Thus, a multiwindows version of the algorithm is feasible and recommended.

Indeed, psychophysics and neurophysiology both indicate a spatially local treatment

of the retina information.

Objection 5. Synthetic images where everything is meaningful

If an image has no noise at all (for instance, a synthetic image), all boundaries con-

tain relevant information. Won’t the algorithm detect them all?

Answer 5. Right. If a synthetic binary image is made, for example, of a black square

with white background, then all gradients are zero except on the square’s boundary.

The gradient histogram has a single value 255. (Remember that zero values are ex-

cluded from the gradient histogram.) Thus, H(255) = 1, which means that no line

is meaningful. Thus the square’s boundary will not be detected, which is a bit para-

doxical! The addition of a tiny noise or of a slight blur would, of course, allow the

detection of this square’s boundary. This means that synthetic piecewise constant

images fall out of the range of the detection algorithm.
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Question 6. To which class of images is the algorithm adapted?

Is there a class of images for which the Mumford-Shah functional is better adapted

and another class of images where the boundary detection algorithm is more

adapted?

Answer 6. The comparison of both algorithms may be misleading since the methods

have different scopes. The Mumford-Shah algorithm aims at a global and minimal

explanation of the image in terms of boundaries and regions. As we pointed out in

the discussion of the experiments, this global model is robust but rough and more

sophisticated models would give a better explanation provided the additional para-

meters can be estimated.

The edge detection algorithm does not aim at such a global explanation. It is a

partial detection algorithm, and not a global explanation algorithm. In particular,

detected edges can be doubled or tripled or more since many level lines follow a

given edge. In contrast, the Mumford-Shah functional and the Canny detector at-

tempt at selecting the best representative of each edge. Conversely, the edge detec-

tion algorithm provides a useful tool for checking whether to accept or reject edges

suggested by any other algorithm.

Objection 7. The algorithm depends on the quantization step

The algorithm depends on the quantization step q. When q tends to zero, there will

be more and more level lines. Thus, Nll and Nll p (numbers of level lines and pieces

of level lines respectively) will blow up. Thus, there are fewer and fewer detections

when q increases and eventually none!

Answer 7. Right again. The numbers Nll and Nll p stand for the number of trial tests

on the image. When the number of tests tends to infinity, the number of false alarms

of Definition 18 also tends to infinity. As we mentioned, q must be small enough to

be sure that all edges contain at least one level line. Since the quantization noise is

1 and the standard deviation of noise never goes below 1 or 2, it is not possible to

find any edge with contrast smaller than 2. Thus, q = 1 is enough if we want to miss

no edge.

Question 8. Accuracy of the edges depends on the quantization step?

If q is not very small, accuracy in edge position is lost. Indeed, the quantized levels

do not coincide with the optimal level of the edge. A Canny edge detector is more

accurate.

Answer 8. Right again. The Canny edge detector performs two tasks in one: de-

tecting and optimizing the edge’s position with subpixel accuracy, depending on the

interpolation method. The spatial accuracy of the proposed edge detector is roughly

q/min |Du|, where the minimum is computed on the detected edge. If, as indicated,

q = 1 the accuracy is proportional to the inverse of the gradient, as in most edge de-

tectors. This fact will be illustrated in the next chapter, where the boundary detector

is compared to the active contour method.
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Objection 9. Edges are not level lines

The claim is that every edge coincides with some level line. This is simply not true!

Answer 9. If an edge has contrast kq, where q is the quantization step (usually

equal to 1), then k level lines coincide with the edge locally. One can certainly con-

struct long edges whose contrast is everywhere k but whose average level varies in

such a way that no level line fully coincides with the edge. However, long pieces of

level lines coincide partially with it. Thus, detection of this edge by the detection

algorithm is still possible, but it will be detected as a union of several more local

edges.

Objection 10. Values of the gradient on the level lines are not independent

The chosen test set is the set of all level lines. The claim is that the gradient ampli-

tudes at two different points of every edge are independent. In most images this is

not true.

Answer 10. The independence assumption is made to apply the Helmholtz prin-

ciple according to which every large deviation from randomness is perceptible. The

independence assumption is not intended to model the image. It is an a-contrario

assumption against which the gestalts are detected.

Objection 11. A minimal description length model would do the job as well

A Minimum Description Length model (MDL) can contain very wide classes of

models for which parameters will be estimated by the MDL principle of shortest

description in a fixed language. This fixed language can be the language of gestalt

theory, which explains the image in terms of lines, curves, edges, regions, and so

forth. Then the existence and nonexistence of a given gestalt would derive from the

MDL description: A “detectable” edge would be an edge taken up by the minimal

description. (See the work of Leclerc [Lec89] for such a MDL segmentation algo-

rithm.)

Answer 11. A MDL model is all-encompassing in nature. Until it has been con-

structed, we cannot make any comparison. In a MDL model, the thresholds on edges

would depend on all other gestalts. Thus, we would be in the same situation as with

the Mumford-Shah model: We have seen that a slight error on the region model

leads to false detections for edges. The proposed method is less ambitious. It is a

partial gestalt detection algorithm, which does not require the establishment of a

previous global model.

Objection 12. How many parameters in the method?

We have seen in the course of the discussion no less than three parameters coming

out: the choice of the windows, the choice of q, and, finally, the choice of ε .

Answer 12. Always fix ε = 1. Indeed, the dependence of the detection threshold

kmin on ε is a log-dependence. The q dependence of kmin also is a log-dependence
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since the number of level lines varies roughly linearly as a function of q and the

same argument applies to the number of windows.

9.6 Bibliographic Notes

In this chapter we have followed [dFM99] and [FMM98] for the gestalt analysis

and [CCM96] where a level-line-based T-junction and X-junction detector is ana-

lyzed. The boundary detection algorithm based on the Helmholtz principle is due

to [DMM01b]. Extension of the algorithm and further mathematical analysis can be

found in an extensive paper by Cao, Musé and Sur [CMS05]. These authors define

Helmholtz boundary detectors based on both contrast and smoothness. One of their

striking experimental results is that detectors based on level line smoothness give

results equivalent to contrast detectors.

In [AADLTT06], Abraham, Abraham, Desolneux and Li-Thiao-Té have defined

significant edges in a different framework, but the idea is the same as meaningful

edges. They define an edge point as a zero-crossing of the Laplacian, and then sig-

nificant edge points are the ones that have a gradient above a threshold computed

from the noise model. Such significant edge points have a probability less than ε to

appear in pure noise images.

All of this chapter has been restricted to gray-level images. As already men-

tioned, the geometric perception is essentially based on brightness contrast. A dis-

cussion of the (weak) role of color in geometry perception can be found in [CCM02].

The fast computation of the topographic map of a digital image and its easy

manipulation raise topological and algorithmic concerns that are elegantly solved in

[Mon00], [MG00], and [LMR01].

One of the main properties of the topographic map of an image is its invariance by

any change in contrast of the image: The set of all level sets {χλ}λ∈R of an image u

remain the same if the image is changed into g(u), where g is an increasing function.

The use of level sets for image analysis is one of the main topics of the Mathematical

Morphology school (see e.g., [Ser82] , [Ser88] and references therein).

The search for image boundaries (i.e., closed edges) started very early in Com-

puter Vision [Zuc76, Pav86]. We have compared meaningful edges and boundaries

with the results of the Canny edge detector [Can86] and with the results of the

Mumford-Shah functional for segmentation [MS85]. In the next chapter, we will

discuss the link between meaningful boundaries and the “snake” or “active contour”

theory and give many more references.

Most boundary detection algorithms like the snake method [KWT87] intro-

duce regularity parameters [MS94]. The requirement that boundaries must be long

enough cannot be skipped. The risk is to detect boundaries at all high gradient points

as happens with the classical Canny edge detector [Can86]. It is well acknowledged

that edges, whatever their definition might be, are as orthogonal as possible to the

gradient [Can86, Dav75, DH73, Mar72, RT71]. This led us to define level lines are

the effective candidates for edges.
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9.7 Exercise

A digital image u is defined as a finite array of gray-level values u(i, j), for 1 ≤ i,
j ≤ N. The values u(i, j) are generally quantized on integer values, from 0 (black) to

255 (white). The typical values for the size N of the image are 256, 512, and 1024.

According to the way digital images are generated, the values u(i, j) must be thought

of as the samples of an underlying smooth image u(x,y), (x,y) ∈ [1,N]2. One can

use different interpolation methods to compute u(x,y). The best one is the interpo-

lation given by Shannon’s theorem, which computes u as the unique trigonometric

polynomial function of degree N with the given values u(i, j) at the points (i, j).
This method is, however, highly nonlocal and does not provide simple computation

and description of the level lines of u. Thus, we will use a much simpler method,

namely the bilinear interpolation, which computes u as a continuous function.

9.7.1 The Bilinear Interpolation of an Image

1) Consider four neighboring pixels with respective centers (i, j), (i + 1, j), (i + 1,
j + 1), and (i, j + 1) together with their respective integer gray-level value denoted

by a, b, c and d. Let Ci, j denote the square whose vertices are the centers of the four

pixels. Its center is the point (i+ 1
2
, j + 1

2
). It has side length 1 and is called a “dual

pixel.”

Show that there exists a unique 4-tuple (α,β ,γ,δ ) such that the function v de-

fined by v(x,y) = αxy + βx + γy + δ has the same value as u at the four vertices

of Ci, j.

Show that the function v thus piecewise defined is continuous on [1,N]2.

2) Let λ be a real number between 0 and 255 and let us consider the set

Lλ = {(x,y), v(x,y) = λ}.

Show that for each dual pixel Ci, j, the set Lλ ∩Ci, j, when it is nonempty, is one of

following:

1. the dual pixel Ci, j;

2. a piece of hyperbola connecting one side of the square to another side;

3. two disjoint pieces of hyperbola both connecting one side of the square to another

side;

4. a line segment connecting one side of the square to another side (give the formula

for v in this case);

5. two line segments that are perpendicular and parallel to the sides of the square

(give the formula for v in this case).

Notice that the first case only occurs when the four values of u at the vertices of the

square are equal. The fifth case only occurs when Dv = 0 at a point inside the square

and when the meeting point of the two line segments is a saddle point for v.



176 9 Contrasted Boundaries

3) We assume here that λ is not an integer. Using the previous question, show that

the set Lλ is the union of a set of piecewise smooth curves that can meet only

at a saddle point. Moreover, show that these curves are either closed or open and

connecting two image boundary points.

4) The curves that are open are completed into closed curves using the following

rule: The two end points belonging to the boundary of the image are connected by

the shortest of the two pieces of boundary of the image they define. If these two

pieces have the same length, choose the one whose position (center of gravity) is

topmost and if still equal, rightmost. The obtained closed curves Lλ , for λ �∈ N, are

called the “level lines” of the image, and their set is called the topographic map of

the image.

Show that two different level lines cannot meet. A partial order on the set of

level lines is defined by the relation C ≤ C′ if C′ surrounds C (which means that

the bounded connected component of R2 \C′ contains C). Show that the set of level

lines has a tree structure with respect to this partial order.

5) Draw the topographic map of the following image (N = 4):

u =

⎛

⎜
⎜
⎝

3 3 3 5

3 4 4 3

2 5 0 1

1 0 2 3

⎞

⎟
⎟
⎠

.

6) Compute the gradient Dv(i + 1
2
, j + 1

2
) at the center of a dual pixel as a function

of the values at the four vertices of the square Ci, j (see also Chapter 5).



Chapter 10

Variational or Meaningful Boundaries?

10.1 Introduction

This chapter contains a brief review of the theory of edge detection and its nonlocal

version – the “snake” or “active contour” theory. The snakes are curves drawn in

the image and minimizing a contrast and smoothness energy. Our discussion con-

cludes that a very recent class of snake models proposed by Kimmel and Bruckstein

[KB01] [KB02] is optimal. This snake energy is

F(γ) =
1

L(γ)

∫ L(γ)

0
g

(
∂u

∂n
(γ(s))

)

ds, (10.1)

where γ(s) is a curve drawn in the image parameterized by length. L(γ) is the length

of the curve,
∂u

∂n
(γ(s)) = Du(γ(s)) · γ ′(s)⊥

is the derivative of u at γ(s) in the direction normal to the curve, and g > 0 is an even

contrast function. What can be the best form for the contrast function g? We will

prove that a very particular form for g is optimal. Experiments will also demonstrate

that the resulting optimal snakes simply coincide with the well-contrasted level lines

of the image. Indeed, it will be proven that all meaningful level lines of the image

hardly move by the snake optimization process. Conversely, evolving curves by their

energy brings them back to well-contrasted level lines. Thus, the analysis cross-

validates both boundary detection models.

10.2 The “Snakes” Models

The question of how to compute salient image boundaries or edges is unfortunately

not outdated. In the past 30 years, many methods have been proposed and none has

become a standard. All agree that an edge can be defined as a curve across which the

177
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image is contrasted. A first local view of the question would be that edges are made

of points where the image gradient is high and maximal in some sense. Hildreth

and Marr [MH80] proposed to define the boundaries in a gray-level image u(x,y) as

curves across which the Laplacian

∆u(x,y) = uxx(x,y)+uyy(x,y)

changes sign. This definition was based on the remark that for a 1-D function u(x),
points with the highest gradient satisfy u′′(x) = 0. In the same direction, Haralick

[Har84] defined “edge points” as the points where the magnitude of the gradient

|Du| attains a maximal value along gradient lines. An easy computation shows that

such points (x,y) satisfy D2u(Du,Du)(x,y) = 0. We use the notations

D2u =

(
uxx uxy

uyx uyy

)

, Du =

(
ux

uy

)

,

and if A =

(
a b

b c

)

and ξ =

(
v

w

)

, we set A(ξ ,ξ ) = ξ T Aξ = av2 +2bvw+ cw2.

In the following, we will talk about Hildreth-Marr’s and Haralick’s edge points.

The Haralick’s edge points computation was proved by Canny [Can86] to be optimal

for “step edges” under the Gaussian noise assumption. In other words, it is optimal

when the image is a Heavyside function plus a Gaussian white noise.

Edge points have to be connected to form curves. This is why edge detection

methods have evolved towards boundary detection methods, i.e. methods which

directly deliver curves in the image along which the gradient is, in some sense,

highest. There is agreement about two criteria. An edge is a smooth curve with high

image contrast. The smoothness requirement is relative though, since visual objects

can be ragged or have corners.

The smooth γ(s) we will consider are one-to-one maps from some real interval

[0,L(γ)] into the image plane. They are parameterized by length so that

|γ ′(s)| = 1

and L(γ) is the length of γ . Set v⊥ = (−y,x), a vector orthogonal to v = (x,y). The

unit tangent vector to the curve is γ ′(s) and

n(s) = γ ′(s)⊥,

a vector normal to the curve γ . We finally consider

γ ′′(s) = Curv(s), (10.2)

which is a vector normal to the curve whose magnitude is proportional to its cur-

vature. If Curv(s) is defined, the curve behaves locally as a circle with radius

1/|Curv(s)|. Let g : R+ → R+ be any even decreasing function. By the contrast

requirement, an “edge” is a curve γ(s) such that

∫

[0,L(γ)]
g(|Du(γ(s))|)ds
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is small. By the smoothness requirement,

∫

[0,L(γ)]
(1+ |Curv(s)|)ds

is also small. Both requirements can be combined in a single energy functional. In

the Kass-Witkin-Terzopoulos original model [KWT87], snakes are therefore defined

as local minima of the sum of both terms,

∫ L(γ)

0
g(|Du(γ(s))|)ds+C

∫ L(γ)

0
(a+ |Curv(s)|)ds. (10.3)

A typical form for g is g(s) = 1/(1+ s2). This model has been generally abandoned

for the derived “geodesic snakes” due to Caselles, Kimmel, and Sapiro [CKS97].

This model proposed a geometric form of the snakes functional, where the mini-

mum of
∫ L(γ)

0
g(|Du(γ(s))|)ds (10.4)

is sought. Since g > 0, this functional looks for a compromise between length and

contrast. It yields a well-contrasted curve and it can be proven that minima have

bounded curvature. Notice, however, that the minimization process tends to decrease

the length and forces the snake to shrink, which is not exactly what is desired!

This drawback may explain why Fua and Leclerc [FL90] proposed to minimize

the average functional

1

L(γ)

∫ L(γ)

0
g(|Du(γ(s))|)ds. (10.5)

Here, again, g is decreasing. Minimizing this functional amounts to finding a curve

in the image with maximal average contrast. One of the main advances in the last

two models is the reduction of the number of model parameters to a single one: the

contrast function g. The Fua-Leclerc model focuses on contrast only and is therefore

apparently no more a hybrid combination of contrast and smoothness requirements.

Both models are in one aspect less accurate than edge detectors defined at the

beginning of the seventies. The Montanari [Mon71] and Martelli [Mar72] original

boundary detection models used as contrast indicator, instead of |Du(γ(s))|, a dis-

crete version of

un(s) =
∂u

∂n
(γ(s)) = Du(γ(s)) ·n(s), (10.6)

that is the contrast of the image across the curve. At a point γ(s), un(s) is larger

if the magnitude of the gradient |Du(γ(s))| is larger but also if the gradient is nor-

mal to the curve. The above Kass-Witkin-Terzopoulos, the Fua-Leclerc, and the

Caselles-Kimmel-Sapiro contrast measures only take into account the magnitude of

the gradient.

As a general remark on all variational snakes notice that since g > 0, the best

snake energetic-wise is reduced to a single point at which the maximum magnitude

of the image gradient is attained. Thus, in all snake models, local minima of the

snake energy should be sought. The global ones are irrelevant. Such local minima
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usually depend on the initial position of the snake and the form of the contrast

function g.

In their above-mentioned papers, Kimmel and Bruckstein made several impor-

tant advances on the formulation of edge detectors and the snakes method. We can

summarize the Kimmel-Bruckstein results as follows:

– Maximizers of
∫ L(γ)

0 un(s)ds satisfy ∆u(γ(s)) = 0, provided un does not change

sign along the curve. This yields a variational interpretation of Hildreth-Marr

edges linking them to the snakes method.

– Active contours can more generally be performed by maximizing a nonlinear

function of contrast, E(γ) =
∫ L(γ)

0 g(un(s))ds, where g is even and increas-

ing – a good example being g(t) = |t|. This is basically the energy (10.4) but

where the isotropic contrast indicator |Du(γ(s))| is replaced by the better term

un(s) = Du(γ(s)) ·n(s) used in Montanari-Martelli method. The case g(t) = t2

was actually considered earlier, in the founding Mumford-Shah paper [MS89].

They discovered that this functional has no minimizers because of the folding

problem, which will be addressed later.

– Kimmel and Bruckstein considered maximizing the average contrast, namely

F(γ) =
1

L(γ)

∫ L(γ)

0
g(un(s))ds, (10.7)

where g is some increasing function. This is an improved version of the Fua-

Leclerc functional.

– The evolution equation toward an optimum boundary can be written in much the

same way as in the geodesic snake method.

All this looks good and well: The energy functional (10.7) is simple, it does not

enforce a priori smoothness constraints, and it measures the real contrast. In the next

section the main point left out, namely the shape of g, will be examined. The form

of g will be fixed by introducing a robustness requirement to contrast disparities

along the contour. Continuing, we will prove that this definition of snakes and the

meaningful boundaries defined in Chapter 9 are essentially equivalent.

10.3 Choice of the Contrast Function g

Following Fua and Leclerc [FL90] and Kimmel and Bruckstein [KB01], we now

consider the definition of a boundary as a closed curve along which the average

contrast is maximal. Thus, we consider the energy given by (10.7):

F(γ) =
1

L(γ)

∫ L(γ)

0
g(un)ds =

E(γ)

L(γ)
,

where L(γ) is the length of γ . The local maximization of (10.7) can be achieved by a

numerical scheme detailed in Exercise 10.6.1. An example of an optimal snake with

g(t) = |t| is shown in Figure 10.1.
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Fig. 10.1 An initial contour drawn by hand on the lichen image (curve top-right, in white on

left image) and its final state (curve bottom-right, in black on the left image) computed with the

average contrast snake model (10.7) for g(t) = |t|. The evolution allows an important improvement

in the localization of the boundary of the object, as illustrated by the energy gain (360%, from 8.8 to

40.8). This shows the usefulness of the snake model as an interactive tool for contour segmentation.

We will show in this section that the shape of the contrast function g is extremely

relevant. The energy F(γ) to maximize is the average contrast g(un) on the curve.

F(γ) increases when the curve is lengthened by adding a high-contrasted part or

when it is shortened by removing a low-contrasted part. This remark raises a concern

when the object boundary to be detected in the image has strong contrast variations.

Indeed, if g has linear or superlinear growth, then the snake will tend to abandon the

low-contrasted parts of the contour. Let us illustrate this fact by a little computation,

associated to the crucial numerical experiment of Figure 10.2.

Consider a white square with side length 1 superimposed on a simple background

image whose intensity is a linear function of x, varying from black to light gray. If

a and b are the values of un on the left and right sides of the square respectively (we

assume that b < a), and if γ is the boundary of the square, we have

F(γ) =
E

L
, with L = 4 and E = g(a)+g(b)+2

∫ 1

0
g
(
a+(b−a)t

)
dt.

Now we would like to know if γ is an admissible final state of the snake model (i.e.,

a local maximum of F) or not. If we shrink the curve γ a little by “cutting” by ε > 0

the two right corners at 45 degrees, we obtain a curve γε whose energy is

Fε(γ) =
Eε

Lε
, with Lε = L−4ε +2ε

√
2

and Eε = E −2

∫ 1

1−ε
g
(
a+(b−a)t

)
dt −2εg(b) = E −4εg(b)+o(ε).

Since ε may be arbitrarily small, γ cannot be optimal if

L−Lε

L
>

E −Eε

E
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Fig. 10.2 Influence of the function g for a synthetic image. The snake model is applied to a syn-

thetic image made of a bright square on a ramp background. Top-left: original contour. It can be

detected as the unique optimal meaningful boundary of this image; see Chapter 9. Top-right: for

g(t) = |t|, the snake collapses into a “flat curve” enclosing the left side of the square. Some inter-

mediate states are shown to illustrate the snake evolution. Bottom-left: for g(t) = |t|0.85, the snake

converges to an intermediate state. Bottom-right: for g(t) = |t|0.5, the snake hardly moves, which

means that the initial contour is nearly optimal despite the large difference of contrast between the

left side and the right side of the square. Contours with large variations of contrast are more likely

to be optimal curves for low powers.

for ε > 0 small enough. Using the previous estimates of Eε and Lε and the fact

that E > 3g(b)+g(a), we can see that this condition is satisfied for ε small enough

(ε > 0) as soon as

4−2
√

2

4
>

4g(b)

3g(b)+g(a)
,

which can be rewritten

g(a)

g(b)
>

2+3
√

2

2−
√

2
= 10.65...

Hence, the ratio g(a)/g(b) must be kept (at least) below that threshold and as small

as possible in general in order to avoid the shrinkage of low-contrasted boundaries.

If we choose a power function for g (i.e., g(t) = |t|α ), this example is in favor of a

small value of α , as illustrated in Figure 10.2.

More generally, the above argument shows that the contrast function g must

increase as slowly as possible – in other words, be almost constant. On the other

hand, all digital images are quantized and therefore have a minimal level of noise.

This makes all gradient magnitudes below some threshold θ unreliable. We are led

to the following requirement.
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Flatness contrast requirement for snakes. The contrast function for snake energy

must satisfy, for some θ , the following:

– If t ≤ θ , g′(t) is high.

– If t ≥ θ , g(t) is flat and g(t) → g(∞), with g(∞) < ∞.

Notice that the theory of Chapter 9 allows one to compute a meaningfulness

contrast threshold θ as a function of the length of the curve. Let us focus on the

special family of power functions g(t) = |t|α . Indeed, the power form yields a zoom

invariant boundary detection method. When α is small enough these functions meet

the above requirement and we can predict the following behaviors.

Experimental predictions. Consider the average contrast energy

F(γ) =
1

L(γ)

∫ L(γ)

0
g(un(γ(s))ds, with g(t) = |t|α . (10.8)

– When α is large, all snakes shrink from the parts of the boundaries with weaker

gradient and replace them by straight parts.

– The smaller α is the better: Snakes are more stable and faithful to perceptual

boundaries when α → 0.

These predictions are confirmed by several numerical experiments. The first

example is a synthetic image representing a white comb on a ramp background.

In Figures 10.3 and 10.4 the evolution of the snake and its final state is represented

for various values of α . As predicted, some teeth of the comb are not contrasted

enough to be kept for α = 1. A smaller value α = 0.4 is required.

The same predictions are also confirmed when the snake model (10.8) is applied

to a real photograph in Figure 10.5. The low-contrasted parts of the contour are kept

only when the power α is small. They are replaced by straight lines when α is large.

Fig. 10.3 Evolution of the snake for g(t) = |t|. The snake model is applied to a synthetic image

of a bright comb on a ramp background. Top left: original contour (detected as the unique optimal

meaningful boundary of this image). This contour loses progressively the comb’s boundary on the

low-contrast part. It stabilizes (bottom right) but misses three comb teeth.
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Fig. 10.4 Influence of the function g for a synthetic image. The snake model is applied to the

same synthetic image of a bright comb on a ramp background. Left: g(t) = |t|0.4. Right: g(t) =
|t|0.55. Compare with the result when g(t) = |t| displayed on the bottom right of Figure 10.3. This

experiment confirms the experimental prediction that a low power for g yields a better boundary

detector.

Fig. 10.5 Contour optimization in function of g for the bird image. An initial contour (top, left) was

first drawn by hand. It was optimized by the snake model for different functions g: g(t) = |t|0.5 (top,

right), g(t) = |t| (bottom, left), and g(t) = |t|3 (bottom, right). As the power increases, the snake

becomes less sensitive to low contrast edges and tends to smooth them or even to create straight

shortcuts.

The trend to favor high-contrast parts in the snake model, which becomes very

strong for large powers, has some consequences on the numerical simulations and

yield another argument in favor of a low power. If the contrast is not constant along

the curve, one can always increase the average contrast (10.7) by lengthening the

curve in the part of the curve that has the highest contrast.

When α is large enough, a curve maximizing the functional F(γ) can “duplicate”

itself infinitely many times in the highest-contrast part by creating cusps. This for-

mation of cusps was proven by Mumford and Shah [MS89] in the case g(t) = t2. We

refer to Exercise 10.6.1 for details about the numerical scheme used for the experi-

ments. In Figure 10.6 a “thick part” appears in the curve for α = 3 and corresponds

to such self-folding.
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Fig. 10.6 Zoom on the curve duplication that appears for g(t) = |t|3 in the highest-contrast part

(rectangle drawn on the bottom-right image of Figure 10.5). The discretization of the snake (black

curve) is shown by white dots.

Fig. 10.7 Influence of the function g in the self-folding phenomenon. The initial boundary (left) is

an optimal meaningful boundary of the lichen image. As in the square image (see Figure 10.2), the

contrast along this curve has strong variations. The snake collapses into a self-folded “flat curve”

with two cusps for g(t) = |t| (middle) but remains a Jordan curve for g(t) =
√

|t| (right).

The numerical experiment of Figure 10.7 is in some way the “real case” analog

of Figure 10.2. In this experiment the initial region enclosed by the snake collapses

into a zero-area region enclosed by a “flat curve”.

10.4 Snakes Versus Meaningful Boundaries

In this section we would like to compare the snake model and the meaningful bound-

aries model (defined in Chapter 9, abbreviated MB). The optimal meaningful bound-

aries of the lichen image (resp. of the bird image) are shown in Figure 10.8 (resp.

Figure 10.9).

The strength of snakes methods is that they combine gestalt principles of good

continuation and of high contrast. Snakes models can find curves that are contrasted

and interrupted, whereas the MB model cannot do the task of contour completion.

The MB model will fail in cases where a point with a very low gradient occurs

on the contour. However, although the MB model is fully automatic, an automatic
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Fig. 10.8 The optimal meaningful boundaries of the lichen image (superimposed in light gray; see

Figure 10.1).

Fig. 10.9 The optimal meaningful boundaries of the bird image (superimposed in light gray; see

Figure 10.5).

parameterless algorithm is out of the scope of the snake method. An important

user interaction is needed to ensure a good compromise between false detections

and missed contours. The parameters to set are the initial contour and the para-

meters of the numerical scheme, including the gradient step and an initial image

smoothing parameter (see Figure 10.10). Now, some recent methods do not have
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Fig. 10.10 Sensitivity of the snake model to the time step used for the gradient descent, see Exer-

cise 10.6.1. The snake model (g(t) = |t|) is applied for several values of the gradient step δ : δ = 1

(left), δ = 3 (Figure 10.3, bottom-right), δ = 10 (right). Due to the huge number of local maxima

of the snake functional, the final result is very sensitive to the numerical implementation of the

model, in particular to δ .

Fig. 10.11 Optimization of an optimal meaningful boundary by the snake model. The contour

optimization brought by the snake model (here g(t) = |t|) is generally low when the contour is

initialized as a contrasted level line (here an optimal meaningful boundary). In this experiment, the

total energy is only increased by 17%, from 34.6 to 40.6.

these drawbacks anymore: An initialization is not needed and some other techniques

of optimization such as graph cuts are used (see, for instance, [VC02], [BVZ01] or

[XBA03])

In terms of boundary optimization (i.e., the refinement of a raw automatically

detected or interactively selected contour), the snake model does not bring substan-

tial improvements compared to the MB model. This fact was checked by apply-

ing the snake model to the contours detected by the MB model (Figures 10.11 and

10.12). The very few changes brought in these experiments by the snake evolution

prove that the curves detected with the MB model are very close to local maxima of

the snake model.

In conclusion, the snake model should be only used when interactive contour

selection and optimization is required and when the sought object presents contrast

inversions. In all other cases and in particular for automatic boundary detection, the

meaningful boundaries method is more effective.
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Fig. 10.12 Optimization of all optimal meaningful boundaries (g(t) =
√

|t|). The “objects” in this

image are well detected with the optimal meaningful boundaries (in white). The optimization of

these contours brought by the snake model (in black) is quite low, as shown by the little gain

obtained for the total energy (sum of the energy of each curve): 7%, from 35.9 to 38.5.

10.5 Bibliographic Notes

All of the details concerning the formal computations needed for deriving the

main models, their evolution equation, and steady-state equation can be found in

[DMM03d]. For the experiments, we used a simple direct gradient descent for the

maximization of the average contrast along the curve (energy given by Equation

(10.7)). It does not actually use the Osher and Sethian “level set method” [OS88].

Indeed, the big advantage of these methods is to deal with topology changes of the

snake during the minimization process. If the snakes can be replaced in most prac-

tical cases by level lines, the topological changes are simply handled by using their

nested inclusion tree. More details about the “level set methodsn” in general with

applications to imaging, vision, and graphics can be found in [OP03].

10.6 Exercise

10.6.1 Numerical Scheme

This exercise describes in detail a numerical scheme implementing the maximiza-

tion of (10.7). For a non-Euclidean parameterization γ(p) : [a,b] → R2, the energy

we want to maximize writes

F(γ) =

∫ b
a g

(

Du⊥. γ
′
(p)

|γ ′
(p)|

)

|γ ′
(p)|d p

∫ b
a |γ ′

(p)|d p
. (10.9)
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1) Explain why it is better, rather than writing the Euler equation for (10.9) and

then discretizing it, to discretize the energy and compute its exact derivative with

respect to the discrete curve.

2) Let us suppose that the snake is represented by a polygonal curve M1, . . . , Mn

(either closed or with fixed endpoints). Show that a discretized version of the

energy can be written F = E/L, where

L = ∑
i

|∆i| with ∆i = Mi+1 −Mi

and

E = ∑
i

g(ti)|∆i|,

with

ti = wi ·
∆i

|∆i|
, wi = Du⊥(Ωi), and Ωi =

Mi +Mi+1

2
.

3) Show that the (exact) differentiation of F with respect to Mk is

∇Mk
F =

1

L

(

∇Mk
E −F∇Mk

L
)

,

with

∇Mk
L =

∆k−1

|∆k−1|
− ∆k

|∆k|
,

∇Mk
E = vk + vk−1 + zk−1 − zk,

where

zi = g′(ti)wi +[g(ti)− tig
′(ti)]

∆i

‖∆i‖
,

vi =
1

2
g′(ti)H(Ωi)∆i

and the matrix H is defined by

H =

(
−uxy uxx

−uyy uxy

)

.

4) Numerically, Du can be computed at integer points with a 3×3 finite differences

scheme, and D2u can be computed with the same scheme applied to the com-

puted components of Du. This introduces a slight smoothing of the derivatives,

which counterbalances slightly the strong locality of the snake model. These es-

timates at integer points are then extended to the whole plane using a bilinear

interpolation.

To compute the evolution of the snake, one uses a two-step iterative scheme:

1. The first step consists in a reparameterization of the snake according to arc

length. It can be justified in several ways: Aside from bringing stability to the

scheme, it guarantees a geometric evolution of the curve, it ensures an homo-

geneous estimate of the energy, and it prevents singularities from appearing too

easily. However, it does not prevent self-intersections of the curve.
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2. The second step is simply a gradient evolution with a fixed step. If (Mn
i )i repre-

sents the (polygonal) snake at iteration n and (M̃n
i )i its renormalized version after

step 1, set

Mn+1
i = M̃n

i +δ∇M̃n
i
F.

Implement this scheme.



Chapter 11

Clusters

11.1 Model

The perception of clusters or proximity gestalt is the first grouping process proposed

by Wertheimer in his founding 1923 paper [Wer23]. Assume a set of n dots is drawn

on a white sheet and those dots appear to be grouped in one or several clusters

separated by blank spaces. Such clusters will be defined as very low-probability

events in the a-contrario model that the dots have been uniformly and independently

distributed over the white sheet. The area of the sheet is normalized to 1. Let σ be

the area of a simply connected region A containing a k-dots cluster. The probability

of observing at least k points among the n inside A is given by B(n,k,σ). Of course,

A cannot be given a priori and the real event we are interested in is

There is a simply connected domain A, with area σ , containing at least k points.

The associated number of false alarms (NFA) is the expected number of such do-

mains A, NDB(n,k,σ), where D is the set of all possible domains A and ND is its

cardinality.

11.1.1 Low-Resolution Curves

Testing too many domains would yield a large number of false alarms for all clus-

ters and no detection. A set D of admissible domains as small as possible must

be defined. Yet it must cope with all possible shapes for clusters. To that aim, we

have to sample the set of simply connected domains by encoding at some precision

their boundaries as Jordan curves. A possibility is to define these boundaries as dis-

crete curves on a low-resolution grid of the image. The grid will be taken hexagonal

because the number of polygons with given length is smaller than with a rectangular

grid.

191
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Fig. 11.1 The hexagonal mesh and an example of a closed low-resolution curve.

Definition 23. Let us consider the hexagonal grid with step m ∈ R,

Hm =

{

m

(

k +
l

2
, l

√
3

2

)

, (k, l) ∈ Z2,k− l �∈ 3Z

}

.

A low-resolution curve of Hm is a polygonal curve with l vertices M1, M2 . . . ,Ml all

in Hm and such that

∀i ∈ {1, . . . , l −1}, |Mi+1 −Mi| = m. (11.1)

All of the vertices are different except M1 = Ml .

An example of a closed low-resolution curve is given by Figure 11.1. A closed

low-resolution curve is the boundary of a simply connected union of grid hexagons.

Since we have no a priori idea of the size of the clusters to be detected, we need to

consider several resolutions (mesh steps) m∈M, typically in geometric progression.

Thus, ND is the number of closed polygonal curves in all considered image grids.

Proposition 29 Let m be a positive real number and l a positive integer. The number

of closed low-resolution curves with l vertices lying on [0,1]2 ∩Hm is bounded from

above by 3 ·2l−3Nm, where the cardinality Nm of [0,1]2 ∩Hm satisfies

Nm ≃ 4

3
√

3m2
. (11.2)

Proof — The number of closed low-resolution curves lying on [0,1]2 ∩Hm, with l

vertices and starting at a given point of [0,1]2∩Hm, is bounded from above by 3 ·2l−3

(3 possibilities for the second vertex, then at most 2 possibilities for each new vertex,

the last one excepted). Hence, the number of closed low-resolution curves lying on

[0,1]2 ∩Hm is bounded from above by 3 · 2l−3 ·Nm. Since the area of an hexagon

of Hm is 3
√

3m2

2
, the number of such hexagons in [0,1]2 is asymptotically 2

3
√

3m2 .
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Each grid point being shared by three hexagons, the cardinality of [0,1]2 ∩Hm is

asymptotically twice (6/3) the number of hexagons. �

We will use the approximation given by (11.2) in the definition of false alarms.

The allowed resolutions m ∈ M will be taken in geometric progression with the ratio

slighty above 1 (e.g., 1.2), with min(M) larger than the pixel size and max(M) lower

than the image size, so that |M| is actually a small number.

11.1.2 Meaningful Clusters

Definition 24. We say that a group of k dots (among n) is an ε-meaningful cluster

if there exists a closed low-resolution curve P of Hm (m ∈ M) with at most l ≤ L

vertices, enclosing the k points in a domain with area σ , and such that

NFA(l,m,k,σ) :=
L|M| ·2l−1

m2
√

3
·B(n,k,σ) ≤ ε. (11.3)

By the same standard arguments as for alignments or vanishing points and histogram

modes, one obtains the following:

Proposition 30 Consider n independent uniformly distributed points in the image.

Then the expected number of ε-meaningful clusters is less than ε .

11.1.3 Meaningful Isolated Clusters

It can also happen that a cluster is not overcrowded but only fairly isolated from the

other dots. To take this event into account, let us introduce “thick” low-resolution

curves obtained by dilating the low-resolution curves. The r-dilated DrX of a plane

set X is defined by

DrX =
⋃

x∈X

B(x,r). (11.4)

The events we now look for include the fact that no point should fall inside the

dilated low-resolution curve defining the cluster domain A. In order to keep a finite

count of all dilated low-resolution curves, one must constrain the dilation parameter

r to belong to a fixed small set R = {r1, . . . ,r|R|} in geometric progression.

Definition 25. A group of k dots (among n) is called an ε-meaningful isolated clus-

ter if there exists r ∈ R and a closed low-resolution curve P ∈ Hm (m ∈ M) with at

most l ≤ L vertices, such that the r-dilated of P (r ∈ R) is an empty region with area

σ ′, enclosing the k points in a domain with area σ and such that

NFA(l,m,k,σ ,σ ′) :=
L|M| · |R| ·2l−1

m2
√

3
·

n

∑
i=k

(
n

i

)

σ i(1−σ −σ ′)n−i ≤ ε. (11.5)
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Proposition 31 For n independent and uniformly distributed points in the image,

the expected number of ε-meaningful isolated clusters is less than ε .

11.2 Finding the Clusters

11.2.1 Spanning Tree

According to Definition 24 (or 25), the detection of clusters could be realized by

considering all possible (dilated or not) closed low-resolution curves and by count-

ing the number of points falling inside. This is not feasible because the number of

such curves is huge. The number of possible clusters is huge too. Thus, only subsets

belonging to the spanning tree of S will be tested. We note respectively B̄(x,r) and

B(x,r) the closed and open disks with center x and radius r.

Definition 26. Let S ⊂ R2 be a finite set of points. For any A ⊂ S, let

δ (A) = 2×min{r ≥ 0 |
⋃

x∈A

B̄(x,r) is connected },

with δ (A) = 0 if |A| ≤ 1. The spanning tree of S is defined as the unique tree Span(S)
whose nodes are subsets of S and such that the following hold:

i) S is the root of Span(S).
ii) The children of a node N of Span(S) are (if any) the subsets of N that define the

connected components of
⋃

x∈N

B

(

x,
δ (N)

2

)

.

From this definition, it is clear that the leaves of Span(S) are the elements of S and

that δ (N) decreases as N goes from the root up to a leaf of the tree; so does N (with

respect to inclusion), which proves that Span(S) has at most 2|S|−1 nodes.

11.2.2 Construction of a Curve Enclosing a Given Cluster

Proposition 32 Let S be a finite subset of R2, S′ = S ∪ c[0,1]2 and N a node of

Span(S). We note ρ = dist(N,S′\N) and assume that ρ > δ (N). Then one connected

component of the boundary of Dρ/2N is a Jordan curve C ⊂ [0,1]2 with finite length

that encloses N and such that

(DrC)∩S′ = /0 (11.6)

for any r ≤ ρ/2. No such curve enclosing N only can be found for r > ρ/2.
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C

Nδ(   )
N

ρ/2
ρ/2

r

Fig. 11.2 A node N and its associated dilated enclosing curve (illustration of Proposition 32).

Proof — Let us consider the set

A = Dρ/2N =
⋃

x∈N

B(x,ρ/2).

The boundary of this set is made of a finite disjoint union of Jordan curves (each

having a finite length, because it is made of arcs of circles). Since ρ > δ (N), A

is connected (but not necessarily simply connected); hence, one of these curves

encloses all of the others (and, in particular, the whole set N). Let C be this curve

(see Figure 11.2). Since C ⊂ ∂A, any point x of C satisfies dist(x,N) ≥ ρ/2, so that

(Dρ/2C)∩N = /0. (11.7)

Moreover, as

Dρ/2C ⊂ Dρ/2A = Dρ N,

one has, by definition of ρ ,

Dρ/2C ∩ (S′ \N) ⊂ (Dρ N)∩ (S′ \N) = /0.

With (11.7), this proves (11.6) for any r ≤ ρ/2 (by monotonicity of the dilation

operator). Notice that C may enclose a subset of S strictly larger than N (see Figure

11.3). Finally, let C be a Jordan curve enclosing N and N only. Since there exists a

point x ∈ N and a point y ∈ S′ \N such that dist(x,y) = ρ (by definition of ρ), C has

to intersect the segment [x,y], so that for any r > ρ/2,

{x,y}∩DrC �= /0

and (11.6) cannot hold. �
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δ(   )

N

C

ρ/2

ρ
N

Fig. 11.3 C may enclose a subset of S strictly larger than N.

11.2.3 Maximal Clusters

As for the other gestalts, one can define maximal meaningful clusters by selecting

local minima of the NFA with respect to inclusion (see Chapter 6).

Definition 27. A node N of Span(S) is a maximal cluster if the following hold:

– For any child N′ of N, NFA(N′) > NFA(N).
– For any parent N′ of N, NFA(N′) ≥ NFA(N).

The same definition holds for isolated clusters.

Proposition 33 Two distinct maximal clusters belonging to Span(S) cannot meet.

The same property holds for isolated clusters.

11.3 Algorithm

This section describes an algorithm achieving cluster detection according to the

previous theory. We assume that n = |S| is reasonably small, say n ≤ 1000.

11.3.1 Computation of the Minimal Spanning Tree

The spanning tree associated to S can be computed with the following algorithm:
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initialization: each point of S is a tree

while there remains more than one tree

find the 2 nearest trees and fuse them

end while

When we fuse two trees A and B, they become the two children of a new node

A∪B to which we attach a value δ , the distance between A and B (i.e., the mini-

mum distance between a leaf of A and a leaf of B). The complexity of this step is

O(n2 logn) in the average, since the distances (dist(s, t))(s,t)∈S2 can be sorted once

for all.

11.3.2 Detection of Meaningful Isolated Clusters

The next algorithm detects meaningful isolated clusters. A similar algorithm may

be used for nonisolated clusters. Once the minimal spanning tree is computed, the

cluster detection algorithm consists of a loop on all nodes of the tree inside which

the NFA of each node is computed. For each node N:

compute A = Dρ/2N

compute C, the enclosing boundary of A

compute A′, the domain enclosed by C
if (S\N)∩A′ = /0:

for each resolution m ∈ M such that m ≤ ρ/4:

compute P, the closed low-resolution curve of Hm associated to C
select r, the largest element of R such that r +m ≤ ρ/2

compute B = DrP

compute σ = area(A′ \B)
compute σ ′ = area(B)
compute NFA(|P|,m, |N|,σ ,σ ′)

end for

store the best NFA obtained for this node N

end if

The above steps deserve some explanation:

– Since there is a minimal resolution (the smallest element of M), we consider the

points of S as pixels of a discrete image with convenient resolution (in practice,

the points of S are detected as points of a discrete image and the minimum res-

olution is taken slightly above the pixel size.) All erosions and dilations are then

performed on this image and areas are computed by counting pixels on this image.

– The low-resolution curve P ∈ Hm associated to the enclosing curve C is computed

by projecting successive points of C on Hm (the Voronoı̈ diagram associated to Hm

is a triangular mesh), and then by processing the sequence obtained this way in

order to obtain a low-resolution curve (no repetition of point, no cusp, no jump).



198 11 Clusters

Fig. 11.4 Left: a set of dots. Middle: all 1-meaningful isolated clusters represented by their asso-

ciated low-resolution curves (five clusters, − log10(NFA) = 4.5/4.6/5.2/31/36). Right: the only

1-meaningful maximal isolated cluster (− log10(NFA) = 36), represented by its associated low-

resolution curve and empty region.

11.4 Experiments

In all of the following experiments, L = 200 and resolutions grow in geometric

progression with ratio 1.2 from the pixel size (1) to the image size. R is an integer

between 1 and 200.

11.4.1 Hand-Made Examples

The first cluster detection experiments are performed on two hand-drawn images

(Figures 11.4 and 11.5).

11.4.2 Experiment on a Real Image

The black dots displayed in a satellite image are the centers of mass of contrasted

small level sets. These level sets have at most 100 pixels and the gradient norm

on their boundary is larger than 8. Figure 11.6 shows the meaningful and maximal

meaningful clusters.

11.5 Bibliographic Notes

The detection of meaningful clusters is closely related to percolation theory (see,

e.g., [Gri99], [SA94], [Mee96]). The aim of continuum percolation is, given a planar

Poisson process with intensity λ of disks with radius r (possibly random), to study

questions about the geometry of clusters such as: What is the probability distribution

of the size of the finite connected components made by the disks? What is the thresh-

old r0 above which there is, with probability 1, an infinite connected component?

See, for example, [Ale93], [QT97] or Hall’s book [Hal88]. One can also replace
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Fig. 11.5 Top: a set of 88 dots. Middle: all 1-meaningful isolated clusters represented by their

associated low-resolution curve (six clusters, − log10(NFA) = 0.20/0.43/2.1/17/29/43). Bot-

tom: the two maximal meaningful isolated clusters (− log10(NFA) = 0.43 (set of 12 dots) and

− log10(NFA) = 43 (set of 45 dots)), represented by their associated low-resolution curve and

empty region.

the disks by more general shapes (see, e.g., [RT02]). Most of the questions raised

in continuum percolation remain open. The definition of an ε-meaningful group of

dots given at the beginning of this chapter avoids all of the difficult questions of

percolation by using low-resolution curves. Another topic in stochastic geometry

directly related to cluster detection in dimension 2 is the theme of self-avoiding

random walks. Estimates of the number of self-avoiding walks in any dimension

are available. In dimension 2 for example, the number of self-avoiding walks with

length l in a rectangular grid is asymptotically equivalent to kl , where 2.5 ≤ k ≤ 2.7.

Numerical simulations indicate k ≃ 2.64. The number of self-avoiding polygons has

the same order. These estimates given in [Law96] and [MS93] justify the choice of

an hexagonal grid, since for such a grid, k ≤ 2. We thank Pierre Calka, Gregory

Randall, and Jérémie Jakubowicz for pointing out the above references to us.

The minimal spanning tree definition we used is not the usual one in geomet-

ric probability; see, for example, [PY03, Wu00, Ste02, Yuk00]. The tree used here

does not give for each node the points that have connected its children, and thus

no reconstruction is possible. This minimal spanning tree definition is closer to the

definition of the connectedness tree used in statistics for hierarchical data classifica-

tion [Sap90]. Unlike some problems in data analysis where the number of expected

classes is known, here the number of clusters is a priori unknown and may even be

zero.
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Fig. 11.6 Top: 531 dots detected in a 1000×1000 satellite image (superimposed). Middle: the 27

1-meaningful isolated clusters detected. Bottom: the only 1-meaningful maximal isolated cluster

(491 dots, − log10(NFA) = 199).

The cluster detection theory presented here has been widely generalized and im-

proved in [CDD+04]. In this huge paper, the authors extend the definition to any

dimension. They improve the definition of maximal cluster, thus avoiding the obvi-

ous inaccuracy of the experiment in Figure 11.5 (in this experiment, a hierarchical

group of made of three clusters is detected but the subgroups are not). The men-

tioned authors apply this clustering theory to shape recognition.

It often happens that the union of two clusters A and B is more meaningful that

each one of them, but sometimes it makes sense to keep the pair of clusters separate.

Thus, one needs to define the NFA of a pair of clusters, as compared to the NFA of

the union of both clusters. Such a definition for pairs of clusters is proposed in

[CDD+07]. A discussion and further improvement of this method can be found in

[Pre06].
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11.6 Exercise

11.6.1 Poisson Point Process

In this exercise, we will give formulas for the distance to the first, second, . . . , k-th

nearest neighbor in a Poisson point process. Such results and more properties about

point processes can be found in the book by Stoyan and Stoyan [SS94] or in the

book by Stoyan, Kendall, and Mecke [SKM87].

We first recall that an homogeneous planar Poisson point process of intensity

λ ∈ R+ is characterized by the following properties:

• For a bounded Borel set B of R2, the number of points in B, denoted by N(B), is

a random variable with Poisson distribution of parameter λ |B|, where |B| denotes

the Lebesgue measure of B (i.e., its area). This means that

∀k ∈ N, P [N(B) = k] = e−λ |B| (λ |B|)k

k!
.

• For all n integer and for all B1,B2,. . . ,Bn bounded Borel sets such that Bi ∩B j = /0

for all i �= j, the random variables N(B1), N(B2), . . . , N(Bn) are independent.

In what follows, we will consider an homogeneous planar Poisson point process

of intensity λ > 0. We will denote by 0 the origin of R2.

1) Let Hs(r) be the probability that the distance from 0 to its closest point of the

point process is less than r. Prove that

Hs(r) = 1− e−λπr2

.

(The function Hs is called the spherical contact distribution function.)

2) We now assume that the origin 0 is a point of the process. Let the probability that

its first neighbor is a distance less than r be defined by

D1(r) = lim
ε→0

P [N(B(0,r)\B(0,ε)) ≥ 1|N(B(0,ε)) = 1],

where B(0,r) denotes the ball of radius r centered at the origin. Prove that

D1(r) = 1− e−λπr2

.

Remark: Notice that D1(r) = Hs(r). This is a particular property of the Poisson

point process related to Palm distribution and Slivnyak’s theorem (see [SS94]).

3) The distribution function of the first-neighbor distance is given by D1(r) and

has density function d1(r) = D′
1(r). Prove that the mean and the variance of the

first-neignbor distance are

m1 =
1

2
√

λ
and σ2

1 =
1

πλ
− 1

4λ
.
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4) Prove that the distribution function of the k-th nearest-neighbor distance is

Dk(r) = 1−
k−1

∑
j=0

e−λπr2 (λπr2) j

j!
.

Compute the density function dk(r) = D′
k(r), and prove that the mean and the

mode (defined as the argmax of the density function) of the k-th nearest-neighbor

distance are

mk =
Γ (k + 1

2
)√

λπ(k−1)!
and rk =

√

k− 1
2

πλ
.



Chapter 12

Binocular Grouping

12.1 Introduction

In this chapter, we present an application of meaningful events to binocular vision.

Binocular vision, also called stereovision, is a major part of Computer Vision, as

it theoretically allows us to reconstruct a 3-D representation of the world from two

images taken from slightly different points of view. We focus here on the following

problem: Given a set of n point matches between two images (i.e., a set of n points

for each image with a one-to-one correspondence), can we decide when these points

are the perspective projections on the two images of n physical points? Can we find

the maximal group that satisfies this property? As we will see, the position of the

point matches are constrained by the perspective projection as soon as n ≥ 8 (for

uncalibrated cameras). However, to prove in practice the existence of a rigid motion

between two images, more than 8 point matches are desirable to compensate for the

limited accuracy of the matches. In this chapter we describe a computational def-

inition of rigidity and show how the Helmholtz principle can be applied to define

a probabilistic criterion that rates the meaningfulness of a rigid set as a function of

both the number of pairs of points (n) and the accuracy of the matches. This crite-

rion yields an objective way to compare, say, precise matches of a few points and

approximate matches of many points. It also yields absolute accuracy requirements

for rigidity detection in the case of nonmatched points (i.e., when no one-to-one

correspondence is available) and optimal values of n, depending on the expected

accuracy of the matches and on the proportion of outliers. It can be used to build

an optimized random sampling algorithm that is able to detect a rigid motion and

estimate the fundamental matrix when the set of point matches contains up to 90%

of outliers.

203
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12.2 Epipolar Geometry

12.2.1 The Epipolar Constraint

Epipolar geometry elegantly describes the constraints satisfied by two perspective

projections m = (x y)T and m′ = (x′ y′)T of a physical 3-D point M on two different

images. For pinhole cameras (with known or unknown internal parameters), the

relation

(x′ y′ 1) F (x y 1)T = 0 (12.1)

holds, where F , the fundamental matrix, is a 3×3 matrix with rank 2 that depends

on the rigid motion between the two image planes and on the camera parameters

(position of the optical center, and relative pixel size along both axes). Equation

(12.1) has the following interpretation: The point m′ of the second image plane

belongs to the epipolar line Fm whose equation ax′ + by′ + c = 0 is obtained from

m = (x,y) by

(a b c)T = F (x y 1)T .

This epipolar line is nothing but the projection in the second image of the optical

ray going from M to the optical center of the first camera. The position of m′ on

this line is related to the (unknown) depth of M, which is not involved in (12.1).

The intersection of all epipolar lines is called the epipole: It is the projection in the

second image of the optical center of the first camera.

The fundamental matrix can be factorized under the form F = C′EC−1, where

C and C′ are 3×3 internal calibration matrices depending on the cameras only and

E is the essential matrix defined from the motion parameters T = (tx ty tz)
T

(3-D

translation vector) and R (3-D rotation matrix) by

E =

⎛

⎝

0 −tz ty
tz 0 −tx
−ty tx 0

⎞

⎠ R.

The essential matrix has, like F , a null singular value, but, in addition, its two other

singular values are equal (see [FL01]). These notions are detailed in Exercise 12.8.1.

12.2.2 The Seven-Point Algorithm

The fundamental matrix has 7 degrees of freedom since it is a 9-dimensional

data defined up to a multiplicative constant and satisfying a polynomial equation

(detF = 0). Hence, it can generally be estimated from 7 linear equations, using the

so-called seven-point algorithm. From 7 point matches, (12.1) yields a 7×9 linear

system A f = 0, where the fundamental matrix is written as a 9-dimensional vec-

tor f . If (F1,F2) is a basis of unit-norm solutions (in the nondegenerate cases, the
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kernel of A has dimension 2) with F1 and F2 written as 3×3 matrices, then the fun-

damental matrix is obtained as a solution F = αF1 +(1−α)F2 of det F = 0. This

condition requires, in order to determine α , the computation of the roots of a real

cubic polynomial and may yield one or three solutions.

12.3 Measuring Rigidity

12.3.1 F-rigidity

The question we ask is the following: If mi = (xi,yi) and m′
i = (x′i,y

′
i) are the n points

found in the two images, how can we decide that each pair (mi,m
′
i) represents the

projection of a 3-D point in two different image planes? If this was exactly true, the

epipolar constraint (x′i y′i 1)F (xi yi 1)T = 0 should be satisfied for all i and for some

3× 3 matrix F with rank 2, but in practice some location errors will occur and we

have to measure how bad a correspondence is. We choose to measure the rigidity

of a matching set S = {(mi,m
′
i)}i=1..n ∈ (I × I′)n (I and I′ represent the (convex)

domains of the two images) with the following physical criterion.

Definition 28. Let F be a 3×3 matrix with rank 2. The F-rigidity of a set S of point

matches between two images is

αF(S) =
2D′

A′ max
(m,m′)∈S

dist(m′,Fm), (12.2)

where Fm is the epipolar line associated by F to m, dist is the Euclidean distance,

A′ is the area of the second image domain, and D′ is its diameter.

We will justify later the normalization coefficient 2D′/A′, but we notice that it yields

a scale-independent definition of rigidity. Contrary to classical criteria, we use the l∞

norm (maximum) instead of the l2 norm (sum of squares). This has the advantage of

being extremely selective against outliers and simplifies most of the computations

that will follow. However, the same approach could as well be applied to a more

usual l2 criterion by using the Central Limit Theorem. As usual, (12.2) may be

symmetrized by using

α̃F(S) = max
(m,m′)∈S

max

(
2D′

A′ dist(m′,Fm),
2D

A
dist(m,FT m′)

)

(12.3)

(A is the area of the first image domain and D is its diameter).

We could define a meaningful point correspondence as a matching set S for

which αF(S) is too small (for some F) to be reasonably explained by random-

ness. More precisely, if we suppose that the points of S are randomly, uniformly,

and independently distributed in (I× I′)n, then we can define the probability q(t) =
P [infF αF(S) ≤ t]. A meaningful point correspondence could then be defined as a

matching set S for which q(infF αF) is very small, say less than 10−3. However, the
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computation of the probability q of the meaningful event is as usual very difficult.

This is why we will use a NFA model based on expectation. Instead of controlling

the probability of a false detection (a false detection is a rigid set detected in a ran-

dom distribution of points), we measure the expected number of false detections,

which leads to more tractable computations (an explicit illustration of this is given

in Exercise 3.4.1 on birthday dates). As we will see now, this is possible as soon as

we quantize the number of tests (each test tries a candidate for F).

12.3.2 A Computational Definition of Rigidity

According to the previous remark, the rigidity of a matching set S should be defined

by infF αF(S) –that is, by minimizing the matching error among all possible F .

However, this definition is too difficult to manage. A more computational point of

view must be adopted.

Definition 29. A matching set S = {(mi,m
′
i)}i=1..n is α-rigid if there exists a funda-

mental matrix F associated to a subset of 7 matchings of S such that αF(S) ≤ α .

Note that we could have used α̃F(S) as well in this definition. From this defini-

tion, the rigidity of S can be defined as the least α for which S is α-rigid. Finding

this exact minimum requires the computation of up to 3
(

n
7

)
fundamental matrices

since, as we saw previously, the seven-point algorithm may produce up to three so-

lutions. Such a computation becomes rapidly unfeasible when n grows larger than

25 (see Table 12.1). However, since the minimum value of α is unlikely to be iso-

lated, for large n it is enough in practice to compute the minimum of αF(S) over a

small proportion of possible subsets S, which justifies Definition 29.

In comparison with the ideal approach that would consist in estimating the best F

among all possibilities (and not only among solutions of the seven-point algorithm),

Table 12.1 Number of transforms required to define the exact rigidity of a set of n point matches

and the associated computation time on a 1-GHz PC laptop, estimated on a basis of 30,000 fun-

damental matrices computed per second (see Section 12.5). The rapidly increasing computational

cost justifies the less systematic Definition 29 of α-rigidity

n Number of transforms, 3
(

n
7

)
Expected computation time

8 24 0.0008 s

10 360 0.012 s

15 19,305 0.64 s

20 232,560 7.7 s

25 1,442,100 48 s

30 6,107,400 3 min 30 s

50 3 108 2 h 45 min

100 4.8 1010 18 days
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we have reduced the number of possible F in the spirit of the RANSAC paradigm

(see Section 12.7). This is not too restrictive though, since if there exists a good

correspondence between the point matches of S, it is likely that the seven-point

algorithm will produce a good approximation of the “ideal” F (i.e., minimizing

αF(S)) for some subset of seven point matches of S.

12.4 Meaningful Rigid Sets

12.4.1 The Ideal Case (Checking Rigidity)

Now that we have given a definition of approximate rigidity, we use the notion of an

ε-meaningful event to reduce the set parameters (n, the size of S, and α , the rigidity

threshold) to a single intuitive parameter, the expected number of false alarms. To

this aim let us take the usual a contrario Helmholtz assumption that the points mi

and m′
i are uniformly and independently distributed on I and I′.

Proposition 34 A matching set S of size n (n ≥ 8) is ε-meaningful as soon as it is

α-rigid with

ε1(α,n) := 3 ·
(

n

7

)

·αn−7 ≤ ε. (12.4)

The number ε1 measures the meaningfulness (from the rigidity viewpoint) of a

given set of point matches. Hence, Proposition 34 not only provides an intuitive

threshold for rigidity detection but also gives a way to compare the meaningfulness

of two set. Since ε1 measures the expected number of α-rigid sets of size n for

random points, the smaller ε1 is, the better the accuracy of S is. We can also notice

that Proposition 34 remains true when α-rigidity is defined with α̃F (instead of αF )

since α̃F ≤ αF . We keep using αF in the following because we did not see how

to significantly improve the meaningfulness thresholds in the symmetric case (in

particular, because some Fs are such that α̃F = αF ).

Proof of Proposition 34 — Let T ⊂ S be a set of 7 point matches, and let F be

one of the associated rank 2 fundamental matrix. If (mi,m
′
i) belongs to T , then the

distance from m′
i to the epipolar line l = Fmi is zero by construction. If it belongs

to S−T , then m′
i and l are independent, and since the intersection of l with I′ has

length less than D, the t-dilated of l in I′ (i.e., the set of points of I′ whose distance

from l is lower than t) has area less than 2tD and the probability that dist(m′
i, l) ≤ t

is less than 2tD/A. Consequently, the probability that αF(S) ≤ α is less than αn−7.

Now, the number of subsets T of S with 7 elements is
(

n
7

)
, and since each of these

subsets can produce at most 3 matrices F , the maximum number of fundamental

matrices we can build from S with the seven-point algorithm is 3 ·
(

n
7

)
. Hence, for

every α satisfying (12.4), any α-rigid set of n point matches is ε-meaningful. �
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Fig. 12.1 Detectability curves in the (n,Logα) plane according to Equation (12.4) for several

meaningfulness values ε1. A rigidity value of Logα = −2 corresponds to a maximum epipolar

distance equal to 3.5 pixels on a 1000×1000 image (all logarithms taken in base 10).

Equation (12.4) is very encouraging for the detection of rigidity in the case of

already matched points. Indeed, as n grows, the left term goes quickly to zero and a

set of point matches is not required to be α-rigid with α very small to be detected

as rigid, provided that it contains enough points. The link between α , n, and ε is

illustrated on Figure 12.1. We can see, for example, that even with a low accuracy

(3.5 pixels on a 1000× 1000 image), 10 points are enough to define a meaningful

rigid set (ε = 10−3).

More precisely, when n tends to infinity, (12.4) writes

Logα ≤−7
Logn

n
+

C +Logε

n
+ O

n→+∞

(
Logn

n2

)

, (12.5)

where C = Log(7!/3) = 3.22... (here and in all of the following, Log means the

logarithm in base 10).

Proof of (12.5) — We have, when n → +∞,

Log

(
n

7

)

= 7Logn−Log(7!)+O

(
1

n

)

,

so that if 3
(

n
7

)
αn−7 = ε , then

Logα =
1

n−7

(

Logε +Log
7!

3
−7Logn+O

(
1

n

))

= −7
Logn

n
+

C +Logε

n
+O

(
Logn

n2

)

(12.6)

with C = Log(7!/3). �

12.4.2 The Case of Outliers

Up to now, we have studied the meaningfulness of the whole set of point matches.

This is not very realistic since, in practice, the presence of outliers (badly located
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points or false matches) cannot be avoided. Moreover, Definition 29 is very sensitive

to outliers, since it measures rigidity by a maximum of epipolar distances. We now

consider rigidity detection for a subset S′ of the set S of all point matches. Compared

to the previous case, we now have to count, in the expected number of false alarms,

the number of possible choices for k (i.e., n− 7) and the number
(

n
k

)
of possible

subsets of S with size k.

Proposition 35 A set S′ ⊂ S of k point matches among n is ε-meaningful as soon as

it is α-rigid with

ε2(α,n,k) := 3(n−7) ·
(

n

k

)

·
(

k

7

)

·αk−7 ≤ ε. (12.7)

Figure 12.2 illustrates the relation between n, p = 1− k/n and α for ε = 10−3.

In Figure 12.3, the meaningfulness achieved for fixed values of n and α is presented

as a function of p.
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Fig. 12.2 Detectability curves (ε2 = 10−3) in the (n,Logα) plane for different proportions p of

outliers (see Equation (12.7)). The curves present small oscillations because p = 1−k/n cannot be

exactly achieved by reason of the discrete nature of k and n (this could be avoided by interpolating

the binomial coefficients with the Gamma function).
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Fig. 12.3 Log-meaningfulness Log(ε2) as a function of the proportion p of outliers (Equation

(12.8)). Left: α = 10−2 and n varies. Right: n = 100 and α varies.
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As before, we can derive asymptotic estimates from (12.7). If p = 1− k/n is the

(fixed) proportion of outliers, then assuming 0 < p < 1 and n → ∞, we can rewrite

(12.7) as

Logα ≤−Ap −
15Logk

2k
+

C +Logε +Bp −7Ap

k
+ O

n→+∞

(
Logn

n2

)

, (12.8)

with Ap = −Log(1− p)− p
1−p

Log p and Bp = − 1
2

Log
(
2π p(1− p)2

)
.

Proof of (12.8) — If k = (1− p)n (p fixed, 0 < p < 1) and n → +∞, Stirling’s

formula yields

Log

(
n

k

)

= −n
(

pLog p+(1− p)Log(1− p)
)

−1

2
Logn− 1

2
Log
(
2π p(1− p)

)
+O

(
1

n

)

, (12.9)

so that if (n−7)
(

n
k

)
·3
(

k
7

)
αk−7 = ε , then (12.9) and (12.6) can be combined into

Logα = − 1

k−7

(

Log(n−7)+ kAp −
1

2
Logn− 1

2
Log
(
2π p(1− p)

)
+O

(
1

n

))

−7
Logk

k
+

C +Logε

k
+O

(
Logk

k2

)

,

with Ap = −Log(1− p)− p
1−p

Log p. Hence, writing Bp = − 1
2

Log
(
2π p(1− p)2

)
,

we get

Logα = −Ap −
15Logk

2k
+

C +Logε +Bp −7Ap

k
+O

(
Logn

n2

)

.

�

Compared to (12.5), the main difference lies in the leading term −Ap that forces

a fixed gain (depending on p) in the accuracy of the matches. In Figure 12.4, we can

see that discovering a rigid set among 75% (resp. 90%) of outliers requires a gain

of 1 (resp. 1.4) for Logα , which comes down to dividing the maximum allowed

epipolar distance by 10 (resp. 25).

12.4.3 The Case of Nonmatched Points

We now consider a less structured situation: We suppose that some characteristic

points have been detected on the two images but we do not know how to match

them together. In this case, we have to take into account the fact that two subsets

of k points have to be chosen and that k! possible permutations remain possible to

define point matches between these two subsets.
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Fig. 12.4 The required rigidity gain Ap in function of the proportion of outliers (p).

Proposition 36 Let P = {mi}i=1..n and P′ = {m′
i}i=1..n be the points detected on

each image. A matching set S of size k formed by disjoint pairs taken from P×P′ is

ε-meaningful as soon as it is α-rigid with

ε3(α,n,k) := 3(n−7) ·
(

n

k

)2

· k! ·
(

k

7

)

·αk−7 ≤ ε. (12.10)

We have assumed for simplicity that |P| = |P′|, but in the general case where

|P| = n and |P′| = n′, we would obtain the condition

3min(n−7,n′−7) ·
(

n

k

)

·
(

n′

k

)

· k! ·
(

k

7

)

·αk−7 ≤ ε.

The condition (12.10) is very different from the previous case (12.7), because the

matching pairs now have to be found. In particular, even for n = k (all points

matched), the function n 
→ ε3(α,n,n) is increasing when n grows to infinity. This

means that for a fixed rigidity α , no meaningful rigid set can be found beyond a

certain value of n. The following proposition states this more precisely.

Proposition 37 If ε3(α,n,n) < 1, then

α <
1

32
and n <

e

α
+ O

α→0
(Logα),

and the minimum of n 
→ ε3(α,n,n) is obtained for a unique n = n̄ such that

n̄ =
1

α
−8+ O

α→0
(α).

Moreover, one has

Logε3(α, n̄, n̄) = −Loge

α
− 3

2
Logα −C′ + O

α→0
(α), (12.11)

with C′ = Log 7!
3
− 1

2
Log(2π) = 2.82... and Loge = 0.434...
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Proof — Let us write un = ε3(α,n,n) = 3(n−7)n!
(

n
7

)
αn−7. We have

un

un−1
=

n−7

n−8
·n · n

n−7
·α =

n2α

n−8
,

so that
un ≤ un−1 ⇔ αn2 −n+8 ≤ 0.

If α ≥ 1/32, this last inequality can never be realized so that un is increasing and

un ≥ u8 = 3 ·8 ·8! ·α ≥ 6 ·7! ≫ 1,

which is impossible since we assumed ε3(α,n,n) < 1. Thus, we necessarily have

α < 1/32, and since one root of n2 − n + 8 is in ]0,8[ and the other (n̄) larger than

8, un is decreasing for n ≤ n̄ and increasing for n ≥ n̄, with

n̄ =
1+

√
1−32α

2α
=

1

α
−8+ O

α→0
(α).

Moreover, when n → ∞ one has

Logun = nLog
αn

e
+O(Logn),

so that the condition un → 1 imposes

αn

e
= 1+O

(
Logn

n

)

,

which means that
n =

e

α
+ O

α→0
(Logα).

Finally, we have

Logun = −Log
7!

3
+Logn+nLog

n

e
+

1

2
Log(2πn)

+7Logn+(n−7)Logα + O
n→+∞

(
1

n

)

,

and since α = 1
n̄
(1− 8

n̄
),

Logun̄ =
3

2
Log n̄− (n̄+8)Loge−Log

7!

3
+

1

2
Log2π +O

(
1

n̄

)

= −Loge

α
− 3

2
Logα −C′ + O

α→0
(α)

with C′ = Log 7!
3
− 1

2
Log2π . �

This proposition calls for several comments. First, it yields a universal threshold

(1/32) on the rigidity coefficient α , above which a set cannot be meaningfully rigid.

Second, for any expected rigidity α , it suggests an optimal number n = n̄(α) of

characteristic points to be found on each image and guarantees that rigidity detection
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Fig. 12.5 Detectability curves (ε3 = 10−3) in the (n,Logα) plane for several values of p (left) and

in the (n, p) plane for several values of α (right).
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Fig. 12.6 Log-meaningfulness Log(ε3) as a function of the proportion p of outliers, for several

values of n. Left: α = 10−2.5; right: α = 10−4.

is possible for that n since the right-hand term of (12.11) is negative for α small

enough.

The situation is similar in the case of outliers. In Figure 12.5 (right), we can see

that given a precision α and a meaningfulness threshold (e.g., ε3 = 10−3), the max-

imum allowed amount p of outliers is not an increasing function of n. It increases

up to an optimal value of n and then decreases for larger values of n. For p fixed,

the required rigidity threshold α behaves in a similar way, and the less restrictive

threshold is obtained for a particular value of n (Figure 12.5, left).

For a practical1 value of α = 10−2.5, we can see on Figure 12.6 (left) or on

Figure 12.5 (right) that the maximum allowed amount of outliers is around p = 0.25

and is attained around n = 80. Large values of p can be attained for α = 10−4

for example (see Figure 12.6, right), but this would require an unrealistic precision

(0.035 pixel in a 1000×1000 image) in the localization of the characteristic points.

This outlines an absolute limit of rigidity detection in the case of nonmatched points

and suggests that in most situations, rigidity detection is not possible, since a large

1 α = 10−2.5 means a precision of about 1 pixel on a 1000× 1000 image (see Equation (12.2)).

Achieving smaller values is not impossible but requires an excellent compensation of the camera

distortions and an accurate subpixel registration algorithm.



214 12 Binocular Grouping

number of outliers is to be expected if no matching criterion is involved in detecting

characteristic points.

However, small values of α (say, α = 10−4 and even less) may be attained by

considering what could be called colored rigidity. If we attach to each point some

quantity c that is expected to be the same in each view (e.g., a kind of dominant color

around the point, or any other measure not a priori related to the location of the

point), then the meaningfulness of a rigid set can be improved by constraining not

only a good match between each pair of points (α small) but also between the values

of c measured at these points. If c is a scalar quantity that is uniformly distributed

in {1..M}, then constraining |c(mi)− c(m′
i)| ≤ δ for each pair (mi,m

′
i) of matching

points allows us to multiply the meaningfulness coefficient ε3 by
(

2δ+1
M

)k

, which

practically amounts to multiplying α by 2δ+1
M

. In this chapter, we will not investi-

gate further this possibility of colored rigidity, but mention that this could yield an

interesting way to compensate for the tight rigidity thresholds involved in the case

of nonmatched points.

Another reason for considering colored rigidity is the huge computational cost

required to search for sets of seven-point matches. In the case of nonmatched points,

there are 7!
(

n
7

)2
possible sets of seven-point matches, which is to be compared to

the (only)
(

n
7

)
possible sets in the case of already matched points. The large ratio

7!
(

n
7

)
≃ n7 suggests that a systematic (or even stochastic) search is unrealistic, and

this is why we will not produce experiments for the ε3 criterion in Section 12.6.

However, we do think that the ε3 criterion may be useful, for example, if additional

information (colored rigidity mentionned above, or local image comparison near the

points to match) constrains the search for matches to a limited number of cases.

12.4.4 A Few Remarks

Before we describe the algorithms and present experiments, let us discuss the valid-

ity of the three models presented. The first model (ε1) concerns only the case when

all point matches are to be kept in the rigidity detection. Even if it is known that

no outliers are present, the use of this model is questionable (i.e., the second model

should be preferred) since the less precise point matches may reduce the meaning-

fulness of the whole set and compromise the precision of F . Hence, this first model

is mainly of pedagogic value.

The second model (ε2) is applicable when point matches are available between

the two images, provided that no location criterion was involved in the matching

process. If, for example, each point mi has been matched to the nearest m′
j in the

second image (for some distance that may not be the usual Euclidean distance),

which supposes that some a priori assumption is made on the relative camera po-

sitions, then a meaningful rigid set may be found by accident with the ε2 criterion,

since the uniform model against which rigid sets are detected is no longer valid. In

this case, or when point matches are not known, the third model (ε3) should be used.
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The meaningfulness thresholds we derived should be distinguished from the al-

gorithms used for rigidity detection. Even if the meaningfulness thresholds count all

possible transforms F obtained from 7 point matches, which may represent a huge

number (especially for ε3), a selective exploration of these transforms can be used

to detect rigidity. If, for example, some restrictions are known about the epipolar

geometry (this may be the case for a stereo pair, e.g.), then this knowledge might

be very useful to speed up rigidity detection. All kinds of optimized strategy for

rigidity detection may be used, provided that all possible transforms are counted in

the derivation of the meaningfulness thresholds, as we did for ε3.

We also would like to point out that even if our model uses a uniform distribution

of points to derive the meaningfulness coefficient, this is not an assumption to be

realized by the observed data since we detect rigid sets against this uniform model.

If, for example, all points of the second image are concentrated in a very small re-

gion, then this particular concentration (which is in some way meaningful) might

raise the detection of a rigid set. If a symmetrical definition of rigidity is used as

suggested in Section 12.3.2, then this might only happen if this concentration also

occurs in the first image. In this case, the existence of a rigid set still makes sense,

although it would probably not be the simplest explanation of the observed distri-

bution of points. This suggests that a similar approach should also be applied for

the detection of simpler motions (given by homographies, affine or even Euclidean

transforms), in the spirit of Occam’s razor principle (the simplest explanation is the

best). The simplest explanation could then be found by using a Minimum Descrip-

tion Length [Ris83, Ris89] criterion. Another possibility would be to detect rigidity

against a more general model of point distribution allowing a certain amout of clus-

tering, but it is not clear that the new obtained thresholds would be significantly

different.

12.5 Algorithms

12.5.1 Combinatorial Search

The seven-point algorithm was implemented in C using the Singular Value Decom-

position algorithm from Numerical Recipes [PTVF88] and a classical explicit solver

for the third-degree equation raised by the rank 2 constraint. The resulting algo-

rithm is able to test 10,000 seven-point matches per second (i.e., between 10,000

and 30,000 fundamental matrices) on a 1-GHz PC laptop.

This algorithm proceeds as follows. When considering a fundamental matrix F

given by a subset T of 7 point matches of S, compute for each of the n−7 remaining

pairs the normalized distance αi between m′
i and the epipolar line Fmi. Then sort

these distances in the increasing order and obtain for each value of k between 8 and

n the subset Sk(F) of size k such that T ⊂ Sk ⊂ S and αF(Sk) is minimal. Since

ε2(α,n,k) is increasing with respect to α (see Equation (12.7)), Sk(F) is also the

most meaningful (with respect to F) rigid set of size k containing T . Then find,
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among the sets
(
Sk(F)

)

k=8..n
, the most meaningful one (i.e., the one minimizing

ε2), written S̄(F).
The deterministic algorithm works as follows: For each subset T of 7 point

matches of S and each of the (possibly 3) fundamental matrices F associated to

T , compute S̄(F). The result of the algorithm is simply the most meaningful set S̄

encountered in this systematic search. Also compute, for each value of k, the most

meaningful set with size k, that is the most meaningful set Sk among the Sk(F). By

construction, this function of k is minimal when Sk = S̄.

12.5.2 Random Sampling Algorithm

The above algorithm must be abandoned when n ≥ 25 in favor of a stochastic ver-

sion, as shown by Table 12.1. Following the random sampling consensus, similar

computations of rigidity and meaningfulness can be run only for certain fundamen-

tal matrices F obtained from random sets of seven-point matches. The algorithm

can be written as follows:

set ε̄ = +∞
repeat

generate a random set T of 7 point matches

for each fundamental matrix F associated to T

compute the most meaningful rigid set S̄ = S̄(F) associated to F

if ε2(S̄) < ε̄ , set ε̄ = ε2(U) and U = S̄

end

until the number of trials T exceeds N

return U and ε̄

Notice that once U (the set of inliers) has been found, as a final step a classical

linear optimization may be applied (e.g., Least Mean Squares) to obtain the optimal

estimation of F . In practice, this final step may be rather useless since the estimation

of F performed by the algorithm (using sets of 7 points) is generally excellent (this

will be confirmed by Section 12.6.1 and Figure 12.8).

If we assume that among n point matches, k are correct (i.e., we have n − k

outliers), then the probability of selecting at least one set of 7 correct point matches

in N trials is

q = 1−
(

1−
(

k
7

)

(
n
7

)

)N

= 1−
(

1−
6

∏
i=0

k− i

n− i

)N

.

For q = 95% (i.e., Loge(1−q) ≃−3), we can see that the number of trials required

is approximately

N ≃ 3
(n

k

)7

, (12.12)

which allows a proportion p = 1−k/n of outliers of about 70% to stay in reasonable

computation time limits (10,000 trials). A proportion of 90% outliers would require
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N = 30,000,000 trials, which is not feasible. However, we will see that this estimate

of N is questionable, and that a rigid set can be found among more than 90% outliers

in much less than 30,000,000 trials.

12.5.3 Optimized Random Sampling Algorithm (ORSA)

There is a simple way to improve the stochastic algorithm. It relies on the idea that,

on average, the proportion of outliers should be smaller than p among the most

meaningful rigid sets. This suggests that the final optimization step below should

be added at the end of the previous Random Sampling Algorithm (just before the

“return U and ε̄” line).

set ε̄ = ε2(U)
repeat

generate a random set T of 7 point matches among U

for each fundamental matrix F associated to T

compute the most meaningful rigid set S̄ = S̄(F) associated to F

if ε2(S̄) < ε̄ , set ε̄ = ε2(S̄) and U = S̄

end

until the number of trials T exceeds Nopt

If U is absolutely meaningful (i.e., ε2(U) < 1), this optimization step converges very

quickly and Nopt does not need to be large. In any case, it cannot be harmful since ε̄
is constrained to decrease. In practice set Nopt = N/10 and apply this optimization

step to the first absolute meaningful set found by random sampling or if none has

been found after N −Nopt trials to the most meaningful set found so far. In this

way the total number of trials cannot exceed N (but can be as small as Nopt + 1),

while improving dramatically the detection of outliers, as shown in Section 12.6. We

will refer to this algorithm bt the ORSA (Optimized Random Sampling Algorithm)

acronym.

12.6 Experiments

12.6.1 Checking All Matchings

In two digital images (resolution 800× 600) of the same scene, a set S of 23 point

matches with a 1-pixel accuracy (see Figure 12.7) was manually recorded. Taking a

snapshot of a regular grid with the same camera showed that geometric distortions

were between 0 and 5 pixels. Thus, a rigidity coefficient between 0 and

α =
2 ·5 ·

√
8002 +6002

800 ·600
≃ 10−1.68
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Fig. 12.7 The first stereo pair with 23 point matches and the best epipolar geometry recovered by

the systematic exploration of all seven-point transforms.
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Fig. 12.8 Left: the histogram of LogαF (S) for all possible F obtained from sets of seven-point

matches taken out from S. From this histogram (measured at a much finer scale), the expecta-

tion of mini=1..n LogαFi
(S) was comuted (the Fi’s being obtained from independent random sets

of seven-point matches). This expectation is represented as a function of Logn on the right. We

can see that the systematic exploration of all sets of seven-point matches is not really required:

An excellent rigidity coefficient (Logα = −2.23) could be obtained in about 1000 random trials,

which is to be compared to the 550,000 trials needed to obtain the best possible rigidity coefficient

Logα = −2.31 (all logarithms taken in base 10).

could be expected. Using the systematic combinatorial search yielded Log(α) =
−2.31 with the best seven-point transform, whereas the least mean squares op-

timization applied to the 23 × 9 linear system yielded a transform F such that

LogαF(S) = −2.32 (note that the least mean squares optimization does not sig-

nificantly improve the estimation of F , compared to the systematic combinatorial

search). As expected, the meaningfulness of the rigidity test was very good:

ε1 = 3 ·
(

23

7

)

10−2.31(23−7) ≃ 10−31.

One could argue that testing
(

23
7

)
≃ 250,000 configurations takes time (25 seconds),

but in fact a nearly optimal accuracy is achieved by testing only a small number of

random seven-point transforms, as shown in Figure 12.8. This justifies the system-

atic use of the random sampling algorithm we presented in Section 12.5.
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12.6.2 Detecting Outliers

Outliers were simulated by replacing the first 10 point matches (among 23) by ran-

dom points. Then for each fundamental matrix F that yielded by a seven-point trans-

form, the most rigid set size k, Sk(F) (see Section 12.5.1), as well as its rigidity

αk(F) = αF(Sk(F)) and its meaningfulness εk(F) = ε2(αk(F),23,k) were com-

puted. In Figure 12.9 are represented the two functions k 
→ ᾱ(k) = minF αk(F)
and k 
→ ε̄(k) = εk(F). The function ᾱ(k) is increasing with respect to k (by con-

struction), and presents only a small gap between k = 13 and k = 14, from which it

would be difficult (and uncertain) to directly detect the outliers. On the contrary, the

function ε̄(k) presents a strong minimum for k = 13, which identifies without doubt

the true set of 13 point matches and the 10 outliers. The epipolar geometry is well

recovered too, as shown on Figure 12.10.

12.6.3 Evaluation of the Optimized Random Sampling Algorithm

In some situations, the number of point matches n may be large (say, n ≥ 25)

and a systematic exploration of all sets of seven-point matches is not possible (see

Table 12.1). In this case the Optimized Random Sampling Algorithm (ORSA) pre-

sented in Section 12.5.3 can be used. It is interesting to use this algorithm even for

small values of n, as shown in Figure 12.8. In this subsection, we propose a sys-

tematic evaluation of ORSA and we prove in particular the usefulness of the final

optimization step introduced in Section 12.5.3.
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Fig. 12.9 Rigidity error ᾱ(k) and meaningfulness ε̄(k) of the most rigid subset of size k (log scale).

Whereas ᾱ(k) can hardly be used alone to detect outliers, ε̄(k) presents a strong minimum which

permits us to detect the 13 inliers easily.
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Fig. 12.10 When we replace the first 10 point matches (among 23) by random points, the use of

the ε2 criterion allows us to identify the meaningfully rigid set of 13 inliers and to recover the right

epipolar lines (shown in white).

Fig. 12.11 The second stereo pair with 70 point matches (only 30 are shown here for clarity). The

epipolar geometry is recovered in no time and yields Logα = −1.92 and Logε = −110.

In a second couple of 800 × 600 images, 70 point matches were manually

recorded by (see Figure 12.11.) Then a set Tk of k point matches (among these

70) was selected for three values of k (k = 10, k = 30, and k = 70) and kp/(1− p)
random outliers added for several values of p before ORSA was run on these data

with N = 10,000. This was repeated 100 times for each pair (k, p) in order to com-

pute the following:

– the empirical probability of success (by success, we mean that an absolute mean-

ingful set has been found, i.e., ε̄ < 1);

– the average proportion of true points (i.e., belonging to Tk) among all points

found in case of success;

– the average proportion of points found among true points in case of success;

– the average meaningfulness < ε2 > in case of success.

The results are shown in Figure 12.12. We notice in these experiments that for N =
10,000 (which is not very large), the detection thresholds are good and, in the case

of success, the recovery of the true set of inliers is almost perfect (notice that by

adding random points, we may also add new pairs that match well the true epipolar
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Fig. 12.12 Performance of the Optimized Random Sampling Algorithm (10,000 trials) in function

of the proportion p of outliers (horizontal axis). Top row: 10 inliers; middle row: 30 inliers; bottom

row: 70 inliers. Left: empirical probability of success (detection of an absolutely meaningful rigid

set), average proportion of true inliers among the most rigid set found (in case of success), and

average proportion of points found among true inliers (still in case of success). Right: observed

and theoretical average meaningfulness < ε2 > in the case of success.

transform). With a 50% probability of success (which would become 1− 0.55 =
97% for N = 50,000), we can allow a proportion of outliers equal to p = 0.5 for n =
10, to p = 0.83 for n = 30, and to p = 0.86 for n = 70. This last case means that 70

inliers still are detectable among 500 points and proves that (12.12) underestimates

by far the performance of ORSA.

Another interesting point is that the ε2 criterion allows us to predict the algorithm

performance. From the rigidity coefficient α expected for inliers (and measured

before adding outliers), one can predict the average meaningfulness < ε2 > by using

the theoretical value

ε2

(
k

1− p
,k,α

)

.
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Fig. 12.13 Performance of nonoptimized random sampling, compared to ORSA (30 inliers, 10,000

trials). Left: empirical probability of success. Right: average meaningfulness < ε2 >. This shows

the efficiency of the optimization step described in Section 12.5.3: Instead of being able to detect

(with probability 1/2 for 10,000 trials) the 30 inliers among 175 point matches (p = 0.83), the

nonoptimized random sampling algorithm reaches its limit for 115 point matches (p = 0.74), and

the accuracy of the fundamental matrix it computes is far from being optimal (right).

This number measures the meaningfulness of U in function of the proportion p of

outliers, U being the most meaningful rigid set found without outliers. In Figure

12.12 (right) we can see that this estimate is generally very accurate, which shows

that the rigidity detection algorithm we presented is efficient (the rigidity α of the

most meaningful set it finds is quite insensitive to the proportion of outliers) and

that one is able to predict the value of p for which it breaks down, as the number p0

for which ε2(
k

1−p0
,k,α) = 1.

The optimization step described in Section 12.5.3 was very useful. By using pure

(nonoptimized) random sampling instead of ORSA, much worse results were ob-

tained both for the probability of success and for the precision of the estimate of F ,

as shown by the meaningfulness loss (see Figure 12.13). Hence, the optimization

process not only speeds up the algorithm, but it often lets us find a meaningful rigid

set when none has been found in N −Nopt trials by choosing sets of seven-point

matches only from the most meaningful rigid set found so far.

12.7 Bibliographic Notes

12.7.1 Stereovision

Stereovision and, more generally, structure from motion are based on the fact that

two images of a static scene taken by a pinhole camera from two different view-

points are redundant. Two methods use this redundancy to recover the 3-D struc-

ture. The first uses dense matching maps (optical flow). The second is based on

feature matching –that is the correspondence of several physical parts of the scene

(typically corners or lines) in the two images. The analysis of discrete point matches
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allows us to recover, up to a scale factor, not only the 3-D position of the points

before their projection in each image but also the camera motion and its intrinsic

parameters [LH81, FLT87, Har97a]. All of these methods use the fact that two per-

spective projections of a static scene are related through the fundamental matrix.

This highlights the importance of estimating the fundamental matrix from point

matches and explains the large attention it has received in the last two decades

[FL01, LF96, OG01, SAP01, TM97, ZDFL01, Zha98].

12.7.2 Estimating the Fundamental Matrix from Point Matches

For cameras with calibrated internal parameters, only the essential matrix has to

be recovered and the epipolar geometry depends on 5 parameters: 2 for the 3-D

translation (the unknown scale factor lets us impose ‖T‖= 1 for example), and 3 for

the 3-D rotation (matrix R). Since each point correspondence produces one equation

like (12.1), a minimum of 5 matchings is required to recover the epipolar geometry.

As shown by Faugeras [FL01], 5 matchings are sufficient, but the computation is

rather complex and unstable and provides in general 10 solutions.

For this reason, and because more points are needed in the case of cameras with

uncalibrated internal parameters, the much simpler linear eight-point algorithm is

preferred in general. Introduced by Longuet-Higgins [LH81], this algorithm has

been refined in several ways. The classical formulation is the following. For each

point match (mi,m
′
i), Equation (12.1) can be rewritten as a linear equation depend-

ing on the 9 coefficients of F , viewed as a 9-dimensional vector f . Hence 8 point

correspondences yield a 8×9 linear system

A f = 0,

where the i-th line of A is obtained from the coordinates of mi and m′
i (as noticed

by Hartley [Har97b], these coordinates must be normalized to improve the condi-

tioning of the matrix A). Since f is defined up to a scale factor, this system lets

us recover f . This can be done by looking for a unit norm vector in the (generally

one-dimensional) null space of A. This method has a small drawback. The solution

F obtained is not a rank 2 matrix in general, which means that the “epipolar geom-

etry” underlying F may not be consistent with a physical realization (epipolar lines

may not all intersect at the epipole). This problem can be solved by using the singu-

lar value decomposition of F and forcing the smallest eigenvalue to 0, or with some

kind of parallax estimation (see [BM95]).

The seven-point algorithm, used repeatedly throughout this chapter, avoids this

issue by considering only 7 point matches while enforcing the rank 2 constraint

by solving a third degree polynomial equation. Each of the 3 possible fundamen-

tal matrices obtained with this method defines a true epipolar geometry, where all

epipolar lines pass through a unique point (the epipole) while each of the 7 point

correspondences is realized exactly.
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When dealing with more than 7 or 8 points several methods exist. The classical

Least Square Minimization (LMS) looks for F that minimizes ∑i(m
′
i
T

Fmi)
2. The

solution, easily computed using linear algebra, can then be improved by minimizing

a more geometric criterion [LF96], the sum of the squared distances from each point

to the corresponding epipolar line, ∑i r2
i , where ri = dist(m′

i,Fmi). This criterion can

be symmetrized into ∑i r2
i +r′i

2
, with r′i = dist(mi,F

T m′
i). These methods and similar

ones heavily suffer from badly located points or false matches. This is why robust

methods have been introduced to reject outliers in the optimization process.

12.7.3 Robust Methods

Among the most efficient robust methods are M-estimators, LMedS, RANSAC

[SAP01,TM97], and the recentTensorVoting[TML01].M-estimators (see [ZDFL94]

for example) try to reduce the influence of outliers by applying an appropriate

weighting of the distances. The criterion to minimize becomes ∑i ρ(ri), where ρ
grows more slowly than the square function. As pointed out by Faugeras and Lu-

ong, it seems difficult to select a ρ-function for general use without being rather

arbitrary [FL01]. RANSAC methods use a set of fundamental matrices obtained

from random sets of seven-point matches (with the seven-point algorithm) to find

the largest consensus set –that is, the largest set of point matches achieving a given

match accuracy. Like M-estimators, RANSAC suffers from arbitrary choice since

an accuracy threshold has to be preset. The Tensor Voting method, which relies on

the scalar selection of a 8-dimensional hyperplane, suffers from the same kind of

problem.

12.7.4 Binocular Grouping

The a-contrario model presented in this chapter was developed by Moisan and Stival

in [MS04]. It yields absolute thresholds for rigidity detection and allows the design

of an optimized random sampling algorithm that is able to estimate the epipolar

geometry between two images even for a very large proportion of outliers.

Except in the case of a small number (n) of point matches (say, n ≤ 25) where a

deterministic algorithm (systematic search) may be used, its implementation relies

on a stochastic algorithm following the random sampling consensus (RANSAC) in-

troduced in the context of image analysis by Fischler and Bolles [FB81]. The rigidity

detection criterion it proposes dramatically improves the performance of classical

RANSAC algorithms. Using this approach, one can detect rigidity and provide a

good estimate of the fundamental matrix when the initial set of point matches con-

tains up to 90% of outliers. This outperforms the best currently known algorithms

such as M-estimators, LMedS, and RANSAC, which typically break down around

50% of outliers. As far as we know, even the recent Tensor Voting technique has not

been reported to work with more than 65% of outliers.
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Why does this approach outperform classical random sampling algorithms? In

the RANSAC algorithm, a threshold has to be preset arbitrarily to decide whether

a set of point matches is “compatible” with a fundamental matrix F . Then, using

random sampling, the largest compatible set is selected. The algorithm presented

in this chapter works in a similar way, except that no arbitrary threshold has to be

selected: The ε2 criterion is used to rate the meaningfulness of a set of point matches

in function of its size (k) and its rigidity (α). Even better, it tells in the end if the

most meaningful set found by the algorithm can be considered as meaningfully rigid

(i.e., ε2 ≪ 1) or if it could have been that rigid by accident.

12.7.5 Applications of Binocular Grouping

The model of binocular grouping presented in this chapter can be applied to stereo

pairs or in the context of Structure From Motion since no assumption is required on

the magnitude of the camera motion. It could also be used to detect several rigid mo-

tions in an image sequence (see [TZM95] for an example), although no experiment

has been made for that application. The case of nonmatched points reveals the ex-

istence of an absolute accuracy threshold (1/32) in the matching process and of an

optimal value for the number of points to be matched depending on the expected

accuracy and on the expected proportion of outliers. It suggests that additional

measures should be used for point correspondence, like color or other perspective-

invariant qualities. The meaningful rigidity criterion does not measure the uncer-

tainty of the fundamental matrix, and it might happen that a very meaningful rigid

set is found with a very uncertain associated fundamental matrix. Hence, computing

this uncertainty (see [Zha98] for a review) may still be useful for practical appli-

cations. The approach we presented could also be applied to simpler motions, as

mentioned in Section 12.4.4. The case of line matches [FLT87] or of simultaneous

points and line matches could probably be treated as well. The extension to more

than two views and to the detection of several simultaneous rigid motions could also

have interesting applications.

12.8 Exercise

12.8.1 Epipolar Geometry

Let us describe a calibrated pinhole camera by (O, i, j,k, f ), where O ∈ R3 (optical

center), (i, j,k) is an orthonormal basis of R3, and f is a positive number (focal

length). Given a point M of the space such that
−−→
OM.k > f (i.e., M is a visible point),

the optical ray [MO) intersects the image plane {P;
−→
OP.k = f} at a unique point P.

Let (O′, i′, j′,k′, f ′) be a second calibrated pinhole camera (we assume that O′ �=
O). If M is visible by this camera, the optical ray [MO′) intersects the second image

plane at a point P′ such that
−−→
O′P′.k′ = f ′.
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1) Show that −−→
O′P′.(

−−→
OO′∧−→

OP) = 0. (12.13)

2) We write
−−→
OO′ = txi+ ty j + tzk, and define

T =

⎛

⎝

0 −tz ty
tz 0 −tx
−ty tx 0

⎞

⎠ .

Show that T represents the linear mapping v 
→ −−→
OO′∧ v in the basis (i, j,k).

3) Show that if
−→
OP = Xi+Y j + f k and

−−→
O′P′ = X ′i′ +Y ′ j′ + f ′k′, then there exists a

3×3 rotation matrix R such that

(X ′ Y ′ f ′) E (X Y f )T = 0 with E = RT. (12.14)

The matrix E is called the essential matrix.

4) Now we suppose that the two cameras are not calibrated. This means that instead

of X and Y , we only observe x = αX + x0 and y = βY + y0 for some positive α and

β (as well, x′ = α ′X ′ + x′0 and y′ = β ′Y ′ + y′0). Show that there exist two invertible

triangular matrices C an C′ (called calibration matrices) such that

(x′ y′ 1) F (x y 1)T = 0 with F = C′−T
EC−1. (12.15)

The matrix F is called the fundamental matrix and (12.15) is the epipolar con-

straint mentionned in Section 12.2.1 (Equation (12.1)).

5) Show that E and F both have rank 2 and that the two nonzero eigenvalues of ET E

are equal.



Chapter 13

A Psychophysical Study of the Helmholtz
Principle

13.1 Introduction

Is our perception driven by the Helmholtz principle? In this chapter, we describe

two psycho-visual setups. The experiments were designed to test the ability of a

subject to detect the presence of certain gestalts in an image. The first psycho-visual

experiment tests human ability to detect dark or bright squares in a white noise

image (Section 13.2). The second experiment tests alignment perception (Section

13.3).

For each experiment, the responses of the tested subjects were measured as a

function of two parameters, namely the size of the gestalt to be detected and the

amount of noise. As we will see, the match between perception thresholds and

theoretical ones predicted by the Helmholtz principle is good. This is checked by

comparing the theoretical iso-meaningfulness curves in parameter space with the

observed ones.

13.2 Detection of Squares

13.2.1 Protocol

The first experiment deals with the detection of a square in a digital synthetic image.

The N × N black-and-white image is the realization of a Bernoulli process with

parameter p(x,y). Each pixel gray level u(x,y) is chosen randomly and indepen-

dently to be black (0) with probability p(x,y) and white (255) with probability

1− p(x,y). The parameter p(x,y) takes the constant value d̄ ∈ [0,1] inside a ran-

dom square domain of the image and the value 1/2 outside this square. The square

location, the side length l, and the average density d̄ are chosen randomly, uniformly

and independently. The resulting image is a binary white noise image containing a

clear (d̄ < 1/2) or a dark (d̄ > 1/2) square that may be visible or not according to

its size and the choice of d̄. Such an image is shown in Figure 13.1.

227
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Fig. 13.1 Example of the test image used

for square detection.

A sequence of 100 such random images was presented to each subject. Each

image appeared on the screen for 1.5 seconds. For each image, the subject had to

answer to the question “Can you see a square in this image?” If his answer was

positive, he had to press a yes key in the 1.5-second time lapse of image display.

Between each image, a blank image was displayed during approximately 0.5 second

to avoid interferences between successive images.

For each image, the yes-no answer was recorded along with the square side length

(l) and its observed relative density δ = |d−1/2|, where d is the ratio of white pixels

contained in the square. Note that the expectation of d is d̄ but that both numbers

may slightly differ. To each image was associated a point in the (δ , l) plane. Thus,

each subject’s answers could be displayed by two clouds of dots (the “yes” cloud

and the “no” cloud) in the (δ , l) plane (see Figure 13.3).

13.2.2 Prediction

If perception is based on the Helmholtz principle, the square detection is made a

contrario against the hypothesis that the image is a white noise –in the present case,

a Bernoulli noise with parameter 1/2. The number of false alarms (NFA) associated

to a square with side length l and relative density δ is

NFA(l,δ ) = N3 ·P
[∣
∣
∣
∣

Sl2

l2
− 1

2

∣
∣
∣
∣
≥ δ

]

, (13.1)

where Sn denotes the sum of n independent Bernoulli random variables with para-

meter 1/2. This implies that

P [Sn ≥ k] = 2−n
n

∑
j=k

(
n

k

)

.



13.2 Detection of Squares 229

The first factor of (13.1), N3, counts the number of possible squares (N2 locations

and N side lengths). With the usual notations, we have

P

[∣
∣
∣
∣

Sl2

l2
− 1

2

∣
∣
∣
∣
≥ δ

]

= P

[

Sl2 ≥ l2

2
+ l2δ

]

+P

[

Sl2 ≤ l2

2
− l2δ

]

= 2B
(

l2,
l2

2
+ l2δ ,

1

2

)

, (13.2)

so that a large deviation estimate (see Proposition 6) yields

logNFA(l,δ ) = 3logN − l2

2

(

(1+2δ ) log(1+2δ )+(1−2δ ) log(1−2δ )
)

+ log2+ o
l→+∞

(l2). (13.3)

Each level line defined by NFA(l,δ ) = ε separates two regions in the (δ , l) plane:

the squares that we are ε-meaningful and the other ones. For l large enough, the

equation of these lines is well approximated by

l ≃
√

2(3logN + log2− logε)

(1+2δ ) log(1+2δ )+(1−2δ ) log(1−2δ )
. (13.4)

If, in addition, δ is small enough, since

(1+2δ ) log(1+2δ )+(1−2δ ) log(1−2δ ) = 4δ 2 +O(δ 4), (13.5)

(13.4) may be simplified into

δ · l =

√

3logN + log2− logε

2
. (13.6)

Hence, the separation curves look like hyperbolas. The curves obtained by (13.4)

are represented in Figure 13.2 for several values of ε . If our visual perception has
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Fig. 13.2 Thresholds in the (δ , l) plane (square density and side length) predicted by the Helmholtz

principle for different values of ε (ε = 10−0,10−10,10−20,10−30) when N = 600.
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something to do with the Helmholtz principle, the experimental perception thresh-

olds should correspond to one of these NFA level lines. The level ε of this line would

indicate a biological confidence parameter.

13.2.3 Results

Eight persons participated in the experiment described. Each subject was submitted

a first (nonrecorded) training set of 50 images, then a real set of 100 images. No

other explanation was given to the subjects than just the written question “can you

see...” Each image had size 600×600 and was displayed on a 15-inch 1600×1200

LCD panel. The answers are reported in Figure 13.3. Note that the values chosen

randomly for d̄ and l excluded the domain {(δ , l), δ > 0.15 and l > 60}, for which

the detection of the square is too obvious.

The collected data fit well to the Helmholtz model if l ≤ 100 and yield ε ≃ 10−13

(see Figure 13.4). Yet, for larger values of l, the measured perception threshold

differs from the one predicted by the Helmholtz principle (see Figure 13.5).
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Fig. 13.3 Positive (left) and negative (right) answers for l ≤ 100, as a function of the relative

density of the square (δ , horizontal axis) and its side length (l, vertical axis).
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Fig. 13.4 Positive (left) and negative (right) answers for l ≤ 100 and the prediction curve

(ε = 10−13). The qualitative fit to the model is good, but the value of ε unrealistic. It is not likely

that a pixel counting be performed in such fine images. A multiscale process is probably at work.

This can be avoided by making synthetic images with much larger details, as will be done in the

next experiment.
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Fig. 13.5 Comparison between the prediction curve, positive (left) and negative (right) answers

for l ≤ 300. There is no good fit for large l’s. This seems due to an error in experiment design.

The images and features used are too large with too many small pixels. Multiscale processes are at

work in the perception of large squares. It is not likely that all pixels inside the square are counted.

Their detection is probably made by a contrast perception on their boundary and does not involve

l2 pixels, as assumed in the theoretical model.

13.2.4 Discussion

Since the experiments involve two parameters (δ and l) whereas the model only has

one (ε), the fit obtained between the measured data for l ≤ 100 and the model seems

to be relevant. How can one explain the lack of fit for l ≥ 100? For such a large

square, our visual system has to zoom out the image. Thus, a model based on the

fact that inside the square, each pixel (black or white) is taken into account becomes

questionable. It is likely that the square perception involves its boundary points, not

its interior points. Thus, one can conjecture that the images in this experiment have

too many pixels. Another argument against our perception taking into account each

pixel in such large images is the following. The value for the observed perception

threshold ε is too small and not realistic. Indeed, why should a subject allow for

so few false alarms? The next experiment will better address this sampling issue by

making images with much larger details. Then ε goes up to 10−2.

Should the responses of several subjects be fused? Performing meany measure-

ments with one single subject is difficult. A loss of concentration cannot be avoided

after a certain number of experiments. Taking several subjects could have made the

separation between “yes” and “no” answers more fuzzy. The threshold that each

subject chose might have depended on the interpretation of the question. “Do I have

to say yes when I am sure that I see a square or when I think that there may be a

square?” This question was actually asked by some subject,s but no directions were

given. As a matter of fact, no blur in the separation curve was observed by mixing

the subjects answers.

13.3 Detection of Alignments

To avoid the resolution issue mentioned in the above experiment, an experiment

involving a small number of objects was designed in the classic gestaltist style. We

refer to the books of Metzger [Met75] and Kanizsa [Kan97, Kan91, Kan79]. The
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experiment described below follows their ideas, by showing synthetic images made

of small segments that may or may not form large alignments.

13.3.1 Protocol

The protocol is essentially the same as for square detection. Images appear on the

screen during 1.5 seconds and the subject answers the question “Is there an excep-

tional alignment?” Each image is built from a hexagonal lattice with N2 cells. At

the center of each cell, there may be a small segment or not. This small segment

has three possible orientations: 0, 120, or 240 degrees, so that each segment points

toward the centers of two opposite neighboring cells.

To create each image, an alignment is generated in the following way. A posi-

tion, a length l, and an orientation are randomly chosen. They determine a unique

segment in the lattice made of l aligned small segments. These segments are con-

strained to have the same direction as the alignment itself. Depending on its length,

such a segment can be conspicuous or not. Indeed, it is endowed in a clutter of

random segments. Let us call background cells the cells not belonging to the align-

ment. To generate this background clutter for each image, a density d̄ is randomly

and uniformly chosen in [0,1/2]. Each background cell is empty with probability

1− d and contains a uniform random choice of the three possible segments with

probability d/3. All random variables are independent. Such a random image is

shown in Figure 13.6.

For each image, the answer of the subject is recorded (yes or no), along with

the alignment length (l) and the density (d) of the background little segments (as

earlier, the expectation of d is d̄). Each image is then represented by a point in the

(d, l) plane.

Fig. 13.6 Example of test image used for alignment detection (N = 50).
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Fig. 13.7 Thresholds in the (d, l) plane (segment density and alignment length) predicted by the

Helmholtz principle for different values of ε (ε = 10−0,10−1,10−2, . . . ,10−5) when N = 50.

13.3.2 Prediction

Applying the Helmholtz principle to this experiment, the number of false alarms

associated with the existence of a length l segment alignment is in the background

model is

NFA =
3

2
N3

(
d

3

)l

. (13.7)

The number 3N3/2 approximately counts the number of possible alignments on

the image (three orientations, N2 positions for the center, N/2 possibilities for the

segment length). The second term is simply the probability that the l cells of the

alignment have the proper orientation, knowing the empirical density d of the back-

ground small segments. From (13.7), we deduce that the threshold curve in the (d, l)
plane corresponding to NFA ≤ ε is defined by

l =
C

log(d/3)
, where C = log(ε)− log

(
3

2
N3

)

. (13.8)

Some of these curves are displayed in Figure 13.7.

13.3.3 Results

Seven persons participated in this experiment, yielding 900 answers. As in the

square detection, each subject was first submitted to a shorter (nonrecorded) training

set, needed by the subject to understand the procedure well. The answers are shown

in Figure 13.8.

In Figure 13.9, one can check that that for ε ≃ 10−2, the threshold curve predicted

by the Helmholtz principle separates well the “yes” and “no” answers. The fit can be
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Fig. 13.8 Positive (left) and negative answers (right) in the (d, l) plane (segment density and align-

ment length).
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Fig. 13.9 Positive (left) and negative answers (right) and the prediction curve (ε = 10−2).

hardly improved since the answers are somewhat mixed up (the threshold is fuzzy).

The experiment design seems to lead to a realistic perception threshold. The subjects

allowed themselves 1 false detection in 100 experiments.

13.4 Conclusion

The experiments have proven that the threshold curves predicted by the Helmholtz

principle fit qualitatively human perception. The observed quantitative perception

threshold seems correct in the second experiment and unrealistic in the first one.

This indicates that a tight control of the visual sampling must be performed in ex-

periment design. In that way it might be possible to find absolute psychophysical

detection thresholds –in other words, to predict which NFA humans allow them-

selves. Such an absolute detection threshold (ε = 10−2) seems to have been attained

in the second experiment.

The square detection experiment was not satisfactorily designed. In this experi-

ment the images were too large and the pixels too small. In the perception of such a

large image, we know from gestaltists and neurophysiology that masking processes

and multiscale analysis processes are at work. This may explain why the best fit for

the square detection corresponds to ε = 10−13, which is not a realistic NFA at all.
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A significant improvement in the method could be realized by designing several

experiments from which only one single threshold curve is predicted (corresponding

to a kind of “universal” value of ε), instead of a family of curves from which the

best fit is selected, as above.

13.5 Bibliographic Notes

The experiments presented in this chapter were published in [DMM03a]. They fol-

low typical setups of visual psychophysics: A shape is put in an image and noise is

added before the perception threshold is measured as a function of the amount of

noise and of the shape variability (size, contrast, etc.). There are several statistical

theories that may be used as a reference to rate the ability of our visual system.

Among them, the theory of the Ideal Observer (derived from Bayesian decision

theory) is commonly used since it yields an optimal performance bound for any ob-

server. However, it requires perfect knowledge of the image statistics and a model

of the detected pattern. This may explain why human perception generally performs

poorly compared to the Ideal Observer. To give an example, Pelly, Farell, and Moore

[PFM03] recently proved that our ability to read words in a noisy image is far from

reaching the performance of an Ideal Observer based on the matching of an image

template of each word. This fact is easily explained. We do not recognize a word as

a whole precise image. We do not have in mind an accurate letter model but a qual-

itative one. Thus, the experiment was not well designed, in about the same way our

above square experiment was not. The same lack of performance has been studied

by Legge, Kersten, and Burgess in the case of contrast discrimination to explain why

“even the highest contrast sensitivities that humans can achieve for the detection of

targets on uniform fields fall far short of ideal values” [LKB87].





Chapter 14

Back to the Gestalt Programme

Chapter 2 proposed a classification of gestalt grouping processes. The basic group-

ing laws that group points if they share some geometric quality were called partial

gestalts. A synopsis of all partial gestalts computed in this book is presented in

Section 14.1. At the end of the chapter, a review of other gestalts computed in re-

cent works confirms that all partial gestalts can be computed by similar methods.

Thus, the focus in the computational gestalt programme should now be to formalize

the more general gestalt principles, starting with gestalt collaboration and competi-

tion. How far do we stand in that direction? One of the grouping laws, the vanishing

point detector, uses previously calculated gestalts, namely alignments. Thus, at least

in this case, the recursive gestalt building up has been addressed. In Section 14.2 a

successful complete gestalt analysis will be performed on a digital image by com-

bining most partial gestalts computed so far. On the dark side, Section 14.3 presents

a series of striking experimental examples showing perceptually wrong detections

in the absence of collateral inhibition between conflicting partial gestalts. These ex-

periments show that the gestalt programme still lacks some fundamental principle

on gestalt interaction. A good candidate would be an extension of the exclusion

principle introduced in Chapter 6. Another possibility would be to go back to vari-

ational principles like the Minimum Description Length principle. We address this

possibility in the next and last chapter.

14.1 Partial Gestalts Computed So Far

Table 14.1 summarizes the very similar formulas computing the number of false

alarms (NFA) of the following partial gestalts: alignments (of orientations in a dig-

ital image), contrasted boundaries, similarities for some quality measured by a real

number (gray level, orientation, etc.), vanishing points, and the basic vicinity gestalt.

Details of the computation of these partial gestalts were given in Chapters 3, 5, 7, 8,

9, and 11. The perspective binocular grouping gestalt was omitted from Table 14.1

as it cannot be summarized in three lines. However, it is similar to dot alignment.

237
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Table 14.1 Synopsis of partial gestalts, their parameters, and their NFA

GROUP LOOKED FOR MEASUREMENTS NUMBER OF FALSE ALARMS

Alignment of directions on a segment [DMM00]

A discrete segment with

points at Nyquist distance

(i.e., 2)

k: number of aligned points

l: number of points on the segment

Nsegments ·B(l,k, p)

Nsegments = N4

N2: number of pixels in the image

p = 1/16 (angular precision)

Contrasted edges and boundaries [DMM01b]

A level line (or a piece of)

with points at Nyquist dis-

tance (i.e., 2)

µ: minimum contrast (gradient norm) along the

curve

l: length of the curve

Nlevel lines ·H(µ)l

H: empirical cumulative distribution of the

gradient norm on the image

Similarity of a uniform scalar quality (gray level, orientation, etc.) [DMM03b]

A group of objects having

a scalar quality q such that

a ≤ q ≤ b

k: number of points in the group

M: total number of objects

L(L+1)

2
·B
(

M,k,
b−a+1

L

)

L: number of values (q ∈ {1, . . . ,L})

Similarity of a scalar quality with decreasing distribution (area, length, etc.) [DMM03b]

A group of objects having

a scalar quality q such that

a ≤ q ≤ b

k: number of points in the group

M: total number of objects

L(L+1)

2
·max

p∈D
B

(

M,k,
b

∑
i=a

p(i)

)

L: number of values (q ∈ {1, ...,L})

D: set of decreasing distributions on

{1, ...,L}
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Alignment of points (or objects) [DMM03b]

A group of points falling in a

strip (region enclosed by two

parallel lines)

p: relative area of the strip

k: number of points falling in the strip

Nstrips ·B(M,k, p)

M: total number of points

The strips are quantized in position, width,

and orientation

Vicinity: clusters of points (or objects) [DMM01a]

A group of points falling in

a region enclosed by a low-

resolution curve

σ : relative area of the region

σ ′: relative area of the thick low-resolution

curve

k: number of points falling in the region

Nregions ·
M

∑
i=k

(
M

i

)

σ i(1−σ −σ ′)M−i

M: total number of points

Nregions = N2qr2L: the low-resolution

curves are quantized in resolution (q),

thickness (r), location (N), and bounded in

length (L).

Vanishing point: group of concurrent straight lines [ADV03]

A group of straight lines

meeting all in the same “van-

ishing region”

p j: probability that a line meeting the image

meets the vanishing region.

k: number of lines meeting the region

M ·B(N,k, p j)

M: total number of vanishing regions

N: number of lines detected in the image.



240 14 Back to the Gestalt Programme

The first row of Table 14.1 treats the alignments in a digital image. A segment

in the image containing enough points with orientations aligned with the segment is

perceived as an alignment. The alignment gestalt was detailed and discussed thor-

oughly. Indeed, it can be extended to the detection of any other shape such as cir-

cles, conics, and actually any pattern of interest with fixed shape – for instance,

a logo. The extension is trivial provided the shape to be detected is described by

its orientation at each one of its l points. Then the decision of whether an ob-

served shape matches a given query boils down to counting the number of points

k where both orientations coincide. The number of false alarms in the detection is

NFA = M ·B(l,k, p), where M is the number of possible poses of the pattern and p is

the orientation precision. As an example showing that this extension works without

further discussion, an arc of circle detector is tested in Section 14.3.2.

All of the other gestalts are built in a similar manner and we need not comment

on them all. We do, however, notice that each one of them has required different

probabilistic modeling for the Helhmholtz a-contrario model. In one instance, the

edge or boundary detection, the a-contrario model is learned from the image. This

opens a Pandora’s box of possible uses of learned a-contrario models for every sin-

gle gestalt quality. For instance, the alignment detector can use an observed distrib-

ution of orientations instead of the uniform distribution. This yields similar results,

but the vertical and horizontal alignments are less favored. Indeed, the probability

of getting these orientations in most images is higher than average.

The third and fourth rows in the table summarize the similarity gestalt: objects

grouped by orientation, gray level, or any perceptually relevant scalar quality. The

hope is that Table 14.1 does not need to be extended to infinity and that one already

has a tool and enough variants to deal with any other gestalt problem.

14.2 Study of an Example

The main challenge is now to make partial gestalts interact and to answer the two

main questions that stopped gestaltism, the resolution of gestalt conflicts and the

principles of their collaboration. This is a major problem directly related to the so-

called binding and inhibition problem in neurophysiology. Computer Vision seems

to be the right research field to test abstract principles governing the collaboration

of different gestalt qualities. A third related question is the search for principles

governing the bottom-up building of gestalts. Thus, it seems interesting to do here

some preliminary experiments combining several of the gestalt qualities that can be

computed so far.

Let us undertake a complete study of a simple but real digital image involving

almost all computational gestalts of Table 14.1. The analyzed image in Figure 14.1

is a common digital image – a scan of a photograph – and has blur and noise. The

seeable objects are electrophoresis spots, which all have similar but varying shapes

and colors and present some striking alignments. Actually, all of these perceptual

remarks can be recovered in a fully automatic way by combining several partial

gestalt grouping laws (Figure 14.2).
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Fig. 14.1 Collaboration of gestalts. The objects tend to be grouped similarly by several differ-

ent partial gestalts. First row: original DNA image (left) and its maximal meaningful boundaries

(right). Second row, left: histogram of areas of the meaningful blobs. There is a unique maximal

mode (256-416). The outliers are the double blob, the white background region, and the three tiny

blobs. Second row, middle: histogram of orientations of the meaningful blobs (computed as the

principal axis of each blob). There is a single maximal meaningful mode (interval). This mode is

the interval 85-95 degrees. It contains 28 objects out of 32. The outliers are the white background

region and three tiny spots. Second row, right: histogram of the mean gray levels inside each blob.

There is a single maximal mode containing 30 objects out of 32, in the gray-level interval 74-130.

The outliers are the background white region and the darkest spot.
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Fig. 14.2 Gestalt grouping principles at work for building an “order 3” gestalt (alignment of blobs

of the same size). First row: original DNA image (left) and its maximal meaningful boundaries

(right). Second row: left, barycenters of all meaningful regions whose area is inside the only max-

imal meaningful mode of the histogram of areas; right, meaningful alignments of these points.
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First, the contrasted boundaries of this electrophoresis image are computed

(Figure 14.1, top-right). Notice that all closed curves found are indeed perceptually

relevant since they surround the conspicuous spots. Many other possible boundaries

in the noisy background have been ruled out and remain “masked in texture”. Let us

apply a second layer of grouping laws. This second layer will use as atomic objects

the blobs found at the first step. For each of the detected boundaries three qualities

will be computed:

1. The area enclosed by the boundary, whose histogram is displayed on the bottom

left of Figure 14.1. There is a unique maximal mode in this figure, which actually

groups all the blobs with similar areas and rules out two tiny blobs and a larger

one enclosing two different blobs. Thus, almost all blobs get grouped by this

quality, with the exception of two tiny spots and a double spot.

2. The orientation of each blob, an angle between −π/2 and π/2. This histogram

(Figure 14.1, bottom-middle) again shows a single maximal mode, again com-

puted by the formula of the third row of Table 14.1. This mode appears at both

endpoints of the interval, since the dominant direction is ±π/2 and these values

are identified modulo π . Thus, about the same blobs as in quality 1 get grouped

by their common orientation.

3. The average gray level inside each blob: Its histogram is shown on the bottom

right of Figure 14.1. Again, most blobs, but not all get grouped with respect to

this quality.

A further structural grouping law can be applied to build subgroups of blobs

formed by alignment. This is illustrated in Figure 14.2 (bottom-right), where the

meaningful alignments are found. This experiment illustrates the usual strong col-

laboration of partial gestalts: Most salient objects or groups come into sight by sev-

eral grouping laws.

One would like to claim that the gestalt analysis of this apparently simple digital

image is complete. This is not quite the case. A visual exploration shows that the

fainter blobs, visible though they are, were not detected. They are not surrounded

by a meaningful boundary. They are seen because of their similarity in shape and

position to the detected gestalts. Indeed, these blobs are no longer visible when they

are displaced in a more arbitrary position in the image.

14.3 The Limits of Every Partial Gestalt Detector

14.3.1 Conflicts Between Gestalt Detectors

This book argues in favor of a very simple principle, the Helmholtz principle, ap-

plicable to the automatic and unsupervised detection of any partial gestalt. Are the

obtained detections in agreement with our perception? In this subsection, we will see

several experiments proving that there is a good deal of visual illusion in any pos-

itive result provided by a partial gestalt detector. Partial gestalts often collaborate.
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Fig. 14.3 Left: the INRIA pattern (size 512×512, from INRIA-Robotvis database). Middle: mean-

ingful boundaries. Right: meaningful alignments. This experiment illustrates the possible collabo-

ration of partial gestalts. The rectangles are detected as constrasted boundaries alone, and they also

appear as a consequence of the alignment detector.

Fig. 14.4 Smooth convex sets or alignments?

In other words, a group detected by a partial gestalt is corroborated by another.

For instance, the boundaries and alignments in Figure 14.3 are in good agreement.

However, what can be said about the experiment in Figure 14.4? In this portrait

of a cheetah, the alignment detector was applied. It worked well on straight grass

leaves. Unfortunately, some unexpected alignments appear in the cheetah’s fur. Is

that a wrong detection? These alignments actually do exist. Each detected line is

tangent to several convex dark spots on the fur. This tangency generates a meaning-

ful excess of aligned points on the line, the convex sets being smooth enough and

therefore having on their boundary a long enough segment tangent to the detected

line.

An illustration of this fact is given in Figure 14.5. Four circles create two align-

ments on the two straight lines tangent to the circles. To geometers these alignments

make sense but not to common perception. In fact such alignments are masked by

the more powerful partial gestalts in game here – those that let us see circles. The

right partial gestalts to deal with the circles are convexity, closure (of a curve), and
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Fig. 14.5 Alignment is masked by good continuation and convexity: The small segments on the

right are perfectly aligned. Any alignment detector should find them. All the same, this alignment

disappears on the left figure, as we include the segments into circles. In the same way, the casual

alignments in the Cheetah fur (Figure 14.4) are caused by the presence of many oval shapes. Such

alignments are perceptually masked and should be computationally masked!
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Fig. 14.6 One cluster or several alignments?

good continuation – or more prosaically, a circle detector. To discard the detected

alignments, these other partial gestalts should be systematically searched when we

look for alignments. Then the alignments that occur only because they are tangent

to one or several smooth curves could be inhibited by the exclusion principle.

An alignment can be retained only if it does not derive from the presence of

several smooth curves. This statement can be generalized. Indeed, no gestalt is just

a positive quality. The outcome of a partial gestalt detector is valid only when all

other partial gestalts have been tested and the eventual conflicts handled.

The same argument applies to the Figure 14.3.1 experiment. In that case, a dense

cluster of points is present. Thus, it creates a meaningful amount of dots in many

strips and the result is the detection of obviously wrong alignments. Again, the de-

tection of a cluster should inhibit such alignment detections. We defined an align-

ment as “many points on a thin strip”, but must add to this definition: “provided

these points do not build one or two dense clusters”.

14.3.2 Several Straight Lines or Several Circular Arcs?

One can reiterate the same problematic with another gestalt conflict. In Figure 14.7,

a circle arc detector has been applied. This detector can be built on exactly the

same principles as an alignment detector. First, compute the total number of arcs

of circles in an image with given size N ×N. This number is roughly N5, as the
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Fig. 14.7 Left: original “MegaWave” image. Right: a circular arc detector is applied to the image.

This image contains many smooth curves and obtuse angles. One can find meaningful circular

arcs tangent to these structures. This illustrates the need for principles governing the interaction

of partial gestalts. The best explanation for the observed structures is “good continuation” in the

gestaltic sense (i.e., the presence of a smooth curve, or of straight lines (alignments) forming obtuse

angles). Their presence entails the detection of arcs of circles, which are not the final explanation.

Fig. 14.8 Left: every obtuse angle can be made to have many points in common with some long

arc of circle. Thus, an arc of circle detector will make wrong detections when obtuse angles are

present (see Figure 14.7). In the same way, a circle detector will detect the circle inscribed in any

square and, conversely, a square detector will detect squares circumscribed to any circle.

product of N2 for the choice of the center of the circle, N for its radius, N for the

starting point of the arc, and N for the ending point. At each point of the image,

compute, as for alignments, an orientation. Let C be an arc of circle, and let l be

its length (counted in independent points, at distance 2 from each other). Count the

number k of points among the l whose orientation is aligned to a fixed precision

p with the tangent to the circle. The event’s NFA is NFA(l,k, p) = N5B(l,k, p).
For the standard precision p = 1/16, all meaningful circle arcs of a digital image

have been computed in Figure 14.7. Since the MegaWave image contains many

smooth boundaries and several straight lines, many meaningful circular arcs are

found. It may be discussed whether those circular arcs are present or not in the

figure. Clearly, any smooth curve is locally tangent to some circle. In the same

way, two segments with an obtuse angle are tangent to several circular arcs (see

Figure 14.8). This can lead to a “wrong” detection of an arc of circle, where the

detection of two alignments should be preferred. See, for example, the detected arc
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of circle on the coat, just under the “M”. In fact a circle masks its tangent alignments.

Conversely, we do not see an arc of circle where we see an obtuse angle. We can

just hint here that an obvious solution to this conflict might be to choose as the best

explanation the one with the lowest NFA, thus applying the exclusion principle. This

implies the comparison of NFAs for different kinds of gestalt and raises the problem

of a general calibration of NFA over many gestalts. For the time being, the statement

of principles leading to such a cross-calibration is open.

In any case, we cannot hope for any reliable explanation of a figure by summing

up the results of one or several partial gestalts. Only a global synthesis, treating all

conflicts of partial gestalts, can give the correct result.

In view of these experimental counterexamples, it may well be asked why par-

tial gestalt detectors often work so well. This is due to the redundancy of gestalt

qualities in natural images. Indeed, most natural or synthetic objects are simultane-

ously contrasted with respect to background and with smooth boundary. They have

straight or convex parts, and so forth. Thus, in many cases, each partial gestalt detec-

tor will lead to the same group definition. The experiments on the electrophoresis

image (Figure 14.1) have illustrated this collaboration of gestalt phenomenon. In

that experiment, partial gestalts collaborate and seem to be redundant.1 This is an

illusion that can be broken when partial gestalts do not collaborate.

14.3.3 Influence of the A-contrario Model

By definition, in the a-contrario model, the expected number of ε-meaningful struc-

tures is less than ε . In the case of alignements, the a-contrario model is a pure

Gaussian noise image in which orientations are independent (at distance larger than

2) and uniformly distributed on [0,2π). In Chapter 5, Figure 5.2, we have shown

such an example of a pure noise image. In this image, no meaningful alignement

was detected. Now, if we quantize this image, on five gray levels for instance,

many meaningful alignements are detected (see Figure 14.9). These alignements

are mainly diagonal. The reason for this is that in a quantized noise image, the his-

togram of orientations is not flat anymore. The values multiple of π/4 are highly

favored (the extreme case is the one of a binary noise image where the only possible

orientations, with the computation of the gradient we have given in Chapter 5, are

the multiples of π/4). The alignements detected in Figure 14.9 cannot be considered

as false detections; they are part of the structure of this quantized image. Now, if we

change the a-contrario model and replace the uniform assumption for orientations

by the histogram of orientations in a quantized noise image, then no meaningful

alignment will be detected.

When changing the a-contrario model, what we change is the number of false

alarms (NFA) of the event we consider. In the example of Figure 14.9, all of the

1 Recently, Krüger and Wörgötter [KW02] gave strong statistical computational evidence in favor

of a collaboration between partial gestalt laws, namely collinearity, parallelism, color, contrast,

and similar motion.
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Fig. 14.9 Left: a pure Gaussian noise image quantized on five gray levels. Right: all meaningful

alignements detected in this image.

detected alignements have a NFA larger than 10−5 under the uniform assumption.

However, when using the histogram of orientations in the quantized image as an

a-contrario assumption, all of the segments have a NFA larger than 1.

This is a general behavior of the a-contrario approach: If a particular structure

is taken into account in the a-contrario model, then this structure will not be mean-

ingful anymore. This is what happens for alignments in a quantized image: If the

a-contrario assumption includes the fact that diagonal orientations have a high prob-

ability, then diagonal alignments in the quantized noise image are not meaningful

anymore.

As pointed out to us by David Mumford, the same kind of phenomenon arose

in the detection of repeating spike patterns in neural recordings (see, for instance,

[CRM03] or [HGAB03]). It turned out that apparently very significant repetitions of

complex spike patterns were caused by the null hypothesis (the a-contrario model)

not allowing bursts. If bursts were included, these repetitions were not significant

at all. This is also illustrated by the example discussed in Figure 14.3.1: If the a-

contrario model used for the detection of dots alignements includes the fact that

dots can be organized into clusters, then no meaningful alignment will be detected

in this set of dots.

14.4 Bibliographic Notes

This chapter is directly inspired from the papers [DMM03b, DMM01a, DMM04].

In Christopher Small’s book [Sma96] Section 6.3, the author provides an analy-

sis of post mold data. The problem is to derive from these data the shape of a

village of circular huts. The problem is treated in exactly the way we treated the
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detection of arcs of circles by computing the probability that just by chance a num-

ber larger than k posts among the l observed in the data falls into a given crown.

Since a first draft of the present manuscript was completed, several studies were

done to improve the list of computational gestalts. The Chapter 9 boundary and

edge detection theory was completed by F. Cao, P. Musé, and F. Sur in [CMS05].

In [Cao04] and [Cao03] F. Cao successfully applied the Helmholtz principle for

the detection of good continuations and corners in image level lines. In [MVM05],

L. Moisan, E. Villéger, and J.M. Morel worked on the constant width detection.

F. Cao, Y. Gousseau, P. Musé, and F. Sur developed a theory of shape recognition

with a learned a-contrario model which makes it a very flexible tool for shape data-

bases (see [MSCG03], [MSC+06a], [MSC+06b], [CGM+04], [Mus04], [Sur04]).

A. Desolneux, A. B. Petro, and J. Delon generalized the Chapter 7 histogram analy-

sis method into a nonparametric law estimation theory. This theory segments 1-D

histograms and detects very small modes [DDLP07b, DDLP07a]. The problem of

meaningful clusters has been addressed in higher dimension by F. Cao, J. Delon,

A. Desolneux, P. Musé, and F. Sur in [CDD+04]. They define maximal meaningful

clusters in a hierarchical clustering tree and apply the resulting algorithm to shape

recognition. The Helmholtz principle was used (in a way very similar to the align-

ment case of Chapter 5) by J.L. Lisani and J.M. Morel to detect major changes

in satellite images [LM03] and by F. Cao and P. Bouthemy in [CB05] for image

similarity detection. G. Koepfler, F. Dibos, and S. Pelletier used similar techniques

for real-time segmentation of moving objects in a video sequence [KDP05]. The

problems of motion detection and estimation using a-contrario models were also ad-

dressed by L. Igual, L. Garrido, and V. Caselles in [IGC05] and by T. Veit, F. Cao,

and P. Bouthemy in [VCB05] and [VCB04]. The work of A. Robin, L. Moisan,

and S. Le Hégarat-Mascle [RMHM05] treats the problem of automatic land-cover

change detection from coarse resolution images by the a-contrario approach.



Chapter 15

Other Theories, Discussion

In this chapter, we review and discuss precursory and alternative theories. We start

in the first section with Lindenbaum et al. Their papers contain a theory of shape

detection whose setting is essentially the same as the one developed in this book.

The Bienenstock et al. compositional model discussed in Sections 15.2 and 15.5

is an ambitious theory attempting to build directly a grammar of visual primitives.

A nice illustration of these compositional approaches is the work of Zhu et al. de-

scribed in Section 15.2. Section 15.3 discusses the link among meaningful events,

hypothesis testing, and Signal Detection Theory. It also shows that the Number of

False Alarms (NFA) can be put in a classical statistical framework where multiple

testing is involved. In Section 15.4 the Arias-Castro et al. geometric detection the-

ory is addressed. This theory is very close in spirit to the tools in this book and are

actually partly inspired from it. It gives complementary information on asymptotic

geometric detection thresholds and hints on how to speed up detection algorithm.

Section 15.5 discusses the Bayesian theory according to which the probability of

the image interpretation given the observation must be maximized. An extension of

this theory, the Minimum Description Length, is also invoked in the compositional

model. In both cases, a probability is maximized. In contrast, meaningful events

were obtained by minimizing an a-contrario probability. This point is discussed and

the complementarity of both approaches are indicated.

15.1 Lindenbaum’s Theory

We already mentioned D. Lowe and J. Stewart, who proposed methods very close in

spirit to the detection theory developed in this book. Other precursors are Michael

Lindenbaum and his collaborators [Lin97]. They proposed evaluating the absolute

performance of an invariant shape recognition device. This performance depends

on: the number of points k in the shape, the number of points N in the background,

the accuracy d of the recognition, the required invariance, and ε , the allowed error

249
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probability for each test. The typical theorems proved by Lindenbaum involve a

Hoeffding inequality to give a lower bound for the minimal number of points k in

the shape necessary to get an 1− ε confidence for the recognition. Of course, k is

a function of the four mentioned variables. Fixing the accuracy d leads to evaluate

what we called the number of tests. Of course, this number of tests grows with the

invariance requirement and gets larger when the accuracy decreases. Lindenbaum

points out the log dependence of the threshold k on N, d, and δ .

15.2 Compositional Model and Image Parsing

In [BGP97] E. Bienenstock, S. Geman, and D. Potter proposed a gestalt compositional

model in which visual primitives are recursively composed subject to syntactic

restrictions, to form tree-structured objects and object groupings. The ambiguities

of the final result are solved by a minimum-description-length functional. For these

authors, the compositional rules have a structure close to Chomsky’s grammar. In

the probabilistic modeling of these rules, the authors rely on Laplace’s Essay on

Probability.

On a table we see letters arranged in this order, Constantinople, and we judge that this

arrangement is not the result of chance, not because it is less possible than the others, for

if this word were not employed in any language we should not suspect it came from any

particular cause, but this word being in use amongst us, it is incomparably more probable

that some person has thus arranged the aforesaid letters than this arrangement is due to

chance.

For Bienenstock, Geman, and Potter, the fact that Constantinople is in use in

French and other languages constitutes a binding rule

C +o+n+ s+ t +a+n+ t + i+n+o+ p+ l + e ⇒Constantinople

and this binding is by far more likely than the one building I pctneolnosant, which

has the same letters. In our terms, Laplace is implicitly using an a-contrario model,

where any combination of the 26 alphabet letters would be equally likely. A modern

dictionary contains not more than 105 words. The number of possible words with 14

letters like Constantinople is about 2.4×1019. In this background model, the proba-

bility of the group Constantinople happening “just by chance” is less than 10−14. We

could have called the Helmholtz principle the Laplace principle! The Bienenstock

et al. theory is close to the theory presented in this book because the binding rules

are learned as “suspicious coincidences”. Suspicious coincidences are meaningful

events in an a-contrario model. The scope of the theory is more ambitious. The

theory aims at a global image explanation and at an automatic definition of partial

gestalts. The fact that alignments are of interest in an image should be discovered

and not imposed a priori as we did in Chapter 5.
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A nice illustration of these ideas of compositional models and grammars is the

work of Han and Zhu [HZ05] for image parsing on scenes with man-made objects,

such as buildings, hallways, kitchens, and livingrooms. Their model includes more

gestalt grouping principles than any other to date. Its combines together aligne-

ments, vanishing points, parallelism, perspective, with recursivity. The objective of

image parsing is to decompose an image into its constituent components in a hi-

erarchical structure represented by a parsing graph. This is a natural idea, and one

can ask why this problem has not been fully addressed before. There are different

reasons for this: (1) It is not always easy to compute “primitive patterns” (like seg-

ments, or rectangles, or edges) in a reliable way from images. (2) Many conflicts

are possible when building up higher-order objects from the primitives. Thus, one

needs a mathematical model that is able to handle together and compare different

conflicting interpretations. (3) The problem of finding the best interpretation of a

scene is the same as finding the best parsing graph, and powerful inference algo-

rithms are needed to find the solution. Recent developments about attribute graph

grammars and stochastic context-sensitive grammars, and also inference tools like

data-driven Monte Carlo Markov chains (MCMC), have made it possible to apply

grammar parsing algorithms to real images and have motivated the work of Han and

Zhu. Let us describe their work with more details and explain how they combine

elementary gestalt grouping principles for parsing “rectangular scenes”. Their algo-

rithm proceeds in different phases. Some phases are bottom-up: From small straight

segments and vanishing points detected in the input image, some “strong” rectangles

are proposed. And some phases are top-down: Grammar rules are used, and rectan-

gles produce top-down proposals that will be, or not, validated from the edge map.

See Figure 15.1 for an illustration of this. There are four attribute grammar rules for

nonterminal nodes, and they can be used recursively: There is the line production

rule, the cube production rule, the mesh production rule, and the nesting production

rule. Each production rule is associated with equations that constrain the attributes

(like position, size, and orientation) of the node and of its children. Horizontal con-

nections between nodes also show constraints between attributes. The problem of

finding the best parsing graph G of an image I is expressed in a Bayesian frame-

work, that is, find

G∗ = argmax p(I|G)p(G).

The prior p(G) is computed as a function of the gain in bits when coding the

attributes of children nodes given the attributes of the parent node. The likeli-

hood p(I|G) is computed thanks to the primal sketch model of Guo, Zhu and Wu

[GZW03]. To infer the best parsing graph, MCMC methods can be used. In the case

of rectangular scenes, since the parsing graph is not too big (typically 2–3 layers

and less than 20 nodes), more direct search algorithms can be used. An example of

the type of results obtain by Han and Zhu is shown in Figure 15.2.
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Fig. 15.1 Work of Han and Zhu about parsing “rectangular scenes”: Some phases of their al-

gorithm are bottom-up (“strong” rectangles are proposed from the edge map), and some phases

are top-down (rectangles are proposed by some grammar production rules). (Figure courtesy of

S.C. Zhu.)

Fig. 15.2 Example of results of Han and Zhu. From left to right: input image; edge map; rectangles

detected and grouped. (Figures courtesy of S.C. Zhu.)

15.3 Statistical Framework

15.3.1 Hypothesis Testing

The notion of ε-meaningful has to be related to the classical statistical framework of

hypothesis testing. The a-contrario model can be seen as the null hypothesis H0 and

the significance level of the test is α = ε/Ntests, where Ntests denotes the number of
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geometric configuration that are tested (we have, for instance, Ntests = N4 in the case

of segments in an image of size N ×N pixels). The null hypothesis is rejected when

the p-value of the test is less than the significance level α . In the case of alignments,

the a-contrario model or null hypothesis is that the orientations along a segment

are independent and uniformly distributed on [0,2π). Segments that reject the null

hypothesis are called ε-meaningful segments, or “detections”. Now, the difference

that leads us to have a slightly different terminology is the following: We are not in

a position to assume that the segment detected as ε-meaningful are independent in

anyway. Indeed, if (for example) a segment is meaningful, it may be contained in

many larger segments, which also are ε-meaningful. Thus, it is convenient to com-

pare the number of detected segments to the expectation of this number. This is not

exactly the same situation as in failure detection, where the failures are somehow

disjoint events. This means that ε is an absolute parameter, not depending on the

size of the image but only on the number of false detections that the user allows.

Of course, if the image is larger, it may be expected that an increasing number of

false detections should be allowed. However, by fixing ε always smaller than 1, we

decided not to take this opportunity. Our proposed definition of meaningfulness is

also related to the statistical analysis of functional medical images (fMRI, PET) by

Statistical Parameter Maps (SPM), with two main differences, however. The first

one is this: In the recent work of Stuart Clare (FMRIB Center, Oxford, see [Cla97])

and in the works of Friston et al. [FFLF91] and Forman et al. [FCF+95], an hy-

pothesis testing method against white noise is performed in a time series. As in the

present work, the binomial law appears and a careful account of the effect of filter-

ing on the number of effective degrees of freedom: This leads, for example, Clare

to divide this number by 3 after a small Gaussian filtering and is related to our deci-

sion of considering only nets of points at a distance larger than 2. Clare does as we

do; he p-tests against the white noise assumption and admits a p-value of 0.005 by

patient. Here is the main difference: The number of patients and the length of the

data are not taken into account in the test. In particular, the time length of the test

is, of course, just enough to perform a significant test and the p-value is a threshold

“per patient”. In our case, we have two factors: The first one is that the number of

“patients” is huge. Thus, with a p-test, the expectation of false detections would be

much above 1, which is what we avoid by imposing ε much smaller than 1 and by

entering into the computation the number of segments N4. This is why we compute

an expectation and not a probability: We have too many and not independent trials.

The reason for introducing expectation here is the nonindependence (contrarily to

patients) and the huge number of trials, increasing with the image size.

15.3.2 Various False Alarms or Error Rates Compared to NFA

The computation of a number of false alarms is related to the classical statistical

question of multiple testing (see, for example, [HT87]). Let Ntests be the number of

tests and let V be the random variable that denotes the number of false alarms (also

called false positives). The terminology distinguishes the following:
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– FWER: Familywise error rate, probability of at least one false alarm = P(V ≥ 1).
– PFER: Per family error rate, expectation of the number of false alarms = E [V ].
– PCER: Per comparison error rate, expectation of the proportion of false alarms

among the total number of tests = E [V/Ntests].

From the statistical viewpoint, the NFA can be viewed as a decision threshold

taking into account the multiplicity of tests. It is related to the Per Family Error

Rate (PFER). The consistency of the NFA definition relies on the result the expected

number of false alarms of ε-meaningful events is less than ε . Various versions of

this simple result have been given. We can view the question “Is the NFA of some

event less than ε?” as a test. Considering this family of tests, we can also consider

its PFER, namely the expectation of the number of positive answers. The above-

mentioned generic result can be denoted as

PFER (NFA ≤ ε) ≤ ε. (15.1)

This property can be used as a starting point to define NFAs, as done in [GM06], and

for continuous random variables, (15.1) is generally an equality (see Section 5.6).

Let us formalize a bit more. Call E = (E1, . . . ,ENtests) the Boolean random values

equal to 1 if the NFA of the observed configuration i is less than ε (which is equiv-

alent to say that the p-value of the observed configuration is less than ε/Ntests).

Thus, Ei = 1 if and only if NFA(i) = NP(Ei = 1) ≤ ε . The FWER is defined as the

probability that at least one of the tests is positive. Thus,

FWER(E) = P(max
i

Ei ≥ 1).

By the Bonferroni inequality,

FWER(E) ≤
Ntests

∑
i=1

P(Ei = 1) =
Ntests

∑
i=1

NFA(i)

Ntests

≤
Ntests

∑
i=1

ε

Ntests

≤ ε.

All in all:

Theorem 10 Consider a family of Ntests configurations indexed by i for which a

NFA is computed. Consider the family E of the following N tests: “is configuration

i ε-meaningful?” Then

PCER(E) =
ε

Ntests

, FWER(E) ≤ ε, PFER(E) ≤ ε. (15.2)

We thank Jérémie Jakubowicz for valuable suggestions on the comparison of

these various error rates.

15.3.3 Comparison with Signal Detection Theory

Compared to the classical Signal Detection Theory [Tre68, Kay98], we believe that

the approach we proposed in this book may be an interesting alternative, especially
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when human vision is concerned. This point has been recently discussed in [GM06]

in the context of medical imaging analysis, for which metrics reproducing the per-

formance of human vision are often sought.

In Signal Detection Theory, both the background and the signal are modeled

with probability models, called H0 and H1, respectively. Then an Ideal Observer is

defined from the likelihood ratio of the observed data under H1 and H0, and the

Neyman-Pearson Lemma ensures that this Ideal Observer cannot be outperformed.

Several mathematical difficulties may arise if H0 and H1 are not simple enough, but

approximations of the Ideal Observer (like the Prewhitening Matching filter, for ex-

ample) can be used to overcome this difficulties. A more fundamental issue is: How

to use Signal Detection Theory when the signal to detect is not known precisely, as

it is often the case in Computer Vision? The a-contrario approach proposes an an-

swer, which consists in breaking the symmetry between the background and signal

models. The structure to be detected is no longer described by a probability mea-

sure H1, but by one or several measurements inspired from Gestalt Theory. In the

case of alignments, for example, the measurement is simply the number of aligned

directions on a segment, which is clearly a significant cause of perceptual grouping.

Describing grouping laws that way is easier and more flexible than trying to build

a probabilistic model of all potential structures, as required in the H1 formulation.

This is an agreement with general principles of vision (human or not), which do

not build a dictionary of the visual world but, rather, a set of rules to understand it.

In fact, there is no theoretical contradiction between Signal Detection Theory and

the a-contrario approach, since the latter may use the Ideal Observer to derive the

optimal measurements associated to a given (supposedly known) H1 model of the

signal. However, this is not appropriate in general, as shown in [GM06] for exam-

ple: When “spots” are to be detected on a low-frequency texture, the Ideal Observer

builds correlation templates that are not L2 images but distributions, which are very

sensitive to modeling errors. These matching templates perform optimally if the

searched signal corresponds well to the model, but poorly if the signal model is

wrong. Conversely, a-contrario observers based on simpler measurements are more

robust and often nearly optimal.

15.4 Asymptotic Thresholds

A Stanford statistical geometry group consisting of E. Arias-Castro, D. Donoho,

X. Huo and C. Tovey has developed a geometric detection statistical theory close in

spirit and sometimes directly inspired by the theory presented in this volume. Their

aim is to find the minimal number of geometric tests for each detection. In the case of

alignments, this theory yields a reduction from N4 tested segments to only N2 logN.

Unfortunately, the model is a random dot Poisson model, not directly applicable

to digital images as the model of Chapter 5. The authors prove the existence of

asymptotic geometric detection thresholds when N → ∞ for the good continuation

gestalt. Here are some appealing examples. Assume n points are scattered uniformly

on the unit square [0,1]2 by a Poisson spatial process. Then the following hold:
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– The asymptotic maximal number of points on a length l curve is O(l
√

n).
– The asymptotic maximal number of points in a twice differentiable curve with a

priori bounded length and curvature is O(n1/3).
– Take n random points endowed with a random uniform direction, then the asymp-

totic maximal number of points in the same type of curve is O(ln14) [ACDHT05].

– There is an asymptotic optimal detection threshold for a line segment with differ-

ent densities in a Gaussian white noise image. Here, the threshold is performed

on the density of the segment [ACDH05].

– There are asymptotic optimal detection thresholds for a different density on a

Cα,β curve in Poisson noise. Here, 1 < α < 2 is a Hölder exponent [ACDH03].

These papers consider asymptotic thresholds as the number of samples tends to

infinity. Indeed, one of the main ingredients is the Erdös-Renyi asymptotic estimate

on the size of the longest run of heads in a series of m Bernoulli trials. For practical

applications, the nonasymptotic detection thresholds can simply be learned on white

or Poisson noise images.

15.5 Should Probability Be Maximized or Minimized?

The present essay on computational Gestalt Theory has tried to build a mathematical

framework for the idea that significant geometric structures in an image correspond

to low-probability events in noise, which can be detected by parameterless algo-

rithms (see Figure 15.3). Maximal meaningful events were defined as event with the

smallest probability in a class of meaningful events.

Most gestalt detection theories actually involve a probabilistic functional that is

to be maximized, not minimized! These theories of Bayesian inspiration assume that

the images contain geometric structures and try to estimate their best location and

description. Let us take as a generic example the segmentation problem. The general

idea of segmentation algorithms is to minimize a functional of the kind

F(u,u0) + R(u),

Fig. 15.3 The church of Valbonne: size 502× 480 (from INRIA-Robotvis database). The detec-

tion of alignments and boundaries is made in both cases with ε = 1 and supports the idea that

parameterless methods are possible for image analysis, in contrast with variational methods.
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where u0 is the given image defined on a domain Ω ⊂ R2, F(u,u0) is a fidelity

term, and R(u) is a regularity term. F and R define an a priori model. Here are two

formalisms for it: one deterministic and the other one probabilistic:

– In the Mumford-Shah model (see [MS85], [MS89], [NMS93]) the energy func-

tional to be minimized is

E(u,K) = λ 2
∫

Ω\K
|∇u|2 dx + µλ 2length(K) +

∫

Ω−K
(u−u0)

2
dx,

where u is the estimated image, K is its discontinuity set, and the result (u,K)
is called a segmentation of u0 (i.e., a piecewise smooth function u with a set of

contours K).

– In the Bayesian model (see [GG84]), y = (ys)s∈S denotes the observation (the

degraded image). The aim is to estimate the real image x = (xs)s∈S knowing that

the degradation model is given by a conditional probability Π(y|x) and that the

a priori law of x is given by a Gibbs distribution Π(x) = Z−1 exp(−U(x)) (for

binary images, the main example is the Ising model). We then have to find the

MAP (Maximum a Posteriori) of

Π(x|y) =
Π(y|x)Π(x)

Π(y)
.

Assume that Π(y|x) = C exp(−V (x,y)). For example, in the case of a Gaussian

noise

Π(y|x) =

(
1

2πσ2

)|S|/2

exp

(

− 1

2σ2 ∑
s∈S

(ys − xs)
2

)

,

finding the MAP is equivalent to seeking for the minimum of the functional

V (x,y) + U(x).

The Bayesian methods first build up a probability model of a pattern of in-

terest. Then the likeliest event for the model in a given image is sought. Prob-

ably the best exponent of this method is Ulf Grenander [Gre93]. We quote his

programme extracted from the Brown University pattern theory group website

(HTTP://WWW.DAM.BROWN.EDU/PTG/):

The Brown University pattern theory group is working with the belief that the world is com-

plex, and to understand it, or a part of it, requires realistic representations of knowledge

about it. We create such representations using a mathematical formalism, pattern theory,

that is compositional in that the representations are built from simple primitives, combined

into (often) complicated structures according to rules that can be deterministic or random.

This is similar to the formation of molecules from atoms connected by various forms of

bonds. Pattern theory is variational in that it describes the variability of the phenomena

observed in different applications in terms of probability measures that are used with a

Bayesian interpretation. This leads to inferences that will be realized by computer algo-

rithms.
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This program is gestaltist in that it proposes to build pattern models from simple

primitives by a compositional representation. These pattern models associate with

each observed image or configuration in an image a probability that is thereafter

maximized. The second part of the program explicitly suggests a variational frame-

work.

In practice, one is faced with two main problems when working with variational

methods. First, even in the simple case of image segmentation, there are normaliza-

tion constants (λ , µ , etc.) and the result depends very much on the value of these

constants. Notice that in the second-mentioned Bayesian model, U contains several

parameters and the resulting functional also depends on a degradation model. Sec-

ond, variational methods always deliver a minimum for their functional. They do

not yield any criterion to decide whether an obtained segmentation is relevant or not

or whether a sought for pattern is present or not.

Theprobabilistic frameworkleadingto thevariationalmethodsshould, inprinciple,

give a way to estimate the parameters of the segmentation functional. In the de-

terministic framework, these parameters can sometimes be estimated as Lagrange

multipliers when (for example) a noise model is at hand, as in the Rudin-Osher-Fatemi

method (see [ROF92]). It is nonetheless true that variational methods necessarily

propose a rough and incomplete model for real-world images. Their parameters are

generally not correctly estimated. This leads to supervised methods.

Another possibility, which turns out to be a significant improvement of Bayesian

methods, is the Minimum Description Length (MDL) method introduced by Rissanen

[Ris83] and first applied in image segmentation by Yvon Leclerc [Lec89]. This last

method, applied to detect regions and their boundaries in an image, lets us auto-

matically fix the weight parameters whose presence we criticized in the Mumford-

Shah model. The resulting segmentation model remains, all the same, unproved:

The MDL principle does not prove the existence of regions. It only gives their best

description, provided the image indeed can be segmented into constancy regions.

This fact is easily explained. The MDL principle assumes that a model, or a class of

models, is given and then computes the best choice of the model parameters and of

the model explaining the image. As far as perception theory is concerned, more is

needed, namely a proof that the model is the right one.

Not all geometric detection methods are variational. Other classical and comple-

mentary examples are the Hough Transform (see [Mai85]), the detection of globally

salient structures by Sha’Ashua and Ullman (see [SU88]), the Extension Field of

Guy and Medioni (see [GM96]), and the Parent and Zucker curve detector (see

[PZ89]). These methods have the same drawback as the variational models of seg-

mentation described earlier. The main point is that they a priori suppose that what

they want to find (lines, circles, curves, etc.) is in the image. They may find too

many or too little such structures in the image and do not yield an existence proof

for the found structures.

These comments do not rule out variational methods. We have indeed seen that a

comparison of NFAs might lead to the solution of gestalt conflicts by always choos-

ing the detected gestalt with lowest NFA. The theory and experiments of this book

emphasize the fact that the detection of structure has an intermediate stage, clearly
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missed in the variational framework: Before we look for the most likely structures,

we have to make a list of all proven structures. So we will close the discussion by

proposing a slightly different role to variational methods. We have shown in this

book that partial gestalts can be computed by the Helmholtz principle followed by

a maximality argument and/or an exclusion principle. The discussions of gestaltists

about “conflicts of gestalts”, so vividly explained in the books of Kanizsa, might

well be solved by a few information-theoretical principles. As we mentioned earlier,

their solution will lead us back to a variational framework, as was widely anticipated

by gestaltists themselves.
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[CGM+04] F. Cao, Y. Gousseau, P. Musé, F. Sur, and J.M. Morel. Accurate estimates of

false alarm number in shape recognition. Technical Report 2004-01, CMLA, ENS

Cachan, 2004.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on

the sum of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

[CKS97] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International

Journal of Computer Vision, 1(22):61–79, 1997.

[Cla97] S. Clare. Developing the technique of functional Magnetic Resonance Imaging

to study visual, motor and auditory brain activation. PhD thesis, University of

Nottingham, England, October 1997.



References 263
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[KW02] N. Krüger and F. Wörgötter. Multi-modal estimation of collinearity and parallelism

in natural image sequences. Network: Computation in Neural Systems, 13(4):553–

576, 2002.

[KWT87] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. In Inter-

national Conference on Computer Vision, pages 259–268, 1987.

[Law96] G. Lawler. Intersection of Random Walks. Birkhäuser Boston, 1996.
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Normale Supérieure de Cachan, October 2004.

[SYK96] D. Shaked, O. Yaron, and N. Kiryati. Deriving stopping rules for the probabilistic

Hough transform by sequential analysis. Journal of Computer Vision and Image

Understanding, 63(3):512–526, 1996.

[SZ00] F. Schaffalitzky and A. Zisserman. Planar grouping for automatic detection of

vanishing lines and points. Image and Vision Computing, 18(9):647–658, 2000.



References 269

[Tal95] M. Talagrand. The missing factor in Hoeffding’s inequalities. Annales Institut
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Du(x,y), 28

G(l,k), 86, 104

H(l,k), 104

L(l,k, p), 87

Le, 136

Li, 136

B(n,k, p), 39

Curv(s), 178

NFA, 39

Per(K), 135

Span(S), 194

χλ (u), 5

dir(n,m), 66

dir(x), 28

B̃, 81

n(s), 178

a-contrario detection, 38

active contour, 177

alignment of dots, 41

Bayesian model, 257

Bernstein inequality, 57

Beta function (incomplete), 81

Beta integral, 84

binocular vision, see stereovision

binomial law, 48

binomial tail, 47

birthdays problem, 34, 44

Bonferroni inequality, 254

bottom-up, 240

calibration matrix, 226

Canny-Deriche filter, 164, 165

Central Limit Theorem, 60, 61, 78

generalized, 50

Chernoff inequality, 49

collaboration of gestalts, 240, 241, 246

compositional model, 249

conflict of gestalts, 240, 244

conjecture, 102, 103

Cramér theorem, 50

Crofton’s formula, 150

curvature, 103

dequantization, 69

detection of

alignments, 65, 231

arcs of circles, 245

clusters, 191

constant width, 248

corners, 248

edges, 153, 163, 164

good continuations, 248

land-cover change, 248

motion, 248

rigidity, 203

similarity, 248

squares, 227

T-junction, 174

vanishing point, 133

X-junction, 174

direction, 28, 66

Dostoievski’s roulette, 39

dual pixel, 175

edge detection, see detection of edges

eight-point algorithm, 223

entropy, 117

epipolar

constraint, 204, 226

geometry, 204

line, 204

epipole, 204
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essential matrix, 204, 226

exclusion principle, 97, 110–112, 246

external perimeter, see perimeter

familywise error rate, 254

Fenchel-Legendre transform, 56

fundamental matrix, 204, 223, 226

FWER, see familywise error rate

Gamma function, 84

Gaussian tail, 63

Gestalt

conflict, 20, 22

global, 19, 20

masking, 22

partial, 19

Gestalt laws, 13

alignment, 22, 38, 41

amodal completion, 15, 18

closure, 15, 18, 24

color constancy, 14, 18

connectedness, 17

convexity, 16, 18, 24

good continuation, 18, 22–24, 255

modal completion, 18

parallelism, 18, 19

past experience, 18

perspective, 17

proximity, 191

recursivity of, 19

similarity, 14

of shape, 18, 22

of texture, 18

symmetry, 16, 22, 24

vicinity, 14, 22

width constancy, 16, 18, 19, 22

Gestalt principles, 20

articulation whole/parts, 20

articulation without remainder, 20, 23

inheritance by the parts, 20

pregnancy, 20

structural coherence, 20

tendency to maximal regularity, 20

unity, 20

Gottschaldt technique, see masking by addition

gradient, 28

Grenander estimator, 131

Helmholtz principle, 31, 37, 41, 69, 227

hexagonal grid, 192

histogram, 115

Hoeffding inequalities, 49, 53, 93, 107, 116

Hough Transform, 90, 258

Ideal Observer, 235

illusion

Hering, 11, 12

Müller-Lyer, 11, 12

Penrose, 17

Sander, 11, 12

Zoellner, 13

internal perimeter, see perimeter

Kanizsa paradox, 25

Kullback-Leibler distance, 117, 130

Lévy theorem, 62

large deviations, 57, 87, 107

level line, 159

level line tree, 163

level of significance, 87

level set, 5, 159

low-resolution curve, 192

M-estimators, 224

MAP, see Maximum a Posteriori

Markov inequality, 35

masking, 20, 25, 147

by addition, 23, 24

by embedment in a texture, 23, 27, 38

by figure-background articulation, 23, 25

by subtraction, 24

maximal meaningful

cluster, 196, 248

edge, 163

interval, 119

isolated cluster, 200

mode, 123, 128, 129

segments, 99, 129

vanishing region, 143, 145–148

Maximum a Posteriori, 257

MDL, see Minimum Description Length

meaningful

alignments, see meaningful segments

boundary, 161, 164, 165, 167, 168, 243

cluster, 193, 248

edge, 162, 164, 165

gap, 122

interval, 116, 119

isolated cluster, 193, 199, 200

mode, 122

rigid set, 207, 209

segments, 70, 71, 243

vanishing region, 134, 143, 145–148

meaningful boundary, 169

Minimum Description Length, 173, 215, 258

MINPRAN, 87

monotone branches, 163

Mumford-Shah model, 164, 165, 172, 257
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noise

Gaussian, 67, 69

uniform, 67

number of false alarms, 39, 89

Occam’s razor principle, 215

optimal boundary map, 163

optimal meaningful boundary, 163, 167, 169

ORSA, 217, 219, 221, 222

partial gestalt, 237, 241

PCER, see per comparison error rate

per comparison error rate, 254

per family error rate, 254

percolation theory, 198

perimeter

external, 136

internal, 136

PFER, see per family error rate

pinhole camera, 225

Poincaré

formula, 150

invariant measure, 150

Pool Adjacent Violators Algorithm, 131

quantization, 127, 128

RANSAC, 224

rigidity measure, 205, 206

Rubin’s closure law, see Gestalt laws, closure

segmentation, 163, 164

seven-point algorithm, 204, 223

Shannon

interpolation, 4

theory, 27

Shannon-Nyquist principle, 3

Slud Theorem, 80

Slud theorem, 50

snake, 177

spanning tree, 194, 196, 199

stereovision, 203, 222

Stirling formula, 93

Street technique, see masking by subtraction

structure from motion, 222

T-junction, 15, 17, 153, 157

Tensor Voting, 224

topographic map, 154–159, 174

vanishing point, 17, 133

Vicario’s principle, 26

white noise, 168

X-junction, 16, 153, 158, 159

Y-junction, 17
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