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Amanwasjourneying inthewilderness andhe found
Truth standing there all alone. He said to her, ‘An-
cient lady, why do you dwell here in the wilderness,
leaving the city behind?’ From the great depths of
herwisdom,Truthreplied, ‘Amongthe people of old,
lieswere foundamong only a few, but nowtheyhave
spread throughout all of human society!’

Aesop’s Fables (Babrius 126 = Perry 355), translation Laura Gibbs.



Abstract

Once considered reliable evidence, photographic images can no longer be
assumed to depict the naked truth. With the advent of digital photography
and the progress of photo editing tools, altering a picture has never been easier.
While most of these modifications solely seek to enhance the image, they can po-
tentially alter its very semantics. Concealing, modifying or adding a foreign
object, all those can give an image a new and false meaning. Although these
forgeries can easily be made visually realistic, they still distort the very fabric of
the image. The formation of a digital image, from the camera sensors to stor-
age, leaves traces, which act like a signature for the image. Modifying an image
distorts these traces, creating detectable inconsistencies.

Raw images are initially a mosaic of red, blue and green pixels. Missing
colour values must be interpolated in a process known as demosaicing. In this
thesis, we studythe traces le bythis process. The 2-periodic nature ofthemosaic
pattern leaves its imprint ontothe image. Forgeries may dephasethese traces, or
even removethementirely; mosaic pattern identificationis consequently helpful
in localizing tampered regions.

Non-specific forgery detection methods can already analyse many traces in
an image; nevertheless they remain blind to shis in the mosaic, due to the
translation-invariance of the convolutional neural networks on whichmost are
based. Demosaicing-specific methods can thus provide complementary results
for forgery detections. However, these have historically received little attention.
Analysis of demosaicing artefacts is made harder by the vast array of oen-
undisclosed demosaicing algorithms, and above all by JPEG compression. Those
artefacts, created early in the image formation pipeline and lyingatthe highest
frequencies of the image, are quick to wane during compression.

Yet, those artefacts can still be detected under mild compression. To chan-
nel the representative power of convolutional neural networks into the analysis
of demosaicing artefacts, we introduce the notion of positional training. This
self-supervised scheme trainsthe network to detectthemodulo-2 position of each
pixel, leveragingthe translation invariance of convolution tomakethe network
implicitly analyse demosaicing artefacts, its only clue to the modulo-2 position
of a pixel. On top of that, internal training on a single potentially forged image
can bolster themethod’s robustness to JPEG compression on said image. Errors
in the output of the neural network are then clues of mosaic inconsistencies. An
a contrario paradigm then enables us to make automatic decisions on the au-
thenticity of an image. Using only demosaicing artefacts, the proposed method
beats the state of the art on several uncompressed datasets. On compressed im-
ages, it still provides decent results that are fully complementary with methods
that are not mosaic-specific.

Finally, we explore the very evaluation of forgery detection methods. We
propose a methodology and dataset to study the sensitivity of forensic tools to
specific traces, as well as their ability to make detections without semantic cues
on the image. More than a simple evaluation tool, this methodology can be
used to assess the strength and weaknesses of each method, as well as their com-
plementarities.
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Résumé

Internet, les médias numériques, les nouveaux moyens de communication et les ré-
seaux sociaux ont favorisé l’émergence d’un monde connecté où la maîtrise parfaite
de l’information devient impossible. Les images sont omniprésentes et sont donc
devenues un élément essentiel de l’actualité. Malheureusement, elles sont aussi de-
venues un outil de désinformation visant à détourner le public de la réalité.

La manipulation d’images est partout. Le simple fait d’enlever les yeux rouges
des photos de famille pourrait déjà être qualifié de manipulation d’images, alors qu’il
s’agit simplement de rendre une photographie plus naturelle. Même les amateurs
peuvent facilement effacer les câbles électriques d’un panorama de vacances, corriger
les imperfections physiques telles que les rides d’un visage, sans parler des retouches
effectuées sur les mannequins dans les magazines.

Au-delà de ces exemples plutôt bénins, la manipulation d’images peut conduire
à des résultats falsifiés dans des publications scientifiques, des rapports ou des articles
journalistiques. Les images modifiées peuvent changer de sens et donc être utilisées
comme fausses preuves, par exemple en diffamation ou pour prétendre à un phéno-
mène paranormal. Plus fréquemment, des images falsifiées sont publiées et relayées
sur les médias sociaux, afin de créer et de contribuer à la diffusion de fake news.

Fabriquer une contrefaçon visuellement convaincante est désormais à la portée
de tous ; ces falsifications peuvent ensuite être diffusées sur des médias en ligne ou
des réseaux sociaux [1], falsifier les résultats d’études scientifiques ou être présentées
comme de fausses preuves dans un procès.

Récemment, les réseaux de neurones ont permis de générer des images manipu-
lées de manière presque automatique, comme le site This Person Does Not Exist1

qui génère de manière aléatoire des visages réalistes de personnes qui n’existent pas.
Les méthodes de deepfake permettent entre autres de remplacer un visage dans une
vidéo par celui d’une autre personne (face swapping).

Ces nouvelles possibilités de manipulation d’images sont exploitées depuis long-
temps par les gouvernements, les organisations criminelles et les délinquants. On
peut penser aux images de propagande stalinienne, dans lesquelles certains person-
nages devenus indésirables étaient retirés des photographies officielles. (Figure 0.1).

Aujourd’hui, la manipulation d’images peut servir les intérêts d’organisations
criminelles ou terroristes dans le cadre de leur propagande (fausses revendications,
faux événements, masquage d’éléments d’identification, ajout d’objets). Les tech-
niques de face swapping et de deepfake sont également un moyen simple de por-
ter atteinte à l’image et à la vie privée de personnalités publiques en les plaçant sur
des photos compromettantes. La manipulation d’images est également un moyen

1www.thispersondoesnotexist.com.
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Fig 0.1 : Un exemple montrant comment une image a été modifiée plusieurs fois
de suite, chaque personne perdant les faveurs du régime voyant son image supprimée
de la photo. Seul Joseph Staline apparaît sur les quatre photos.

d’exercer une coercition, une pression ou un chantage à l’encontre d’un tiers. Les
images manipulées peuvent également être utilisées pour nuire aux entreprises par
le biais de campagnes de désinformation. Les documents administratifs peuvent être
falsifiés afin d’obtenir des papiers officiels, un document de location ou un prêt au-
près d’organismes spécialisés. Le morphing de visage, dont l’objectif est d’obtenir la
photo d’un visage visuellement ”compatible” à partir de deux visages, permet à deux
utilisateurs de partager la même identité afin de tromper un contrôle d’identité. Ces
manipulations posent également des problèmes aux forces de l’ordre. Par le passé, les
aveux, les témoignages ou les photographies suffisaient à prouver la culpabilité. Les
technologies de falsification n’étaient pas suffisamment développées pour tromper
les enquêteurs. Aujourd’hui, ces méthodes ne suffisent plus et les forces de l’ordre ont
besoin d’outils scientifiques innovants pour pouvoir présenter des preuves fiables de-
vant les tribunaux.

L’image numérique est un moyen de communication essentiel dans le monde
d’aujourd’hui. Les gens doivent pouvoir faire confiance à cette méthode de commu-
nication. Il est donc essentiel de pouvoir détecter les images qui ont été manipulées.

Pourtant, même si les images sont faciles à modifier de manière visuellement
réaliste, ces modifications peuvent être difficiles à détecter automatiquement.

Dans la mythologie grecque, Dolus, l’esprit de la ruse, a tenté de reproduire une
statue d’Aletheia, déesse de la vérité ; ce faisant, il a manqué d’argile et a laissé ses
pieds inachevés. Lorsque Prométhée, le maître de Dolus, a donné vie aux deux sta-
tues, la fausse statue s’est révélée incapable de marcher aussi bien que l’originale ; la
contrefaçon a alors été révélée. Dans les mots d’Ésope (Traduction Henri Tournier) :

Ce modeleur d’un nouveau siècle, Prométhée,
Façonna d’une fine argile Vérité,
Pour que, chez les humains, elle rendît justice.
Soudain mandé de Zeus par messager spécial,
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Il confie l’atelier à la Ruse trompeuse
Qu’il avait récemment prise comme apprentie.
Elle, d’un zèle ardent, façonne une statue
– Même visage et proportions, en tout semblable –
De ses habiles mains et pendant son absence.
Elle avait presque terminé cette merveille
Quand pour finir les pieds, lui manqua de l’argile.
Mais le maître revient ; la Ruse, en grande hâte,
Tremblant de peur, retourne à sa place s’asseoir.
Prométhée, étonné de tant de ressemblance,
Veut démontrer alors la grandeur de son œuvre.
Aussi met-il ensemble au four les deux statues ;
Après cuisson, il donne vie à l’une et l’autre ;
D’un pas modeste va la sainte Vérité ;
Mais l’effigie tronquée reste clouée au sol.
Lors cette fausse image, ouvrage clandestin,
Prit le nom de Mensonge ; à cette affirmation
Qu’il est privé de pieds, je souscris volontiers.

De la même manière que la fausse statue avait des traces imparfaites qui ont
rendue son identification possible, les falsifications d’images laissent généralement
des traces. Depuis la scène réelle dont la photographie est prise jusqu’au stockage
de l’image capturée sur un support numérique, de nombreuses opérations ont lieu
pour créer l’image finale, chacune imprimant ses traces sur l’image. L’ensemble de
ces traces constitue une véritable signature de l’image, à la manière d’un filigrane
naturel. Bien qu’habituellement imperceptible à l’œil nu, cette signature peut géné-
ralement être détectée et analysée, ce qui permet de reconstituer l’historique d’une
image, de modéliser les différentes opérations qui ont eu lieu lors de la création de
l’image, ainsi que leur ordre et leurs paramètres. Les informations sur la chaîne de
traitement spécifique à l’appareil photo sont pertinentes en soi, non seulement parce
qu’elles peuvent guider la restauration de l’image, mais surtout car elles constituent
une signature identifiant l’image.

En effet, lorsqu’une image est manipulée, sa signature est perturbée. Un modèle
de chaîne de traitement localement incohérent sur l’ensemble de l’image est donc
souvent un indice que l’image a été trafiquée.

0.1 Chaîne de formation de l’image
Les principales étapes du processus d’acquisition d’images numériques, illustrées
dans la Figure 0.2, seront brièvement décrites dans cette section. D’autres étapes im-
portantes, comme le débruitage, dépassent le cadre de cette thèse et ne seront donc
pas abordées ici.
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Fig 0.2 : Chaîne de traitement simplifiée d’une image, de son acquisition par le
capteur de l’appareil jusqu’à son stockage sous forme d’image compressée en JPEG.
La colonne de gauche représente l’image à chaque étape. La colonne de droite repré-
sente le bruit de l’image en fonction de l’intensité dans les trois canaux (rouge, vert,
bleu). Comme chaque étape laisse une empreinte spécifique sur le modèle de bruit
de l’image, l’analyse de ce bruit nous permet d’effectuer une rétro-ingénierie de la
chaîne de traitement d’une image, ce afin de détecter les régions d’une image qui ont
été traitées différemment, et qui sont donc susceptibles d’avoir été falsifiées.

Acquisition de l’image brute
La première étape pour acquérir une image brute consiste à compter le nombre de
photons incidents sur le capteur sur la durée de l’exposition. Les capteurs utilisent
des dispositifs à couplage de charge (CCD) ou des semi-conducteurs à oxyde mé-
tallique complémentaire (CMOS). Bien que les deux technologies reposent sur des
principes de fonctionnement différents, elles peuvent être modélisés de manière très
similaire [2]. Les capteurs transforment les photons lumineux entrants en charge
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électronique qui interagit avec les dispositifs de détection pour produire des élec-
trons stockés dans un puits de lumière potentiel. Lorsque ce dernier est plein, les
pixels sont saturés. L’étape finale consiste à convertir les mesures de tension analo-
giques en valeurs numériques quantifiées.

Démosaïquage
La plupart des appareils photo ne peuvent pas voir la couleur directement, car chaque
pixel est obtenu par un seul capteur qui ne peut compter que le nombre de photons
qui l’atteignent dans une certaine gamme de longueurs d’onde. Afin d’obtenir une
image en couleur, une matrice de filtres colorés (CFA, de l’anglais Colour Filer Ar-
ray) est placé devant les capteurs. Chacun d’eux ne compte que les photons d’une
certaine longueur d’onde. Par conséquent, chaque pixel a une valeur relative à une
couleur. En utilisant des filtres de couleurs différentes sur les pixels voisins, les cou-
leurs manquantes peuvent alors être interpolées.

Bien qu’il en existe d’autres, presque tous les appareils utilisent la même CFA :
la matrice de Bayer. Voir la figure 0.3 pour des exemples de motifs. Cette matrice
échantillonne la moitié des pixels en vert, un quart en rouge et le dernier quart en
bleu. L’échantillonnage d’un plus grand nombre de pixels en vert est justifié par le
système visuel humain, qui est plus sensible à la couleur verte.

(a) Bayer (b) RGBW, utilisé dans certains appareils
Kodak.

(c) Fujifilm X-Trans, utilisé dans des ap-
pareils Fujifilm pour réduire les artefacts
de couleur xtrans.

(d) Nonacell, utilisé dans le Samsung Ga-
laxy S20 Ultra. Il est similaire au motif de
Bayer, mais utilise le pixel binning pour
améliorer la sensitivité en cas de mauvaise
luminosité [3].

Fig 0.3 : Different colour filter arrays.

Contrairement aux autres étapes de la création d’une image, une grande variété
d’algorithmes est utilisée pour démosaïquer une image.

Aucune méthode de démosaïquage n’est parfaite - après tout, il s’agit de recons-
truire des informations manquantes - et produit un certain niveau d’artefacts, bien
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que certaines en produisent beaucoup moins que d’autres2. Il est donc possible de dé-
tecter ces artefacts pour obtenir des informations sur la méthode de démosaïquage
appliquée à l’image, ce qui sera l’objet de cette thèse.

Correction couleur
La balance des blancs vise à ajuster les valeurs obtenues par les capteurs afin qu’elles
correspondent aux couleurs perçues par l’observateur en ajustant les valeurs de gain
de chaque canal. La manière dont la balance des blancs ajuste la sortie dépend des
caractéristiques des sources lumineuses, et est effectuée de manière à ce que les objets
achromatiques de la scène réelle soient rendus comme tels [4].

Par exemple, la balance des blancs peut être obtenue en multipliant la valeur de
chaque canal, de sorte qu’un pixel qui a une valeur maximale dans chaque canal se
retrouve avec la même valeur maximale 255 dans tous les canaux.

Ensuite, l’image subit une correction gamma. La charge accumulée par le cap-
teur est proportionnelle au nombre de photons incidents sur le dispositif pendant
le temps d’exposition. Cependant, la perception humaine n’est pas linéaire par rap-
port à l’intensité du signal [5]. Par conséquent, l’image est traitée pour représen-
ter précisément la vision humaine en appliquant une fonction concave de la forme
fk,γ(u) = ku

1
γ , où γ varie généralement entre 1,8 et 2,2. L’idée derrière cette procé-

dure est non seulement d’améliorer le contraste de l’image, mais aussi de coder plus
précisément les informations dans les zones sombres, qui sont trop sombres dans
l’image brute.

Néanmoins, les appareils modernes n’appliquent généralement pas cette simple
fonction, mais plutôt une courbe de tonalité, afin de mettre en correspondance les
intensités des images selon des tables précalculées qui simulent la non-linéarité pré-
sente dans la vision humaine.

Compression JPEG
Les étapes de l’algorithme de compression JPEG sont détaillées ci-dessous. La pre-
mière étape du processus de codage JPEG consiste à effectuer une transformation
de l’espace couleur de RGB en YCBCR où Y est la composante de luminance et CB

et CR sont les composantes de chrominance de la différence bleue et de la différence
rouge. L’œil étant moins sensible aux changements de couleur qu’aux changements
de luminance, les composantes de couleur peuvent être sous-échantillonnées sans
trop affecter la perception visuelle. Le taux de sous-échantillonnage généralement
appliqué est de 4 :2 :0, ce qui signifie que les résolutions horizontale et verticale sont
réduites d’un facteur 2. Après le sous-échantillonnage des couleurs, chaque canal est
divisé en blocs de 8 × 8 et chaque bloc est traité indépendamment. La transformée
en cosinus discrète (DCT) est appliquée à chaque bloc et les coefficients sont quan-
tifiés.

2De manière surprenante, nous avons constaté que les méthodes plus avancées, qui produisent
moins d’artefacts, ne sont pas toujours plus difficiles à analyser que les méthodes plus simples. Ceci
est particulièrement évident dans le chapitre 5 (Demosaicing to Detect Demosaicing).
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Le facteur de qualité JPEG, compris entre 1 et 100, correspond au taux de com-
pression de l’image. Plus ce taux est faible, plus le fichier résultant est léger, mais
plus l’image est détériorée. Une matrice de quantification liée à ce facteur fournit
un coefficient pour chaque composante des blocs DCT. C’est lors de cette étape
de quantification que se produit la plus grande perte d’information, mais c’est aussi
cette étape qui permet le mieux de réduire le poids de l’image. Les coefficients des
hautes fréquences, dont l’œil peine à distinguer les variations, sont les plus quantifiés,
allant parfois jusqu’à être entièrement mis à zéro, entraînant alors une perte totale
des informations de haute fréquence.

Enfin, comme dans l’exemple de la figure 0.4, les blocs quantifiés sont encodés
sans perte pour obtenir un fichier JPEG.

102 -33 -58 35 58 -51 15 -12

5 -34 49 18 27 1 -5 3

-46 14 80 -35 -50 19 7 -18

-53 21 34 -20 2 34 36 12

9 -2 9 -5 -32 -15 45 37

-8 15 -16 7 -8 11 4 7

19 -28 -2 -26 -2 7 -44 -21

18 25 -12 -44 35 48 -37 -3

DCT coefficients

6 -3 -6 2 2 -1 0 0

0 -3 4 1 1 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Quantization table
16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Quantization

[      ]

Quantized DCT coefficients

Fig 0.4 : Un exemple de l’impact de la quantification sur un bloc DCT. Chaque
coefficient DCT est quantifié par une valeur trouvée dans une matrice de quantifi-
cation. L’arrondi à l’entier le plus proche entraîne la mise à zéro d’un grand nombre
de coefficients de haute fréquence. Chaque bloc est mis en zigzag pour être codé
comme un vecteur.

Reconfiguration de la chaîne de traitement pour reconstruire
l’historique d’une image
Chaque étape laisse des traces spécifiques sur l’image. Ces traces peuvent être dé-
tectées et analysées pour révéler comment une image spécifique a été traitée. Cette
connaissance est de la plus haute importance pour l’authentification des images. Sa-
voir quelle chaîne de traitement a été utilisée pour créer une image permet de la relier
à un appareil photo ou au moins à un modèle d’appareil. Il est alors possible de dire
si une image peut provenir d’un appareil donné.

La rétro-ingénierie de la chaîne de formation de l’image, ou d’une partie de celle-
ci, est également au cœur de nombreuses méthodes de détection des falsifications. En
effet, l’altération d’une image modifie souvent aussi ses traces ; la région contrefaite
apparaît alors incohérente avec le modèle de rétro-ingénierie.
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0.2 Comment détecter les falsifications d’images?
Les différentes traces laissées lors de la création de l’image peuvent être analysées
séparément. Cette thèse se concentre sur l’une de ces traces, à savoir le démosaïquage.

Analyse du démosaïquage
Comme nous l’avons expliqué précédemment, l’image brute n’est pas une image cou-
leur à 3 canaux, mais chaque pixel est échantillonné dans une couleur, selon un ré-
seau de filtres colorés (CFA). Le CFA de Bayer, illustré dans la Figure 0.3, est de
loin le plus courant ; les méthodes d’analyse de démosaïquage sont donc générale-
ment conçues en supposant que l’image a été traitée avec le CFA de Bayer, et nous
ferons de même. Bien que d’autres CFA existent,leur utilisation reste limitée. Notez
que si les méthodes d’analyse du démosaïquage ont été conçues en tenant compte de
la matrice de Bayer, la plupart pourraient facilement être adaptées à d’autres CFA.

Pour détecter les falsifications d’images via l’analyse du démosaïquage, deux pistes
peuvent être suivies.

On peut essayer directement de détecter les régions où aucune trace de démo-
saïquage n’est présente. Cela peut être dû à une manipulation directe sur l’image,
comme le floutage qui supprime les traces de démosaïquage. Même en présence de
traces de démosaïquage, si ces traces sont différentes, certaines méthodes peuvent
détecter une absence de traces si elles diffèrent fortement du reste de l’image. Cela
peut être le cas, par exemple, dans les collages d’objets externes. Une telle analyse
doit être effectuée avec précaution, car il est assez fréquent que les images naturelles
ne présentent aucune trace de démosaïquage, par exemple dans les régions plates où
un démosaïquage parfait est possible.

D’autre part, il est également possible de rechercher des décalages dans le mo-
dèle CFA. Comme le montre la figure 0.6, en cas de copier-coller, qu’il soit interne
ou externe, il y a une chance de 3

4 que le motif CFA de la région collée ne soit pas
aligné avec celui de l’image originale. Ce décalage de périodicité peut être détecté
comme une incohérence dans la mosaïque de l’image, et donc la preuve d’une fal-
sification potentielle. De manière presque équivalente, il est également possible de
détecter localement la mosaïque utilisée dans l’image. Avec la matrice de Bayer, seuls
quatre motifs sont possibles, chacun étant un décalage des autres motifs. Les motifs
possibles peuvent être regroupés en deux par leur diagonale, c’est-à-dire les pixels
échantillonnés en vert qu’ils partagent. C’est ce que montre la figure 0.5.

De nombreuses méthodes peuvent implicitement faire les deux, bien qu’elles se
concentrent généralement sur un seul cas. Une différence essentielle entre les deux
classes est en effet les canaux sur lesquels on se penche. Lorsqu’elles recherchent l’ab-
sence de traces de démosaïquage, de nombreuses méthodes ne considèrent que le
canal vert. Comme la moitié des pixels sont échantillonnés en vert, le démosaïquage
du canal vert est plus simple que ses homologues rouge et bleu, et est donc plus fa-
cile à analyser. En revanche, lorsqu’on recherche des décalages dans la mosaïque, le
canal vert est beaucoup moins informatif ; en effet, comme on peut le voir dans la
Figure 0.5, bien qu’il y ait quatre motifs au total, ils sont regroupés en deux paires
partageant la même diagonale, c’est-à-dire qu’ils partagent leurs pixels échantillon-
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nés en vert. Si l’on ne regarde que les canaux verts, les déplacements entre deux motifs
partageant leur diagonale de verts seront manqués.

Dans la suite de cette section, nous passons en revue les travaux connexes sur
l’analyse du démosaïquage dans le cadre de l’analyse des images.

(a) Authentic image (b) Forged image

Fig 0.6 : Couleurs dans lesquelles les pixels sont échantillonnés dans une image
authentique et une image contrefaite. Dans la zone contrefaite de la deuxième image,
il existe une probabilité de 3

4 que les motifs de la zone authentique et de la zone
contrefaite soient mal alignés, ce qui entraîne un décalage de l’CFA, par ailleurs pé-
riodique.

Dans un article pionnier sur l’analyse du démosaïquage, Popsc et Fi 
[6] propose d’estimer conjointement un modèle linéaire pour l’algorithme de dé-
mosaïquage et de détecter quels pixels ont été échantillonnés dans un canal donné
avec un algorithme d’expectation-maximization (EM). L’algorithme de démosaï-
quage est estimé sur les pixels détectés comme interpolés (c’est-à-dire non échan-
tillonnés), comme une combinaison linéaire des pixels voisins dans ce canal. Les
pixels échantillonnés sont détectés comme des pixels pour lesquels la combinaison
linéaire donne un résultat éloigné de la valeur correcte du pixel. Une carte de pseudo-
probabilité de chaque pixel échantillonné est alors calculée. En supposant que le
modèle linéaire soit correct, les pixels échantillonnés seront correctement détectés
et la carte présentera une forte composante 2-périodique, facilement visible sous la
forme d’un pic dans la transformée de Fourier de l’image. Cependant, dans une ré-
gion qui a été altérée, le modèle linéaire estimé ne sera plus correct, soit parce que
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l’estimation du démosaïquage apparaît différemment, soit parce qu’il ne reste au-
cune trace de démosaïquage. Le pic de 2-périodicité va donc localement disparaître,
cette disparition peut être détectée comme une preuve potentielle de falsification.
Comme beaucoup d’autres méthodes qui recherchent des traces incohérentes sans
examiner le motif spécifique, l’algorithme est utilisé uniquement sur le canal vert,
où le démosaïquage est généralement considéré comme plus facile à détecter.

Le même concept est utilisé par Li , Zo , Ni et al. [7], où la carte de pseudo-
probabilité calculée est analysée par un réseau de neurones pour distinguer les vrais
faux des artefacts de post-traitement tels que la compression JPEG. La méthode ori-
ginale propose de trouver des régions dans lesquelles la périodicité disparaît ; toute-
fois, si la carte de pseudo-probabilité est correcte, les changements de périodicité de
la mosaïque devraient également s’y refléter. Gol F , Sovl
Ooco , Gci Villlb et al. [8] étend cette méthode en visualisant la carte
de pseudo-probabilité avec une transformée en cosinus discrète (DCT) au lieu d’une
transformée de Fourier. Les variations de la périodicité de la mosaïque apparaissent
alors comme un changement de signe dans le domaine de la DCT, et peuvent donc
être détectées. Les principales limites de ces méthodes proviennent de l’estimation
linéaire elle-même. Bien que cette hypothèse ait pu être parfaitement raisonnable
dans le passé, les algorithmes de démosaïquage les plus couramment utilisés de nos
jours sont fortement non linéaires. De plus, ils se comportent différemment selon
les régions de l’image, et ce qui peut apparaître comme une absence ou une inco-
hérence du démosaïquage peut au contraire être simplement une région de nature
différente, que le même algorithme de démosaïquage a traitée différemment.

F , Bici , D Ros et al. [9] proposent également de rechercher les
régions où les traces de démosaïquage sont localement absentes. En travaillant sur
le canal vert, ils partent du principe qu’il faut connaître le motif global de l’image3.
Ils appliquent un prédicteur fixe, généralement un démosaïquage bilinéaire, et exa-
minent la différence de variance entre les deux treillis des pixels supposés échan-
tillonnés et interpolés. En présence d’artefacts de démosaïquage, la variance est net-
tement plus élevée sur le treillis des pixels échantillonnés, qui ne peut être estimé avec
précision à partir des pixels interpolés. En revanche, en l’absence de telles traces, la
variance est égale sur les deux treillis. L’analyse bayésienne à l’aide de modèles de mé-
lange gaussien à plusieurs échelles de blocs met alors en évidence les régions où les
traces de démosaïquage sont absentes dans une image autrement démosaïquée.

Kic [10] proposent d’estimer le motif d’une image en effectuant un dé-
mosaïquage inverse avec un algorithme de démosaïquage simple tel que l’interpo-
lation bilinéaire. Ils recréent artificiellement la mosaïque de l’image et estiment les
canaux de pixels masqués avec l’algorithme fixe. Même lorsque l’image n’a pas été
démosaïquée à l’origine avec le même algorithme, le second démosaïquage donne
généralement de meilleurs résultats sur le motif original, ce qui permet son identifi-
cation.

Diik et Mo [11] calcule deux caractéristiques liées au démosaïquage. La
première tente de classifier le motif d’une image. Pour ce faire, ils effectuent un dé-
mosaïquage bilinéaire inverse, comme dans Kic [10], localement et en se li-

3Connaître le motif CFA d’une image complète n’est généralement pas trop difficile, surtout
lorsqu’on ne s’intéresse qu’au motif diagonal comme ici.
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mitant aux blocs non lisses, dans lesquels les artefacts sont plus visibles. La deuxième
caractéristique est une analyse du bruit. Ils estiment le bruit d’une image avec un al-
gorithme de débruitage standard, et comparent la variance du bruit estimé sur les
différents motifs. En effet, la variance du bruit devrait être plus élevée sur les pixels
échantillonnés, à condition qu’ils proviennent de l’image réelle et n’aient pas été
ajoutés manuellement après le démosaïquage.

En partant du fait que la plupart des algorithmes de démosaïquage évitent d’in-
terpoler contre un gradient abrupt, Swi , W et Li [12] proposent de
réaliser trois modèles linéaires différents des algorithmes de démosaïquage, pour un
gradient lisse, horizontal ou vertical.

L et Ri [13] étendent leur méthode à la détection de falsification : en
travaillant sur le canal vert, ils estiment les trois modèles linéaires dans les deux sché-
mas diagonaux possibles pour sélectionner le schéma donnant l’erreur la plus proche
globalement. Pour filtrer les régions susceptibles d’apporter de l’instabilité à la détec-
tion, ils ne travaillent ensuite que sur les régions lisses. Des caractéristiques basées sur
le rapport des variances entre les treillis échantillonnés et interpolés sont construites.
Cette caractéristique est normalement distribuée dans les images authentiques dé-
mosaïquées ; un test statistique est alors utilisé pour localiser les régions qui s’écartent
significativement de la distribution normale estimée par EM.

Coi , Coi et L [14] travaillent sur une caractéristique plus subtile du dé-
mosaïquage. Ils remarquent que les pixels interpolés sont plus susceptibles d’être des
valeurs intermédiaires par rapport à leurs voisins, alors que les pixels échantillonnés
sont plus susceptibles d’être des extrema locaux. En comptant le nombre de valeurs
intermédiaires dans chaque modèle possible, on obtient une estimation du modèle
correct. Si la méthode originale se limite à l’identification du motif, sans chercher
à détecter les falsifications, dans le chapitre 3 (Intermediate Values Counting for
CFA Pattern identification), nous analyserons, implémenterons et étendrons cette
méthode pour détecter les falsifications.

[15] remarque que la plupart des méthodes de détection de démosaïquage tra-
vaillent séparément sur chaque canal, alors que la plupart des algorithmes de démo-
saïquage utilisent largement les informations des autres canaux. Afin de mimer ce
comportement, ils proposent de travailler sur les différences de canaux, autrement
dit sur les cartes R − G et B − G, où R,G,B représentent les canaux rouge, vert et
bleu de l’image. Ils étudient ensuite la différence de variance entre les motifs pos-
sibles afin d’identifier le motif correct comme étant celui dont la variance est la plus
élevée.

Plus récemment, Pk , Moo et Eo [16] tentent d’éviter de baser leur dé-
tection sur la réinterpolation. En effet, les résultats de la réinterpolation sont sou-
mis à l’adéquation du noyau, qui est difficile à estimer correctement. En particulier,
lorsque des transferts inter-canaux ont lieu pendant le démosaïquage, la variance
peut devenir plus faible dans le motif correct, provoquant ainsi des erreurs d’iden-
tification du motif, comme nous le remarquerons également dans les chapitres 2
(CFA Identification with Differential Operators) et 3 (Intermediate Values Coun-
ting for CFA Pattern identification). Ils remplacent la réinterpolation par une dé-
composition en valeurs singulières dans chaque canal, de manière à supprimer les
informations de fond et à obtenir un résidu plus fiable.
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Au final, les méthodes actuelles d’analyse de démosaïquage souffrent de deux
défauts :

• La grande variété deméthodes de démosaïquage, rend la détection difficile
avec des prédicteurs fixes, tandis que la non-linéarité et les nombreux trans-
ferts inter-canaux du démosaïquage rendent l’estimation d’un algorithme de
démosaïquage complexe, surtout sur une seule image.

• Le démosaïquage intervient au tout début de la chaîne de traitement de l’ap-
pareil. Par conséquent, les traces de démosaïquage sont fortement influencées
par tout ce qui se passe après le démosaïquage. En particulier, la compression
JPEG supprime rapidement les fréquences les plus élevées d’une image, où
se trouvent les traces de démosaïquage. Les méthodes d’analyse du démosaï-
quage sont donc peu ou pas du tout résistantes à la compression JPEG et ne
peuvent analyser que des images non compressées. Le sous-échantillonnage
d’image supprime également toutes les traces de démosaïquage si le facteur
de sous-échantillonnage est d’au moins 2, et altère fortement ces traces même
avant cela.

Le deuxième défaut limite l’applicabilité de l’analyse du démosaïquage aux images
de haute qualité. S’il est peu probable qu’elle soit utile pour détecter des faux dans
des images de faible qualité, comme celles que l’on trouve sur les médias sociaux,
qui sont généralement sous-échantillonnées et compressées, cette analyse reste per-
tinente dans d’autres domaines où l’on peut trouver des images de haute qualité,
comme les enquêtes criminelles ou les concours photographiques. Néanmoins, même
dans ces domaines, un certain degré de robustesse à la compression JPEG est sou-
haitable. En effet, même les images de haute qualité sont souvent stockées avec un
facteur de qualité JPEG de 95 ou même de 90, ce qui permet de réduire le poids de
l’image pour une perte à peine perceptible visuellement.

Autres méthodes de détection de falsification
Bien que cette thèse se concentre sur les traces de démosaïquage, d’autres traces
peuvent également être exploitées pour détecter des falsifications d’images.

Les méthodes basées sur le niveau de bruit analysent le modèle de bruit des
images (voir la section 0.1) afin de trouver des régions présentant une quantité de
bruit différente, qui pourrait résulter d’une altération. Mahdian et Saic [17] effec-
tuent une estimation du niveau de bruit basée sur les ondelettes locales en utilisant
un estimateur de déviation absolue médiane. Lyu et al. [18] s’appuie sur le phéno-
mène de concentration du kurtosis. Plus récemment, Noisesniffer [19] définit un
modèle stochastique de fond permettant la détection d’anomalies de bruit locales et
statistiquement significatives. Ces méthodes peuvent potentiellement détecter une
variété relativement large de contrefaçons, car chacune d’entre elles peut modifier le
niveau de bruit.

La compression JPEG laisse les effets de blocage et la quantification du coeffi-
cient DCT de chaque bloc. Les outils de forensique JPEG peuvent donc être divi-
sés en deux catégories. BAG [20] et CAGI [21] analysent les artefacts de blocage,
tandis que les autres méthodes analysent les coefficients DCT. Plus précisément,
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CDA [22] et I-CDA [23] sont basés sur les distributions des coefficients AC, tan-
dis que FDF-A [24] est basé sur la distribution du premier chiffre des coefficients
AC. Zero [25] compte le nombre de coefficients DCT nuls dans tous les blocs et
en déduit l’origine de la grille. Ces méthodes ne peuvent fonctionner que lorsque la
falsification a été faite après une première compression JPEG, mais donnent géné-
ralement de très bons résultats lorsque c’est le cas.

Méthodes génériques. Toutes les méthodes présentées ci-dessus traitent sépa-
rément les différents types de traces qui peuvent être analysées. La variété des confi-
gurations avant et après la falsification rend l’exhaustivité difficile, mais les résultats
obtenus par ces méthodes spécifiques sont explicites. Une autre possibilité est de dé-
velopper des outils polyvalents pour classer et/ou localiser les faux indépendamment
de la configuration et du type de faux.

Splicebuster [26] calcule le bruit résiduel d’une image après un filtre passe-haut,
et utilise les cooccurences de ces résidus comme caractéristiques locales de la signa-
ture d’une image. Un modèle de mélange gaussien-uniforme est ensuite utilisé pour
détecter et localiser les régions où la signature est différente du reste de l’image.

Noiseprint [27] s’étend sur Splicebuster en utilisant des réseaux siamois pour
extraire un autre résidu de bruit d’une image. Le réseau est entraîné sur des paires
de patchs pour extraire le même résidu si les patchs proviennent du même appa-
reil photo, en utilisant la sortie d’un patch comme cible pour l’autre patch. Sur des
patchs provenant d’appareils différents, le modèle est entraîné à produire des résidus
différents.

L’analyse d’autoconsistance [28] utilise également un réseau siamois dans le but
de détecter si deux patchs sont susceptibles de partager les mêmes métadonnées
EXIF, et donc d’avoir été traités avec la même chaîne de traitement. Ils utilisent la
segmentation N-Cuts [29] pour regrouper et détecter automatiquement les traces
pertinentes de falsifications.

On peut également tenter de détecter les faux directement ; par exemple, Man-
TraNet [30] est un réseau bipartite de bout en bout, entraîné à détecter les mani-
pulations au niveau de l’image avec une partie, tandis que la seconde partie est en-
traînée sur des ensembles de données synthétiques de faux pour détecter et localiser
les faux dans l’image. Avec de telles méthodes, l’exhaustivité est théoriquement pos-
sible. Cependant, les résultats ne sont pas explicites et leurs décisions sont plus diffi-
ciles à justifier. En effet, il est difficile de comprendre pour quelle raison un modèle
détecte une incohérence. Ces méthodes peuvent également être aveugles à certains
types de traces, par exemple, tous les outils polyvalents testés se révèlent dans le cha-
pitre charefcha :trace être aveugles aux changements dans la mosaïque CFA ou dans
la grille JPEG, bien que quelques-uns puissent, dans une certaine mesure, détecter les
changements dans l’algorithme CFA ou dans la qualité de compression JPEG. Cette
cécité aux changements de la mosaïque CFA ou de la grille JPEG n’est pas surpre-
nante, car la plupart de ces méthodes utilisent des réseaux de neurones convolutifs
(CNN). En effet, comme les CNN sont invariants à la translation, ils ne peuvent
pas détecter les changements dans un motif périodique, sauf peut-être à la limite du
changement.

En outre, les méthodes basées sur l’apprentissage peuvent être limitées par les
données d’apprentissage et ne pas bien généraliser dans des scénarios non contrôlés.
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C’est notamment le cas de méthodes telles que ManTraNet, qui tentent de détecter
directement les contrefaçons. Il existe de nombreuses façons de créer des faux, et
un modèle formé sur des images falsifiées d’une certaine façon peut être difficile à
généraliser à d’autres falsifications.

Jeux de données pour la forensique
Les jeux de données d’images authentiques sont nécessaires à de nombreux algo-
rithmes de détection de falsification. Ils peuvent être utilisés pour entraîner des mo-
dèles sur des images authentiques, comme Noiseprint [27] et Self-consistency [28].
Le jeu de données Raise [31] contient 8156 images brutes de divers scénarios. La
base de données d’images de Dresde [32] fournit 16 961 images authentiques prises
avec 27 appareils différents. Parmi elles, 1 491 images prises avec trois appareils diffé-
rents, les Nikon D200, D70 et D70s, sont fournies non traitées au format RAW. Des
images spécifiques peuvent également être utiles pour des expériences. Par exemple,
le jeu de données d’images de test sans bruit [33] contient 16 images presque sans
bruit. Ces images ont été soigneusement sous-échantillonnées pour éliminer la plu-
part du bruit, ainsi que les traces de démosaïquage. En l’absence de démosaïquage
préalable, nous pouvons utiliser ces images pour simuler nous-mêmes divers algo-
rithmes de démosaïquage dans différents motifs. De même, le jeu de données Pixel-
shift200 [34] contient 210 images de haute qualité sans traces de démosaïquage, qui
ont été obtenues en fusionnant 4 images prises quasi-simultanément lors du déca-
lage du CFA.

Il existe également une littérature considérable proposant des ensembles de don-
nées de falsifications d’images, qui sont nécessaires pour l’évaluation des outils de
forensique. Un des premiers exemples est le Columbia Dataset [35], qui ne contient
que des blocs copiés de 128 × 128 sur des images en niveaux de gris, pour lesquels
aucun masque n’est fourni. Deux ans plus tard, le Columbia Color Dataset a ajouté
des images couleur de meilleure résolution et des masques de falsification. De nou-
veaux benchmarks ont été proposés en 2009 avec CASIA V1.0 et V2.0 [36]. Ces
jeux de données comprenaient des attaques par copier-coller externe et interne, avec
au total 8000 images vierges et 6000 images falsifiées. Le post-traitement a été pré-
senté comme une technique de contre-analyse. Les jeux de données MICC F220
et F2000 [37] ainsi que IMD [38] fournissent d’autres points de référence pour la
détection des mouvements de copie. Ces jeux de données ont été construits de ma-
nière automatique. Alors que les deux premiers sélectionnent de manière aléatoire
la région de l’image à copier-coller, le jeu de données IMD effectue l’extraction de
fragments. Les deux approches incluent la possibilité d’ajouter plusieurs artefacts à
la région contrefaite. D’autres jeux de données traitant des contrefaçons par copiage
avec des contre-attaques post-traitement sont également disponibles [39], [40].

Les défis liés à la détection des falsifications d’images constituent une autre source
de données de référence. Le National Institute of Standards and Technology (NIST)
organise, depuis 2017, un défi annuel pour lequel différents jeux de données sont
publiés [41]. Les falsifications incluses dans ces jeux de données sont de type varié
et elles sont générées à la fois automatiquement et manuellement. Il comprend des
faux générés automatiquement et manuellement Il peut donc être utile pour évaluer
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la détection de falsifications d’images dans des scénarios non contrôlés.
Certains jeux de données visent à réaliser des falsifications imperceptibles à l’œil

nu. Un bon exemple est le jeu de données Korus [42], [43] qui contient 220 images
vierges et 220 images falsifiées à la main visant à supprimer ou insérer des objets.

Le récent jeu de données DEFACTO [44] est construit à partir du jeu de don-
nées MSCOCO [45] et comprend un large éventail de falsifications telles que le
copier-coller interne comme externe, l’inpainting et le morphing. Les falsifications
sémantiquement significatives sont générées automatiquement mais avec plusieurs
biais tels que le copier-coller d’objets dans le même axe ou uniquement avec des ob-
jets simples.

Détection automatique de falsifications
De nombreuses méthodes de détection de falsification n’effectuent pas de détection
automatique. Elles produisent plutôt une carte thermique des régions qui semblent
être falsifiées et laissent l’utilisateur décider si l’image est effectivement falsifiée. Ce-
pendant, l’utilisateur qui cherche à savoir si une image est fausse n’a pas nécessaire-
ment les connaissances nécessaires pour interpréter les résultats. En outre, l’analyse
visuelle de toutes les images n’est pas possible si de nombreuses images doivent être
inspectées. Pour que la détection soit réellement automatique, une méthode de dé-
tection de falsification devrait idéalement fournir une sortie binaire de la détection.

Pour y parvenir, Self-consistency [28] fait appel à la segmentation en n-cuts pour
sélectionner les régions de la carte thermique sur lesquelles la méthode réagit forte-
ment. L et Ri [13] utilisent des tests de normalité pour décider de l’au-
thenticité de l’image.

Dans ce contexte, l’analysea contrariopeut s’avérer utile. Introduite par Dsolx ,
Mois et Mol [46], elle a déjà été appliquée avec succès à d’autres méthodes de
détection de falsification [19], [25]. Basée sur la théorie de la Gestalt, cette théorie
de détection effectue un seuillage automatique des données en contrôlant une borne
supérieure du nombre de fausses alarmes (NFA) auxquelles on peut s’attendre. Étant
donné une hypothèse de base H0 et une fonction d’importance S qui représente l’im-
portance attribuée à une observation, nous pouvons calculer la valeur p d’une obser-
vation x, c’est-à-dire la probabilité qu’une observation aléatoire soit au moins aussi
importante que x :

p(x) = Py∼H0(S(y) ≥ S(x)). (1)

Si la valeur pdonne une idée de l’importance d’une détection, elle ne tient pas compte
du nombre d’observations effectuées ; en présence d’une grande quantité d’observa-
tions, on peut s’attendre à des détections parasites même avec un petit seuil de la va-
leur p. Le cadre a contrario propose plutôt de fixer un seuil sur le nombre de fausses
alarmes toléré (NFA), qui est obtenu en multipliant la valeur p par le nombre de
tests, réels ou potentiels. Par exemple, lors du calcul de la NFA de rectangles sur une
image, le nombre de tests est le nombre total de rectangles possibles dans l’image –
même si tous les rectangles ne sont pas testés. Associer un NFA à chaque détection
et ne garder que les détections dont le score est inférieur au seuil ε revient à fixer une
borne supérieure ε sur le nombre attendu de fausses alarmes dans l’image entière :

Ex∼H0 (|{x|NFA(x) < ε}|) ≤ ε. (2)
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Le NFA d’une détection appartient à ]0,+∞[, les scores plus proches de 0 corres-
pondant à des détections plus significatives. Un NFA de 10−3, par exemple, signifie
que sous l’hypothèse de fond H0, le nombre attendu de détections au moins aussi
significatives est au plus 10−3. On s’attend donc à une fausse détection au maximum
toutes les 1000 images.

0.3 Résumé de la thèse
Dans cette thèse, nous nous concentrons sur l’analyse des artefacts de démosaïquage
pour la détection des falsifications. Cependant, avant d’entrer dans le vif du sujet,
nous étudions le problème de l’évaluation des outils de forensique dans le chapitre 1
(Non-Semantic Evaluation of Image Forensics Tools).

How to evaluate forgery detection methods?
Les algorithmes d’analyse d’images sont principalement évalués en fonction de leurs
performances lors de tests de référence. Cette pratique présente plusieurs limites :
dans de nombreux cas, la même base de données est divisée en données d’entraî-
nement et d’évaluation. Par conséquent, les algorithmes sont formés et évalués sur
des images qui ont subi un de traitement, des algorithmes de falsification et des ou-
tils anti-falsification similaires. Il n’y a donc aucune garantie que ces méthodes d’ap-
prentissage fonctionneront dans la nature, où ces paramètres varient beaucoup plus.
Indépendamment de la variété de l’ensemble d’apprentissage, la question se pose de
savoir si les faux sont détectés par des détecteurs entraînés pour des raisons séman-
tiques ou en raison d’incohérences locales dans l’image.

En effet, si l’analyse sémantique d’une image peut fournir des indices, la preuve
rigoureuse d’un faux ne doit pas être basée uniquement sur des arguments séman-
tiques. La situation est similaire au dilemme soulevé par les observations de Galilée,
qui contredisaient les connaissances acceptées à son époque. connaissances de son
époque. Selon Bertolt Brecht [47] :

Glil : Et que dirait Son Excellence de regarder ses étoiles impossibles et
inutiles à travers ce télescope ?
L Mici : L’on pourrait dire, pourtant, que si votre télescope
montre quelque chose qui ne peut exister, peut-être n’est-il pas vraiment fiable,
n’est-ce pas ?

Le télescope aurait pu être peu fiable, en effet, et une enquête scientifique sur l’ins-
trument aurait pu être justifiée. Cependant, il n’est pas prudent de conclure, comme
le fait le mathématicien, que le télescope n’était pas fiable juste sur la base du contenu
des observations. De même, la preuve d’un faux doit être fondée sur des traces d’images,
et non sur des arguments sémantiques, car la sémantique d’une image est générale-
ment le but et non le moyen d’un faux.

Avec ces considérations en tête, nous proposons une méthodologie et une base
de données pour évaluer les outils d’analyse d’images sur des images où les régions
authentiques et falsifiées ne diffèrent que par les traces laissées par le traitement de
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(a) Raw image (b) Masque de falsification : M

(c) Pipeline 0 : P0 (d) Pipeline 1 : P1

(e) Falsification : F=M̄P0 + MP1 (f ) Residuel |F − P0|

(g) Noiseprint [27] result (h) ManTraNet [30] result

Fig 0.7 : Dans le chapitre 1 (Non-Semantic Evaluation of Image Forensics
Tools), différentes chaînes de formation d’image sont appliqués à la même image
RAW pour obtenir deux images, qui sont combinées pour obtenir une image falsi-
fiée. Les régions authentique et falsifiée présentent des traces différentes, mais sont
par ailleurs parfaitement cohérentes. La seule différence entre les régions authen-
tiques et contrefaites sont les traces de l’appareil. La RMSE dans la région contre-
faite est de 4,46. La dernière ligne montre le résultat de deux outils d’analyse sur cette
image.

l’images. À l’aide de cette méthodologie, nous créons la base de données Trace en
ajoutant diverses traces de falsification aux images brutes du jeu d’images Raise [31],
comme le montre la figure 0.7. Cette procédure permet d’éviter les difficultés liées à
la production de faux sémantiques convaincants et impartiaux, qui nécessitent sou-
vent un travail manuel. Nous créons plusieurs ensembles de données, chacun d’entre
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eux correspondant à une incohérence spécifique, comme un niveau de bruit ou un
alignement de compression différent. Cela nous donne un aperçu de la sensibilité
des outils de forensique à des traces spécifiques, et met ainsi en évidence la complé-
mentarité des différentes méthodes.

Noise Level CFA Grid CFA Algorithm JPEG Grid JPEG Quality Hybrid

Splicebuster [26]

Chapitre 6

ZERO [25]

Noiseprint [27]

ManTraNet [30]

Fig 0.8 : Visualisation des résultats de plusieurs méthodes pour une image sur
tous les jeux de données du Chapitre 1 (Non-Semantic Evaluation of Image Foren-
sics Tools). Certaines méthodes, comme Noiseprint ou celle proposée dans le Cha-
pitre 6 (Positional Learning for Demosaicing Analysis), détectent correctement les
faux dans les images pertinentes, mais ont tendance à faire des fausses détections de
type bruit dans les images pour lesquelles elles ne peuvent pas voir le faux. La sélec-
tion automatique des détections pertinentes d’un algorithme faciliterait son utilisa-
tion sans nécessiter d’interprétation, c’est pourquoi le chapitre 7 (Internal Learning
to Improve Adaptability) le fera en étendant la méthode du chapitre 6 (Positional
Learning for Demosaicing Analysis). L’image et le masque de falsification sont vi-
sibles sur la Fig. 0.7.

À l’aide de la base de données nouvellement créée, nous procédons ensuite à une
évaluation des outils de forensique existants, voir Fig. 0.8 pour un exemple.

Le reste de la thèse se concentre uniquement sur l’analyse des traces de démosaï-
quage.

Analyse directe des traces de démosaïquage
Après avoir analysé le problème de l’évaluation des méthodes forensiques, nous com-
mençons notre recherche d’une méthode d’analyse de démosaïquage. Dans le cha-
pitre 2 (CFA Identification with Differential Operators), nous essayons de faire res-
sortir les pixels échantillonnés des pixels interpolés à l’aide de simples indices numé-
riques provenant d’un opérateur différentiel. Nous comparons la réponse des quatre
motifs paire par paire avec un test statistique, afin de détecter les motifs significative-
ment impossibles. Les images sont alors déclarées fausses lorsqu’aucun motif unique
n’est possible partout, comme le montre la figure 0.9.
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(a) Les régions forgées trouvées sont en
rouge, et les régions où la grille CFA
exacte a été identifiée sont en vert.

(b) Original image

(c) Régions où  g
g b , g 

b g , g b
 g et b g

g  sont significativement impossibles (rouge) ou possible
(vert)

Fig 0.9 : La méthode du chapitre 2 (CFA Identification with Differential Ope-
rators) détecte les motifs CFA significativement impossibles. Images de [38].

La méthode proposée est très robuste aux fausses détections. Cependant, la li-
néarité et l’indépendance vis-à-vis des canaux rendent les détections rares lorsque
l’algorithme de démosaïquage est trop avancé, ou lorsque plusieurs motifs sont pré-
sents. Accepter les résultats du canal le plus fort, au lieu de refuser de faire une détec-
tion lorsque deux canaux sont incohérents, permet d’obtenir des détections légère-
ment meilleures, mais le contrôle total du nombre de faux positifs ne peut plus être
atteint, comme le montre la figure 0.10.

Le chapitre 2 (CFA Identification with Differential Operators) met ainsi en
évidence la difficulté d’une analyse cohérente des traces de démosaïquage.

Dans le chapitre 3 (Intermediate Values Counting for CFA Pattern identifi-
cation), nous conservons l’idée d’utiliser un indice numérique simple pour mettre
en évidence les pixels interpolés par rapport aux pixels échantillonnés. Cependant,
nous essayons de suivre une approche plus subtile. Au lieu de mettre directement en
évidence les pixels interpolés, nous utilisons plutôt une de leurs propriétés : comme
l’a remarqué Coi , Coi et L [14] et mis en évidence dans la Figure 0.11, les
pixels interpolés sont plus enclins à être des valeurs intermédiaires pour détecter
dans quel schéma une image a été échantillonnée. Nous analysons, implémentons et
étendons leur méthode pour détecter le motif CFA. Nous utilisons ensuite cette in-
formation pour trouver les régions qui sont incohérentes avec l’image globale. Nous
attribuons un score de confiance à chaque détection, qui peut ensuite être seuillé
pour fournir une carte binaire des falsifications détectées. Bien que cette méthode
ne donne pas de résultats cohérents sur quelques algorithmes de démosaïquage, elle
est globalement bonne pour détecter la mosaïque, du moins sur les images non com-
pressées, comme le montre la figure 0.12.

Une démonstration en ligne de ce chapitre est disponible à l’adresse suivante :
https ://www.ipol.im/pub/art/2021/355/. Dans le cadre du projet Envisu4, la mé-
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Fig 0.10 : Résultats visuels sur les images du jeu de données Korus selon si la
cohérence des canaux (CC) est appliquée ou non, avec la méthode du chapitre 2
(CFA Identification with Differential Operators). Aucune détection n’a été faite
sur les images de l’appareil photo Canon 60D, qui ne sont donc pas présentées ici.
Dans l’ensemble, le fait de ne pas imposer la cohérence des canaux permet de faire
beaucoup plus de détections, au prix de quelques faux positifs comme l’image la plus
à gauche de l’appareil Nikon D90, ou les deuxième et sixième images de l’appareil
Sony α57.

thode présentée ici a également été intégrée au plugin de navigateur InVID & We-
Verify, un outil en ligne et un plugin destinés aux journalistes et aux vérificateurs de
faits pour vérifier l’authenticité des images et rechercher des traces de falsification.

Bien que la méthode soit utilisable, ces problèmes la rendent encore insatisfai-
sante. Il est possible de détecter des incohérences locales même au sein de détections
erronées, cependant les détections de motifs erronés ne peuvent être évitées contre
tous les algorithmes de démosaïquage sans exploiter les transferts inter-canaux. En
outre, nous souhaitons améliorer la robustesse à la compression JPEG. Cela nous
amène à abandonner l’idée de la détection directe des pixels interpolés et échan-
tillonnés. Au lieu de cela, nous essayons de faire de la rétro-ingénierie de l’algorithme
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18 56 94 85 76 96 116 104
49 56 63 52 41 64 88 87
80 56 32 19 6 33 60 70
59 62 66 49 32 59 87 88
38 69 100 79 58 86 114 106
40 51 63 74 85 75 66 63
42 34 26 69 112 65 18 21
38 47 57 75 94 72 50 35

(a) Rouges

139 240 154 16 94 56 72 20
92 131 168 76 72 94 24 43
85 24 100 48 102 224 130 72
60 107 160 68 64 122 200 153
92 184 125 0 50 0 133 108
52 155 156 76 136 117 224 127

146 228 111 12 110 108 107 44
56 114 48 90 184 141 52 90

(b) Verts

Fig 0.11 : Canaux rouge et vert d’une image jouet démosaïquée par interpola-
tion bilinéaire dans le modèle  g

g b . Les valeurs rouges correspondent aux positions
où la valeur a été interpolée. Les cellules surlignées correspondent aux pixels qui
prennent une valeur intermédiaire, c’est-à-dire qui ne sont pas un extremum local
parmi leurs voisins directs. Si les pixels échantillonnés peuvent avoir des valeurs in-
termédiaires, on en trouve beaucoup plus parmi les pixels interpolés dans les canaux
rouge et vert. Le canal bleu, non représenté ici, se comporte de manière similaire au
canal rouge. Cette observation est au cœur de Coi , Coi et L [14], dont la mé-
thode est analysée, implémentée et étendue dans le chapitre 3 (Intermediate Values
Counting for CFA Pattern identification).

de démosaïquage lui-même, afin d’estimer la mosaïque potentielle dans laquelle un
algorithme de démosaïquage a été effectivement utilisé.

Ingéniérie inverse de l’algorithme de démosaïquage
Les chapitres 2 (CFA Identification with Differential Operators) et 3 (Intermediate
Values Counting for CFA Pattern identification) ont exploré des approches directes
pour distinguer les pixels échantillonnés, et in fine pour révéler le motif CFA correct.
Cependant, ces approches n’étaient pas satisfaisantes. Si le chapitre 3 (Intermediate
Values Counting for CFA Pattern identification) a fourni de bons résultats, la sim-
plicité de ces approches directes ne pouvait pas prendre en compte les propriétés
de chaque algorithme de démosaïquage spécifique, ce qui conduisait à des résultats
erronés sur les images démosaïquées par ces algorithmes. Dans le chapitre 4 (Li-
near Estimation of the Demosaicing Algorithm), nous proposons plutôt de suivre
une approche de rétro-ingénierie afin de refléter plus précisément les spécificités de
chaque image et algorithme de démosaïquage. Nous créons une estimation linéaire
du démosaïquage associé à chacun des quatre modèles CFA possibles. Les résidus
de ces modèles donnent une estimation locale du motif CFA dans l’image. Une ap-
proche a contrario est ensuite appliquée pour trouver les régions dont le motif dé-
tecté s’écarte significativement du reste de l’image. Nous montrons que si une esti-
mation linéaire peut être suffisante pour trouver le motif CFA de l’image, les nom-
breuses non-linéarités du démosaïquage, ainsi que la texture naturelle des images,
rendent ce modèle global et linéaire localement peu fiable.

Néanmoins, comme on peut le voir sur la figure 0.13, la méthode a contrario
déployée ici semble satisfaisante, bien qu’elle ne puisse naturellement pas filtrer les
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Fig 0.12 : Résultats de la méthode du chapitre 3 (Intermediate Values Coun-
ting for CFA Pattern identification) avec le filtre original et le filtre proposé, sur
une image authentique avec les 7 différents algorithmes de démosaïquage. Les deux
méthodes fonctionnent parfaitement sur les images démosaïquées par DCB et Bili-
néaire. Avec les méthodes AHD, PPG et VNG, les filtres isotrope original et bidirec-
tionnel ont du mal à discerner les deux motifs partageant la même diagonale, mais
la détection bidirectionnelle fait moins d’erreurs. Les régions texturées périodique-
ment, comme le panier, peuvent créer un décalage localisé dans la mosaïque détec-
tée, ce qui pourrait être confondu avec une contrefaçon. Avec l’algorithme AAHD
et DHT, la méthode détecte systématiquement la mauvaise diagonale.

incohérences qui sont significatives dans les votes de blocs eux-mêmes. Les masques
de localisation ne sont pas parfaits et peuvent nécessiter une analyse visuelle des votes
par blocs pour localiser précisément les algorithmes. Bien que cela puisse avoir un
impact négatif sur le score de la méthode sous-jacente, cela n’a que peu d’importance
pratique tant que l’approche proposée permet la détection automatique des images
falsifiées tout en limitant le nombre de tests à effectuer, et donc le coût de calcul.
Cette approche étant suffisamment bonne, nous ne prolongerons pas davantage les
travaux sur l’analyse a contrario. L’approche que nous avons suivie ici sera réutilisée
avec notre méthode finale dans le chapitre 7 (Internal Learning to Improve Adap-
tability). Cela nous permet de nous concentrer sur l’identification de la mosaïque
CFA elle-même dans les chapitres 5 (Demosaicing to Detect Demosaicing) et 6 (Po-
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Image Vérité Terrain 3 × 3 filters 7 × 7 filters
Grid NFA Grid NFA

Fig 0.13 : Résultats de la méthode du chapitre 4 (Linear Estimation of the De-
mosaicing Algorithm) sur des images Korus, de haut en bas, provenant des appareils
photo Sony α57, Nikon D7000, Nikon D90, Canon 60D. Sur la première image, la
contrefaçon est détectée avec précision. Même si le masque détecté est trop grand,
une analyse visuelle de la grille détectée permet de localiser précisément le faux. Sur
la deuxième image, le faux est détecté, mais une deuxième région de l’image est dé-
tectée par erreur. Sur la troisième image, le faux est inversé en utilisant le filtre le
plus petit. Bien que cela affecte négativement le score, ce n’est pas vraiment un pro-
blème pour la détection, car la méthode montre toujours que les deux régions ne
sont pas cohérentes entre elles. Enfin, sur la quatrième image, aucune trace de dé-
mosaïquage n’est présente. Certaines régions sont incorrectement marquées comme
incohérentes. Ces incohérences sont déjà présentes dans les grilles détectées : ces dé-
fauts proviennent de l’estimation linéaire elle-même, et non du seuillage NFA.

sitional Learning for Demosaicing Analysis), et moins sur l’analyse ultérieure pour
la détection des falsifications.

Les méthodes des chapitres 2 (CFA Identification with Differential Operators),
3 (Intermediate Values Counting for CFA Pattern identification) et 4 (Linear Esti-
mation of the Demosaicing Algorithm) présentent deux problèmes : leur incapacité
à prendre correctement en compte les transferts inter-canaux du démosaïquage dans
les chapitres 2 (CFA Identification with Differential Operators) et 3 (Intermediate
Values Counting for CFA Pattern identification) et la nécessité d’aller au-delà des
hypothèses linéaires trop simplistes dans les chapitres 2 (CFA Identification with
Differential Operators) et 4 (Linear Estimation of the Demosaicing Algorithm).
Dans le chapitre 5 (Demosaicing to Detect Demosaicing), nous essayons d’éviter
naturellement ces deux problèmes en utilisant une collection d’algorithmes de dé-
mosaïquage existants, et acceptons plutôt les hypothèses plus naturelles qui en dé-
coulent. En effet, nous pouvons effectuer le démosaïquage en utilisant chacune des
quatre mosaïques possibles. La mosaïque correcte a plus de chances de produire une
image plus proche de l’image originale, comme le montre la figure 0.14. Nous explo-
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(a) Entrée, démosaïquée avec HA en  g
g b .
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(b) Résidus lorsque l’image d’entrée est à nouveau démosaïquée avec le même algorithme
(HA) dans les quatre positions, de gauche à droite :  g

g b (motif correct), b g
g  , g 

b g , g b
 g . Le

résidu est nul lorsque le modèle correct est utilisé, ce qui facilite l’identification du modèle.
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(c) Ici, l’image d’entrée est analysée avec un algorithme différent (LMMSE). Le résidu sur le
motif correct (à gauche) n’est plus nul, mais reste plus faible que sur les motifs incorrects.
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(d) L’image d’entrée est compressée en JPEG (Q = 90 avant le second démosaïquage, avec
le même algorithme (HA). Encore une fois, bien que le résidu du motif correct ne soit pas
nul, il est toujours plus faible que dans les autres positions.
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(e) L’image d’entrée est compressée en JPEG (Q = 90 avant le second démosaïquage, avec
un algorithme différent (LMMSE). Le résidu est toujours plus faible avec le motif correct.
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(f ) Ici, l’image d’entrée (non compressée) est analysée par un autre algorithme (ARI).

Fig 0.14 : Double Demosaicing : Dans le chapitre 5 (Demosaicing to Detect
Demosaicing), une image a été démosaïquée avec HA et analysée avec plusieurs al-
gorithmes, à la fois non compressée et après compression JPEG. Lorsque l’image
n’est pas compressée entre les deux opérations de démosaïquage, et si l’algorithme
utilisé est le même, le résidu est nul dans le motif de mosaïque correct, ce qui per-
met d’identifier facilement ce motif. Lorsque l’image est compressée, le résidu n’est
plus nul dans le motif correct, mais il reste plus faible que dans les autres motifs pour
autant que la compression soit modérée. Si un algorithme différent est utilisé pour
l’analyse, les résultats varient : L’analyse de l’image avec LMMSE donne un résidu
plus faible dans le motif correct, mais ce n’est plus le cas lorsqu’on utilise ARI, qui
n’est pas adapté à l’analyse des images démosaïquées HA. Les résiduels sont floutés
(σ = 1.7) pour une meilleure visualisation.
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rons les possibilités de ce que l’on appelle le double démosaïquage pour identifier
le motif CFA. La sélection locale de l’algorithme de démosaïquage le plus approprié
permet de détecter le motif CFA même lorsque l’algorithme de démosaïquage origi-
nal est inconnu. Cette méthode évite naturellement les deux principaux problèmes
des chapitres précédents, à savoir leur incapacité à prendre en compte les transferts
inter-canaux du démosaïquage et la nécessité d’aller au-delà des hypothèses linéaires
trop simplistes. Nous simulons les deux étapes du démosaïquage pour analyser dans
quelles conditions le double démosaïquage peut être utilisé pour détecter le motif.
De plus, l’introduction de la compression JPEG entre les deux démosaïquages nous
permet d’étudier les limites de la détection du motif CFA sur des images compres-
sées.

Lorsque l’algorithme initial n’est pas connu, le motif peut être sélectionné par
une stratégie simple. Une liste d’algorithmes peut être utilisée, et l’algorithme qui
donne le résidu le plus faible est choisi localement. En principe, cette stratégie donne
d’excellents résultats lorsque l’algorithme de démosaïquage initial figure dans la liste
des algorithmes testés. Cependant, même lorsque ce n’est pas le cas, cette méthode
permet généralement d’obtenir de meilleurs résultats qu’une comparaison utilisant
un seul algorithme.

Souvent, les images sont trouvées dans un état comprimé. Toujours dans le cha-
pitre 5 (Demosaicing to Detect Demosaicing), nous étudions la robustesse du double
démosaïquage lorsque la compression JPEG est appliquée après le démosaïquage
initial. Bien que la détection soit rendue plus difficile par la compression, le motif
correct peut toujours être trouvé au niveau de l’image même si l’algorithme de dé-
mosaïquage original n’est pas connu.

Le principal inconvénient de cette méthode provient de la difficulté à effectuer
des détections fiables à une échelle locale. S’il est possible, avec un degré de confiance
très élevé, de détecter si une image entière a été démosaïquée et dans quel schéma,
cette décision devient beaucoup plus difficile à prendre localement. Dans les petits
blocs de 32 × 32, le contraste du résidu à travers les motifs est toujours biaisé vers
la détection d’un résidu plus faible dans la bonne position; cependant ce contraste
n’est pas significativement plus élevé que le contraste sur les images sans mosaïque,
dans lesquelles aucune détection ne devrait être faite. C’est particulièrement le cas
sur les images fortement compressées.

Globalement, cette méthode peut être utilisée pour analyser l’image à une échelle
globale, aidée par sa surprenante bonne robustesse à la compression JPEG. Il n’est
cependant pas encore possible de l’utiliser localement. Une analyse locale serait né-
cessaire pour détecter les incohérences de la mosaïque et donc les falsifications po-
tentielles.

Ce quatrième chapitre de la quête de preuves fiables de traces de démosaïquage
n’apporte pas de réponse universelle. Même l’hypothèse la plus naturelle de proxi-
mité entre différents algorithmes de démosaïquage n’est pas toujours valable locale-
ment, surtout en cas de forte compression. Cela est compréhensible ; même si diffé-
rents algorithmes peuvent se comporter de manière proche, ce n’est plus nécessaire-
ment le cas si l’un des deux algorithmes est suivi d’un post-traitement lourd.

En somme, aucun des modèles testés jusqu’à présent n’est parfaitement satisfai-
sant et fiable. La détection directe, bien qu’elle permette d’identifier la grille dans
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Fig 0.15 : Dans le chapitre 6 (Positional Learning for Demosaicing Analysis),
nous entraînons un CNN à détecter les positions horizontales et verticales modulo-
2 de chaque pixel, telles que vues dans ces cibles. Les CNN sont invariants en trans-
lation, ils ne connaissent pas directement la position des pixels ; ils doivent donc se
fier à des indices externes tels que les traces de démosaïquage. Cet entraînement po-
sitionnel va donc entraîner implicitement le réseau à reproduire la mosaïque d’une
image et ses incohérences.

de nombreux cas, est imparfaite face à plusieurs algorithmes de démosaïquage, et
se heurte à la difficulté de concevoir des caractéristiques qui reflètent celles des al-
gorithmes de démosaïquage. La rétro-ingénierie de l’algorithme de démosaïquage
d’une image spécifique n’est pas non plus sans faille ; même l’hypothèse somme toute
très naturelle selon laquelle l’algorithme de démosaïquage se comportera localement
de manière proche d’au moins un algorithme connu n’est pas toujours vraie, et ne fait
pas de miracles sur les images fortement compressées.

Apprentissage positionnelle pour répliquer la mosaïque et ses
incohérences
Face à la difficulté de notre problème, nous décidons de revenir à l’hypothèse la plus
simple et la plus naturelle concernant les traces de démosaïquage : elles présentent
une forte composante 2-périodique. Sans autre hypothèse, nous proposons de dé-
tecter la phase de cette composante. Pour ce faire, nous introduisons l’apprentissage
positionnel. En tirant parti de l’héritage de la traduction et du pouvoir représentatif
élevé des réseaux de neurones convolutifs (CNN), nous en entraînons un à détecter
la position modulo (2, 2) de chaque pixel, comme le montre la figure 0.15. Impli-
citement, le CNN s’appuiera sur les traces de démosaïquage pour fournir sa sortie ;
cette sortie imitera donc la phase de la composante bi-périodique.

Lorsqu’une falsification perturbe la mosaïque de l’image, la sortie du réseau re-
flète cette perturbation, permettant la détection de la falsification sous forme d’er-
reurs dans la sortie. Cette méthode est entièrement auto-supervisée et ne nécessite
que des images authentiques pour l’apprentissage. En outre, étant donné plusieurs
images similaires dont l’authenticité n’est pas claire, il est possible d’affiner le modèle
sur les images pour augmenter la robustesse à la compression JPEG. En pratique, ce-
pendant, il est rare de disposer d’une grande quantité d’images similaires à analyser.

C’est pourquoi, dans le chapitre 7 (Internal Learning to Improve Adaptability),
nous montrons qu’un tel réseau peut être ajusté avec précision sur une seule image,
potentiellement falsifiée, pour s’y adapter. Ce faisant, nous augmentons considéra-
blement la robustesse à la compression JPEG et aux autres post-traitements. Nous
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Fig 0.16 : Résultats du chapitre 6 (Positional Learning for Demosaicing Ana-
lysis). Détections sur le jeu de données CFA Forgeries, présenté dans le chapitre 1
(Non-Semantic Evaluation of Image Forensics Tools). Pour chaque image, dans
l’ordre : Image falsifiée, prédictions pixel par pixel pour chacune des 4 grilles, pré-
dictions par bloc pour chacune des 4 grilles, blocs falsifiés détectés, vérité terrain. La
mosaïque de l’image et du faux est alignée pour les deux images de la dernière ligne,
c’est pourquoi aucune détection ne peut être faite avec notre méthode.

améliorons encore la méthode en ajoutant une couche a contrario pour détecter
et localiser automatiquement les incohérences importantes dans la mosaïque d’une
image. La méthode proposée dans ce dernier chapitre surpasse les méthodes de dé-
tection de mosaïque les plus récentes et les méthodes génériques de médecine lé-
gale sur des ensembles de données non comprimés. La méthode proposée dans ce
dernier chapitre surpasse les méthodes de détection de mosaïque de pointe et les
méthodes génériques de forensique sur les images non compressés. Elle reste perti-
nente sur des images légèrement compressés et apporte un éclairage complémentaire
à d’autres méthodes, y compris les modèles génériques basés sur l’apprentissage, qui
sont aveugles aux traces de mosaïque que nous analysons.

L’apprentissage interne sur une seule image présente plusieurs défis. Le nombre
réduit d’échantillons augmente le risque de surapprentissage ; si le réseau s’adapte
trop, il détectera correctement la position du pixel de la contrefaçon, et la contrefa-
çon ne sera pas détectée. Plus important encore dans notre cas, la compression JPEG
pose des difficultés à l’ajustement interne d’une seule image. Le réseau proposé uti-
lise les traces de démosaïquage car elles constituent la principale source d’informa-
tion sur la position modulo 2 des images. Cependant, l’encodage JPEG comprime
l’image en blocs de 8×8, les traces qu’il laisse derrière lui ont donc une forte compo-
sante 8-périodique. L’ajustement sur une seule image compressée peut donc détour-
ner le réseau de l’analyse des traces de démosaïquage pour lui faire analyser les traces
de compression JPEG. Lors d’un ajustement sur plusieurs images, ce problème se-
rait atténué par les différents alignements entre le CFA et la grille JPEG sur chaque

32



(a) Falsification

(b) Original (c) Masque

(d) Grilles détectées (e) Falsifications détectées

Fig 0.17 : Résultats de la méthode du chapitre 7 (Internal Learning to Improve
Adaptability) sur une image inpaintée de Korus [42], [43]. La détection locale du
motif de démosaïquage permet non seulement de détecter la falsification, mais aussi
de montrer les patchs utilisés lors de l’inpainting.

image : un réseau entraîné à détecter des traces JPEG sur un alignement échouerait
sur une image alignée autrement. Avec une seule image, l’analyse des traces JPEG
peut directement conduire à la position modulo 2 correcte.

Pour éviter ce problème, nous proposons de pré-entraîner le réseau sur des images
compressées manuellement à différents alignements JPEG-CFA, comme le montre
la figure 0.18. Le réseau apprend ainsi à détecter les artefacts CFA sur la compres-
sion JPEG. Bien que cela ne soit pas suffisant pour produire de bons résultats sur les
images compressées, cela conduit le modèle sur une meilleure voie avant l’appren-
tissage interne : Auparavant empêché d’utiliser la position de la grille JPEG, com-
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Fig 0.18 : La grille JPEG et le motif de Bayer peuvent être alignés de quatre ma-
nières différentes. En entraînant simultanément le réseau sur les quatre alignements
possibles, nous le forçons à analyser les traces de démosaïquage sur JPEG, au lieu
d’utiliser directement les traces JPEG.

mencer à utiliser cette grille aurait un coût immédiat à court terme pour le réseau.
L’optimisation locale incite donc efficacement le réseau à ne pas détecter la position
de la grille JPEG.

Même avec cette astuce de pré-entraînement JPEG, l’apprentissage interne sur
une seule image peut sembler enclin au surapprentissage. Cependant, même si le ré-
seau s’adapte trop à l’image, la formation est effectuée en supposant que l’image com-
plète est authentique. En d’autres termes, l’ajustement fin incite le réseau à conclure
que tout est authentique. Par conséquent, si l’image est réellement authentique, les
risques de fausse détection sont moindres qu’avec le réseau pré-entraîné ; par concep-
tion, le surapprentissage n’induira pas de nouvelles fausses détections. Dans le cas
plus intéressant où l’image est effectivement falsifiée, le réseau s’adaptera également
au post-traitement pour apprendre les traces de démosaïquage et détecter la posi-
tion des pixels. Les régions falsifiées dans les images sont généralement petites par
rapport à la taille totale. Par conséquent, même si les régions falsifiées orientent le
réseau vers une détection correcte de la position de leurs pixels, elles produisent des
preuves qui contredisent celles de régions authentiques beaucoup plus grandes. La
petite taille et la localité du réseau sont particulièrement importantes ici pour éviter
qu’il ne puisse s’adapter à la fois aux régions authentiques et aux régions falsifiées.
Bien qu’un certain degré de surapprentissage soit probablement inévitable, son im-
pact est en fait très limité.

À la méthode développée, nous ajoutons la couche a contrario déjà introduite
dans le chapitre 4 (Linear Estimation of the Demosaicing Algorithm). Ceci permet
à notre méthode de détecter des régions incohérentes dans l’image, même si une
mosaïque unique ne peut être détectée localement. Les résultats statistiquement non
significatifs sont ensuite filtrés sur la base d’un seuil NFA.

Nos expériences montrent que nous pouvons détecter les décalages de motifs
de démosaïquage mieux que d’autres méthodes de détection de démosaïquage, et
plus généralement que l’état de l’art sur les images falsifiées non compressées. Le
seuillage a contrario nous permet de seuiller automatiquement les sorties, ce qui li-
mite le nombre de fausses détections et simplifie la combinaison de cette méthode
avec d’autres méthodes.

La principale limite de notre méthode, et de la détection du démosaïquage en
général, est que les artefacts de démosaïquage sont subtils et situés sur les hautes fré-
quences. Par conséquent, une forte compression JPEG, ou un sous-échantillonnage,
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Méthode chapitre 2 chapitre 3 chapitre 4 chapitre 5 chapitre 6 chapitre 7

détection A contrario yes no yes no no yes
Hypothèse de linéarité yes no yes no no no
Hypothèse d’indépendance des ca-
naux couleurs yes yes no no no no

Ingéniérie inverse no no yes yes no yes

Par apprentissage non non non non oui (auto-
supervisé)

oui (auto-
supervisé,
interne)

Autres – – – Algorithmes
similaires Le démosaïquage laisse des traces 2-périodiques

Tbl 0.1 : Résumé des propriétés de nos méthodes.

supprimera les artefacts et rendra la détection du démosaïquage impossible. Ceci
étant dit, la méthode proposée est suffisamment robuste pour donner des résultats
décents à un niveau de qualité de compression de 95, et est encore capable de trouver
quelques faux avec un facteur de compression de 90. Cela n’est pas suffisant pour ef-
fectuer une détection sur des images de faible qualité telles que celles que l’on trouve
sur les médias sociaux. Néanmoins, la méthode fonctionne sur la qualité JPEG géné-
ralement élevée fournie par l’appareil. Cela la rend pertinente dans des domaines tels
que les concours photographiques, les enquêtes criminelles, les enquêtes sur les in-
conduites scientifiques ou le journalisme, des tâches où l’authentification des images
est souvent nécessaire.

Enfin, nous notons que la méthode proposée – et plus généralement l’analyse
de démosaïquage – est totalement complémentaire avec des méthodes forensiques
plus génériques telles que Noiseprint [27]. En effet, le chapitre 7 (Internal Learning
to Improve Adaptability) montre que ces méthodes sont totalement aveugles aux
changements dans le motif de démosaïquage, alors que nous nous concentrons ex-
clusivement sur ceux-ci.

Les propriétés de nos méthodes sont résumées dans le tableau 0.1.
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Introduction

The Internet, digital media, new means of communication and social networks have
boosted the emergence of a connected world where perfect mastery over informa-
tion becomes impossible. Images are ubiquitous and therefore have become an es-
sential part of the news. Unfortunately, they have also become a tool of disinform-
ation aimed at distracting the public from reality.

Manipulation of images is everywhere. Simply removing red eyes from family
photos could already be called an image manipulation, whereas it is simply aimed
at making a flash image look more natural. Even amateur photographers can easily
erase the electric cables of a vacation panorama, correct physical imperfections such
as wrinkles on a face, not to mention touch-ups done on models in magazines.

Beyond these mostly-benign examples, image manipulation can lead to falsi-
fied results in scientific publications, reports or journalistic articles. Altered images
can imply an altered meaning, and can thus be used as fake evidence, for instance
to use defamation against someone or report a paranormal phenomenon. More fre-
quently, falsified images are published and relayed on social media, in order to create
and to contribute to the spread of fake news.

Making a visually convincing forgery is now within anyone’s reach; should one
desire so, those realistic falsifications can then be disseminated on online media or
social networks [1], fake the outcome of scientific studies, or be presented as forged
evidence in a trial.

Recently, deep neural networks have made it possible to generate manipulated
images almost automatically, such as the website This Person Does Not Exist4, which
randomly generates faces of people who do not exist while being unexpectedly real-
istic. Deepfake methods allow, among other things, to replace a face in a video with
the one of another person (face swapping).

These new possibilities of image manipulation have been exploited for a long
time by governments, criminal organisations and offenders. Stalinist propaganda
images can come to mind, in which certain characters who had become undesirable
were removed from official photographs. (Figure 0.1).

Today, image manipulation can serve the interests of criminal or terrorist or-
ganisations as part of their propaganda (false claims, false events, masking of identi-
fication elements, addition of objects). Face swapping and deepfake techniques are
also a simple way to undermine the image and privacy of public figures by placing
them in compromising photos. The manipulation of images is also a means of exert-
ing coercion, pressure or blackmail against a third party. Manipulated images can
also be used to harm companies through disinformation campaigns. Administrative

4www.thispersondoesnotexist.com.
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Figure 0.1: An example showing how an image has been modified several times in
a row, each person disfavoured seeing their image removed from the photo. Only
Joseph Staline appears in the four photos.

documents can be falsified in order to obtain official papers, a rental document or
a loan from specialised organisations. Face morphing, whose objective is to obtain
the photo of a visually “compatible” face from two faces, enables two users to share
the same ID in order to deceive an identity check. These manipulations also cause
problems to law enforcement. In the past, confessions, testimonies or photographs
were enough to prove guilt. Forgery technologies were not sufficiently developed
to mislead investigators. Today, these methods are no longer sufficient and law en-
forcement authorities need innovative scientific tools to be able to present reliable
evidence in court.

The digital image is an essential medium of communication in today’s world.
People need to be able to trust this method of communication. Therefore, it is es-
sential to be able to detect images that have been manipulated.

Yet, even though images are easy to modify in a visually realistic way, those
modifications can be difficult to detect automatically.

In Greek mythology, Dolus, the spirit of trickery, attempted to replicate a statue
of Aletheia, goddess of truth; in doing so he ran out of clay and left her feet unfin-
ished. When Dolus’ master Prometheus gave life to both statues, the fake statue
stood out as unable to walk as well as the original; thus the forgery was unconcealed.
In the words of Aesop:

Prometheus, that potter who gave shape to our new generation, decided one
day to sculpt a statue of Truth [Aletheia], using all his skill so that she would
be able to regulate people’s behaviour. As he was working, an unexpected
summons from mighty Jupiter called him away. Prometheus left cunning
Trickery [Dolus] in charge of his workshop (Trickery had recently become
one of the god’s apprentices). Fired by ambition, Trickery used the time at
his disposal to fashion with his sly fingers a figure of the same size and ap-
pearance as Truth with identical features. When he had almost completed
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the piece, which was truly remarkable, he ran out of clay to use for her feet.
The master returned, so Trickery quickly sat down in his seat, quaking with
fear. Prometheus was amazed at the similarity of the two statues and wanted
it to seem as if all the credit were due to his own skill. Therefore, he put
both statues in the kiln and when they had been thoroughly baked, he in-
fused them both with life: sacred Truth walked with measured steps, while
her unfinished twin stood stuck in her tracks. That forgery, that product of
subterfuge, thus acquired the name of Falsehood, and I readily agree with
people who say that she has no feet: every once in a while something that is
false can start off successfully, but with time the Truth is sure to prevail.

In the same way the fake statue left imperfect footsteps, image forgeries usually
leave traces. From the real scene whose photograph is taken to the storage of the
captured image on a digital support, many processes take place to create the final
image. Each of these operations, imprints its traces onto the image. The set of all
those traces form a true signature of the image, akin to a natural watermark. Al-
though usually imperceptible to the naked eye, this signature can usually be detec-
ted and analysed, enabling reconstruction of the history of an image, to model the
different operations that took place during the creation of the image, as well as their
order and parameters. Information about the specific camera pipeline of an image
is relevant by itself, in particular because it can guide the restoration of the image.
More importantly, it provides an identifying signature of the image.

Indeed, when an image is manipulated, its signature is disrupted. A model of
the pipeline that is inconsistent across the whole image is thus often a clue that the
image was tampered.

0.5 The image formation pipeline
The main steps in the digital image acquisition process, illustrated in Figure 0.2,
will be briefly described in this section. Other important steps, such as denoising,
are beyond the scope of this thesis and will therefore not be covered here.

Raw image acquisition
The first step to acquire a raw image consists in counting the number of incident
photons over the sensor along the exposure time. There are two different technolo-
gies used in camera sensors: Charge Coupled Devices (CCDs) and Complementary
Metal-Oxide-Semiconductors (CMOS). Although their operating principles dif-
fer, both can be modelled in a very similar way [2]. Both sensors transform incom-
ing light photons into electronic charge which interacts with detection devices to
produce electrons stored in a potential light well. When the latter is full, the pixels
become saturated.The final step is to convert the analog voltage measurements into
digital quantized values.
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Demosaicing

Colour Correction

JPEG Compression

Figure 0.2: Simplified processing pipeline of an image, from its acquisition by the
camera sensor to its storage as a JPEG-compressed image. The left column repres-
ents the image as it goes through each step. The right column plots the noise of the
image as a function of intensity in all three channels (red, green blue). Because each
step leaves a specific footprint on the noise pattern of the image, analysing this noise
enables us to reverse-engineer the pipeline of an image. This in turn enables us to
detect regions of an image which were processed differently, and are thus likely to
be falsified.

Demosaicing
Most cameras cannot see colour directly, because each pixel is obtained through a
single sensor which can only count the number of photons reaching it in a certain
wavelength range. In order to obtain a colour image, a colour filter array (CFA)
is placed in front of the sensors. Each of them only counts the photons of a cer-
tain wavelength. As a result, each pixel has a value relative to one colour. By using
filters of different colours on neighbouring pixels, the missing colours can then be
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interpolated.
Although other exist, almost all cameras use the Bayer array, see Figure 0.3 for

a non-exhaustive list of colour filter arrays.: the Bayer array, which is illustrated in
Figure 0.3. This matrix samples half the pixels in green, a quarter in red, and the
last quarter in blue. Sampling more pixels in green is justified by the human visual
system, which is more sensitive to the green colour.

(a) Bayer pattern, the most-commonly
used.

(b) RGBW pattern, used in a few Kodak
cameras.

(c) Fujifilm X-Trans pattern, used in
Fujifilm cameras to reduce colour arte-
facts xtrans.

(d) Nonacell pattern, used in the Sam-
sung Galaxy S20 Ultra. It is similar to
the Bayer pattern but uses pixel binning
to increase light sensitivity [3].

Figure 0.3: Different colour filter arrays.

Unlike other steps in creating an image, a wide variety of algorithms are used to
demosaic an image.

Bilinear interpolation The most simple demosaicing algorithm is bilinear inter-
polation: Missing values are interpolated by averaging the most direct neighbours
sampled in that channel. As the averaging is done regardless of the image gradient,
this can cause visible artefacts when interpolated against a strong gradient, such as
on image edges.

Hamilton-Adams (HA) demosaicing [55] HA first computes the horizontal
and vertical gradients of the image. It then interpolates the green channel – which is
easier to interpolate since more values are already known –, using the average of the
neighbouring green sampled values and the Laplacian of the red sampled values in
the direction with the smoothest gradient. Indeed, a core goal of most demosaicing
algorithm is to avoid interpolated across strong edges, as artefacts are very likely in
such a scenario. Once the green channel is interpolated, the red (resp. blue) channel
is interpolated by using bilinear interpolation to the pointwise difference between
the green and the red (resp. blue) channels. While still relatively simple, this al-
gorithm features ideas that are core to many demosaicing algorithms:
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• The green channel, which is easier to interpolate, is interpolated first.

• Rather than directly interpolate the red and blue channels, it is often easier
to interpolate the difference of these channels with the already-interpolated
green channels. Indeed, the difference of channels is smoother. This fact is
used for demosaicing detection by Shin, Jeon and Eom [15], which also ana-
lyses the colour difference channels rather than the channels themselves.

• High-frequency information is transferred between channels, here with use
of a Laplacian operator. This causes difficulties when analysing demosaicing,
as analysis performed independently in each channels can be confused by
these foreign high frequencies.

• Interpolation should not be done against a strong gradient. When the gradi-
ent is strong, it is better to perform the estimation along it than across it.

Alternating Projections (AP) demosaicing [56] AP starts with an initial estim-
ation of the demosaiced image, usually obtained with HA demosaicing. The al-
gorithm alternates between two steps, one in the space-frequency domain and the
other in the spatial domain:

1. The image is decomposed into its low and high-frequencies components with
a redundant wavelet transform. These high-frequencies components are copied
from the green channel to the red and blue channels, as they can be assumed
to be similar in all channels (to the contrary of the low frequencies, which can
be vastly different). The image is then reconstructed into the spatial domain.

2. The previous step can modify sampled pixels, whose values are already known.
The second step enforces the known values by resetting those pixels back to
their known values, so the resulting image does not contradict the original
mosaic.

This method avoids most colour artefacts, but its working in the frequency domain
makes it prone to zipper artefacts. Analysis of this method is thus made more diffi-
cult at first, since its artefacts are inherently different from those other methods can
yield.

Self-Similarity Driven Demosaicing (SSD) [57] SSD starts with a first estima-
tion of the interpolated image, obtained with HA demosaicing. The estimation is
improved by exploiting the image’s self-similarity, aggregating the information sim-
ilar patches. Then, the image is separated into the YUV colour space: the luminance
Y is a weighted average of the red, green and blue channels, and the chrominances
U and V are the difference of the luminance with the red and blue channels. The
chrominance is usually even smoother in natural images than the difference of the
green channel with the red and blue channels; SSD thus regularizes it with a simple
median filtering.
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Directional Linear Minimum Mean-Square-Error Estimation
(LMMSE) [58] LMMSE estimates the R−G and B−G colour differences ver-
tically and horizontally using Laplacian interpolation. Then, the two directional
estimations are denoised using linear minimum mean square error. A linear com-
bination of the vertical and horizontal estimations is then done in the optimal dir-
ection.

Gradient-based threshold-free (GBTF)demosaicing [59] GBTF extends on HA
demosaicing. Instead of interpolating either vertically or horizontally, however, it
estimates the interpolation in four directions with HA: north, south, west and east.
These four interpolations are then weighted and combined. This give the method
more flexibility, especially in the cases where no single direction is optimal. Resid-
ual Interpolation (RI) [60] improves GBTF by subsituting guided filters to the HA
interpolation in all directions. Adaptive Residual Interpolation (ARI) [61] further
improves this method, by iterating RI steps on the green and red/blue channels,
each time using the improved results of the estimation of the other channels at the
previous steps.

CNN-based demosaicing More recently, CNN have been proposed to demosaic
an image. In their simplest form, methods like CDM-CNN [62] use an initial es-
timation of the demosaicing, and train the network to output a better estimation.
Demosaicnet [63] even proposes to jointly denoise and demosaic an image, putting
an end to the debate of which of the two should be done first for optimal results.

This represents only a small sample of the vast array of existing demosaicing
methods. Note that the best methods, such as ARI or CNN-based demosaicing,
see little practical use due to their intensive resource requirements – although this
may change in the future.

No demosaicing method is perfect – after all, it is a matter of reconstructing
missing information – and produce some level of artefacts, although some produce
much fewer artefacts than others5. Therefore, it is possible to detect these artefacts
to obtain information on the demosaicing method applied to the image, which will
be the focus of this thesis.

Colour correction
White balance aims to adjust values obtained by the sensors so that they match the
colours perceived by the observer by adjusting the gain values of each channel. The
way in which white balance adjusts the output depends on the characteristics of the
light sources, and is done so that achromatic objects from the real scene are rendered
as such [4].

For example, white balance can be achieved by multiplying the value of each
channel, so that a pixel that has a maximum value in each channel is found to have
the same maximum value 255 in all channels.

5Surprisingly, we found that more advanced methods, which produce fewer artefacts, are not
always harder to analyse than simpler methods. This is particularly evidenced in Chapter 5 (Demo-
saicing to Detect Demosaicing).
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Then, the image goes through what is known as gamma correction. The charge
accumulated by the sensor is proportional to the number of photons incident on the
device during the exposure time. However, human perception is not linear with the
signal intensity [5]. Therefore, the image is processed to accurately represent human
vision by applying a concave function of the form fk,γ(u) = ku

1
γ , where γ typically

varies between 1.8 and 2.2. The idea behind this procedure is not only to enhance
the contrast of the image, but also to encode more precisely the information in the
dark areas, which are too dark in the raw image.

Nevertheless, commercial cameras generally do not apply this simple function,
but rather a tone curve. Tone curves allow image intensities to be mapped according
to precomputed tables that simulate the non-linearity present in human vision.

JPEG compression

8x8 blocks

Compressed file

8x8 table

Input image

Color space 
transformation

DCTQuantizationEntropy coding

Downsampling 
of the 

chrominance

Figure 0.4: JPEG compression pipeline

The stages of the JPEG compression algorithm, illustrated in Figure 0.4, are de-
tailed below. The first stage of the JPEG encoding process consists of performing a
colour space transformation from RGB to YCBCR where Y is the luminance com-
ponent and CB and CR are the chrominance components of the blue difference and
the red difference. Since HVS is less sensitive to colour changes than to changes in
luminance, colour components can be subsampled without affecting visual percep-
tion too much. The subsampling ratio generally applied is 4:2:0, which means that
the horizontal and vertical resolution is reduced by a factor of 2. After the colour
subsampling, each channel is divided in blocks of 8 × 8 and each block is processed
independently. The Discrete Cosine Transform (DCT) is applied to each block and
the coefficients are quantized.

The JPEG quality factor Q, ranging between 1 and 100, corresponds to the rate
of image compression. The lower this rate, the lighter the resulting file, but the more
deteriorated the image. A quantization matrix linked to Q provides a factor for
each component of the DCT blocks. It is during this quantization step that the
greatest loss of information occurs, but it is also this step that allows the most space
in memory to be saved. The coefficients corresponding to the high frequencies,
of which the HVS struggles to distinguish the variations, are the most quantized,
sometimes going so far as to be entirely cancelled.
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Finally, as in the example in Figure 0.5, the quantized blocks are encoded without
loss to obtain a JPEG file. Each 8 × 8 block is zig-zagged and the coefficients are
arranged in the form of a vector in which the first components represent the low
frequencies and the last ones represent the high frequencies.

Lossless compression by RLE coding (range coding) then exploits the long series
of zeros at the end of each vector due to the strong quantization of the high frequen-
cies, and then a Huffman code allows for a final lossless compression of the data, to
which a header is finally added to form the file.

102 -33 -58 35 58 -51 15 -12

5 -34 49 18 27 1 -5 3

-46 14 80 -35 -50 19 7 -18

-53 21 34 -20 2 34 36 12

9 -2 9 -5 -32 -15 45 37

-8 15 -16 7 -8 11 4 7

19 -28 -2 -26 -2 7 -44 -21

18 25 -12 -44 35 48 -37 -3

DCT coefficients

6 -3 -6 2 2 -1 0 0

0 -3 4 1 1 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Quantization table
16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Quantization

[      ]

Quantized DCT coefficients

Figure 0.5: An example of the impact of quantization on a DCT block. Each DCT
coefficient is quantized by a value found in a quantization matrix. Rounding to the
nearest integer results in many of the high frequency coefficients being set to zero.
Each block is zig-zagged to be encoded as a vector with a sequence of zeros.

Reverse-engineering the Pipeline to reconstruct the history of an
image
Each step of the camera pipeline leaves specific traces on the image. Those traces can
be detected and analysed to reveal how a specific image was processed. This know-
ledge is of utmost importance for image authentication. Knowing what pipeline
was used to create an image enables one to link it to a camera or camera model. It is
then possible to say whether an image comes from a specific camera.

Reverse-engineering of the image formation pipeline, or part of it, is also at the
core of many forgery detection methods. Indeed, tampering with an image often
alters its traces as well; the forged region then appears inconsistent with the reverse-
engineered model.

0.6 How to detect image forgeries?
The different traces left during the creation of the image can be analysed separately.
This thesis will focus on one of such traces; namely demosaicing.
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Demosaicing analysis
As explained earlier, the raw image is not a 3-channels colour image, instead, each
pixel is sampled in one colour, according to a Colour Filter Array (CFA). The Bayer
CFA, shown in Figure 0.3, is by far the most common; demosaicing analysis meth-
ods are thus usually designed assuming the image was processed with the Bayer CFA,
and we will do the same. Although other CFA exist,their use remains limited. Note
that while demosaicing analysis methods are made with the Bayer CFA in mind,
most could easily be adapted to other CFA.

To detect image forgeries via demosaicing analysis, two trails can be followed.
One can directly try to detect regions where no traces of demosaicing are present.

This can be due to direct manipulation on the image, such as blurring which removes
demosaicing traces. Even in the presence of demosaicing traces, if those traces are
different, some methods may detect an absence of traces if they strongly differ from
the rest of the image. This may be the case, for instance, in splicing forgeries. Such
analysis must be done carefully, as it is quite common for natural images to feature
no demosaicing traces, for instance in flat regions where perfect demosaicing is pos-
sible.

On the other hand, it is also possible to look for shifts in the CFA pattern. As
seen in Figure 0.7, in case of a copy-move, either internal or external (splicing), there
is a 3

4 chance that the pasted region’s CFA pattern will not be aligned with the ori-
ginal image’s. This shift of periodicity can be detected as an inconsistency in the
mosaic of the image, and thus evidence of a potential forgery. Almost equivalently,
it is also possible to locally detect the mosaic used in the image. With the Bayer
CFA, only four patterns are possible, each being a shift of the other patterns. The
possible patterns can be further grouped in two by their diagonal, i.e. the green-
sampled pixels they share. This can be seen in Figure 0.6.

· g
g ·

g ·
· g

 g
g b

b g
g 

g 
b g

g b
 g

Figure 0.6: The four possible sampling patterns can be grouped by the diagonal on
which the green channel was sampled:  g

g b and b g
g  share the · g

g · diagonal, whereas
g 
b g and g b

 g share the g ·
· g one.

Many methods can implicitly do both, although they usually focus on one case.
A key difference between both classes is indeed the channels at which one looks.
When looking for the absence of demosaicing traces, many methods only consider
the green channel. As half the pixels are sampled in green, demosaicing of the green
channel is more simple than its red and blue counterparts, and is thus easier to ana-
lyse. On the other hand, when looking for shifts in the mosaic, the green channel
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is much less informative. Indeed, as seen in Figure 0.6, while there are four patterns
in total, they are grouped in two pairs sharing the same diagonal, i.e. sharing their
green-sampled pixels. If one only looks at the green channels, shifts between two
patterns sharing their diagonal will be missed. In case of a copy-move, the 3

4 chance
of patterns being misaligned will thus fall down to 1

2 when looking at the green chan-
nel. It thus becomes necessary to look at the red and blue channels – even though
the green channel is still helpful to distinguish between the two groups of pixels.

In the rest of this section, we review related works on demosaicing analysis in
image forensics.

(a) Authentic image (b) Forged image

Figure 0.7: Colours in which pixels are sampled in an authentic and forged image. In
the forged area of the second image, there is a 3

4 probability that the patterns of the
authentic and forged area are misaligned, causing a shift in the otherwise-periodic
CFA.

In a pioneer paper on demosaicing analysis, Popescu and Farid [6] propose to
jointly estimate a linear model for the demosaicing algorithm and detect which
pixels have been sampled in a given channel with an expectation-maximization (EM)
algorithm. The demosaicing algorithm is estimated on pixels detected as interpol-
ated (i.e. not sampled), as a linear combination of neighbouring pixels in that chan-
nel. Sampled pixels are detected as pixels where the linear combination yields a res-
ult far from the correct value of the pixel. A pseudo-probability map of each pixel
being sampled is then computed. Assuming the linear model is correct, sampled
pixels will be correctly detected and there will be a strong 2-periodicity of the map,
which can easily be seen as a peak in the Fourier transform of the image. However,
in a region which has been altered, the estimated linear model will no longer be cor-
rect, either because the demosaicing estimation appears differently or because there
are no demosaicing traces left at all. The 2-periodicity peak will thus locally disap-
pear, and can be detected as potential evidence of a forgery. As many other methods
looking for inconsistent traces without looking at the specific pattern, the algorithm
is only used on the green channel, where demosaicing is usually considered easier to
detect.

The same concept is used by Liu, Zhao, Nietal. [7], where the computed pseudo-
probability map is analysed with a neural network to distinguish true forgeries from
post-processing artefacts such as those coming from JPEG compression. The ori-
ginal method proposes to find regions in which the periodicity disappears; how-
ever, if the pseudo-probability map is correct, then shifts in the mosaic’s periodicity
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should be reflected on it as well. González Fernández, Sandoval Orozco, Garcia Vil-
lalba et al. [8] extends this method by visualizing the pseudo-probability map with
a discrete cosine transform (DCT) instead of a Fourier transform. Shifts in the mo-
saic’s periodicity then appear as a change of sign in the DCT domain, and can thus
be detected. The main limitations of these methods come from the linear estima-
tion itself. While this may have been a perfectly reasonable assumption at the time
of the original article, most commonly-used demosaicing algorithms nowadays are
highly nonlinear, as seen in Section 0.5. Furthermore, they behave differently in
different regions of the image, and what may appear as an absence or incoherence
of demosaicing can instead be simply a region of a different nature, that the same
demosaicing algorithm processed differently.

Ferrara, Bianchi, De Rosaetal. [9] also propose to look for regions where demo-
saicing traces are locally absent. Working on the green channel, they assume to know
the global pattern of the image6. They apply a fixed predictor, typically bilinear
demosaicing, and look at the difference of variance between the two lattices corres-
ponding to supposedly-sampled and interpolated pixels. In the presence of demo-
saicing artefacts, the variance is significantly higher on the sampled pixels’ lattice,
which cannot be estimated accurately from interpolated ones. In the absence of such
traces, however, the variance is equal in both lattices. Bayesian analysis with Gaus-
sian Mixture Models at multiple block scales then highlight regions where demosa-
icing traces are absent in an otherwise-demosaiced image.

Kirchner [10] propose to estimate the pattern of an image by performing in-
verse demosaicing with a simple demosaicing algorithm such as bilinear interpol-
ation. They artificially recreate the mosaic of the image and estimate the masked
pixel-channels with the fixed algorithm. Even when the image was not originally
demosaiced with the same algorithm, the second demosaicing usually yield the best
results in the original pattern, enabling its identification.

Dirik and Memon [11] computes two features related to demosaicing. The first
one attempts to classify the pattern of an image. To do this, they perform inverse
bilinear demosaicing, as in Kirchner [10], locally and restricting themselves to non-
smooth blocks, in which the artefacts are more visible. The second feature is an
analysis of noise in the view of the CFA pattern. They estimate the noise of an image
with a standard denoising algorithm, and compare the variance of the estimated
noise on the different patterns. Indeed, the variance of the noise should be higher on
sampled pixels, provided it comes from the real image and was not added manually
after demosaicing.

Building on the fact that most demosaicing algorithms avoid interpolated pixels
along a steep gradient, Swaminathan, Wu and Liu [12] propose to make three differ-
ent linear models of the demosaicing algorithms, for a smooth, horizontal or vertical
gradient.

Le and Retraint [13] extend their method to forgery detection: working on the
green channel, they estimate the three linear models in both possible diagonal pat-
terns to select the pattern yielding the closest error globally. To filter out regions
that may bring instability to the detection, they then only work on smooth regions.

6Knowing the CFA pattern of a full image is usually not too difficult, especially when only
interested in the diagonal pattern such as here.
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Features based on the ratio of variances between the sampled and interpolated lat-
tices are constructed. This feature is normally distributed in demosaiced authentic
images; a statistical test is then use to locate regions that significantly deviate from
the EM-estimated normal distribution.

Choi, Choi and Lee [14] work on a more subtle feature of demosaicing. They
notice that interpolated pixels are more likely to be intermediate values compared to
their neighbours, whereas sampled pixels are more likely to be local extrema. Count-
ing the number of intermediate values in each possible pattern yields an estimation
of the correct pattern. They apply the same idea in [64] to detect colour changes in
an image based on demosaicing artefacts. While the original method is limited to
identifying the pattern, and does not try to detect forgeries, in Chapter 3 (Interme-
diate Values Counting for CFA Pattern identification), we will analyse, implement
and extend it to do so.

Shin, Jeon and Eom [15] notices that most demosaicing detection methods
work separately on each channel, whereas most demosaicing algorithms make ex-
tensive use of information in other channels. In order to mimick that behaviour,
they propose to work on channel differences, in other words on the maps R − G
and B − G, where R,G,B represent the red, green and blue channels of the image.
They then study the difference of variance between the possible patterns to identify
the correct pattern as the one with the highest variance.

Very recently, Park, Moon and Eom [16] try to avoid basing their detection on
reinterpolation. Indeed, reinterpolation’s results are subject to the suitability of the
kernel, which is hard to estimate correctly. In particular, when inter-channel trans-
fers take place during demosaicing, the variance can become lower in the correct
pattern, thus causing pattern misidentifications, as we will also notice in Chapters 2
(CFA Identification with Differential Operators) and 3 (Intermediate Values Count-
ing for CFA Pattern identification). They replace the reinterpolation by a singular
value decomposition in each channel, so as to remove background information and
obtain a more reliable residual.

All in all, current demosaicing analysis methods suffer from two flaws:

• The large variety of demosaicing methods, makes the detection difficult
with fixed predictors, while the nonlinearity and numerous inter-channel
transfers of demosaicing make the estimation of a demosaicing algorithm
complex, especially on a single image.

• Demosaicing happens at the very beginning of the camera processing pipeline.
As such, demosaicing traces are heavily influenced by anything that takes
place after demosaicing. In particular, JPEG compression is quick to remove
the highest frequencies of an image, where demosaicing traces lie. As such,
demosaicing analysis methods have little to no robustness to JPEG compres-
sion, and can only analyse uncompressed images. Image downsampling also
removes all traces of demosaicing if the downsampling factor is at least 2, and
heavily alters those traces even before that.

The second flaw limits the applicability of demosaicing analysis to high-quality
images. While it is unlikely it will be useful to detect forgeries in low-quality images
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such as those found on social medias, which are usually downsampled and com-
press, this analysis is still relevant in other fields where high-quality images can be
found, such as criminal investigations or photographic contests. Nevertheless, even
in those fields, some degree of robustness to JPEG compression is desirable. Indeed,
even high-quality images are often stored with a JPEG quality factor of 95 or even
90, which allows for a reduced image weight for barely any visually perceptible loss.

Other methods for forgery detection
While this thesis will focus on demosaicing traces, other traces can also be exploited
to detect image forgeries.

Noise-level-based methods analyse the noise model of images (see Section 0.5)
to find regions with a different amount of noise, that could result from tampering.
Mahdian and Saic [17] perform local wavelet-based noise level estimation using
a median absolute deviation estimator. Lyu et al. [18] relies on the kurtosis con-
centration phenomenon. More recently, Noisesniffer [19] defines a background
stochastic model enabling the detection of local and statistically-significant noise
anomalies. These methods can potentially detect a relatively wide variety of forger-
ies, as each can alter the noise level.

JPEG compression leaves blocking effects and quantization of the DCT coef-
ficient of each block. JPEG forensic tools can thus be divided into two categories.
BAG [20] and CAGI [21] analyse blocking artefacts, while other methods analyse
the DCT coefficients. More precisely, CDA [22] and I-CDA [23] are based on
the AC coefficient distributions, while FDF-A [24] is based on the first digit distri-
bution of AC coefficients. Zero [25] counts the number of null DCT coefficients
in all blocks and deduces the grid origin. These methods can only work when the
forgery was done after a first JPEG compression, but usually yield very good results
when this is the case.

Generic methods All the above-presented method address separately the dif-
ferent kind of traces that can be analysed. The variety of setups before and after
forgery makes exhaustiveness difficult, yet results obtained by such specific meth-
ods are self-explanatory. Another possibility is to develop multi-purpose tools to
classify and/or localize forgeries independently of the setup and forgery type.

Splicebuster [26] computes the noise residual of an image after a high-pass fil-
ter, and uses the co-occurences of said residuals as local features characterizing the
signature of an image. A Gaussian-uniform mixture model is then used to detect
and localize regions where the signature is different from the rest of the image.

Noiseprint [27] extends on Splicebuster by using Siamese networks to extract
another noise residual from an image. The network is trained on pairs of patches to
extract the same residual if the patches come from the same camera, using the output
on one patch as target for the other patch. On patches from different cameras, the
model is instead trained to yield different residuals.

Self-consistency [28] analysis also uses a Siamese network with the goal of de-
tecting whether two patches are likely to share the same EXIF metadata, and thus
to have been processed with the same pipeline. They make use of N-Cuts segment-
ation [29] to automatically cluster and detect relevant traces of forgeries.
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One can also attempt to detect forgeries directly; for instance ManTraNet [30]
is a bipartite end-to-end network, trained to detect image-level manipulations with
one part, while the second part is trained on synthetic forgery datasets to detect and
localise forgeries in the image.

With such methods, exhaustiveness is theoretically possible. However, results
are not self-explanatory and their decisions are harder to justify. Indeed, it is difficult
to understand for which reason a model detects an inconsistency. Those methods
may also be blind to some kind of traces, for instance, all tested multi-purpose tools
are shown in Chapter 1 (Non-Semantic Evaluation of Image Forensics Tools) to be
blind to shifts in the CFA mosaic or in the JPEG grid, although a few can, to some
extent, detect changes in the CFA algorithm or in the JPEG compression quality.
This blindness to shifts in the CFA pattern or JPEG grid is not surprising, as most
of those methods make use of convolutional neural networks (CNNs). Indeed, as
CNNs are invariant to translation, they cannot detect shifts in a periodic pattern,
except perhaps at the very border of the shift.

Furthermore, learning-based methods can be limited by the training data, and
may fail to generalize well in uncontrolled scenarios. This is in particular the case
for methods such as ManTraNet, which try to directly detect forgeries. There are
many different ways to create forgeries, as such a model trained on images forged in
one way may fail to generalize to other forgeries.

Datasets for image forensics
Authentic image datasets are necessary to many forgery detection algorithms. They
may be used to train models that can be trained on authentic images, such as Noiseprint [27]
and Self-consistency [28]. The Raise [31] dataset contains 8156 raw images of vari-
ous scenarios. The Dresden Image Database [32] provides 16,961 authentic im-
ages taken with 27 different cameras. Among them, 1,491 pictures taken with three
different cameras, the Nikon D200, D70 and D70s, are provided unprocessed in a
RAW format. Specific images may also be useful for experiments. For instance, the
noise-free test images dataset [33] contains 16 almost-noiseless images. Those im-
ages were carefully downsampled to remove most of the noise, as well as traces from
demosaicing. In the absence of previous demosaicing, we can use these images to
simulate ourselves various demosaicing algorithms in different patterns. Similarly,
the Pixelshift200 dataset [34] contains 210 high-quality images without demosa-
icing traces, that were obtained by merging 4 images taken almost-simultaneously
while shifting the CFA of a camera.

There is also considerable literature proposing datasets of image forgeries, which
are needed for the evaluation of forensic tools. An early example is the Columbia
Dataset [35], which only contains spliced 128 × 128 grayscale blocks for which no
masks are provided. New benchmarks were proposed in 2009 with CASIA V1.0
and V2.0 [36]. These datasets included splicing and copy-move attacks, with a total
of 8000 pristine images and 6000 tampered images. Post-processing was introduced
as a counter-forensics technique. MICC F220 and F2000 datasets [37] as well as
the IMD dataset [38] provide further benchmarks for copy-move detection. These
datasets were constructed in an automatic way. While the first two randomly select
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the region of the image to be copy-pasted, IMD dataset performed snippets extrac-
tion. Other datasets addressing copy-move forgeries with post-processing counter-
attacks are also available [39], [40].

Image forgery-detection challenges are another source of benchmark datasets.
The National Institute of Standards and Technology (NIST) organizes, since 2017,
an annual challenge for which different datasets are released [41]. It includes auto-
matically and manually generated forgeries of considerable variety, and can thus be
useful to evaluate image forgery detection in uncontrolled scenarios.

Some datasets aim at performing forgeries imperceptible to the naked eye. A
good example is the Korus dataset [42], [43] which contains 220 pristine images
and 220 handmade tampered images targeting object removal or insertion.

The recent DEFACTO dataset [44] is constructed on the MSCOCO data-
set [45] and includes a wide range of forgeries such as copy-move, splicing, inpaint-
ing and morphing. Semantically meaningful forgeries are generated automatically
but with several biases such as copy-pasting objects in the same axis or only perform-
ing splicing with simple objects.

Automatic detection of forgeries
Many forgery detection methods do not perform automatic detection. Instead,
they yield a heatmap of regions that appear to be forged, and let the user decide
on whether the image is indeed forged. However, the user trying to know whether
an image is forged does not necessarily have the knowledge to interpret the results.
Furthermore, visual analysis of all images is not possible if many images are to be in-
spected. To make the detection truly automatic, a forgery detection method should
ideally provide a binary output of the detection.

In order to achieve this, Self-consistency [28] makes use of n-cuts segmentation
to select regions of the heatmap on which the method strongly responds. Le and
Retraint [13] use normality tests to decide on the authenticity of the image.

In this context, a contrario analysis can prove useful. Introduced by Desolneux,
Moisan and Morel [46], it has already been successfully applied to other forgery
detection methods [19], [25]. Based on Gestalt theory, this detection paradigm
performs automatic thresholding of the data by controlling an upper bound of the
number of false alarms (NFA) one might expect. Given a background hypothesis
H0 and a significance function S that represents the significance attributed to an
observation, we can compute the p-value of an observation x, that is, the probability
of a random observation to be at least as significant as x:

p(x) = Py∼H0(S(y) ≥ S(x)). (3)

While the p-value provides an idea of the importance of a detection, it does not
account for the number of observations that are being made; in presence of a large
quantity of observations one can expect spurious detections even with a small threshold
of the p-value. The a contrario framework instead proposes to put a threshold on the
NFA, which is obtained by multiplying the p-value by the number of tests, real or
potential. For example, when computing the NFA of rectangles on an image, the
number of tests is the total number of possible rectangles in the image – even if not
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all rectangles are tested. Associating an NFA to each detection and keeping only
detections whose score is below the threshold ε amounts to fix an upper bound ε on
the expected number of false alarms in the whole image:

Ex∼H0 (|{x|NFA(x) < ε}|) ≤ ε. (4)

The NFA of a detection belongs in ]0,+∞[, with scores closer to 0 corresponding
to more significant detections. An NFA of 10−3, for instance, means that under the
background hypothesisH0, the expected number of detections at least as significant
is at most 10−3. So we expect at most one false detection every 1000 images.

0.7 Outline of this thesis
In this thesis, we focus on the analysis of demosaicing artefacts for forgery detection.
Before delving into this, however, we study the problem of the evaluation of forensic
tools in Chapter 1 (Non-Semantic Evaluation of Image Forensics Tools).

Chapter 1: How to evaluate forgery detection methods?
Image forensics algorithms are mainly evaluated by their performance in benchmark
challenges. This practice has several limitations: in many cases, the same database
is split into training and evaluation data. As a consequence, algorithms are trained
and evaluated on images that have gone through similar image processing pipelines,
forgery algorithms and anti-forensic tools. Hence, there is no guarantee that such
learning-based methods will work in the wild, where those parameters vary much
more. Regardless of the variety of the training set, the question arises of whether the
forgeries are being detected by trained detectors for semantic reasons, or because of
local inconsistencies in the image.

Indeed, while semantic analysis of an image can provide hints, the rigorous proof
of a forgery should not be based only on semantic arguments. The situation is sim-
ilar to the dilemma arising from the observations of Galileo, which contradicted the
accepted knowledge of his time. In the words of Bertolt Brecht [47]:

Glilo: How would it be if your Highness were now to observe these im-
possible as well as unnecessary stars through this telescope?
T Mici: One might be tempted to reply that your telescope,
showing something which cannot exist, may not be a very reliable telescope,
eh?

The telescope could have been unreliable, indeed, and a scientific inquiry on the
instrument could have been justified. However, concluding, as the Mathematician
does, that the telescope was unreliable just based on the contents of the observations
is not prudent. Similarly, the proof of a forgery must be based on image traces, not
on semantic arguments, because the semantics of an image are usually the purpose
and not the means of a forgery.

With these considerations in mind, we propose a methodology and a database
to evaluate image forensic tools on images where authentic and forged regions only
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(a) Raw image (b) Forgery mask: M

(c) Pipeline 0: P0 (d) Pipeline 1: P1

(e) Forgery: F=M̄P0 + MP1 (f ) Residual |F − P0|

(g) Noiseprint [27] result (h) ManTraNet [30] result

Figure 0.8: In Chapter 1 (Non-Semantic Evaluation of Image Forensics Tools), dif-
ferent image formation pipelines are applied to the same RAW image to obtain two
images, that are combined to obtain a forged image. The authentic and forged re-
gions present different camera pipeline traces, but are otherwise perfectly coherent.
The last row shows the result of two forensic tools on this image.

differ in the traces left behind by the image processing pipeline. Using this meth-
odology, we create the Trace database by adding various forgery traces to raw im-
ages from the Raise [31] dataset, as shown in Fig. 0.8. This procedure avoids the
difficulties of producing convincing and unbiased semantic forgeries, which often
requires manual work. We create several datasets, each of which corresponding to
a specific pipeline inconsistency, such as a different noise level or compression pat-
tern. This gives us insight into the sensitivity of forensic tools to specific traces, and
thus highlights the complementarity of different methods.
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Noise Level CFA Grid CFA AlgorithmJPEG GridJPEG Quality Hybrid

Splicebuster [26]

Chapter 6

ZERO [25]

Noiseprint [27]

ManTraNet [30]

Figure 0.9: Visualization of the results of several methods for one image on all the
datasets of Chapter 1. Some methods, such as Noiseprint or the one proposed in
Chapter 6, correctly detect the forgeries in the relevant images, but tend to make
noise-like false detections in the images for which they cannot see the forgery. Auto-
matically selecting the relevant detections of an algorithm would make it easier to
use without needing interpretation, which is why Chapter 7 will do it when extend-
ing Chapter 6’s method. The image and forgery mask can be seen in Fig. 0.8.

Using the newly created database, we then conduct an evaluation of existing
forensic tools, see Fig. 0.9 for an example.

The rest of the thesis focuses purely on demosaicing traces analysis.

Chapters 4 and 3: Direct analysis of demosaicing traces
After analysing the problem of evaluating forensic methods, we begin our search for
a demosaicing analysis method. In Chapter 2 (CFA Identification with Differential
Operators), we try to highlight sampled pixels from interpolated ones with simple
numerical cues from a differential operator. We compare the response of the four
patterns pair by pair with a statistical test, to detect significantly impossible patterns.
Images are then declared forged when no single pattern is possible everywhere, as
seen in Figure 0.10.

The proposed method is very robust to false detections. However, the linearity
and channel-independence of the study makes detections scarce when the demosa-
icing algorithm is too advanced, or when multiple patterns are present. Accepting
results from the strongest channel, instead of refusing to make a detection when two
channels are incoherent, can yield a slightly better detections, but full control over
the number of false positives can no longer be achieved, as seen in Figure 0.11.

Chapter 2 (CFA Identification with Differential Operators) thus highlights the
difficulty of a coherent analysis of demosaicing traces.

In Chapter 3 (Intermediate Values Counting for CFA Pattern identification),
we keep the idea to use a simple numerical cue to highlight interpolated pixels from
sampled ones. However, we try to follow a more subtle approach. Instead of directly
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(a) Found forged regions are in red, and
regions where the exact CFA grid was
identified are in green

(b) Original image

(c) Regions where the respectively  g
g b , g 

b g , g b
 g and b g

g  Bayer matrix positions are deemed
possible (in green) or significantly impossible (in red).

Figure 0.10: The method in Chapter 2 (CFA Identification with Differential Op-
erators) detects which patterns are significantly impossible. Images from [38].

highlighting interpolated pixels, we instead use one of their properties: as noticed
by Choi, Choi and Lee [14] and highlighted in Figure 0.12, interpolated pixels are
more prone to be intermediate values to detect in which pattern an image has been
sampled. We analyse, implement and extend their method to detect the CFA pat-
tern. We then use this information to find regions that are inconsistent with the
global image. We attribute a confidence score to each detection, which can then be
thresholded to provide a binary map of detected forgeries. Although this method
does not yield coherent results on a few demosaicing algorithms, it is overall good
at detecting the mosaic, at least on uncompressed images, as seen in Figure 0.13.

An online demo for this chapter is available at
https://www.ipol.im/pub/art/2021/355/. As part of the Envisu4 project, the method
presented here has also been integrated in the forensics browser plugin InVID &
WeVerify, an online tool and plugin for journalists and fact-checkers to verify the
authenticity of images and check for traces of tampering.

While the method is usable, these issues make it still unsatisfactory. It is possible
to detect local inconsistencies even within wrong detections, however erroneous
pattern detections cannot be avoided against all demosaicing algorithms without
leveraging inter-channel transfers. Furthermore, we wish to improve the robustness
to JPEG compression. This leads us to abandon the idea of direct detection of in-
terpolated and sampled pixels. Instead, we try to reverse-engineer the demosaicing
algorithm itself, so as to estimate the potential mosaic in which a demosaicing al-
gorithm was effectively used.

56

https://www.ipol.im/pub/art/2021/355/


So
ny

α5
7

Image

Ground Truth

Detection (CC)

Detection (no CC)

N
ik

on
D

70
00

Image

Ground Truth

Detection (CC)

Detection (no CC)

N
ik

on
D

90

Image

Ground Truth

Detection (CC)

Detection (no CC)

Figure 0.11: Visual results on images of the Korus dataset depending on whether
channel consistency (CC) is applied or not, with Chapter 2 (CFA Identification
with Differential Operators)’s method. No detections were made on images from
the Canon 60D camera, which is thus not shown here. Overall, not enforcing chan-
nel consistency enables many more detections to be made, at the cost of a few false
positives such as the leftmost image of the Nikon D90 camera, or the second and
sixth images of the Sony α57 camera.

Chapters 4 and 5: Reverse-engineering the demosaicing algorithm
Chapters 2 (CFA Identification with Differential Operators) and 3 (Intermedi-
ate Values Counting for CFA Pattern identification) explored direct approaches to
distinguish sampled pixels, and in fine to reveal the correct CFA pattern. How-
ever, those approaches were unsatisfactory. While Chapter 3 (Intermediate Values
Counting for CFA Pattern identification) provided good results, the simplicity of
those direct approaches could not take into account the properties of each specific
demosaicing algorithm, leading to erroneous results on images demosaiced by such
algorithms. In Chapter 4 (Linear Estimation of the Demosaicing Algorithm), we
propose instead to follow a reverse-engineering approach so as to more accurately
reflect the specificities of each image and demosaicing algorithm. We create a linear
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18 56 94 85 76 96 116 104
49 56 63 52 41 64 88 87
80 56 32 19 6 33 60 70
59 62 66 49 32 59 87 88
38 69 100 79 58 86 114 106
40 51 63 74 85 75 66 63
42 34 26 69 112 65 18 21
38 47 57 75 94 72 50 35

(a) Red channel

139 240 154 16 94 56 72 20
92 131 168 76 72 94 24 43
85 24 100 48 102 224 130 72
60 107 160 68 64 122 200 153
92 184 125 0 50 0 133 108
52 155 156 76 136 117 224 127

146 228 111 12 110 108 107 44
56 114 48 90 184 141 52 90

(b) Green channel

Figure 0.12: Red and green channels of a toy image demosaiced with bilinear in-
terpolation in the  g

g b pattern. Red values correspond to positions where the value
was interpolated. Highlighted cells correspond to pixels that take an intermedi-
ate value, i.e. that are not a local extremum among their direct neighbours. While
sampled pixels can have intermediate values, many more can be found among in-
terpolated pixels in both the red and green channels. The blue channel, not shown
here, behaves similarly to the red one. This observation is at the core of Choi, Choi
and Lee [14], whose method is analysed, implemented and extended in Chapter 3
(Intermediate Values Counting for CFA Pattern identification).

estimation of the demosaicing that would be associated with each of the four pos-
sible CFA patterns. The residuals from these models yield a local estimation of the
CFA pattern in the image. An a contrario approach is then applied to find regions
whose detected pattern significantly deviate from the rest of the image. We show
that while a linear estimation can be sufficient to find the image’s CFA pattern, the
many nonlinearities of demosaicing, as well as the natural texture of images, make
this global and linear model locally unreliable.

Nevertheless, as seen in Figure 0.14, the a contrario method deployed here seems
satisfactory, although it naturally cannot filter out inconsistencies that are signific-
ant in the block votes themselves. The localization masks are not perfect and may
require visual analysis of the block votes to precisely localize algorithms; while this
can negatively impacts the scoring of the underlying method, it is of little practical
importance as long as the proposed approach enables automatic detection of forged
images while limiting the number of tests to perform, and thus the computational
cost. This approach being good enough, we will not further extend work on a con-
trario analysis. The approach we followed here will be reused with our final method
in Chapter 7 (Internal Learning to Improve Adaptability). This enables us to focus
on the identification of the CFA mosaic itself in Chapters 5 (Demosaicing to De-
tect Demosaicing) and 6 (Positional Learning for Demosaicing Analysis), with less
focus on the subsequent analysis for forgery detection.

Methods from Chapters 2 (CFA Identification with Differential Operators), 3
(Intermediate Values Counting for CFA Pattern identification) and 4 (Linear Es-
timation of the Demosaicing Algorithm) have two issues: their inability to properly
take into account the inter-channel transfers of demosaicing in Chapters 2 (CFA
Identification with Differential Operators) and 3 (Intermediate Values Counting
for CFA Pattern identification) and the need to go beyond overly simplistic linear
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Figure 0.13: Results of Chapter 3 (Intermediate Values Counting for CFA Pattern
identification)’s method with the original and proposed filter, on one authentic im-
age with the 7 different demosaicing algorithms. Both methods work perfectly on
the DCB- and Bilinear-demosaiced images. With the AHD, PPG and VNG meth-
ods, both the original isotropic and the bidirectional filters have trouble discerning
between the two patterns sharing the same diagonal, but the bidirectional detection
makes fewer mistakes. Periodically textured regions like the basket can create a loc-
alized shift in the detected mosaic, which could be mistaken for a forgery. With the
AAHD and DHT algorithm, the method consistently detects the wrong diagonal.

assumptions in Chapters 2 (CFA Identification with Differential Operators) and
4 (Linear Estimation of the Demosaicing Algorithm). In Chapter 5 (Demosaicing
to Detect Demosaicing), we try to naturally avoid these two issues by using a col-
lection of existing demosaicing algorithms, and instead accept the more natural as-
sumptions that stem from these. Indeed, we can perform demosaicing using each of
the four possible mosaics. The correct mosaic is more likely to yield an image closer
to the original one, as seen in Figure 0.15. We explore the possibilities of so-called
double demosaicing to identify the CFA pattern. Local selection of the most suit-
able demosaicing algorithm enables one to detect the CFA pattern even when the
original demosaicing algorithm is unknown. This method naturally avoids the two
main issues of the previous chapters, namely their inability to take into account the
inter-channel transfers of demosaicing and the need to go beyond overly simplistic
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Image Ground Truth 3 × 3 filters 7 × 7 filters
Grid NFA Grid NFA

Figure 0.14: Results of Chapter 4 (Linear Estimation of the Demosaicing Al-
gorithm)’s method on Korus images, from top to bottom from the Sony α57,
Nikon D7000, Nikon D90, Canon 60D cameras. On the first image, the forgery
is accurately detected. Even though the detected mask is too large, a visual analysis
of the detected grid enables precise localization of the forgery. On the second im-
age, the forgery is detected, but a second region of the image is mistakenly detected.
On the third image, the forgery is inverted when using the smaller filter. Although
this negatively affects the score, this is not actually a problem for the detection; as
the method still shows the two regions are inconsistent with one another. Finally,
on the fourth image, no traces of demosaicing are present. Some regions are in-
correctly marked as inconsistent. Those inconsistencies are already present in the
detected grids: those defects come from the linear estimation itself, not from the
NFA thresholding.

linear assumptions. We simulate the two demosaicing steps to analyse in which con-
ditions double demosaicing can be used to detect the pattern. Furthermore, intro-
ducing JPEG compression between the two demosaicing enables us to study the
limits of CFA pattern detection on compressed images.

When the initial algorithm is not known, the pattern can be selected with a
simple strategy. A list of algorithms can be used, and the algorithm that yields the
lowest residual is chosen locally. Expectedly, this strategy yields excellent results
when the initial demosaicing algorithm is in the list of tested algorithms. Even when
this is not the case, however, this method usually improves on a comparison using a
single algorithm.

Often, images are found in a compressed state. Still in Chapter 5 (Demosa-
icing to Detect Demosaicing), we study the robustness of double demosaicing when
JPEG compression is applied after the initial demosaicing. Although the detection
is made harder by compression, the correct pattern can still be found at the image
level even when the original demosaicing algorithm is not known.

The main drawback of this method comes from the difficulty of making reliable
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(a) Input image, HA-demosaiced in the  g
g b pattern.
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(b) Residuals when the input image is demosaiced again with the same algorithm (HA) in
the four positions, from left to right  g

g b (correct pattern), b g
g  , g 

b g , g b
 g . The residual is

zero when the correct pattern is used, making the pattern identification easy.
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(c) Here, the input image is analysed with a different algorithm (LMMSE). The residual in
the correct pattern (left) is no longer zero, but is still weaker than on the incorrect patterns.
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(d) The input image is JPEG-compressed (Q = 90 before the second demosaicing, with
the same (HA) algorithm. Again, although the correct pattern’s residual is not zero, it is
still weaker than in other positions.
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(e) The input image is JPEG-compressed (Q = 90 before the second demosaicing, with a
different (LMMSE) algorithm. The residual is still weaker with the correct pattern.
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(f ) Here, the (uncompressed) input image is analysed with yet another algorithm (ARI).

Figure 0.15: Double Demosaicing: In Chapter 5 (Demosaicing to Detect Demo-
saicing), an image was demosaiced with HA and analysed with several algorithms,
both uncompressed and after JPEG compression. When the image is not com-
pressed between the two demosaicing operations, and if the algorithm used is the
same, the residual will be zero in the correct mosaic pattern, allowing for an easy
identification of said pattern. When the image is compressed, the residual is no
longer zero in the correct pattern, but is still weaker than in the other patterns as
long as the compression is moderate. If a different algorithm is used for analysis,
results vary: Analysing the image with LMMSE yields a lower residual in the cor-
rect pattern, but this is no longer the case when using ARI, which is not suited to
analyse HA-demosaiced images. Residuals are blurred (σ = 1.7) for better visual-
ization.
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Figure 0.16: In Chapter 6 (Positional Learning for Demosaicing Analysis), we train
a CNN to detect the horizontal and vertical modulo-2 positions of each pixel, as
seen in those targets. CNN are translation-invariant, they do not directly know the
position of the pixels; as such they have to rely on external cues such as demosaicing
traces. This positional training will thus implicitly train the network to replicate the
mosaic of an image and its inconsistencies.

detections at a local scale. While it is possible, with a very high confidence, to detect
whether and in which pattern a whole image has been demosaiced, this decision be-
comes much harder to make locally. In small 32 × 32 blocks, the contrast of the
residual across patterns is still biased towards detecting a lower residual in the cor-
rect position; however this contrast is not significantly higher than the contrast on
images without a mosaic, in which no detection should be made. This is especially
the case on highly-compressed images.

Overall, this method can be used to analyse the image at a global scale, helped by
its surprisingly good robustness to JPEG compression. It is not yet possible, how-
ever, to use it locally. Local analysis would be needed to detect mosaic inconsisten-
cies and thus potential forgeries.

This fourth chapter in the quest for reliable evidence of demosaicing traces again
fails to yield a universal answer. Even the most natural assumption of closeness
between different demosaicing algorithms is not always valid locally, especially un-
der strong compression. This is understandable; even though different algorithms
may behave closely, this is no longer necessarily the case if one of the two algorithms
is followed by heavy post-processing.

All in all, none of the tested models until now are perfectly satisfactory and
reliable. Direct detection, while able to identify the grid in many cases, is flawed
against several demosaicing algorithms, and is hampered by the difficulty of design-
ing features that reflect demosaicing algorithms’ features. Reverse-engineering of
the demosaicing algorithm of a specific image is not flawless either; even the all
in all very natural assumption that the demosaicing algorithm will locally behave
closely to at least one known algorithm is not always true, and fails to do miracles
on highly-compressed images.

Chapters 6 and 7: Positional learning to replicate the image’s
mosaic and its disruptions
Faced with the difficulty of our problem, we decide to go back to the most bare
and natural assumption about demosaicing traces: they feature a strong 2-periodic
component. Without any other assumption, we propose to detect the phase of that

62



Figure 0.17: Results from Chapter 6 (Positional Learning for Demosaicing Ana-
lysis). Detections on the CFA Forgeries dataset, presented in Chapter 1 (Non-
Semantic Evaluation of Image Forensics Tools). For each image, in order: Forged
image, pixelwise predictions for each of the 4 grids, blockwise predictions for each
of the 4 grids, detected forged blocks, ground truth. The mosaic of the image and
the forgery is aligned for the two images in the last row, which is why no detection
can be made with our method.

component. In order to do this, we introduce positional learning. Leveraging the
translation-inheritance and the high representative power of convolutional neural
networks (CNN), we train one to detect the modulo-(2, 2)position of each pixel, as
seen in Figure 0.16. Implicitly, the CNN will rely on demosaicing traces to provide
its output; said output will thus mimic the phase of the 2-periodic component.

When a forgery disrupts the image’s mosaic, the network’s output reflects this
disruption, enabling the detection of the forgery as errors in the output. This method
is fully self-supervised, requiring only authentic images for training. Furthermore,
given several similar images whose authenticity is not clear, it is possible to fine-tune
the model on the images to increase robustness to JPEG compression. In practice,
however, it is rare to have a large quantity of similar images to analyse.

This is why, in Chapter 7 (Internal Learning to Improve Adaptability), we show
that such a network can be fine-tuned on a single, potentially forged image, to ad-
apt to it. Doing so greatly increases robustness to JPEG compression and other
post-processing. We further improve the method by adding a a contrario layer to
automatically detect and localize significant inconsistencies in an image’s mosaic.
The method proposed in this final chapter beats state-of-the-art mosaic detection
methods and generic forensic methods alike on uncompressed datasets. It remains
relevant on slightly-compressed datasets, and provides a complementary insight to
other methods, including generic learning-based models, which are blind to the mo-
saic traces we analyse.

Single-image internal learning brings several challenges. Fewer sample makes
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(a) Forged image

(b) Original image (c) Forgery mask

(d) Detected demosaicing grids (e) Detected forgeries

Figure 0.18: Results of Chapter 7 (Internal Learning to Improve Adaptability)’s
method on an inpainted image from the Korus [42], [43] dataset. Local detection
of the demosaicing pattern not only enables detection of the forgery, but also shows
the patches used during inpainting.

overfitting more likely, yet if the network overfits it will correctly detect the posi-
tion of the forgery’s pixel, and the forgery will not be detected. More importantly
in our case, JPEG compression poses difficulty to single-image fine-tuning. The
proposed network uses demosaicing traces because those are the primary source of
information on the modulo 2 position of the images. However, JPEG encoding
compresses the image in 8 × 8 blocks, the traces it leaves behind thus have a strong
8-periodic component. Fine-tuning on a single compressed image may thus divert
the network from looking at demosaicing traces to make it analyse JPEG compres-
sion traces instead. When fine-tuning on multiple images, this would be alleviated
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Figure 0.19: The JPEG grid and the Bayer pattern can be aligned in four different
ways. By simultaneously training the network on the four possible alignments, we
force it to analyse demosaicing traces over JPEG, instead of directly using the JPEG
traces.

by the different alignments between the CFA and the JPEG grid on each image: a
network trained on detecting JPEG traces on one alignment would fail on image
aligned otherwise. With a single image, analysis of JPEG traces can directly lead to
the correct modulo-2 position.

To avoid this problem, we propose to pretrain the network on manually-compressed
images at different JPEG–CFA alignment, as seen in Figure 0.19. The network thus
learns to detect CFA artefacts over JPEG compression. While this is not enough to
produce good results on compressed images, it leads the model on a better track
before internal learning: Previously prevented from using the JPEG grid position,
starting to use this grid would have an immediate short-term cost for the network.
Local optimization thus effectively incentivizes the network not to detect the JPEG
grid position.

Even with this JPEG pretraining trick, single-image internal learning can seem
prone to overfitting. However, even if the network overfits on the image, training
is done on the hypothesis that the full image is authentic. In other words, fine-
tuning incentivizes the network to conclude that everything is authentic. As a con-
sequence, if the image is actually authentic, the risks of making a false detection are
lower than with the pretrained-network; by design, even overfitting will not induce
new false detections. In the more interesting case where the image is indeed forged,
the network will also adapt to the post-processing to learn demosaicing traces and
detect the position of pixels. Forged regions in images are usually small compared to
the total size. As a consequence, even though the forged regions would steer the net-
work towards detecting their pixels’ positions correctly, they would produce evid-
ence contradicting that of much larger authentic regions, and the network should
thus not learn too much from forged regions. The small size and locality of the net-
work is particularly important here to prevent it from being able to adapt to both,
the authentic and the forged regions. While some amount of overfitting is probably
unavoidable, its impact is actually shown to be very limited.

To the developped method, we add the a contrario layer already introduced in
Chapter 4 (Linear Estimation of the Demosaicing Algorithm). This enables our
method to detect inconsistent regions in the image, even if a single mosaic cannot
be detected locally. Statistically-insignificant results are then filtered out based on a
NFA threshold.

Our experiments show we can detect demosaicing pattern shifts better than
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Method Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

A contrario detection yes no yes no no yes
Linear hypothesis yes no yes no no no
Inter-channel independence hypo-
thesis yes yes no no no no

(self-supervised + internal)

Adaptive to the image (reverse-
engineering) no no yes yes no yes

Learning-based no no no no yes (self-
supervised) yes

Other hypotheses – – – Similarity of
algorithms Demosaicing traces have a 2-periodic component

Table 0.2: Summary of the properties of our methods.

other demosaicing detection methods, and more generally beats the state of the art
on uncompressed forged images. The a contrariothresholding enables us to automat-
ically threshold the outputs, limiting the number of false detections and simplifying
combination of this method with other methods.

The main limitation of our method, and of demosaicing detection in general, is
that demosaicing artefacts are subtle and located on the high frequencies. As a con-
sequence, a strong JPEG compression, or downsampling, will remove the artefacts
and make demosaicing detection impossible. That being said, the proposed method
provides enough robustness to yield decent results at a compression quality level of
95, and is still able to find a few forgeries with a compression factor of 90. This is not
enough to perform detection on low-quality images such as those found on social
medias. Nevertheless, the method works on the usually high JPEG quality provided
by cameras. This makes it relevant in fields such as photographic contests, criminal
investigations, scientific misconduct investigations, or journalism, tasks where im-
age authentication is often needed.

Finally, we note that the proposed method – and more generally demosaicing
analysis – is fully complementary with more generic forensic methods such as Noiseprint [27].
Indeed, Chapter 7 (Internal Learning to Improve Adaptability) shows that such
methods are entirely blind to shifts in the demosaicing pattern, whereas we focus
exclusively on those.

The properties of our methods are summarized in Table 0.2.

0.8 Publications and presentations
• Q. Bammey, R. Grompone von Gioi and J.-M. Morel, ‘Automatic detec-

tion of demosaicing image artifacts and its use in tampering detection’, in
2018 IEEE Conference on Multimedia Information Processing and Retrieval
(MIPR), See Chapter 4, 2018, pp. 424–429. oi: 10 .1109 / MIPR .2018 .

00091

• Q. Bammey, R. Grompone von Gioi and J.-M. Morel, ‘Reliable demosaicing
detection for image forensics’, in 2019 27th European Signal Processing Con-

66

https://doi.org/10.1109/MIPR.2018.00091
https://doi.org/10.1109/MIPR.2018.00091


ference (EUSIPCO), See Chapter 2, 2019, pp. 1–5. oi: 10.23919/EUSIPCO.
2019.8903152

• Q. Bammey, R. G. v. Gioi and J.-M. Morel, ‘An adaptive neural network for
unsupervised mosaic consistency analysis in image forensics’, in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), See Chapter 6, Jun. 2020

• Q. Bammey, R. Grompone von Gioi and J.-M. Morel, ‘Image Forgeries De-
tection through Mosaic Analysis: the Intermediate Values Algorithm’, Image
Processing On Line, vol. 11, pp. 317–343, 2021. oi: 10.5201/ipol.2021.

355

• Q. Bammey, R. G. von Gioi and J.-M. Morel, ‘Forgery detection by internal
positional learning of demosaicing traces’, in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), Jan. 2022,
pp. 328–338

• Q. Bammey, T. Nikoukhah, M. Gardella et al., ‘Non-semantic evaluation
of image forensics tools: Methodology and database’, in Proceedings of the
IEEE/CVFWinter Conference on Applications of Computer Vision (WACV),
Jan. 2022, pp. 3751–3760

• my_tto

• Q. Bammey, M. Colom, M. Gardella et al., ‘Sécurité multimédia’, in ISTE,
Jul. 2021, vol. 1, ch. Comment reconstruire l’histoire d’une image digitale, et
de ses altérations ?, pp. 9–50, Directed by William Puech. English version in
preparation. oi: 10.51926/ISTE.9026.ch1

• Presentation to RESSI 2019 (Rendez-vousde laRechercheetde l’Enseignement
de la Sécurité des Systèmes d’Information / Meetings on Research and Teach-
ing of Information Systems Security)

67

https://doi.org/10.23919/EUSIPCO.2019.8903152
https://doi.org/10.23919/EUSIPCO.2019.8903152
https://doi.org/10.5201/ipol.2021.355
https://doi.org/10.5201/ipol.2021.355
https://doi.org/10.51926/ISTE.9026.ch1


Chapter 1

Non-Semantic Evaluation of Image
Forensics Tools:
Methodology andDatabase

Abstract

We propose a new method for evaluating image forensics tools, that char-
acterizes what image cues are being used by each detector. Our method effort-
lessly creates arbitrarily large datasets of carefully tampered images where one
to several detection cues are present. Starting with raw images, we alter as-
pects of the image formation pipeline inside a mask, while leaving the rest of
the image intact. This does not change the image’s interpretation; we thus call
“non-semantic” such alterations, asthey give no semantic cues to detectors. This
method avoids the painful and oen biased creation of convincing semantics.
All aspects of image formation (noise, CFA, compression pattern and quality,
etc.) can vary freely and independently in both the authentic and tampered
parts of the image.

Based on this methodology, we create a database and conduct an evalu-
ation of the main state-of-the-art image forensics tools, where we characterize
the performance of each method with respect to each detection cue.

The proposed database tackles three different traces: Demosaicing, noise
level and JPEG compression. The datasets related to demosaicing traces will be
used for evaluation in Chapters 2 (CFA Identification with Differential Op-
erators), 3 (Intermediate Values Counting for CFA Pattern identification), 4
(Linear Estimation oftheDemosaicing Algorithm), 6 (Positional Learning for
Demosaicing Analysis) and 7 (Internal Learning to Improve Adaptability).

1.1 Introduction
Digital images play an extensive role in our lives and forgeries are present every-
where [65]. Creating visually realistic image alterations is easy. Yet these modific-
ations leave behind cues: each operation has an impact on the image in the form
of a particular trace. Some forgery detection tools aims at detecting a specific trace
in a suspicious image by finding local inconsistencies, while other methods, usu-
ally learning-based, are more generic. Semantic analysis of an image can provide
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(a) Raw image (b) Forgery mask: M

(c) Pipeline 0: P0 (d) Pipeline 1: P1

(e) Forgery: F=M̄P0 + MP1 (f ) Residual |F − P0|

(g) Noiseprint [27] result (h) ManTraNet [30] result

Figure 1.1: Different image formation pipelines are applied to the same RAW image
to obtain two images, that are combined to obtain a forged image. The authentic
and forged regions present different camera pipeline traces, but are otherwise per-
fectly coherent. The last row shows the result of two forensic tools on this image.

hints, but the rigorous proof of a forgery should not be based only on semantic
arguments. The situation is similar to the dilemma arising from the observations
of Galileo, which contradicted the knowledge of his time. In the words of Bertolt
Brecht [47]:

Glilo: How would it be if your Highness were now to observe these im-
possible as well as unnecessary stars through this telescope?
T Mici: One might be tempted to reply that your telescope,
showing something which cannot exist, may not be a very reliable telescope,
eh?
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The telescope could have been unreliable, indeed, and a scientific inquiry on the
instrument could have been justified. However, concluding, as the Mathematician
does, that the telescope was unreliable just based on the contents of the observations
is not prudent. Similarly, the proof of a forgery must be based on image traces, not
on semantic arguments, because the semantics of an image are usually the purpose
and not the means of a forgery.

Image forensics algorithms are mainly evaluated by their performance in bench-
mark challenges. This practice has several limitations: in many cases, the same data-
base is split into training and evaluation data. As a consequence, algorithms are
trained and evaluated on images that have gone through similar image processing
pipelines, forgery algorithms and anti-forensic tools. Hence, there is no guarantee
that such learning-based methods will work in the wild, where those parameters
vary much more. Regardless of the variety of the training set, the question arises of
whether the forgeries are being detected by trained detectors for semantic reasons,
or because of local inconsistencies in the image.

With these considerations in mind, we propose a methodology and a database
to evaluate image forensic tools on images where authentic and forged regions only
differ in the traces left behind by the image processing pipeline. Using this meth-
odology, we create the Trace database by adding various forgery traces to raw im-
ages from the Raise [31] dataset, as shown in Fig. 1.1. This procedure avoids the
difficulties of producing convincing and unbiased semantic forgeries, which often
requires manual work. We create several datasets, each of which corresponding to
a specific pipeline inconsistency, such as a different noise level or compression pat-
tern. This gives us insight into the sensitivity of forensic tools to specific traces, and
thus highlights the complementarity of different methods.

Our contribution is twofold:

1. we create a database of “fake” images with controlled inconsistencies in their
formation pipeline,

2. using this database, we conduct an evaluation of existing forensic tools.

Most recent forgery-detection datasets start from pristine images and perform
several sorts of forgeries on them [66]. Since the creation of early datasets [35], [36],
[67], the number of tampering techniques has increased to include new ones such as
colorization [68], inpainting [44], [68] and morphing [44], [69]. Post-processing
and counter-forensic techniques have been increasingly used to produce visually im-
perceptible forgeries; but such approaches may also introduce detectable traces.

Efforts have also been made to automatically obtain large datasets. Yet, the res-
ulting forged images are either semantically incorrect [37], [38] or biased [44]. Both
scenarios pose problems for training neural networks, which risk overfitting on the
forgeries’ methods and semantic content.

The variety of forgery methods makes the evaluation of forensic tools difficult to
interpret, as the performance depends on the suitability of the detection tool for the
specific forgery method. In quantitative experiments, using multiple datasets, and
especially datasets with varied forgeries, helps assess the quality of a forensic tool.
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However, those results also become harder to interpret. On the other hand, while
results using the proposed database will not be reflective of uncontrolled scenarios,
they help precisely identify which traces a forensic tool can and cannot detect.

1.2 Image formation pipeline
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Demosaicing

Colour Correction

JPEG Compression

Figure 1.2: Evolution of the noise curves when passing through the successive steps
of a (simplified) image processing pipeline.

Figure 1.2 summarises the image processing pipeline [70] and shows how the
noise curves change at its different steps.

Raw image acquisition The value at each pixel can be modelled as a Poisson ran-
dom variable [71]. Noise variance at this step thus follows an affine relation σ2 =
A + Bu where u is the intensity of the ideal noiseless image and A and B are con-
stants (see Fig. 1.2(a)). Furthermore, given the nature of the noise sources at this
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step, noise can be accurately modelled as uncorrelated, meaning that noise at one
pixel is not related with the noise at any other pixel.

Demosaicing Most digital cameras are equipped with a single sensor array. In or-
der to obtain a colour image, a colour filter array (CFA) is placed in front of the
sensor to split incident light components according to their wavelength. The raw
image obtained from the sensor therefore is a mosaic containing a single colour
component per pixel: red, green, or blue. Demosaicing methods interpolate the
missing colours at each pixel to reconstruct a full colour image. After demosaicing
(Fig. 1.2b), each channel has a different noise curve, and noise becomes spatially
correlated.

Colour Correction In order to obtain a faithful representation of the colours as
perceived by the observer, white balance adjusts colour intensities in such a way that
achromatic objects from the real scene are rendered as such [4]. This is done by
scaling each channel separately, thus also scaling differently the noise level of each
channel. Given that the relationship between stimulus and human perception is
logarithmic [5], cameras then apply a power law function to the intensity of each
channel. After this step, known as gamma correction, the noise level is no longer
monotonously increasing with the intensity.

JPEG compression The JPEG image standard is the most popular lossy compres-
sion scheme for photographic images [72]. The image goes through a colour space
transformation and each channel is partitioned into non-overlapping 8 × 8-pixel
blocks. The type-II discrete cosine transform (DCT) is applied to each of these
blocks. The resulting coefficients are quantized according to a table and the coef-
ficients are then compressed without additionnal loss. Due to the cancellation of
high-frequency coefficients, the noise is reduced after compression.

1.3 The CFA Forgeries dataset
To evaluate one of our methods, presented in Chapter 6 (Positional Learning for
Demosaicing Analysis), we wanted a dataset specifically made for demosaicing ana-
lysis. As detailed in Chapter 0.4 (Introduction), several datasets already exist to
benchmark image forgery detection, most notably Coverage [73], CoMoFoD [39],
Casia [36] and [38]. However, these datasets were created for generic copy-move
detection. They do not allow for a demosaicing based detection. Indeed, the im-
ages of those datasets either do not present any trace of demosaicing, or were all
demosaiced with the same algorithm. They are therefore useless for benchmarking
CFA-based forgery detection algorithms.

The Dresden Image Database [32] provides 16,961 authentic images taken with
27 different cameras. Among them, 1,491 pictures taken with three different cam-
eras, the Nikon D200, D70 and D70s, are provided unprocessed in a RAW format,
which enabled us to perform demosaicing ourselves. Using these images, we created
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Figure 1.3: Examples of forged images in the CFA Forgery dataset.

a new forgery detection database aimed specifically at the detection of forgeries by
an analysis of CFA demosaicing inconsistencies.

To create the database, we cropped randomly each of the 1,491 images into smal-
ler 648 × 648 pictures. We demosaiced them with one of eleven publicly available
demosaicing algorithms: Bilinear interpolation, LMMSE [58], Hamilton-Adams [55],
RI [60], MLRI [74], ARI [61], GBTF [59], contour stencils [75], adaptive inter-
channel correlation [76], Gunturk [56] and self-similarity˜[57].

We then split the resulting set of images in three equal parts. One third of the
images were left unmodified. In the second third, we took half of the images and
used them to perform a splicing into the other half. Each pair of images had been
previously demosaiced with the same algorithm. In the last third, we picked half the
images again and used them to falsify the other half. However, we did not enforce
pairs of images to be demosaiced with the same algorithm in this set. Note that the
source images for the forgeries are not part of the resulting dataset; therefore, there
is the same number of authentic and forged images. At least half the forged images
were created with a source image demosaiced with the same algorithm as for the
target.

To forge an image, we cropped the source image inside a random mask and pas-
ted it onto the forged image. The masks were created as areas surrounded by random
Bezier curves. They were enforced to contain at least one 64×64 square block, and
to cover less than 10% of the image.

Examples of forged images in this dataset can be seen in Fig. 1.3.
From now on, we will refer to the dataset as the CFA Forgery dataset. We will

use it further in Chapter 6 (Positional Learning for Demosaicing Analysis). It served
as inspiration for, but is distinct from the Trace dataset and methodology, which we
will detail in the rest of this chapter.

1.4 The Proposed Methodology
The CFA Forgery dataset is useful for testing demosaicing analysis methods, as it
contains changes in demosaicing traces. However, it does not help testing the sens-
ibility of generic methods to demosaicing traces, as the forgeries contain other traces.
What we want is to create a dataset that enables one to test the sensitivity of methods
to specific traces, without containing other traces.

We created a database of “forged” images which leaves the semantics of the im-
ages intact. The overall idea of our method is to take a raw image, process it with two
different pipelines, and merge the two processed images as follows: the first image is
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used for the authentic region and the second image for the “forged” area determined
by a mask, as can be seen in Fig. 1.1. As a base we use the RAISE-1k dataset [31],
which contains one thousand pristine raw images of varied categories, taken from
three different cameras. We note that the variety of source cameras is not important
to our database, as we erase the previous camera traces by downsampling the image,
then resimulate the whole image processing pipeline ourselves, as explained below.
Furthermore, our open source generation code can be applied on any other source
of images, to automatically generate arbitrarily large quantities of “forged” images.

Methodology for the creationof thedatabase A raw image already contains noise,
furthermore its pixels are all sampled in the same CFA pattern. In order to reduce
the noise and eliminate the CFA pattern, we start by downsampling each image
by a factor 2. This enables us to choose the amount of noise to be added, and to
mosaic the image in any of the four possible patterns. Once the image has been
downsampled, we process the image with two different pipelines. The two images
are then merged as explained above.

Forgery masks For each image we construct two different kinds of masks, which
we shall call endomasks and exomasks. Since inconsistencies in the image processing
pipeline are usually most visible at the border of the forgery, endomasks are obtained
as regions of a segmentation of the image. To do this, we segment the original im-
ages with EncNet [77]. For each image, we take a pixel at random, and select the
image region it belongs to. We accept the mask if its size is less than half the image’s,
otherwise we pick another pixel until we find a suitable mask. This ensures that each
image has only one forgery, whose size is at most half the image’s. Using such en-
dogenous masks or endomasks corresponding to a region of the segmented image
ensures almost invisible forgeries. Indeed their borders are natural image borders,
as shown in Fig. 1.4.

The exomasks are instead unrelated to the image’s content. To determine them,
we start by pairing the images of the dataset according to their endomasks’ sizes.
Then, the endomask of each image is used as the exogenous mask, or exomask, of its
paired image. Using a mask from another image ensures that the mask is not linked
to the image’s semantic. The chosen pairing enables comparisons separately on each
image, as the size of the masks is similar. See Fig. 1.5 for examples of endo- and
exomasks.

Multiple datasets One of our goals is to determine which inconsistencies each
forensic tool is sensitive to. Changes in the image processing pipeline, done at dif-
ferent steps of the chain, lead to different inconsistencies (see Section 1.2). In con-
sequence, we created five specific datasets, each of which features a specific change
in the image processing pipeline. For each image, we started by randomly choosing
the three parameters that are used for this image across all datasets:

• The mosaic pattern, chosen among the four possible offsets of the camera’s
Bayer pattern.
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Figure 1.4: Details of the same image with forgeries made using the two masks. On
the left, the endomask coincides with the image’s structure, here a tree. The forgery
is less conspicuous than on the right where the exomask is in the sky, where the
borders do not coincide with the images’ content.

• The demosaicing algorithm, chosen randomly among those available in the
LibRaw library [78].

• The gamma-correction power.

The gamma correction is the same for both regions of the image, and the mosaic
pattern is the same except for the CFA Grid, CFA Algorithm and Hybrid datasets.
For each image, both the endo- and exomasks, constructed as explained above, are
the same across all datasets.

Raw Noise Level dataset In this dataset we add random noise to each raw image
before processing it. As pointed out in Section 1.2, noise variance in raw images
follows a linear relation given by σ2 = A + Bu, where A and B are constants and
u is the noiseless image. We start by randomly selecting two different pairs of con-
stants (A0,B0) and (A1,B1), in a range that ensures the resulting images look nat-
ural. Both images are then processed with the same pipeline. This dataset mimics
the inconsistencies in noise models that could be found in spliced images.

CFAGrid dataset In this dataset we only change the mosaic pattern of the forged
image inside the mask. Thus, the original image and the forged one would be identical
if not for their mosaic grid origins. This kind of trace may appear (with probability
3
4) when the forgery was an internal copy-move.
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Endomask Image Exomask

Figure 1.5: For each image, we use an endomask (left) taken from the image’s seg-
mentation, and an exomask (right) taken from another image and thus decorrelated
from the image’s contents. The last two images were paired during mask creation,
thus the endomask of each becomes the exomask of the other.
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CFAAlgorithmdataset In this dataset, the two processing pipelines use different
demosaicing algorithms. The demosaicing pattern is chosen independently for each
pipeline. Thus there is a 1

4 chance that they are aligned. A new mosaic pattern is
also randomly chosen, thus having a 3

4 chance of being different from the one of
the main image. This dataset represents the change in the mosaic that would occur
from splicing, as two different images most likely do not share the same demosaicing
algorithms, and the alignment of their patterns after splicing is random.

JPEG Grid dataset In this dataset we only change the compression grid origin.
Similarly to the CFA Grid dataset, if the forgery is an internal copy-move, the JPEG
grid of the forged region is different from the grid in the authentic region, with
probability 63

64 . The JPEG compression quality for both pipelines is then chosen
randomly, keeping the values in a range that is typical of most compressed images
and challenging enough for JPEG-based algorithms.

JPEG Quality dataset In this dataset, both the authentic and forged regions are
processed with the same pipeline, except for the JPEG compression which is done
in the two regions with different quality factors, again chosen uniformly between
75 and 100. Like with the CFA Algorithm dataset or the JPEG grid data, a new
JPEG grid pattern is also randomly chosen, which has a 63

64 chance of being different
from the main region’s grid. This dataset simulates the effect of the splicing of an
image onto another, both images being compressed at different quality factors.

Thehybriddataset One could argue that although generic learning-based forensics
tools may not be able to point out a single inconsistency in an image, they might
be best suited to find multiple inconsistencies stacked together. Clearly, a splicing
may introduce joint inconsistencies in noise level, JPEG encoding and demosaicing;
while a direct copy-move can introduce alterations in the JPEG and CFA grids. To
investigate such possibilities, in addition to the five specific datasets described above,
we created a sixth, hybrid dataset. In this dataset, forgeries combine noise, demo-
saicing and/or JPEG compression traces. At least two of those traces are altered in
each images.

1.5 Experiments

Evaluated methods
We used the constructed database to conduct an evaluation of image forensics tools.
We tested both classic and SOTA forgery detection methods pertaining to differ-
ent traces: noise-level-based detection methods Noisesniffer [19], Lyu [18], [79]
and Mahdian [17], [79]; CFA-grid detection methods Shin, Jeon and Eom [15] as
well as our methods from Chapters 3 (Intermediate Values Counting for CFA Pat-
tern identification) and 6 (Positional Learning for Demosaicing Analysis) extended
from Choi, Choi and Lee [14]; JPEG-based methods Zero [25], CAGI [21], [79],
FDF-A [24], [79], I-CDA [23], [79], CDA [22], [79] and BAG [20], [79], as well
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as generic methods Splicebuster [26], Noiseprint [27], ManTraNet [30] and Self-
Consistency [28].

Evaluation Metrics
We evaluated the results of these methods using the Matthews correlation coeffi-
cient (MCC) [80]. This metric varies from -1 for a detection that is complementary
to the ground truth, to 1 for a perfect detection. A score of 0 represents an unin-
formative result and is the expected performance of a random classifier. The MCC is
more representative than the F1 and IoU scores [81], [82], partly as it is less depend-
ant on the proportion of positives in the ground truth, which is especially important
given the large variety of forgery mask sizes in the database.

The MCC was computed for each image, and then averaged over each dataset.
As most surveyed methods do not provide a binary output but a continuous heat-
map, we weighted the confusion matrix using the heatmap.

Results
The complete results are given in Table 1.1. Visualization of the detection by several
methods on one image across all datasets can be seen in Figure 1.6. In the CFA and
JPEG datasets, state-of-the-art methods that focus on those specific traces, such as
those we propose in Chapters 6 (Positional Learning for Demosaicing Analysis) and
7 (Internal Learning to Improve Adaptability) for CFA and ZERO [25] for JPEG,
perform much better than generic tools. This is partly expected, as those meth-
ods aim to detect exactly this specific trace. This observation is more nuanced in
the Noise Level dataset where, depending on the type of mask considered, Noises-
niffer [19] and Self-Consistency [28] achieve the best results. Indeed, exomasks
cover a wider range of intensities enabling a better comparison between noise mod-
els, which is exploited by Noisesniffer. Also, half the forgeries present in this data-
base are undetectable for this method since it is only able to detect forgeries having
lower noise levels.

On the hybrid dataset, the scores of the specific methods are lower than on the
specific datasets. For the JPEG-based methods, this is explained by the fact that one
sixth of this dataset does not feature JPEG compression traces. For the CFA and Lyu
and Mahdian noise-based methods, this is made worse by the fact that JPEG com-
pression alters the previous noise and demosaicing artefacts, as shown in Fig. 1.2. In
particular, CFA-based methods are notoriously weak on JPEG images, since JPEG
compression removes the high frequencies, in which mosaic artefacts lie. This can
be seen in Fig. 1.6, where our demosaicing detection method from Chapter 6 (Pos-
itional Learning for Demosaicing Analysis) cannot make any prediction on the hy-
brid image, where the main and forged region were compressed with quality factors
of 93 and 75, respectively.

While multi-purpose forensic methods can, to some extent, detect noise-level
inconsistencies, in the demosaicing algorithm and in the JPEG quality, they are
blind to shifts in both the JPEG and CFA grids. This is not entirely surprising;
with the exception of Splicebuster, the tested generic tools are based on mostly-
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Dataset

Noise Level CFA Grid CFA Algorithm JPEG Grid JPEGQuality Hybrid
N
oi
se
-le
ve
l-b

as
ed Noisesniffer [19] 0.128 (0.228)0.128 (0.228) -0.008 (0.070) 0.029 (0.153) -0.007 (0.076) 0.052 (0.179) 0.098 (0.210)0.098 (0.210)

0.091 (0.198)0.091 (0.198) -0.011 (0.073) 0.005 (0.111) -0.009 (0.082) 0.020 (0.140) 0.061 (0.182)0.061 (0.182)

Lyu [18] 0.010 (0.090)0.010 (0.090) 0.002 (0.093) 0.002 (0.094) 0.000 (0.089) 0.002 (0.091) 0.012 (0.097)0.012 (0.097)
0.007 (0.137)0.007 (0.137) 0.010 (0.157) 0.009 (0.159) 0.007 (0.148) 0.013 (0.156) 0.018 (0.150)0.018 (0.150)

Mahdian [17] 0.046 (0.146)0.046 (0.146) 0.005 (0.082) 0.039 (0.128) 0.005 (0.086) 0.036 (0.132) 0.055 (0.158)0.055 (0.158)
0.055 (0.171)0.055 (0.171) 0.023 (0.159) 0.057 (0.183) 0.014 (0.146) 0.052 (0.180) 0.067 (0.191)0.067 (0.191)

C
FA

-b
as
ed

Chapter 6 0.007 (0.084) 0.682 (0.329)0.682 (0.329) 0.501 (0.427)0.501 (0.427) 0.023 (0.095) 0.029 (0.091) 0.133 (0.288)0.133 (0.288)
0.021 (0.153) 0.665 (0.349)0.665 (0.349) 0.491 (0.429)0.491 (0.429) 0.018 (0.107) 0.020 (0.100) 0.128 (0.290)0.128 (0.290)

Chapter 3 0.026 (0.025) 0.603 (0.203)0.603 (0.203) 0.420 (0.208)0.420 (0.208) 0.001 (0.002) -0.001 (0.003) 0.156 (0.114)0.156 (0.114)
0.030 (0.018) 0.575 (0.191)0.575 (0.191) 0.385 (0.210)0.385 (0.210) -0.001 (0.002) 0.001 (0.001) 0.139 (0.116)0.139 (0.116)

Shin[15] 0.007 (0.101) 0.104 (0.166)0.104 (0.166) 0.085 (0.172)0.085 (0.172) -0.002 (0.042) -0.001 (0.043) 0.015 (0.109)0.015 (0.109)
0.004 (0.123) 0.099 (0.171)0.099 (0.171) 0.084 (0.179)0.084 (0.179) -0.005 (0.058) -0.006 (0.059) 0.012 (0.114)0.012 (0.114)

JP
EG

-b
as
ed

Zero [25] 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.796 (0.349)0.796 (0.349) 0.732 (0.413)0.732 (0.413) 0.638 (0.451)0.638 (0.451)
0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.756 (0.387)0.756 (0.387) 0.708 (0.421)0.708 (0.421) 0.624 (0.453)0.624 (0.453)

CAGI [21] 0.004 (0.045) 0.000 (0.027) 0.002 (0.033) 0.038 (0.077)0.038 (0.077) 0.044 (0.080)0.044 (0.080) 0.031 (0.071)0.031 (0.071)
0.003 (0.052) 0.000 (0.042) 0.001 (0.044) 0.023 (0.077)0.023 (0.077) 0.028 (0.082)0.028 (0.082) 0.021 (0.073)0.021 (0.073)

FDF-A [24] 0.031 (0.139) -0.004 (0.087) -0.003 (0.085) 0.226 (0.242)0.226 (0.242) 0.228 (0.249)0.228 (0.249) 0.203 (0.244)0.203 (0.244)
0.014 (0.169) -0.015 (0.139) -0.017 (0.139) 0.216 (0.265)0.216 (0.265) 0.216 (0.273)0.216 (0.273) 0.187 (0.264)0.187 (0.264)

I-CDA [23] 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.416 (0.417)0.416 (0.417) 0.422 (0.407)0.422 (0.407) 0.381 (0.407)0.381 (0.407)
0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.423 (0.408)0.423 (0.408) 0.414 (0.414)0.414 (0.414) 0.385 (0.408)0.385 (0.408)

CDA [22] -0.001 (0.034) 0.000 (0.055) 0.000 (0.052) 0.485 (0.339)0.485 (0.339) 0.474 (0.344)0.474 (0.344) 0.401 (0.360)0.401 (0.360)
-0.004 (0.068) -0.003 (0.098) -0.005 (0.097) 0.449 (0.351)0.449 (0.351) 0.442 (0.350)0.442 (0.350) 0.378 (0.354)0.378 (0.354)

BAG [20] 0.000 (0.015) 0.006 (0.078) 0.009 (0.079) 0.232 (0.461)0.232 (0.461) 0.229 (0.458)0.229 (0.458) 0.171 (0.430)0.171 (0.430)
0.002 (0.029) 0.025 (0.164) 0.026 (0.164) 0.227 (0.459)0.227 (0.459) 0.223 (0.455)0.223 (0.455) 0.161 (0.430)0.161 (0.430)

M
ul
ti-
pu

rp
os
e

Noiseprint [27] 0.127 (0.200)0.127 (0.200) -0.001 (0.069)-0.001 (0.069) 0.066 (0.149)0.066 (0.149) 0.013 (0.087)0.013 (0.087) 0.178 (0.248)0.178 (0.248) 0.153 (0.230)0.153 (0.230)
0.108 (0.232)0.108 (0.232) 0.002 (0.114)0.002 (0.114) 0.060 (0.179)0.060 (0.179) 0.016 (0.140)0.016 (0.140) 0.138 (0.279)0.138 (0.279) 0.128 (0.261)0.128 (0.261)

ManTraNet [30] 0.049 (0.091)0.049 (0.091) 0.000 (0.040)0.000 (0.040) 0.074 (0.169)0.074 (0.169) 0.004 (0.023)0.004 (0.023) 0.095 (0.164)0.095 (0.164) 0.112 (0.169)0.112 (0.169)
0.032 (0.099)0.032 (0.099) -0.004 (0.065)-0.004 (0.065) 0.053 (0.165)0.053 (0.165) 0.000 (0.043)0.000 (0.043) 0.086 (0.171)0.086 (0.171) 0.107 (0.176)0.107 (0.176)

Self- 0.082 (0.323)0.082 (0.323) 0.028 (0.261)0.028 (0.261) 0.036 (0.270)0.036 (0.270) 0.011 (0.262)0.011 (0.262) 0.078 (0.335)0.078 (0.335) 0.138 (0.370)0.138 (0.370)
-Consistency [28] 0.154 (0.429)0.154 (0.429) 0.077 (0.393)0.077 (0.393) 0.082 (0.403)0.082 (0.403) 0.060 (0.386)0.060 (0.386) 0.151 (0.440)0.151 (0.440) 0.246 (0.425)0.246 (0.425)

Splicebuster [26] 0.099 (0.188)0.099 (0.188) 0.003 (0.085)0.003 (0.085) 0.075 (0.157)0.075 (0.157) 0.005 (0.083)0.005 (0.083) 0.084 (0.175)0.084 (0.175) 0.101 (0.192)0.101 (0.192)
0.100 (0.217)0.100 (0.217) 0.012 (0.157)0.012 (0.157) 0.072 (0.202)0.072 (0.202) 0.006 (0.135)0.006 (0.135) 0.082 (0.220)0.082 (0.220) 0.099 (0.215)0.099 (0.215)

Table 1.1: Results of different state-of-the-art forensics tools on our six datasets, us-
ing the Matthews Correlation Coefficient (MCC), detailed in Sec. 1.5. The meth-
ods, on the left, are grouped by categories. As a baseline, a random classifier is expec-
ted to yield a score of 0. The mean of the MCC scores over each image of the dataset,
as well as the standard deviation in parentheses, are shown for the exogenous mask
and endogenous mask datasets. Grayed-out numbers represent results of methods
on datasets that are irrelevant to said methods. The best two scores are underlined
for each database.

convolutional neural networks, which are invariant to translation. Although Noiseprint [27]
adapts its training scheme to be able to detect shifts in periodic patterns, it entirely
fails to see the demosaicing grid, and does little better than random detecting JPEG
grid inconsistencies.

Most methods perform similarly on the endomask and exomask datasets. Two
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Noise Level CFA Grid CFA Algorithm JPEG Grid JPEG Quality Hybrid

Splicebuster [26]

Chapter 6

ZERO [25]

Noiseprint [27]

ManTraNet [30]

Figure 1.6: Visualization of the results of several methods for one image on all the
datasets. Some methods, such as Noiseprint or the one proposed in Chapter 6 (Pos-
itional Learning for Demosaicing Analysis), correctly detect the forgeries in the rel-
evant images, but tend to make noise-like false detections in the images for which
they cannot see the forgery. Automatically selecting the relevant detections of an
algorithm would make it easier to use without needing interpretation, which is why
Chapter 7 (Internal Learning to Improve Adaptability) will do it when extending
Chapter 6 (Positional Learning for Demosaicing Analysis)’s method. The image and
mask can be seen in Fig. 1.1.

notable exceptions are Noisesniffer which underperforms on endomasks, and Self-
Consistency, which works much better on endomasks. Both observations are easily
explained: the noise model is better estimated by Noisesniffer on a flat region. The
same explanation is valid for Noiseprint, which also loses performance with exo-
masks. In contrast, Self-consistency’s content-awareness is lost when segmenting
forgeries with exomasks. Regardless of the dataset considered, the scores obtained
by all of the methods have a high standard deviation with respect to their mean
value. This suggests that, given a dataset, the scores in each individual image are not
concentrated around the mean but rather spread on a large range of values. Hence,
even for methods having low scores, some good detections are likely to happen.

1.6 Discussion
The fact that most examined methods perform similarly on exo- and endomasks
could lead us to conclude that we could use only one kind. However, comparing
the results on both reveals the ability of some methods, such as SelfCconsistency,
to perform content-aware localization.

The goal of this evaluation was not to rank different methods, but to offer a
rigorous insight on the capabilities of each method. Knowing the kind of inconsist-
encies to which each forensic tool is sensitive helps understand and explain its detec-
tions in uncontrolled cases, and can help efforts to combine different methods. In
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that sense, the proposed database is complementary to more traditional databases.
Methods that focus on detecting specific traces are often opposed to more gen-

eric methods. However, this study shows the complementarity and possible syn-
ergies between the two paradigms. For instance, results on the CFA Algorithm
datasets showed that, even without explicitly training them, neural networks were
sometimes able to detect changes in the demosaicing algorithm, a fact that is usually
considered almost impossible, especially locally, except with the most basic demo-
saicing algorithms [6].

Our experiments also reveal a problematic issue with many of the tested meth-
ods. Even though they can yield decent scores, the standard deviations of theses
scores over all images of the same dataset is often very high. Even though algorithms
perform well on many forgeries, they also often yield false positives that require in-
terpretation to be distinguished from true detections, such as Chapter 6 (Positional
Learning for Demosaicing Analysis)’s method and Noiseprint in some datasets of
the example image seen in Fig. 1.1. This is a critical point for many methods, as it
makes them usable only to a trained eye.

1.7 Conclusion
Image forensics datasets are usually grouped according to forgery types (eg. splicing,
inpainting, or copy-moves), and do not separate the semantic content from the ac-
tual traces left by the forgery. In this chapter, we proposed to remove the semantic
value of forgeries so as to focus only on the traces. We designed a methodology to
automatically create image “forgeries” that leave no semantic traces, by introducing
controlled changes in the image processing pipeline. We built datasets by focusing
on noise-level inconsistencies, mosaic and JPEG artefacts, and conducted an evalu-
ation of some image forensics tools using this dataset.

Although we focused on three kinds of changes in the forgeries, the same meth-
odology can be applied to more traces, including PRNU inconsistencies, multiple
compression, or image manipulations such as resampling. In fact, we can address all
forgeries where two different camera pipelines are involved. This includes copy-
move, splicing and some methods of inpainting. Further work will incorporate
other traces, such as those left by synthesis methods.

Our method can transform automatically large sets of images into forged im-
ages with fully controlled tampering cues and no bias that might cause overfitting.
Besides evaluation of existing image forensics tools, this methodology could also be
used to train forgery detection methods, although care would be needed so as not
to overfit if using the same methodology for both training and evaluation.

In our specific case of demosaicing, the CFA Grid and Algorithm datasets will
be used extensively in Chapters 2 (CFA Identification with Differential Operators),
3 (Intermediate Values Counting for CFA Pattern identification), 4 (Linear Estim-
ation of the Demosaicing Algorithm), 6 (Positional Learning for Demosaicing Ana-
lysis) and 7 (Internal Learning to Improve Adaptability).
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Chapter 2

CFA IdentificationwithDifferential
Operators

Abstract

Aer analysing the problem of evaluating forensic methods, we begin our
search for a demosaicing analysis method. In this first method, we try to high-
light sampled pixels from interpolated ones with simple numerical cues from
a differential operator. We compare the response of the four patterns pair by
pair with a statistical test, to detect significantly impossible patterns. Images
are then declared forged when no single pattern is possible everywhere. The
proposed method is very robust to false detections. However, the linearity and
channel-independence of the study makes detections scarce when the demosa-
icing algorithm is too advanced, or when multiple patterns are present. As a
consequence, Chapter 3 (Intermediate Values Counting for CFA Pattern iden-
tification) will look for a more subtle cue. This study highlights the difficulty of
a coherent analysis of demosaicing traces.

An interactive demo for this chapter is available at
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000058.

2.1 Introduction
State-of-the-art CFA pattern identification methods already provide decent results
for pattern classification, provided the window is large enough and JPEG compres-
sion is not too drastic. However, the results of such a classification are not sufficient
when it comes to detecting forged images. Indeed, an incorrect CFA diagnosis on a
single image block is enough to consider an image as falsified. Thus, a method with
a 95% accuracy on 128 × 128 blocks would risk detecting a falsification nine times
out of ten in a standard, authentic image of size 1024 × 768. In other words, con-
trolling the false alarms rate over the many blocks of an image is necessary to detect
forgeries.

In this chapter, we propose a new method to reliably detect the correct position
of the Bayer matrix. We start by applying a high-pass filter tailored to highlight
the difference between original and interpolated pixels. We then use a statistical
test to compare the samples of the possible grid positions, in order to know which
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Chapter 2. CFA Identification with Differential Operators

positions are significantly impossible in the image. Comparing the results in the
global image and across smaller windows enables us to detect and localise forged
regions in images. The proposed methods is able to detect inconsistencies of images
demosaiced with a simple algorithm, and does not yield any false positives in our
experiments; however it is unable to make detections when the demosaicing is more
advanced.

2.2 Method

The a contrario paradigm for reliable detections
One of the key goals of our method is not only to find which of the four possible
patterns  g

g b ,
g 
b g ,

g b
 g and b g

g  have been used, but to know how confident we are
in our detection so as to control the number of false alarms.

Let xp, p ∈ {  g
g b ,

g 
b g ,

g b
 g ,

b g
g  }be four samples, each containingnnon-negative

values. We consider that each CFA position p is represented by sample xp – we will
detail later how these samples are constructed. We assume that in the absence of
demosaicing, ie. if there is no reason to favour one CFA pattern, then the values
of all xp are similar, but that if the image has been demosaiced and the used CFA
pattern is p⋆, then the value of xp⋆ are higher than those of the other xp.

Assuming that an image has been demosaiced, the position of the Bayer matrix
can be obtained by taking the mean of all xp and selecting the highest one. However,
it may be that the image has not been demosaiced, or that the traces of demosaicing
can no longer be found, for example because of post-processing effects or because
the image is too small. How then can we be certain that the values our algorithm
returns are correct?

In order to get a reliable detection, we make use of thea contrarioparadigm [83]–
[85], detailed in Chapter 0.4 (Introduction). The approach is based on the non-
accidentalness principle, according to which an observed geometric structure is per-
ceptually meaningful only when its expectation is low under random background
model. Detection thresholds can then control the expected number of false detec-
tions in this background, or a contrario model H0. An observed structure is valid-
ated only when a test rejects the H0 hypothesis. The detection threshold must take
into account our multiple testing, as in Gordon et al. [86]. Assume that NT tests are
performed and that a variable u is observed at each one. We desire to set a threshold
τ such that the sought structure is validated when u ≥ τ. Following the a contrario
methodology, we define the Number of False Alarms (NFA) of a candidate by

NFA = NTPH0(U ≥ u), (2.1)

where PH0(U ≥ u) is the p-value of observing under random hypothesis H0 a value
U as large or equal to u. The candidate is validated whenever NFA < ε, where ε is a
predefined accepted mean number of false detections. This yields an implicit value
for the threshold τ. Accepting all detections with a NFA score of ε = 10−3, we
should expect an average of one false positive for 1,000 images.

For CFA detection, we compare two samples x1 and x2, each having n non-
negative values. We determine whether the first sample has significantly larger val-
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ues than the second. For this, we compute the Mann-Whitney U statistic [87],

u =
n∑

i=1

n∑
j=1

1{xi1>xj2}
(2.2)

where 1 is the indicator function and xkp is the k-th value of sample p. The value of
u belongs to [0, n2]. This value is zero when all samples of x1 are smaller than the
samples of x2. Conversely, u = n2 when all samples of x1 are larger than the ones of
x2. We can now define a natural background model for our statistical test. Its null
hypothesis H0 is that all samples in both X1 and X2 were independently drawn from
the same distribution, which must be correct if no demosaicing has been performed.
Thus, PH0(Xi

1 > Xj
2) = PH0(Xi

1 < Xj
2) = 1

2 for any i, j. This defines the Mann-
Whitney U test [87] with the corresponding random variable U. For large samples,
U is approximately normally distributed, which allows a simple computation of the
p-value PH0(U ≥ u).

To sum up, given two samples x1 and x2, the associated U statistic is computed
with eq. 2.2. Then, the NFA value is given by eq. 2.1 and by the p-value of the Mann-
Whitney test. Finally, the sample x1 is declared significantly larger than x2 if NFA <
ε.

Detecting the possible CFA patterns
The first thing to do is to find which pixels are original samples and which have
been interpolated. An easy way to do this is to apply a differential operator like the
discrete Laplacian, which highlights extremal values and thus pixels likely to have
been interpolated. Following the example of [88] or [6], it is also possible to apply
in each of the four possible grid positions a demosaicing algorithm – either fixed as
in [88] or estimated as in [6] – and to compare the residuals.

One could simply compute a heat map with a differential operator – which can
be implemented as a linear convolution followed by a point-wise absolute value op-
erator. Yet this would not take into account that, depending on their positions on
the Bayer matrix, the pixel subset from which interpolation is performed may vary.
On the other hand, using a demosaicing algorithm in four positions must be done
with caution. Preliminary experiments suggest that using a fixed demosaicing al-
gorithm, such as the bilinear algorithm, does not yield good results when it is too
different from the algorithm that was used to process the image, and an estimation
of the demosaicing algorithm is prone to bias towards one of the four possible pat-
terns.

As the possible patterns will be compared in pairs, we follow another approach
that gives us both the simplicity and impartiality of differential operators and the
ability to take different interpolation cases into accounts. Each test is a comparison
between two patterns, pixels that are not original samples are thus interpolated using
values from a known subset of pixels.

For example, if we compare the CFA patterns  g
g b and g 

b g , we know the con-
sidered red values can only be interpolated from horizontal neighbours, blue values
from vertical neighbours, and green values can be interpolated from all four adja-
cent neighbours, because none of the other pixels would be original in any of the
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two considered patterns. Furthermore, we note that when an interpolation can be
done in two directions simultaneously, many algorithms can decide to interpolate
in only one direction, mainly to prevent interpolating across a strong edge. In order
to mimic this behaviour, we do the interpolation simultaneously and then separ-
ately in the two directions, then for each pixel we take the result with the lowest
absolute residual.

This leads us to define not one, but four different heat maps that will be used
in the different comparisons. Let I be an image of shape (X,Y, 3)1, we define the
horizontal and (resp. vertical) heat map Hh[x, y, c] (resp. Hv[x, y, c]) as the abso-
lute difference between I[x, y, c] and its two horizontal (resp. vertical) neighbours.
They correspond to the interpolation of red or blue pixels on green-sampled loca-
tions. The straight cross heat map Hc[x, y, c] is equal to either the absolute difference
between I[x, y, c] and the mean of its two horizontal neighbours or its two vertical
neighbours or both, whichever of the three possibilities yields the lowest result. It
corresponds to the interpolation of green pixels. Finally, the diagonal cross heat
map Hd[x, y, c] is equal to the absolute difference between I[x, y, c] and the mean
of its two or four diagonal neighbours following either or both of the diagonals,
whichever of the three possibilities yields the lowest result. It corresponds to the
interpolation of red pixels on blue-sampled locations, and vice versa.

With these four heatmaps, we now describe how to reliably compare different
CFA positions. We start by assuming that each of the four CFA patterns  g

g b ,
g 
b g ,

g b
 g

and b g
g  are possible, and we look for CFA patterns that are significantly impossible.

A grid position is considered significantly impossible if it is inferior to another grid
position and the NFA score of the comparison between those too positions is be-
low the set threshold. For each pair of CFA patterns i, j ∈ {  g

g b ,
g 
b g ,

g b
 g ,

b g
g  },

i ̸= j, we try to know which of the two grids is stronger than the other, and how
significantly. We consider two cases, depending on the positions to compare.

The first case is when both positions share the same diagonal · g
g · or g ·

· g , ie. if we
are either comparing  g

g b with b g
g  or g 

b g with g b
 g . Then we can only perform pat-

tern comparisons using the red and blue channels. Since the interpolation between
these two grids is done in diagonal, we look at the red and blue pixels of Hd. We
average over each 2×2 block the red and blue pixels corresponding to CFA pattern
i, and we do the same for j. We then compare the two samples and multiply its score
by 6 since all pairs are compared. If the comparison is coherent across channels and
significant, i.e. if its score is below the set NFA threshold, then the identified weaker
of the two grids is marked as impossible.

The second case is when both positions do not share the same diagonal, ie. if  g
g b

or b g
g  is compared with g 

b g or g b
 g . We then can perform pairwise comparisons

in all three channels. As most demosaicing algorithms start by interpolating the
green channel, and use its values to demosaic the other two channels, we consider
the green channel separately: For the green channel, we look at the pixels of Hc and
compare those that correspond to an original pixel in i to those that correspond
to an original pixel in j. For the red and blue channel, we also compare those that
correspond to each position, but we look in different heatmaps depending on the
compared patterns: If we are comparing  g

g b with g 
b g or b g

g  with g b
 g we look at

1where the last dimension represents the colour channels.
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Hh for the red channel and Hv for the blue channel. In the other two cases, we look
at Hv for the red channel and Hh for the blue channel. Each comparison score is
multiplied by 6 as above and by two since green values are treated differently. Then,
if the comparison of the green channel is significant, and if at least one of the two
red and blue channels is significant and coherent with the green channel, the weaker
of the two patterns is marked as impossible.

In both cases, the comparison requires channel consistency (CC), in that two
channels need to be coherent for the detection to be approved. CC enforcement
is double-edge; on the one hand it is a strong way of avoiding detections at a high
risk of being erroneous, especially considering those regions may still be above the
significance threshold. On the other hand, it forces the method to drop detections
that could be correct. We thus propose to remove the CC enforcement. When
the diagonal of the compared patterns is the same, if the red and blue channels are
contradictory with one another, we accept the results of the most significant one.
When the compared pattern do not share their diagonal, we accept the results of
the green pattern, which is usually easier to analyse and thus presents more accurate
results. The two variants, with and without CC enforcement, will be compared in
the experiments.

Finding forgeries
The main use of demosaicing artefacts is to find forgeries in an image. This is done
by partitioning the heat map H in small windows. As with the global image, we
decide in each window which grid positions are possible and which are significantly
not, with the difference that we multiply the comparison scores by the number of
windows before thresholding on the NFA score, as we want to control the number
of false alarms in each image, and not just in each window.

If a window is inconsistent with the global image, ie. if there is no grid position
which is possible both in the global image and the window, then a forgery has been
identified and localised. An example of this result can be found in Fig. 2.1a. In a
genuine image, there should also be at least one grid position which remains possible
throughout all windows. If this is not the case, then a forgery has been identified.
The windows having an impossible grid configuration may contain a forgery. An
example of this result can be found in Fig. 2.1c.

Since grid detection is usually easier and thus more precise in the global image
than in smaller windows, inconsistent grids is the primary way of detecting forgeries.
However, if an image is fabricated from several images of similar sizes, or if an object
recovering an important part of the image itself has been copy-moved, the CFA grid
position of the forged part of the image may have been accepted as possible in the
global image. In such cases, impossible grid configurations could detect forgeries
not found by the former.

2.3 Experiments
As a sanity check of our method, we confirm the absence of significant detections
in images which have not been demosaiced. We used the 18 images from the noise-
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(a) Found forged regions are in red, and
regions where the exact CFA grid was
identified are in green

(b) Original image

(c) Regions where the respectively  g
g b , g 

b g , g b
 g and b g

g  Bayer matrix positions are deemed
possible (in green) or significantly impossible (in red).

Figure 2.1: Example of forgery detection. Images from [38].

free images dateset [33]. Those images were downsampled by a factor of 8 and thus
do not have any traces of demosaicing or JPEG encoding. We also used images of
uniform and normal noise of different sizes: for each kind of noise, we made 10
images of size 128 × 128, 10 of size 256 × 256, 10 of size 512 × 512 and 10 of size
1024×1024, for a total of 80 noise images. The datasets were tested uncompressed
as well as with JPEG compression of qualities 100, 99, 98, 95, 90, 80, 70, 60, 50, 30
and 10. No traces of demosaicing were found by our algorithm.

We then used the method with 32 × 32 windows on the Korus dataset [42],
[43]. Results are presented in Table 2.1, and visual results in Figure 2.2.

When channel consistency was enforced, no false detections happened. Without
channel consistency, however, false positives could not be prevented. Surprisingly,
these false positives happened mostly on the Sony α57 camera, on which the method
overall performed best despite the false positives.

Channel consistency is thus necessary to fully control false positives. Without
it, the method can receive contradictory information from different channels. As
this information is still significant, a contrario thresholding is unable to filter it out.
On the other hand, channel consistency enforcement prevents many correct detec-
tions from being made. While the number of true positives did not change between
the two variants on the Sony α57 images, no detections could be made with chan-
nel consistency on the Nikon D7000 and D90 images, whereas respectively 14 and
15 of the forgeries were detected without channel consistency. This shows that the
proposed method is not able to fully understand demosaicing artefacts.

No detections were made on the Canon 60D images. This is consistent with
SOTA methods, as well as with those that will be presented later in this thesis. In-
deed, it seems that images from this camera on the Korus dataset do not feature any
demosaicing traces, possibly due to downsampling or aggressive post-processing in
the pipeline.
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CC

Camera Canon 60D Nikon D7000 Nikon D90 Sony α57 All

Yes 0.00 0.00 0.000 0.136 0.034
No 0.00 0.094 0.073 0.128 0.074

(a) Matthews Correlation Coefficient (MCC)

CC

Camera Canon 60D Nikon D7000 Nikon D90 Sony α57 All

Yes 0/55 0/55 0/55 22/55 0/55
No 0/55 14/55 15/55 22/55 51/220

(b) Number of images in which at least one window was correctly detected as forged (true
positive).

CC

Camera Canon 60D Nikon D7000 Nikon D90 Sony α57 All

Yes 0/55 0/55 0/55 0/55 0/220
No 0/55 0/55 2/55 11/55 13/220

(c) Number of images in which at least one window was incorrectly detected as forged (false
positive).

Table 2.1: Results of the method on the Korus dataset, with window size 32 × 32,
depending on whether channel consistency (CC) is enforced. If channel consist-
ency is enforced, no decision is made if the different channels do not accept the
same solution. It prevents all false detections in the tested images, but causes many
true detections to be missed.

Finally, we note that the number of correct detections of the method remains
relatively low, even without channel consistency. While this is due in part to the
method being unable to fully apprehend demosaicing artefacts, it is also due to the
fact that many forgeries on the Korus dataset were created by inpainting, more pre-
cisely by cloning multiple small patches into a target area. This results in a multitude
of different grids within a window. As we are looking for one specific, significant
grid, the detection is more difficult when a window features multiple patterns. On
the other hand, methods presented in Chapters 4 (Linear Estimation of the Demo-
saicing Algorithm) and 7 (Internal Learning to Improve Adaptability) look more
generically for regions that are inconsistent with the rest of the image in terms of
demosaicing patterns. These methods will thus be naturally able to detect more for-
geries of this kind.

2.4 Conclusion
In this chapter, we constructed a method highlighting the difference between ori-
ginal and interpolated pixels in demosaiced images. This method does not require
an estimation of the CFA interpolation algorithm, but still uses knowledge on the
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Figure 2.2: Visual results on images of the Korus dataset depending on whether
channel consistency (CC) is applied or not. No detections were made on images
from the Canon 60D camera, which is thus not shown here. Overall, not enforcing
channel consistency enables many more detections to be made, at the cost of a few
false positives such as the leftmost image of the Nikon D90 camera, or the second
and sixth images of the Sony α57 camera.

specifics of demosaicing. We then explained how this method could be used to find
not only traces of demosaicing, but also to get information on the position of the
Bayer matrix. Inconsistencies about this information is a very strong clue of tam-
pering in images, especially since the proposed approach yields a strong control of
the false positives rate.

However, this method does not take into account the extensive inter-channel
correlation that takes place during demosaicing. Without taking this entanglement
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into account, it is either necessary to accept the results of the strongest channels
– which leads to better classification scores but prevents a full control of the false
alarms rate – or to only accept results that are coherent across channels – effectively
enabling a control of the false alarms rate, but rendering the method unable to make
decisions when the demosaicing algorithm is not simple enough.

Conjointly using the three colour channels to detect the CFA pattern is diffi-
cult, mostly because the existing demosaicking algorithms behave differently. Still,
this approach will surely be necessary at some point – in addition to freeing ourselves
from the assumptions of linearity – to fully master the analysis of demosaicing traces.

The numerical cue we used in this chapter was very simple. The next chapter
will study another, better cue, that retains distinctive properties from interpolated
samples.
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Chapter 3

IntermediateValuesCounting forCFA
Pattern identification

Abstract

In the previous chapter, we tried to use a simple numerical cue to highlight
interpolated pixels from sampled ones. We keep this idea, but try to follow a
more subtle approach. Instead of directly highlighting interpolated pixels, we
instead use one of their properties: as noticed by Choi et al., interpolated pixels
are more prone to be intermediate values to detect in which pattern an image
has been sampled. We analyse, implement and extend their method to detect
the CFA pattern. We then use this information to find regions that are incon-
sistent with the global image. We attribute a confidence score to each detection,
which can then be thresholded to provide a binary map of detected forgeries.
Although this method does not yield coherent results on a few demosaicing al-
gorithms, it is overall good at detecting the mosaic, at least on uncompressed
images.

An online demo for this chapter is available at
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=355. As part oftheEn-
visu project, the method presented here has also been integrated in the forensics
browser plugin InVID & WeVerify1.

3.1 Introduction
Demosaicing is basically an interpolation operation. As a consequence, interpol-
ated pixels are more often intermediate values among their immediate neighbours,
as seen in Figure 3.1. For instance, with the simple bilinear demosaicing, missing col-
ours are directly averaged from the direct neighbours that were originally sampled
in that colour, and are thus always intermediate values.

Of course, this simple behaviour is no longer true with more complex algorithms,
which interpolate pixels using more samples among all three channels. Nevertheless,
with most algorithms, an interpolated pixel is still more likely to be an intermediate
value than a sampled one.

1Beta version for Chrome at https://chrome.google.com/webstore/detail/fake-news-
debunker-by-inv/mhccpoafgdgbhnjfhkcmgknndkeenfhe.
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18 56 94 85 76 96 116 104
49 56 63 52 41 64 88 87
80 56 32 19 6 33 60 70
59 62 66 49 32 59 87 88
38 69 100 79 58 86 114 106
40 51 63 74 85 75 66 63
42 34 26 69 112 65 18 21
38 47 57 75 94 72 50 35

(a) Red channel

139 240 154 16 94 56 72 20
92 131 168 76 72 94 24 43
85 24 100 48 102 224 130 72
60 107 160 68 64 122 200 153
92 184 125 0 50 0 133 108
52 155 156 76 136 117 224 127

146 228 111 12 110 108 107 44
56 114 48 90 184 141 52 90

(b) Green channel

Figure 3.1: Red and green channels of a toy image demosaiced with bilinear inter-
polation in the  g

g b pattern. Red values correspond to positions where the value
was interpolated. Highlighted cells correspond to pixels that take an intermedi-
ate value, i.e. that are not a local extremum among their direct neighbours. While
sampled pixels can have intermediate values, many more can be found among in-
terpolated pixels in both the red and green channels. The blue channel, not shown
here, behaves similarly to the red one.

Based on this, Choi et al. [14] proposed to identify the CFA pattern by count-
ing intermediate values in all possible patterns. In this chapter, we describe, analyse
and expand this method. The original article explains how to detect in which CFA
pattern an image, or part of it, has been sampled. Starting from there, we detect
which regions of an image are inconsistent with the main image, and attribute a
confidence score to this detection. We also propose another way of computing in-
termediate values, which yields slightly better results.

This method does not require any linearity assumption, and is therefore better
suited to analyse most demosaicing algorithms. However, it still does not take into
account the inter-channel transfers that take place during demosaicing. This leads
the method to yield contradictory results on algorithms who make extensive use of
such transfers. Still, even though the correct pattern cannot be identified in these
cases, the results are still relatively consistent across the image, enabling us to detect
forgeries to some extent even on these more difficult images.

3.2 Method
During demosaicing, missing colours on each pixel are interpolated from its neigh-
bours. As a consequence, pixels that are interpolated in a given channel are more
likely to be an intermediate value, in other words, to be neither lower than all its dir-
ect neighbours nor higher than all of them. This is especially true with the simplest
demosaicing algorithm, the bilinear demosaicing which interpolates the three chan-
nels separately.

The detection method analysed here counts the intermediate values correspond-
ing to each of the four patterns. On the correct pattern, as most pixels are sampled,
there should be fewer intermediate values than in the other patterns.
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Intermediate values detection
Let I of shape (X,Y) be one colour channel of an image. The pixel at location (x, y)
is considered an intermediate value if

min(Ix−1,y, Ix+1,y, Ix,y−1, Ix,y+1) ≤ Ix,y ≤ max(Ix−1,y, Ix+1,y, Ix,y−1, Ix,y+1).

We define M(I) as the mask of intermediate values of I. Its value is 1 if (x, y) is an
intermediate value of I, and 0 otherwise.

If (x, y) is at the border of the image, at least one of x ± 1 and y ± 1 is out of
the image boundaries. To avoid border effects, we would thus have to mask out a
1-pixel border around the image. However, doing this would cause an imbalance in
the number of pixels corresponding to different patterns, in other words their would
be, in border windows, more pixels corresponding to one pattern than to another.
To solve the imbalance, we mask out a 2-pixels-wide border instead. More formally,
the mask of intermediate values is therefore defined by

M(I)x,y ≜


0 if x ∈ {0, 1,X − 2,X − 1} or y ∈ {0, 1,Y − 2,Y − 1}
1 otherwise, if min(Ix±1,y, Ix,y±1) ≤ Ix,y ≤ max(Ix±1,y, Ix,y±1)
0 otherwise.

The computation of this mask is described in Algorithm 1.
To limit demosaicing artefacts, many demosaicing algorithms tend to avoid in-

terpolating against strong gradients, such as against an edge, and thus often only
interpolate in one direction (in which the gradient is smaller). To take this into ac-
count, we propose to replace the original isotropic intermediate values mask with
bidirectional filters, that separately consider horizontally and vertically intermedi-
ate values. We define the mask of horizontal intermediate values as

M(I)hx,y ≜


0 if x ∈ {0, 1,X − 2,X − 1} or y ∈ {0, 1,Y − 2,Y − 1}
1 otherwise, if min(Ix−1,y, Ix+1,y) ≤ Ix,y ≤ max(Ix−1,y, Ix+1,y)
0 otherwise.

.

Vertical values are computed in a similar way as

M(I)vx,y ≜


0 if x ∈ {0, 1,X − 2,X − 1} or y ∈ {0, 1,Y − 2,Y − 1}
1 otherwise, if min(Ix,y−1, Ix,y+1) ≤ Ix,y ≤ max(Ix,y−1, Ix,y+1)
0 otherwise.

.

With this definition, the bidirectional mask of intermediate values is then defined
as the mean of the horizontal and vertical masks by

M(I)x,y ≜
1
2

(
M(I)hx,y + M(I)vx,y

)
.

The mask is therefore null at the border and where a pixel is not an intermediate
value, equal to 1

2 where the pixel is either horizontally or vertically an intermediate
value, and equal to 1 when it is an intermediate value both horizontally and vertic-
ally. The computation of the bidirectional mask is detailed in Algorithm 2.

The original isotropic mask and the bidirectional one will be compared in Sec-
tion 3.3. For the rest of this section, we consider R, G and B the masks of interme-
diate values obtained on the respectively red, green and blue channels of the image.
Which of the two methods was used to compute those masks is irrelevant to the rest
of the algorithm.
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Algorithm 1: Mark intermediate values (original isotropic version)
1 function is_intermediate(arr)

Input arr: Array of size (X,Y), one channel of an image
Output mask: Array of size (X − 4,Y − 4), intermediate values mask

2 mask := 0(X−4,Y−4)

3 for x from 2 to X − 2 and y from 2 to Y − 2 do

4 mi := min (arrx+1,y, arrx,y−1, arrx−1,y, arrx,y+1)
5 ma := max (arrx+1,y, arrx,y−1, arrx−1,y, arrx,y+1)
6 if mi ≤ arrx,y ≤ ma then

7 maskx−2,y−2 := 1

8 return mask

Algorithm 2: Mark intermediate values (bidirectional variant)
1 function is_intermediate(arr)

Input arr: Array of size (X,Y), one channel of an image
Output mask: Array of size (X − 4,Y − 4), intermediate values mask

2 mask := 0(X−4,Y−4)

3 for x from 2 to X − 2 and y from 2 to Y − 2 do

4 mh := min(arrx−1,y, arrx+1,y)
5 Mh := max(arrx−1,y, arrx+1,y)
6 mv := min(arrx,y−1, arrx,y+1)
7 Mv := max(arrx,y−1, arrx,y+1)
8 if mh ≤ arrx,y ≤ Mh then

9 maskx−2,y−2+=
1
2

10 if mv ≤ arrx,y ≤ Mv then

11 maskx−2,y−2+=
1
2

12 return mask

Division into windows
The strategy to find forgeries using inconsistencies in the CFA patterns is to first find
in which pattern the full image has been demosaiced, then to find the pattern used
in different windows of the image. If the pattern detected in a window is different
from the one detected for the full image, then this window is inconsistent with the
rest of the image and can be considered as forged.

To improve the precision of detection, we do not simply use adjacent windows,
but rather sliding windows with overlap. The window size W and stride are set as
parameters of the algorithm. The stride determines the number of pixels between
the left (or top) border of two consecutive windows, so that a stride equal to the
window size leads to adjacent windows without overlapping, a stride equal to half
the window size leads to a new window starting at the middle of the previous one,
etc.

Using a lower stride will not drastically improve the detection, but may help
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delineate a detected forgery more precisely, at the cost of a slower algorithm.

Finding the pattern

· g
g ·

g ·
· g

 g
g b

b g
g 

g 
b g

g b
 g

Figure 3.2: The four possible sampling patterns can be grouped by the diagonal on
which the green channel was sampled:  g

g b and b g
g  share the · g

g · diagonal, whereas
g 
b g and g b

 g share the g ·
· g one.

The four Bayer patterns can be divided into two subgroups by their diagonal:
 g
g b and b g

g  share the · g
g · diagonal, whereas g 

b g and g b
 g share the g ·

· g diagonal.
Because the Bayer CFA samples twice as many pixels in green than in red or blue, it
is easier to find information on the pattern in the green channel. This is amplified
by the fact that many demosaicing algorithms first interpolate the green channel by
itself, but interpolate the red and blue channels using information from the green
channel.

As a consequence, the presented method first tries to detect the diagonal pattern
using the green channel ( · g

g · or g ·
· g ), then uses the red and blue channels to compare

the two potential patterns sharing that diagonal. We denote byR, G andB the masks
of intermediate values on the respectively red, green and blue channels. (They will
not be confused with the R,G,B channels that we no longer use in the sequel of
this chapter). These masks can represent either the full image or a window of it.
To maintain the balance between patterns, the masks must be of even size. For this
reason, the window size must be even, and the last row/column of the full image is
removed if necessary to ensure the evenness of the shape. Here we denote the shape
of these masks (2X, 2Y) for easier notations of the different positions on the CFA.
We start by looking at the green channel for the diagonal grids. The intermediate
value count corresponding to the · g

g · pattern is

C · g
g ·

≜
X∑

x=0

Y∑
y=0

(
G2x+1,2y + G2x,2y+1

)
while the count corresponding to the g ·

· g pattern is

Cg ·
· g

≜
X∑

x=0

Y∑
y=0

(
G2x,2y + G2x+1,2y+1

)
.

The count difference of the diagonal is then defined as

Δdiag ≜
1

2X · Y

(
C · g

g ·
− Cg ·

· g

)
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This difference is positive if the detected diagonal is g ·
· g , and negative if it is · g

g · :

D ≜


g ·
· g Δdiag > 0
· g
g · Δdiag < 0
−1 Δdiag = 0

.

The normalization by 1
2XY means that the resulting difference belongs to [−1, 1],

and is equal to±1 if all pixels in one of the patterns are intermediate values, whereas
the other pattern has no intermediate values (XY is the number of 2 × 2 blocks in
a mask of shape (2X, 2Y), and we sum two pixels in this block for each pattern).
Note that the ±1 limit is only theoretical: even with bilinear demosaicing, where
all interpolated pixels are intermediate values, sampled pixels can be intermediate
too, for instance where they belong to a slope. As a consequence, the difference will
not reach those values in natural cases.

Once we know the main diagonal, we can compare the two patterns sharing
that diagonal. The green channel does not provide any information on this, so we
use the red and blue channels. The count of intermediate values corresponding to
each pattern is

C  g
g b

≜
∑X

x=0

∑Y
y=0

(
R2x,2y + B2x+1,2y+1

)
C b g

g 
≜

∑X
x=0

∑Y
y=0

(
R2x+1,2y+1 + B2x,2y

)
Cg 

b g
≜

∑X
x=0

∑Y
y=0

(
R2x+1,2y + B2x,2y+1

)
Cg b

 g
≜

∑X
x=0

∑Y
y=0

(
R2x,2y+1 + B2x+1,2y

) .

The count differences of the two pattern pairs are then defined as

Δ  g
g b−

b g
g 

≜ 1
2XY

(
C  g

g b
− C b g

g 

)
Δg 

b g−g b
 g

≜ 1
2XY

(
Cg 

b g
− Cg b

 g

)
and are then combined into the main grid difference

Δmain ≜
{

Δ  g
g b−

b g
g 

D = · g
g ·

Δg 
b g−g b

 g
D = g ·

· g
.

Finally, the main detected grid can be obtained as

M ≜


 g
g b D = · g

g · and Δmain < 0
b g
g  D = · g

g · and Δmain > 0
g 
b g D = g ·

· g and Δmain < 0
g b
 g D = g ·

· g and Δmain > 0
−1 otherwise

.

Both for the diagonal and main grids, if there is strict equality in the two counts
detected, no grid is considered detected. Naturally, if no decision is taken on the di-
agonal, no main grid is selected either. The grid detection is detailed in Algorithm 3.

While Δmain is later used to make decisions on forgeries, the two intermediary
comparisons Δ  g

g b−
b g
g 

and Δg 
b g−g b

 g
are easier to understand visually, and are thus

kept for visualization.
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Our implementation of the count difference computation is slightly different
from the description of the original article. In the original article, the difference is
not normalised by 1

2XY . More importantly, the difference is computed separately in
the red and blue channels, and the strongest of the two is kept, whereas we use their
sum. The reason for this is that the original article only tries to classify in which
pattern an image has been sampled, without considering how confident one can be
in the detection, or how to use it to detect forgeries. When only considering classi-
fication of an image or window into the four patterns, both the original article and
our implementation provide the same results. However, adding the normalization
and summing the two channels makes it easier for us to also compute a confidence
value for the detections, which will be described in the next subsection.

Finally, we note that even though this algorithm is presented for one window,
the grid detection is obviously performed on all windows simultaneously.

Forgery detection
Using the previously-described algorithms, we can compute the intermediate value
masks in all channels, cut them into windows, and detect the diagonal and pattern
of the global image and of each window. With this information, we could simply
say that the windows which do not use the same pattern as the main grid correspond
to forged regions. However, doing this creates many false positives, as the detection
is not always correct. In first instance, if the grid of a window does not match the
global image’s grid, we can consider that window as forged with a confidence of
|Δmain| (or |Δdiag| if looking at the diagonals). However, if the threshold is low,
isolated detections of a given grid will be made by mistake. On the contrary, in a
region with many windows sharing the same grid, only those above the threshold
will be detected, so a high threshold will cause most of the detections to be missed.
In both cases, using a fixed threshold will lead to mistakes that would be easy to
avoid by looking at the map more globally.

We therefore propose to segment the windows into connected components by
their grids. In other words, a connected component is a set of spatially connec-
ted windows whose detected pattern is the same. This segmentation is performed
with scikit-image [89]. Components whose detected pattern is equal to the one
of the global image are immediately discarded; they are not considered forged as
they agree with the full image. For components whose detected pattern is differ-
ent, we consider them as forged, with a confidence value which corresponds to the
maximum absolute difference of count of all windows in that components (either
|Δmain| or |Δdiag| depending on whether we are looking at the full pattern or the di-
agonal). In other words, the confidence of a component is the confidence of its most
prominent window. The computation of the confidence by connected component
is performed in Algorithm 4.

We apply this method separately to both the diagonal and the full pattern detec-
tion yields two confidence maps. We merge those two confidence maps into one by
taking their pointwise maximum. Although the full pattern analysis can encompass
the diagonal detection, in many cases the algorithm can only find the diagonal but
hesitates on the full pattern. Hence, separating the detections enables the method
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Algorithm 3: Find the grid
1 function find_grid(R, G, B)

Input R, G, B: Arrays of even size (2X, 2Y), as returned by
is_intermediate or a sub-window of it, on the three
colour channels

Output M: Detected CFA pattern (one of  g
g b , g 

b g , g b
 g , b g

g  )
Output D: Detected diagonal pattern ( · g

g · or g ·
· g )

Output Δmain: Difference of count of intermediate values between the
two patterns sharing the same diagonal. Positive if the
best pattern is  g

g b or g 
b g , negative if the best pattern is

b g
g  or g b

 g .
Output Δdiag: Difference of count of intermediate values between the

two diagonal patterns. Negative for · g
g · , positive for g ·

· g .
# First we select the best diagonal pattern using the green values

2 C · g
g ·

:=
∑X

x=0

∑Y
y=0 G2x,2y+1 + G2x+1,2y

3 Cg ·
· g

:=
∑X

x=0

∑Y
y=0 G2x,2y + G2x+1,2y+1

4 Δdiag :=
1

2XY

(
C · g

g ·
− Cg ·

· g

)
5 D := · g

g · if Δdiag < 0 else
g ·
· g

# Compare patterns with the same diagonal.

6 C  g
g b

:=
∑X

x=0

∑Y
y=0 R2x,2y + B2x+1,2y+1

7 C b g
g 

:=
∑X

x=0

∑Y
y=0 R2x+1,2y+1 + B2x,2y

8 Cg 
b g

:=
∑ X

2
x=0 R2x+1,2y + B2x,2y+1

9 Cg b
 g

:=
∑ X

2
x=0 R2x,2y+1 + B2x+1,2y

10 Δ  g
g b−

b g
g 

= 1
2XY

(
C  g

g b
− C b g

g 

)
11 Δg 

b g−g b
 g

= 1
2XY

(
Cg 

b g
− Cg b

 g

)
12 if D = · g

g · then

13 Δmain = Δ  g
g b−

b g
g 

14 M :=  g
g b if Δmain < 0 else

b g
g 

15 else

16 Δmain = Δg 
b g−g b

 g
17 M := g 

b g if Δmain < 0 else
g b
 g

18 return M,D,Δmain,Δdiag

to detect significant diagonal traces even when the full pattern cannot be detected.
These confidence maps are useful to visualize the detection. However, they do not
constitute by themselves a decision on the detection. They cannot either be used
as a heat map: the maximal absolute value of the difference, 1, is never reached in
actual cases, and even the most confident detections will rarely reach a score of 0.3.

To make a final decision on the image, we thus threshold the obtained con-
fidence map by a given threshold γ. This is equivalent to performing hysteresis
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thresholding with a lower threshold 0 and a higher threshold γ on each map (M =
g) ⊙ |Δmain| for each pattern g except the full image’s pattern, and (D ̸= dimg) ⊙
|Δdiag|, where dimg is the full image’s detected diagonal, ⊙ is the Hadamard product
(pointwise multiplication), while the expression (A = b) is an array of the same
shape of A, equal to 1 where A takes the value b and 0 elsewhere.

Finally, all the outputs are resized to have one value per pixel, rather than per
window. This is done with nearest neighbours interpolation for binary outputs, and
with linear interpolation for continuous outputs. The computation of the forgery
map is detailed in Algorithm 5.

Overall, the full algorithm can achieve linear complexity in the input size. In-
deed, each individual step is linear, including the connected confidence computa-
tion since each block of the image belongs to at most one component and is thus
only processed once. In practice, the vectorized Python implementations processes
all blocks for each component, thus leading to a quadratic complexity. Although
an optimal computation in another language could offer the optimal worst-case lin-
ear complexity, this is largely irrelevant since the number of inconsistent connected
components usually does not scale linearly with the image size.

Algorithm 4: Connected confidence computation
1 function connected_confidence(G, global_G, Δ)

Input G: Grid/diagonal detected on each window, shape (XW,YW)
Input global_G: Grid/diagonal detected on the main image
Input Δ: Either Δmain or Δdiag
Output confidence: Confidence that each pixel is forged

2 labels := label_connected(G, global_G)
3 confidence := 0XW,YW

4 for label from 0 to max(labels) do
# ⊙ denotes Hadamard product

5 confidence+= max ((labels = label)⊙ |Δ|)
6 return confidence
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Algorithm 5: Global algorithm
1 function find_forgeries(img, W, stride, threshold)

Input img: Input image, size (X,Y, 3). X and Y must be even (the last
row and/or column may be cut to ensure this).

Param W: int, Window size
Param stride: int, Distance between the left/top border of two

consecutive windows. Must divide W.
Param γ: float, higher hysteresis threshold to select relevant

inconsistencies.
Output forged_full: Final map of detected forgeries (pointwise

maximum of forged_main and forged_diag)
Output forged_{main, diag}: Detected forgeries after thresholding,

respectively on the full pattern and on
the diagonal

Output confidence_{full, main, diag}: Confidence that each region is
a forgery

2 intermediate := is_intermediate(img)
3 windows := create_sliding_windows(intermediate,W, stride)
4 Xw,Yw := number of windows per column/row

# Pattern and diagonal on the global image

5 global_M, global_D, _, _, _, _ = find_grid(intermediate[:, :
, 0], intermediate[:, :, 1], intermediate[:, :, 2])

# Pattern and diagonal on each window

6 M,D,Δmain,Δdiag := 0Xw,Yw

7 for x from 0 to Xw and y from 0 to Yw do

8 mainx,y, diagx,y,Δmainx,y ,Δdiagx,y :=

find_grid(windowsx,y,0,windowsx,y,1,windowsx,y,2)
# Inconsistent regions

9 bad_{main, diag}_raw := {M,D} ̸= global_{main, diag}
10 bad_full_raw := max(bad_diag_raw, bad_main_raw)

# Connected confidence

11 confidence_main := connected_confidence(M, global_M,Δmain)
12 confidence_diag := connected_confidence(D, global_D,Δdiag)
13 confidence_full := max(confidence_main, confidence_diag)

# Threshold

14 forged_{full,main, diag} := confidence_{full,main, diag} > γ
15 return forged_{full, main, diag}, confidence_{full, main, diag}
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3.3 Experiments
To evaluate the ability of this method to detect the CFA pattern correctly, we took
15 images from the Raise dataset [31], and demosaiced them using the 7 algorithms
available in LibRaw: Bilinear interpolation, AAHD, AHD, DCB, DHT, PPG and
VNG. 11 of these images are of size 4948×3280, the other 4 are of size 4310×2868.
The selected images can be seen in Figure 3.3.

(a) r002fc3e2t (b) r1ead3024t (c) r1ceba29dt

(d) r0a2ff882t (e) r0a808003t (f ) r0a966704t

(g) r0e04cc91t (h) r0ea0825ft (i) r1a0f5585t

(j) r1c9fdcf4t (k) r06aa7dabt (l) r07cfb432t

(m) r07ffdc87t (n) r16da5576t (o) r191f3cdet

Figure 3.3: These 15 images from the Raise dataset [31] were used during our ex-
periments.

101



Chapter 3. Intermediate Values Counting for CFA Pattern identification

CFA pattern detection
We started by analyzing, at a global scale, whether the method is able to detect the
correct pattern of the 15 images described above. Results can be seen in Table 3.1.
One can see that the algorithm detects the correct grid in all 15 images when they
were demosaiced with bilinear, AHD or DCB demosaicing. It also worked well
on the PPG and VNG algorithms, despite a few mistakes in the full pattern iden-
tification against PPG or VNG-demosaiced images. These mistakes were solved
when using bidirectional filters. When the image was demosaiced with AAHD or
DHT, however, the algorithm consistently failed to detect even the diagonal, and
consequently also fails on the full pattern, in both versions of the algorithm.

Demosaicking Diagonal Full pattern

AAHD 0/15 0/15
AHD 15/15 15/15
DCB 15/15 15/15
DHT 3/15 3/15
Bilinear 15/15 15/15
PPG 15/15 13/15
VNG 15/15 14/15

(a) Original isotropic intermediate values

Demosaicking Diagonal Full pattern

AAHD 0/15 0/15
AHD 15/15 15/15
DCB 15/15 15/15
DHT 2/15 2/15
Bilinear 15/15 15/15
PPG 15/15 15/15
VNG 15/15 15/15

(b) Bidirectional filters for intermediate values

Table 3.1: Identification of the main diagonal and of the full pattern on the 15
images. For each demosaicing algorithm, we show how many of the 15 images
had their diagonal/full pattern correctly detected by the method. In its original
version, the algorithm works very well when the demosaicing is done with AHD,
DCB or Bilinear demosaicing, with a few errors on the full pattern against PPG-
or VNG-demosaiced images. It fails to detect even the diagonal on AAHD- and
DHT-demosaiced images. Bidirectional filters for intermediate value computation
yields perfect results on PPG and VNG, but still fails against AAHD- and DHT-
demosaiced images.

Looking at the results on image r0a2ff882t in Figure 3.4, we can see again that
the results depend on the demosaicing algorithm used by the method. All windows
were detected correctly against DCB and Bilinear demosaicing, but the algorithm
was confused on the diagonal pattern in the PPG-demosaiced image, though bid-
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irectional filters for the intermediate value computation partly alleviated this prob-
lem. On the VNG-demosaiced image, there are also false detections on the diagonal
itself. More importantly, the basket of the bike caused errors with AHD, PPG and
VNG demosaicing. This was to be expected with a periodic structure that fools the
detection. The result might easily be misinterpreted as a forgery. As can be seen on
Figure 3.5, however, using bidirectional filters yields a very low relative confidence
for the identification of the basket’s grid compared to the rest of the image. As a
consequence, a reasonable thresholding level should still enable one to automatic-
ally discard this false detection.

Original image (r0a2ff882t), in  g
g b pattern

AAHD AHD DCB DHT Bilinear PPG VNG

O
ri
gi
na
l

Bi
di
re
ct
io
na
l

Figure 3.4: Results of the method on 64×64 windows, both with the original iso-
tropic intermediate value mask and the proposed bidirectional one, on one image
with the 7 different demosaicing algorithms. Both methods work perfectly on the
DCB- and Bilinear-demosaiced images. With the AHD, PPG and VNG meth-
ods, both the original isotropic and the bidirectional filters have trouble discerning
between the two patterns sharing the same diagonal, but the bidirectional detection
makes fewer mistakes. Periodically textured regions like the basket can create a loc-
alized shift in the detected mosaic, which could be mistaken for a forgery. With the
AAHD and DHT algorithm, the method consistently detects the wrong diagonal.
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(a) Isotropic (b) Bidirectional

Figure 3.5: This figure shows, on the AHD-demosaiced bicycle image, the differ-
ence of counts of intermediate values corresponding to the  g

g b and b g
g  patterns,

on the red and blue channels. This count is what is used by the algorithm to decide
on a grid. A negative difference corresponds to the correct  g

g b pattern, a positive
difference to the incorrect b g

g  pattern. The difference is normalized by dividing it
by the size of the block (64 × 64). The texture in the basket area leads to a locally
consistent shift in the position of the intermediate values. The error is slightly less
prominent when a bidirectional mask is used, but is still consistently in favour of
the wrong grid.

Most images that are found on the web are JPEG-compressed. It is thus vital
to test the robustness of this algorithm to JPEG compression. JPEG compression
quickly discards the highest frequencies, at which CFA artefacts are located. As a
consequence, it would be illusory to expect results on heavily-compressed images.
However, being able to detect the CFA pattern on low-compression images extends
the application range of a CFA grid detection method. We show results after JPEG
compression on Figures 3.6, 3.7. JPEG compression was done with the Pillow lib-
rary [90]. On the two studied images, we can see that even the highest-quality com-
pression with a JPEG quality factor of 100 caused many errors in the pattern detec-
tion, though the algorithm remained largely usable, especially when only looking
at the diagonal. A quality factor of 100 does not specifically remove the high fre-
quencies, however the discretization in the frequency domain already includes a loss
of information. At JPEG quality 98, the algorithm no longer detected the correct
pattern, except in the easier case of the bilinear demosaicing algorithm. However,
it could still detect the diagonal of most windows, albeit with a few errors. Finally,
at JPEG quality 95, the algorithm was unable to find anything.

All in all, JPEG compression remains the biggest limitation of this method, and
of CFA detection in general.

In Figures 3.8, 3.9, 3.10, we evaluate the robustness of the method to addit-
ive white Gaussian noise (AWGN). Because AWGN is not spatially correlated, it
remains possible to detect the pattern in most cases with a noise of standard devi-
ation σ = 5 (on [0, 255]-ranged images). More localized errors are made as the
noise level increases, but thanks to the lack of spatial correlation of the noise (and
consequently of the errors), the risk of mistakenly interpreting these as forgeries re-
mains relatively low. Finally, we can see in Figure 3.10 that detecting the pattern
over AWGN is made easier by using a larger window size, which averages the noise
while keeping the artefacts. Of course, this comes at the price of potentially missing
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smaller forgeries.
Median filtering has often been proposed as a counter-forensics measure to hide

forgeries. Although it can be easily detected [91], we evaluate the robustness of the
presented method to median filtering in Figure 3.11, using a median filter of foot-
print

(
0 1 0
1 1 1
0 1 0

)
. We can see that the results of the method are completely inverted,

because median filtering shifts the intermediate values. As a consequence, images on
which the correct diagonal was found before filtering now yield wrong detection,
whereas the method finds the correct pattern on AAHD- and DHT-demosaiced
images, where it was failing without median filtering. Figure 3.12 explains this phe-
nomenon with a toy example. Without further elaborating, we note that only the
diagonal detection is affected. As a consequence, if median filtering has been detec-
ted, detections can be made correct again by simply reverting the detected diagonal.
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AAHD AHD DCB DHT Bilinear PPG VNG

U
nc

om
pr

es
se

d
O
ri
gi
na
l

Bi
di
re
ct
io
na
l

JP
EG

10
0 O
ri
gi
na
l

Bi
di
re
ct
io
na
l

JP
EG

98 O
ri
gi
na
l

Bi
di
re
ct
io
na
l

JP
EG

95 O
ri
gi
na
l

Bi
di
re
ct
io
na
l

Figure 3.6: Detection of the method after JPEG compression. Results are shown on
image r07ffdc87t, in  g

g b pattern, uncompressed and submitted to JPEG compres-
sion of quality 100, 98 and 95. Detections can still be made to some extent up to
a compression level of 98, at least for the diagonal pattern. At quality 95, however,
no detections are possible.
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AAHD AHD DCB DHT Bilinear PPG VNG
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Figure 3.7: Detection of the method after JPEG compression. Results are shown on
image r0ea0825ft, in g 

b g pattern, uncompressed and submitted to JPEG compres-
sion of quality 100, 98 and 95. On this image, which is more difficult to analyze
than the one in Figure 3.6, errors are already present in the uncompressed image,
the diagonal is also locally wrong on the stairs against VNG demosaicing, especially
with the original isotropic intermediate values. These errors become more promin-
ent against other demosaicing methods as well at JPEG quality 100 (highest pos-
sible), and detection becomes barely possible. At JPEG quality 98, contrarily to
Figure 3.6, detection is mostly impossible, although the diagonal can still be found
with local mistakes against bilinear and DCB demosaicing if bidirectional filters are
used. Again, bidirectional intermediates provide a consistent, although small boost
to JPEG robustness. 107
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Figure 3.8: Robustness of the method to additive white Gaussian noise (AWGN),
that can be added to images either for aesthetic reasons or to maliciously hide ma-
nipulations. Image r07cfb432t, in  g

g b pattern. We show results against noise of
standard deviation from 0 (noiseless) to 10, window size 64×64. Because the noise
is independent of the image, it does not create locally coherent errors that can hardly
be distinguished from forgeries. However, the probabilities of a sampled or inter-
polated pixel being an intermediate value go closer to one another as more noise is
added, making the detection harder.
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Figure 3.9: Robustness of the method to additive white Gaussian noise (AWGN),
that can be added to images either for aesthetic reasons or to maliciously hide ma-
nipulations. Image r1c9fdcf4t, in  g

g b pattern. We show results against noise of
standard deviation from 0 (noiseless) to 10, with window size 64 × 64. Because
the noise is independent to the image, it does not create locally coherent errors that
can hardly be distinguished from forgeries. However, the probabilities of a sampled
or interpolated pixel being an intermediate value go closer to one another as more
noise is added, making the detection harder.
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Figure 3.10: Robustness of the method to additive white Gaussian noise (AWGN),
that can be added to images either for aesthetic reasons or to maliciously hide ma-
nipulations. Image r1c9fdcf4t, in  g

g b pattern. Noise standard deviation 5, with
window sizes 64×64, 128×128 and 256×256. Because the noise is independent
of the image and not spatially correlated, using bigger windows improves the ro-
bustness to it by providing more samples (at the cost of potentially missing smaller
forgeries).
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(a) Image r0e04cc91t, in  g
g b pattern.

AAHD AHD DCB DHT Bilinear PPG VNG
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(b) Image r1a0f5585t, in  g
g b pattern

Figure 3.11: Robustness to median filtering on 64 × 64 blocks. Median filtering
shifts the green intermediate values, confusing the algorithm on the diagonal. It
actually balances out the similar confusion caused by AAHD and DHT, leading to
a better detection in those cases. 111
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139 240 154 16 94 56 72 20
92 131 168 76 72 94 24 43
85 24 100 48 102 224 130 72
60 107 160 68 64 122 200 153
92 184 125 0 50 0 133 108
52 155 156 76 136 117 224 127

146 228 111 12 110 108 107 44
56 114 48 90 184 141 52 90

(a) Original array

139 139 168 94 72 94 56 43
131 131 131 72 94 72 72 43
85 100 100 76 72 122 130 123
92 107 107 64 68 122 133 153
72 125 156 68 50 117 133 133

115 156 125 76 110 117 127 127
146 146 111 90 110 110 107 100
114 114 111 90 141 141 107 90

Median
filter

(b) After median filtering

Figure 3.12: Values on an array, before and after median filtering. The array corres-
ponds to the green channel of an image in the · g

g · position demosaiced with bilinear
interpolation. Red values correspond to positions where the value was interpolated.
Highlighted cells correspond to pixels that take an intermediate value. Notice the
shift of intermediate values from one diagonal to another: originally, almost all (18
out of the 20) intermediate values are found in the interpolated pixels, but after me-
dian filtering, most (16 out of 29) are located in the sampled (black) position
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Image forgery detection
The ultimate goal of the method is to find mosaic inconsistencies in an image. We
used forgeries from the Trace database introduced in Chapter 1 (Non-Semantic
Evaluation of Image Forensics Tools) to evaluate the method. The Trace database
is constituted of 1000 images taken from the Raise dataset. Two forgery masks are
made for each image: the endomask, obtained by taking a random object from the
image’s automatic segmentation, and the exomask, which is simply the endomask
of another image of the set and thus do not correlate to the contents of the image.
The concept of the database is to process the image with two different pipelines, and
merge them with one of the forgery masks. Of the six datasets that are proposed,
two are of interest to us:

• in the CFA Grid dataset, the two pipelines are the same, but the pattern of
demosaicing changes (the algorithm is the same). The forgery thus has a dif-
ferent CFA pattern than the rest of the image.

• in the CFA Algorithm dataset, the two pipelines are the same, but the al-
gorithm of demosaicing changes. A new CFA pattern is also chosen at ran-
dom for the forged region, with a 1

4 chance of being the same than the original
image’s.

For the quantitative experiments, we used the CFA grid with exomasks dataset. For
the qualitative experiments, we used samples from both the CFA grid and CFA al-
gorithm datasets. Unless otherwise specified, quantitative experiments were done
with the Matthews Correlation Coefficient (MCC) [80]. This metric varies from
-1 for a detection that is complementary to the ground truth, to 1 for a perfect detec-
tion. A score of 0 represents an uninformative result and is the expected perform-
ance of any random classifier. The MCC is more representative than the F1 and IoU
scores [81], [82], partly as it is less dependent on the proportion of positives in the
ground truth, which is especially important given the large variety of forgery mask
sizes in the database. It is defined by

MCC =
TP × TN − FP × FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
,

where TP, FP, TN and FN respectively represent the numbers of true positives
(TP), false positives(FP), true negatives (TN) and false negative (fn). The score is
computed for each image, and then averaged over each dataset. As the method does
not provide a binary output but a continuous heatmap, we weighted the confusion
matrix using the heatmap. For several results, we also provide the Intersection over
Union (IoU), the F1 score and the Precision and Recall. Quantitative experimental
results can be found in Table 3.2.

On Table 3.2a, we can see that using bidirectional filters slightly improves the
overall results. This corroborates the visual results of the previous subsection. Us-
ing thresholding not only improves the understandability of the method, it also
provides significant improvements over the scores.
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Table 3.2c shows results from taking only the results of the diagonal detection,
the full pattern or their combination by pointwise maximum. The strategy of mer-
ging the two maps by pointwise maximum is the good one: it performs almost as
well as the diagonal map on forgeries who do not share their diagonal, almost as well
as the full map on forgeries that do share their diagonal (and are thus invisible in the
diagonal map), and thus performs much better on the overall database than any of
the maps taken separately.

On Table 3.2d, we present the scores of the method depending on the demo-
saicing used to process the image. Unsurprisingly, the method does not work well
on AAHD- and DHT-demosaiced images, as we saw in the previous subsection.
However, because it is consistent in detecting the diagonal, it can still be used to
see that two AAHD- or DHT-demosaiced regions use a different diagonal. This
will be explored further below. Bidirectional filters work better than the original
isotropic filters in most cases. The biggest gaps occur with PPG and AHD demo-
saicing, which explicitly interpolate in the smoothest direction [92], [93]. On the
other hand, isotropic filters work better with simpler demosaicing methods such as
bilinear demosaicing, which does not try to find a better direction for interpolation.

We examine the influence of the threshold in Table 3.2e. As fewer windows get
detected, a higher threshold systematically means that the recall is lower. However,
a higher threshold does not necessarily improve the precision; the best precision
(and best score overall) is achieved with a 0.1 threshold, and higher thresholds yield
a lower precision. This can be explained by the fact that the most confident detec-
tions often correspond to textured areas, where intermediate values are created by
the texture more than the demosaicing, and are thus a source of false positives.

Finally, Table 3.2b shows the scores with different window sizes. While a win-
dow size of 32 × 32 yields the best results, this is inherently tied to the database
in question. We saw earlier that increasing the window size would often lead to a
better grid identification, but this also comes at the cost of missing small forgeries,
and also failing to identify the borders of the bigger ones.

In Figure 3.13, we investigate the importance of the thresholding. Inconsistent
false detections are usually not found in large connected regions of the same detec-
ted grid. As a consequence, even if some of those detections were to be significant,
they would not cause a large number of false detections. On the other hand, regions
detected because they are truly forged have a high chance of being actually forged.
A confident result on one window of that region is thus enough to detect the whole
region. Of course, this threshold is not fully automatic: it must still be set by the
user, and will not filter out zones that are strongly detected for reasons other than a
forgery, such as saturation or textured areas. The image in Figure 3.13b is interest-
ing: as it was demosaiced with AAHD, its diagonal is not detected correctly (and
no confident detection is thus made in Δgrid). However, because the two regions
do not share their diagonal, the inconsistency is still detected. The region demosa-
iced in g 

b g is detected as being in the · g
g · diagonal, whereas the region demosaiced

in b g
g  is detected as g ·

· g : even though those predictions are wrong, they are still
inconsistent with one another.

We further explore this phenomenon in Figure 3.14. As long as the two regions
of an AAHD-demosaiced image do not share the same diagonal, they can still be
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Image Δdiag Confidence map Out, γ = 0.05 Out, γ = 0.1

Ground truth Δgrid Raw inconsistencies Out, γ = 0.15 Out, γ = 0.2

(a) Image r06888d38t of the CFA Grid dataset with endomask, demosaiced with the VNG
algorithm. The authentic region was demosaiced in the g 

b g pattern, the forged region in
the g b

 g pattern.

Image Δdiag Confidence map Out, γ = 0.05 Out, γ = 0.1

Ground truth Δgrid Raw inconsistencies Out, γ = 0.15 Out, γ = 0.2

(b) Image r1594b4b3t of the CFA Grid dataset with exomask, demosaiced with the AAHD
algorithm. The authentic region was demosaiced in the g 

b g pattern, the forged region in
the b g

g  pattern.

Figure 3.13: Influence of the threshold on the removal of inconsistent false posit-
ives. Less-confident regions of the correct detection are kept, as long as they are con-
nected to a more confident window, whereas inconsistent false detections are not
connected to a large region: even if a few of them are confidently detected, most will
be filtered out. Raw inconsistencies highlights every block whose detected pattern
is inconsistent with the main image, regardless of significance.

detected. However, if the diagonal is wrong, then the algorithm will not look at the
correct difference map to select the full pattern. As a consequence, it will be unable
to make a consistent decision, and will thus not detect two different patterns that
share the same diagonal. Nevertheless, the unused Δ maps still shows clear traces of
the forgery. If one is suspicious that the diagonal is reversed (for instance because it is
detected confidently over the whole image, whereas the full pattern is inconsistent),
inverting the results of the diagonal, or visually examining the unused Δ map, can
thus still reveal the forgery.
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In the case of an image whose forged regions come from different algorithms,
one of which being AAHD or DHT, the diagonal inversion means that if the two
regions share the same diagonal (or even the very same pattern), the forgery could
be detected, albeit for the wrong reason. However, this also means that if the two
regions do not share the same pattern – an inconsistency which is usually easier to
find, as seen in Table 3.2c –, the forgery then becomes invisible. This problem can
be seen in Figure 3.15.

3.4 Conclusion
The presented method counts the number of locally intermediate values corres-
ponding to each potential demosaicing pattern. The correct pattern, which contains
all the originally-sampled pixels, is expected to have fewer intermediate values than
the other patterns. The method starts by detecting which diagonal is used with the
green channel, then uses the red and blue channels to distinguish between the two
patterns sharing the detected diagonal. We proposed a different way of computing
intermediate values, which yields slightly better results by exploiting the fact that
demosaicing algorithms often interpolate on only one direction.

Doing this both on the full image and in local windows, we are able to detect
locally inconsistent windows. The difference between the two compared counts of
intermediate values in a window is normalized to serve as confidence for the detec-
tion of this window. Those windows are then grouped into connected components
of windows that share the same detected grid, and the confidence of a component
is set as the maximal confidence of its windows.

This confidence map enables easy visualization of the detections and their signi-
ficance, and thresholding it filters out most of the incoherent false detections, while
keeping the consistent detections. However, the threshold must be set manually.

The main limitation of this method, and of CFA forgery detection in general,
remain its low robustness to JPEG compression. With this method, detections are
already more difficult at a JPEG quality factor of 100, and become impossible at
quality 95, effectively limiting its applicability range. We also saw that counter-
forensic attacks based on the addition of white noise are quite effective. The classic
median filter attack is instead relatively inefficient as it ends up inverting the inter-
polation masks, and the diagonal can thus still be detected.

Furthermore, of the 7 tested demosaicing algorithm, 2 cause an inversion of the
detected diagonal. In the green channel, AAHD and DHT actually cause more
intermediate values to appear on the sampled pixels.

While the method is usable, these issues make it still unsatisfactory. It is possible
to detect local inconsistencies even within wrong detections, however erroneous
pattern detections cannot be avoided against all demosaicing algorithms without
leveraging inter-channel transfers. Furthermore, we wish to improve the robust-
ness to JPEG compression. This leads us to abandon the idea of direct detection of
interpolated and sampled pixels. Instead, the next two chapters will try to reverse-
engineer the demosaicing algorithm itself, so as to estimate the potential mosaic in
which a demosaicing algorithm was effectively used.
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MCC IoU F1

Isotropic, raw 0.518 0.490 0.573
Isotropic, γ = 0.1 0.592 0.567 0.622
Bidirectional, raw 0.543 0.515 0.595
Bidirectional, γ = 0.1 0.610 0.584 0.642

(a) Results with isotropic and bidirectional interme-
diate values, raw and with connected confidence both
continuous and thresholded at γ = 0.2, on 32 × 32
windows.

Window size MCC

16 0.592
32 0.610
64 0.412
128 0.163

(b) Results with different window
sizes. The method was used with bi-
directional filters, continuous norm-
alisation at γ = 0.2, 32 × 32 win-
dows.

All images Same diagonal Different diagonal

Main grid 0.476 0.503 0.461
Diagonal 0.429 0.000 0.671
Combined 0.610 0.501 0.673

(c) Influence of using only main grid inconsistencies, diagonal inconsistencies and their
combination (pointwise maximum of the two detection maps), on the full database, and
when only looking at images whose authentic and forged parts share/do not share the same
diagonal. The diagonal is shared in 364 out of the 1000 images of the dataset. By combining
the two maps, we can keep the best of both detections.

Algorithm All AAHD AHD DCB DHT Bilinear PPG VNG
#Images 1000 126 138 133 155 154 147 147

Isotropic 0.592 0.372 0.696 0.786 0.305 0.742 0.590 0.657
Bidirectional 0.610 0.375 0.755 0.763 0.350 0.649 0.766 0.613

(d) Results of the presented method depending on how the image was demosaiced. The
method is used with bidirectional filters, on 64 × 64 windows, with hysteresis threshold-
ing and combining the main grid and diagonal inconsistencies. Even though the method
finds the wrong diagonal with the AAHD and DHT algorithms, it is consistent in doing
so, and can thus still detect some forgeries, though not as well as against other demosaicing
algorithms.

MCC IoU F1 Precision Recall

γ = 0.05 0.543 0.518 0.590 0.570 0.733
γ = 0.1 0.610 0.584 0.642 0.670 0.650
γ = 0.15 0.531 0.513 0.558 0.600 0.535
γ = 0.2 0.382 0.371 0.400 0.433 0.382

(e) Results with different metrics, raw and with confidence thresholding. The method was
used with bidirectional filters, on 64 × 64 windows and combining the main and diagonal
inconsistencies. Even though thresholding slightly lowers the recall, its gain in precision is
much larger, thus yielding better MCC, IoU and F1 scores.

Table 3.2: Quantitative experiments on the Trace database of Chapter 1 (Non-
Semantic Evaluation of Image Forensics Tools). Where parameters are not specified,
these were used: bidirectional filters, continuous normalization at γ = 0.2, 32×32
windows, combined results of the full pattern and diagonal maps.
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Image Detected diagonal Detected grid

Ground Truth Δdiag Δgrid

Detected forgeries Δ  g
g b−

b g
g 

Δg 
b g−g b

 g

(a) Image r1d53fccat of the CFA Grid dataset, with endomask. Both regions are demosaiced
with the AAHD algorithm, the authentic region in the g b

 g pattern and the forged region in
the g 

b g pattern. Because the method wrongly detects the · g
g · over the whole image, it only

compares the two patterns sharing that diagonal, and Δgrid = Δ  g
g b−

b g
g 

on almost all the
image. As a consequence, no detection can be made on the grid level, and the forgery is not
detected. Nevertheless, it appears clearly on Δg 

b g−g 
b g

, which is not used in the algorithm.

Image Detected diagonal Detected grid

Ground Truth Δdiag Δgrid

Detected forgeries Δ  g
g b−

b g
g 

Δg 
b g−g b

 g

(b) Image r15919202t of the CFA Grid dataset, with endomask. Both regions are demosa-
iced with the AAHD algorithm, the authentic region in the g 

b g pattern, the forged region
in the b g

g  pattern. Although the method finds the wrong diagonal in both regions, it still
finds that the two regions use a different diagonal.

Figure 3.14: On those two AAHD-demosaicked images, the method finds the
wrong diagonal. On the second image, it can still detect that the two regions use
a different diagonal, and detects the forgery. On the first image, however, the two
regions share the same diagonal. Using the diagonal as a basis to detect the full pat-
tern, the method is unable to make any consistent detection on the full pattern when
the diagonal is wrong, and thus does not find the forgery even though it is clearly
visible when the correct diagonal is used. This shows the limits of using the detected
diagonal as a strict basis for the full detection.
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(a) Input image (b) Ground Truth (c) Detected incon-
sistencies.

(d) Normalized differ-
ence between the two di-
agonal patterns.

Figure 3.15: Image r040b3002t of the CFA Algorithm dataset, with exomask. The
authentic region is demosaiced with the  algorithm in the g 

b g pattern, the
forged region is demosaiced with the DCB algorithm in the b g

g  pattern. Because
the method consistently finds the wrong diagonal on AAHD-demosaiced images,
but detects the correct diagonal on DCB-demosaiced images, it believes that the
two regions share the same diagonal, even though they do not.
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Chapter 4

Linear Estimation of theDemosaicing
Algorithm

Abstract
Inthe last two chapters, we exploreddirectapproaches to distinguish sampled

pixels, and in fine to revealthe correctCFA pattern. However, those approaches
were unsatisfactory. While Chapter 3 (Intermediate Values Counting for CFA
Pattern identification) provided good results, the simplicity of those direct ap-
proaches could not take into account the properties of each specific demosaicing
algorithm, leading to erroneousresults on images demosaicedby suchalgorithms.
We now propose instead to follow a reverse-engineering approach so as to more
accurately reflect the specificities of each image and demosaicing algorithm. We
create a linear estimation ofthe demosaicingthatwould beassociatedwith each
of the four possible CFA patterns. The residuals from these models yield a local
estimation of the CFA pattern in the image. An a contrario approach is then
applied to find regions whose detected pattern significantly deviate fromthe rest
of the image. We show that while a linear estimation can be sufficient to find
the image’s CFA pattern, themany nonlinearities of demosaicing, aswellasthe
natural texture of images, makethis global and linearmodel locally unreliable.

An interactive demo for this chapter is available at
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000095.

4.1 Introduction
In a seminal paper on demosaicing analysis, Popescu and Farid [6] proposed to use a
two-class model of an image’s pixels, by separating those that are originally sampled
by the camera and those that were interpolated. They propose to use expectation-
maximization (EM) to jointly estimate the sampled/interpolated status of each pixel,
and a linear estimation of the used demosaicing algorithm. Spectral analysis of the
residual error from the linear model can then reveal a 2-periodicity in the image’s
Fourier transform. Forgeries can then be detected as a phase-shift or a loss of peri-
odicity of the residual. This detection methodology has been henceforth adopted
by many papers.

However, EM can emphasize originally-insignificant inconsistencies. Analys-
ing the significance of detections is thus difficult in such a scheme. Instead of jointly
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Chapter 4. Linear Estimation of the Demosaicing Algorithm

finding sampled pixels and estimating the interpolation of missing values, we pro-
pose to separately estimate the interpolation on each of the four possible patterns.
We do not know a priori which of these positions is used in the image; as such
we have no choice but to estimate the interpolation method for each of these as-
sumptions. If the approximation is correct, the image obtained with the estimated
method from the mosaiced image should be closest to the original when the good
grid position assumption is made, since interpolated pixels are easier to estimate
from sampled pixels than the contrary.

If the detected pattern is locally inconsistent with the rest of the image, for in-
stance if a small region is detected in the  g

g b pattern while the rest of the image is
detected on the g 

b g one, then the image can be suspected to be forged in that re-
gion. However, considering all regions with a false pattern as forged would lead to
an astonishingly high number of false positives, since an estimator is not perfect and
can make many mistakes, especially on small regions. A simple heatmap of confid-
ence in each detection is not ideal either, as the absence of an automatic threshold
makes the end decision more difficult.

In this context, it becomes particularly useful to control the rate at which false
positives are found. The a contrario framework [83] has been specifically developed
in image analysis for that purpose. It considers a detection as meaningful if the ex-
pected number of similar detections obtained “just by chance” is below a specified
false alarm rate. Here we aim at very low false alarms rates, to filter out detections
that are not significant enough. See Chapter 0.4 (Introduction) for a general over-
view of a contrario detection.

In Section 4.2, we detail the linear estimation of the demosaicing method to
detect the CFA pattern. The automatic detection of forgeries is then discussed in
Section 4.3.

4.2 Linear estimation of the demosaicing algorithm
Considering a color image I of shape (X,Y, 3), where I[x, y, c] contains the value of
the pixel at location (x, y) in the cth channel – using the convention that the first
channel is red, the second green and the third blue – we assume we know the pos-
ition of the CFA grid G, of the same shape and with G(x, y, c) equal to 1 if the cth
channel is the one sampled at position (x, y), and 0 otherwise. We construct the
mosaicked image M of shape (X,Y) as

M[x, y] =
2∑

c=0

I[x, y, c]G[x, y, c].

If the grid position is correct, it corresponds to the image that was sampled by the
camera.

Estimating the demosaicing method means we are looking for a function f such
that f(M) ≈ I. We shall approximate the demosaicing with linear filters as proposed
by [6]. Our method is actually simpler because we shall avoid using an expectation
maximization (EM) by estimating optimal filters for each of the hypothesized CFA
configurations. Furthermore we get a better filter approximation by allowing them

121



Chapter 4. Linear Estimation of the Demosaicing Algorithm

to use all observed channels, as is actually done in most modern demosaicing al-
gorithms.

As we estimate a demosaicing method individually for each possible hypothesis
on the grid position, we can directly find a least square optimal filter without recur-
ring to EM. We can therefore directly find for each image the linear filter α of size
(2N + 1, 2N + 1) that minimizes

2∑
c=0

∑
x,y

(I[x, y, c]− ((I · G)[c] ∗ α)[x, y])2

where ∗ represents convolution and · the entry-wise product. In order to address
the second problem and take inter-channel correlation into account, we have to use
the mosaiced image M instead of a single channel of the original image masked on
the interpolated pixels and minimize

2∑
c=0

∑
x,y

(I[x, y, c]− (M ∗ α)[x, y])2 .

However, in order to solve the last problem and get an acceptable approximation, no
less than 8 linear filters are to be estimated – one per position on the CFA grid/missing
color channel pair:

• αR→g and αR→b, which interpolate respectively the green and blue channels
at the locations where the sampled pixel is red,

• αGR→r and αGR→b, which interpolate respectively the red and blue channels
at the locations where the sampled pixel is green on a line of reds,

• αB→r and αB→g, which interpolate respectively the red and green channels at
the locations where the sampled pixel is blue, and

• αGB→r and αGB→b, which interpolate respectively the red and blue channels
at the locations where the sampled pixel is green on a line of blues.

We estimate for instance αR→g, the filter that interpolates the green pixel where the
sampled pixel is red, by solving the linear systems that arise when we set to 0 the
gradients of the L2 error of the residual on pixels where the sampled channel is red.
This yields the linear system AαR→g = b, with

A[u+Nv, s+Nt] =
∑
x,y

G[x, y, 0]M[x+u, y+v]M[x+s, y+t]

and
b[u + Nv] =

∑
x,y

G[x, y, 0]M[x + u, y + v]I[x, y, 1].

The other 7 filters can be estimated in a similar manner.
For each grid position P ∈ {  g

g b ,
b g
g  ,

g 
b g ,

g b
 g }, let ĨP be the image interpol-

ated from the corresponding mosaicked image with the filters estimated above.
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We start by detecting the diagonal of the pattern, i.e. we detect whether the
pattern uses the · g

g · or the g ·
· g diagonal. This estimation is more easily done in the

green channel, we thus define:

D̃ = arg min
P

∑
x,y

∥ĨP[x, y, 1]− I[x, y, 1]∥2, (4.1)

the estimated diagonal D⋆ is then · g
g · if D̃ ∈ {  g

g b ,
b g
g  } and g ·

· g otherwise. Note
that in most cases, the green residuals in the  g

g b and b g
g  patterns will be very close,

and so will be those in the g 
b g and g b

 g patterns. Indeed, most demosaicing al-
gorithms make little to no use of the red and blue values to interpolate the green
channel, although they make extensive use of all channels to interpolate the red and
blue ones. See Chapter 0.4 (Introduction) for more details.

Now that the diagonal is known, we only have to distinguish between the two
positions sharing that diagonal. This difference is computed in the three channels,
although as explained above the difference will be mostly located in the red and blue
channels:

P⋆ =

{
arg minP∈{  g

g b ,
b g
g }

∑
x,y,c∥ĨP[x, y, c]− I[x, y, c]∥ if D⋆ = · g

g ·

arg minP∈{g 
b g ,g b

 g}
∑

x,y,c∥ĨP[x, y, c]− I[x, y, c]∥ if D⋆ = g ·
· g

.

(4.2)
This gives us the estimated pattern for the global image. The pattern can also be

estimated locally, by restricting the summation to a small region of the image. The
small region in which the estimation is done must have even dimensions, for the
comparison between patterns to be fair. Indeed, as the residual is zero on sampled
pixels and channels, a comparison between two patterns requires the same number
of residual pixels to be zero on each channel, at approximately the same location.
Furthermore, it can happen that the residual is equal for two patterns. While this is
almost impossible in the full image, it is more likely to happen in very small regions,
especially if that region is flat in at least one colour component. If the green residuals
are equal for the diagonal pattern estimation, then the diagonal pattern is estimated
using all three channels. If the new residuals are still equal, then no pattern is con-
sidered as detected in the region. Similarly, if the two patterns sharing the detected
diagonal yield equal residuals, no pattern is detected – although the diagonal itself
is detected.

4.3 Automatic forgery detection
In the previous section, we detailed how the pattern could be detected both locally
and globally. In addition to the global estimation, we thus perform local estimation
of the diagonal and pattern in all the 2 × 2 blocks of the image, without overlap.

In the context of image forgery detection, it is often useful to provide an auto-
matic decision on the authenticity of an image, so that the result does not require
an expert interpretation. Furthermore, filtering out statistically insignificant results
enables one to be more confident in the output of an algorithm. A contrario [46],
[83] analysis is particularly suited to this context, and has already been successfully
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applied to other forgery detection methods [19], [25]. Based on Gestalt theory,
this detection theory performs automatic thresholding of the data by controlling an
upper bound of the number of false alarms (NFA) one might expect. Given a back-
ground hypothesis H0 and a significance function S that represents the significance
attributed to an observation, we can compute the p-value of an observation x, that
is, the probability of a random observation to be at least as significant as x:

p(x) = Py∼H0(S(y) ≥ S(x)). (4.3)

While the p-value provides an idea of the importance of a detection, it does not
account for the number of observations that are being made; in presence of a large
quantity of observations one can expect spurious detections even with a small threshold
of the p-value. The a contrario framework instead proposes to put a threshold on the
NFA, which is obtained by multiplying the p-value by the number of tests, real or
potential. For example, when computing the NFA of rectangles on an image, the
number of tests is the total number of possible rectangles in the image – even if not
all rectangles are tested. Associating an NFA to each detection and keeping only
detections whose score is below the threshold ε amounts to fix an upper bound ε on
the expected number of false alarms in the whole image:

Ex∼H0 (|{x|NFA(x) < ε}|) ≤ ε. (4.4)

The NFA of a detection belongs in ]0,+∞[, with scores closer to 0 corresponding
to more significant detections. An NFA of 10−3, for instance, means that under the
background hypothesisH0, the expected number of detections at least as significant
is at most 10−3. So we expect at most one false detection every 1000 images.

Using this framework, we want to find suspicious regions in an image. We could
limit ourselves to find regions that present a significant grid that is different from the
grid of the global image. Yet, this would not enable us to detect areas with multiple
small patches of different grids (as is frequently the case on inpainted images); nor
would we see the localised absence of demosaicing.

Instead, we propose to detect regions where the detection is significantly erro-
neous, ie. where the network makes more mistakes than in the rest of the image. We
apply the method separately on the detected diagonals and on the detected patterns,
let Ed (resp. Ep) be a binary map which equals 1 for each block whose detected di-
agonal (resp. pattern) is different from Dg (resp. Pg). This is a map of the “wrong”
blocks. The computation of those maps is described in Algorithm 6.

For the rest of the subsection, E represents either Ed or Ep. The empirical prob-
ability of any block on the image being wrong is denoted by p0, and is computed as
the mean of E. We want to find regions in which the error density is significantly
higher than p0. Note that blocks whose diagonal/pattern is undecided (due to equal
residuals in both patterns) are ignored, they are not used in any counts.

Let us assume that, in a given rectangle, k out of the n blocks contained in the
rectangle are incorrect. Under the background hypothesis that the probability of
error is p0, and assuming that the blocks are independent, the probability of having
at least k wrong blocks in the area is the survival function of the binomial distribu-
tion Binomsf(k, n, p0). Yet a first obstacle to this simple strategy arises, as the grid
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Algorithm 6: Error map computation
1 function compute_errormap(P)

Input P: patterns or diagonal of each block, size (X,Y).
Output E: Error map of P, same size.
Output Pg: Global detected pattern or diagonal.
# Global pattern

2 Pg := mode(P)
3 E := 0X,Y
4 for x from 0 to X and y from 0 to Y do

5 if Px,y ̸= Pg then

6 Ex,y := 1

7 return E, Pg

values of different blocks are not independent. To achieve independence, we sim-
ulate down-sampling and divide k and n by d2, where d is the radius of the linear
filters used in the linear estimation. To account for the fact that in the binomial
integers are then replaced by floating values, we use the Beta distribution to inter-
polate the binomial. The probability of having at least k wrong blocks in this area is
thus evaluated by

pk,n,p0 = Ip0

(
k
d2

+ 1,
n − k
d2

)
,

where Ix is the regularized incomplete Beta function. Under the a contrario frame-
work, the number of tests is the possible number of rectangles in the image, that is,
the number of blocks squared, multiplied by a factor 2 since we work separately on
the patterns and diagonal. In consequence, the number of false alarms associated
with the detection is defined by

NFAk,n,p0 = 2n2
blocksIp0

(
k
d2

− 1,
n − k
d2

)
. (4.5)

The computation of the NFA is described in Algorithm 7.
Ideally, to detect forgeries in an image, we would compute the NFA of all the

rectangles in the image. The score of a pixel would be the minimal score among the
rectangles containing that pixel, and the score of an image would be that of the most
significant rectangle. However, this poses several issues:

• The number of rectangles scales quadratically with the number of pixels in an
image. Hence, checking all possible rectangles is not possible;

• even if a forgery is detected, some rectangles bigger than the forgery itself
may still be significant, and the detection will therefore be too large;

• conversely, if part of a forgery is detected, we should detect nearby parts of
the same forgery as well, even if they are not as significant as the detected
part.
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Algorithm 7: NFA computation
1 function get_rectangle_nfa(E, d, x0, x1, y0, y1)

Input E: 1 if the block is erroneous, 0 if it is correct. Size (X,Y).
Input d: Downsampling coefficient, given by the radius of the linear

estimation filters.
Input x0, x1, y0, y1: Coordinates of the rectangle whose NFA to

compute
Output ε: NFA of the rectangle

2 p0 :=
1

X · Y

X∑
x=0

Y∑
y=0

Exy

3 ntests := 2 ∗ (X · Y)2
# Number of erroneous blocks in the area.

4 k :=
x1∑

x=x0

y1∑
y0

Exy

# Total number of blocks in the area.

5 n := (x1 − x0) · (y1 − y0)
# Ix is the regularized incomplete Beta function.

6 NFA := ntests · Ip0
(

k
d2

− 1,
n − k
d2

)
7 return NFA

As a consequence, we propose to first detect and separate all potential forgeries, and
then to decide on their significance.

Still separately on the diagonal and full patterns, we use the mapEof 2×2 blocks
whose diagonal/pattern is erroneous. We apply a morphological closing to this map
with a disk of size 2 to connect inconsistent blocks, and segment the resulting map
into connected components. Components where the global pattern (respectively
diagonal) represent more than 25% (respectively 50%) of the blocks are immediately
rejected and not tested for forgeries.

Each of the remaining components is tested to determine whether it is a forgery.
On each component, we test all the rectangles contained within the bounding box
of the component, with a step of 16 pixels. The selected striding represents a com-
promise between precision and computation time, as a lower stride means more
rectangles need to be checked.

Finally, we keep the NFA of the most significant rectangle. We set the score
of the whole component to this NFA, thus solving the final two issues addressed
above: only blocks that were in the component are given this NFA, and blocks out
of a significant rectangle but still in the component are kept.

Forgery detection is performed separately on the full pattern and on diagonals,
then the detected forgeries are merged. The final NFA map is the pointwise min-
imum of score maps of the patterns and diagonals NFA.

The NFA of a region is an upper bound on the expected number of regions that
would be falsely detected as forged under the background hypothesis. We set the
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Algorithm 8: Forgery detection
1 function get_forgery_mask(E, d, s)

Input P: Patterns or diagonals of each block, size (X,Y).
Input pb: 0.5 if P represents diagonal, 0.25 if it represents patterns.
Input d: Downsampling coefficient, given here by the size of the filters.
Input s: Stride at which to search for rectangles. Here, s = 16.
OutputD: Forgery mask, each pixel represents the NFA detection

score of its corresponding 2 × 2 block.
# Initialize detections at infinity.

2 D := +∞
3 E,Pg := compute_errormap(P)

# Morphological closing with a disk.

4 Ec := morphological_closing(E, disk2)
# Segment into connected erroneous regions

5 labels := label_connected(E)
6 for label from 0 to max(labels) do

# Get the mask

7 M = labelsx,y = label
# Do not proceed if the main pattern is already above the base

probability.

8 if
1
|Ec|

∑
x∈Ec

1EC(x) > 1 − pb then

9 ε := 0 forR rectangle within the bounding box of M at step

s do
10 εR := get_rectangle_nfa(E, d,R)
11 ε := min(ε, εR)
12 M := morphological_closing(M, disk8)

# Pointwise minimum to update detections on the mask

13 D|M := min(D|M, ε)

14 returnD

threshold to ε = 10−3, and the final, binary map keeps pixels whose NFA is below
this threshold. Under the background hypothesis, the false detection rate therefore
is expected to be below one for 1000 images. Of course, false detections can still
be made when an authentic region is significantly more erroneous than the rest of
the image, for reasons potentially linked to the image structure (for example the
presence of textured areas) or post-processing such as an image resampling which
can modify the CFA traces. However, this enables us to only select regions which
are significantly more erroneous than the rest of the image, regardless of the reason,
and provides us with a mathematically rigorous threshold providing automatic de-
tection.

The same scheme will be reused in a similar manner in Chapter 7 (Internal
Learning to Improve Adaptability).
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Demosaicing
Algorithm

Filter
size 3 × 3 5 × 5 7 × 7

BIL 16/16 16/16 16/16
HA 9/16 9/16 13/16
GBTF 15/16 14/16 16/16
CS 16/16 16/16 16/16
LMMSE 15/16 15/16 16/16
AICC 15/16 16/16 16/16
SSDD 15/16 7/16 9/16
AP 14/16 16/16 16/16
RI 16/16 16/16 16/16
MLRI 16/16 16/16 16/16
ARI 16/16 16/16 16/16
CDM 16/16 16/16 16/16

Table 4.1: This table represents how many of the 16 images were detected in the
correct grid, depending on the used filter size of the method and the original demo-
saicing algorithm of the image. At the image level, the correct pattern is almost
always detected against most demosaicing algorithms. When the image is demo-
saiced with Hamilton-Adams (HA), a large filter size is necessary to obtain decent
results. With SSDD, however, the results are almost perfect with a small 3×3 filter,
but much worse with larger filter sizes.

4.4 Experiments

Estimation of the correct pattern
We took the 16 images from the noise-free images dataset and demosaiced them in
the  g

g b pattern with several algorithms. We then analysed the resulting images with
our algorithm to check whether the correct pattern was detected, i.e. if the residual
was lowest on the  g

g b pattern.
The image-level results are shown in Table 4.1. With most algorithms, the cor-

rect pattern was identified in almost all images. We can see that a larger filter size
(5×5 or 7×7) usually improves the results, and is even necessary against Hamilton-
Adams-demosaiced images. Surprisingly, however, SSDD-demosaiced images can
only be analysed correctly with a small 3 × 3 filter; results sharply decrease when
the filter is larger.

Next, we performed the same analysis in 32 × 32 blocks. The linear estimation
was still performed image-wise, then the residuals were aggregated in 16×16 blocks
(which correspond to 32 × 32 pixels in the original image, since each pixel in the
residual represents 2×2 pixels in the original image). We then looked at the number
of blocks in which the residual is lowest in the correct pattern. Results are shown in
Table 4.2. The method does much better than a random baseline, however it makes
mistakes on up to half the blocks depending on the algorithm and filter size. This
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Demosaicing
Algorithm

Filter
size 3 × 3 5 × 5 7 × 7

BIL 1.000 1.000 1.000
HA 0.403 0.654 0.661
GBTF 0.768 0.654 0.877
CS 0.755 0.749 0.873
LMMSE 0.535 0.634 0.834
AICC 0.504 0.686 0.746
SSDD 0.696 0.429 0.444
AP 0.490 0.784 0.861
RI 0.610 0.930 0.925
MLRI 0.647 0.929 0.929
ARI 0.610 0.841 0.866
CDM 0.782 0.832 0.890

Table 4.2: This table represents the proportion of 32 × 32 blocks whose pattern
was detected correctly, depending on the filter size and the original demosaicing
algorithms. The random baseline for this detection would be a score of 0.25. While
the method does much better than the baseline, the high number of errors makes it
impossible to confidently declare whether a single block is forged.

Camera

Filter
size 3 × 3 5 × 5 7 × 7

Canon 60D 0.020 0.017 0.017
Nikon D7000 0.143 0.147 0.172
Nikon D90 0.069 0.114 0.168
Sony α57 0.293 0.398 0.409

All 0.131 0.169 0.191

Table 4.3: Results of the method on the Korus [42], [43] datasets, using the Mat-
thews Correlation Coefficient (MCC). The baseline of a random method is 0. The
performance of the method strongly varies depending on the camera and its under-
lying demosaicing algorithm.

means that to make a confident detection, a large size is be needed.

Detection of forgeries
We applied the full method to the Korus [42], [43] dataset. As can be seen in
Table tab:korus, the performance of the method depends a lot on the original demo-
saicing. On the Sony α57 camera, the bilinear demosaicing led to a very good score.
On the two Nikon cameras, detections were more difficult to make, but decent res-
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ults were still achieved. On the other hand, the score on the Canon 60D camera
correspond to that of a random method. This is due to the fact that images from
this camera do not seem to present any traces of demosaicing on this dataset, as will
be evidenced by all the methods presented in this thesis as well as all tested SOTA
demosaicing detection methods.

Overall, a larger filter size enables the method to make much better detections,
even on the bilinear-demosaiced images of the Sony α57 camera. Indeed, even though
bilinear demosaicing can be reproduced with a 3 × 3 convolution, the processing
steps happening after demosaicing might slightly expand the footprint of the demo-
saicing.

Visual results can be seen in Figure 4.1. On images from the Nikon and Sony
cameras, the forgeries are usually well-located. The detected forgery masks are often
larger than the actual forgeries. This is due in part to the method used for NFA
thresholding. Although this affects scoring, it is actually irrelevant to the detection
itself, for as long as the forgery is detected, visual analysis of the detected patterns
helps make the localization easy. However, when the demosaicing traces are harder
to analyse, such as on the Nikon images, or when there are no demosaicing traces,
such as on the Canon images, false detections can happen. The inconsistencies are
already present in the grid detections; they can be caused by natural textures in the
image or by traces which strongly deviate from the linear estimation.

4.5 Discussion
In this chapter, we constructed a method allowing us to correctly approximate demo-
saicing methods with several linear filters. An a contrario approach was then applied
to detect regions where the grid detection is significantly wrong. Those regions are
likely to be forged.

Linear estimation of the demosaicing algorithm seems to be enough to detect
the original CFA pattern in most cases at the image level. However, this model is in-
validated in regions where the original demosaicing is strongly non-linear, or where
the image features naturally high-frequency-rich textures. This makes it difficult
to use the method to find forgeries, as the detection can make localized mistakes,
sometimes significant enough to be considered as forgeries after NFA thresholding.

Nevertheless, the possibility of estimating the demosaicing in different posi-
tions remains promising. The next chapter will explore this idea further, by replacing
the linear estimation with the use of a collection of existing demosaicing algorithms.
This will help us apprehend more precisely the common inter-channels transfers of
demosaicing, as well as its non-linearities, using assumptions that stem from com-
mon demosaicing algorithms.

The proposed a contrario approach, on the other hand, seems satisfactory. The
localization masks are not perfect and may require visual analysis of the block votes
to precisely localize algorithms; while this can negatively impacts the scoring of the
underlying method, it is of little practical importance as long as the proposed ap-
proach enables automatic detection of forged images while limiting the number
of tests to perform, and thus the computational cost. This approach being good
enough, we will not further extend work on a contrario analysis. The approach we
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Image Ground Truth 3 × 3 filters 7 × 7 filters
Grid NFA Grid NFA

Figure 4.1: Results of the method on Korus images, from top to bottom from the
Sony α57, Nikon D7000, Nikon D90, Canon 60D cameras. On the first image,
the forgery is accurately detected. Even though the detected mask is too large, a
visual analysis of the detected grid enables precise localization of the forgery. On
the second image, the forgery is detected, but a second region of the image is mis-
takenly detected. On the third image, the forgery is inverted when using the smaller
filter. Although this negatively affects the score, this is not actually a problem for
the detection; as the method still shows the two regions are inconsistent with one
another. Finally, on the fourth image, no traces of demosaicing are present. Some
regions are incorrectly marked as inconsistent. Those inconsistencies are already
present in the detected grids: those defects come from the linear estimation itself,
not from the NFA thresholding.

followed here will be reused with our final method in Chapter 7 (Internal Learn-
ing to Improve Adaptability). Meanwhile, the next two chapters will focus on the
identification of the CFA mosaic itself, with less focus on the subsequent analysis
for forgery detection.
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Demosaicing toDetectDemosaicing

Abstract

The previous chapter proposed a simple reverse-engineering of the demosa-
icing algorithm with linear models. This simple estimation yields inconsistent
results; howeverthisdoes not invalidatethe reverse-engineering approach itself.
To avoid unrealistic assumptions about demosaicing such as that of linearity,
we can instead use a collection of existing demosaicing algorithms, and accept
the more natural assumptions that stem from these. Indeed, we can perform
demosaicing using each of the four possible mosaics. The correct mosaic is more
likely to yield an image closer to the original one.

In this chapter, we explore the possibilities of so-called double demosaicing
to identifytheCFA pattern. Local selection ofthemost suitable demosaicing al-
gorithm enables one to detect the CFA pattern even when the original demosa-
icing algorithm is unknown. This method naturally avoids the two main issues
of the previous chapters, namely their inability to take into account the inter-
channel transfers of demosaicing and the need to go beyond overly simplistic
linear assumptions. We simulate the two demosaicing steps to analyse in which
conditions double demosaicing can be used to detect the pattern. Furthermore,
introducing JPEG compression betweenthe two demosaicing enablesus tostudy
the limits of CFA pattern detection on compressed images.

5.1 Introduction
To detect the CFA pattern, Kirchner et al. proposed to apply bilinear demosaicing
in the four possible patterns. The result closest to the original image was more likely
to correspond to the correct pattern. With the advent of better and more varied
demosaicing algorithms, this is no longer always the case. However, it is possible to
use a collection of algorithms, instead of just one.

Let M  g
g b S be an image of size (2X, 2Y), mosaiced in the  g

g b pattern1. We
demosaic it with an algorithmA, yielding an image I ≜ DAM  g

g b Sof size (2X, 2Y, 3).
The goal is to estimate the original mosaicing pattern of the image, here  g

g b .
1Note that in general, the original signal S is not fully observed, as only the pixel colours within

the mosaic are sampled by the camera: only its mosaiced version M
 g
g b S is observed.
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Demosaicing interpolates missing colour values from the image, but it does not
modify the already-known values. This means that for all x, y, the following equal-
ities apply:

•
(
DAM  g

g b S
)
2x,2y,R

= M  g
g b S2x,2y,

•
(
DAM  g

g b S
)
2x,2y+1,G

= M  g
g b S2x,2y+1,

•
(
DAM  g

g b S
)
2+1x,2y,G

= M  g
g b S2x+1,2y,

•
(
DAM  g

g b S
)
2x+1,2y+1,B

= M  g
g b S2x+1,2y+1,

where I2x,2y,R represents the red value of an image I at the position 2x, 2y.
What then happens if we artificially recreate a mosaic onDAM  g

g b S, then demo-
saic it again? Formally, the mosaic function is defined as

(
MPS

)
x,y ≜


Ix,y,R (x, y) ≡ (δx, δy) mod (2, 2)
Ix,y,B (x, y) ≡ (1 − δx, 1 − δy) mod (2, 2)
Ix,y,G otherwise

(5.1)

Where the offsets δx, δy are defined by P:

P δx δy
 g
g b 0 0
b g
g  1 1
g 
b g 1 0
g b
 g 0 1

Mosaicing DAM  g
g b S in its original  g

g b position yields the original mosaic:

M
 g
g bDAM

 g
g b S = M

 g
g b S. (5.2)

As a consequence, when performing the remosaicing-demosaicing operation with
the original CFA, the image is unchanged:

DAM
 g
g bDAM

 g
g b S = DAM

 g
g b S = I. (5.3)

On the other hand, if using the wrong CFA pattern, the originally-sampled values
are lost, and the final demosaicing will reconstruct a slightly different image.

Assuming the demosaicing algorithm A is known, it is thus easy to find the ori-
ginal CFA pattern of an image, by remosaicing and demosaicing it again on the four
possible patterns, and looking for the pattern with which the image was unchanged.

Based on this, Kirchner and Böhme [94] proposed to find the CFA pattern of
an image by demosaicing in the four patterns with bilinear interpolation, and look-
ing at the pattern with the lowest residual. Inspired by their method, we propose to
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extend it by using multiple demosaicing algorithms instead of just bilinear interpola-
tion. Indeed, although the assumption of bilinear demosaicing was reasonable when
the article was published, most commonly-used demosaicing methods nowadays are
much more advanced than bilinear demosaicing.

However, two issues arise:

• The original demosaicing algorithm is very rarely known,

• many images are post-processed after demosaicing. Notably, JPEG compres-
sion tends to destroy the high frequencies, in which demosaicing artefacts
lay.

In this chapter, we study the robustness of double demosaicing for CFA pattern
identification under two scenarios:

• when the original demosaicing algorithm is unknown,

• when the image has been compressed after the first demosaicing.

5.2 Methodology
The noise-free test images dataset [33] contains 18 high-quality images that were
downsampled to remove noise. As those images are downsampled, they do not con-
tain traces from a prior demosaicing, making them ideal for our experiments. Let S
denote any of those images

We take several publicly available demosaicing algorithms: bilinear demosa-
icing, contour stencils (CS) [75], Hamilton-Adams (HA) [55], Linear Minimum
Mean-Square-Error Estimation (LMMSE) [58], Alternating Projections (AP) [56],
self-similarity-driven demosaicing (SSDD) [57], CDM-CNN (CDM) [62], gradient-
based threshold-free (GBTF), residual interpolation (RI) [60], minimized-Laplacian
residual interpolation (MLRI) [74], and adaptive residual interpolation (ARI) [61].
See Chapter 0.4 (Introduction) for a more detailed description of those algorithms.

We start by mosaicing S in the  g
g b position and demosaicing it with algorithm

A, in other words we compute DAM  g
g b S. The goal is to study whether we can

detect that DAM  g
g b S was indeed originally mosaiced in the  g

g b pattern. Note
that the four patterns are the same relative to a shift of one row and/or column. We
can thus, without loss of generality, use  g

g b as the initial pattern for the whole study.
To study the detection of the pattern, the core idea is to recreate the mosaic in

all four patterns, and demosaic it with algorithm B. We then check whether the
residual is lowest in the original  g

g b pattern, in other words we check for

arg min
P∈{  g

g b ,
b g
g  ,g 

b g ,g b
 g}

∥
(
DBMP − Id

)
DAM

 g
g b S∥ ?

=  g
g b , (5.4)

where ∥·∥ is the L2 norm. In case of equality for the arg min, a pattern is selected
at random. This might be the case locally, for instance, in flat regions, where all
patterns yield the same output.
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In practice, the demosaicing algorithm initially used during image construction
is rarely known. We thus propose to check the compatibility of different pairs of
algorithms. In other words, we check Equation 5.4 for different pairs of algorithms.
Compatibility is not necessarily commutative; it can be that an algorithm B is good
to analyse A-demosaicked images (ie. Equation 5.4 is usually true) while A would
fail to analyse B-demosaicked images (ie. Equation 5.4 is usually wrong with A and
B swapped).

To truly identify the original mosaic pattern, however, the algorithm used for
analysis needs to be selected automatically. To this end, we propose to simply run
the second demosaicing with all the available algorithms, then locally select the one
with the lowest residual. Equation 5.4 thus becomes

arg min
P∈{  g

g b ,
b g
g  ,g 

b g ,g b
 g}

min
B
∥
(
DBMP − Id

)
DAM

 g
g b S∥2

?
=  g

g b . (5.5)

Even when pattern selection is performed on the whole image, the algorithm selec-
tion is always done locally, ie. at each pattern and for each pixel we take the output
of the algorithm with the smallest residual. Indeed, demosaicing algorithms change
behaviour in various ways depending on the region to demosaic, especially depend-
ing on the gradient and its direction. Algorithm A may thus behave more closely to
B in one region, but to C in another.

In the current formulation, since the original demosaicing algorithm A belongs
to the list used to select algorithm B, the original algorithm and the correct pattern
are most likely to be selected; which is the case where the initial algorithm, although
unknown, is by chance in the list of analysis algorithms. Since near-perfect results
could be expected in this case, it is more interesting to study what happens when the
original algorithm is excluded from the list, Equation 5.5 becomes

arg min
P∈{  g

g b ,
b g
g  ,g 

b g ,g b
 g}

min
B ̸=A

∥
(
DBMP − Id

)
DAM

 g
g b S∥2

?
=  g

g b . (5.6)

The two selection methods are called inclusive and exclusive, depending on whether
they include or exclude the initial algorithm from the list of analysis algorithms.
Note that, while the difference between the two methods is crucial to our study,
they are not per se different methods. In practice, they only reflect the contrast de-
pending on whether the – unknown – algorithm used in the image belongs to the
analysis method’s model.

The major issue of demosaicing detection methods is their low robustness to
JPEG compression. This robustness is easy to check in our study; by simply intro-
ducing a compression step after the first demosaicing. In other words, Equation 5.4
is replaced by

arg min
P∈{  g

g b ,
b g
g  ,g 

b g ,g b
 g}

∥
(
DBMP − Id

)
J QDAM

 g
g b S∥ ?

=  g
g b , (5.7)

where J Q represents JPEG compression with quality factor Q. The same change
can be done for the exclusive and inclusive methods in Equations 5.5 and 5.6. The
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JPEG compression introduces a loss of information. When this step is introduced
after the first demosaicing, Equation 5.3 no longer holds; as a consequence neither
same-algorithm analysis nor the inclusive method is no longer guaranteed to find
the best pattern, neither is even analysis with the same algorithm.

5.3 Experiments
We first perform experiments on 2 × 2 blocks. In Table 5.1, we demosaic the 16
images from the dataset in the  g

g b pattern, remosaic them in the four possible pat-
terns and subsequently demosaic them again. For each pair of algorithms, as well
as with the automatic inclusive and exclusive methods, we show the proportion of
2 × 2 blocks that were detected in the correct position. Expectedly, results are best
when the same algorithm is used for original demosaicing and analysis (grayed-out
results), or with the Auto Inclusive method, since the original algorithm is included
in the list.

Outside of these trivial cases, we can note that some algorithms are more suited
for analysis than others. For instance, LMMSE demosaicing is able to analyse most
images, and yields scores that are significantly above the baseline for all algorithms
except bilinear interpolation.

Bilinear interpolation analysis yields decent scores against most images, how-
ever the analysis of images demosaiced by bilinear interpolation is much harder, and
most algorithms yield scores that are below or barely above the random baseline. The
same can be said for the AP algorithm.

On the other end of the spectrum, the most advanced demosaicing algorithms,
such as ARI and CDM, can be decently analysed by simpler methods, however they
cannot reliably be used for analysis, with ARI in particular yielding below-baseline
scores on most methods. This may be due to the fact that such advanced algorithm
succeed in removing most demosaicing artefacts that other methods would create,
thus blurring the difference between patterns.

Automatic selection (exclusive of the original algorithm) consistently improves
results of single methods. In all seen cases, its score is comparable to – and often
slightly better than – the score of the best single algorithm. It still fails at being
strongly above the baseline when analysing images demosaiced with AP or bilinear
interpolation, and would thus require large images to be able to reliably detect the
pattern.

We now perform the same experiment, this time adding JPEG compression
between the two demosaicings. Tables 5.2, 5.3, 5.4, 5.5 show results at JPEG com-
pression levels of 95, 90, 85, and 80. Figure 5.1 summarizes the results at all com-
pression levels.

Contrarily to the uncompressed case, it is now interesting to look at results
where the same algorithm is used for original demosaicing and analysis. Even if the
demosaicing algorithm is known, detecting the pattern is no longer trivial due to the
compression between the two steps. Unsurprisingly, using the same algorithms con-
sistently yields better results than using other algorithms. However, the score gap
between same-algorithm detection and automatic detections (both inclusive and
exclusive) gets lower as the JPEG compression is stronger. Precisely knowing which
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A

B
BIL HA GBTF CS LMMSE AICC SSDD AP RI MLRI ARI CDM Exclusive Inclusive

BIL 0.98 0.22 0.20 0.25 0.17 0.13 0.32 0.17 0.25 0.18 0.20 0.28 0.31 0.94

HA 0.34 0.96 0.46 0.40 0.47 0.36 0.38 0.35 0.42 0.43 0.28 0.34 0.51 0.91

GBTF 0.33 0.44 0.95 0.44 0.62 0.42 0.40 0.37 0.36 0.41 0.25 0.31 0.56 0.89

CS 0.38 0.34 0.43 0.95 0.43 0.36 0.41 0.31 0.29 0.31 0.20 0.31 0.45 0.88

LMMSE 0.24 0.41 0.57 0.39 0.92 0.42 0.33 0.38 0.28 0.34 0.18 0.22 0.51 0.85

AICC 0.28 0.37 0.44 0.40 0.48 0.92 0.33 0.36 0.30 0.34 0.21 0.22 0.44 0.85

SSDD 0.38 0.33 0.36 0.40 0.32 0.27 0.97 0.23 0.31 0.29 0.22 0.31 0.42 0.92

AP 0.23 0.36 0.36 0.29 0.39 0.30 0.25 0.91 0.20 0.25 0.18 0.14 0.32 0.83

RI 0.39 0.47 0.48 0.43 0.42 0.36 0.39 0.29 0.96 0.64 0.46 0.48 0.65 0.91

MLRI 0.34 0.47 0.52 0.43 0.47 0.39 0.37 0.32 0.63 0.96 0.39 0.41 0.61 0.90

ARI 0.38 0.38 0.39 0.36 0.35 0.30 0.32 0.27 0.51 0.47 0.96 0.42 0.53 0.92

CDM 0.43 0.41 0.44 0.46 0.38 0.32 0.42 0.27 0.47 0.42 0.36 0.96 0.53 0.91

Table 5.1: Images are demosaiced with a first algorithm, then remosaiced in all
four positions and demosaiced again with a second algorithm. For each pair of
algorithm, we show the proportion of 2 × 2 blocks for which the second demo-
saicing had the lowest residual on the initial position, i.e. the proportion of blocks
for which Equation 5.4 is verified, for different pairs of algorithms A and B. The last
two columns, are obtained by taking the pattern with the lowest residual, across all
analysing algorithms used. The inclusive method checks Equation 5.5 for various
algorithms A, it can use residuals obtained with the same algorithm as the one used
in the original image; the exclusive method instead checks Equation 5.6 and cannot
use the same algorithm. As explained in Section 5.2, the pattern decision is trivial
if the original algorithm is known. Entries are grayed out where both the original
demosaicing and the analysing algorithms are the same. Each column represents the
algorithm used for analysis, it shows how good this algorithm is to analyse images
that were originally demosaiced with other algorithms. Each row represents the al-
gorithm used in the original image, it shows how well images originally demosaiced
by this algorithm can be analysed with other algorithms and the automatic method.
In each row, results in bold represent the best analysing method, as well as where
different the best results without knowledge of how the image was first demosa-
iced (i.e. without considering grayed-out entries) and the best results without using
the original demosaicing algorithm in the models (i.e. without considering either
grayed-out entries nor the Inclusive column). As a baseline, a random selection of
the pattern on each block would be right 25% of the time.

demosaicing algorithm was originally used gives an important edge to detection on
high-quality images. Against stronger compression, this is still useful but much less
important.

Surprisingly, on compressed images, analysing bilinear-demosaiced images with
the automatic method yields poor results, even if the bilinear algorithm itself is in
the list of models (automatic inclusive). As can be seen in Figure 5.2, demosaicing
artefacts from the initial bilinear demosaicing are partly removed by JPEG com-
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A

B
BIL HA GBTF CS LMMSE AICC SSDD AP RI MLRI ARI CDM Exclusive Inclusive

BIL 0.44 0.23 0.24 0.25 0.23 0.23 0.24 0.25 0.23 0.23 0.22 0.22 0.24 0.39

HA 0.27 0.36 0.29 0.28 0.29 0.27 0.29 0.28 0.25 0.27 0.24 0.23 0.28 0.31

GBTF 0.28 0.28 0.39 0.31 0.34 0.29 0.29 0.29 0.25 0.28 0.25 0.23 0.30 0.34

CS 0.29 0.28 0.31 0.38 0.32 0.30 0.29 0.29 0.25 0.27 0.24 0.23 0.30 0.33

LMMSE 0.27 0.29 0.34 0.31 0.40 0.30 0.28 0.30 0.24 0.27 0.23 0.22 0.31 0.34

AICC 0.28 0.29 0.32 0.32 0.32 0.38 0.29 0.29 0.25 0.28 0.24 0.23 0.30 0.34

SSDD 0.28 0.29 0.29 0.29 0.29 0.28 0.35 0.28 0.25 0.27 0.25 0.24 0.29 0.31

AP 0.26 0.30 0.30 0.28 0.30 0.26 0.26 0.41 0.21 0.24 0.22 0.20 0.27 0.35

RI 0.29 0.28 0.30 0.29 0.29 0.28 0.28 0.27 0.35 0.32 0.29 0.27 0.31 0.33

MLRI 0.28 0.28 0.31 0.30 0.30 0.29 0.28 0.27 0.31 0.36 0.28 0.27 0.31 0.33

ARI 0.28 0.27 0.29 0.28 0.28 0.27 0.27 0.26 0.30 0.30 0.33 0.27 0.30 0.31

CDM 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.26 0.28 0.28 0.27 0.32 0.29 0.31

Table 5.2: Same results as in Table 5.1, but images are JPEG-compressed at quality
95 between the initial and analysing demosaicing operations. Contrarily to the un-
compressed case, detection is no longer trivial when the demosaicing algorithm is
known, since there is a loss of information between the two steps. Although inclus-
ive results can be expected to be better than exclusive results, they rely on knowing
the original algorithm, which is not always the case.
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(b) JPEG 95
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(c) JPEG 90
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(d) JPEG 85
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(e) JPEG 80

Figure 5.1: Percentage of 2 × 2 blocks whose residual is lowest in the correct pat-
tern depending on the original demosaicing and the algorithm used for analysis. On
compressed data, Auto Exc. (resp.Inclusive) refers to selecting the pattern with the
lowest residual across all analysis demosaicking algorithms, excluding (resp. includ-
ing) the algorithm that was used in the original demosaicing process. On uncom-
pressed images, only Auto Exc. results are presented.

pression. Performing a second bilinear demosaicing adds new artefacts, leading to a
higher residual compared to the compressed image than what is obtained by using
better demosaicing methods, that avoid creating new artefacts. As a consequence,
bilinear demosaicing is not selected by the automatic method, leading to a wrong
pattern identification since other demosaicing methods struggle to analyse bilinear-
demosaiced images.

Both same-algorithm detection and the automatic methods yield scores that are
consistently above the random baseline. However, the probability of finding the
correct pattern gets closer to 1

4 as the JPEG compression increases. As long as the
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A

B
BIL HA GBTF CS LMMSE AICC SSDD AP RI MLRI ARI CDM Exclusive Inclusive

BIL 0.36 0.24 0.25 0.26 0.24 0.24 0.25 0.26 0.24 0.24 0.24 0.23 0.25 0.31

HA 0.27 0.30 0.27 0.27 0.27 0.26 0.28 0.27 0.25 0.26 0.24 0.23 0.26 0.27

GBTF 0.27 0.27 0.33 0.28 0.30 0.28 0.27 0.28 0.25 0.26 0.24 0.23 0.28 0.29

CS 0.28 0.27 0.29 0.32 0.29 0.28 0.28 0.28 0.24 0.26 0.24 0.23 0.28 0.29

LMMSE 0.27 0.27 0.30 0.29 0.34 0.28 0.27 0.29 0.24 0.26 0.23 0.23 0.28 0.29

AICC 0.27 0.27 0.29 0.30 0.30 0.32 0.28 0.28 0.25 0.27 0.24 0.23 0.28 0.30

SSDD 0.27 0.28 0.28 0.28 0.28 0.27 0.30 0.27 0.25 0.26 0.24 0.24 0.27 0.28

AP 0.26 0.28 0.29 0.27 0.29 0.26 0.26 0.35 0.22 0.25 0.23 0.21 0.26 0.30

RI 0.28 0.27 0.28 0.27 0.28 0.27 0.27 0.26 0.30 0.29 0.27 0.26 0.28 0.29

MLRI 0.27 0.27 0.29 0.28 0.28 0.27 0.27 0.27 0.28 0.30 0.26 0.25 0.28 0.29

ARI 0.27 0.26 0.28 0.27 0.27 0.27 0.26 0.26 0.28 0.28 0.29 0.26 0.28 0.28

CDM 0.26 0.26 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.27 0.26 0.28 0.27 0.28

Table 5.3: Same results as in Table 5.1, but images are JPEG-compressed at quality
90 between the initial and analysing demosaicing operations. Contrarily to the un-
compressed case, detection is no longer trivial when the demosaicing algorithm is
known, since there is a loss of information between the two steps. Although inclus-
ive results can be expected to be better than exclusive results, they rely on knowing
the original algorithm, which is not always the case.

probability of making a correct detection is above the baseline, making detections is
still theoretically possible. However, if this probability is barely above the baseline,
reliable detections require bigger images to be statistically significant.

Until now, the best grid was decided in 2 × 2 blocks. We now study whether
double demosaicing can find the correct pattern in the full image. These results are
shown in Figure 5.3.

When the original demosaicing algorithm is known or in the list of models,
all 16 images are detected in the correct pattern on uncompressed and JPEG-95-
compressed images. At a quality factor of 90, the detection is still almost perfect,
with only one error on the GBTF-demosaiced images. Scores remain very good at
a quality of 85, and are lower but still decent at a quality factor of 80. Even though
the 2 × 2 block detections are barely above the random baseline, this is enough
to provide mostly-accurate detections despite the images’ small size of 704 × 469
pixels. As seen in the blockwise study, analysing bilinear-demosaiced images is dif-
ficult without knowing the image was demosaiced with bilinear demosaicing. Sim-
ilarly, using ARI or CDM to analyse images yields inconsistent results on most ori-
ginal algorithms.

To conclude our study, we study whether double demosaicing could be used to
detect forgeries. Indeed, if the demosaicing pattern could be detected locally in an
image, it would be possible to find inconsistencies. However, one would need to
be able to assess how confident the detection in a pattern is. To study this ability,
instead of only looking at whether the detected position is correct, we check how
the difference between the RMSE in the correct and the average RMSE across all
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A

B
BIL HA GBTF CS LMMSE AICC SSDD AP RI MLRI ARI CDM Exclusive Inclusive

BIL 0.36 0.24 0.25 0.26 0.24 0.24 0.25 0.26 0.24 0.24 0.24 0.23 0.25 0.31

HA 0.27 0.30 0.27 0.27 0.27 0.26 0.28 0.27 0.25 0.26 0.24 0.23 0.26 0.27

GBTF 0.27 0.27 0.33 0.28 0.30 0.28 0.27 0.28 0.25 0.26 0.24 0.23 0.28 0.29

CS 0.28 0.27 0.29 0.32 0.29 0.28 0.28 0.28 0.24 0.26 0.24 0.23 0.28 0.29

LMMSE 0.27 0.27 0.30 0.29 0.34 0.28 0.27 0.29 0.24 0.26 0.23 0.23 0.28 0.29

AICC 0.27 0.27 0.29 0.30 0.30 0.32 0.28 0.28 0.25 0.27 0.24 0.23 0.28 0.30

SSDD 0.27 0.28 0.28 0.28 0.28 0.27 0.30 0.27 0.25 0.26 0.24 0.24 0.27 0.28

AP 0.26 0.28 0.29 0.27 0.29 0.26 0.26 0.35 0.22 0.25 0.23 0.21 0.26 0.30

RI 0.28 0.27 0.28 0.27 0.28 0.27 0.27 0.26 0.30 0.29 0.27 0.26 0.28 0.29

MLRI 0.27 0.27 0.29 0.28 0.28 0.27 0.27 0.27 0.28 0.30 0.26 0.25 0.28 0.29

ARI 0.27 0.26 0.28 0.27 0.27 0.27 0.26 0.26 0.28 0.28 0.29 0.26 0.28 0.28

CDM 0.26 0.26 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.27 0.26 0.28 0.27 0.28

Table 5.4: Same results as in Table 5.1, but images are JPEG-compressed at quality
85 between the initial and analysing demosaicing operations. Contrarily to the un-
compressed case, detection is no longer trivial when the demosaicing algorithm is
known, since there is a loss of information between the two steps. Although inclus-
ive results can be expected to be better than exclusive results, they rely on knowing
the original algorithm, which is not always the case.

patterns. We compare these results to the difference of RMSE in images that were
not demosaiced. In this case, since there is no original demosaicing, there is no cor-
rect position either: we instead compute the difference between the average RMSE
across all patterns, and the smallest of the four RMSE. Results are presented with the
automatic inclusive and exclusive local selection of demosaicing algorithms. When
working on images without demosaicing, there is no algorithms to exclude, and the
automatic inclusive and exclusive methods are equivalent, thus we only show one
number.

We first perform this analysis using the full images. Results are presented in
Table 5.6. One can see that the difference between the four patterns’ residuals is
much larger on images that actually went through an initial demosaicing. Although
the difference lowers on highly-compressed images, even at a quality factor of 80 it
is still much higher than on images without a mosaic. As was seen before, bilinear-
demosaiced images are not analysed correctly when the bilinear algorithm is not
used for analysis. The pattern with the lowest residual is not the correct one, hence
a negative difference with the exclusive automatic method. However, there is still a
strong contrast in magnitude between the patterns. This means that even when the
correct pattern cannot be detected, we can be confident that the image had been
demosaiced prior to analysis. However, the downside to this is that we cannot be
entirely confident that the detected demosaicing pattern is indeed correct.

In Table 5.7, we perform the same experiment at a local scale. Instead of com-
puting the RMSE difference over each image, we compute it in each 32 × 32 block
of the images and average the results. When the image has been demosaiced, the
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A

B
BIL HA GBTF CS LMMSE AICC SSDD AP RI MLRI ARI CDM Exclusive Inclusive

BIL 0.27 0.25 0.26 0.25 0.26 0.25 0.25 0.26 0.25 0.25 0.25 0.24 0.25 0.25

HA 0.26 0.26 0.26 0.26 0.26 0.25 0.26 0.27 0.25 0.25 0.24 0.24 0.26 0.26

GBTF 0.26 0.26 0.28 0.27 0.27 0.26 0.26 0.27 0.24 0.25 0.24 0.23 0.26 0.26

CS 0.26 0.26 0.27 0.28 0.27 0.26 0.26 0.27 0.24 0.25 0.24 0.23 0.26 0.26

LMMSE 0.26 0.26 0.27 0.27 0.28 0.26 0.26 0.27 0.24 0.25 0.24 0.23 0.26 0.27

AICC 0.26 0.26 0.27 0.27 0.27 0.27 0.26 0.27 0.25 0.25 0.24 0.23 0.26 0.27

SSDD 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.25 0.25 0.24 0.24 0.26 0.26

AP 0.26 0.26 0.27 0.26 0.27 0.25 0.26 0.29 0.23 0.24 0.23 0.22 0.25 0.26

RI 0.26 0.26 0.27 0.26 0.27 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.26 0.26

MLRI 0.26 0.26 0.27 0.26 0.27 0.26 0.26 0.26 0.26 0.26 0.25 0.24 0.26 0.26

ARI 0.26 0.25 0.26 0.26 0.26 0.26 0.25 0.26 0.26 0.26 0.26 0.25 0.26 0.26

CDM 0.25 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.26 0.26

Table 5.5: Same results as in Table 5.1, but images are JPEG-compressed at quality
80 between the initial and analysing demosaicing operations. Contrarily to the un-
compressed case, detection is no longer trivial when the demosaicing algorithm is
known, since there is a loss of information between the two steps. Although inclus-
ive results can be expected to be better than exclusive results, they rely on knowing
the original algorithm, which is not always the case.

difference between the average of the pattern’s RMSE and the correct pattern’s is
much lower than when computing the difference across the full image. On the
other hand, when the original image features no mosaic, the difference is about
ten times as high as on full images. This can be easily explained. When there are
traces of demosaicing, a bias leads to the correct pattern’s residual having a smaller
amplitude. If smaller blocks are used, there are fewer samples for that bias to ap-
pear significantly, as a consequence the difference is smaller. On the other hand, in
the absence of demosaicing traces, there is no bias that can alter one of the resid-
uals, and the expectation for each pattern’s RMSE is the same. In the absence of
bias, smaller blocks are more affected by the natural variance of the residuals than
the full image, leading to a higher difference than on full images. Despite this, the
residual on demosaiced images still features significantly more contrast than non-
demosaiced images on uncompressed images, and is still slightly above the contrast
of non-demosaiced images after a compression at a quality factor of 90. However,
against a stronger compression (Q = 80), the contrast between residuals cannot be
used to distinguished images with and without mosaic.

Although double demosaicing can efficiently analyse demosaicing traces at the
image level, as of now it is thus unable to make confident detections locally.

Several visual results are presented in Figure 5.4.
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(a) Initial bilinear demosaicing in the
 g
g b position.

(b) Bilinear demosaicing of the com-
pressed image, in the  g

g b position.
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(c) Residual of the bilinear demosaicing

(d) After JPEG compression, Q = 85. (e) CDM demosaicing of the compressed
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(f ) Residual of the CDM demosaicing

Figure 5.2: An image demosaiced with bilinear demosaicing in the  g
g b position

was JPEG-compressed, and redemosaiced with several algorithms in different posi-
tions. JPEG compression remove most of the high-frequency demosaicing artefacts,
however these are added again when performing a second demosaicing. As a con-
sequence, performing a second bilinear demosaicing actually creates new artefacts
and yields a higher residual than using another method, even in an incorrect pattern.
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(a) Uncompressed
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(b) JPEG 95
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(c) JPEG 90
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(d) JPEG 85
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(e) JPEG 80

Figure 5.3: Number of images that are detected in the correct pattern, for each pair
of algorithms as well as with the automatic methods.

5.4 Discussion
In this chapter, we have studied the possibility of using double demosaicing to de-
tect the pattern of an image. When an image has been through demosaicing in an
unknown pattern, a second demosaicing can be applied in all four patterns. No in-
formation is lost when the initial pattern is used for the second demosaiced. As a
consequence, the residual is lower or even zero in the correct pattern than in the
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(a) Input image, HA-demosaiced in the  g
g b pattern.
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(b) Residuals when the input image is demosaiced again with the same algorithm (HA) in
the four positions, from left to right  g

g b (correct pattern), b g
g  , g 

b g , g b
 g . The residual is

zero when the correct pattern is used, making the pattern identification easy.
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(c) Here, the input image is analysed with a different algorithm (LMMSE). The residual in
the correct pattern (left) is no longer zero, but is still weaker than on the incorrect patterns.
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(d) The input image is JPEG-compressed (Q = 90 before the second demosaicing, with
the same (HA) algorithm. Again, although the correct pattern’s residual is not zero, it is
still weaker than in other positions.
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(e) The input image is JPEG-compressed (Q = 90 before the second demosaicing, with a
different (LMMSE) algorithm. The residual is still weaker with the correct pattern.
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(f ) Here, the (uncompressed) input image is analysed with yet another algorithm (ARI).

Figure 5.4: An image was demosaiced with HA and analysed with several al-
gorithms, both compressed and uncompressed. When the image is not compressed
between the two demosaicing operations, and if the algorithm used is the same, the
residual will be zero in the correct mosaic pattern. When the image is compressed,
the residual is no longer zero in the correct pattern, but is still weaker than in the
other patterns as long as the compression is moderate. If a different algorithm is
used for analysis, results vary: Analysing the image with LMMSE yields a lower re-
sidual in the correct pattern, but this is no longer the case when using ARI, which is
not suited to analyse HA-demosaiced images. Residuals are blurred (σ = 1.7) for
better visualization.

143



Chapter 5. Demosaicing to Detect Demosaicing

A

B
Exclusive Inclusive

BIL 1.76 -0.55

HA 0.94 0.42

GBTF 0.91 0.33

CS 0.83 0.43

LMMSE 0.82 0.48

AICC 0.82 0.46

SSDD 0.91 0.46

AP 0.80 0.23

RI 0.89 0.59

MLRI 0.82 0.57

ARI 0.83 0.46

CDM 0.70 0.41

No demosaicing 0.01

(a) Uncompressed

A

B
Exclusive Inclusive

BIL 0.62 -0.27

HA 0.28 0.23

GBTF 0.33 0.26

CS 0.33 0.28

LMMSE 0.34 0.31

AICC 0.37 0.33

SSDD 0.28 0.27

AP 0.35 0.20

RI 0.33 0.30

MLRI 0.32 0.31

ARI 0.27 0.25

CDM 0.22 0.21

No demosaicing 0.01

(b) JPEG Q = 90

A

B
Exclusive Inclusive

BIL 0.07 0.01

HA 0.11 0.10

GBTF 0.15 0.15

CS 0.12 0.10

LMMSE 0.16 0.14

AICC 0.17 0.16

SSDD 0.12 0.12

AP 0.16 0.08

RI 0.13 0.13

MLRI 0.13 0.13

ARI 0.11 0.11

CDM 0.08 0.08

No demosaicing 0.01

(c) JPEG Q = 80

Table 5.6: Difference between the L2 norm of the residual (RMSE) averaged over
the four possible patterns and taken only on the correct position (  g

g b ). Results are
shown with automatic local selection of algorithms, both allowing (Inclusive) and
refusing (Exclusive) the use of the same algorithm for original demosaicing and ana-
lysis. On the last row, the original image presents no mosaic, and thus no correct
pattern, the difference is thus computed between the average of the four residuals
and the lowest residual, and only one number is presented since the two automatic
methods are the same. The difference is shown for images in the [0, 255] range. We
can see that in the absence of original demosaicing, the residuals on the four pat-
terns are very similar in magnitude, whereas the contrast is much stronger when the
image was first demosaiced. JPEG compression reduces the contrast on demosaiced
images, but even at a quality factor of 80 the residual difference is still about 10 times
higher than without original demosaicing. Even when the correct position does not
feature the lowest residual (such as when analysing bilinear-demosaiced images with
the exclusive method), the contrast is high, enabling one to say with almost absolute
certainty whether the image has been demosaiced.

other positions.
When the initial algorithm is not known, the pattern can be selected with a

simple strategy. A list of algorithms can be used, and the algorithm that yields the
lowest residual is chosen locally. Expectedly, this strategy yields excellent results
when the initial demosaicing algorithm is in the list of tested algorithms. Even when
this is not the case, however, this method usually improves on a comparison using a
single algorithm.

Often, images are found in a compressed state. In this work, we studied the ro-
bustness of our method when JPEG compression is applied after the initial demo-
saicing. Although the detection is made harder by compression, the correct pattern
can still be found at the image level even when the original demosaicing algorithm
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A

B
Exclusive Inclusive

BIL 1.43 -0.36

HA 0.76 0.35

GBTF 0.74 0.37

CS 0.68 0.35

LMMSE 0.66 0.39

AICC 0.66 0.36

SSDD 0.77 0.38

AP 0.64 0.18

RI 0.75 0.50

MLRI 0.69 0.46

ARI 0.69 0.38

CDM 0.60 0.35

No demosaicing 0.10

(a) Uncompressed

A

B
Exclusive Inclusive

BIL 0.43 -0.17

HA 0.19 0.15

GBTF 0.23 0.20

CS 0.23 0.19

LMMSE 0.24 0.21

AICC 0.26 0.23

SSDD 0.20 0.18

AP 0.24 0.14

RI 0.23 0.21

MLRI 0.22 0.21

ARI 0.18 0.17

CDM 0.15 0.15

No demosaicing 0.10

(b) JPEG Q = 90

A

B
Exclusive Inclusive

BIL 0.04 0.01

HA 0.07 0.07

GBTF 0.10 0.09

CS 0.08 0.06

LMMSE 0.10 0.09

AICC 0.11 0.11

SSDD 0.08 0.08

AP 0.10 0.05

RI 0.08 0.08

MLRI 0.08 0.08

ARI 0.07 0.07

CDM 0.05 0.05

No demosaicing 0.07

(c) JPEG Q = 80

Table 5.7: We perform the same experiment than in Table 5.6, but this time the
difference of RMSE is computed over 32×32 blocks. The contrast between demo-
saiced and mosaiced images is much weaker than when analysing the full image,
thus making it harder to detect whether a block has been demosaiced, and in which
position.

is not known.
The main drawback of this method comes from the difficulty of making reliable

detections at a local scale. While it is possible, with a very high confidence, to detect
whether and in which pattern a whole image has been demosaiced, this decision be-
comes much harder to make locally. In small 32 × 32 blocks, the contrast of the
residual across patterns is still biased towards detecting a lower residual in the cor-
rect position; however this contrast is not significantly higher than the contrast on
images without a mosaic, in which no detection should be made. This is especially
the case on highly-compressed images.

Overall, this method can be used to analyse the image at a global scale, helped by
its surprisingly good robustness to JPEG compression. It is not yet possible, how-
ever, to use it locally. Local analysis would be needed to detect mosaic inconsisten-
cies and thus potential forgeries.

This fourth chapter in the quest for reliable evidence of demosaicing traces again
fails to yield a universal answer. Even the most natural assumption of closeness
between different demosaicing algorithms is not always valid locally, especially un-
der strong compression. In the next chapter, we will start from the even more natural
hypothesis that demosaicing traces have a strong 2-periodic components. Positional
learning will be introduced to train a convolutional neural network to mimic the
phase of these traces, so as to expose its shifts and other inconsistencies.
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Chapter 6

Positional Learning forDemosaicing
Analysis:
Leveraging the Translation-Invariance of Convolutional Neural Networks

Abstract

In the previous four chapters, we explored various ways of identifying the
mosaic. Direct detection, while able to identifythe grid inmany cases, is flawed
against several demosaicing algorithms, and is hampered by the difficulty of
designing featuresthatreflectdemosaicing algorithms’ features. Reverse-engineering
of the demosaicing algorithm of a specific image is not flawless either; even the
all in all very natural assumption that the demosaicing algorithm will locally
behave closely to at least one known algorithm is not always true, and fails to
do miracles on highly-compressed images.

Faced with the difficulty of our problem, we decide to go back to the most
bare and natural assumption about demosaicing traces: they feature a strong
2-periodic component. Without any other assumption, we propose to detect the
phase of that component. In order to do this, we introduce positional learn-
ing. Leveraging the translation-inheritance and the high representative power
of convolutional neural networks (CNN), we train one to detect the modulo-
(2, 2) position of each pixel. Implicitly,theCNNwill rely on demosaicing traces
to provide its output; said output will thus mimic the phase of the 2-periodic
component.

When a forgery disrupts the image’s mosaic, the network’s output reflects
thisdisruption, enablingthe detection ofthe forgeryas errors inthe output. This
method is fully self-supervised, requiring only authentic images for training.
Furthermore, given several similar images whose authenticity is not clear, it
is possible to fine-tune the model on the images to increase robustness to JPEG
compression.

This chapter is a stepping stone towards the final method which will be in-
troduced in Chapter 7 (Internal Learning to Improve Adaptability); as such
many of its core concepts are explained here.

An interactive demo for this chapter is available at
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000098.
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Chapter 6. Positional Learning for Demosaicing Analysis

6.1 Introduction
There are two concurrent paradigms for forgery detection techniques. The first way
consists in developing many different methods, that address separately the varied
forgeries and inconsistencies created by these forgeries. Error Level Analysis (ELA)
[95] fits in this category and creates a heatmap by recompressing the image and visu-
alising the difference. As we just mentioned, many methods look for inconsistencies
in JPEG encoding; many other try to detect noise discrepancies [17], [26], [96]–
[110] or attempt to directly detect internal copy-move operations [37], [73], [111]–
[114]. The variety of setups before and after forgery makes exhaustiveness diffi-
cult, yet results obtained by such specific methods are self-explanatory. However,
with few exceptions such as the recent development of Siamese Networks, which
we briefly describe in Chapter 0.4 (Introduction), most of these methods are cre-
ated manually, which can limit their performances, especially when forged images
are created with a combination of methods rather than just one move.

Another possibility is to consider forgery detection as a unique learning prob-
lem and develop a structure – usually a neural network – to classify and/or localize
forgeries independently of the setup and forgery type. For instance in [30] a heat
map is computed, in [115] the network segments the image into forged and non-
forged parts. See also [116] and [117]. While exhaustiveness is theoretically pos-
sible with these methods, it is actually limited by the database itself: they learn how
to detect forgeries as seen in a training database, and can thus fail when confronted
with images whose forgeries were made differently.

In this chapter, we try to bring the representative abilities of neural networks
to the problem of demosaicing analysis. As seen in the previous chapters, most ex-
isting methods make assumptions of linearity of the interpolation and/or even as-
sume the colour channels to be independently demosaiced. These assumptions are
invalid with most commonly-used demosaicing methods. Still, taking into account
these non-linearities and the interchannel transfers is difficult with manual meth-
ods, mainly due to the variety of ways with which those occur.

Indeed, many different demosaicing algorithms exist, furthermore most of those
used in commercial cameras are undisclosed. Learning-based methods, while ad-
vantaged in this case against manual methods, must nevertheless take into account
the impossibility to learn on all existing algorithms.

In this chapter, we overcome the above limitations by using an self-supervised
convolutional neural network that learns to detect changes in the underlying pattern
of mosaic artefacts. This network can be trained on unlabelled authentic images to
detect forgeries in new images. It can also be fine-tuned directly on a database of
potentially forged images to adapt to JPEG compression.

Our contributions here are two-fold. We create a new convolutional neural
network (CNN) structure tailored to the specific task of mosaic artefacts detec-
tion, and that beats state-of-the-art mosaic detection methods. It can be trained in
a fully unsupervised manner, and can even be directly retrained on a set of images
to adapt to their specific conditions. To do that, we propose a new use for pixelwise
convolutions in neural networks. Their main use in the literature has been to re-
duce the dimensionality of a network before performing heavier spatial operations,
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such as in [118]. We argue that they can also be used stacked to each other, to pro-
cess the causality relations between previously-computed spatial features as, for the
same price as spatial convolutions, they can have more and bigger layers; further-
more, they do not add any more spatial dependency to the results.

6.2 Proposed method
A standard approach to finding copy-move forgeries through demosaicing artefacts
would be to first detect the image’s initial mosaic, and then detect if parts of the
image actually have a different mosaic. Our manual attempts to detect the original
mosaic were not successful. Indeed, criteria to do this heavily depend on the demo-
saicing method. Instead, we designed a convolutional neural network (CNN) to
train on blocks of the image and directly predict their position in the image mod-
ulo (2, 2). The only cue to this relative position are the periodic artefacts, such as
CFA, resampling and JPEG artefacts. Hence, a change of the mosaic can lead to
forged blocks being detected at incorrect positions modulo (2,2) and thus flagged
as forged. Because the target output is only the relative position of blocks on the im-
age, all that is required to train the network is a set of demosaiced images, without
additional labels.

In a standard unsupervised scenario, the CNN can be trained with many au-
thentic images and then used on new images to detect forgeries on them. However,
if we have to detect forgeries on a large database, and if we can assume that the im-
ages in the database are similar in terms of demosaicing and post-processing – and
in particular JPEG compression –, then we can retrain the CNN, performing unsu-
pervised transfer learning directly on the test data. As the forged regions generally
occupy a small part of the images, and only a small proportion of the images under
study are forged, the risk that the CNN will overfit on the forged regions will be
small.

The network consists of several parts, all of which serving different purposes. It
only uses 31,504 trainable parameters. In the initial training phase, overfitting can
occur both on the image contents and on the specific algorithms used for demosa-
icing. Although the former can easily be avoided by using more images for training,
avoiding overfitting on the algorithms is harder. The small size of the network thus
helps to avoid overfitting during training. It is even more useful when retraining
on the same images to be studied, as overfitting on those images is much harder to
avoid, and can make the network miss forgeries.

Spatial network
The first layers extract spatial features from the images. Due to the nature of demo-
saicing, we make use of two specific types of convolutions.

Most demosaicing algorithms try to avoid interpolating against a strong gradi-
ent [58], which would lead to visual artefacts. As a consequence, they often in-
terpolate in one direction along edges. To mimic this, the first layers perform 10
horizontal, 10 vertical and 5 full convolutions, which are concatenated at the end
of each layer.
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Figure 6.1: If we use a 3 × 3 convolution with a dilation of 2, the convolution at
the central pixel sampled in blue only involves pixels sampled in the same colour.
More generally, a 2-dilated convolution will look at pixels that all belong to the same
colour channel.

In a mosaiced image, only one in four pixels is red and one in four is blue. As
visualised in Fig. 6.1, this means that at the location of a sampled pixel, the closest
sampled neighbours are all located at 2 pixels distance horizontally and/or vertically
of the current position. We can take advantage of this by using dilated convolutions,
which will only involve pixels belonging to the same mosaic.

We first use a sequence of two layers of 10 horizontal 1 × 3, 10 vertical 1 × 3
and 5 full 3 × 3 convolutions. In parallel, we perform 10 horizontal, 10 vertical
and 5 full convolutions, which are all 2-dilated. The outputs of both parts are con-
catenated with a skip-connection from the input image. To this output is applied a
similar sequence of two layers of 10 horizontal, 10 vertical and 5 full convolutions,
in parallel with 10 horizontal, 10 vertical and 5 full convolutions with a dilation of
2. The spatial output is the concatenation of the output of the second and fourth
non-dilated convolutions, and of the two dilated convolutions.

All layers in this part of the network are separated by a leaky rectified linear
unit [119]. A diagram of this structure can be found in Fig. 6.2.

Pixelwise Causal network
Summarising, the network uses values that are up to four pixels away both horizont-
ally and vertically from each pixel (the receptive field is thus 9×9). We consider this
spatial span sufficient. Indeed, most demosaicing algorithms do not look farther to
demosaic a given pixel. However, some algorithms still feature complex transfers
between the different colour channels, especially in the high frequencies. As a con-
sequence, the second part of our network consists of pixelwise (1×1) convolutions,
which enable us to capture complex causal relations without adding more spatial
dependencies to the convolutions. Although pixelwise convolutions are often used
in the literature, their primary use is often to reduce data dimensionality. The In-
ception network [118], uses pixelwise convolutions before large convolutions to re-
duce dimensionality. Other networks use depthwise separable convolutions, where
standard convolutions are replaced with one depthwise convolution followed by a
pixelwise convolution [120], [121].

In our network, however, we do not stack them to reduce dimensionality, but to
perform complex operations after the spatial features have been computed. Linking
pointwise convolutions with each other enables us to represent complex relations
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Figure 6.2: Spatial part of the network, containing 17,160 trainable parameters
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Figure 6.3: Pixelwise 1 × 1 convolutional part of the network, containing 6105
parameters

at a low computational cost, with few parameters and without incrementing spatial
dependency.

This part of the network consists of four layers of respectively 30, 15, 15 and 30
1 × 1 convolutions. The output of the first convolution is skip-connected to the
third and fourth convolutions, and the output of the second convolution is skip-
connected to the fourth convolution. As a consequence, the last convolution takes
the results of all previous pointwise layers into consideration to prepare features for
the next step.

All the layers in this part of the network are separated by Softplus activation [122].
A diagram of the structure can be seen in Fig. 6.3.
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Figure 6.4: Processing the image into blocks

Blocks preparation
Although relative positions could be detected at the pixel level, grouping the pixels
into blocks can lead to more reliable predictions. However, the blocks must be cre-
ated carefully in order to avoid any bias.

Given an input image I of shape (2Y, 2X,C), where C is the number of channels
(C = 30 after our pixelwise network) and 2Y and 2X represent the spatial dimen-
sions, we start by splitting the four modulo (2, 2) positions of this image. We thus
create four images I00, I01, I10 and I11, each of shape (Y,X,C) and defined by

Iδxδy [y, x, c] = I[2y + δy, 2x + δx, c]. (6.1)

We then concatenate these four images in different ways into four new images J00, J01, J10
and J11, each of shape (Y,X, 4C) and defined as follows:

Jδxδy [y, x, 4c] = Iδxδy [y, x, c]
Jδxδy [y, x, 4c + 1] = I(1−δx)δy [y, x, c]
Jδxδy [y, x, 4c + 2] = Iδx(1−δy)[y, x, c]
Jδxδy [y, x, 4c + 3] = I(1−δx)(1−δy)[y, x, c]

. (6.2)

These four images are merely channel-wise permutations of one another, which en-
ables the network to keep balance between the four patterns.

Finally, each of these images is decomposed in blocks. Because all spatial and
pixelwise features have already been computed in the previous parts, we can directly
view the decomposition in blocks as one big average pooling, so that each block is
spatially represented by one pixel. We thus get four output images B00,B01,B10 and
B11, each of shape ( Y

16 ,
X
16 , 4C). Each image is thus spatially 32 × 32 times smaller

than the original image.
Thanks to this permutation, the detection problem is slightly shifted: Pixels in

Jδxδy are shifted so that all blocks of Bδxδy should be detected at the same relative
position modulo (2, 2), δxδy. This process is explained in Fig. 6.4.

Blockwise Causal network
Because blocks are represented through average pooling, each block is spatially rep-
resented by one pixel. As a consequence, creating new pointwise convolutions amounts
to processing the data independently – but with shared weights – in each block.
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Figure 6.5: Blockwise part of the network, containing 8,239 trainable parameters

Furthermore, the four values Bδxδy [y, x, 4c + i] for i ∈ (0, 1, 2, 3) represent the
same feature, averaged independently in each of the four possible mosaics δxδy. To
compare these features separately before merging them, we start by stacking three
layers of respectively 180, 90 and 90 grouped pixelwise convolution, where the out-
put in one channel at one given block–position is made using only the values of
the same feature, in the four mosaics and at the same position. Finally, we merge
these features together with two additional layers, each of 45 full-depth pointwise
convolutions. Like in the pixelwise network, the layers are separated by Softplus
activation [122]. The structure of the blockwise causal network is shown in Fig. 6.5.

Decision and loss module
A final layer of four pointwise convolutions is placed to predict scores for each pos-
ition. In an authentic image, all blocks from each image Bδxδy would be expected to
detect their own position as δxδy. If training on several images whose main mosaic
may be different, we let the network permute the output of the four images either
horizontally, vertically, or diagonally, in order to have the lowest of the four global
losses before computing the local loss. This enables the loss to take into account the
possibility of different images having different main positions.

Auxiliary prediction for training
Because the spatial and pixelwise networks are used at full resolution – whereas the
resolution of images is reduced by a factor 32 × 32 in the blockwise network –, the
first part of the network takes a higher computational toll than the rest. In order to
speed up training, we work in a manner similar to [118] and start by training the
spatial and pixelwise networks together. We add an additional layer of 4 pointwise
convolutions at the end of the pixelwise network, and train it with the cross-entropy
loss to detect the position of each pixel modulo (2, 2).

Once the first part of the network is trained, we remove this auxiliary layer and
process the output of the training images into blocks, as explained in 6.2. We then
train the blockwise network, using the preprocessed output of the pixelwise net-
work.

By training the first part of the network separately, and more importantly us-
ing a loss computed at full resolution, we can train it in fewer and faster iterations.
Processing the images into blocks, which also requires a significant time, must only
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Figure 6.6: Network’s results. Detections on the CFA Forgeries dataset, presented
in Chapter 1 (Non-Semantic Evaluation of Image Forensics Tools). For each image,
in order: Forged image, pixelwise predictions for each of the 4 grids (auxiliary net-
work output), blockwise predictions for each of the 4 grids (full network output),
detected forged blocks, ground truth. The mosaic of the image and the forgery is
aligned for the two images in the last row, which explain why no detection can be
made with our method.

be applied once between the two global training steps. Finally, the blockwise part
of the network can be trained very quickly, because there is no need to propagate
into and from the full-resolution network at each iteration, making each individual
iteration quicker.

Training is done first on the spatial (Fig. 6.2) and pixelwise (Fig. 6.3) networks,
using the aforementioned auxiliary layer. Then, the blockwise network (Fig. 6.5)
is trained alone, using the results of the pixelwise network, processed into blocks
as seen in Fig. 6.4. All training is done with the Cross-Entropy loss and the Adam
optimiser [123], with a learning rate of 10−3.

6.3 Experiments
For training, we took the images from the noise-free image dataset [33], which do
not present any traces of demosaicing due to previous downsampling. We demo-
saiced them ourselves, each with three simple algorithms: bilinear interpolation,
LMMSE [58] and Hamilton-Adams [55]. The size of all images is 704 × 469. We
trained the first part of the network for 1500 iterations and the second part for 500
iterations with the Adam optimizer [123] at learning rate 10−3.

Examples of detections on the CFA forgeries dataset presented in Chapter 1
(Non-Semantic Evaluation of Image Forensics Tools) can be seen in Fig. 6.6.

We also adapted the pretrained network to the database by retraining it directly
on it for the 1000 iterations on the first part of the network and 500 on the second
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part. This training was done without knowledge of which image is forged or au-
thentic.

We compare our results with intermediate value mosaic detection1 [14], vari-
ance of colour difference [15], as well as with ManTraNet [30], a state-of-the-art
forgery detection method that directly trains a neural network to detect various
forgeries on standard datasets. Results are measured with the ROC curve on the
number of detected forged blocks.

By nature of demosaicing, a region forged by copy-move has a 1
4 probability of

having its mosaic aligned with the main one, and in such case it cannot be detec-
ted by its CFA position. In our databases, aligned forgeries account for 26.7% of
the total number of blocks. The results of our algorithms on the whole dataset is
shown on Fig. 6.7b. Such results are closer to what could be detected in practical
applications. However, because forgeries with aligned mosaic are not detectable
by mosaic detection algorithms, we present other results with a modified ground
truth, in which we consider a block as forged only if its mosaic is different than the
position of the original image. These scores are thus given relative to what could
theoretically be detected with perfect knowledge of the mosaics. Results under this
definition of the ground truth can be seen in Fig. 6.7a.l The database features three
algorithms that were also used for pretraining the network: bilinear interpolation,
LMMSE [58] and Hamilton-Adams demosaicing [55]. In order to ensure fairness
in the comparison, we remove all images demosaiced with, or containing a forged
region demosaiced with, one of these three algorithms. The results are presented
in Fig. 6.7c. We can see that the results are similar to those on the whole database,
which shows that the network generalised well to new algorithms.

Finally, we test the robustness of our models to JPEG compression by compress-
ing all the images at a quality of 95. The results are presented in Fig. 6.7d. [15] does
no better than random guessing, with an AUC score of 0.52 in the global evaluation
and 0.49 in the local evaluation, and both [14] and our pretrained network do little
better. On the other hand, the adaptive network, by adapting directly to the data-
base and thus learning to detect the CFA position over JPEG artefacts, was able to
perform much better.

We also test our pretrained model on the Trace dataset, presented in Chapter 1
(Non-Semantic Evaluation of Image Forensics Tools), and on the Korus dataset [42],
[43]. Quantitative results with the Matthews Correlation Coefficient can be seen
in Tables 6.1a and 6.1b, and are compared with our implementation of Choi [14]
presented in Chapter 3 (Intermediate Values Counting for CFA Pattern identifica-
tion), demosaicing analysis methods Shin [15], Ferrara [9], Dirik [11] and Park [16],
and state-of-the-art generic forgery detection method Noiseprint [27].

The proposed method yields excellent results on the Trace datasets, where the
only cue to the forgery is the demosaicing itself. Results are much worse on the
Korus dataset. Although the proposed method beats the state of the art on the
Sony α57, detections are harder to make on the Nikon cameras, whose demosaicing
traces are more subtle. One of the main reasons for this low score is that we try to

1This particular method was studied and extended in Chapter 3 (Intermediate Values Counting
for CFA Pattern identification). However, the experiment in this chapter uses an earlier, more basic
implementation.
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(a) Only misaligned forgeries are considered.
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Figure 6.7: ROC curves comparing the detections of our methods to Man-
TraNet [30], Intermediate Values (IV) detection [14] and Variance of Colour Dif-
ferance (VCD) detection [15].

find one single grid on each window. On the many forgeries of the Korus dataset
that contain multiple small CFA patterns, this will lead to a very low confidence
of detection. Furthermore, the method provides one output per 32 × 32 block,
lowering the spatial precision of the detection.

In any case, the results on the Trace datasets validate the method and the ability
of positional learning to help analyse demosaicing artefacts.

6.4 Discussion
We have shown that a small convolutional neural network could be used to accur-
ately detect and interpret CFA artefacts, and subsequently use them to detect for-
geries in images. Even without new training, this network can adapt well to images
demosaiced with unseen and more complex algorithms than those studied during
training. Our neural network is small and can process images almost as quickly as
methods presented in the literature, while offering detections of superior quality.

We showed that state-of-the-art generic methods such as ManTraNet and Noiseprint
are blind to shifts in the demosaicing pattern, even though Noiseprint is to some ex-
tent able to detect changes of demosaicing algorithm. This indicates that methods
such as ours, which focus specifically on demosaicing artefacts, still have an import-
ant role to play, and are fully complementary to more generic methods.

Our network was trained on few images, which were not taken from the evalu-
ation dataset, and with only three algorithms. This enabled us to show, in Fig. 6.7c,
that we could get strong results even on images demosaiced with algorithms on
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Method Grid Exo Grid Endo Alg Exo Alg Endo

Proposed 0.682 0.665 0.501 0.491
Shin[15] 0.104 0.099 0.085 0.084
Choi[14] 0.603 0.575 0.420 0.385
Ferrara[9] 0.071 0.095 0.218 0.238
Dirik[11] -0.002 0.010 0.001 0.013
Park[16] 0.116 0.133 0.152 0.150
Noiseprint[27] -0.001 0.002 0.066 0.060

(a) Results on the CFA Grid (Grid) and CFA Algorithm (Alg) datasets of the Trace data-
base, with endomasks (Endo) and exomasks (Exo).

Method Canon 60D Nikon D7000 Nikon D90 Sony α57 All

Proposed 0.002 0.049 0.044 0.574 0.167
Noiseprint 0.153 0.322 0.236 0.148 0.202

Choi 0.004 0.176 0.251 0.251 0.238
Shin 0.021 0.003 0.012 0.511 0.143

Ferrara -0.016 0.498 0.461 0.339 0.321
Dirik 0.036 0.241 0.275 0.062 0.153
Park 0.018 0.540 0.491 0.302 0.338

(b) Results on the Korus dataset

Table 6.1: Comparative results on the Trace CFA datasets (see Chapter 1 (Non-
Semantic Evaluation of Image Forensics Tools)) and on the Korus dataset [42], [43].

which the network was not trained. In order to test and show its capacity to gen-
eralize to new images and algorithms, we only trained it with 18 images from a dif-
ferent dataset than the evaluation images, and three algorithms. A full instance of
this network, trained with all known and available algorithm, would probably yield
even better results.

Unfortunately, the pretrained model is not sufficient to process mosaic artefacts
in compressed images. This is to be expected, as JPEG compression erases high fre-
quencies even at a high quality, which is also where demosaicing algorithms leave
artefacts. However, adapting the network to the new compressed data by retraining
it directly on the studied data enabled it to retrieve demosaicing traces over JPEG
compression.

This method is good enough to analyse uncompressed images. However, the fo-
cus of this chapter was the design of a learning-based method to analyse demosaicing
artefacts. Little focus was put on the use of the network to automatically detect and
localize forgeries. A necessary step, which will be explored in the next chapter, is to
further process the results of the network, with automatic thresholding and better
localization of the forgeries.

Another natural step concerns the possibility of fine-tuning. In this chapter,
we saw that retraining the network on a study dataset of similar, potentially forged
images, could help improve robustness to JPEG compression. In practice, however,
it is rare to have a large quantity of similar images to analyse. Ideally, one should
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be able to fine-tune the network on a single, potentially forged image. Adapting
a pre-trained network to the testing data by retraining it on said data is of course
something that must be done carefully. A network that is too big can easily overfit
if too few samples are available, and see its quality lower in comparison to the pre-
trained network. More experiments must thus be done to fully understand what
can be done this way. Namely, two big questions arise: How much similar data is
needed, and how similar does it need to be, in order to be able to improve the quality
of a neural network by retraining it on this data? More importantly, can we prevent
the network from overfitting when retrained on small amounts of data?

Since overfitting is the only reason why a network could worsen by trying to
adapt to new data, it is likely that preventing or limiting it would make it possible
to improve a network by retraining it on new data. We have shown that it was pos-
sible to drastically improve the performance of the network by retraining on the full
database. Would it still be possible if we only have several images, or, in the most
extreme but also the most frequent case, only one image?

This is a difficult challenge, however learning to make a network fit to new un-
labelled data could greatly help make it more robust for practical applications; next
chapter will thus focus on the internal fine-tuning of the network on a single image.

157



Chapter 7

Internal Learning to ImproveAdaptability

Abstract

In Chapter 6, we used positional learning to make a network’s output re-
flect the image’s underlying CFA mosaic. We now show that such a network
can be fine-tuned on a single, potentially forged image, to adapt to it. Doing so
greatly increases robustness to JPEG compression and other post-processing. We
further improve the method by adding a a contrario layer to automatically de-
tect and localize significant inconsistencies in an image’s mosaic. The method
proposed in this final chapter beats state-of-the-art mosaic detection methods
and generic forensic methods alike on uncompressed datasets. It remains relev-
ant on slightly-compressed datasets, and provides a complementary insight to
othermethods, including generic learning-basedmodels, which are blind tothe
mosaic traces we analyse.

7.1 Introduction
In the previous chapter, we proposed a self-supervised neural network that detects
the relative position modulo 2 of pixels and blocks in the image. Because a CNN is
invariant to translation, it implicitly needs to learn from mosaic artefacts in order
to perform this classification. Shifts in the output of the network are thus evidence
of forged regions. This network can be fine-tuned on a dataset of similar potentially
forged images, and shows some resilience to JPEG compression.

However, fine-tuning on a full dataset of similar images is impractical. In most
instances, only one image is given to analyse. Ideally, one should be able to fine-tune
the network to a single, potentially forged image.

Single-image internal learning has indeed gained popularity in several domains
of image processing in recent years. Using self-supervised information to retrain
an over-parameterized network on the very image to process, such methods often
provide better results and greater adaptability to uncontrolled cases than their su-
pervised counterparts. For instance, in the close field of image denoising, Noise2Void [124]
and the subsequent Self2Self [125] train a network to reconstruct a noisy image
while hiding pixels from its input. The network provides the regularization neces-
sary to actually denoise the image.
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(a) Forged image

(b) Original image (c) Forgery mask

(d) Detected demosaicing grids (e) Detected forgeries

Figure 7.1: Results of the proposed method on an inpainted image from the
Korus [42], [43] dataset. Local detection of the demosaicing pattern not only en-
ables detection of the forgery, but also shows the patches used during inpainting.

Still, this learning scheme brings several challenges. Fewer sample makes over-
fitting more likely, yet if the network overfits it will correctly detect the position of
the forgery’s pixel, and the forgery will not be detected. More importantly in our
case, JPEG compression poses difficulty to single-image fine-tuning. The proposed
network uses demosaicing traces because those are the primary source of informa-
tion on the modulo 2 position of the images. However, JPEG encoding compresses
the image in 8 × 8 blocks, the traces it leaves behind thus have a strong 8-periodic
component. Fine-tuning on a single compressed image may thus divert the network
from looking at demosaicing traces to make it analyse JPEG compression traces in-
stead. When fine-tuning on multiple images, this would be alleviated by the dif-
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ferent alignments between the CFA and the JPEG grid on each image: a network
trained on detecting JPEG traces on one alignment would fail on image aligned oth-
erwise. With a single image, analysis of JPEG traces can directly lead to the correct
modulo-2 position.

To avoid this problem, we propose to pretrain the network on manually-compressed
images at different JPEG–CFA alignment. The network thus learns to detect CFA
artefacts over JPEG compression. While this is not enough to produce good results
on compressed images, it leads the model on a better track before internal learning:
Previously prevented from using the JPEG grid position, starting to use this grid
would have an immediate short-term cost for the network. Local optimization thus
effectively incentivizes the network not to detect the JPEG grid position. To this
method, we add the a contrario layer already introduced in Chapter 4. This enables
our method to detect inconsistent regions in the image, even if a single mosaic can-
not be detected locally. Statistically-insignificant results are then filtered out based
on a NFA threshold.

This solution beats state-of-the-art methods on uncompressed datasets. Its ro-
bustness to various post-processing and counter-forensic artefacts such as JPEG com-
pression makes it useful even on compressed images, where its automatic detections
can be used alongside other specific or generic forensics methods. This comple-
mentarity is furthered by the blindness of state-of-the-art generic neural networks
to shifts in periodic signals such as those we study.
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Figure 7.2: The four possible sampling patterns can be grouped by the diagonal on
which the green channel was sampled:  g

g b and b g
g  share the · g

g · diagonal, whereas
g 
b g and g b

 g share the g ·
· g one.

7.2 Method
We propose to train a fully-convolutionnal neural network (CNN) to detect the
(modulo 2) positional information of each pixel of an image. Because a CNN is in-
variant to translation, it does not know these positions and has to infer them from
camera traces, in particular from demosaicing traces. Inconsistencies in the output
of the network reveal inconsistencies in the demosaicing pattern, and are thus traces
of forgeries. In Sec. 7.2, we explain how the network is trained on positional data.
In Sec. 7.2, we show how some level of robustness to JPEG compression can be
achieved during training. In Sec. 7.2, we show that it is possible to retrain this net-
work directly on a single suspicious image to adapt to the setup of this image, thus
achieving a greater robustness to JPEG compression. Finally, in Sec. 7.2, we detail
how the network’s output can be used to detect forgeries.

Positional learning
Following Chapter 6 (Positional Learning for Demosaicing Analysis), we propose
to train a CNN to detect the modulo 2 position of each pixel, both horizontally and
vertically. Coarser-scale position information is irrelevant to the very local demosa-
icing traces, and could lead the network to rely on unwanted cues. However, demo-
saicing detection algorithms [14], [15], [88] usually proceed in two steps: they start
by detecting the diagonal pattern, ie. to find which pixels were sampled in green,
then try to distinguish between the two patterns sharing the same diagonal. This
two step method is preferable because detecting the diagonal is easier and more ro-
bust than directly making a decision on the full pattern. To adopt this behaviour,
we trained a convolutional network to detect two features:

• For each pixel, the offset of its diagonal, representing whether the pixel is
sampled in green or not (Fig. 7.3a);

• for pixels that are on the first diagonal, whether it is on an even or odd line.
This step decides, for pixels which were not sampled in green, whether they
were sampled in red or blue (Fig. 7.3b).
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(a) The first detected feature is the diag-
onal offset. It decides whether the pixel was
sampled in green.

0 * 0 * 0 *
* 1 * 1 * 1
0 * 0 * 0 *
* 1 * 1 * 1
0 * 0 * 0 *
* 1 * 1 * 1

(b) The second feature is the evenness of the
line/column of the pixel on the main diag-
onal. It decides whether the pixel was origin-
ally sampled in red or in blue.

Figure 7.3: The CNN is trained to output these two patterns. Asterisks (*) corres-
pond to values that are ignored.

This method is self-supervised, since the position of each pixel is known. The
only requirement is that all images of the training set be demosaiced in the  g

g b

pattern, to enforce consistency of the output across images and correspondence
between the detected position and the sampled colour1. If a training image has been
demosaiced in another pattern, we align it to  g

g b by cropping its first row and/or
column.

We use the DnCNN [126] architecture, with 17 layers and 64 features per layer.
DnCNN is more suited to our task than other standard structures, as it does not
make use of any downsampling. The downsampling which is usually found in other
CNN structures would remove the high-frequency information leading to the de-
tection of potential demosaicing artefacts.

Training on JPEG-compressed images
JPEG compression is a major obstacle to demosaicing detection. The quantization
induced during compression quickly removes the highest frequencies of an image,
which contain demosaicing traces. As a consequence, strongly-compressed images
keep no demosaicing traces and cannot be detected by our method. Nevertheless, it
remains possible to find demosaicing traces on high-quality images, where the com-
pression is minimal. This prompted us to train our network on JPEG-compressed
images.

However, JPEG compression aggregates data in 8 × 8 blocks, thus creating
strongly 8-periodic artefacts. Analysis of the JPEG artefacts would thus be enough
for the CNN to correctly find the (mod. 2) position of all pixels without even look-
ing at demosaicing traces. To prevent the network from doing this and to force it
to analyse the demosaicing artefacts rather than JPEG compression, we start from
uncompressed images and compress them ourselves in the four possible alignments
between the demosaicing pattern and the JPEG grid, seen in Fig. 7.4. For each ini-
tial image, we thus have 4 compressed images with different alignments, and the
network is trained simultaneously on them. Doing this prevents the network from

1If images whose grid is known were not available, it would still be possible to train on images
of an unknown grid by applying the same method as during internal learning (see Sec. 7.2).
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Figure 7.4: The JPEG grid and the Bayer pattern can be aligned in four different
ways. By simultaneously training the network on the four possible alignments, we
force it to analyse demosaicing traces over JPEG, instead of directly using the JPEG
traces.

directly analysing and using JPEG compression to find the positions, as the posi-
tional cues provided by the compression are contradictory between the four com-
pressed images.

This training scheme assumes that the JPEG grid is consistent across the image,
ie. that the compression happened after the forgery. This assumption is reasonable;
if the JPEG grid itself is inconsistent, the forgery will be apparent and much easier
to detect through JPEG grid analysis [25].

Internal learning
Training on compressed images already provides some robustness to JPEG com-
pression. However, there is a huge variety of post-processing algorithms, and an
even bigger number of combinations thereof, as post-processing encompasses not
only algorithms such as JPEG compression, but also image-enhancing filters often
automatically applied by cameras, and specific counter-forensic measures such as ad-
ded noise or median filtering. Furthermore, such algorithms change with time. We
propose an alternative strategy. The robustness of our network can be further in-
creased with internal learning, ie. by retraining the network on the specific image
we want to study. This enables the network to adapt to the specific statistics of the
image.

Given a potentially forged image to analyse, we assume the image is authentic
and train the network repeatedly on it to detect the position of pixels, as explained
in Sec. 7.2. Contrarily to the initial training, the image is not necessarily in the  g

g b

pattern. To train the network, we compute the loss not only on the initial target
of Fig. 7.3, but we also shift the target by one row and/or column. We thus have 4
losses depending on the offset of the target, we use the one that is minimal across
the global image. In other words, we train the network to be locally coherent with
the globally-dominant pattern.

Of course, single-image training induces a risk of overfitting. However, even if
the network overfits on the image, training is done on the hypothesis that the full
image is authentic. In other words, fine-tuning incentivizes the network to conclude
that everything is authentic. As a consequence, if the image is actually authentic,
the risks of making a false detection are lower than with the pretrained-network; by
design, even overfitting will not induce new false detections. In the more interest-
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ing case where the image is indeed forged, the network will also adapt to the post-
processing to learn demosaicing traces and detect the position of pixels. Forged re-
gions in images are usually small compared to the total size. As a consequence, even
though the forged regions would steer the network towards detecting their pixels’
positions correctly, they would produce evidence contradicting that of much larger
authentic regions, and the network should thus not learn too much from forged re-
gions. The small size and locality of the network is particularly important here to
prevent it from being able to adapt to both, the authentic and the forged regions.
While some amount of overfitting is probably unavoidable, its impact can be expec-
ted to be limited.

During internal learning, we use the Ranger21 [127] optimiser with default
parameters and a learning rate of 10−4.

Forgery detection
The network does not directly detect forgeries in an image, it only detects pixel-
wise, demosaicing-related positional information. This information must then be
analysed to find forged regions of an image.

Block votes

The output of the network consists of two feature maps, following the targets of
Fig. 7.3: the diagonal of the pixel Od, and Ol the evenness of the line number of
pixels on the main diagonal. Values are between 0 and 1, with values close to 0/1
signifying more confidence in the detection.

These results are aggregated in 2 × 2 blocks, corresponding to a Bayer CFA
tile.Let Bd and Bl represent a block from Od and Ol, three binary decisions are made
on that block:

• δ · g
g · |

g ·
· g

≜
[
1
4

(
Bd0,0 + Bd1,1 − Bd0,1 − Bd1,0

)]
,

• δ  g
g b |

b g
g 

≜
[
1
2

(
Bl0,0 − Bl1,1

)]
, and

• δ g 
b g |g b

 g
≜

[
1
2

(
Bl1,0 − Bl0,1

)]
.

In these definitions, [·] represents rounding to 0 or 1. δ · g
g · |

g ·
· g

says in which diag-
onal the block – or rather its top-left pixel – is detected, from which the pattern
diagonal can be inferred: a value of 0 (resp. 1) means the block is demosaiced in a
· g
g · (resp. g ·

· g ) pattern. Assuming we know the block is demosaiced in one of the
two · g

g · patterns, δ  g
g b |

b g
g 

then distinguishes them; a value of 0 (resp. 1) means the
block is demosaiced in the  g

g b (resp. b g
g  ) pattern. Similarly, a value of 0 (resp. 1)

for δ g 
b g |g b

 g
means the block is demosaiced in the g 

b g (resp. g b
 g ) pattern, assuming

we already know the block is demosaiced in a g ·
· g pattern.

We can now determine the diagonal and pattern on each block. The detected
diagonal of a block is D ≜ · g

g · if δ · g
g · |

g ·
· g

= 0, and D ≜ g ·
· g if δ · g

g · |
g ·
· g

= 1.
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Similarly, the full pattern is determined based on the diagonal and the corres-
ponding δ:

P ≜


 g
g b if D = · g

g · and δ  g
g b |

b g
g 

= 0
b g
g  if D = · g

g · and δ  g
g b |

b g
g 

= 1
g 
b g if D = g ·

· g and δ g 
b g |g b

 g
= 0

g b
 g if D = g ·

· g and δ g 
b g |g b

 g
= 1

(7.1)

We now know the detected diagonal and pattern of each 2× 2 block in the im-
age. The pseudo-code of their computation is detailed in Algorithm 9. The detected
diagonal and pattern of the whole image is then defined as the mode of the blocks’
diagonals and patterns. Let Dg ∈ { · g

g · ,
g ·
· g } and Pg ∈ {  g

g b ,
b g
g  ,

g 
b g ,

g b
 g } de-

note the global diagonal and pattern of the image.

A contrario estimation

Beyond internal learning, the second goal of this chapter is to allow for automatic
detection of the forgeries. As already done in Chapter 4 (Linear Estimation of the
Demosaicing Algorithm), we want to be able to detect regions where the detection
is significantly erroneous, ie. where the network makes more mistakes than in the
rest of the image.

The previous subsection explained how the network’s output could be analysed
to make each 2 × 2 block vote for the most likely grid locally. From there, we can
directly apply the method described in Chapter 4 (Linear Estimation of the Demo-
saicing Algorithm). See this chapter for more details. To account for the correlation
between pixels, the detection methods simulates downsampling of the block votes’
counts by a given factor. Here, we use d2 ≜ 172, the radius of the CNN, as a down-
sampling factor.
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Algorithm 9: Block votes computation
1 function get_block_votes(Od, Ol)

Input Od: Diagonal of each pixel (output of the neural network), size
(2X, 2Y).

Input Ol: Line evenness of pixels on the main diagonal (output of the
neural network), size (2X, 2Y).

Output δ · g
g · |

g ·
· g

: Detected diagonal of each 2 × 2 block, size (X,Y).
Output δ  g

g b | b g
g 

: Detected pattern of each 2 × 2 block, if their
diagonal is · g

g · , size (X,Y).
Output δ g 

b g |g b
 g

: Detected pattern of each 2 × 2 block, if their
diagonal is g ·

· g , size (X,Y).
2 δ · g

g · |
g ·
· g

, δ  g
g b |

b g
g 

, δ g 
b g |g b

 g
:= 0

3 for x from 0 to X and y from 0 to Y do

4 if
1
4
(
Od2x,2y + Od2x+1,2y+1 − Od2x+1,2y − Od2x,2y+1

)
<

1
2

then

5 δ · g
g · |

g ·
· g x,y

:= 0

6 else

7 δ · g
g · |

g ·
· g x,y

:= 1

8 if
1
2
(
Od2x,2y − Od2x+1,2y+1

)
<

1
2

then

9 δ  g
g b |

b g
g  x,y

:= 0

10 else

11 δ  g
g b |

b g
g  x,y

:= 1

12 if
1
2
(
Od2x+1,2y − Od2x,2y+1

)
<

1
2

then

13 δ g 
b g |g b

 g x,y
:= 0

14 else

15 δ g 
b g |g b

 g x,y
:= 1

16 return δ · g
g · |

g ·
· g
, δ r g

g b |
b g
g r
, δ g r

b g |
g b
r g
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Image Ground Truth Proposed Chap. 6 Noiseprint [27] Ferrara [9] Chap. 3 Park [16]

Figure 7.5: Comparative results on several images from the Korus [42], [43] (first
5 images) and Trace CFA Grid (last 3 images) databases. From left to right: Forged
image, forgery mask, detected demosaicing grids with the proposed methods, detec-
ted forgeries with the proposed method, and results of Chapter 6 (Positional Learn-
ing for Demosaicing Analysis)’s method, Noiseprint [27], Ferrara [9], Park [16], and
Chapter 3 (Intermediate Values Counting for CFA Pattern identification). As seen
on the 1st, 2nd and 5th images, detecting the grid enables one not only to find for-
geries, but also to precisely know how the forgery (here, an inpainting) was done, by
localizing patches with different pattern alignments. On the 3rd image, no demo-
saicing traces are detected by any method. With our method, each block detects a
different grid in a seemingly noise-like pattern. Still, the forgery can be detected by
Noiseprint, which relies on different cues. On the 4th image, the same grid is de-
tected on the whole image; the forged region cannot be detected by demosaicing
analysis because the forged region’s pattern is aligned. On the last three rows, the
same image has been processed uncompressed and at JPEG compression qualities
95 and 90. Even after compression, we can still detect the forgery.

7.3 Experiments
To train our network, we used the 1488 raw images from the Dresden database [32],
and demosaiced them with several demosaicing methods: icc [76], i [60], li [74],
i [61], cc [62], [128], cs [75], gbf [59], Gunturk [56],  [55], ls [58]
and bilinear demosaicing. Training was done with the Adam optimizer at an initial
learning rate of 10−3 that was divided by 2 when the validation loss did not improve
for 5 consecutive epochs. During internal training on each image, the network was
retrained for 15 iterations.

Experiments were done on two datasets. The Korus [42], [43] database con-
tains 220 splicing forgeries that are imperceptible to the naked eye. Those forgeries
are done on images from 4 different cameras. From the Trace database, presented
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in Chapter 1 (Non-Semantic Evaluation of Image Forensics Tools), we use the CFA
grid and algorithm datasets, with the two different masks. As our method only de-
tects pattern shifts, and not demosaicing algorithm changes, we cannot expect to
make detections in regions where the demosaicing pattern is the same, ie. in one
quarter of the images of the CFA algorithm dataset. However, since our method is
not content-aware, results between the endomask and exomask should be similar.
On the CFA grid dataset, we further studied the robustness of our method to JPEG
compression, by compressing all images with quality factors of 95 and 90 before
testing them with the forensic algorithms.

We compare our method with the state-of-the-art NN-based Noiseprint [27],
with Chapter 6 (Positional Learning for Demosaicing Analysis)’s method, as well
as demosaicing detection tools, Ferrara [9], Dirik [11], Park [16] Shin [15] and
Chapter 3 (Intermediate Values Counting for CFA Pattern identification). Chapter 3
and Shin’s methods operate on windows, we set their size to 32×32 pixels. For Park,
the window size is set to 16 × 16 pixels, as suggested by the authors. For Choi, we
use our implementation and extension, detailed in Chapter 3 (Intermediate Values
Counting for CFA Pattern identification). For Shin, the original article only spe-
cifies the classification of the CFA pattern, but do not provide a way to turn that
classification into a forgery detection. We use our own implementation for the grid
detection, with the same scheme as Chapter 3 (Intermediate Values Counting for
CFA Pattern identification).

Results are presented with the Matthews Correlation Coefficient (MCC), which
is the cross-correlation coefficient between the ground truth and the detection. This
metric, considered the most representative number for detection evaluation [81],
[82], varies between -1 and 1, with 1 representing a perfect detection, -1 its comple-
mentary. Any random method has an expected score of 0. We computed the metric
on each image and took the average of the mcc scores over the dataset.

As all the tested methods produce heatmaps and not binary outputs, the test was
done using the best threshold over each dataset. Our method is designed to perform
automatic detection: thresholding can be done directly with a NFA threshold of 1.

In Tab.7.1, we present compared results on the four dataset of the Trace data-
base. Robustness of the methods to JPEG compression is tested in Tab. 7.3 on the
Trace CFA Grid dataset, which is also used in Tab. 7.2 to show how our results vary
depending on the algorithm used. Finally, in Tab. 7.4, we present compared results
on the Korus [42], [43] dataset.

On the Trace datasets, the method beats the state-of-the-art at all the tested
compression levels. The results are only slightly better than the previous chapter on
the uncompressed images, but our method presents a stronger robustness to JPEG
compression. Chapter 3 presents some robustness to compression as well. Both
Bammey and Shin [15] are unable to make any detection even at a JPEG compres-
sion level of 95. Ferrara [9] and Park [16] do not provide good results on the grid
datasets, but yield much better scores on the algorithm datasets. What these two
methods detect is thus not as much the grid pattern as more generic demosaicing in-
consistencies, thus suggesting some possible complementarity between our method
and these two. Dirik [11] is unable to make any detection on the Trace datasets. The
state-of-the-art forensic neural network Noiseprint [27] is entirely blind to demosa-
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Method Grid Exo Grid Endo Alg Exo Alg Endo

Proposed 0.724 XXX XXX XXX
Chapter 6 0.682 0.665 0.501 0.491
Chapter 3 0.603 0.575 0.420 0.385
Shin[15] 0.104 0.099 0.085 0.084
Ferrara[9] 0.071 0.095 0.218 0.238
Dirik[11] -0.002 0.010 0.001 0.013
Park[16] 0.116 0.133 0.152 0.150
Noiseprint[27] -0.001 0.002 0.066 0.060

Table 7.1: Results on the CFA Grid (Grid) and CFA Algorithm (Alg) datasets of
the Trace database, with endomasks (Endo) and exomasks (Exo)

UNC J95 J90

Bilinear 0.775 0.410
AHD 0.741 0.287 0.150
AAHD 0.649 0.230 0.110
DCB 0.804 0.308 0.169
DHT 0.670 0.191 0.096
PPG 0.751 0.259 0.142
VNG 0.676 0.490 0.268

Table 7.2: Results of the proposed method on the CFA Grid dataset with exomasks
of the Trace database, uncompressed (UNC) and at different compression levels
( Jxx), depending on the demosaicing algorithm used in the image.

Method UNC J95 J90

Proposed 0.709 0.311 0.196
Chapter 6 0.692 0.005 0.003
Chapter 3 0.603 0.156 0.070
Shin[15] 0.104 0.001 0.001
Ferrara[9] 0.071 0.000 0.000
Dirik[11] -0.002 0.000 0.001
Park[16] 0.116 0.001 0.000
Noiseprint[27] -0.001 0.004 0.001

Table 7.3: Results on the CFA Grid dataset with exomasks of the Trace database,
uncompressed and at two JPEG compression levels

icing pattern shifts, as seen in the Trace CFA Grid datasets. However, its results on
the CFA Algorithm datasets mean that it is, to some extent, able to detect changes
in the demosaicing algorithm used.

On the Korus dataset, our method presents the best results overall, however
there is a high variability depending on the camera. Images from the Canon 60D
dataset seem to present no demosaicing artefacts, as also evidenced by the other
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Method Canon 60D Nikon D7000 Nikon D90 Sony α57 All

Proposed 0.000 0.595 0.630 0.662 0.472
Chapter 6 0.002 0.049 0.044 0.574 0.167
Chapter 3 0.004 0.176 0.251 0.251 0.238
Noiseprint 0.153 0.322 0.236 0.148 0.202

Shin 0.021 0.003 0.012 0.511 0.143
Ferrara -0.016 0.498 0.461 0.339 0.321
Dirik 0.036 0.241 0.275 0.062 0.153
Park 0.018 0.540 0.491 0.302 0.338

Table 7.4: Results on the Korus dataset

demosaicing detection methods. This may be due to an absence of any demosaicing
or to a downsampling of the images. These images indeed have a resolution lower
than the camera’s maximal resolution. On the two Nikon cameras, we get MCC
scores of 0.412 (Nikon D7000) and 0.408 (Nikon D90). The best score is reached
on the Sony α57 camera, where the MCC is 0.628. Most demosaicing detection
methods perform best on that camera, which is probably due to the fact that images
from this camera were demosaiced with a simple bilinear demosaicing. Ferrara and
Park, on the other hand, yield better results on the two Nikon cameras. This is due to
their methods being more suited to algorithms more modern than bilinear demo-
saicing. Noiseprint is the only method able to provide relevant detections on the
Canon 60D cameras. Although its final score is lower than the proposed method’s,
we want to highlight that these two methods should be seen as complementary, not
as competitors. As seen on the Trace database, Noiseprint is blind to shifts in the
demosaicing pattern. In other words, its detections on the Korus datasets are based
on other kinds of artefacts. On the other hand, the proposed method focuses solely
on demosaicing pattern shifts. Both thus provide a different and complementary
insight into potential forgeries.

Ferrara, Dirik and Park perform much better on the Korus dataset than on the
Trace database. On the contrary, methods from Chapters 3 (Intermediate Values
Counting for CFA Pattern identification) and 6 (Positional Learning for Demo-
saicing Analysis) yield better results on the Trace database. This can be easily ex-
plained: Ferrara, Dirik and Park look for demosaicing inconsistencies, but not ne-
cessarily for a specific CFA pattern, whereas Chapters 3 and 6 try to identify the
CFA pattern locally. On the Trace datasets, focusing on finding the CFA pattern
works best, because the pattern is consistent accross the forgery, furthermore it al-
ways lead to the detection in the Grid datasets, and 3 times out of 4 in the Algorithm
datasets. On the Korus dataset, however, various means are used to create the for-
gery. In many images, inpainting is performed by pasting multiple small patches on
an image. This leads to a forged region which is not consistent in its pattern, but
rather made of many smaller subpatterns. Methods like Choi and Bammey, which
try to find a single consistent pattern, are thus unable to do so. By trying to find
regions where demosaicing pattern is less consistent than on the rest of the image,
the proposed method is effectively able to perform well on both kind of forgeries.
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However, specific detection of one single consistent pattern, like in our previous
methods, may lead to more significant results on some forgeries.

Overall, this new method performs best in all Trace datasets, and on the Korus
dataset, both globally and specifically on the three cameras from the Korus data-
sets that present demosaicing traces. This is despite the scoring method putting our
method at a disadvantage, since the best threshold across the dataset is taken for
other methods, whereas we use automatic thresholding for our method.

Visual results on different images can be seen on Fig. 7.5.

7.4 Discussion
In this chapter, we have shown that positional and internal learning could be coupled
to detect image forgeries as shifts in the image’s demosaicing pattern. The self-supervised
nature of positional learning makes it fit for internal learning, as labels can be dir-
ectly obtained from the tested image as if it were authentic. The main difficulty that
could be expected with single-image fine-tuning comes from overfitting, especially
on forged regions. While an overfitting network will correctly detect all pixels’ loc-
ations, and will thus fail to detect the forgery, it will not lead to a higher number of
forgery false positives. As we saw, the usually small size of forgeries, combined with
the fact that forgeries create evidence that contradict the rest of the image, mean that
overfitting is naturally limited. Positional learning may also be at play in preventing
overfitting, by mapping similar outputs to opposite results. The role of positional
learning against overfitting will be the subject of further studies.

Our experiments show that our method detects demosaicing pattern shifts bet-
ter than other demosaicing detection methods, and more generally beats the state of
the art on the Korus dataset of uncompressed forged images. A contrario threshold-
ing enables us to automatically threshold the outputs, limiting the number of false
detections and simplifying combination of this method with other methods.

The main limitation of our method, and of demosaicing detection in general, is
that demosaicing artefacts are subtle and located on the high frequencies. As a con-
sequence, a strong JPEG compression, or downsampling, will remove the artefacts
and make demosaicing detection impossible. That being said, the proposed method
provides enough robustness to yield decent results at a compression quality level of
95, and is still able to find a few forgeries with a compression factor of 90. This is not
enough to perform detection on low-quality images such as those found on social
medias. Nevertheless, the method works on the usually high JPEG quality provided
by cameras. This makes it relevant in fields such as photographic contests, criminal
investigations, scientific misconduct investigations, or journalism, tasks where im-
age authentication is often needed.

Internal learning was performed with 15 iterations on each tested image. This
number has been set heuristically, as results do not seem to improve much after these
iterations. In future work, obtaining an automatic stopping criterion would be de-
sirable, to increase both the speed and results of our method.

We observed that alterations of demosaicing patterns remain mostly undetected
by most generic SOTA forensic algorithms, whereas our method specifically focuses
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on those. This means that when trying to find forgeries, these methods yield com-
plementary results and can thus work in parallel, not in competition.
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Conclusion

This short chapter concludes a thesis dedicated to image forgery detection through
demosaicing analysis. In Chapter 1, we introduced a novel way to evaluate forgery
detection methods. By locally modifying the formation pipeline of an image, we
were able to create ‘non-semantic forgeries’, that contain changes in the underlying
traces of the image without changing any of its semantic content. This methodology
enables trace-aware evaluation of forensics tools, as it can highlight exactly to which
traces each method is sensitive.

Chapters 2 (CFA Identification with Differential Operators) and 3 (Interme-
diate Values Counting for CFA Pattern identification) explored the use of direct
numerical cues to distinguish sampled from interpolated pixels, and in fine identify
the correct mosaic. Despite decent results with Chapter 3’s method, the method
systematically fails on several demosaicing algorithms. This shows the difficulty of
devising one single method to analyse the large variety of demosaicing algorithms,
as well as the need to break free from the unrealistic – but often difficult-to-avoid –
assumption of a linear, channel-independent demosaicing.

Chapter 4 tried to increase adaptability to various algorithms by estimating the
demosaicing directly on the image. An a contrario validation of the results was then
used to filter out statistically-insignificant results and control the number of false
alarms due to the acceptance of actually-insignificant detections. However, the lin-
ear estimation of demosaicing was not accurate enough in most cases.

In Chapter 5, we therefore explored a more natural hypothesis. Simply assum-
ing that an image’s demosaicing locally behaves closely to at least one of a set of
other demosaicing algorithms, double demosaicing performed in the four positions
with various algorithms was used to identify the most likely pattern. The theoretical
foundations for this method are no longer valid when some post-processing, such as
JPEG compression, takes place after the original demosaicing and alters the spatial
correlation of the pixels. Still, the method is able to detect the correct pattern at the
image level under relatively strong compression, even though local identification is
no longer as reliable.

Chapter 6 introduces the novel concept of positional learning. We leveraged
the translation-invariance of a CNN by training it to detect the modulo-2 position
of each pixel. To do this, the CNN has to rely on the strong 2-periodic compon-
ent of demosaicing traces; as such its output replicates the CFA mosaic, and more
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importantly its shifts, that are important forgery cues. This self-supervised learning
was further improved in Chapter 7, by using internal learning to adapt to each im-
age and increase its robustness to JPEG compression. It is possible to retrain the
CNN on a single potentially-forged image as if it were authentic; indeed potential
forgeries send a contradictory response to the model: overfitting on those would
usually imply going against the – usually much bigger – rest of the image. A con-
trario analysis then automatically detects significant inconsistencies in the CNN’s
output.

All in all, the main contributions of this thesis are four-fold:

• The Trace methodology and database, introduced in Chapter 1, enables ase-
mantic analysis of forensic tools, to ensure they respond to traces in the im-
age and not only to purely semantic incongruities; and to deduce specifically
which traces each method is sensitive to. We obtain that way an easy estima-
tion of each method’s strong points, weaknesses and complementarities.

• Positional learning, introduced and used in Chapters 6 (Positional Learning
for Demosaicing Analysis) and 7 (Internal Learning to Improve Adaptabil-
ity), leverages the translation-invariance of CNN, replicates the behaviour of
an underlying trace with a periodic component (in our case demosaicing), so
as to detect its shifts.

• We also showed in Chapter 7 that internal learning can be used on a single,
potentially forged image, to adapt to its specific processing, as potential for-
geries are overpowered by the usually larger authentic region, which pulls the
model in the opposite way.

• As part of the Envisu4 project, the method presented in Chapter 3 has also
been integrated in the forensics browser plugin InVID & WeVerify1, an on-
line tool and plugin for journalists and fact-checkers to verify the authenticity
of images and check for traces of tampering. More methods will be integrated
as well.

Further works on the Trace database would include a systematic analysis of more
camera traces and combinations thereof, in particular when further post-processing
is applied to the whole image. In addition to evaluation, the proposed methodology
could also be used to train images.

The ideas behind the final method in Chapter 7 seem stable enough. The achieved
JPEG robustness makes the method applicable to a variety of high-quality images
such as those usually found in criminal investigations, photographic contests, etc.….
It is unlikely that robustness to a much stronger compression can be achieved. Res-
ults could be improved by a better localization of the exact forgery mask, an auto-
matic stopping criterion during internal learning, and an optimization of the net-
work structure. The latter could also improve the speed of the method, although
speed is not a critical issue since typical use-cases for demosaicing analysis are off-
line.

1Beta version for Chrome at https://chrome.google.com/webstore/detail/fake-news-
debunker-by-inv/mhccpoafgdgbhnjfhkcmgknndkeenfhe.
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More generally, however, the notion of positional learning might find other
applications. One can think, for instance, of JPEG analysis or texture synthesis.
For better versatility, future work will also focus on the possibility of extending the
concept to detect an unknown periodicity.

These few lines concludes this thesis. I want to thank one last time those who
helped me through it (see page 3 for a non-exhaustive list), as well as the reader for
your interest in my work.

And this gray spirit yearning in desire
To follow knowledge like a sinking star,
Beyond the utmost bound of human thought.

Ulysses, Alfred, Lord Tennyson
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Résumé: Autrefois considérées comme des preuves
fiables, les images photographiques ne dépeignent plus
toujours la pure vérité. Avec l’avènement de la photo-
graphie numérique et les progrès des outils de retouche
photo, il n’a jamais été aussi facile de modifier une im-
age. Si la plupart de ces modifications visent unique-
ment à améliorer l’image, elles peuvent potentiellement
en altérer la sémantique même. Dissimuler, modifier ou
ajouter un objet étranger, tout cela peut donner à une
image un sens nouveau et trompeur. Bien que ces falsi-
fications puissent facilement être rendues visuellement
réalistes, ils n’en altèrent pas moins le tissu même de
l’image. La formation d’une image numérique, depuis
les capteurs de la caméra jusqu’au stockage, laisse des
traces, qui agissent comme une signature de l’image. La
modification d’une image déforme ces traces, créant des
incohérences détectables.

Les images brutes sont initialement une mosaïque
de pixels rouges, bleus et verts. Les valeurs de couleur
manquantes doivent être interpolées dans un proces-
sus connu sous le nom de démosaïquage. Dans cette
thèse, nous étudions les traces laissées par ce processus.
La nature 2-périodique du motif de la mosaïque laisse
son empreinte sur l’image. Les falsifications peuvent
déphaser ces traces, voire les supprimer entièrement ;
l’identification du motif de mosaïque est donc utile pour
localiser les régions falsifiées.

Les méthodes non spécifiques de détection des falsi-
fications peuvent déjà analyser de nombreuses traces
dans une image ; elles restent néanmoins aveugles aux
déplacements de la mosaïque, en raison de l’invariance
par translation des réseaux de neurones convolutifs sur
lesquels la plupart sont basés. Les méthodes spéci-
fiques au démosaïquage peuvent donc fournir des ré-
sultats complémentaires pour la détection des falsific-
ations. Cependant, elles ont historiquement reçu peu
d’attention. L’analyse des artefacts de démosaïquage est
rendue plus difficile par la vaste gamme d’algorithmes

de démosaïquage, souvent non divulgués, et surtout par
la compression JPEG. Ces artefacts, créés tôt dans le
pipeline de formation de l’image et situés aux fréquences
les plus élevées de l’image, s’estompent rapidement
pendant la compression.

Pourtant, ces artefacts peuvent encore être détectés
sous une compression légère. Pour canaliser la puissance
représentative des réseaux neuronaux convolutifs dans
l’analyse des artefacts de démosaïquage, nous introduis-
ons la notion d’apprentissage positionnel. Ce schéma
auto-supervisé entraîne le réseau à détecter la position
modulo 2 de chaque pixel, en tirant parti de l’invariance
de translation de la convolution pour que le réseau ana-
lyse implicitement les artefacts de démosaïquage, son
seul indice de la position modulo 2 d’un pixel. De plus,
l’entraînement interne sur une seule image potentielle-
ment falsifiée peut renforcer la robustesse de la méthode
à la compression JPEG de ladite image. Les erreurs
dans la sortie du réseau neuronal sont alors des indices
d’incohérences de la mosaïque. Un paradigme a con-
trario nous permet alors de prendre des décisions auto-
matiques sur l’authenticité d’une image. En utilisant
uniquement les artefacts de démosaïquage, la méthode
proposée dépasse l’état de l’art sur plusieurs jeux de don-
nées non compressés. Sur les images compressées, elle
fournit encore des résultats décents qui sont tout à fait
complémentaires avec les méthodes qui ne sont pas spé-
cifiques à la mosaïque.

Enfin, nous explorons l’évaluation même des
méthodes de détection de falsification. Nous proposons
une méthodologie et un jeu de données pour étudier la
sensibilité des outils de détection à des traces spécifiques,
ainsi que leur capacité à effectuer des détections sans in-
dices sémantiques sur l’image. Plus qu’un simple outil
d’évaluation, cette méthodologie peut être utilisée pour
évaluer les forces et faiblesses de chaque méthode, ainsi
que leurs complémentarités.



Title: Image Forgery Detection through Demosaicing Analysis: Unconcealment of a Signature
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Abstract: Once considered reliable evidence, pho-
tographic images can no longer be assumed to depict the
naked truth. With the advent of digital photography
and the progress of photo editing tools, altering a pic-
ture has never been easier. While most of these modi-
fications solely seek to enhance the image, they can po-
tentially alter its very semantics. Concealing, modifying
or adding a foreign object, all those can give an image
a new and false meaning. Although these forgeries can
easily be made visually realistic, they still distort the very
fabric of the image. The formation of a digital image,
from the camera sensors to storage, leaves traces, which
act like a signature for the image. Modifying an image
distorts these traces, creating detectable inconsistencies.

Raw images are initially a mosaic of red, blue and
green pixels. Missing colour values must be interpol-
ated in a process known as demosaicing. In this thesis,
we study the traces left by this process. The 2-periodic
nature of the mosaic pattern leaves its imprint onto
the image. Forgeries may dephase these traces, or even
remove them entirely; mosaic pattern identification is
consequently helpful in localizing tampered regions.

Non-specific forgery detection methods can
already analyse many traces in an image; nevertheless
they remain blind to shifts in the mosaic, due to the
translation-invariance of the convolutional neural net-
works on which most are based. Demosaicing-specific
methods can thus provide complementary results for
forgery detections. However, these have historically re-
ceived little attention. Analysis of demosaicing artefacts
is made harder by the vast array of often-undisclosed

demosaicing algorithms, and above all by JPEG com-
pression. Those artefacts, created early in the image
formation pipeline and lying at the highest frequencies
of the image, are quick to wane during compression.

Yet, those artefacts can still be detected under mild
compression. To channel the representative power
of convolutional neural networks into the analysis of
demosaicing artefacts, we introduce the notion of po-
sitional training. This self-supervised scheme trains the
network to detect the modulo-2 position of each pixel,
leveraging the translation invariance of convolution to
make the network implicitly analyse demosaicing arte-
facts, its only clue to the modulo-2 position of a pixel.
On top of that, internal training on a single potentially
forged image can bolster the method’s robustness to
JPEG compression on said image. Errors in the output
of the neural network are then clues of mosaic inconsist-
encies. An a contrario paradigm then enables us to make
automatic decisions on the authenticity of an image. Us-
ing only demosaicing artefacts, the proposed method
beats the state of the art on several uncompressed data-
sets. On compressed images, it still provides decent res-
ults that are fully complementary with methods that are
not mosaic-specific.

Finally, we explore the very evaluation of forgery
detection methods. We propose a methodology and
dataset to study the sensitivity of forensic tools to spe-
cific traces, as well as their ability to make detections
without semantic cues on the image. More than a simple
evaluation tool, this methodology can be used to assess
the strength and weaknesses of each method, as well as
their complementarities.
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