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Abstract

The Laplacian of Gaussian (LoG) is commonly employed as a second-order edge detector in image processing, and it is
popular because of its attractive scaling properties. However, its application within a "nite sampled domain is non-trivial
due to its in"nite extent. Heuristics are often employed to determine the required mask size and they may lead to poor
edge detection and location. We derive an explicit relationship between the size of the LoG mask and the probability of
edge detection error introduced by its approximation, providing a strong basis for its stable implementation. In addition,
we demonstrate the need for bias correction, to correct the o!set error introduced by truncation, and derive strict bounds
on the scales that may be employed by consideration of the aliasing error introduced by sampling. To characterise edges,
a zero-crossing detector is proposed which uses a bilinear surface to guarantee detection and closure of edges. These
issues are con"rmed by experimental results, which particularly emphasise the importance of bias correction. As such, we
give a new basis for implementation of the LoG edge detector and show the advantages that such analysis can confer.
( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Laplacian of Gaussian (LoG) has received much
attention since it was proposed by Marr [1] as a physio-
logical model of the early human visual system. Marr
derived the LoG in trying to minimise spatial and band-
width variance product of a "lter in order to localise its
in#uence. A di!erent approach based on maximising
the energy in the locality of the edge was developed by
Shanmugam [2] and Lunscher [3], which produced
a very similar function. The LoG is a multi-resolution
operator that can be applied at di!erent scales. This

approach is common to many edge detectors [4,5] since
the scale of interesting features is often unknown. The
LoG has many desirable properties. The scaling of zero
crossings [6,4] is such that edges consistently appear as
scale space is traversed. It is also the only second-order
di!erential operator that is both separable and rotation
invariant [7]. Torre [8] has shown that the Gaussian is
optimal for reducing noise with minimum delocalisation.
However, it can su!er from response to phantom edges
[9] and poor localisation around edges of high curvature
[10,11], but methods have been developed for post-pro-
cessing the edges [12,13] to attenuate these di$culties.

As Demigny [14] remarks, most optimal "lters for
edge detection are developed in the continuous domain
and then transposed by sampling to the discrete domain.
To implement the LoG in a practical image processing
framework requires a "nite sampled approximation. The
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Fig. 1. Spatial and frequency cross-section. (p"1.0)

LoG can be implemented in both the spatial or frequency
domain [15,16]. The in"nite extent of the LoG in
the spatial and frequency domain inhibits its direct use
as an edge detector for "nite sampled signals, and it
is usually approximated by a truncated version which
is optimal with respect to the MSE [17]. However,
this truncation is generally achieved by a heuristic,
such as a constant times the zero crossing of the LoG
kernel. Incorrect choice of the constant will lead to poor
edge detection and location [18,19]. In this paper, an
analysis of the e!ects of truncation and sampling are
considered to provide a "rm basis for its discrete imple-
mentation.

To provide a rigorous bound on the mask size we
propose a bound based on the fraction of energy ignored
by the truncation. It is shown that consideration of this
error provides a relationship between the edge detection
error and the mask size employed. Truncating the LoG
operator violates the zero mean property and it is shown
how this can be compensated for by the introduction of
a bias term. An analysis of the aliasing error introduced
by sampling forms the basis for determining the appro-
priate range of scales over which the operator may be
applied. In doing so it is shown that a commonly em-
ployed value of the scaling parameter, p"1.0, may be
inappropriate depending on the level of adherence to the
original description. In order to guarantee closure of
the detected zero crossings, a scheme based on piece-wise
bilinear interpolation is developed which by its continu-
ity guarantees closure and a complete representation of
the zero crossings, and hence the detected edges.

The paper takes the format: after reviewing the de"ni-
tion of the LoG, the e!ects of truncation are considered.
Then the e!ects of sampling the LoG are developed. This
is proceeded by a description of the zero-crossing detec-
tion employed. Finally, the theoretical results are com-
pared with experimental results performed by applying
various masks of di!erent sizes and scales.

1.1. The laplacian of Gaussian

A two-dimensional Gaussian of standard deviation p
is given by
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and its Fourier transform is given by

F (+2G)"!EmE2 e!p2EmE2/2 . (4)

The LoG is isotropic in the spatial and frequency
domain, which is evident from Eqs. (3) and (4), and its
cross-sections are plotted in Fig. 1. The frequency cross
section, Fig. 1b, clearly illustrates its band pass character-
istic. The peak magnitude response in the frequency
domain is given by

EmE"
J2

p
. (5)

The crossing point in the spatial domain is given by

ExE"pJ2. (6)

Edges in Marr}Hildreth theory are determined by the
zero crossings of an image convolved with the LoG
operator. Although other second derivative based edge
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Fig. 2. Spatial domain truncation of the LoG (Axis Cross
Section)

detectors use the zero-crossing criteria for edge detection,
the LoG is the only isotropic second derivative-based
operator.

The LoG extends to in"nity in both the spatial and the
frequency domains and hence care must be taken in
applying it in a "nite domain. Should such care not be
applied, the error introduced by truncation will signi"-
cantly degrade the performance of the edge detector. In
the next section, the consequences of truncation are con-
sidered. By considering the pixels of the image to be
drawn from identical independently distributed Gaus-
sians, it is shown that the probability of an error in edge
detection can be expressed as a function of the truncation
energy, and hence the mask size. This provides a strong
basis for the determination of appropriate mask sizes
based on the error probability.

2. Truncation

The analysis of a truncated approximation to the LoG
is divided as follows: In the "rst part, it is shown how the
energy error (the fraction of energy lost due to trunc-
ation) is related to the mask size. Then it is demonstrated
that a correction term must be added to the truncated
operator to maintain an unbiased response to concave
and convex edges. In the last part it is shown that the
energy error of this truncated, bias corrected, operator is

related to the probability of an error in zero-crossing
detection and hence in the classi"cation of edges.

2.1. Energy error

Fig. 2 illustrates the error, F!FK , introduced by ap-
proximating the LoG operator, F, with a truncated ver-
sion, FK . It will be shown that the performance decreases
monotonically with a decrease in truncation width, as
would be expected. In application, the smallest possible
truncation width is desirable for computational reasons.

In order to quantify this error, a rigorous scheme is
developed from an analysis of the energy error, which is
given by the fraction of energy lost from the signal due to
truncation
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where f (x) is the spatial or frequency envelope for a "nite
square mask of size 2l]2l. A square mask is chosen in
preference to a radial mask since this is more suited to
implementation within an image processing framework,
although a similar analysis can be carried out for radial
masks. Accordingly, the fraction of the energy that is
ignored by restricting the LoG to the interval (!l

s
, l
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the spatial domain is given by
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and by restricting the LoG to the interval (!l
f
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f
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frequency domain by
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where ! (a,x) is the incomplete gamma function,

! (a,x)"P
x

0

ta~1e~tdt . (10)

Letting k
s
"l

s
/p and k

f
"l

f
p, be scale invariant para-

meterisations, the energy errors are shown in Fig. 3. The
"gures illustrate that the energy error decreases with
increasing mask size. In the spatial domain the energy
error decreases with decreasing p and in the frequency
domain the energy error decreases with increasing p.

As k becomes large, the energy errors in both the
spatial and frequency domains converge, implying that
the energy error decreases at the same rate. However, for
smaller values of k the graphs are di!erent; the spatial
domain energy error has an in#exion at k

s
"J2 due to
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Fig. 3. Energy Error Graphs

the zero crossing of the LoG operator in the spatial
domain.

Choosing an appropriate level of energy error deter-
mines the mask sizes for implementation in the spatial or
frequency domain. In the next section, it is shown how
the truncation additionally introduces a bias, which must
be compensated for to maintain the symmetry of the
LoG operator to concave and convex edges.

2.2. Bias correction

The LoG operator has a zero mean, that is

P
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1
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2
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However, when the operator is truncated this property
will be violated. Consequently, the edge detector will be
biased towards concave or convex edges, since the re-
sponse to a #at part of the image will be non-zero. To
overcome this problem a bias correction, d, must be
added to the truncated operator, where
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It is easily veri"ed that the zero mean property is now
restored

P
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The addition of this correction restores the zero mean
property of Eq. (11). The operator has even been de-
scribed incorrectly [20,21] where the zero mean condi-

tion is violated, due to an erroneous derivation of the
operator.

2.3. Determination of zero-crossing detection error

In this section, the zero-crossing detection error that is
introduced by application of a truncated mask in the
spatial domain is related to the energy error introduced
by truncation. If the LoG, F, is approximated by a bias
corrected truncated version, FK , then the probability of an
error is de"ned as the probability that the resulting
convolutions of F and FK with an image, I, di!er in sign,

Perror"P(F*I(0'FK *I'0)#P(F*I'0'FK *I(0)

"P ((F!FK )*I(}FK *I'FK *I'0)

#P ((F!FK )*I'!FK *I'FK *I(0), (14)

where * denotes convolution. The residual distribution,
PF!FK , and the truncated distribution, PFK , are indepen-
dent and hence the error probability is given by,

Perror"P
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=

0
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A Gaussian distribution of mean, k, and variance, p, is
given by

N(k, p)"
1

J2np
e!(1/2) ((x!k)/p)2 . (16)

If the pixels are drawn from identical independent Gaus-
sian distributions (we assume zero mean without loss of
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generality), with variance p
I
, then the distribution of the

pixel intensities is given by

P
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The distribution of FK is
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and the distribution of F!FK is
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Hence from Eqs. (15), (18) and (20) the error is given by
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Considering the truncation error from Eq. (7) the fraction
of energy ignored by truncation can be expressed as
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It follows from Eqs. (22) and (26) that the probability of
an incorrect edge classi"cation is given by

Perror+
1

n
sin~1 (Je ) , (27)

or alternatively the energy error is given by

e+sin2 (nPerror ) . (28)

As such the likelihood of error is intimately related to the
truncation of the operator, reducing the truncation error

reduces the likelihood that false zero crossings will be
detected or true zero crossings will be ignored.

2.4. Summary

The following strategy may be employed to ascertain
a suitable mask size for spatial domain implementation
of the LoG. Choosing the probability of an edge detec-
tion error determines the fraction of energy ignored by
truncation from Eq. (28). Hence, from Fig. 3a, or numer-
ical inversion of Eq. (8) it is possible to determine the
required mask sizes to attain the required error perfor-
mance.

3. Discrete formulation

The discussion so far has been concerned with the
truncation of a continuous LoG operator. However, for
implementation on a digital computer the continuous
operator must be approximated by a discrete mask. The
elements of the mask are obtained by sampling the con-
tinuous LoG on a discrete grid. In the following dis-
cussion it is assumed that the mask elements are stored in
double-precision #oating point format.

3.1. Determination of mask sizes and scales

The discrete mask widths w
s
, w

f
in the spatial and

frequency domain, respectively, are given by

w
s
"1#2vl
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w"1#2 vk

s
pw ,

w
f
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f
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2n
"1#2

k
f
p

N

2n
, (29)

where vxw rounds up to the nearest integer.

3.2. Aliasing error and bounds on the scale parameter

The values of the scale parameter, p, that are appropri-
ate are restricted by the discrete representation. As p be-
comes smaller the lobes of the LoG operator are pulled
closer and closer together in the spatial domain, and
eventually the operator will become too compact to be
described accurately with a unitary sampling interval.
Accordingly, in the frequency domain as p decreases the
width of the band-pass "lter expands until it is larger
than the frequency representation. This corresponds to
a scale that is below the sampling width of the discrete
representation. Consider an image of size N]N with
unit sampling interval in the spatial domain. If no extra
aliasing is introduced then the minimum value of sigma is
given by

w
f
(NNp'

k
f
n

N

N!2
. (30)
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Fig. 4. Mask size vs. scale for 0.1% zero crossing detection error
(256]256 image)

Similarly, the maximum size is constrained by the spatial
representation of the function, which must be less than or
equal to the spatial signal size. (Note that since the signal
is being convolved typically it will have to be signi"cantly
less than the signal size.) Hence, the maximum value of
sigma is given by

w
s
(NNp(

N!3

2k
s

(31)

Combining Eqs. (30) and (31) gives the following bounds
on p:

k
f
n

N

N!2
(p(

N!3

2k
s

. (32)

To illustrate how the mask sizes and scales can be deter-
mined, consider the following example. Let an accept-
able zero-crossing detection error be 0.1%, then
e
s
+9.9]10~6 from Eq. (28). From Fig. 3a this corres-

ponds to a scale invariant mask width of k
s
+3.8. Choos-

ing the truncation error e
s
"e

f
determines k

f
+3.8 from

Fig. 2b. Hence from Eq. (32), appropriate bounds on p for
a 256]256 image are,

1.22(p(33.3. (33)

and the mask sizes are given by

w
s
"1#2v3.8pw , w

f
"1#2

154.8

p
(34)

which are shown in Fig. 4.
A commonly employed heuristic for determination of

the mask size is three times the distance between the zero
crossings in the spatial domain [22] (+8.5p). This is

comparable to w
s
from Eq. (34), and hence implies a zero-

crossing detection error of approximately 0.1%.

3.3. Bias correction

The bias introduced by the discrete mask is removed
by adding a correction term, d

d
, to restore the zero mean

property (Eq. (11)),

d
d
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w2
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+
x
1
"!((w

s
!1)/2)
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+
x
2
"!((w

s
!1)/2)

+2G(x) . (35)

An alternative approach for guaranteeing the zero
mean property for the discrete mask has been used [18,
20,21]. However, this method distorts the shape of the
LoG in order to ensure the elements sum to zero, and as
such is not an accurate representation of the LoG.

3.4. Summary

To implement the LoG for N]N images a square
discrete mask can be used. Given an acceptable error
performance for the edge detection, the truncation error
can be determined from Eq. (28). This determines the
mask size from Eq. (8) up to the scale parameter. The
required scale, p, must satisfy the bounds of Eq. (32),
before the mask can be employed. Finally, a bias correc-
tion is introduced to ensure that all the elements sum to
zero. The operation may be performed by convolution in
the spatial domain or by multiplication in the frequency
domain. To complete the edge detection scheme, the
edges are determined by the zero crossings of the result-
ant signal. In the next section a simple, but consistent
zero-crossing detector is described.

4. Zero-crossing detection

There is a scarcity of literature on the zero-crossing
detection required in the edge classi"cation stage. To
address this, a method based on a piece-wise bilinear
interpolation of the resulting LoG convolved signal is
proposed. The important characteristic of this repres-
entation is that it is continuous, guaranteeing complete
zero-crossing detection, and hence closure of the zero-
crossing contours. The method gives a zero-crossing
resolution equal to that of the image. Alternatively,
a sub-pixel technique such as that of Huertas [22] or
Nalwa [23] can be employed to increase the resolution of
the zero crossings, at the cost of extra computation. The
scheme is illustrated for the 1-D case in Fig. 5. A zero
crossing will exist if the interpolation crosses the axis in
the interval [x!1

2
, x#1

2
). The half open interval is used

to ensure that a zero crossing occurring on the boundary
will only be classi"ed once.
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Fig. 5. Zero Crossing Detection.

Fig. 6. Lenna Image.

Accordingly, a zero crossing can be detected by
determining the signs of the three points f (x!1

2
),

f (x), f (x#1
2
). Extension to the two-dimensional case is

achieved as follows. Let ) be a matrix,

)"
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2
fx#1

2
,y#1

2

fx!1
2
,y f

x,y
fx#1

2
,y

fx!1
2
,y!1

2
fx,y!1

2
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2
, y!1

2

(36)

with indices [!1,0,1]][!1,0,1], and whose elements
can be determined by convolution of the LoG convolved
image with various 3]3 masks. A zero crossing will exist
in the region [x!1

2
, x#1

2
)][y!1

2
, y#1

2
) if

((&
i, j

:)
i, j
'0)'(&

i, j
:)

i,j
(0))

s ((&
i, j

: ()
i, j
"0' (i#2j'0)))' ()

0,0
O0), (37)

where i, j3M!1, 0, 1N. The "rst term de"nes a zero cros-
sing if there are positive and negative values in the
neighbourhood of the pixel. The second term considers
the additional case where the zero crossing occurs at the
boundary. This expression can be implemented e$ciently
as a lookup table, with 39 values.

5. Experimental determination of LoG performance

To compare the theoretical performance with experi-
mental results, investigations were carried out with vari-
ous test images. An obvious choice is the Lenna image
[24], (Fig. 5a). A performance measure,

ZCerror"
Number of false zero crossings#Number of missed zero crossings

Number of pixels
(38)

based on the correct classi"cation of zero-crossings of the
LoG was chosen for evaluation. This was chosen because

it provides a comparable measure to that of the probabil-
ity of edge detection error, P

error
, enabling a comparison

of the experimental results with the theory of Section 2.
The experimental tests employed a discrete square

mask with double precision elements, and the zero-cross-

ing detector described in the previous section. An
example of the edge contours obtained from the LoG
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Fig. 8. Zero Crossing Detection Error for non-bias corrected mask.

Fig. 7. Zero Crossing Detection Error for bias corrected mask.

operator is illustrated in Fig. 6b, and it is evident that the
zero crossing detector retains the continuity properties of
the extracted edges. To test the performance of the LoG
implementation, the value of ZC

error
was measured for

three di!erent scales (p"1.0, 2.0 and 3.0), and for odd
mask sizes in the range w

s
"3,2 , 31. A mask size of

w
s
"49 was used as a reference to compute the ZC

error
.

The performance degradation as the mask size is reduced
is illustrated in Fig. 7 for the bias corrected masks. Fig. 7a
shows the ZC

error
against the mask width demonstrating

that larger scales require larger masks, and that the
performance of the edge detector increases with increas-
ing mask size. Fig. 7b shows the ZC

error
re-plotted against

the scale normalised mask width, along with the pre-
dicted error P

error
. It is evident that the experiments agree

well with theory for large values of k
s
. It is also clear from

Fig. 7b that the p"1.0 curve provides slightly better
performance when compared with higher scales. How-

ever, strictly p"1.0 lies outside the bounds of Eq. (32)
and hence there may be some error in the reference
zero-crossings image used. It was used in the experiments
since it is a commonly quoted value for the scale para-
meter in the LoG operator.

To illustrate the importance of the bias correction the
experiments were repeated without this correction. The
results are shown in Fig. 8. It is clear that the perfor-
mance is degraded with respect to Fig. 7. Most notably
the improvement in performance is negligible until
k
s
'3, when the performance starts to increase. How-

ever, in the range of interest, k
s
'3, the bias corrected

version Fig. 7b always outperformed the uncorrected
version, (Fig. 8b).

The importance of the bias correction is further
illustrated in Fig. 9, which shows the zero-crossing detec-
tion errors for a mask with bias correction (Fig. 9a),
and a mask without bias correction, (Fig. 9b). The

1470 S.R. Gunn / Pattern Recognition 32 (1999) 1463}1472



Fig. 9. Zero Crossing Errors for p"3.0, w
s
"23.

degradation in performance for the bias corrected mask
is small and spatially uncorrelated, whereas the degrada-
tion when no bias correction is used is signi"cant and
spatially correlated.

6. Conclusions

The LoG operator is a commonly used edge detector,
but its discrete implementation is often applied heuristi-
cally. In this paper, we have shown that the zero-crossing
detection error can be related to the mask size used, by
consideration of the fractional energy error introduced
by truncation. Experimental results have been shown to
con"rm the predicted errors. This provides a solid basis
for determining appropriate mask sizes. By consideration

of the aliasing error in both the frequency domain and
the spatial domain it has been shown that there are
bounds on the range of acceptable values for the scale
parameter. Additionally, the importance of a bias correc-
tion has been demonstrated. A discrete zero-crossing
detector has been developed that guarantees closure of
the extracted contours and hence is consistent with the
Marr}Hildreth theory of edge detection. Together, these
results provide a basis for the robust implementation of
the LoG operator.
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