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ABSTRACT

We focus on the problem of affine invariant image comparison
in the presence of noise and repetitive structures. The classic
scheme of keypoints, descriptors and matcher is used. A local
field of image gradient orientation is used as descriptor and
two matchers are proposed, based on the a-contrario theory,
for handling repetitive structures. The affine invariance is ob-
tained by affine simulations. The proposed methods achieve
state-of-the-art performances under repetitive structures.

Index Terms— image comparison, repetitive structures,
affine invariance, noise, a contrario, IMAS, SIFT, RootSIFT

1. INTRODUCTION

Everyday images are often composed of repeated objects, e.g.
roof tiles, windows on buildings or chairs in a classroom. Hu-
mans not only identify these repetitions but also extract mean-
ingful information from them. However, most of the state-of-
the-art image matching algorithms still either fail to handle
repetitions or were conceived not to treat them at all in order
to be distinctive in practical applications [1].

The classic approach to image matching consists in three
steps: detection, description and matching. First, key-points
are detected in the compared images. Second, regions around
these points are described and encoded in local invariant de-
scriptors. Finally, all these descriptors are compared and pos-
sibly matched. Using local descriptors yields robustness to
context changes. Both the detection and description steps are
usually designed to ensure some invariance to various geo-
metrical or radiometric changes. A large amount of research
focused on using histogram representations, e.g. SIFT [2, 3],
ASIFT [4], Shape Contexts [5], Self-Similarity descriptors
[6], etc. We refer the reader to [7, 8, 9, 10] for in-depth com-
parative studies on image descriptors.

Although 3D viewpoint invariance seems quite utopian,
its approximated version, affine invariance, has been widely
studied in the literature [11, 12, 4, 10]. The superiority of
SIFT based descriptors for the latter invariance have been
shown in [10]. On the other hand, Image Matching by Affine
Simulation (IMAS) have been proven to be a reliable way to
capture changes of point of view up to an impressive 88°, see
[4, 13, 14, 10].

In order to be distinctive, most IMAS algorithms rely on

the second-closest neighbor acceptance criterion proposed by
D. Lowe in [2]. This criterion directly implies that the affine
invariance property of these algorithms is strongly affected
by repeated structures on the target image. To counteract
these issues, Cao et al. [15] proposed two approaches to han-
dle repetitions: the first is to compute the “second-closest
neighbor” on an unrelated third image (where the repeated
structure would not be present); the second is to add an a-
contrario [16] validation step, independent of the descriptor,
which first selects a set of points around the key-points and
then evaluates the agreement of gradient orientation on these
points. Rabin et al. [17] proposed an a-contrario validation
for SIFT descriptor matches; the method requires learning the
distribution of the descriptor space and uses the earth mover
distance to quantify the descriptor similarity. Still a differ-
ent a-contrario framework for match validation was described
in [18]; in this case it is based on comparing the gradient ori-
entations in a patch and was suggested to use a local field of
gradient orientations as a key-point descriptor.

However, none of these a-contrario methods is affine in-
variant. Here we follow the suggestion of [18], enriched by
the IMAS approach, to build an a-contrario affine invariant
key-point descriptor. Also we propose two variants of de-
scriptor distances and the corresponding a-contrario models.

This paper is organized as follows. Section 2 introduces
the key-point descriptor based on a local field of image gra-
dient orientation. The two a-contrario matchers for our de-
scriptor are introduced in Sect. 3. Then, the IMAS techniques
are explained in Sect. 4. Our experiments on images includ-
ing repetitive structures, different viewpoint angles and noise
are presented in Sect. 5. Section 6 concludes the paper.

2. THE GRADIENT ANGLE FIELD DESCRIPTOR

The first step of the method is the key-point extraction. Each
key-point comes with a position, scale and orientation. Then,
a descriptor is associated to each key-point. A s X s patch is
extracted from the image centered at the position and orien-
tation of the key-point. The sampling step is proportional to
the key-point scale. Up to this point this is similar to the SIFT
descriptor [2, 3]. But while the SIFT descriptor consists in a
set of quantized histograms of the image gradient orientation,
here we will follow the suggestion of [18] and use the actual
values of patch gradient orientations as a descriptor. The de-
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Fig. 1: Three image patches and their corresponding orienta-
tion fields used as descriptors. The first two are similar while
the third one is different.

scriptor of a key-point a will be then o« = {c;; }, where «;;
are the angles of the gradient orientation at position ¢, j in the
extracted patch of size s x s = n. Fig. 1 illustrates the idea. In
all our experiments we used s = 20 (n = 400) and a sampling
step of 1.5 relative to the key-point scale.

3. A CONTRARIO MATCH VALIDATION

The proposed validation procedure is based on the a contrario
theory [16], which relies on the non-accidentalness principle
[19, 20]; informally, this principle states that there should be
no detection in noise. In the words of Lowe, “we need to de-
termine the probability that each relation in the image could
have arisen by accident, P(a). Naturally, the smaller that this
value is, the more likely the relation is to have a causal inter-
pretation” [20, p.39]. In our context, we need to assess the
existence of a causal relation between two descriptors.

Given a pair of descriptors « and 3, a distance function
d(a, B) will be defined, together with a stochastic model H,
for random descriptors used to evaluate accidentalness. We
denote by Dy, a random variable (r.v.) corresponding to the
distance between two random descriptors drawn from Hg. To
assess the accidentalness of a match («, /3), we need to eval-
uate the probability P[Dy, < d(a, )] of observing under
H a distance Dy, smaller or equal than d(a, §). When this
probability is small enough, there exists evidence to reject the
null hypothesis and declare the match meaningful. However,
one needs to consider that usually multiple pairs are tested.
If 100 tests are performed, for example, it would not be sur-
prising to observe an event that appears with probability 0.01
under random conditions. Thus, the number of tests N7 needs
to be included as a correction term, as it is done in the statis-
tical multiple hypothesis testing framework [21]. Following
the a contrario methodology [16], we define the Number of
False Alarms (NFA) of a match as:

NFA(a, 8) = Ny ~IP’[DHO < d(a,ﬂ)] 1)

Pairs with NFA < ¢, for a predefined ¢ value, are accepted
as valid matches. One can show [16, 22] that under H, the

expected number of pairs with NFA < ¢ is bounded by e¢.
As aresult, € corresponds to the mean number of false detec-
tions per random image pair. In most practical applications
the value € = 1 is suitable and we will set it once and for all.

An appropriate (unstructured) null hypothesis H for ran-
dom descriptors is that the gradient orientation angles are in-
dependent and isotropic. In other words, in a descriptor A €
Ho, {A;;} is a family of independent random variables, uni-
formly distributed over [0, 27).

We will consider two distances, which will lead to two
validation methods. The first one, denoted d<, is defined as
the sum of quantized orientation errors:

dQ (Oé, 6) = Z ]l{ |Angle(a;j,845)1 >p}’ (2)
ij "

for a fixed orientation precision p € (0,1) (we use p = 0.3).
Given that the size of the descriptor is n, the value d%(«, 3) €
{0,1,...,n}, with zero corresponding to a good match and n
to the worst difference. This distance is similar to the one used
in [15, sec.11.3]. The associated r.v. D%O corresponds to the
sum of n independent Bernoulli random variables. Thus,

d
PDy, <d] =) (Z) (1= p)pn* 3)
k=0
is related to the tail of a Binomial distribution. We will denote
AC-Q the method that uses the distance d<.
The second distance, denoted d", corresponds to a
weighted sum of normalized orientation errors:

dV(a, ) :Zwijw' @

— ™
ij
Now d" («a, B3) is a real value between zero and > Wi A
perfect match has d" (a, 3) = 0 while the worst difference is
dV(a,B) = Zij w;;. This is similar to the distance in [18]
with the addition of the weights w;;, which are used to impose
a Gaussian window,

(i—s/2)"+ (- 8/2)2)
202 ’

giving more relevance to the central points and requiring a
more complex probability term than in [18]. The r.v. D;’{VO
corresponds to the weighted sum of n independent and uni-
formly distributed random variables in [0, 1]. Using the vec-
tor index k, we have P[DY] < d] = P[}_, wxey, < d] where
the normalized errors ey, are U0, 1]. The possible values of
(e1,...,en) can be seen as the points in a n-hypercube and
the probability term is given by the volume of the intersec-
tion of the hypercube and the half-hyperspace {(e1,...,e,) :
> r wrer < d}. There is a closed but complex formula for
this volume [23]. For our purposes, however, it is enough to
approximate it by the upper-bound given by the volume of the
simplex {(e1,...,en) :ex >0, >, wrer < d}; thus

1 d
P[D}}, <d] < T

wij :exp(—
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Fig. 2: Ge;)metric interpretation of (7).

We will denote AC-W the method that uses the distance d" .

Finally, we need to specify the number of tests. Poten-
tially, we may try to match any pixel of image I; of size
X, xY; with any pixel of image I5 of size X5 X Ys. We must
also consider about v/ X Y7 different patch orientations in /3
and v/ X5Y5 in I5. To account for multiple scales, we consider
log, (max(X1,Y7)) scales in I; and log, (max(X2,Y3))
scales in Is. As we will see, we perform several affine sim-
ulations leading to an extra factor x per image (i.e. the area
ratio from [10]). All-in-all, the number of tests writes

Ny = (kX1Y1)? - log, (max(Xy,Y7))-

(6)
(kX2Y3)2 - log, (max(Xs,Ys)) .

e

4. AFFINE INVARIANCE

As it will be shown in the following section, our methods are
not initially affine invariant. In this section we shall introduce
a methodology from [4, 10] to render them fully affine invari-
ant. Intuitively, the idea is to simulate a set of views from
the initial images that will help to cover the affine space and
then pairwise match those simulated images. The set of sim-
ulated views shall depend on concrete measurements of our
methods’ tolerance to viewpoint changes.

Let us call A the set of affine maps and define Au(x) =
u(Ax) for A € A. We define AT = {A € A|det(A) > 0}.
We call S the set of similarities, which are any combination of
rotations and zooms. Finally we define the set A] = AT\ S,
where we exclude pure similarities.

It was proven in [4] that every A € A} is uniquely de-
composed as

A= ARy (¥) Tt Rz (¢) @)

where Ry, R, are rotations and T} = Lt) ﬂ witht > 1, A >

0, ¢ € [0,7) and ¢ € [0, 27). Furthermore, the above decom-
position comes with a geometric interpretation (see Fig. 2)
where the longitude ¢ and latitude § = arccos % characterize
the camera’s viewpoint angles, 1) parameterizes the camera
spin and A corresponds to the zoom.

Most local descriptors and their corresponding matching
methods are similarity-invariant. Unfortunately, slanted cam-
era viewpoints (measured by #) will deteriorate the perfor-
mance of almost any state-of-the-art matching method. To
compensate this degradation at a minimum cost of complex-
ity, we follow the ideas developed in [10] to compute optimal

Matching method | True matches | Ratio of true matches
SIFT L10.8 74 0.6577
SIFT L1 0.6 15 0.8054
RootSIFT 0.8 135 0.5383
RootSIFT 0.6 49 0.7812
AC-W 691 0.8679
AC-Q(p =0.3) 1881 0.6261

Table 1: Frontal performance test (i.e. A € S). Mean values
over 100 iterations.

sets of affine simulations for each of our methods depending
on the viewpoint tolerances, which we shall estimate in the
next section. Under these conditions, Proposition 3.6 in [10]
ensures that the constructed IMAS method is affine-invariant
in practice. Indeed, there is at least one pair of simulated im-
ages whose viewpoint angle is not greater than the viewpoint
tolerance of the matching method in question.

5. EXPERIMENTS

The main objective of our two matchers is to allow repetitions
to be captured. On the other hand, state-of-the-art descriptors
are robust against noise, and Lowe’s second-closest neighbor
criterion [2] is well known to render SIFT distinctive enough
to be practical. All these properties are met for our methods
even in the presence of viewpoint changes. A simple method-
ology is proposed to assess this claim.

The following procedure allows us to generate any num-
ber of test images u (query) and v (target) with the corre-
sponding ground truth. Fig. 3 shows an example. Let us con-
sider three different and sufficiently distinct images, ug, v,
and wyg. The test pair is generated randomly in four steps: 1)
A N x N patch is extracted from a random position in wg; a
repetitive pattern P is composed by repeating the patch into a
M x M mosaic. 2) The pattern P is pasted into image u at
a random position, producing image u1; similarly, the same
pattern P is pasted in a random position of vy to produce im-
age v1. 3) A random affine transform A is selected and used
to optically simulate a distortion, vo = Awv;. 4) Finally, Gaus-
sian noise is added to produce the final images, © = w1 + n,,
and v = vy + n,. Forcing A € A} in step 3 will incur in a
change of point of view in v with respect to u; the viewpoint
angle can be selected.

This framework was used to compare systematically our
methods to SIFT, RootSIFT and their affine invariant ver-

(b) Targetimage. A = TR /4.

(a) Query image.

Fig. 3: A generated image pair with repetitive structures.
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Fig. 4: Oblique performance test. Each point represents the
resulting mean over 100 iterations.

Matching method | Maximal viewpoint tolerance
SIFT L10.8 48°
SIFT L1 0.6 34°
RootSIFT 0.8 40°
RootSIFT 0.6 54°
AC-W 58°
AC-Q (p = 0.3) 54°

Table 2: Viewpoint tolerances (i.e. tilt tolerances from [10])
obtained from the oblique performance test of Fig. 4 with
the convention that the ratio of true matches > 0.5 and the
total number of true matches > 10.

sions. Lowe’s criterion was applied for two match ratios (0.6
and 0.8). For each method and image pair, the total number
of true matches and the corresponding ratio of true matches
were computed. A match is considered as true if both con-
stituting key-points lie inside the pattern P at the same posi-
tion, modulo the repeated patch size. The displayed values are
means after repeating the process for different generated im-
age pairs. As the key-point extraction part is identical for all
compared methods, the figures reflect only the performance
of the descriptors and their matchers.

The frontal performance test of Table 1 confirms that our
descriptors do handle repetitions and noise while still preserv-
ing a good ratio of true matches. Fig. 4 illustrates the benefits
of our methods for varying viewpoint angle. Notice, however,
the drastic fall in number and in ratio of true matches for all

Matching method True matches | Ratio of true matches
Affine SIFT L1 0.8 33 0.4095
Affine SIFT L1 0.6 5 0.6463
Affine RootSIFT 0.8 48 0.2462
Affine RootSIFT 0.6 12 0.4934
Affine AC-W 195 0.7564
Affine AC-Q (p = 0.3) 913 0.2268

Table 3: Hard oblique performance test on affine invariant
methods. The viewpoint angles are random and uniformly
distributed between 60° and 80°. Mean values over 200 iter-
ations.

Fig. 5: Optimal set of affine simulations for a method with
viewpoint tolerances of 58°. Just 27 are enough to obtain an
IMAS extension to 80°. Affine camera simulations (green);
viewpoint tolerance from each simulation (red); visible view-
points (black); maximal viewpoint tolerance for the IMAS
method (dashed line).

methods. Table 2 provides the estimated maximal viewpoint
tolerances from the statistics presented in Fig. 4; this brings
to light a degradation in viewpoint tolerances (due to repeti-
tive structures) for SIFT and RootSIFT with respect to results
presented in [10] (respectively, 56° and 60°).

The theory on IMAS algorithms [10, 4] leads to opti-
mal sets of affine simulations for each method, depending on
viewpoint tolerances in Table 2. Fig. 5 provides a geometri-
cal representation of the optimal set of simulations for AC-W.
Table 3 show the results for the affine invariant version of the
methods in viewpoint angles form 60° to 80°. AC-W gets the
overall best results; AC-Q produces significantly more good
matches at the cost of a lower ratio of true matches.

6. CONCLUSION

We described methods for image comparison based on a new
descriptor, two a-contrario matchers and affine simulation.
Our experiments show that the proposed methods produce
better results than state-of-the-art methods in the presence of
repetitive structures, different viewpoints and noise. Future
work will concentrate on combining our two methods in an
attempt to get the best of both, a large number of true matches
while keeping a high ratio against false ones.
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