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Covering the Space of Tilts.
Application to Affine Invariant Image Comparison∗

Mariano Rodŕıguez† , Julie Delon‡ , and Jean-Michel Morel†

Abstract. We propose a mathematical method to analyze the numerous algorithms performing image matching
by affine simulation (IMAS). To become affine invariant they apply a discrete set of affine transforms
to the images, prior to the comparison of all images by a scale invariant image matching (SIIM), like
SIFT (scale invariant feature transform). Obviously this multiplication of images to be compared
increases the image matching complexity. Three questions arise: (a) what is the best set of affine
transforms to apply to each image to gain full practical affine invariance? (b) what is the lowest
attainable complexity for the resulting method? (c) how is the underlying SIIM method chosen?
We provide an explicit answer and a mathematical proof of quasi-optimality of the solution to the
first question. As an answer to (b) we find that the near-optimal complexity ratio between full affine
matching and scale invariant matching is more than halved, compared to the current IMAS methods.
This means that the number of key points necessary for affine matching can be halved, and that the
matching complexity is divided by four for exactly the same performance. This also means that an
affine invariant set of descriptors can be associated with any image. The price to pay for full affine
invariance is that the cardinality of this set is around 6.4 times larger than for a SIIM.
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1. Introduction. Image matching, which consists in detecting shapes common to two
images, is a crucial issue for a large number of computer vision applications, such as scene
recognition [60, 10, 51] and detection [15, 48], object tracking [65], robot localization [52, 59,
45], image stitching [2, 9], image registration [63, 32] and retrieval [18, 17], three dimensional
modeling and reconstruction [14, 16, 61, 1], motion estimation [62], photo management [54],
symmetry detection [34], or even image forgeries detection [13]. The problem has implementa-
tion variants depending on the setup. If, for example, the user knows that both compared
images are related, the focus is on detecting the most reliable common set of shape descriptors.
In the detection setup, an image is compared to a database of images and the question is to
retrieve related images in the database. This is, for example, crucial for performing a video
search [55]. Local shape descriptors must be extracted for this purpose, and this description
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should be as invariant as possible to viewpoint changes and, of course, as sparse as possible. In
our discussion most of the time we will refer to the simpler set up where two images are being
compared. But the reduction of the number of descriptors is, of course, still more important for
comparing an image to an image database as initially proposed in [53]. In this last reference,
large sets of descriptors are sparsified by clustering techniques. This only indicates how
important it is to reduce as much as possible the set of affine descriptors of each image.

Detectors, descriptors, and affine invariance. Given a query image of some physical object
and a set of target images, the first goal of image matching is to decide if these target images
contain a view of the same object. If the answer is positive, image matching aims at localizing
this object in these target images. Deciding if the object is present is difficult and becomes
especially tricky for large image databases, for which the control of false matches is crucial.
Another difficulty of the matching problem comes from the change of camera viewpoints
between images. In order to cope with these viewpoint changes, the whole matching process
should be as invariant as possible to the resulting image deformations. As we shall develop,
this requires affine invariance for the recognition process.

The classical approach to image matching consists in three steps: detection, description,
and matching. First, keypoints are detected in the compared images. Second, regions around
these points are described and encoded in local invariant descriptors. Finally, all these
descriptors are compared and possibly matched. Using local descriptors yields robustness
to context changes. Both the detection and description steps are usually designed to ensure
some invariance to various geometrical or radiometric changes.

Local image point detectors are always translation invariant. While the venerable Harris
point detector [19] is only invariant to translations and rotations, the Harris–Laplace [36],
Hessian–Laplace [38], or DoG (difference-of-Gaussian) region detectors [33] are invariant to
similarity transformations, i.e., translations, rotations, and scale changes. To ensure invariance
to affine transforms, some authors have proposed moment-based region detectors [31, 6]
including the Harris-affine and Hessian-affine region detectors [37, 38]. Locally affine invariant
region detectors can also be based on edges [58, 57], intensity [56, 57], or entropy [21].
Finally, the detectors MSER (“maximally stable extremal region”) [35] and LLD (“level line
descriptor”) [46, 47, 12] both rely on level lines. Yet the affine invariance of these detectors is
limited by the fact that optical blur and affine transforms do not commute, as shown in [44].
Level-line-based detectors like MSER, therefore, are not fit to handle scale changes. Indeed,
they do not take into account the effect of blur on the level line geometry [12].

In the last 15 years, numerous invariant image descriptors have been proposed in the
literature, but the most well known and the most widely used remains the scale-invariant
feature transform (SIFT), introduced by Lowe in his landmark paper [33]. SIFT makes use of
a DoG region detector. It is fully invariant to similarities (see [43] for a mathematical proof
of this fact). Each SIFT descriptor is composed of histograms of gradient orientation around
a key point, invariant to local radiometric changes and to geometrical image similarities. As
a result, the SIFT method can be considered as partially invariant to illumination and fully
invariant to geometrical similarities. But its success is certainly also due to its robustness to
reasonable viewpoint changes.

The superiority of SIFT based descriptors has been demonstrated in several comparative
studies [39, 42]. As a consequence, many variants of the SIFT descriptor have emerged, among
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which we can mention PCA-SIFT [23], GLOH (gradient location-orientation histogram) [39],
SURF (speeded up robust features) [7], or RootSIFT [5]. The main claims of these variants
are a lower complexity or a greater robustness to viewpoint changes. In the same vein, binary
descriptors have also received much attention. Focusing on speed and efficiency, the BRIEF
[11], BRISK [25], or LATCH [26] descriptors are compact and represented by sequences of
bits, and can be compared more quickly than floating point descriptors like those used in
SIFT. Descriptors based on nonlinear scale spaces, such as KAZE [3] or its accelerated version
AKAZE [4], have also been proposed to locally adapt blur to the image data.

None of the previously mentioned state-of-the-art methods is fully affine invariant. The
SIFT method does not cover the whole affine space and its performance drops under substantial
viewpoint changes. SIFT and the other aforementioned descriptors cannot cope with viewpoint
differences larger than 60◦ for planar objects [44, 40], and are still usable but much less efficient
for angles larger than 45◦ [22]. We shall give and use here concrete measurements of their
resilience to view angle changes.

To overcome this limitation, several simulation-based solutions have been recently proposed.
The core idea of these algorithms, that we choose to call by the generic term IMAS (image
matching by affine simulation), is to simulate a set of views from the initial images, by
varying the camera orientation parameters. These simulations allow us to capture far stronger
viewpoint angles than standard matching approaches, up to 88◦. Among those IMAS algo-
rithms, we can mention ASIFT [64], FAIR-SURF [49] and MODS [40].

A first suggestion to simulate affine distortions before applying a SIIM (scale invariant
image matching) appeared in [50] where the authors proposed to simulate two tilts and two
shear deformations followed by SIFT in a cloth motion capture application. As argued in
[64, 40, 49], if a physical object has a smooth or piecewise smooth boundary, its views
obtained by cameras in different positions undergo smooth apparent deformations. These
regular deformations are locally well approximated by affine transforms of the image plane.
By focusing on local image descriptors, the changes of aspect of objects can therefore be
modeled by affine image deformations.

The problem of constructing affine invariant image descriptors by using an affine Gaussian
scale space, that is equivalent to simulating affine distortions followed by the heat equation, has
a long story starting with [20, 8, 27, 31]. The idea of affine shape adaptation underlying one of
the methodologies for achieving affine invariance, was then in turn used as a base for the work
on affine invariant interest points and affine invariant matching in [31, 6, 37, 38, 58, 57, 56]. The
notion of an affine invariant reference frame was further developed in [29, 30]. Nevertheless, to
the best of our knowledge, the direct constructions of affine invariant descriptors as fixed points
for an iterative affine normalization process have never found a mathematical justification.

The first IMAS method provided with a mathematical proof of affine invariance is ASIFT
[44, 64]. The authors of this paper proposed it as an affine invariant extension of SIFT
and proved it to be fully affine invariant in a continuum model. The structure of ASIFT
is generic in the sense that it can be implemented with any local descriptor, provided this
descriptor has a robustness to viewpoint changes similar to SIFT descriptors. Unlike MSER,
LLD, Harris-Affine, and Hessian-Affine, which attempt at normalizing all of the six affine
parameters, ASIFT simulates three parameters and normalizes the rest. More specifically,
ASIFT simulates the two camera axis parameters, and then applies SIFT which simulates
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the scale and normalizes the rotation and the translation. Of the six parameters required for
affine invariance, three are therefore simulated and three normalized.

Two recent successful methods follow the same affine simulation path. FAIR-SURF [49]
combines the affine invariance of ASIFT and the efficiency of SURF. The MODS image
comparison algorithm introduced in [40] also relies on this principle and affine simulations
are generated on-demand if needed in the process of comparing two images. MODS employs
a combination of different detectors when comparing images. It outperforms state-of-the-art
image comparison approaches both in affine robustness and speed.

Other IMAS approaches without local descriptors have also been put up for template
matching. FAsT-Match [24] delivers affine invariance by assuming that the template (a patch
in the query image) can be recovered inside the target image by a unique affine map. Meaning
there is no subjacent projective map to identify. Contrary to IMAS with local descriptors,
the six required parameters to attain affine invariance are simulated instead of three of the
present paper.

In this paper, we are interested in generic IMAS algorithms based on local descriptors and
in their geometric optimization. In order to measure the degree of viewpoint change between
different views of the same scene, we draw on the concept of absolute and relative transition
tilts, previously introduced in [44, 64], and we illustrate why simulating large tilts on both
compared images is necessary to obtain a fully affine invariant recognition. Indeed, transition
tilts can in practice be much larger than absolute tilts, since they may behave like the square
of absolute tilts.

The key question of IMAS methods is how to choose the list of affine transforms applied to
the images before comparison. This list should be as short as possible to limit the computing
time. But it should also sample the widest possible range of affine transforms. As we shall
see, this question is closely related to the question of finding optimal coverings of the space of
affine tilts. This question is formalized and solved in section 2, where we find nearly optimal
coverings. Section 3 applies this result to IMAS algorithms. It first presents a complete
mathematical theory of IMAS algorithms, proving that they are fully affine invariant under
the assumption that the underlying SIIM has a (quantifiable) limited affine invariance. Section
4 gives an experimental validation. It starts by measuring the exact extent of affine invariance
for several SIIMs and deduces the corresponding complexity required to attain full affine
invariance from each. Section 5 is a conclusion.

2. The space of affine tilts. In this section, we introduce the space of tilts for planar
affine transforms, and we look for optimal coverings of this space. Optimal coverings will be
used in the next section to define an optimal discrete set of affine transformations as the basis
for IMAS algorithms. The rest of this section can be read as a sequence of purely geometric
results. However, the reader might prefer to keep in mind that the affine transforms considered
here can be interpreted as different viewpoints of a camera or, more generally, as the transition
from an image taken from a viewpoint to an image taken from another viewpoint. Indeed,
given a frontal snapshot of a planar object u(x) = u(x, y), we can transition from any affine
view Bu of the same object to any other affine view Au through the affine transformation
AB−1. This requires some notation. For any linear invertible map A ∈ GL+ (2), we denote the
affine transform A of a continuous image u(x) by Au(x) = u(Ax). We recall classic notation
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for three subsets of the general linear group GL (2) of invertible linear maps of the plane:

GL+ (2) = {A ∈ GL (2) | det (A) > 0} ,
GO+ (2) =

{
A ∈ GL+ (2) |A is a similarity

}
,

GL+
∗ (2) = GL+ (2) \GO+ (2) ,

where we call similarity any combination of a rotation and a zoom, and the symbol \ denotes
the set difference operator. Our central notion in the discussion is the tilt of an affine
transform, which we now define.

2.1. Absolute tilts.

Proposition 2.1 (see [44]). Every A ∈ GL+
∗ (2) is uniquely decomposed as

(1) A = λR1 (ψ)TtR2 (φ) ,

where R1, R2 are rotations and Tt = [ t 0
0 1 ] with t > 1, λ > 0, φ ∈ [0, π[, and ψ ∈ [0, 2π[.

Remark 2.2. A similar decomposition to (1) was also presented in [28] for small deforma-
tions around the identity.

Remark 2.3. It follows from this proposition that any affine map A ∈ GL+ (2) is either
uniquely decomposed as in (1) or is directly expressed as a similarity λR1.

Figure 1 shows a camera viewpoint interpretation of this affine decomposition where
the longitude φ and latitude θ = arccos 1

t characterize the camera’s viewpoint angles, ψ
parameterizes the camera spin and λ corresponds to the zoom. In the ideal affine model, the
camera is supposed to stand at an infinite distance from a flat image u, so that the deformation
of u induced by the camera indeed is an affine map. But the above approximation is still valid
provided the image’s size is small with respect to the camera distance. In other terms the
affine model is locally valid for each small and approximately flat patch of a physical surface
photographed by a camera at some distance. Yet, the affine deformation of the object’s aspect
will be different for each of its patches. This explains why affine invariant recognition methods
deal with local descriptors. The parameter t defined above measures the so-called absolute
tilt between the frontal view and a slanted view. The uniqueness of the decomposition in (1)
justifies the next definition.

Figure 1. Geometric interpretation of (1).
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Definition 2.4. We call the absolute tilt of A the real number τ (A) defined by
GL+ (2) → [1,∞[ ,

A 7→

{
1 if A ∈ GO+ (2) ,

t if A ∈ GL+
∗ (2) ,

where t is the parameter found when applying Proposition 2.1 to A.

Proposition 2.5. Let A ∈ GL+ (2). Then

τ (A) =

√
λ1

λ2
= |||A|||2

∣∣∣∣∣∣A−1
∣∣∣∣∣∣

2
,

where λ1 ≥ λ2 are the singular values of A and |||·|||2 is the usual Euclidean matrix norm.

Proof. Since the case of a similarity is straightforward, we do not consider it here. Therefore,
suppose that A ∈ GL+

∗ (2). Then, using (1) we can rewrite

A = R1

(
γ1 0
0 γ2

)
R2,

where R1, R2 are two rotations and γ1 ≥ γ2 > 0. So

A?A = Rt2

(
γ2

1 0
0 γ2

2

)
R2

whose eigenvalues are

λ1 = γ2
1 and λ2 = γ2

2 ,

but γ1, γ2 > 0 imply

A =
√
λ2R1

(√
λ1
λ2

0

0 1

)
R2

and, finally, τ (A) =
√

λ1
λ2

. In addition, it is well known that

|||A|||2 =
√
ρ (A?A) =

√
λ1,

∣∣∣∣∣∣A−1
∣∣∣∣∣∣

2
=

√
ρ
(

(AA?)−1
)

=
1√
λ2
,

where ρ (A?A) is the largest eigenvalue of A?A, i.e, the largest singular value of A.

2.2. Transition tilts. Image descriptors like those proposed in the SIFT method are
invariant to translations, rotations, and Gaussian zooms, which in terms of the camera position
interpretation (see Figure 1) correspond to a fronto-parallel motion of the camera, a spin of
the camera, and to an optical zoom. We shall focus on the last part TtR2 of the decomposition
(1) because it is the one that is imperfectly dealt with by SIIMs. SIIMs are instead able to
detect objects up to a similarity. This leads us to the next definition.
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Buu

Figure 2. Passage from transition tilts (left side) to absolute tilts (right side).

Definition 2.6. Let A,B ∈ GL+ (2). Then we define the right equivalence relation ∼ as

A ∼ B ⇔ AB−1 ∈ GO+ (2) .

Remark 2.7. It is important to notice here that the right and left equivalence relations do
differ. For example, take

A = T2Rπ
4

and B−1 = Rπ
4
T2,

then

AB−1 = 2Rπ
2
∈ GO+

whereas

B−1A = Rπ
4
T4Rπ

4
/∈ GO+.

Definition 2.8. Let A,B ∈ GL+ (2). We call the transition tilt between A and B the
absolute tilt of AB−1, i.e.,

τ
(
AB−1

)
.

The transition tilt has an agreeable visual interpretation appearing in Figure 2. By formula (1)
applied to AB−1, passing from an image Bu to an image Au comprises a single non-Euclidean
transformation, namely, the central tilt matrix Tτ(AB−1) which squeezes the image in the
direction of x after having rotated it. Thus the transition tilt measures the amount of image
distortion caused by a change of view angle. We now state and give a brief proof of the formal
properties of the transition tilt stated in [44].

Proposition 2.9. For A,B ∈ GL+ (2) we have

1. τ
(
AB−1

)
= 1 ⇔ A ∼ B;

2. τ (A) = τ
(
A−1

)
;

3. τ
(
AB−1

)
= τ

(
BA−1

)
;

4. τ
(
AB−1

)
≤ τ (A) τ (B);

5. max
{
τ(A)
τ(B) ,

τ(B)
τ(A)

}
≤ τ

(
AB−1

)
.
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Proof.
(1)

τ
(
AB−1

)
= 1⇔ AB−1 = λR⇔ A = λRB.

(2) By proposition 2.5,

τ (A) = |||A|||2
∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2

= τ
(
A−1

)
.

(3) From proof of 2 we have

τ
(
AB−1

)
= τ

((
AB−1

)−1
)

= τ
(
BA−1

)
.

(4) By Proposition 2.5

τ
(
AB−1

)
=
∣∣∣∣∣∣AB−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣(AB−1
)−1
∣∣∣∣∣∣∣∣∣

2

≤ |||A|||2
∣∣∣∣∣∣B−1

∣∣∣∣∣∣
2
|||B|||2

∣∣∣∣∣∣A−1
∣∣∣∣∣∣

2

= τ (A) τ (B) .

(5) From proof of 4 we have

τ (A) = τ
(
AB−1B

)
≤ τ

(
AB−1

)
τ (B)

and the same relation for B.

Definition 2.10. We call the space of tilts, denoted by Ω, the quotient GL+ (2) / ∼ where
the equivalence relation ∼ has been given in Definition 2.6.

This proposition completes Definition 2.6 and clarifies the geometrical interpretation of
the space of tilts: an element in the space of tilts represents the set of all the camera spins
and zooms associated with a certain tilt in a certain direction.

Notation 2.11. Let A ∈ GL+ (2). We denote by [A] the equivalence class in the space of
tilts associated with A, i.e.,

[A] =
{
B ∈ GL+ (2) |A ∼ B

}
.

Definition 2.12. We denote by i the canonical injection from the space of tilts to GL+ (2)
defined by

i :

{
Ω → GL+ (2) ,

[A] 7→ Tτ(A)Rφ(A).

This injection filters out the canonical representative from each class which is a mere tilt in
the x direction.

Remark 2.13. Clearly, the function i satisfies

[A] = [i ([A])]
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and the space of tilts can be parameterized by picking these representative elements in each
class as

Ω = [Id]
⋃  ⋃

(t,φ)∈]1,∞[×[0,π[

[TtRφ]

 .

The next proposition brings an additional justification to Definition 2.10. It means that the
transition tilt does not depend on the choice of the class representative in the space of tilts.

Proposition 2.14. Let A, B, C, D ∈ GL+ (2) satisfying C ∈ [A] and D ∈ [B]. Then

τ
(
AB−1

)
= τ

(
CD−1

)
.

Proof. Let C ∈ [A] , D ∈ [B]. We first remark that if either A ∈ GO+ (2) or B ∈ GO+ (2)
then the transition tilt operation is, respectively, the absolute tilt of D or C, which does not
depend on the class representative.

So without loss of generality suppose A,B ∈ GL+
∗ (2). Then, by Proposition 2.1, they are

rewritten in a unique way as

A = λAQATsRA,

B = λBQBTtRB,

and the same result can be applied to the following two matrices,

AB−1 = λAB−1QAB−1Tτ(AB−1)RAB−1 ,(2)

TsRAR
−1
B T−1

t = αQ3Tt3R3.

Moreover

AB−1 = λAQATsRA (λBQBTtRB)−1

=
αλA
λB

(QAQ3)︸ ︷︷ ︸
rotation

Tt3
(
R3Q

−1
B

)︸ ︷︷ ︸
rotation

.

Then, by the uniqueness of decomposition in (2) we have Tτ(AB−1) = Tt3 , implying

τ
(
AB−1

)
= τ

(
TsRAR

−1
B T−1

t

)
.

Again, the same methodology applied to

C = λCQCA

= λCλAQCQATsRA

and

D = λDQDB

= λDλBQDQBTtRB

shows that
τ
(
CD−1

)
= τ

(
TsRAR

−1
B T−1

t

)
= τ

(
AB−1

)
.
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The next proposition follows directly from Proposition 2.9.

Proposition 2.15. The function d

d :

{
Ω × Ω → R+,

([A] , [B]) 7→ log τ
(
AB−1

)
,

is a metric acting on the space of tilts.

Proof. First, d is well defined thanks to Proposition 2.14 which ensures the independence
from class representatives. Let us now prove the four metric axioms:

(1) By definition of the absolute tilt ∀A,B ∈ GL+ (2) one has that τ
(
AB−1

)
≥ 1. This

implies
d ([A] , [B]) ≥ 0.

(2) By Proposition 2.9.1 ∀A,B ∈ GL+ (2)

d ([A] , [B]) = 0⇔ τ
(
AB−1

)
= 1

⇔ A ∼ B
⇔ [A] = [B] .

(3) ∀A,B ∈ GL+ (2), Proposition 2.9.3 states that

τ
(
AB−1

)
= τ

(
BA−1

)
which implies

d ([A] , [B]) = d ([B] , [A]) .

(4) ∀A,B,C ∈ GL+ (2), Proposition 2.9.4 assures that the following inequality holds:

τ
(
BC−1

(
AC−1

)−1
)
≤ τ

(
BC−1

)
τ
(
AC−1

)
.

As the logarithm is monotone in [1,∞[, by simply applying it to both sides one obtains the
triangular inequality for d.

2.3. Neighborhoods in the space of tilts. Now that we have introduced the space of
tilts and the adequate metric on this space to measure image distortion, we wish to explore
optimal coverings for this space. We start by establishing closed formulas for disks in this two
dimensional (2D) space.

Theorem 2.16. Given an element of the space of tilts in canonical form [TtR (φ1)], the disk
B ([TtR (φ1)] , r) in the space of tilts centered at this element and with radius r corresponds to
the following set {

[TsR (φ2)] |G (t, s, φ1, φ2) ≤ e2r + 1

2er

}
,

where

G (t, s, φ1, φ2) =

( t
s + s

t

2

)
cos2 (φ1 − φ2) +

(
1
st + st

2

)
sin2 (φ1 − φ2) .
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(a) B
(
[Id], log

√
2
)

(b) B
([
T√2R0

]
, log
√

2
)

(c) B
(
[T2R0], log

√
2
)

(d) B
(
[T4R0], log

√
2
)

Figure 3. Polar coordinates. Green point—affine transformation in question; dashed line—
∂B([Id], log 4

√
2); dotted line—equal tilts; red line—disk’s boundary.

The proof of this theorem is given in the appendix. Figure 3 displays such disks in polar
coordinates (log τ cos (φ) , log τ sin (φ)). This representation will be convenient to visualize
region coverings defined by disks in the space of tilts. Figure 4 is illustrating an observation
hemisphere, which displays in a geometric environment the space of tilts, the class of affine
transformations in question (green dots), and their neighborhoods (black surfaces). Notice
that green dots represent camera viewpoints as depicted in Figure 1. In both representations,
the pairs (τ, φ) and (τ, φ+ π) are denoting the same element of the space of tilts. This is
easily interpreted: Two identical images of a planar scene are indeed obtained by an affine
camera positioned with a π longitude difference.

Proposition 2.17. Let A,B,C ∈ GL+ (2). Then

[A]C = [AC] ,

i.e, classes in Ω are stable by right multiplication. Moreover,

d ([AC] , [BC]) = d ([A] , [B]) .
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(a) B
(
[Id], log

√
2
)

(b) B
([
T√2R0

]
, log
√

2
)

(c) B
(
[T2R0], log

√
2
)

(d) B
(
[T4R0], log

√
2
)

Figure 4. Perspective views. Green point—affine transformation in question; dashed line—
∂B([Id], log 4

√
2); black surface—disk in question.

Proof. (1) Proof of [A]C ⊂ [AC].

B ∈ [A] =⇒ B = λRA

=⇒ BC = λRAC

=⇒ BC ∈ [AC] .

(2) Proof of [AC] ⊂ [A]C.

D ∈ [AC] =⇒ D = λRAC

=⇒ D ∈ [A]C.
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(3)

d ([AC] , [BC]) = log τ
(
AC (BC)−1

)
= log τ

(
AB−1

)
= d (A,B) .

Remark 2.18. Proposition 2.17 guarantees that transition tilts remain unchanged by right
compositions. Furthermore, as argued in the proof of Proposition 3.6, the right composition
with an element C ∈ GL+ (2) could be seen as a modification from a hypothetic frontal image
u to another hypothetic frontal image C−1u. All this gives both motivation and meaning to
the forthcoming Theorem 2.20.

Remark 2.19. One might also be interested in the way disks are transformed by left
multiplication of elements belonging to GL+ (2). Unfortunately, in general,

C [A] 6= [CA] .

Take, for example, C = A = Tt so

Rπ
2

= Tt

(
1

t
Rπ

2
Tt

)
/∈ [Tt2 ] .

Furthermore, for C ∈ GL+ (2), one has

τ
(
CAB−1C−1

)
= c2

(
CAB−1C−1

)
=
∣∣∣∣∣∣CAB−1C−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣C (AB−1
)−1

C−1
∣∣∣∣∣∣∣∣∣

2

≤ |||C|||22
∣∣∣∣∣∣C−1

∣∣∣∣∣∣2
2

∣∣∣∣∣∣AB−1
∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣(AB−1
)−1
∣∣∣∣∣∣∣∣∣

2

= τ (C)2 τ
(
AB−1

)
so, in general,

d ([CA] , [CB]) ≤ 2d ([C] , [Id]) + d ([A] , [B]) .

The following theorem will be crucial in the next section to explain why IMAS algorithms are
truly affine invariant.

Theorem 2.20. Let

Γ1 = B ([Id] , log Λ1) ,

Γ2 = B ([Id] , log Λ2) ,

Γ′ = B ([Id] , log Λ2r) ,

be three neighborhoods of [Id] in Ω, where Λ1,Λ2, r ∈ [1,∞[, and assume that S1,S2 ⊂ Ω are
two log r-coverings of Γ1 and Γ′, i.e.,

Γ1 ⊂
⋃
S∈S1

B (S, log r) ,

Γ′ ⊂
⋃
S∈S2

B (S, log r) .
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Then, for every [A] ∈ Γ1, [B] ∈ Γ2, there exist C ∈ GL+ (2) with τ (C) ≤ r, SA ∈ S1, and
SB ∈ S2 such that

d
(
SA,

[
(AC)−1

])
= 0,

d
(
SB,

[
(BC)−1

])
≤ log r.

A sketch of Theorem 2.20 appears in Figure 5.

Proof. Let us set C = A−1i (SA)−1, where i appears in Definition 2.12.

(1) Proof of d
(
SA,

[
(AC)−1

])
= 0. Proposition 2.9.2 directly implies

d ([Id] , [A]) = d
(
[Id] ,

[
A−1

])
.

Then, as S1 is a log r-covering of Γ1, there exists SA ∈ S1 such that[
A−1

]
∈ B (SA, log r) ,

meaning that the following inequality holds:

d
(

[Id] ,
[
A−1i (SA)−1

])
= log τ

(
A−1i (SA)−1

)
= d

([
A−1

]
, SA

)
≤ log r.

[Id]

Γ1

SA=
[
(AC)−1

]

[Id]

Γ2

Γ′

SA

B (SA, log r)

[
A−1

]

[
B−1

]

SB[
(BC)−1

]
B (SB , log r)

Figure 5. Sketch of Theorem 2.20.
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Finally, as d is a metric (by Proposition 2.15) we know

d
(
SA,

[
(AC)−1

])
= d (SA, [i (SA)]) = 0.

(2) Proof of d
(
SB,

[
(BC)−1

])
≤ log r. By first using Proposition 2.9 followed by Proposition

2.15, we have

τ (BC) ≤ τ (B) τ
(
C−1

)
= Λ2r

⇓

d
(

[Id] ,
[
(BC)−1

])
= log τ (BC) ≤ log Λ2r

⇓[
(BC)−1

]
∈ Γ′.

Once more, as S2 is a log r-covering of Γ′, there exists SB ∈ S2 such that[
(BC)−1

]
∈ B (SB, log r) .

3. Application: Optimal affine invariant image matching algorithms. The theory and
results presented above provide a well-suited geometrical framework for IMAS. This section
gives the mathematical formalism and a mathematical proof that IMAS based algorithms
are fully affine invariant, up to sampling errors. While the former sections only dealt with
affine geometry, we now must introduce in the formalism the camera blur, as we shall deal
with digital image recognition. Our goal is to define rigorously affine invariant recognition for
digital images.

Consider a continuous and bounded image u (x) defined for every x = (x, y) ∈ R2. All
continuous image operators including the sampling will be written in capital letters A, B and
their composition as a mere juxtaposition AB.

Definition 3.1. For any A ∈ GL+ (2), we define the affine transform A of a continuous
image u by

Au(x) :=u(Ax).

Homotheties and rotations acting on continuous images are similarly written as

Hλu (x) = u (λx) ,

Rφu (x) = u (Rφx) .

We now introduce a compact notation for the various convolutions with Gaussians. We
shall denote by ?x the one dimensional (1D) convolution operator in the x-direction, i.e.,

G ?x u (x, y) =

∫
R
G (z)u (x− z, y) dz.



COVERING THE SPACE OF TILTS 1245

Similarly, we denote by ?y the 1D convolution operator in the y-direction. We denote by Gσ,
Gx
σ, and Gy

σ, respectively, the 2D and 1D convolution operators in the x and y directions with

Gcσ (x, y) :=
1

2π(cσ)2
e
−x

2+y2

2(cσ)2 ,

Gxcσ (x) :=
1√

2πcσ
e
− x2

2(cσ)2 ,

Gycσ (y) :=
1√

2πcσ
e
− y2

2(cσ)2 ,

namely,

Gσu := Gcσ ? u,

Gx
σu := Gxcσ ?x u,

Gy
σu := Gycσ ?y u.

Here the constant c ≥ 0.7 is large enough to ensure that all convolved images, initially sampled
at distance one, can be subsampled at Nyquist distance σ without causing significant aliasing.

Remark 3.2. Gσ satisfies the semigroup property

(3) GσGβ = G√
σ2+β2 .

By a mere change of variables in the integral defining the convolution, the next formula holds
and will be useful:

(4) GσHγu = HγGσγu.

In the classic Shannon–Nyquist framework, we shall denote the image sampling operator (on a
unary grid) by S1. Thus S1u is defined on the grid Z2. The Shannon–Whittaker interpolator
of a digital image on Z2 will be denoted by I.

As developed in [64], the whole image comparison process, based on local features, can
proceed as though images were (locally) obtained by using digital cameras that stand far
away, at infinity. The geometric deformations induced by the motion of such cameras are
affine maps. A model is also needed for the two main camera parameters not deducible from
its position, namely, sampling and blur. The digital image is defined on the camera charge
coupled device (CCD) plane. The pixel width can be taken as unit length, and the origin and
axes chosen so that the camera pixels are indexed by Z2. The digital initial image is always
assumed well sampled and obtained by a Gaussian blur with standard deviation around 0.8. In
all that follows, u0 denotes the (theoretical) infinite resolution image that would be obtained
by a frontal snapshot of a plane object with infinitely many pixels. The digital image obtained
by any camera at infinity is therefore formalized as u = S1G1AT u0, where A is any linear
map with positive singular values and T any plane translation. Thus we can summarize the
general image formation model with cameras at infinity as follows.
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Figure 6. The projective camera model u = S1G1Au0. A is a planar projective transform (a homography).
G1 is an antialiasing Gaussian filtering. S1 is the CCD sampling.

Definition 3.3 (image formation model). Digital images of a planar object whose frontal
infinite resolution image is u0, obtained by a digital camera far away from the object, satisfy

(5) u =: S1G1AT u0,

where A is any linear map and T any plane translation. G1 denotes a Gaussian kernel broad
enough to ensure no aliasing by 1-sampling, namely, IS1G1AT u0 = G1AT u0.

The image formation model in Definition 3.3 is illustrated in Figure 6.

3.1. Inverting tilts. We now formalize the notion of tilt. There are actually three different
notions of tilt, that we must carefully distinguish.

Definition 3.4. Given t > 1, the tilt factor, define then as follows:
• Geometric tilts:

T xt u0(x, y) =: u0(tx, y),

T yt u0(x, y) =: u0(x, ty).

• Simulated tilts (taking into account camera blur):

Txt v =: T xt Gx√
t2−1

?x v,

Tyt v =: T yt G
y√
t2−1

?y v.

• Digital tilts (transforming a digital image u into a digital image):

u→S1Txt Iu,
u→S1Tyt Iu.

Digital tilts are the ones used in practice. It all adds up because the simulated tilt yields a
blur permitting S1-sampling.

If u0 is an infinite resolution image observed with a camera tilt of t in the x direction, the
observed image is G1T

x
t u0. Our main problem is to reverse such tilts. This operation is, in
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principle, impossible, because geometric tilts do not commute with blur. However, the first
formula of Theorem 3.5 shows that Tyt is, up to a zoom out, a pseudoinverse to T xt .

The meaning of this result is that a tilted image G1T
x
t u can be tilted back by tilting in the

orthogonal direction. The price to pay is a t zoom-out. The second relation in the theorem
means that the application of the simulated tilt to an image that can be well sampled by S1

yields an image that keeps that well sampling property.

Theorem 3.5. Let t ≥ 1. Then

TytG1T
x
t = G1Ht,(6)

TytG1 = G1T
y
t .(7)

Proof. Since Ht = T yt T
x
t , (6) follows from (7) by composing both sides on the right by T xt .

Let us now prove (7). We shall use the following obvious facts,

(8) G1 = Gx
1G

y
1 = Gy

1G
x
1 ,

which follows from the separability of the Gaussian and Fubini’s theorem and the commutation

(9) Gx
1T

y
t = T yt G

x
1

which is true because Gx
1 and T yt act separably on the variables x and y. Using first (4) in

the y dimension, where T yt is a mere homothety, and then successively (9), (8), the semigroup
property for the Gaussians, and Definition 3.4 we get

T yt G
y
t = Gy

1T
y
t ⇒

Gx
1T

y
t G

y
t = Gx

1G
y
1T

y
t ⇒

T yt G
y
tG

x
1 = G1T

y
t ⇒

T yt G
y√
t2−1

Gy
1G

x
1 = G1T

y
t ⇒

TytG1 = G1T
y
t ,

which proves (7).

The meaning of Theorem 3.5 is that we can design an exact algorithm that simulates
all inverse tilts for comparing two digital images. This algorithm handles two images u =
G1AT1w0 and v = G1BT2w0 that are two snapshots from different viewpoints of a flat object
whose front infinite resolution image is denoted by w0.

3.2. Proof that IMAS works. In this section, the formal IMAS algorithm is duly presented
(Algorithm 3.1). Our goal is to prove that it works. This proof is a direct application of the
results introduced in the previous section. The algorithm and its proof rely on the formal
assumption that there exists an image comparison algorithm able to compare image pairs
with tilts lower than r. The core idea of IMAS algorithms is illustrated in Figure 7.
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Figure 7. IMAS algorithms start by applying a finite set of optical affine simulations to u and v, followed
by pairwise comparisons.

Algorithm 3.1 Formal IMAS.

Environment:
Parameters and assumptions from Theorem 2.20 with

Si =
{[
T xtik

Rφik

]}
k=1,...,ni

.

Input:
Query and target images: u and v.

Start:
1: ∀k = 1, . . . , n1 do

uk = Txt1kRφ1
k
u.

2: ∀k = 1, . . . , n2 do
vk = Txt2kRφ2

k
v.

3: ∀(k1, k2) ∈ {1, . . . , n1} × {1, . . . , n2}

Mk1,k2 = SIIM-Matches(uk1 , vk2).

Output:

M =
⋃

(k1,k2)∈{1,...,n1}×{1,...,n2}

Mk1,k2 .
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Proposition 3.6. Let u and v be, respectively, query and target images which are related by
a transition tilt under Λ1Λ2, i.e., there exist a continuous image w0 and A,B ∈ GL+ (2) with

τ (A) ≤ Λ1 and τ (B) ≤ Λ2

such that

(10) u = G1AT1w0 and v = G1BT2w0,

where T1, T2 are planar translations. Then, under the assumptions of Theorem 2.20, the formal
IMAS of Algorithm 3.1 generates two affine versions of the images u and v with a transition
tilt lower than r.

Proof. By Theorem 2.20 there exist SA ∈ S1, SB ∈ S2, and C ∈ GL+ (2) with τ (C) ≤ r
such that

d
(
SA,

[
(AC)−1

])
= 0,

d
(
SB,

[
(BC)−1

])
≤ log r.

Consider the slanted view of the frontal continuous image w0 defined by w1 := C−1w0. Then
we can rewrite query and target images as

u = G1ACT1w1 and v = G1BCT2w1.

By Proposition 2.17, the above modification keeps transitions tilts stable, i.e.,

d ([AC] , [BC]) = d ([A] , [B]) ,

so we can reason as if w1 were the frontal image, instead of w0.
Now, the formal IMAS Algorithm 3.1 will apply i (SA) = T xtARφA and i (SB) = T xtBRφB ,

respectively, on the query and target images. This is

1. TxtARφA to u, which yields

ũ = G1i (SA)ACT1w1

= G1λRT1w1;

2. TxtBRφB to v, which yields

ṽ = G1i (SB)BCT2w1.
But

d ([Id] , [i (SB)BC]) = log τ (i (SB)BC)

= d
(
SB,

[
(BC)−1

])
≤ log r

which proves that the affine relation between ũ and ṽ involves a transition tilt under r.



1250 M. RODŔIGUEZ, J. DELON, AND J.-M. MOREL

Table 1
Link between absolute tilts, transition tilts, and viewpoint.

Covered absolute tilts Attainable transition tilts Viewpoint angle
(τ (A) ≤

√
rΛ and τ (B) ≤

√
rΛ)

(
τ
(
AB−1

)
≤ Λ2

) (
arccos 1

Λ2

)
Λ = 8 64 89.1◦

Λ = 4
√

2 32 88.2◦

Λ = 4 16 86.4◦

Λ = 2
√

2 8 82.8◦

Λ = 2 4 75.5◦

Λ =
√

2 2 60◦

Remark 3.7. Two log r-coverings of the same region

Γ = B ([Id] , log Λ)

would then ensure that the formal IMAS Algorithm 3.1 manages to reduce transition tilts
under Λ2

r between two images into transition tilts under r. A relation between covered absolute
tilts, attainable transition tilts, and maximal viewpoint angle can be found in Table 1.

3.3. Optimal discrete coverings in the space of tilts. We now consider the problem of
providing two optimal sets S1,S2 ⊂ Ω permitting the application of Theorem 2.20. These
sets should ensure a minimal complexity for the IMAS algorithm. We thus need to define an
optimality criterion. We observe that an IMAS algorithm simulates affine transformations on
a digital image and then compares descriptors coming from those simulated versions. One
would like to minimize the overall number of descriptor comparisons while maintaining the
detection efficiency. This minimization is not equivalent to a minimization of the number of
simulated versions being used. We shall base our efficiency criterion on two straightforward
remarks. The first one is that if a digital image suffers a tilt t in any direction, its area
gets modified by a factor 1

t . The second one is that the expected number of keypoints in a
digital image is proportional to its area. Both remarks imply that the complexity of an IMAS
algorithm will be given by the overall area of the simulated images being ultimately compared.
This justifies the next definition.

Definition 3.8. We call the area ratio of S (a finite set of elements in Ω) the real number∑
S∈S

1

τ (S)
.

The area ratio fixes the factor (larger than 1) by which the image area is being multiplied
when summing the areas of all of its tilted versions. Then, as the ultimate goal is to reduce
the number of key points comparisons, it is natural to look for a set S whose area ratio is close
to the infimum among all log r-coverings of Γ. Unfortunately, even in R2, the mathematical
problem of finding a covering of a certain set with a minimum amount of disks is well known to
be NP-hard. It is therefore difficult to find an optimal solution for our problem, and unlikely
that it will be proved to be optimal even if it is. Fortunately, our search space in the set of
log r-coverings can be drastically reduced by imposing practical and theoretical constraints to
S. Those constraints follow from simple requirements for an image matching method.



COVERING THE SPACE OF TILTS 1251

Definition 3.9. We shall say that a set S ∈ Ω is feasible if and only if

1. [Id] ∈ S;
2. there exist n ∈ N+ and

(t1, . . . , tn, φ1, . . . , φn) ∈ [1,∞[n × ]0, π]n

such that

S \ {[Id]} =

n⋃
i=1

{
[TtiRkφi ] ∈ Ω | k = 0, . . . ,

⌊
π

φi

⌋}
,

where bac denotes the nearest integer less than or equal to a real number a.

Remark 3.10. Definition 3.9.1 avoids an image resolution loss before comparison, an obvious
requirement. Imposing groups of concentric equidistant tilts as in Definition 3.9.2 is a sound
isotropy requirement.

Definition 3.11. Set Γ = B ([Id] , log Λ). A feasible set S ∈ Ω with parameters

(n, (t1, . . . , tn, φ1, . . . , φn)) ∈ N+ × [1,∞[n × ]0, π]n

is said to be optimal among feasible sets if and only if it realizes the minimal area ratio. In
other words, optimal feasible sets are solutions of

arg min
(n,(t1,...tn,φ1,...φn))∈N+×[1,∞[n×]0,π]n

1 +
n∑
i=1

|Jti,φi |
ti

(11)

subject to: Γ ⊂ Blog r
[Id] ∪

 ⋃
1≤i≤n

⋃
S∈Jti,φi

Blog r
[S]

 ,

where Jti,φi is the set of transformations of the form

TtiRφi , TtiR2φi , . . . , TtiR
⌊
π
φi

⌋
φi
,

|Jti,φi | is the cardinal of Jti,φi, and Blog r
[S] denotes B ([S] , log r).

Fortunately for our problem with the realistic values Λ = 6 and r = 1.8, n = 2 can
be fixed, as easy heuristics indicate that any covering with n > 2 has a far too large area
ratio. Thus our optimization in a realistic setting ends up being performed in dimension 4 for
sets (t1, t2, φ1, φ2). With n thus fixed the optimization problem in (11) can be exhaustively
optimized. In this minimization we deal with 4 dimensions and more specifically with 1004

feasible sets by sampling each parameter. This yields an almost exact discrete exhaustive
optimization by sampling densely the explored set (t1, t2, φ1, φ2) with 100 different values for
each parameter. The next proposition describes the result of this optimization and verifies
that it is indeed feasible.

Proposition 3.12. There exists a feasible log 1.8-covering, depicted in Figure 9(c), with area
ratio equal to 6.34. It is an approximated solution of the optimization problem in (11) for
Γ = {[TtRφ] | t ≤ 6}, n = 2. Therefore, the infimum area ratio among all log 1.8-coverings of
{[TtRφ] | t ≤ 6} is lower than 6.34.



1252 M. RODŔIGUEZ, J. DELON, AND J.-M. MOREL

Proof. We are dealing with 4 dimensions to minimize and more specifically with 1004

feasible sets. Computing area ratios for each feasible set is straightforward but validating
the covering condition is a more involved computational issue. For the sake of clearness, the
intersection of disk boundaries, which are composed at most of two elements for nonidentical
disks, shall be denoted by

Σ1 = ∂Blog 1.8

[Tt1 ]
∩ ∂Blog 1.8[

Tt1Rφ1

], Σ2 = ∂Blog 1.8

[Tt2 ]
∩ ∂Blog 1.8[

Tt2Rφ2

],
and their respective closest and farthest elements will be denoted by

minΣ1 := arg min
S∈Σ1

d (S, [Id]) , maxΣ1 := arg max
S∈Σ1

d (S, [Id]) ,

minΣ2 := arg min
S∈Σ2

d (S, [Id]) , maxΣ2 := arg max
S∈Σ2

d (S, [Id]) .

In order to check if a feasible set does cover the specified region we propose to verify the
following four conditions depicted in Figure 8:

1. Σ1 6= ∅ and Σ2 6= ∅.
2. minΣ1 must lie inside the ball Blog 1.8

[Id] , which ensures a covering of Blog τ(maxΣ1)
[Id] .

3. maxΣ2 must lie outside the region Γ, which ensures a covering of the annulus defined

by Γ \ Blog τ(minΣ2)
[Id] .

4. For ε small, all elements S ∈ Fε must lie inside some disks of radius log (1.8− ε), i.e.,

S ∈
⋃

1≤i≤2

⋃
S′∈Jti,φi

Blog(1.8−ε)
[S′] ,

where Fε is a finite ε-dense set of the annulus defined by

Blog τ(minΣ2)
[Id] \ Blog τ(maxΣ1)

[Id] .

Notice that the fourth condition only ensures a log (1.8− ε)-covering up to an error

ε = max
S′∈Γ

min
S∈Fε

d
(
S, S′

)
and so, by dilating back disks radii to 1.8, one ensures log 1.8-coverings.

By using the procedure described above, an approximated solution to the optimization
problem in (11) has been obtained. Its parameters can be found in Table 2. Its corresponding
representation in the space of tilts appears in Figure 9(c).

The procedure in the proof of Proposition 3.12 has also been applied to find more near
optimal coverings appearing in Figure 9.

4. Experimental validation. We are now able to propose and evaluate for each SIIM
method its IMAS, namely, its affine invariant extension. This affine invariant version relies
on two facts. First, each SIIM identifies viewpoint changes, under a certain transition
tilt threshold (that we shall estimate in this section). Second, any smooth map is locally
approximable by an affine map. Hence, under the assumption that the surface of photographed
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Covered area

B ([Id] , log r)

[Id] [Tt1 ]

[Tt1Rφ1 ]

min Σ1

max Σ1

(a) Second condition

Covered area

Γ

B ([Id] , log r)

[Id] [Tt2 ]

[Tt2Rφ2 ]

min Σ2
max Σ2

(b) Third condition

B ([Id] , log r)

[Id] [Tt1 ]

[Tt1Rφ1 ]

max Σ1

[Tt2 ]

[Tt2Rφ2 ]

min Σ2

Fε
(c) Fourth condition

Figure 8. Verifying covering conditions for feasible sets in Proposition 3.12.

Table 2
Approximated solution to the optimization problem in (11).

Parameter Value

topt1 2.88447

φopt1 0.394085

topt2 6.2197

φopt2 0.196389

objects is locally smooth, all viewpoint changes can be understood as local transition tilt
changes (see Figure 1). Third, once provided with a log r-covering of Γ = Γ′, where r is less
than the transition tilt threshold of the SIIM, Proposition 3.6 states that Algorithm 3.1 offers
an affine invariant version of the considered SIIM. Indeed, there is at least one pair of simulated
images whose transition tilt is less than r, and on these two images the SIIM can succeed. The
affine invariance property is ensured for transition tilt changes up to Λ1Λ2, i.e., for viewpoint
angle changes of about arccos( 1

Λ1Λ2
). We shall denote by ts1×s2max the associated maximum tilt

tolerance with respect to a matching method for images with size larger than s1 × s2.



1254 M. RODŔIGUEZ, J. DELON, AND J.-M. MOREL

(a) Optimal log 1.6-covering of {[TtRφ] | t ≤ 5.6}
with 28 affine simulations representing an area ratio
of 8.42.

(b) Optimal log 1.7-covering of {[TtRφ] | t ≤ 5.8}
with 25 affine simulations representing an area ratio
of 7.06.

(c) Optimal log 1.8-covering of {[TtRφ] | t ≤ 6}
with 25 affine simulations representing an area ratio
of 6.34.

(d) Optimal log 1.9-covering of {[TtRφ] | t ≤ 8}
with 27 affine simulations representing an area ratio
of 6.18.

(e) Optimal log 2-covering of {[TtRφ] | t ≤ 10} with
32 affine simulations representing an area ratio of
6.02.

Figure 9. Near-optimal coverings in the space of tilts. Gray areas—uncovered; blue areas—covered by at
least two disks; white areas—covered by only one disk.
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In our experiments, all SIIM methods were immersed in the same affine extension setup.
The simulation of optical tilts, matching, and filtering were handled in the very same way. This
setup received as a parameter the name of the base detector+extractor method to perform,
then a brute force matcher was performed with the second-closest neighbor acceptance criterion
proposed by Lowe in [33]. Finally, as presented in [44, 64], three main filters were applied:
first, only unique matches were taken into account; second, groups of multiple-to-one and
one-to-multiple matches were removed; finally, only matches coming from the most significant
geometric model (if it existed!) were kept. In our case, as all tests were based on planar
transformations, the ORSA homography detector [41] (a parameterless variant of RANSAC)
was applied to filter out matches not compatible with the dominant homography.

All detectors, all extractors, and the matcher were taken from the Open Source Computer
Vision (OPENCV) Library, version 3.2.0.

4.1. Maximal tilt tolerance computation for each SIIM. From the complexity viewpoint,
the main quantitative parameter for extending a SIIM into an IMAS is its tilt tolerance.
We do not question the invariance of descriptors with respect to zoom and rotations but
rather how they perform against transition tilt changes incurred when matching, for example,
G1Id u to G1TtRφu, where t ∈ [1,∞[ and φ ∈ [0, π[.

We used the tolerance image dataset displayed in Figure 10 to evaluate the maximal
tilt tolerance of each SIIM with respect to images of similar size. Images in this dataset
have a fixed size and were selected to obtain a diversity of challenging scenarios. In order

(a) 640× 480 (b) 650× 488 (c) 850× 680

(d) 800× 600 (e) 468× 493 (f) 800× 640

(g) 640× 480 (h) 800× 600 (i) 640× 480

Figure 10. Tolerance image dataset.
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(a) RootSIFT
(
U700×550

max = 2
)

(b) SIFT
(
U700×550

max = 1.8
)

(c) FREAK
(
U700×550

max = 1.8
)

(d) AKAZE
(
U700×550

max = 1.7
)

(e) BRISK
(
U700×550

max = 1.7
)

(f) ORB
(
U700×550

max = 1.5
)

(g) SURF
(
U700×550

max = 1.5
)

(h) LATCH
(
U700×550

max < 1.4
)

(i) BRIEF
(
U700×550

max � 1.4
)

Figure 11. Represented in the space of tilts, the associated upper bounds (U700×550
max ) for maximum tilt

tolerances. Black dot—[Id]; colored dots stand for tested tilts [TtRφ], where t ∈ {1.4, 1.5, . . . , 2.4} and φ ∈
{0, 10, . . . , 170}; blue dots—attainable tilts for all images in the dataset; red dots—unattainable tilts for at least
one image in the dataset; gray areas—

{
[TtRφ] |t ≥ U700×550

max

}
; white areas—

{
[TtRφ] |t ≤ U700×550

max

}
.

to approximate t700×550
max , we simulated optical tilts on the tolerance image dataset and then

tested whether this affine simulation was identified by ORSA homography with a precision of
3 pixels. This test determined upper bounds U700×550

max depicted in Figure 11 for nine of the
best state-of-the-art SIIMs.

This test yielded upper bounds for t700×550
max , based on its application to nine images whose

sizes are close to 700× 550. Supposing a maximal angle error computation of π
10 , we assumed

that for each SIIM

t700×550
max =

U700×550
max

1

|cos( π10)|
≈ U700×550

max

1.05
,

and constructed its affine invariant version with log t700×550
max -coverings.

4.2. Affine invariant methods. The matching process is as symmetric as possible. No
significant changes should come along by interchanging the roles of the query and target
images. In the case of IMAS algorithms this symmetry implies a unique set of optical tilts to



COVERING THE SPACE OF TILTS 1257

Figure 12. Image w0 (3264× 1836) for the IMAS efficiency test.

simulate on both query and target images. Thus, if this unique set of optical tilts represents
a log r-covering of

Γ1 = Γ′ = {[TtRφ] | t ≤ Λ}

then Proposition 3.6 ensures that any IMAS based on a SIIM whose maximum tilt tolerance
is greater than r is able to identify all tilts under Λ2

r by simulating all affine maps in the
log r-covering.

Several coverings in the space of tilts have been proposed in [44, 64, 49, 40] for SIFT and
SURF. Figure 16 displays these coverings. They are clearly not optimal. Indeed, most of
these coverings do not really cover the region they were meant to, except for ASIFT [44, 64]
(which instead is visually redundant) and for the affine DoG-SIFT version in [40].

In order to compare the efficiency of those coverings, query and target images were
generated in a way so as to test Algorithm 3.1 to the limit, i.e., forcing the worst case scenario

in which
[
(BC)−1

]
lies in Γ′ \ Γ2. We simulated the optical tilts on query and target images

coming from one single image. This image, denoted by w0 and appearing in Figure 12, was
then used to compute the inputs of Algorithm 3.1 as follows:

• Query image (nonfixed tilt) G1At,φw0, where At,φ = RφTtRπ
2
.

• Target image (fixed tilt) G1Bφw0, where Bφ = Rφ+π
2
TΛ.

The veritable interest of these affine maps being the inverse maps they determine, namely,[
A−1
t,φ

]
=
[
TtRπ

2
−φ

]
,[

B−1
φ

]
= [TΛRφ] ,

which according to Proposition 2.9.4, attain maximal transition tilts for fixed tilts such as t
and Λ, i.e.,

τ
(
A−1
t,φBφ

)
= tΛ.
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(a) Optimal Affine-SIFT (r = 1.7)
Γ1 = {[TtRφ] | t ≤ 3.41}
Γ′ = {[TtRφ] | t ≤ 5.8}

(b) ASIFT (r = 1.8)
Γ1 = {[TtRφ] | t ≤ 3.05}
Γ′ = {[TtRφ] | t ≤ 5.5}

(c) MEDIUM configuration for DoG-SIFT
(r = 1.8)
Γ1 = {[TtRφ] | t ≤ 5}
Γ′ = {[TtRφ] | t ≤ 9}

(d) Optimal Affine-SURF (r = 1.4)
Γ1 = {[TtRφ] | t ≤ 3.57}
Γ′ = {[TtRφ] | t ≤ 5}

(e) FAIR-SURF - simulated tilts (r = 1.5)
Γ1 = {[TtRφ] | t ≤ 3.77}
Γ′ =

{
[TtRφ] | t ≤ 4

√
2
} (f) FAIR-SURF - fixed tilts (r = 1.5)

Γ1 = {[TtRφ] | t ≤ 3.77}
Γ′ =

{
[TtRφ] | t ≤ 4

√
2
}

Figure 13. Extreme test results. Black dot—[Id]; colored dots stand for [A−1
t,φ] and belong to a fixed log 1.1

uniform discretization of the annulus
{

[TtRφ] | 2 ≤ t ≤ 4
√

2
}

. The angle φ implicitly fixes
[
B−1
φ

]
= [TΛRφ],

where Λ = arg maxt [TtRφ] ∈ Γ′. Blue/Red dots—Success/Failure of ORSA homography in identifying the
underlying affine map.

When ORSA homography was able to identify the affine map that relates query and
target images, we counted the event as a success. Clearly, if Γ′ and Γ2 are truly log r-covered
then Proposition 3.6 implies that all tests for which [A−1

t,φ] ∈ Γ1 should be counted as a
success. Results in Figure 13 were as expected and highlight the importance of using the right
coverings for extreme cases. Both ASIFT and optimal affine-SIFT were able to capture most
of all transition tilts that Proposition 3.6 predicted, namely, those under Λ2

r .
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We must keep in mind that these log r-coverings depend on tilt tolerances found over
images in Figure 10. Maximal tilt tolerances are linked to the size of images being compared
and as a consequence the disks radius might grow or shrink proportionally to the minimum size
of all simulated images. Moreover, Proposition 3.6 does not take into account discretization
errors and relies on two main hypotheses:

1. The considered SIIM is truly rotation and zoom invariant.
2. For images similar to the input image, the SIIM under consideration has a maximal

tilt tolerance not smaller than r.
As anticipated, the area ratio associated with a covering reliably evaluates the difference

of performance between affine versions of the same matching method. Being proportionally
linked to the total amount of keypoints, the area ratio of Definition 3.8 predicts the order of
growth in computation time. For example, the SIFT keypoint computation part induced by
the optimal covering in Figure 9(b) is twice as fast as the one induced by the ASIFT covering.
The same goes for the matching part, only this time the optimal version is four times faster.
Since both coverings cover about the same region, our optimal affine-SIFT supplants ASIFT
with no qualitative matching loss.

Two examples of performance over query and target images from Figures 14 and 15 are,
respectively, found in Tables 3 and 4. In Table 3, affine-ORB and affine-BRIEF both fail
because of too many false matches. The best scores found by ORSA to identify meaningful
homographies were, respectively, 16 out of 905 and 6 out of 1409. Code optimization, smart
tweaks, and parallelism performance may vary from SIIM to SIIM and from IMAS to IMAS,
which ultimately may lead to discrepant area ratio predictions on computation time. This
is the case of SURF (and optimal affine-SURF) whose implementation uses several fine and
clever optimizations. Nonetheless, the optimal affine-SIFT yields more matches for a lower
computation time.

In Table 4 the reader will notice that affine-ORB has fewer matches than ORB itself, which
might seem contradictory. This happens when postprocessing the matches, more specifically,
when applying the second filter. The multiple-to-one/one-to-multiple filter, initially proposed
in [44, 64], is meant to filter out undesired aberrant matches but, unfortunately, many good
ones also get eliminated. In spite of this handicap, affine-ORB is able to catch more matches
with higher transition tilts.

5. Conclusion. IMAS is acknowledged as the best methodology to match images of the
same scene regardless of the viewpoint change. Its time complexity is one of the main
drawbacks that has been widely criticized in the literature. The mathematical derivations
in this paper imply that IMAS based methods really are affine invariant provided the base
SIIM satisfies scale+rotation invariance, sufficient distinctiveness, and an acceptable viewpoint
tolerance measured as its transition tilt. We have proved that, as summarized in Figure 16, all
former IMAS methods are oversimulating optical tilts. We therefore have developed a method,
finding for each SIIM an optimal IMAS method which only depends on the tilt tolerance of
the SIIM. This led us to measure the tilt tolerance of a number of classic SIIMs. We found,
for example, that the optimal IMAS extension of SIFT needs half as many descriptors and
therefore is four times faster than ASIFT. This improvement applies to all state-of-the-art
IMAS, that can be accelerated by a factor of four. Another consequence is that the set of
affine descriptors associated with an image can be halved.
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Table 3
Matching methods performance over query and target images from Figure 14. The proposed matching

methods in this paper appear in bold. Computations were performed on an Intel(R) Core(TM) i5-4210U CPU
1.70 GHz with 2 cores. M—Matches; ar—area ratio.

M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

SIFT 0 1 1 0.69 0.70 0.18

ASIFT 1013 13.7 189.6 12.46 138.59 3.05

(Optimal) Affine-SIFT 795 7.06 49.8 6.04 29.61 1.39

RootSIFT 0 1 1 0.72 0.71 0.18

Affine-RootSIFT 658 6.9 47.6 5.05 20.70 1.44

SURF 0 1 1 1.01 0.79 0.19

(Optimal) Affine-SURF 471 14.82 219,6 12.53 35.24 1.40

BRISK 0 1 1 1.75 0.27 0.18

Affine-BRISK 421 8.42 70,89 18.95 8.68 2.06

BRIEF 0 1 1 0.05 0.01 0.19

Affine-BRIEF 0 14.82 219,6 4.20 2.18 6.08

ORB 0 1 1 0.05 0.02 0.17

Affine-ORB 0 14.82 219,6 4.34 5.13 3.25

AKAZE 0 1 1 0.42 0.13 0.21

Affine-AKAZE 194 8.42 70,89 5.00 6.23 3.74

LATCH 0 1 1 0.11 0.02 0.00

Affine-LATCH 37 14.82 219,6 4.52 2.16 0.17

FREAK 0 1 1 0.34 0.15 0.18

Affine-FREAK 145 7.06 49.8 4.37 2.38 1.94

Table 4
Matching methods performance over query and target images from Figure 15. The proposed IMAS methods

proposed here appear in bold. Computations were performed on an Intel(R) Core(TM) i5-4210U CPU 1.70
GHz with 2 cores. M—matches; ar—area ratio.

M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

SIFT 102 1 1 0.23 0.01 0.09

ASIFT 317 13.7 189.6 5.43 1.68 0.47

(Optimal) Affine-SIFT 292 7.06 49.8 2.71 0.38 0.30

RootSIFT 110 1 1 0.25 0.01 0.09

Affine-RootSIFT 219 6.9 47.6 2.23 0.28 0.24

SURF 110 1 1 0.24 0.03 0.14

(Optimal) Affine-SURF 663 14.82 219,6 3.68 1.19 0.73

BRISK 29 1 1 1.57 0.00 0.04

Affine-BRISK 49 8.42 70,89 17.57 0.06 0.08

BRIEF 0 1 1 0.03 0.00 0.00

Affine-BRIEF 7 14.82 219,6 2.06 0.09 0.03

ORB 102 1 1 0.02 0.01 0.8

Affine-ORB 90 14.82 219,6 2.12 0.31 0.40

AKAZE 20 1 1 0.16 0.00 0.03

Affine-AKAZE 51 8.42 70,89 2.31 0.06 0.09

LATCH 54 1 1 0.07 0.01 0.04

Affine-LATCH 101 14.82 219,6 1.72 0.12 0.10

FREAK 124 1 1 0.14 0.01 0.10

Affine-FREAK 182 7.06 49.8 2.54 0.11 0.31
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(a) 800× 640 (b) 800× 640

Figure 14. Graffiti. Both images generate a large number of keypoints for most methods.

(a) 600× 450 (b) 600× 450

Figure 15. Adam. Both images generate a small number of keypoints for most methods.

6. Appendix.

6.1. Proof of Theorem 2.16. By proposition 2.14 we know that

τ
(
BA−1

)
= τ

(
i ([B]) i ([A])−1

)
,

where i is the injection in Definition 2.12. Thus, without loss of generality, we focus on
computing the absolute tilt of

C = TtR2Q
−1
2 T−1

s

= TtR (φ)T−1
s ,

where R (φ) = R2Q
−1
2 . Proposition 2.5 states that the ratio between the singular values of C

can be used to compute its absolute tilt.
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(a) Proposed covering for ASIFT in
[44, 64]. This is a log 1.8-covering
of {[TtRφ] | t ≤ 5.5} with 41 affine
simulations representing an area ratio of
13.77.

(b) Proposed covering for FAIR-SURF
in [49], called fixed tilts. This is a
log 1.5-covering of {[TtRφ] | t ≤ 1.7} with
23 affine simulations representing an area
ratio of 11.42.

(c) Proposed covering for FAIR-SURF
in [49], called simulated tilts. This is
a log 1.5-covering of {[TtRφ] | t ≤ 1.65}
with 41 affine simulations representing an
area ratio of 13.77.

(d) Proposed covering in [40],
called mediium configuration for
DoG-SIFT. This is a log 1.8-covering
of {[TtRφ] | t ≤ 1.8} with 45 affine
simulations representing an area ratio of
9.

(e) Proposed covering in [40], called hard
configuration for DoG-SIFT. This is a
log 1.8-covering of {[TtRφ] | t ≤ 9.6} with
61 affine simulations representing an area
ratio of 13.

(f) Proposed covering in [40], called hard
configuration for SURF-SURF. This is a
log 1.5-covering of {[TtRφ] | t ≤ 1.5} with
112 affine simulations representing an
area ratio of 21.28.

Figure 16. Examples of coverings found in the literature for maximum tilt tolerances as in Figure 11. Gray
areas—uncovered; blue areas—covered by at least two disks; white areas—covered by only one disk.
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6.1.1. Trace and determinant. First, we start by computing the trace and determinant
of

C?C = T−1
s R (φ)−1 TtTtR (φ)T−1

s ,

which are clearly

det (C?C) =
t2

s2

and

Tr (C?C) =

(
t2

s2
+ 1

)
cos2 φ+

(
1

s2
+ t2

)
sin2 φ.

6.1.2. The eigenvalues of C?C. Let H = ( a cc b ) = C?C and λ+, λ− being the biggest
and smallest eigenvalues of C?C, respectively. It is well known that

Tr (H) = λ+ + λ−,

det (H) = λ+λ−,

and even more that both Tr and det also appear in the characteristic polynomial

|C?C − λId| = λ2 − λ (a+ b) +
(
ab− c2

)
,

= λ2 − λTrH + detH.

On the other hand, the eigenvalues of a symmetric positive definite matrix are in R, which
implies that

√
(TrH)2 − 4 detH ≥ 0, and so one can write

λ− =
Tr (H)−

√
(TrH)2 − 4 detH

2
,

λ+ =
Tr (H) +

√
(TrH)2 − 4 detH

2
.

Now, after some computations, the ratio between the biggest and smallest eigenvalues is

λ+

λ−
=

(
TrH

2 +

√
(TrH)2−4 detH

2

)2

detH
,

=
s2

t2

g
2

+

√
g2 − 4 t

2

s2

2

2

,(12)
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where g denotes the function

g (t, s, φ) := Tr (C?C)

=

(
t2

s2
+ 1

)
cos2 φ+

(
1

s2
+ t2

)
sin2 φ.

6.1.3. Computing τ (C). Proposition 2.5 tells us that the absolute tilt of C is

τ (C) =

√
λ+

λ−

=
s

t

g
2

+

√
g2 − 4 t

2

s2

2


=
s

t

g

2
+

√(s
t

g

2

)2
− 1

= G (s, t, φ) +

√
(G (s, t, φ))2 − 1,

where

G (s, t, φ) =
s

t

g (s, t, φ)

2
.

6.1.4. Disks in the space of tilts. Let A := [TtR2] ∈ Ω be fixed and let us find conditions
on B := [TsQ2] ∈ Ω to satisfy

B ∈ B (A, log r)

which are clearly

d (A,B) = log τ
(
i (A) i (B)−1

)
≤ log r,

m

τ
(
i (A) i (B)−1

)
≤ r,

where i is the injection in Definition 2.12. Thus, just by applying the above to C :=
i (A) i (B)−1 we obtained

G (s, t, φ) +

√
(G (s, t, φ))2 − 1 = τ

(
AB−1

)
≤ r,

where R (φ) = R2Q
−1
2 . So √

G2 − 1 ≤ r −G
m

G2 − 1 ≤ r2 − 2rG+G2

m

G ≤ r2 + 1

2r
.
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