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Abstract—We propose a linear-time line segment detector that gives accurate results, a controlled number of false detections, and

requires no parameter tuning. This algorithm is tested and compared to state-of-the-art algorithms on a wide set of natural images.
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1 INTRODUCTION

LINE segments give important information about the
geometric content of images. First, because most

human-made objects are made of flat surfaces; second,
because many shapes accept an economic description in
terms of straight lines. Line segments can be used as low-
level features to extract information from images or can
serve as a basic tool to analyze and detect more elaborated
shapes. As features, they can help in several problems such
as stereo analysis [14], crack detection in materials [17],
image compression [11], and satellite image indexation [19].

Ideally, one would like to have an algorithm that
accurately detects the line segments present in an image,
without false detection, and without the need to manually
tune parameters for each image or group of images. To
evaluate how far the Line Segment Detector (LSD) pre-
sented in this paper goes in that direction, all experiments
will be made with the same parameters regardless of the
different image origin, scene, and resolution.

Line segment detection is an old and recurrent problem
in computer vision. Standard methods first apply Canny
edge detector [4] followed by a Hough transform [1]
extracting all lines that contain a number of edge points
exceeding a threshold. These lines are thereafter cut into
line segments by using gap and length thresholds. The
Hough transform method has serious drawbacks. Textured
regions that have a high edge density can cause many false
detections (see the slanted lines on the tree of Fig. 1).
Ignoring the orientation of the edge points, such algorithms

obtain line segments with aberrant directions. Also, setting
thresholds is a fundamental problem for all detection
methods. Using fixed thresholds can lead to a significant
number of false positives or false negatives (see Fig. 1).

Another classic method starts from edge points, chains
them into curves and then cuts the chains into line segments
by a straightness criterion [10]. A standard chaining method
is due to Etemadi [9]. This method is parameterless and
usually gives accurate results. Also, it is one of the few
algorithms that simultaneously detect line segments and
arcs.1 Nevertheless, the result is not completely satisfactory,
as illustrated in Fig. 1. Many detected straight and small
edge curves are false positives: Here comes the funda-
mental threshold problem again.

Burns et al. [3] introduced a linear-time line segment
detection method with a key new idea. Their algorithm does
not start with edge points, and actually ignores gradient
magnitudes, using only gradient orientations. This algorithm
was improved by Kahn et al. [15], [16]. The line segments
given by this algorithm are well localized, but the threshold
problem is still there. The foliage of the tree in Fig. 1 could be
described as a texture, as an object, but certainly not as a set of
line segments. The examination of these methods suggests
that a selection criterion should be added as a final step.

There were some propositions of such criteria for the
classic methods. A good example is the Progressive
Probabilistic Hough Transform (PPHT) proposed by Matas
et al. [18], [12]. Like many similar methods, it accelerates the
computing time by a random selection of the edge points.
But the improvements came from the use of the image
gradient information and a false detection control. Fig. 1
shows a clear improvement over the standard Hough
transform method. Nevertheless, the false detection control
used is not completely satisfactory. First, the mechanism is
well adapted for whole lines and not for line segment
detection. Long line segments (similar in length to lines in
the image) produce detections, but small ones do not. As a
result, many short line segments are missing, as Fig. 1
shows. Second, the detection parameter of the method is the
probability of getting a false detection each time an edge
point is analyzed. But, the number of edge points analyzed
depends on the image size and the expected number of false
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detections too. The default value of this parameter is set to

control false detections on image sizes of about 256� 256.

For larger images, the false detections are not controlled

anymore, as Figs. 10 and 11 show. Any fixed value

produces false detections on large images and misses on

small ones.
This threshold question was thoroughly analyzed by

Desolneux, Moisan and Morel [6], [8]. Their line segment

detection method succeeds in controlling the number of

false positives. The method counts the number of aligned
points (points with gradient direction approximately ortho-
gonal to the line segment) and finds the line segments as
outliers in a nonstructured, a contrario model. This method is
based on a general perception principle, the Helmholtz
principle [8], according to which an observed geometric
structure is perceptually meaningful when its expectation in
noise is less than 1. Applying the Helmholtz principle
guarantees the lack of false positives in the weak sense that,
on average, only one false detection would be made in a
white noise image of the same size as the analyzed image. It
also guarantees no false negative, in the sense that a line
segment that could arise in noise must be considered as a
true negative. The detection of line segments by Helmholtz
principle was subject to a controlled psychovisual compar-
ison with human perception [7], [8]. This comparison uses
synthetic images. The ground truth is made of deterministic
alignments. It is superposed to a background clutter made of
small random line segments. By varying the parameters of
the background and of the ground truth, this setting gives
experimental detection-rejection curves that can be com-
pared to the theoretical ones predicted by Helmholtz
principle. The results in [7], [8] show a convincing
agreement, both qualitative and quantitative, between the
predicted and observed curves on 20 subjects.

The Desolneux et al. method has been extensively tested.
Experimental evidence, including all images presented here,
confirms that it indeed finds the line segments in the image
where alignments are intuitively present (no false negative).
It has few false positives, as guaranteed by the method.
Unfortunately, it often misinterprets arrays of aligned line
segments (see, for example, the windows in Fig. 1). A
detailed analysis of this defect was performed, and a
satisfactory solution found in [21], [22]. The solution involves
a more sophisticated use of the Helmholtz principle
computing and comparing the meaningfulness of all
possible arrays of line segments (multisegments) on each
line. The misinterpretations of the Desolneux et al. method
were corrected, giving a much more accurate line segment
detector (see Fig. 1). Unfortunately, the Desolneux et al. and
the multisegment detectors are exhaustive algorithms. The
Desolneux et al. method tests every possible line segment in
the image and has an OðN4Þ complexity, where N is the
image perimeter. The multisegment has an OðN5Þ complex-
ity. Thus, these detectors are doomed to be used only for
offline applications.

The aim of this paper is to present a linear-time
algorithm that cumulates most of the advantages of the
previous algorithms without their drawbacks. The Burns
et al. line segment finder, that made a breakthrough in the
extraction of the line segments, will be improved and
combined with a validation criterion inspired from Deso-
lneux et al. The result is LSD, a linear-time line segment
detector that requires no parameter tuning and gives
accurate results (see Fig. 1).

Sections 2 and 3 present an improved version of the Burns
et al. algorithm that provides the line segment candidates.
Section 4 describes the validation criterion. Section 5 gives a
global picture of the algorithm and discusses its most
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Fig. 1. A comparison of various line segment detection methods. The
processing times on an Apple PowerBook G4 1.5 GHz are indicated. The
Hough transform, Etemadi, and Burns et al. methods detect many
irrelevant small line segments on the tree. PPHT produces no false
detection but fails to detect small line segments. Desolneux et al. controls
the false detections but gives an inaccurate interpretation when aligned
line segments are present. The multisegment detector gives a good
result, but in prohibitive time. LSD gives a similar result in linear time.
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important properties. Section 6 comments on the experi-

mental results, and Section 7 concludes the paper.

2 LINE-SUPPORT REGIONS

In contrast to classic edge detectors, the Burns et al. method

defines a line segment as an image region, the line-support

region, namely a straight region whose points share roughly

the same image gradient angle. Such line segments are

roughly oriented along the average level-line direction. The

Burns et al. algorithm extracts line segments in three steps:

1. Partition the image into line-support regions by
grouping connected pixels that share the same
gradient angle up to a certain tolerance.

2. Find the line segment that best approximates each
line-support region.

3. Validate or not each line segment based on the
information in the line-support region.

Considering that this method was a real breakthrough,

the proposed algorithm shares the core ideas of steps 1 and

2, with some improvements. Step 3 is, however, completely

different and based on the Desolneux et al. a contrario

method. A new version of step 1 is described in this section.

Steps 2 and 3 will be described in the following two sections.
Our version of step 1 is a region growing algorithm. Fig. 2

illustrates the procedure. Each region starts with just one
pixel and the region angle set to the level-line angle at that
pixel (orthogonal to the gradient angle). Then, the pixels
adjacent2 to the region are tested; the ones with level-line
orientation equal to the region angle up to a certain
precision3 are added to the region. At each iteration, the
region angle is updated to a pseudomean level-line
orientation of the region’s pixels, defined by

arctan

P
i sinðangiÞP
i cosðangiÞ

� �
:

The process is repeated until no new point can be added.

The pseudocode Algorithm 1 gives more details. Seed

pixels with larger gradient magnitude are tested first4 as

they are more likely to belong to straight edges. When a

pixel is added to a region, it is marked and never visited

again. This key property makes the algorithm greedy and

therefore linear.

Algorithm 1. REGIONGROW

input: An image I; a starting pixel ðx; yÞ; an angle

tolerance � ; an image Status where pixels used

by other regions are marked.
output : A list Region of pixels.

1 Region ðx; yÞ;
2 �region  LevelLineAngleðx; yÞ;
3 Sx  cosð�regionÞ;
4 Sy  sinð�regionÞ;
5 foreach pixel P in Region do

6 foreach �P neighbor of P and Statusð �P Þ 6¼ Used do

7 if DiffðLevelLineAngleð �P Þ; �region Þ < � then

8 Add �P to Region;

9 Statusð �P Þ  Used;

10 Sx  Sx þ cosðLevelLineAngleð �P ÞÞ;
11 Sy  Sy þ sinðLevelLineAngleð �P ÞÞ;
12 �region  arctanðSy=SxÞ;
13 end

14 end

15 end

Whenever a large and well contrasted straight edge is

present in the image, the algorithm usually finds the same

line-support region, whatever the starting point. In contrast,

the result may depend on the starting point when a

nonstraight curve is being approximated by line segments

(for example, when a circle is present in the image). In this

case, the obtained decomposition of a circle into line segments

would be as good as any other obtained from a different seed

point. The fact that connected regions with common orienta-

tion would almost always coincide with straight edges is a

surprising empirical discovery due to Burns et al. We

mentioned the case of curves as a harmless first counter-

example. Since the antiquity, smooth curves have been

handled as concatenations of (small) straight segments.

3 RECTANGULAR APPROXIMATION OF REGIONS

Prior to the validation step, the line-support region (a set of

pixels) must be associated with a line segment (actually, a

rectangle). A line segment is determined by its endpoints
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Fig. 2. Growing process of a region of aligned points. The level-line

orientation field (orthogonal to the gradient orientation field) is

represented by dashes. Marked pixels are the ones forming the region.

From left to right: first, second, and third iterations, and final result.

2. We use 8-connected pixel neighborhood.
3. We use a 22.5 degree tolerance. The relevance of this parameter and

how to set it will be commented in Section 5.
4. Sorting algorithms have a typical OðN logNÞ complexity. Ordering the

pixels by strict gradient magnitude value would be computationally too
expensive. Instead, a pseudo-ordering is done: Pixels are classified into a
finite number of bins according to their gradient magnitude value, then the
pixels from higher bins are visited first and pixels in the lower bins later.

Fig. 3. Line segments are characterized by a rectangle determined by its

center point, angle, length, and width.
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and its width or, equivalently, its center, angle, length, and
width. Its rectangular approximation as shown in Fig. 3
includes all of these parameters.

The first idea that comes to mind is to use the mean level-
line angle as the main direction for the line segment. This
procedure can lead to an erroneous line angle estimation
when the background shows a slow intensity variation, see
[20]. In LSD (the idea was first proposed by Kahn et al. in
[15], [16]), the center of mass is used to select the center of
the rectangle, and the first inertia axis to select the rectangle
orientation. The gradient magnitude is used as the pixel’s
mass. Points with large gradient norm correspond better to
the observed edges. Then, the length and the width are
chosen in such a way as to cover the line-support region.
Fig. 4 shows an example of the result.

4 LINE SEGMENT VALIDATION

The two key points of the Desolneux et al. [6] approach are
the use of gradient orientation and a new framework to deal
with parameter setting. Their method is illustrated in Fig. 5.
The gradient of the input image is computed and only the
level-line orientation is kept. In Fig. 5, this information is
codified in the angle of the dashes. Given a line segment,
the algorithm counts the number of aligned points, i.e., points
having the level-line orientation equal to the line segment
angle up to a certain tolerance � . All potential line segments
on the image must be tested; those that satisfy a threshold
criterion based on their length l and their number of aligned
points k are kept as valid detections.

On natural images, the gray-level transition correspond-
ing to edges can be many pixels thick. This happens, for

example, with the straight boundary of an out of focus object.

In that case, the Desolneux et al. algorithm gives many

parallel detections and it requires a lot of effort to go back to a

correct interpretation [8]. To deal with this problem,

rectangles (line segments with a certain width) will be used

instead of line segments. Fig. 6 illustrates the concept.
In the Desolneux et al. a contrario approach, detection is

treated as a simplified hypothesis testing problem. Indeed,

in the classic decision framework, two probabilistic models

are required: one for the background and one for the objects

to be detected. In the a contrario approach, the objects are

directly detected as outliers of the background model. In

addition, the background model is reduced to the simplest

of all, namely white noise. As Desolneux et al. showed, a

suitable background model is just one in which all gradient

angles are independent and uniformly distributed. They

showed that this is the case for a Gaussian white noise

image. More formally, an image X under the background

model H0 is a random image (defined on the grid

� ¼ ½1; N� � ½1;M� � ZZ2) such that

1. 8m 2 �;AngleðrXðmÞÞ is uniformly distributed over
½0; 2��;

2. the family fAngleðrXðmÞÞgm2� is composed of
independent random variables.

This is indeed a good model for flat zones of images

which usually present, due to the acquisition process, a

white noise distribution. But, more importantly, this model

represents well isotropic zones, while straight edges are

exactly the opposite: highly anisotropic zones. Thus, in

practice, a set of pixels will not be accepted as a line segment

if it could have been formed by an isotropic process. A good

example is shown in Fig. 1. The foliage of the tree is far from

being a white noise process, but it is an isotropic structure;

as a consequence, no line segment is detected there.
There are as many statistical tests Tr to be performed as

potential rectangles r in the image. Each test relies on the

statistics kðr; xÞwhich is the number of aligned points in the

rectangle r and image x. The detection step is as follows:

Reject H0 if kðr; xÞ � kr, accept H0 otherwise. For this test,

non-H0 will also be denoted by Hr, i.e., rectangle detection.

Thus, we are led to the question of fixing a threshold kr for

each rectangle r. Following Desolneux et al., kr must be

fixed in a way that guarantees a control of the expected

number of false alarms under H0. We define the Number of

False Alarms of a rectangle r 2 R and an image x, as

NFAðr; xÞ ¼ #R � IPH0
½kðr;XÞ � kðr; xÞ�;
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Fig. 4. Example of a rectangular approximation of a line-support region.
Left: Image. Middle: One of the line-support regions. Right: Rectangular
approximation superposed to the line-support region.

Fig. 5. Left: One line segment shown over the level-line orientation field
(orthogonal to the gradient orientation field). Right: The number of
aligned points up to an angular tolerance � is counted for each line
segment. The line segment shown has four aligned points among seven.

Fig. 6. One rectangle shown over the level-line orientation field
(orthogonal to the gradient orientation field). The rectangle has nine
aligned points out of 20.
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where x is the observed image, X is a random image under
H0, and #R is the number of potential rectangles in the
image. The smaller the NFAðr; xÞ, the more meaningful r is,
i.e., the less likely it is to appear in an image drawn under
the H0 model. Rejecting H0 if and only if NFAðr; xÞ � "
gives what we call "-meaningful rectangles.

The method is justified by the following proposition:

Proposition.

IEH0

X
r2R

11NFAðr;XÞ�" � ":

In other terms, the expected number of detections under the
background model is less than ". Thus, in agreement with
the Helmholtz principle, only a very few detections (")
could have arisen just by chance.

In practice, only the line-support regions found by step 1
of the algorithm are tested as candidates for a line segment
detection. However, this does not imply that one can set #R
equal to the number of line-support regions effectively
tested. These line-support regions have complex statistics,
different from white noise statistics. Indeed, each one of
them is selected as the bounding box of a connected
component of pixels sharing the same direction. Let us call
BðrÞ the event that r is such a bounding box. Computing an
NFA adapted to the effectively tested bounding boxes would
be possible only if we knew how to compute the conditional
probability IPH0

½kðr;XÞ � kðr; xÞ j BðrÞ�. This probability is
intuitively much higher than IPH0

½kðr;XÞ � kðr; xÞ�. In the
absence of a closed formula for this complex probability, we
must be content with the estimate given by the proposition
stated above, counting the number of potential rectangles in
the image.

Considering a one pixel precision, there are
N4 potential oriented line segments in an N �N image
(starting and ending on a point of the grid �). If we set to
N the number of possible width values for the rectangle
(an overestimation), the number of potential tests goes up
to #R ¼ N5. This estimation is rough, the exact number
depending on the exact precision considered. What is
important here is the order of magnitude, that allows the
thresholds to adapt to different image sizes. See [8] for
further discussion on the number of tests.

If the angle tolerance � is set to � ¼ �p, the probability
(under H0) that a given point has its level-line aligned with
a rectangle is p. Since the gradient is independent at
different image points under H0, kðrÞ follows a binomial
law with parameters nðrÞ and p, where nðrÞ is the total
number of points in the rectangle. Using the number of tests
estimated before, we can write

NFAðrÞ ¼ N5 � b
�
nðrÞ; kðrÞ; p

�
;

where bðn; k; pÞ ¼
Pn

i¼k
n
i

� �
pið1� pÞn�i stands for the bino-

mial tail.
The dependence of the method on " is very weak

(actually logarithmic), see [6]. Thus, as advised by Deso-
lneux et al., one can fix " ¼ 1 once for all. This corresponds
to accepting, on average, one false positive detection per
image on the nonstructured model. It also guarantees that
all discarded line segments are indeed likely to appear in
noise (no false negatives in this sense).

5 THE COMPLETE LSD ALGORITHM

5.1 Details of the Algorithm

Algorithm 2 shows a pseudocode for the complete algorithm.

The subroutine Grad computes the image gradient and gives

three outputs: the level-line angles, the gradient magnitude,

and an ordered list of pixels. The parameter � is a threshold:

Points with gradient magnitude smaller that � are dis-

carded.5 This parameter will be discussed later in Section 5.2.

To construct the list, the pixels are classified into bins

according to their gradient magnitude; the list starts with the

pixels belonging to the bin with high gradient and ends with

the pixels belonging to the bin with low gradient. The list is

roughly ordered in decreasing gradient magnitude order.

Algorithm 2. LSD: LINE SEGMENT DETECTOR

input: An image I, parameters �; � and ".

output: A list out of rectangles.

1 ðLLAngles;GradMod;OrderedListPixelsÞ  GradðI; �Þ;
2 StatusðallpixelsÞ  NotUsed;

3 foreach pixel P in OrderedListP ixels do

4 if StatusðP Þ ¼ NotUsed then

5 region RegionGrowðP; �; StatusÞ;
6 rect RectApproxðregionÞ;
7 nfa NFAðrectÞ;
8 nfa ImproveRectðrectÞ;
9 if nfa < " then

10 Add rect to out;

11 StatusðregionÞ  Used;
12 else

13 StatusðregionÞ  NotIni;

14 end

15 end

16 end

The list of pixels is used to give priority to pixels as seeds

in the search of line-support regions. The first pixels in the

list are the ones with higher gradient magnitude because

they are more likely to belong to edges. Starting from this

pixel, the algorithm described in Section 2, RegionGrow, is

used to obtain a line-support region. Then, the algorithm

described in Section 3, RectApprox, gives a rectangle

approximation of the region, and the method described in

Section 4 computes the line segment’s NFA.
In our context, the best rectangular approximation of a

line-support region is the one that gives the smaller NFA

value. The routine ImproveRect tries several perturbations

to the initial approximation in order to get a better

approximation. This step is not significant for large and

well contrasted line segments, but it extends the detection

limit for small and noisy ones. The tested perturbations are

variations in width and lateral position.6 The justification is

that the width of the line segments is the worst estimated

parameter on the first rectangular approximation, but also a

very influential one; an error that makes the rectangle one

pixel thicker adds a large number of nonaligned points, as
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5. For the validation, these points are considered as not being part of an
edge, thus as nonaligned.

6. In our current implementation, five half-pixel variations in width are
tested and five quarter-pixel lateral variations to each side are tested.
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many as the length of the line segment. This can increase the
NFA value, rising the nondetection risk.

The first computation of the NFA value is done using the
probability p (that one point is aligned by chance) equal to
p ¼ �

� , where � is the tolerance used to get the line-support
region. But, the observed level-line angles could be much
more precise, resulting in a better NFA value. Starting from
p ¼ �

� , ImproveRect also tries dyadic precision levels,
covering the practical range of p values.7 With a finer
precision some points may stop from being aligned, so kðrÞ
may diminish; the balance between a smaller p and a
smaller kðrÞ can increase or decrease the NFA value
depending on the case. The best one is kept. Notice that
this loop eliminates p as a method parameter.

Status is used to keep track of pixels used or tested by
line-support regions, as explained in Section 2. However, a
third possible state is added: NotIni, which is assigned to
pixels in a line-support region that did not qualified as a
detection. This will prevent them from being used as seed
points for new regions but will allow to use them if a
neighbor region grows into them. In some cases, this helps
improving the search, see [20].

5.2 Internal Parameters

There are three parameters involved in LSD: �, � , and ".
� is a threshold on the gradient magnitude: Pixels with

small gradient are not considered. The reason is to cope
with the quantization of the image intensity values.
Desolneux et al. [5] showed that gray-level quantification
produces errors in the gradient orientation angle. This error
is negligible when gradient magnitude is large, but can be
dominant for a small gradient magnitude. It can create
patterns and therefore spurious detections. A side effect of
the threshold � is a speed improvement by reducing the
number of considered pixels.

The criterion we use to set � is to leave out points where
the angle error is larger than the angle tolerance. Let u denote
the image and ~u the quantized one. Then, ~u ¼ uþ n and

r~u ¼ ruþrn;

where n is the quantization noise. In [5], it is shown that the
error of the image gradient angle can be bound by

jangle errorj � arcsin
q

jruj

� �
;

where q is a bound to jrnj, see Fig. 7. Imposing that
jangle errorj � � one obtains

� ¼ q

sin �
:

For example, on images quantized to gray values in
0; 1; 2; . . . ; 255; jrnj can be bounded by q ¼ 2 (the worst case
is when adjacent points gets errors ofþ1 and�1). If � is set to
22.5 degrees (which corresponds to eight different angle
bins) the threshold to the gradient magnitude is � ¼ 5:2.
� is the angle tolerance used in the search for line-

support regions. A small value is more restrictive, leading

to an over-partition of line segments. A large value results

in large regions and in the merging of unrelated ones. When

a well contrasted and large enough line segment is present

in the image, the line-support region obtained depends little

on this parameter (and the rectangle approximation even

less, as a result of the use of the gradient magnitude

weighting). In critical size regions or when much noise is

present, this parameter is more important.
Burns et al. [3] proposed using a 22.5 degree angle that

corresponds to eight different angle bins. Independently,

we arrived at the same value as the one that gives the best

results. There is no theory behind this parameter value, but

it is supported by the results on thousands of images.
Note that � is also used to set the first angle tolerance used

in the NFA computation. But, all of the practical range of

values of p are also tested. As a result, � has no influence in the

validation step nor in the theoretic definition of line segments.
Finally, as already stated in Section 4, the detection

parameter " is not a critical one; one can safely set its value

to 1 once for all. This means that, on average, one casual

detection per image is acceptable.
All in all, LSD can be used without parameter tuning,

and all of the above parameters can be considered as

internal parameters. This fact is supported by tests on

thousands of images of very different kinds and origins.

5.3 Complexity of the Algorithm

The computation of the gradient magnitude and angle is
proportional to the number of pixels. Pixels are pseudo-
ordered by a classification into bins, operation that can be
done in linear time. The computational time of the line-
support region finding algorithm is proportional to the
number of visited pixels. If there were no overlap between
regions, this number would be equal to the total number of
pixels in the regions plus the border pixels of each one. The
NotIni condition allows for some overlap between regions.
This overlap is equivalent to having thicker frontiers
between regions. Thus, the number of visited pixels remains
proportional to the total number of pixels of the image. The
rest of the processing can be divided into two kinds of tasks.
The first kind, e.g., summing the region mass or counting
aligned points, are proportional to the total number of
pixels involved in all regions. The second kind, e.g.,
computing inertia moments or computing the NFA value
from the number of aligned points, are proportional to the
number of regions. Both the total number of pixels involved
and the number of regions are at most equal to the number
of pixels. All in all, LSD has an execution time proportional
to the number of pixels in the image.
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Fig. 7. Relation between image noise and gradient angle error.

7. Five dyadic precision steps are considered before adjusting the
rectangle width, and again, five dyadic precision steps afterward. Thus,
precisions from p ¼ 1

8 to p ¼ 1
8;192 are tested. In practice, a precision with

p � 1
256 is rarely obtained.
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6 EXPERIMENTS

The processing time for a 512� 512 image is a fraction of a

second. This permitted to test the algorithm on thousands of

images, images of different kinds, origins, sizes, and noise

levels; some tests were also performed on videos. It should

be emphasized that all of the experiments were done
without tuning any parameter at all. See [20] for a deeper
analysis of the experiments. More results, including some
videos, a demo version, and a source code for the algorithm,
can be found at http://iie.fing.edu.uy/~jirafa/lsd. The
results shown in this paper were obtained on some of the
most challenging images.

Fig. 8 shows a plot of the computational time in seconds
versus the image size on an Apple PowerBook G4 1.5 GHz.
For most images the computation time is shorter than for a
white noise image of the same size (the slanted linear series
of points on the plot). The main reason is that, in natural
images, many pixels are discarded by the gradient thresh-
old. Some images, however, require longer processing time
than white noise images, as can be seen on the plot. It is
usually the case in images with noise-like structures (like a
grass background) and long range structures (like objects on
the foreground).

Fig. 9 shows a series of experiments on natural images.
Note that the detected line segments represent well the
structure of these diverse images. The images in the left-
hand column contain highly geometrical contents. Almost
all the expected line segments were found, the perceptual
exceptions being small ones that lay beyond the mean-
ingfulness limit. In accordance with the theory, there are
very few false detections. The images in the right-hand
column show results on some nongeometric images. Most
detections in this second group of images do not correspond
to real straight or flat objects; they correspond to locally
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Fig. 8. Computation time (in seconds) required by LSD for the
processing of 1,297 images as a function of the image size (total
number of pixels). The computations were done with LSD implemented
on Megawave2 version 2.31a, running on an Apple PowerBook G4
1.5 GHz. The slanted linear series corresponds to Gaussian white noise
images. The vertical linear series corresponds to images of size
3;072� 2;304, a popular camera resolution today.

Fig. 9. Result of LSD on natural images.
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straight edges. In cases like the profile of an arm, a line

segment interpretation is not strictly correct in the sense that

an arm is not straight, but it is a reasonable interpretation in

terms of the 2D structure present on the image at a given

resolution. For curved edges, like the one in the wheel on

the middle-right image, the line segment interpretation is

only an economic approximation to a curve. Such results are

acceptable in the sense that every detection corresponds to a

locally straight structure in the image and every locally

straight structure has a line segment associated.

The presence of noise can deteriorate the performance of
LSD. Helmholtz principle states that no detection should be
made on white noise images. As a result, when noise with
increasing variance is added, the NFA value of meaningful
line segments increases. Eventually, noise dominates the
image, the NFA becomes larger than 1, and the line segment
is no longer detected. See [20] for more details.

Noise affects the region growing algorithm too and
this effect is critical for LSD. Noise produces variations to
the level-line angles. Low power noise produces negli-
gible variations and the results are not affected. With
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Fig. 10. Analysis of a noisy edge image at two different scales by five line segment detection algorithms. When a lot of noise is present (here
Gaussian noise with � ¼ 50), LSD will not detect some of the line segments that we can see; it will not produce false detections either. The methods
without a false detection control produce many false detections, making the result useless. PPHT false detection control failed in this case. PPHT
and Etemadi’s method did, indeed, detect the edge at full resolution; this is because the detection relies on Canny edge points, that involve a
Gaussian filtering. A standard way to cope with noise is by Gaussian subsampling. When LSD processes the half resolution image (second row) it
succeeds in detecting the edge; the Hough transform method, Etemadi’s method, and the Burns et al. method still produce false detections.

Fig. 11. The same effect shown in Fig. 10 can be seen on a noisy natural image. The three rows correspond to the analysis at full scale,

1/2 resolution and 1/4 resolution by Gaussian filtering. At full resolution, LSD fails to detect the structure of the image, but produces no false

detection. Algorithms without a false detection control, like the Hough transform method, Etemadi’s method, and Burns et al.’s method produce

useless results. PPHT false detection control fails in this image and produces many false detections. The structure of the image can’t be obtained at

full resolution when noise dominates. But the image can be analyzed at a different scale (as probably do human vision). Most of the structure is

detected by LSD at half resolution. Note that the PPHT method and Etemadi’s method detect part of the structure of the image at full resolution; the

reason is that both approaches use Canny points, that involve a Gaussian filtering.
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Fig. 12. A comparison of various line segment detection methods. The processing times on an Apple PowerBook G4 1.5 GHz are indicated. Etemadi’s

method detects line segments and arcs at the same time; here only line segments are shown. Hough and Etemadi have many wrong detections. Burns

et al.’s method is accurate but has an overwhelming number of false detections. PPHT produces no false detection but fails to detect many line

segments. Desolneux et al.’s method has no false detection but is too global. Multisegments and LSD give similar results in very dissimilar times.
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moderate noise power, the variations to the level-line
angles become larger and the angle difference can reach
the angle tolerance value � . Then, the region growing
algorithm is no more able to follow the edge and the line-
support regions become fragmented. In the presence of
strong noise, only small line-support regions are formed
and no detection is made. Fig. 10 (top) shows an example
of a synthetic noisy image; only two small fractions of the
edge were detected by LSD. Nevertheless, no false
detections were made, in striking contrast to state-of-
the-art methods, see Fig. 10. The same effect happens on
real images, see Fig. 11.

A criticism can be raised to the theory: Almost no line
segment is detected in the images of Figs. 10 and 11 at full
resolution, even if they are perfectly visible for us. The
answer is that the human visual system uses a multiscale
analysis. For a fair comparison one must authorize the line
segment detection theory to analyze the image at a different
scale too. (The Hough transform methods, Etemadi’s
method, and PPHT include such a step since they rely on
Canny points, whose processing implies Gaussian filtering.)
Figs. 10 (bottom) and 11 (middle and bottom) show that the
line segments masked by noise can be detected by the very
same algorithm at coarser scales. Analyzing at a coarser
scale may also help detecting global structures masked at
full scale by details of the image. See [20]. However, this
experiment made with strong artificial noise does not imply
that a multiscale theory for line segment detection is
necessary. It only points out that noise should be detected,
and a denoising step or a zoom-in performed when the
noise happens to be unusually strong.

Fig. 12 shows a comparison of seven line segment
detection algorithms on a natural image. The computation
time on an Apple PowerBook G4 1.5 GHz is shown for all of
them, as well as the number of line segments found. The
algorithms used were: the Hough transform method as
implemented in the freely available package Xhoughtool [13];
Etemadi’s algorithm in its original implementation ORT-2.3;
Burns et al.’s algorithm, using an implementation by Ross
Beveridge [2] (personal communication); PPHT as imple-
mented in the freely available RAVL libraries; Desolneux
et al.’s algorithm, as implemented in the modulealign_mdl
included in the freely available image processing framework
MegaWave2 http://megawave.cmla.ens-cachan.fr; the Mul-
tisegment detector; finally the implementation of LSD,
available at http://iie.fing.edu.uy/~jirafa/lsd.

As shown above, the Hough transform method often
produces false detection, simply because it does not take
into account edge orientation: see the horizontal ones on the
hair of the man. Etemadi’s and Burns et al.’s methods have
the threshold problem: A decision rule is needed to select
the good line segments; otherwise, the detection is useless
(1,517 and 3,677 line segments detected, respectively).
PPHT fails to detect many small line segments due to too
strict detection thresholds, well adapted for line detection
but not for line segment detections. Desolneux et al.’s
method produces no false detection but fails to get the right
interpretation when aligned line segments are present, as in
the balustrade at the background of Fig. 12. Also, when
slow gradients are present, like in the shadow of the table
on the left of the image, this produces multiple parallel

detections instead of one wider line segment. Multisegment
detection produces good results (even if the parallel
detections problem is still present and in some cases
hallucinates global aligned structures not present, see
[20]). Its computation time is prohibitive, though. LSD
produces a good description of the image structure with
716 line segments in 0.7 seconds.

The results of the multisegment detector and LSD are
similar in most cases. Let us comment briefly on the main
differences. The multisegment detector processes every line
that crosses an image, producing a global interpretation for
each one of them. This process occasionally leads to the
hallucination of a global structure that is not present in the
image. Fig. 1 shows an example: The small line segments in
the foliage that are horizontal or vertical, and aligned with
some true alignment present on the image are kept. This
obviously casual alignment reinforces the meaningfulness
of the line. As a consequence, the small line segments,
nonmeaningful by themselves, are interpreted as parts of a
larger multisegment. Being much more local, LSD does not
present this problem. But, the global analysis of the
multisegment detector is needed, however, to grasp the
right interpretation on other cases, as Fig. 13 shows. In this
image, LSD cannot detect small line segments that are too
short, while the multisegment algorithm succeeds in
reconstructing the global structure.

7 CONCLUSIONS

An examination of the experimental results (and of many
others that the reader may wish to perform online) indicates
that a line segment detection can be accurate and have a
small amount of false positive and false negative detections.
This promising result can be primarily attributed to Burns
et al., who procured the right edge representation as a region
of aligned orientation pixels, and to Desolneux et al., who
proposed a general method to eliminate false positives. The
experimental results substantiate the idea that a reliable raw
primal sketch is doable in digital images. However,
experiments also show that the story is not complete, but
just starting. A circular plate is detected as a concatenation of
straight line segments. This representation must lead to the
notion of the curve. A more accurate representation should
distinguish real polygons from curves. It should also permit
building up more elaborate gestalts such as bars, regular
polygons, periodic grids, or stripes, to name a few that are
visible in the test images presented in this paper.
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Fig. 13. A case where the multisegment detector gives a better result
than LSD. Some line segments are too small to be meaningful for LSD.
This means that their line support region could have arisen in noise. The
global analysis performed on each line allows the multisegment detector
to obtain the right line interpretation.
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