
Journal of Mathematical Imaging and Vision 21: 5–26, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image
Processing in Scale-Space

M. FELSBERG∗

Department of Electrical Engineering, Linköping University
mfe@isy.liu.se

G. SOMMER†

Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel
gs@ks.informatik.uni-kiel.de

Abstract. In this paper we address the topics of scale-space and phase-based image processing in a unifying
framework. In contrast to the common opinion, the Gaussian kernel is not the unique choice for a linear scale-space.
Instead, we chose the Poisson kernel since it is closely related to the monogenic signal, a 2D generalization of the
analytic signal, where the Riesz transform replaces the Hilbert transform. The Riesz transform itself yields the flux
of the Poisson scale-space and the combination of flux and scale-space, the monogenic scale-space, provides the
local features phase-vector and attenuation in scale-space. Under certain assumptions, the latter two again form a
monogenic scale-space which gives deeper insight to low-level image processing. In particular, we discuss edge
detection by a new approach to phase congruency and its relation to amplitude based methods, reconstruction from
local amplitude and local phase, and the evaluation of the local frequency.

Keywords: Poisson kernel, scale-space, local phase, analytic signal, Riesz transform, monogenic signal

1. Introduction

Scale-space representation is a well established tech-
nique in image processing. Linear scale-space is com-
monly equated with the Gaussian kernel and the heat
(diffusion) equation. Investigations on these two ap-
proaches have led to a huge number of refinements
and algorithms which have proven to be sophisticated
methods for various applications.

Phase-based signal processing is a powerful tech-
nique for the analysis of structure based on the approach
of quadrature filters. Although quadrature filters make
use of bandpass filters, and therefore they are related
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to scale-space, the theory of the analytic signal and
the scale-space theory are unrelated and independent
frameworks, yet.

1.1. Overview of the Paper

This paper addresses the topic of combining scale-
space theory and phase-based signal processing. In or-
der to obtain an appropriate common theoretic frame-
work, a linear scale-space is introduced which is not
based on the heat equation. We replace the Gaussian
kernel with the Poisson kernel, which is related to the
potential (Laplace) equation.

A standard derivation of the Gaussian scale-space
is obtained by combining the continuity equation and
Fick’s law yielding the heat equation [49]. Following
the same idea for the derivation of the potential equa-
tion instead, the continuity equation must be combined
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with the Riesz transform [11], a multi-dimensional gen-
eralization of the Hilbert transform [18]. Accordingly,
the image flux, or figure flow, is no longer given by the
gradient in the image plane, but by the Riesz transform
of the image for each scale.

The combination of a 1D signal and its Hilbert trans-
form is called the analytic signal [25]. The analytic sig-
nal is the basis for all kinds of approaches which make
use of the local phase. Similarly, the combination of a
2D signal and its Riesz transform is called the mono-
genic signal [18]. Hence, combining the scale-space
representation obtained from the potential equation and
its figure flow yields a generalization of the analytic
signal in scale-space. As a consequence, a powerful
theoretic framework is derived, which can be used for
various image processing tasks.

The paper is organized as follows. In Section 1.2
we give a brief overview on the axiomatic of linear
scale-space.

In Section 2 we introduce the Poisson scale-space
and verify if it fulfills the mentioned axiomatics
(Section 2.1). In Section 2.2 we relate the Poisson ker-
nel to the Laplace equation and derive certain identi-
ties. The topic of causality is treated in Section 2.3 and
by considering further properties of the Poisson scale-
space (Section 2.4), we conclude the second part.

Section 3 deals with the combination of scale-space
and phase-based image processing. We start with dif-
ferential phase congruency as a method for edge detec-
tion (Section 3.1). After recalling several facts about
the relationship between attenuation and phase in 1D
(Section 3.2), we establish a similar theorem for the 2D
case in Section 3.3. Using these results, we relate phase-
based and amplitude-based image processing methods
on a theoretic level (Section 3.4).

The paper is concluded with some final remarks, the
appendix, and the references.

1.2. Axiomatics of Linear Scale-Space

In the scale-space literature, there are a couple of pa-
pers referring to the Gaussian scale-space as the only
linear scale-space, e.g. [1, 29, 37]. Different authors
used different definitions of scale-space to avoid arbi-
trary smoothing kernels. However, most authors for-
mulated constraints to reduce the information in the
image with increasing scale, like non-creation of local
extrema [51], causality and non-enhancement of lo-
cal extrema [33, 52]. Later, new scale-space definitions
basing on scale invariant semigroup theory [22, 42] be-

came popular. One of the aims of these scale-space defi-
nitions was to minimize the number of axioms uniquely
determining the Gaussian scale-space. These formal
axiomatics were mostly formulated without explicitly
using the idea of information reduction, i.e., the inten-
tion of modern scale-space theory differs slightly from
the first definitions.

According to [50], however, such a scale-space ax-
iomatic based on semigroups has already been pub-
lished much earlier [29]. The axiomatic is based on the
assumption that there is an observation transformation
� which transforms an image1 f (x) (x = (x, y)T ∈
R

2) into a blurred version of the image fs(x).2 The
observation transformation has the general form

fs(x) = �( f (x′), x, s) =
∫

R2
φ( f (x′), x, x′, s) dx′,

(1)

where s ∈ R
+. If the observation transformation fulfills

certain constrains, it establishes a scale and rotation
invariant linear scale-space3:

Definition 1 (Scale and rotation invariant linear scale-
space). An observation transformation defines a scale
and rotation invariant linear scale-space if it fulfills the
subsequent axioms:

A1. It is linear (w.r.t. multiplications).
A2. It is shift invariant.
A3. It fulfills the semigroup property.
A4. It is scale and rotation invariant.
A5. It preserves positivity.

According to [50] (respectively [31]) we specify the
axioms more formal:

A1. means that �(λ f (x′), x, s) = λ�( f (x′), x, s) for
any λ ∈ R.

A2. means that �( f (x′ − x0), x, s) = �( f (x′), x −
x0, s) for any x0 ∈ R

2.
A3. means that there exists a mapping S : R

+ ×
R

+ → R
+ so that �(�( f (x′′), x′, s1), x, s2) =

�( f (x′′), x, S(s1, s2)) for any s1, s2 ∈ R
+.

A4. means that there exists a mapping T : R
+ ×

R
+ → R

+ so that �( f (aRx′), x, s) = �( f (x′),
aRx, T (s, a)) for any a ∈ R

+ and any R ∈ SO(2).
A5. means that �( f (x′), x, s) > 0 for any f > 0 and

for any s ∈ R
+.
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Note that the axioms of Iijima do not relate the scale-
space representation to the absolute values of the
original signal, i.e., if � is a linear scale-space, k�

(k > 0) is also a linear scale-space of the same sig-
nal. This ambiguity can only be resolved by adding
another constraint, for instance requiring that the sig-
nal is continuously embedded in the scale-space (i.e.,
if the scale tends to zero, � tends to the original
signal).

Besides the axiomatic of Iijima, a couple of further
axiomatics appeared in the literature. In this paper we
only consider some additional axioms to those above;
for a more exhaustive overview we refer to [50]. For
each axiom we give either the original reference or the
name of the author (the original reference can be found
in [50]). The different axioms refer either to the obser-
vation transformation (respectively the generating con-
volution kernel) or to the image flux. The image flux, or
figure flow, is the vector field whose divergence com-
pensates the change of the signal through scale, i.e., the
flux and the scale-space representation are related by
the continuity equation [49].

A6. The flux is given by the maximum loss of ‘figure
impression’ (Iijima).

A7. The kernel must be separable (Otsu).
A8. The scale-space must fulfill the causality re-

quirement, i.e., isophotes must be connected to
the original signal [33].

A9. Isophotes in scale-space must be upwards con-
vex [33]; local maxima should not enhance with
scale [1, 39].4

A10. No new maxima should be created with increas-
ing scale (only valid in 1D [1]).

Based upon the mentioned axiomatics of linear
scale-space, the convolution with a Gaussian kernel
can be used to create blurred versions of the origi-
nal image. In order to speed up the calculation, the
blurred versions of the image are subsampled, yield-
ing a resolution pyramid [9, 24]. Instead of performing
convolutions, one can implement scale-space filtering
using the underlying partial differential equation, in
case of Gaussian scale-space the heat equation. The
advantage of this method is that it is also possible to
implement a non-linear heat equation, i.e., having a
shift variant operator. This leads to non-linear diffu-
sion methods [10, 43]. A further enhancement is ob-
tained by replacing the scalar-valued diffusivity with a
tensor-valued diffusivity, yielding anisotropic diffusion
methods [46, 48, 49]. However, all these refinements

of linear scale-space are out of the scope of this paper.
We rather focus on the linear case, showing that there
is another linear scale-space which fulfills most of the
mentioned axioms.

2. Another Linear Scale-Space

In this section we introduce a new5 linear scale-
space, the Poisson scale-space. We show that the
Poisson scale-space fulfills some important axiomatics
which have appeared in the literature so far and dis-
cuss its behavior concerning level crossings and local
extrema.

2.1. The Poisson Scale-Space

The 2D Poisson kernel is given by [47]

p(x; s) = s

2π (s2 + |x|2)3/2
. (2)

It can be considered as a two-dimensional generaliza-
tion of the Cauchy probability density function [13],
i.e., the probability density function of the spatial
coordinate at which a line with random orientation
(uniformly distributed) intersects a plane at distance
s. Interpreting the line as a light-ray emerging from a
point-source with uniform radiance, the Poisson kernel
turns out to be the point spread function of a defocused
idealized optical system [20].

The Poisson kernel establishes a linear, isotropic
scale-space, since it fulfills the axiomatic from
Section 1.2 (see also [11, 15]):

Theorem 1 (Poisson scale-space). The Poisson ker-
nel (2) establishes a linear scale-space in the sense of
Definition 1.

In order to prove this theorem, we need the Fourier
transform of the Poisson kernel. The 2D Fourier trans-
form is denoted by

F2{ f }(ξ) =
∫∫

R2
f (x) exp(−i2π ξ · x) dx

where ξ = (ξ, η)T and x = (x, y)T .

Lemma 1. The spectrum of the Poisson kernel (2) is
given by

F2{p(·; s)}(ξ) = exp(−2π |ξ|s). (3)
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Proof: See [15, 47]. �

In the following we use the abbreviation P(ξ; s) =
F2{p(·; s)}(ξ).

Proof of Theorem 1:

• The axioms A1 and A2 are trivially fulfilled since
p(x; s) is an LSI operator, i.e., it is applied by means
of convolutions.

• Axiom A3: We have

P(ξ; s1)P(ξ; s2) = exp(−2π |ξ|s1) exp(−2π |ξ|s2)

= exp(−2π |ξ|(s1 + s2))

= P(ξ; s1 + s2),

and hence S(s1, s2) = s1 + s2. In the spatial domain,
this corresponds to p(x; s1)∗ p(x; s2) = p(x; s1+s2).

• Axiom A4: Since

p(aRx; s) = s

2π ((a|Rx|)2 + s2)3/2

= 1

a2

s/a

2π (|x|2 + (s/a)2)3/2

= 1

a2
p(x; s/a),

the observation transformation is scale and rotation
invariant:

�( f (a−1RT x′), x, s)

=
∫∫

R2
f (a−1RT x′)p(x − x′; s) dx′

substitute x = aRt and x′ = aRt′

=
∫∫

R2
f (t′)p(aR(t − t′); s)a2 dt′

=
∫∫

R2
f (t′)p(t − t′; s/a) dt′

= �( f (x′), x, s/a).

Hence T (s, a) = s/a.
• Axiom A5 is fulfilled since p(x; s) > 0 for all x ∈ R

2

and all s ≥ 0. �

The proof also holds for other dimensions than two,
especially in the 1D case [15]. Hence, we have found
a counterexample of the uniqueness proof in [29]. At
this point one might ask if the proof of Iijima contains
an error. The answer is yes–Iijima assumes implicitly

that the frequency response of the scale-space kernel is
continuously differentiable at the origin (see appendix).

The Poisson kernel (2) is closely related to the
Laplace equation (or potential equation)

�3u(x, y, s) = uxx (x, y, s) + uyy(x, y, s)

+ uss(x, y, s) = 0. (4)

To make this point more evident, consider the funda-
mental solution6 of the Laplace equation:

ϕ(x, y, s) = − 1

4π
√

x2 + y2 + s2
, (5)

i.e., �3ϕ(x, y, s) = δ0(x, y, s) = δ0(x)δ0(y)δ0(s) where
δ0 is the Dirac impulse. The identity above can eas-
ily be checked using the divergence (Gauss) theorem.
A scalar function u(x, y, s) which fulfills the Laplace
equation is called a harmonic function (harmonic po-
tential). The gradient field of a harmonic function
f(x, y, s) = ∇3u(x, y, s) is known to be irrotational and
divergence free:

curl f(x, y, s) = ∇3 × f(x, y, s) = 0,
(6)

div f(x, y, s) = ∇3 · f(x, y, s) = 0

where ∇3 = (∂x , ∂y, ∂s)T is the 3D gradient opera-
tor. This system of equations formulates an equivalent
problem to the one in (4) (up to an additive constant).
Furthermore, since ϕ(x, y, s) is the fundamental solu-
tion of the Laplace equation, ∇3ϕ(x, y, s) is the funda-
mental solution of the system of equations in (6). This
can easily be concluded by plugging ∇3ϕ(x, y, s) into
(6): ∇3 × ∇3ϕ ≡ 0 and ∇3 · ∇3ϕ = �3ϕ. Considering
the components of ∇3ϕ(x, y, s) yields

∂xϕ(x, y, s) = x

4π (x2 + y2 + s2)3/2

∂yϕ(x, y, s) = y

4π (x2 + y2 + s2)3/2
, (7)

∂sϕ(x, y, s) = s

4π (x2 + y2 + s2)3/2

i.e., the Poisson kernel is one component of the funda-
mental solution of (6) (up to a factor of two).

Returning to the original setting of scale-space rep-
resentation, the considered problem is a boundary
value problem on the half-space s > 0. The appropri-
ate method to get the solution of such a problem is the
Schwarz reflection principle, which leads to a factor of
two in the fundamental solution (see e.g. [7], p. 279).



The Monogenic Scale-Space 9

Hence, the Poisson kernel is one component of the fun-
damental solution of (6) in the half-space s > 0.

2.2. The Analytic and Monogenic
Scale-Space Representations

In image processing it is common to separate the image
plane coordinates from the scale coordinate. Hence, we
rewrite f(x, y, s) = (vT (x; s), u(x; s))T , i.e., v(x; s) is a
vector field R

2 ⊕ R
+ → R

2, and we obtain a new set
of equation from (6):

curl v(x; s) = 0 (8)

∇2 · v(x; s) + ∂su(x; s) = 0 (9)

∂sv(x; s) − ∇2u(x; s) = 0 (10)

for all s > 0 and ∇2 = (∂x , ∂y)T . Obviously, the zero
divergence in (6) yields the 2D continuity equation (9)
which is also referred to in case of the Gaussian
scale-space.

To obtain the Gaussian scale-space, the continuity
equation (9) is combined with a figure flow accord-
ing to Fick’s law [49] or the maximum loss of figure
impression (axiom A6) [50]. Fick’s law basically says
that the flux is proportional to the negative gradient,
v = −k∇u, k > 0. Hence, in context of images, the
flux according to Fick’s law is aiming the maximum
reduction of gradients. Gradients, however, are consid-
ered to create the figure impression, i.e., Fick’s law is
equivalent to maximum loss of figure impression.

In the current framework, however, the figure flow
is replaced with a flux v(x; s) implicitly determined by
(8)7 and (10). The explicit solution is given by the Riesz
transform [12, 47], a 2D generalization of the Hilbert
transform [18], of u

v(x; s) = (h ∗ u(·; s))(x) (11)

where the (vector-valued) kernel of the Riesz transform
reads [47] (see also (7))

h(x) =
(

h1(x)

h2(x)

)
= x

2π |x|3 . (12)

Verifying that (11) is the appropriate figure flow of the
Poisson scale-space representation u is much easier
in the Fourier domain. The (vector-valued) frequency

response of the Riesz transform is obtained as [47]

H(ξ) = −i
ξ

|ξ| , (13)

such that

F2{curl v(·; s)} = i2πξ i
η

|ξ|U (ξ; s)

− i2πηi
ξ

|ξ|U (ξ; s) = 0

F2{∇2 · v(·; s) + ∂su(·; s)} = − i2πξ i
ξ

|ξ|U (ξ; s)

− i2πηi
η

|ξ|U (ξ; s)

− 2π |ξ|U (ξ; s) = 0

F2{∂sv(·; s) − ∇2u(·; s)} = 2π |ξ|i ξ

|ξ|U (ξ; s)

− i2πξU (ξ; s) = 0,

where U (ξ; s) = F2{u(·; s)}. Note that similar to the
gradient, the figure flow (11) can be used to define the
local orientation of a signal [18].

The combination of a signal with its Riesz transform
forms a 2D generalization of the analytic signal, the
monogenic signal [18]:

fM(x) =
(

(h ∗ f )(x)

f (x)

)
=




(h1 ∗ f )(x)

(h2 ∗ f )(x)

f (x)


. (14)

The monogenic signal can be considered as a general-
ization of the analytic signal,8 preserving a couple of
properties of the latter:

• It consists of a combination of the original signal
with a filtered version of itself, where the applied
filter is odd and has an allpass amplitude response

• Its energy is twice the energy of the original signal.
• Local amplitude and local phase (-vector) can be

extracted (see below).
• The monogenic signal of a harmonic oscillation

(sine) contains a constant local amplitude and a lin-
ear local phase (modulo 2π ).

Additionally, the monogenic signal is rotation invariant
(it commutes with the rotation operator) and contains
the local orientation information. For a more detailed
discussion on the monogenic signal, refer to [15, 18].
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Thus, using the Poisson kernel for generating a
linear scale-space arises from combining the Riesz
transform (12) with the continuity equation (9). The
unique advantage of the Poisson scale-space compared
to all other scale-spaces according to [42] (including
the Gaussian scale-space) is the figure flow being in
quadrature relation to the image at each scale. Hence,
local phase and local amplitude become inherent fea-
tures of scale-space theory. In order to understand the
impact of this result to image processing, we consider
the (better known) 1D case.

Defining the Poisson scale-space representation of
a 1D signal using the same frequency response (3) as
in the 2D case, the corresponding flux is given by the
Hilbert transform of the signal at each scale. Combin-
ing the signal and its flux to a complex signal at each
scale, yields a complex scale-space representation. This
complex scale-space is the Poisson scale-space repre-
sentation of the analytic signal.

Definition 2 (Analytic Poisson scale-space). The
Poisson scale-space representation of a 1D analytic
signal is called the 1D analytic Poisson scale-space
representation.

The term ‘analytic’ is justified in a double sense. First,
by definition the analytic Poisson scale-space is the
Poisson scale-space representation of the analytic sig-
nal. Second, the analytic Poisson scale-space is an an-
alytic function in the upper half-plane, i.e., it fulfills
the Cauchy-Riemann equations, which is straightfor-
ward to verify. Since the Poisson scale-space is the only
scale-space where signal and flux form an analytic sig-
nal, we use the term ‘analytic scale-space’ instead of
‘analytic Poisson scale-space’ in the sequel. Further-
more, since both components of an analytic function
are harmonic [35], the Poisson scale-space might also
be denoted harmonic scale-space and its flux might be
denoted conjugate harmonic scale-space.

Similar to the 1D case, we define the corresponding
2D concept.

Definition 3 (Monogenic Poisson scale-space). The
Poisson scale-space representation of a 2D monogenic
signal is called the 2D monogenic Poisson scale-space
representation.

As explained further above, the 2D monogenic scale-
space representation is formed by the 2D Poisson scale-
space representation of a signal and the corresponding
figure flow. It is a monogenic function in the upper

half-space s > 0. Monogenic functions are solutions
of the generalized Cauchy-Riemann equations, known
from Clifford analysis [5]. Since we only consider
(para-)vector valued functions, the here considered
monogenic functions are equivalent to 3D vector fields
with zero divergence and zero curl, and the gener-
alized CRE are equivalent to (6).9 Hence, the term
‘monogenic’ in Definition 3 is also justified for two
reasons: First, by definition it is the Poisson scale-
space representation of the monogenic signal. Second,
it is monogenic for s > 0. Again, the Poisson frame-
work is the only one yielding monogenic functions,
so that we use the term ‘monogenic scale-space’ for
the scale-space defined in Definition 3. Similar as in
the 1D case, all components of a monogenic function
are harmonic [15], and hence one might use ‘harmonic
scale-space’ instead of Poisson scale-space and ‘conju-
gate harmonic scale-space’ for the corresponding flux.
An overview of the concept of monogenic scale-space
is given in Fig. 1.

2.3. Relaxed Causality

The causality of scale-space representation (axiom A8)
was introduced in [33] as a fundamental concept.
Therein causality is defined by the statement: ‘any
feature at a coarse level of resolution is required to
possess a (not necessarily unique) “cause” at a finer
level of resolution although the reverse need not be
true.’ The subsequent formal treatment however, is
slightly stricter, and it requires that the convex side
of an isophote in an extremum points towards coarser
scales (axiom A9). Hence, this requirement is equiva-
lent to the non-enhancement of local extrema [1, 39].

For continuous10 signals, the non-enhancement
property is only fulfilled in the case of the Gaussian
scale-space [1], and therefore the Poisson scale-space
does not fulfill the causality requirement in its stricter
formulation, see also Fig. 2. However, motivated by the
relationship between causality and the maximum prin-
ciple [28],11 we use the original informal definition of
causality to prove that the Poisson scale-space is causal
in a relaxed sense.

Definition 4 (relaxed causality). A scale-space repre-
sentation u(x; s) is called causal in a relaxed sense, if
any level crossing surface, i.e., any connected compo-
nent of u(x; s) = λ, λ ∈ R, is connected to a point
u(x; 0) = λ.
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Figure 1. Relations between Riesz transform, monogenic signal, Poisson scale-space, and monogenic scale-space. The Riesz transform of an
image at an arbitrary scale yields the corresponding figure flow. The image and its figure flow form a monogenic signal. The monogenic signals
at all scales build up the monogenic scale-space. Alternatively, the Poisson scale-space is obtained from the original image by Poisson filtering.
Computing the harmonic conjugate yields the corresponding figure flow at all scales. The Poisson scale-space and its harmonic conjugate form
the monogenic scale-space.

Figure 2. Example due to [1] (three Dirac impulses with unit dis-
tance; the weights of the outer ones are 25 times larger than the
weight of the center one), showing that the 1D Poisson scale-space
does not fulfill the non-enhancement axiom A9.

Relaxing the causality requirement enables us to cat-
egorize the Poisson scale-space to be causal although
it does not fulfill the non-enhancement property.

Theorem 2 (relaxed causality of Poisson scale-space).
The Poisson scale-space representation of a 2D signal
in L1 fulfills the relaxed causality requirement accord-
ing to Definition 4.

Proof: The proof consists of two parts. First, we show
that there exists no closed level crossing surface for

nontrivial signals and s > 0. Second, we show that any
open level crossing surface intersects the plane s = 0.
The Poisson scale-space representation is denoted by
u(x; s).

Assume that there exists a closed level crossing sur-
face cλ given by a connected component of u(x; s) = λ,
λ ∈ R and s > 0. Due to the maximum principle of har-
monic functions [35], i.e., harmonic functions take their
maximum and minimum on the boundary, we know that
u(x; s) = λ everywhere inside of cλ. Since the Poisson
kernel is differentiable for s > 0, u(x; s) is also dif-
ferentiable for s > 0. Hence, either u(x; s) is constant
(and therefore zero, since it is in L1) or there exists
an ε 	= 0 such that the connected component cλ+ε of
u(x; s) = λ + ε is a level crossings which lies entirely
outside the level crossing cλ (see Fig. 3). Making use
of the maximum principle once more, we know that
u(x; s) = λ+ε everywhere inside of cλ+ε which yields
a contradiction.

Figure 3. Level crossings at the levels λ and λ + ε illustrating the
argumentation in the proof of Theorem 2.
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Knowing that all level crossings must be open, we
just have to show that each of them is connected to
the plane s = 0. Since both the original signal and
the Poisson kernel are in L1, u(x; s) is in L1 for
each s ≥ 0, too. Hence, lim|x|→∞ u(x; s) = 0 for each
s ≥ 0. Furthermore, lims→∞ p(x; s) ≡ 0, and hence
lims→∞ u(x; s) ≡ 0. Thus all level-crossings with λ 	=
0 are connected to the plane s = 0. There might ex-
ist zero-crossings which are connected to the planes
given by s → ∞ and |x| → ∞, but these planes
are connected to each other and especially to the line
given by |x| → ∞ and s = 0, which is part of the
plane s = 0. �

The nice thing about relaxed causality is that under
certain assumptions it is also fulfilled by the absolute
value

√
u(x; s)2 + |v(x; s)|2 of the monogenic scale-

space:

Theorem 3 (relaxed causality of monogenic scale-
space). The absolute value of the monogenic scale-
space representation of a 2D signal in L1 fulfills the re-
laxed causality requirement according to Definition 4
if the monogenic scale-space representation contains
no zeros.

The proof is basically the same as for Theorem 2. In-
stead of using the maximum principle for harmonic
functions, the maximum principle of monogenic func-
tions is applied [27]. To assure that no local minimum
occurs, one has to exclude zeros in the upper half-space
(in analogy to [8], p. 364).

In order to illustrate the two different definitions of
causality, we switch to 1D scale-space. In Fig. 4 four
different cases of isophotes are illustrated.

According to the two different definitions of causal-
ity, we obtain the following categorization:

1. The isophote is closed for s > 0. We do not have
causality in the strict sense, since the convex side

Figure 4. Causality vs. relaxed causality in 1D scale-space. The two definitions only differ with respect to the third case.

also points towards finer scales. We also do not have
causality in the relaxed sense, since the surface is
not connected to a point on the line s = 0.

2. The isophote is connected to the line s = 0 and
it is convex w.r.t. increasing scale. Hence, we have
causality according to both definitions.

3. The isophote is connected to the line s = 0 but it
is not convex w.r.t. increasing scale for all x , it is
concave at the point P. In this case we only have
causality in the relaxed sense.

4. The isophote is not closed and not connected to the
line s = 0. We do not have strict causality since the
surface is concave. We do not have relaxed causality
either since the surface is not connected to the line
s = 0.

Actually, there are other possible cases like open sur-
faces which intersect the line s = 0 in only one point,
but those are not relevant for the current discussion. The
main difference between the two definitions of causal-
ity boils down to the third case. Whereas strict causality
requires the isophote to be connected to the plane s = 0
in the space ‘between’ the current scale and scale zero,
the relaxed causality only requires connectivity in the
whole half-space s > 0.

At this point a discussion of the decisive difference
of the two definitions is necessary. Before we go into
details, we have to mention that the difference is of a
rather theoretic nature. In practice, i.e., with a sampled
scale axis, the third case in Fig. 4 is hardly observable
at all, since the ‘deepness’ of the concave area (if it
occurs at all) is very limited. This observation brings
us to the first point of theoretic interest: Is it possible
to find an ε > 0, such that the connected component
lives in R

2 × [0, s0 + ε) if the local extremum occurs at
scale s0. This question is also fundamental to practical
problems, since it might give a rule of thumb for scale-
ranges of isophote tracking.

A first rough upper bound to ε is obtained by looking
at the spatial global maximum (isophote level λ > 0)
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or minimum (λ < 0) with the same value λ as the
isophote. Assume this maximum (minimum) occurs at
scale s1. Due to the maximum principle, u(x; s) takes
smaller (larger) values for s > s1 and hence, ε < s1 −
s0. From this observation, we conclude that

• for global maxima and minima (in the image plane)
the non-enhancement property is fulfilled

• and the expected value of ε decreases with increasing
|λ|.

However, finding a tighter bound for ε turns out to be
quite hard.

A main argument for the causality principle is to
avoid the creation of spurious structures [33]. On
a purely theoretic level, this is equivalent to the
non-enhancement property. In practice, however, one
should take into account that signals contain noise and
are quantized. Hence, a spurious structure only be-
comes visible if its intensity is sufficiently high to su-
persede the noise and to reach the next quantization
level. Indeed, the spurious structures created by the
Poisson filtering are typically of a very low relative
dynamics compared to the neighbored structure which
causes it. Due to noise and quantization effects the cre-
ated structures therefore become invisible. Take for in-
stance the signal which was used to create Fig. 2. The
weights of the impulses are chosen, such that the en-
hancement of the maximum at x = 0 becomes clearly
visible. On a quantized gray level image (256 gray lev-
els, the height of the outer impulses correspond to the
full range), there is exactly one observable enhance-
ment step of the maximum by one gray level, i.e.,
in the presence of noise, no enhancement would be
observable.

2.4. Further Properties

In this section, we compare the Poisson scale-space to
the Gaussian scale-space with respect to several prop-
erties.

Same as in the Gaussian scale-space, the original
image is continuously embedded in its Poisson scale-
space, which follows from the subsequent lemma.

Lemma 2. If s tends to zero, p(x; s) tends to a 2D
Dirac delta function, i.e., lims→0 p(x; s) = δ0(x),
where δ0(x) = δ0(x)δ0(y).

Proof: One possible definition of the 1D Dirac delta
function is

δ0(x) =
{

0 if x 	= 0

∞ if x = 0
and

∫
R

δ0(x) dx = 1.

The 2D Dirac impulse is defined to be the product of
the 1D Dirac impulses in x- and y-direction. Hence,
the integral property changes to

∫∫
R2 δ0(x) dx = 1.

If s = 0 and x 	= 0 we have p(x; s) = 0. For s >

0, p(0; s) = (2πs2)−1 so that lims→0 p(0; s) = ∞.
Furthermore,∫∫

R2
p(x; s) dx =

∫ 2π

0

∫ π/2

0

sin θ

2π
dθ dψ = 1

for all s > 0.
�

Lemma 2 is also reasonable from a probabilistic point
of view and from a physical point of view (see
Section 2.1).

The axioms A6, A8, and A9 have been intensively
discussed in the previous two sections. The axiom A7
(separability) is obviously not fulfilled by the Poisson
kernel, nor by any other scale-space kernel except for
the Gaussian [11]. Separability is mostly required due
to practical reasons, i.e., computational speed. Hence,
the computation of the Poisson scale-space by convo-
lutions is definitely slower than the computation of the
Gaussian scale-space. For FFT-based implementations,
both scale-spaces are equally fast to compute.

The last remaining axiom is the non-creation ax-
iom (A10). However, it is well known that the non-
creation of local extrema in 1D Gaussian scale-space
does not generalize to higher dimensions [37]. Instead
of considering the creation of local extrema, the authors
in [1] consider (zero-crossing) contours, showing that
these contours can merge and split with increasingly
fine scale. We adapted their example of the ‘dumbbell’
(Fig. 5, left) to illustrate the corresponding property of
the Poisson scale-space. Same as for the Gaussian case,
the contours can split and merge, see Fig. 5, right.

Besides the axioms we have verified above, there
are a pile of further axioms which are considered in
the context of the Poisson kernel in [11, 12, 42]. Apart
from the mentioned axioms, there are other interesting
properties of the Gaussian scale-space which are now
reviewed in context of the Poisson scale-space.

Like for the Gaussian scale-space, the Poisson scale-
space representation can be used to interpret images
in term of singularities, extrema, saddle-points, etc.
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Figure 5. Test pattern from [1] (left) and a resulting level-crossing surface in scale-space (right).

(see [23, 33]). However, for the Poisson scale-space
a new systematic evolves. The 1D Poisson scale-space
is closely related to the Laplace transform [45] (and
therefore to the Z -transform), which give rise to signal
representation and interpretation in terms of zeros and
poles. In Theorem 5 (see also [15]) it is shown that
the spectrum of an analytic signal in the Poisson scale-
space is given by the one-sided Laplace transform of
the original spectrum. Hence, the zeros and poles in
the spatial domain completely represent the original
spectrum. Generalizing this idea to 2D, it is reasonable
that the zero-crossings, singularities, and saddle-points
in scale-space completely represent the original spec-
trum. However, the corresponding systematic for the
2D Poisson scale-space will be the topic of a future
publication.

Besides the behavior of the signal in scale-space, it
is also reasonable to compare the two involved con-
volution kernels. The Gaussian kernel is known to be
the only real-valued operator with the optimal uncer-
tainty of (2π )−1, [3, 41]. The uncertainty of the Poisson
kernel is just slightly worse (by a factor of

√
1.5, see

Figure 6. The 1D Gaussian kernel (dashed line) and the 1D Poisson kernel (solid line) in spatial domain (left) and frequency domain (right).
All axes are labeled relative to the standard deviation σ of the Gaussian. The Poisson kernel is less rapidly decreasing than the Gaussian kernel,
i.e., it has a larger extent.

appendix). This slight increase of uncertainty is caused
by the larger extent of the Poisson kernel in both do-
mains, see Fig. 6. For the sake of simplicity, the figure
shows the comparison for the 1D case, but it is basically
the same for 2D, see [15]. To compare both kernels,
the maximum of the Poisson kernel is chosen to be the
same as the one of the Gaussian kernel (s = √

2σ/
√

π

[15]).
The larger extent of the Poisson kernel in the spa-

tial domain results in two effects. First, as a qualitative
difference, the Poisson kernel leads to a violation of
the non-enhancement property, see the discussion in
the previous section. Second, as a quantitative differ-
ence, the truncation-error of the Gaussian kernel and
the Poisson kernel differ, see Table 1. Compared to the
Gaussian kernel, the L1-truncation error of the Poisson
kernel is much higher, whereas the L2-truncation error
is much lower for small filter masks.

The larger extent of the Poisson kernel in the fre-
quency domain yields a different behavior for the
bandlimitation, and therefore a different subsampling
strategy if the Poisson kernel is applied for creating a
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Table 1. Truncation error of the 2D Gaussian kernel and the 2D
Poisson kernel. The kernels are truncated at σ , 2σ , and 3σ (s = σ

[15]).

Truncation/error
norm σ /L1 2σ /L1 3σ /L1 σ /L2 2σ /L2 3σ /L2

Gaussian kernel 61% 14% 1% 37% 2% 0%

Poisson kernel 71% 45% 32% 25% 4% 1%

multi-resolution representation. The involved parame-
ters and alias effects can easily be determined from the
frequency response. However, this topic is out of the
scope of this paper. Instead, we now focus on the re-
lationship between the Poisson scale-space and phase-
based image processing.

3. The Local Phase in Scale-Space

In the preceding sections of this paper, we have pre-
sented the Poisson scale-space as a possible alterna-
tive to the Gaussian scale-space. However, there are
more alternatives [12] and it is legitimate to ask why
to change existing methods using the Gaussian kernel.
For many applications it is appropriate to keep with
the Gaussian kernel, however, there are cases where it
might be advantageous or even necessary to switch to
the Poisson scale-space. One of the latter cases arises
if the ideas of local phase and scale-space are com-
bined to recognize local structures and to measure local
features. The direct relationship between the Poisson
scale-space and the monogenic signal (see Section 2.2)
yields new possibilities of phase-based image process-
ing in scale-space. To show the advantages of a com-
mon framework, we start with a simple application:
edge detection by differential phase congruency. In
the subsequent sections, we derive a 2D generaliza-
tion of the attenuation-phase relationship based upon
intrinsically 1D monogenic signals. The aim of this
relationship is to understand the deeper connection be-
tween phase-based and amplitude-based approaches to
edge detection and local frequency estimation (see last
section).

3.1. Differential Phase Congruency

Edge detection by means of quadrature filters can be
performed in two ways: either by detecting local max-
ima of the local amplitude or by detecting points of
stationary phase in scale-space. The latter approach is

commonly called phase congruency and is based on
comparisons of the local phase at certain distinct scales
[34, 44]. There are basically three drawbacks of using
distinct scales:

• Edges are scale-relative, i.e., they have a certain op-
timal scale for detection and have a limited extent in
scale-space. An algorithm using distinct scales has
to contain some heuristics to judge whether an edge
is present or not if the phase is only congruent in
some of the considered scales.

• It is not straightforward, how to map at different
scales estimated phases to a (scalar) certainty mea-
sure.

• Due to sampling of the orientation and of the scale, a
large number of basis filters has to be applied, yield-
ing a high computational complexity.

In [17] we presented a phase congruency based edge
detector which makes use of the monogenic signal. Al-
though that method is already much faster than the clas-
sical methods cited above, the drawbacks concerning
the choice of scales and the evaluation of a certainty
measure are still present. In [15] an advanced method
has be developed based on the idea of differential phase
congruency.

Before we consider the new approach more in detail,
we must define the phase approach of the monogenic
scale-space (see also [18]).

Definition 5 (local phase-vector). Let u(x; s) be a
Poisson scale-space representation and v(x; s) its har-
monic conjugate. Then, the local phase-vector of the
monogenic scale-space representation (vT , u)T is de-
fined by

r(x; s) = v(x; s)

|v(x; s)| arctan

( |v(x; s)|
u(x; s)

)
, (15)

where arctan(·) ∈ [0, π ).

The idea behind this definition is to create a combined
representation of local phase and local orientation, as
it is proposed in [25], p. 274. The local phase and the
local orientation define a point on the unit sphere. Ev-
ery point on the unit sphere can be mapped one-to-one
to a rotation vector in the plane [15]. A rotation vec-
tor points into the direction of the rotation axis and
its absolute value defines the rotation angle. The local
phase-vector describes a rotation by the phase angle
around an axis perpendicular to the local orientation.
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Note that the phase-vector is parallel to the local orien-
tation, and hence, perpendicular to the actual rotation
axis.

The local phase-vector characterizes the local gray
level transition of an image (i.e., the local image struc-
ture) completely, if the image is locally constant in one
direction. In [25] these signals are called simple (local)
signals. A more generic terminology in this context is
the notion of the local intrinsic dimension, see e.g. [36].

Definition 6 (local intrinsic dimension). The local in-
trinsic dimension of an image neighborhood is given
by the minimal number of orthogonal orientations in
which the image locally varies.

Hence, lines and edges are typical examples for intrin-
sically 1D neighborhoods. In [18] we have shown, that
for intrinsically 1D neighborhoods the phase angle
contained in the phase-vector equals the local phase
of the corresponding 1D signal. This also implies that
the 2D phase congruency at lines and edges directly
corresponds to the 1D phase congruency at impulses
and steps.

The idea of differential phase congruency is now
to replace the finite difference of phases on different
scales by a scale derivative of the phase:

Definition 7 (differential phase congruency). Let
r(x; s) be the local phase-vector of a monogenic scale-
space representation. Points where

∂sr(x; s) = 0 (16)

are called points of differential phase congruency.

Using this definition does not yield an advantage com-
pared to ordinary phase congruency according to [17],
if the scale derivative has to be approximated with finite
differences. However, since the monogenic scale-space
unifies the frameworks of phase-based processing and
scale-space, it is possible to derive a formula for com-
puting the derivative directly.

The scale derivative of the local phase-vector can be
computed as follows:

Theorem 4 (scale derivative of phase-vector). For
intrinsically 1D neighborhoods the scale derivative
of the local phase-vector of a monogenic scale-space
representation, r(x; s), is given by

∂sr(x; s) = u(x; s)∂sv(x; s) − v(x; s)∂su(x; s)

u(x; s)2 + |v(x; s)|2 . (17)

Proof: The scale derivative of (15) reads

∂sr(x; s) = arctan

( |v(x; s)|
u(x; s)

)
∂s

v(x; s)

|v(x; s)|
+ v(x; s)

|v(x; s)| ∂s arctan

( |v(x; s)|
u(x; s)

)
.

Since the neighborhood is intrinsically 1D, the local
orientation does not change through scale, i.e., v/|v| is
constant, such that the first term vanishes. Rewriting v
as vn = v(cos θ, sin θ )T for appropriate θ and v ≥ 0,
the second term reads

v(x; s)

|v(x; s)| ∂s arctan

( |v(x; s)|
u(x; s)

)

= n ∂s arctan

(
v(x; s)

u(x; s)

)

= n(u(x; s)∂sv(x; s) − v(x; s)∂su(x; s))

u(x; s)2 + v(x; s)2

= u(x; s)∂sv(x; s) − v(x; s)∂su(x; s)

u(x; s)2 + |v(x; s)|2 .

�

This formula is especially useful, since it yields a higher
accuracy and a significant speedup of the derivative
computation compared to a finite difference approxi-
mation. The scale derivative is obtained from six lin-
ear filters: the Poisson filter, its Riesz transform, and
their scale derivatives. The phase congruency itself
is obtained without using inverse trigonometric func-
tions. An alternative to (17) would be to replace the
s-derivatives of the kernels with x-derivatives (see (9),
(10), and Section 3.4).

Returning to the points of phase congruency, we have
to find the zeros of the two components of the numerator
in (17). By a linear regression, these zeros can easily be
detected with subpixel accuracy. After removing those
zeros where the slope of the numerator in (17) is smaller
than a threshold, the results in Fig. 7 are obtained.

3.2. The Local Attenuation—Local Phase
Relationship in 1D

The 1D attenuation-phase relationship (see e.g. [40],
p. 206), states that for a minimum-phase system,12

the attenuation (logarithm of the amplitude response)
and the phase response are related by the Hilbert
transform.

In order to explore the background of this relation-
ship, we consider an analytic function w(z) which is
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Figure 7. Results from differential phase congruency. Upper row: original images. Bottom row: detected edges and lines (same parameters for
all images). For comparison, see [15].

non-zero everywhere. Hence, log(w(z)) is also analytic
and non-singular, which can easily be checked using the
Cauchy-Riemann equations. Considering the Laplace
transform of a causal system, its transfer function is
analytic in the positive half-plane. Hence, attenuation
and phase response form an analytic function in this
half-plane if the filter is minimum-phase and therefore,
attenuation and phase response form a Hilbert pair on
each line Re{z} > 0.

The idea of the attenuation-phase relationship can
be transferred to the analytic scale-space representa-
tion, since the latter equals the Laplace transform [45]
if the roles of Fourier domain and spatial domain are
exchanged [15].

Theorem 5 (analytic scale-space and Laplace trans-
form). Let u(x ; s) + iv(x ; s) be the analytic scale-
space representation of a 1D signal f (x). Then,

u(x ; s) + iv(x ; s) = 2L{F}(2π (s − i x)), (18)

where F =F1{ f } andL denotes the Laplace transform

L{g}(p) =
∫ ∞

0
exp(−px)g(x) dx (19)

with p ∈ C and Re{p} > 0.

Proof: Starting from the right and plugging in the
frequency response of the Hilbert transform −iu/|u|

yields

2L{F}(2π (s − i x))

= 2
∫ ∞

0
exp(−(2π (s − i x))u)F(u) du

= 2
∫ ∞

0
F(u) exp(−2π |u|s) exp(i2πxu) du

=
∫ ∞

−∞

(
1 + u

|u|
)

F(u) exp(−2π |u|s) exp(i2πxu) du

= u(x ; s) + iv(x ; s).

�

Hence, we can apply the attenuation-phase rela-
tionship of minimum phase systems to 1D analytic
scale-space representations which are non-zero every-
where.13 Instead of phase and attenuation, the local
phase and the local attenuation now form a Hilbert
pair for each scale. The local attenuation is simply the
logarithm of the local amplitude. Unfortunately, ana-
lytic scale-space representations often contain zeros for
s > 0, see e.g. Fig. 8.

Zeros typically occur if a signal contains a high
frequency component with a higher amplitude than a
low frequency component. Descending through scale-
space, the amplitude of the low frequency compo-
nent will eventually be larger. Thus the number of
modes changes and the zero crossings intersect, see
Fig. 9.
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Figure 8. 1D Poisson scale-space: zeros of the local amplitude of a random signal. The zero-crossings of the real part are indicated by solid
lines, the zero-crossings of the imaginary part are indicated by dashed lines. The gray level image in the background shows the (rescaled) local
amplitude. Note that a zero of the local amplitude implies both parts, the real one and the imaginary one, to be zero.

Figure 9. Intersecting zeros of real part (solid line) and imaginary
part (dashed line) for a simple linear combination of two oscillations.

3.3. The Local Attenuation—Local Phase
Relationship in 2D

In this section we generalize the relationship between
local attenuation and local phase for the 2D case, i.e.,
the monogenic signal.

For the 2D monogenic signal, the local phase is re-
placed with a phase-vector, see (15). The local ampli-
tude is given by the L2-norm of the vector (vT , u)T at
every point (x; s) [18] and hence, the 2D local attenu-
ation is given by

a(x; s) = log(
√

u(x; s)2 + |v(x; s)|2)

= 1

2
log(u(x; s)2 + |v(x; s)|2). (20)

Under certain assumptions, local phase-vector and lo-
cal attenuation form a Riesz triplet in 2D.

Theorem 6 (2D local attenuation and 2D local phase).
Let f be a 1D function in L1 such that its 1D analytic
scale-space representation has no zeros in the plane
s > 0 and let n ∈ R

2 with |n| = 1. Furthermore, let
u(x; s) be the 2D scale-space representation of f (n ·x)
and let v(x; s) be the corresponding image flux. Then
the local attenuation (20) and the local phase-vector
(15) form a Riesz triplet

r(x; s) = (h ∗ a(·; s))(x) for all s ≥ 0. (21)

Proof: Since f (n ·x) is constant in the perpendicular
direction n⊥ of n, we focus on the projections onto
the plane spanned by n and s, i.e., integrals along n⊥.
From the Fourier slice theorem [4] it follows that the
1D projections of the 2D Poisson kernel and the 2D
Riesz kernel are identical to the 1D Poisson kernel and
n-times the Hilbert kernel, respectively:∫ ∞

−∞

s

2π (|x ′n + y′n⊥|2 + s2)3/2
dy′ = s

π (x ′2 + s2)
(22)∫ ∞

−∞

x ′n + y′n⊥

2π |x ′n + y′n⊥|3 dy′ = n
πx ′ ,

(23)

where we made use of x = x ′n + y′n⊥. Thus, all
2D convolutions of f (n · x) with either the Poisson
kernel or the Riesz kernel can be replaced with 1D
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convolutions with the 1D Poisson kernel and n-times
the Hilbert kernel. Hence, u(x; s) = u1(n · x; s) and
v(x; s) = nv1(n · x; s), where u1 + iv1 denotes the 1D
analytic scale-space of f . Therefore, making use of
(20) and (15) we obtain

a(x; s) = a1(n · x; s) and r(x; s) = nr1(n · x; s)

where a1 = log |u1 + iv1| is the 1D attenuation and
r1 = arg(u1 + iv1) is the 1D phase.14 Since r1 is the
Hilbert transform of a1, we obtain (21) by applying
(23). �

Before we focus on the problem of zeros in the positive
half-space, we want to make some remarks.

1. The 2D signals which occur in Theorem 6 are glob-
ally intrinsically 1D, compare Definition 6.

2. Although real images are in general not globally in-
trinsically 1D signals, they commonly contain a lot
of intrinsically 1D neighborhoods. In these regions,
Theorem 6 can be considered to provide an approxi-
mative result, since the Poisson kernel and the Riesz

Figure 10. Zeros in the monogenic scale-space for two different images (see Fig. 11) and a range of scales. The black lines show the zeros of
the Poisson scale-space and the gray lines show the zeros of the figure flow. The intersections of both are the zeros of the monogenic scale-space.

kernel are rapidly decreasing with increasing radius
such that the error caused by a finite integration
(projection) is small.

3. For intrinsically 2D neighborhoods the theorem
does not hold in general.

4. As we will see further below, one can apply the 2D
attenuation-phase relationship in good approxima-
tion neglecting possibly occurring zeros.

Note that all subsequent examples are computed us-
ing a finite domain implementation of the monogenic
scale-space [16], since the boundary effects, which oc-
cur if convolution operators are applied to finite images,
yield quite large distortions.

In theory, Theorem 6 cannot be applied to most im-
ages, since zeros are occurring in the positive half-space
in most cases, see Fig. 10. However, in practical appli-
cations the influence of the zeros can mostly be ne-
glected, as we see from two very simple reconstruction
algorithms which make use of Theorem 6: reconstruc-
tion from local attenuation and reconstruction from lo-
cal phase-vector. The reconstruction works as follows.
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Figure 11. Two test images.

From (20) and (15) it follows that the signal at scale s0

can be recovered from attenuation and phase-vector by

u(x; s0) = exp(a(x; s0)) cos(|r(x; s0)|). (24)

Assuming that only either feature, attenuation or phase-
vector, is known, the respective other one can be com-
puted using (21).15 Hence, we obtain methods for
reconstruction from local phase-vector and local at-
tenuation, respectively.

We applied the two methods to the images in Fig. 11.
The results can be found in Fig. 12. The reconstructed
images (especially those reconstructed from the phase-
vector) might have a different dynamics and a DC-
offset. In order to have a fair comparison, we mini-
mized the mean square error of the reconstruction with
respect to a global multiplicative constant and an ad-

Figure 12. Reconstruction from attenuation and phase. Upper row: reconstruction from local phase. Bottom row: reconstruction from local
amplitude. The pairwise left images show the reconstruction, the pairwise right ones the corresponding absolute error multiplied by 10.

Table 2. RMSEs of the reconstructed images.

Image/ Dog/ Tree/ Tree/
method Dog/phase attenuation phase attenuation

RMSE 9.15 4.17 10.50 4.38

ditive offset. The resulting RMSEs16 can be found in
Table 2.

The reconstruction results are quite accurate (see
footnote 16) which implies that the influence of existing
zeros in the monogenic scale-space is comparably low.
Obviously, the reconstruction accuracy is better for the
reconstruction from local attenuation. Especially close
to the boundary the error of the reconstruction from
phase is significantly larger. This is probably caused
by the finite domain implementation, which constraints
the normal components of the Riesz transform to van-
ish at the boundary [16].

To conclude this section, we want to make a final
remark on Theorem 6. In [18] we have stressed the fact
that local amplitude and local phase are independent
information. This statement must be restated in an ex-
acter way in the current context: local amplitude and
local phase are pointwise independent. In a local con-
text, local attenuation and local phase-vector are related
by the Riesz transform. Hence, the framework of the
monogenic scale-space represents local relationships
explicitly in pointwise orthogonal features.
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3.4. Phase-Based and Amplitude-Based
Image Processing

The theorems and observations from the previous sec-
tions enable us to relate phase-based image processing
approaches to amplitude-based approaches on a the-
oretic level. In order to obtain exact results, we have
to assume that there are no zeros in the monogenic
scale-space for s > 0, although this assumption can be
omitted in most practical situations.

Under the assumptions of Theorem 6, the local at-
tenuation and the local phase-vector form a monogenic
function for s > 0. Accordingly, we can apply (9) and
(10) to relate the first order derivatives of the local at-
tenuation and those of the local phase-vector:

∇2 · r(x; s) + ∂sa(x; s) = 0 (25)

∂sr(x; s) − ∇2a(x; s) = 0. (26)

Furthermore, (8) implies that the phase-vector field is
irrotational. This is trivially fulfilled in intrinsically 1D
neighborhoods, but (8) can also be considered as a cri-
terion for the validity of (25) and (26).

Both Eqs. (25) and (26) contain quite fundamen-
tal terms of image processing: the (isotropic) local
frequency ∇2 · r(x; s) and the differential phase con-
gruency ∂sr(x; s). These observations give rise to two
theorems.

Theorem 7 (local frequency). The local frequency in
an intrinsically 1D neighborhood is given by the scale
derivative of the local attenuation.

Theorem 8 (phase congruency). The phase congru-
ency in an intrinsically 1D neighborhood is given by
the extrema of the local amplitude.

Proof of Theorem 7: In the first part we show that in
the case of intrinsically 1D neighborhoods the isotropic
local frequency is identical to the local frequency in the
main orientation (see also [14]). Let n = (n1, n2)T

be the unit vector pointing in the main orientation.
The local frequency in the main orientation is given
by the directional derivative of the scalar phase ϕ:
ϕ′ = (n1∂x + n2∂y)ϕ. Since the neighborhood is in-
trinsically 1D, we know that ∇2ϕ = nϕ′ and because
r = nϕ,

∇2 · r(x; s)) = n · ∇2ϕ(x; s) = n · nϕ′(x; s) = ϕ′(x; s).

In a second step, we show that (25) is fulfilled. Al-
though it already follows from Theorem 6, we give an
elementary proof here. Similar to [32], p. 397, we ex-
press the derivative of the local phase-vector directly by
partial derivatives of the components of the monogenic
scale-space (see also [14]):

∇2 · r(x; s)

= v(x; s)

|v(x; s)| · ∇2 arctan

( |v(x; s)|
u(x; s)

)

= u(x; s)(∇2 · v(x; s)) − v(x; s) · (∇2u(x; s))

u(x; s)2 + |v(x; s)|2 ,

where we made use of the local orientation being con-
stant (intrinsically 1D neighborhood). By means of (9)
and (10) we replace the spatial derivatives with a scale
derivative:

∇2 ·r(x; s) = − u(x; s)(∂su(x; s)) + v(x; s) · (∂sv(x; s))

u(x; s)2 + |v(x; s)|2 .

On the other hand, by (25) we have

∂sa(x; s) = 1

2
∂s log(u(x; s)2 + |v(x; s)|2)

= u(x; s)(∂su(x; s)) + v(x; s) · (∂sv(x; s))

u(x; s)2 + |v(x; s)|2 .

�

Theorem 7 formalizes a well known method: The
isotropic local frequency can be estimated by the quo-
tient of two log-normal bandpass filters (see e.g. [32]).
The latter can be considered as a finite difference of
frequency components at two different scales, i.e., an
approximation of the scale derivative.

Proof of Theorem 8: By Theorem 4 we know that
the scale derivative of the phase can be expressed by
means of scale derivatives of the components of the
monogenic scale-space. Furthermore,

∇2a(x; s) = 1

2
∇2 log(u(x; s)2 + |v(x; s)|2)

= u(x; s)(∇2u(x; s)) + v(x; s)(∇2 · v(x; s))

u(x; s)2 + |v(x; s)|2

and plugging in (10) and (9) yields

∇2a(x; s) = u(x; s)∂sv(x; s) − v(x; s)∂su(x; s)

u(x; s)2 + |v(x; s)|2 .

Hence, points of phase congruency are identical to
points of vanishing gradient of the attenuation. Since
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Figure 13. Edge detection at synthetic corner. Solid: zero-crossing of phase congruency, dashed: zero-crossing of amplitude gradient.

the exponential function is strict monotonic, a vanish-
ing gradient of the attenuation implies a vanishing gra-
dient of the amplitude.

What remains is to show that only extrema of the
amplitude correspond to points of phase congruency.
Assuming that we have a zero gradient and no ex-
tremum, implies that �2a = 0 and due to (26) ∂ss r = 0.
However, this case is excluded by applying any non-
zero threshold (see Section 3.1) to the slope of the
zero. �

Note that we apply the threshold only to the numer-
ator in (17), such that the slope of the zero is implicitly
multiplied with the squared amplitude. Hence, for an
appropriate threshold, this method also excludes local
minima. In other words: edge detection by means of lo-
cal amplitude maxima is equivalent to edge detection
by phase congruency.

This result is just contrary to looking at phase based
and amplitude based approaches as being two alterna-
tive approaches (see e.g. [34]). In order to solve this
contradiction of established opinions, we concentrate
on an assumption made in the beginning: What hap-
pens if the neighborhood is not intrinsically 1D? We
cannot give an exhaustive answer to this question in
this paper, since the behavior of phase and attenua-
tion in intrinsically 2D neighborhoods is still work in
progress. However, we present a simple example, con-
sisting of a synthetic orthogonal corner, which shows
that the phase congruency is superior to the detection
of local amplitude maxima, see Fig. 13.

Obviously, the zero-crossing of the phase congru-
ency is well located, even at the corner. Far away from
the corner, the zero-crossing of the amplitude gradient

looks quite similar, but close to the corner its localiza-
tion is much poorer. Both methods are evaluated at the
same scale (s = 2).

Hence, the main difference between approaches
using the detection of local amplitude maxima and
phase congruency approaches is the behavior in 2D
neighborhoods. This can also be verified in various
edge-detection experiments in [15], where the ampli-
tude based approaches blur the contour at corners and
junctions.

4. Conclusion

In this paper we have presented a unifying approach to
scale-space theory and phase-based image processing.
We combined the concept of the Poisson scale-space
with the monogenic signal yielding the monogenic
scale-space, which contains the scale-space and its flux,
the Riesz transform. By means of the central Theorem 6
we established a relationship between the main fea-
tures of the monogenic scale-space, the local attenua-
tion and the local phase. The resulting theoretic frame-
work yields several further relationships which can be
exploited for image processing. However, the structure
of the monogenic scale-space representation still needs
further investigation to be completely understood.

Appendix

Why is Iijimas Original Uniqueness Proof Wrong?

In his paper [30] (in Japanese, a journal version of
[29]), Iijima shows for the 1D case that the axioms
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A1–A517 have a unique solution, the Gaussian
scale-space. Besides the fact that he does not assure that
the signal is continuously embedded, his proof must ob-
viously contain an error, since the Poisson scale-space
is a counterexample for his proof. The question is now,
where exactly in the proof Iijima made the mistake.

It turns out that he introduced an assumption in the
proof, which is not contained in the axioms. We skip
the first three steps of his proof, which make use of the
first three axioms in order to show that the observation
transformation must have the following form (see also
Lemma 3 in [50]):

�[g(x ′), x, σ ] =
∫ ∞

−∞
g(x ′)φ(ν(σ )(x − x ′))ν(σ ) dx ′,

where we use the notation from [50], which is basically
the same as the original one.

In a next step, using axiom A4, Iijima shows that the
Fourier transform of the kernel φ(u) must be an expo-
nential function with even exponent, which excludes
the Poisson scale-space and all valid solutions accord-
ing to [11, 42], see also Lemma 4 in [50]. Hence, the
error must be in this fourth part of the proof.

Indeed, Iijima assumes in [30], p. 373, that the first
n derivatives of the frequency response �(ξ ) of the
scale-space kernel do exist at the origin (Eq. (3.10)).
In the axioms, however, no constraints are put on the
frequency response (it is not even assumed that the ob-
servation transformation is connected to a frequency
response at all). Replacing the derivatives at the ori-
gin with left-sided and right-sided limits, i.e., allowing
a singularity of the derivative at the origin, splits the
inverse Fourier transform in (3.13) into two addends
(using the original notation):

φ(u) = 1

2π

( ∫ 0

−∞
exp

(
lim
τ↑0

� (n)(τ )
ξ n

n!
+ iξu

)
dξ

+
∫ ∞

0
exp

(
lim
τ↓0

� (n)(τ )
ξ n

n!
+ iξu

)
dξ

)
.

This sum of integrals does not only exist for n = 2m (m
an integer) as stated in the original proof. In particular,
the Poisson kernel (n = 1) is also a solution which can
easily be verified.

In a fifth step, Iijima shows that the positivity is only
preserved if m ≤ 1, see also [11].18 If n = 2m had
been correct, the Gaussian kernel would have been the
only solution. However, changing the proof as indicated
above results in two solutions for linear scale-space
kernels (n = 1 and n = 2). The remaining solutions

according to [42, 12] (Kt (u) = exp(−2π |u|αt , α ∈
(0, 2]) cannot be obtained by a proof similar to the one
by Iijima, since he uses explicitly the inverse Fourier
transform which does only exist for certain values of α

[42] and which is actually a further implicit assumption.

Uncertainty of the 2D Poisson Kernel

The spread in the spatial domain reads (see [15])

�x =
√

σ 2
x =

(∫∫ |x|2 p(x; s)2 dx dy∫∫
p(x; s)2 dx dy

)1/2

=



∫∫ |x|2
(|x|2+s2)3 dx dy∫∫

1
(|x|2+s2)3 dx dy




1/2

change to polar coordinates r = |x|:

=
(

2π
∫ ∞

0
r3

(r2+s2)3 dr

2π
∫ ∞

0
r

(r2+s2)3 dr

)1/2

=
(

1
2s2 − s2

4s4

1
4s4

)1/2

= s

where the integrals are evaluated according to [6]
19.5.1.3 integrals 63 and 71. The spread in the fre-
quency domain is obtained as

�ξ =
√

σ 2
ξ

=
(∫∫ |ξ|2 P(ξ; s)2 dξ dη∫∫

P(ξ; s)2 dξ dη

)1/2

=
(∫∫ |ξ|2 exp(−4π |ξ|s) dξ dη∫∫

exp(−4π |ξ|s) dξ dη

)1/2

change to polar coordinates q = |ξ|:

=
(

2π
∫ ∞

0 q3 exp(−4πqs) dq

2π
∫ ∞

o q exp(−4πqs) dq

)1/2

=
(

6
(4πs)4

1
(4πs)2

)1/2

=
√

6

4πs

where the integrals are evaluated according to [6] 19.6.1
integral 1. Hence (�x)(�ξ) =

√
6

4π
in the case of the

Poisson kernel which means that the uncertainty is
slightly worse than for the 2D Gaussian kernel (factor√

1.5).
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Notes

1. Since we are interested in scale-space axiomatics for image pro-
cessing, we only consider formulations for 2D signals. Note that
we use the notion of 2D scale-space, although the scale-space
representation is a 3D function.

2. Originally, Iijima formulated the 2D axiomatic for the affine
case, i.e., the blurring parameter is a matrix �. In this paper
however, we focus on a scalar scale parameter, since adaptive
or very high dimensional scale-spaces (a blurring parameter
� has three degrees of freedom) are out of the scope of this
paper.

3. We use the term ‘scale and rotation invariant linear scale-space’
in order to distinguish it clearly from the definitions of lin-
ear scale-space according to the ideas of information reduc-
tion. In the following we will omit ‘scale and orientation in-
variant’ if it is clear from the context which scale-space we
mean.

4. We explicitly distinguish between the causality requirement
(axiom A8) and the non-enhancement, since the informal defini-
tion of causality is slightly weaker than the convexity constrain
(see Section 2.3).

5. Actually, the Poisson scale-space is not new: In [42] Pauwels
et al. have considered a class of scale-space kernels, among which
they also mentioned explicitly the 1D Poisson kernel (Cauchy
density). In our two conference papers [19, 21], the Poisson
kernel already appeared in the context of scale-space, which
was further discussed in [15]. Independently, Duits et al. started
investigations about scale-space axiomatics, first results can be
found in [11, 12].

6. Actually the constant −(4π )−1 is an arbitrary choice, any other
constant is a valid choice [7], p. 209. However, due to normal-
ization of the Dirac impulse, we prefer the given constant.

7. Any gradient field (e.g. the figure flow according to Fick’s law)
fulfills (8).

8. We avoid using the term ‘2D analytic signal’, since the 1D ana-
lytic signal is derived from a 2D analytic function [26] (which is
indeed the analytic Poisson scale-space, see below) and the ap-
proaches commonly referred to as ‘2D analytic signals’ are just
projections of the 1D approach, i.e., they are not derived from a
concept of a higher dimensional analytic function.

9. One consequence is that the image intensity axis is identified
with the scale axis [15].

10. For discrete signals, the non-enhancement is also fulfilled for
other kernels [38].

11. The proof of Hummel cannot be directly applied to the Poisson
scale-space, since the maximum principle is different in both
cases.

12. A minimum-phase system is defined by having no zeros and
poles in the positive half-plane of the Laplace domain.

13. Due to the maximum principle, we know that no poles occur for
s > 0.

14. Note that arg(u + iv) = v
|v| arctan( |v|

u ) if arctan(·) ∈ [0, π ).
15. Note that the inverse Riesz transform is given by the negative

Riesz transform, as for the Hilbert transform.
16. Note that RMSEs are in gray level units, i.e., they are not normal-

ized. Taking the normalized MSEs instead, we obtain errors of
order 10−3 (reconstruction from local phase) and 10−4 (recon-
struction from local attenuation), which is quite good compared
to other methods, see e.g. [2].

17. Axiom A4 becomes even simpler in 1D, since it just requires
scale invariance.

18. Originally, A5 was no axiom, but an additional constraint.
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