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Abstract. Area-based image matching and sub-pixel displacement estimation using similarity measures are com-
mon methods that are used in various fields. Sub-pixel estimation using parabola fitting over three points with their
similarity measures is also a common method to increase the matching resolution. However, few investigations or
studies have explored the characteristics of this estimation.

This study1 analyzed sub-pixel estimation error using two different types of matching model. Our analysis
demonstrates that the estimation contains a systematic error depending on image characteristics, the similarity
function, and the fitting function. This error causes some inherently problematic phenomena such as the so-called
pixel-locking effect, by which the estimated positions tend to be biased toward integer values. We also show that
there are good combinations of the similarity functions and fitting functions.

In addition, we propose a new algorithm to greatly reduce sub-pixel estimation error. This method is independent
of the similarity measure and the fitting function. Moreover, it is quite simple to implement. The advantage of our
novel method is confirmed through experiments using different types of images.

Keywords: area-based image matching, similarity measure, sub-pixel estimation, pixel-locking effect, estimation
error reduction

1. Introduction

Area-based image matching is a common and basic
method that is used in many fields such as motion es-
timation (Aggarwal and Nandhakumar, 1988), object
tracking (Shortis et al., 1994), machine vision (Aghajan
et al., 1993), video data coding, stereo image process-
ing (Kanade and Okutomi, 1994), image-based mea-
surement (West and Clarke, 1990), image registration
(Irani and Peleg, 1991), remote sensing, and fluidics
(Raffel et al., 1998). For estimating sub-pixel displace-
ment, many applications have employed some methods
to find a true peak of a similarity function by fitting
a parabola or other functions over three indices near
its extremum (Frischholz and Spinnler, 1993; Fusiello
and Roberto, 2000; Raffel et al., 1998; Tian and Huhns,

1986). This method is called as the similarity interpo-
lation method.

Nevertheless, in many cases, the only criterion con-
sidered is the computing speed without any considera-
tion of the combination of similarity and fitting func-
tion, especially in industrial applications. It is also re-
ported that the similarity interpolation method requires
few computations in spite of the existence of system-
atic errors (Westerweel, 1998). Sub-pixel estimation
error has been discussed on its magnitude and char-
acteristics for a specific image under given conditions
(Dvornychenko, 1983). Notwithstanding, they have not
provided a method to reduce estimation errors.

Figure 1 shows a simple experiment. The target
moves linearly in a horizontal direction at a constant
speed. The measured horizontal positions are expected
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Figure 1. Images used for the target tracking. White rectangle in-
dicates the tracking area.

Figure 2. Measured target positions.

Figure 3. Images used for disparity estimation.

to increase linearly to the frame number (time). But
the actual measured positions shown in Fig. 2 contain
apparent systematic errors with a one-pixel period.

In the field of fluidics, the so-called pixel-locking ef-
fect has been reported (Westerweel, 1998). This effect
is the phenomenon by which the estimated sub-pixel
displacement inclines toward integer pixel positions.
Its degree depends on images or similarity function.
The only way to detect this effect is to make a his-
togram from many corresponding flow vectors.

Figure 4 represents a histogram of the horizon-
tal component of displacement associated with 5040

Figure 4. Histogram of estimated disparities.

points of flow-vectors estimated from real images
shown in Fig. 3. The frequencies at integer pixel val-
ues are unnaturally high. This phenomenon indicates
the possibility of systematic errors in all measurements
using area-based matching.

This paper presents a novel estimation error cancel
(EEC) method which can greatly reduce the estima-
tion error. The method uses no iteration, thereby easy
implementation of both software and hardware. It is
independent of the similarity and fitting function, and
the images used.

The EEC method assumes some properties in sub-
pixel estimation error. Two different types of image
matching models are examined to verify the assump-
tions. One is a one-pixel-matching model, which is used
for analysis of the characteristics of sub-pixel estima-
tion error. This model is minimal and it requires no
specific image.

The other one is an edge image model, which is more
practical for modeling and evaluation of the estimation
error. The effect of EEC method will be shown after
description of the relations between the two models.

This paper is organized as follows. The next sec-
tion describes two types of similarity measure functions
and two types of fitting functions. Section 3 describes
a one-pixel-matching model for generalized sub-pixel
estimation properties. Section 4 presents an edge im-
age model after considering the optical imaging model;
then relations between the two models are described.
Section 5 describes the EEC method in detail. Addi-
tionally, the residual error is discussed. Experimental
results are provided in Section 6 using four different
types of images.

1.1. Related Works

The following methods have been generally used to es-
timate the sub-pixel displacement in images (Aggarwal
and Nandhakumar, 1988; Tian and Huhns, 1986).

(1) Similarity interpolation estimates the true peak of
a similarity function by fitting a parabola to the
three indices near its extremum. This method re-
quires few computations despite the existence of
systematic errors (Westerweel, 1998).

(2) Intensity interpolation seeks a peak position of
the similarity in high-spatial-resolution images
obtained by image interpolation (Szeliski and
Scharstein, 2002). This method generally requires
much memory space and computation time. Image
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interpolation methods with continuous functions or
hierarchical coarse-to-fine approaches have been
proposed to reduce these requirements (Fincham
and Delerce, 1999; Hart, 1998; Lecordier et al.,
1999). The equivalence of this method and gradi-
ent based method is shown in Davis et al. (1995).

(3) Gradient-based method computes the sub-pixel
modification using image gradients. The method
can estimate displacement of less than one pixel
with iterations (Horn and Schunck, 1981; Lucas
and Kanade, 1981). A study of convergence of the
iterative method is shown in Mitiche and Mansouri
(2004). An image gradient estimating filter is also
affecting (Davis and Freeman, 1998). This method
assumes that the displacement is very small. There-
fore, it is generally used with coarse-to-fine search
strategy (Tian and Huhns, 1986).

(4) Phase correlation detects phase differences in the
Fourier domain as a shift in spatial domain (Tian
and Huhns, 1986). To obtain sub-pixel phase dif-
ferences, an interpolation in the Fourier domain is
needed. A direct phase differences estimation us-
ing correlation values has been proposed (Foroosh
et al., 2002), but the area of interest (AOI) is limited
to rectangular shapes.

(5) Geometric method extracts feature points and find
correspondence among them. The accuracy of this
method depends on the feature extraction perfor-
mance.

Herein, we examin method (1) because of its sim-
plicity and effectiveness. The systematic error in this
method has already been reported, but the only way
proposed so far for reducing the error is to use out-
focused images (Schreier et al., 2000). A more effective
estimation error reduction method would widely affect
computer vision and industrial applications, especially
those system which require precise measurements.

2. Dissimilarity Measures and Sub-Pixel
Estimations

Matching of two images finds the minimum or max-
imum value of a dissimilarity or similarity func-
tion corresponding to the displacement between the
two images. Either the sum of absolute differences
(SAD), sum of squared differences (SSD), cross corre-
lation (CC), or zero-mean normalized cross-correlation
is usually used as the measure for the matching
region.

Let a given one dimensional displacement be d
which can be considered to lie in the range −0.5 ≤
d ≤ 0.5 without loss of generality. It can be consid-
ered that the image matching in pixel unit has alreay
been done. The similarity function R(s) using SAD is
can be expressed as

RSAD(s) =
∑
i∈W

| f (i) − f (i − d + s)|, (1)

where f (i) and f (i − d + s) is the reference and ob-
served image, respectively, and s is the shift value in
pixel unit from the extremum position. R(s) using SSD
is represented as

RSSD(s) =
∑
i∈W

( f (i) − f (i − d + s))2. (2)

Further, R(s) using CC is represented as

RCC(s) =
∑
i∈W

( f (i) × f (i − d + s)). (3)

We investigate using SAD and SSD becase the result
using CC is equal to the case of SSD in our image
model.

The sub-pixel displacement position can be esti-
mated using the similarity values. Some symmetric
functions are generally used for fitting over three
similarity values to find the sub-pixel displacement.
Figure 5(a) shows the first order symmetric fitting func-
tion (referred to as equiangular line fitting in this paper).
The equiangular line fitting estimates the sub-pixel po-
sition as the intersection point of two lines. One line
passes (−1, R(−1)) and (0, R(0)), while the other line
passes (1, R(1)) with the inverse-sign gradient. The

Figure 5. Examples of fitting functions.
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sub-pixel estimation d̂EL is

d̂EL =




1

2

R(1) − R(−1)

R(0) − R(−1)
if R(1) < R(−1),

1

2

R(1) − R(−1)

R(0) − R(1)
otherwise,

(4)

where R(−1), R(0), and R(1) are the similarity values
obtained from Eq. (1) or (2).

Figure 5(b) shows parabola fitting. Parabola fitting
estimates the sub-pixel position as the centerline of the
fitted parabola. The sub-pixel estimation d̂PB is

d̂PB = R(−1) − R(1)

2R(−1) − 4R(0) + 2R(1)
. (5)

3. One-Pixel-Matching Model

To examine the detailed properties of the sub-pixel es-
timation, the summation of the dissimilarity blocks us
from finding the affection of the image property to the
sub-pixel estimation error. Consequently, we employ a
minimum set of pixels that can be used for matching
and sub-pixel estimation.

3.1. Minimum Set of Pixels

Only one observed pixel can be used for the purpose.
To estimate the sub-pixel displacement, three similarity
values corresponding to the three positions are needed.
Therefore three pixels are required as references. It fol-
lows that the problem is to find the best matching sub-
pixel position for the one observed pixel against the
three reference pixels.

The one observed pixel is considered as the best
matched to the center of the reference pixels based on
considering the similarity function in pixel unit. It al-
lows that the displacement of the observed pixel against
the center of the reference pixels is limited in −0.5
to +0.5 pixel. The analysis model is one dimensional
because of its simplicity. Figure 6 illustrates the one-
pixel-matching model (referred to as opm hereafter).

The characteristics of sub-pixel estimation error can
be considered as a function of the intensity property of
the model. Then we introduce a parameter and show
its existing range in the following subsections.

The similarity values between the observed pixel and
the reference pixels can be expressed using the model.

Reference Pixels

(3 pixels)

Observed Pixel

(1 pixel)

Problem: Where is the best-matched position?

Intensity

Reference

Observed

-1 0 d 1 Position

Figure 6. One-pixel-matching model.

The similarity values using the absolute difference are

RAD(−1) = |I (−1) − I (d)| ,
RAD(0) = |I (0) − I (d)| , (6)

RAD(1) = |I (1) − I (d)| ,

where I (d) is the observed pixel intensity, and I (−1),
I (0), and I (1) are the intensity of reference pixels.

The similarity values using the squared difference2

are

RSD(−1) = (I (−1) − I (d))2,

RSD(0) = (I (0) − I (d))2, (7)

RSD(1) = (I (1) − I (d))2.

3.2. Pixel Intensity Nonlinearity

Sub-pixel estimation can be carried out using Eq. (4) or
(5) with the similarity values of Eq. (7) or (8). The esti-
mated value can be expected to vary with the intensity
relation between three reference pixels. The purpose of
this subsection is to introduce a parameter, which ex-
presses an intensity layout of the reference pixels. This
parameter can be used to investigate sub-pixel estima-
tion errors in the following subsections.

We introduce the following measure E as a nonlin-
earity:

E = 1√
6

(2I (0) − I (−1) − I (1)). (8)
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Figure 7. The analytical model. ◦ and ⊗ denote intensity of the
three reference pixels and observed one pixel, respectively. The
dashed lines denote the least-squares estimated lines for the reference
pixels.

The measure E describes the signed RMS error of three
pixels from the least-squares estimated line for them,
where E > 0 means that I (0) is above the line, and
E < 0 means that I (0) is under the line (see Fig. 7).
E = 0 when the reference three pixels are all on the
line in terms of their intensities. I (0) can be expressed
from Eq. (8) as,

I (0) = 1

2
(I (−1) + I (1) +

√
6E). (9)

Next, we derive the observed one pixel intensity
I (d) as a function of E and a given displacement d.
To evaluate the sub-pixel estimation error, it is nec-
essary to know the true input displacement of the
one observed pixel against the three reference pix-
els. We assume that the observed pixel intensity I (d)
is a linearly interpolated value with three reference
pixels,

I (d) =
{

I (0) + (I (0) − I (−1))d if d < 0,

I (0) + (I (1) − I (0))d otherwise.
(10)

The similarity values of Eq. (6) or (7) can be expressed
with the nonlinearity E , a given displacement d, and
pixel intensities I (−1) and I (1) using Eqs. (9) and
(10).

Lastly, we should know the range of the nonlinear-
ity E . As described before, the observed pixel intensity
I (d) should be best matched to the center of the ref-
erence pixels I (0). For this condition, the following
relations are considered as the range of E .

|I (1) − I (d)| > |I (0) − I (d)|,

and

|I (−1) − I (d)| > |I (0) − I (d)|. (11)

Using Eqs. (9) and (10), the following condition can
be obtained from Eq. (11) for −0.5 ≤ d ≤ 0.5, as

− I (1) − I (−1)√
6

< E <
I (1) − I (−1)√

6
. (12)

3.3. Sub-Pixel Estimation

The center pixel intensity I (0) of the reference pixels
is determined by I (−1), I (1), and E using Eq. (9).
At the same time, the observed pixel intensity I (d)
is determined by the actual displacement d using
Eq. (10). Substituting these equations into Eq. (6)
or (7) leads to the similarity values of AD or SD,
respectively. These similarity values provide sub-pixel
estimation using Eq. (4) or (5) for the equiangular
line (EL) or parabola (PB) fitting, respectively. These
sub-pixel estimations are functions of E and d.

EL using AD:

d̂AD+EL(d, ε)

=




d + (1 + d)ε

(1 + 2d)(1 + ε)

(
d < 0, ε ≥ −d

1 + d

)
,

d + (1 − d)ε

1 + ε

(
d ≥ 0, ε ≥ −d

1 − d

)
,

d + (1 + d)ε

1 − ε

(
d < 0, ε <

−d

1 + d

)
,

d + (1 − d)ε

(1 − 2d)(1 − ε)

(
d ≥ 0, ε <

−d

1 − d

)
,

(13)

where ε is the following substitution for simplicity:

ε =
√

6

I (1) − I (−1)
E . (14)

The range described in Eq. (12) is derived as

−1 < ε < 1. (15)

PB using AD:

d̂AD+PB(d, ε) = 1

2

d + (1 − |d|)ε
(1 − |d|) + dε

. (16)
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EL using SD:

d̂SD+EL(d, ε)

=




2(d + (1 + d)ε)

(1 + 2d)(1 + ε)2

(
d < 0, ε ≥ −d

1 + d

)
,

2(d + (1 − d)ε)

(1+2d)+2ε+(1−2d)ε2

(
d ≥ 0, ε ≥ −d

1 − d

)
,

2(d + (1 + d)ε)

(1−2d)−2ε+(1+2d)ε2

(
d < 0, ε <

−d

1 + d

)
,

2(d + (1 − d)ε)

(1 − 2d)(1 − ε)2

(
d ≥ 0, ε <

−d

1 − d

)
.

(17)

PB using SD:

d̂SD+PB(d, ε) = d + (1 − |d|)ε
1 + 2dε + (1 − 2|d|)ε2

. (18)

Figures 8(a) through 8(d) show results of Eqs. (13)
through (18). The horizontal axes correspond to the ac-
tual displacement d; the vertical axes correspond to the
sub-pixel estimation error d̂(d, ε) − d . Curves in Fig.
8 correspond to ε = 0.99, 0.8, 0.6, 0.4, 0.2, 0, −0.2,
−0.4, −0.6, −0.8, −0.99 from top to bottom, respec-
tively.

From the sub-pixel estimation error shown in Fig. 8,
the errors are zero when ε = 0 for EL using AD and
PB using SD, but errors arise for other combinations.
The condition of ε = 0 indicates that the intensities of
three reference pixels (adjacent three pixels) changes
linearly. All images contain low spatial frequency com-
ponents rather than high frequency components, so this
condition will occur with high probability. For this rea-
son, these combinations are considered to be good ones.

3.4. Matching Window

Although, Fig. 8 reveals existence of good combina-
tions of similarity function and fitting function, the er-
rors in Fig. 8 will not explain the pixel-locking effect
because the errors are always positive for any ε > 0,
and negative for any ε < 0. This difference arises as a
difference between the one-pixel-matching model and
area-based matching. The area-based matching uses
summation of the similarity measure for AOI. For ex-
ample, the following equation is used in the case of the
parabola fitting with SSD.

Figure 8. Sub-pixel estimation errors with the one-pixel-matching
model.

d̂SSD+PB

=
∑

W RSD(−1) − ∑
W RSD(1)

2
∑

W RSD(−1) − 4
∑

W RSD(0) + 2
∑

W RSD(1)
.

(19)

Equation (19) is regarded as principal estimation here-
after.

On the other hand, we can regard the weighted sum
of Eq. (18) shown below as the sub-pixel estimation
for AOI:

d̄SD+PB

= 1

n

∫ 1

−1
h(ε)d̂SD+PB(d, ε)

= 1

n

∫ 1

−1
h(ε)

RSD(−1) − RSD(1)

2RSD(−1) − 4RSD(0) + 2RSD(1)
,

(20)

where h(ε) is the weighting function for ε, and n is the
total pixel number of the region. Equation (20) is re-
ferred to as the weighted average estimation hereafter.
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Next, the relation between the two estimations is in-
vestigated. Consider the region of n − 1 pixels and the
neighboring region of one pixel. We specifically con-
sider the relationship between each estimation obtained
from each region, and the estimation obtained from the
merged n pixels region.

The principal estimated sub-pixel displacement
from n − 1 pixels region and one pixel region are

d̂〈1,n−1〉
SSD+P

=
∑n−1

i=1 R〈i〉
SD(−1) − ∑n−1

i=1 R〈i〉
SD(1)

2
∑n−1

i=1 R〈i〉
SD(−1)−4

∑n−1
i=1 R〈i〉

SD(0)+2
∑n−1

i=1 R〈i〉
SD(1)

=
∑n−1

i=1 fi∑n−1
i=1 gi

, (21)

and

d̂〈n,n〉
SSD+P = R〈n〉

SD(−1) − R〈n〉
SD(1)

2R〈n〉
SD(−1) − 4R〈n〉

SD(0) + 2R〈n〉
SD(1)

= fn

gn
, (22)

where R〈i〉
SD() denotes the similarity value obtained from

the i-th pixel using SD. In addition, the following sub-
stitutions are used for simplicity:

fi = R〈i〉
SD(−1) − R〈i〉

SD(1),
(23)

gi = 2R〈i〉
SD(−1) − 4R〈i〉

SD(0) + 2R〈i〉
SD(1).

Additionally, using Eqs. (21) and (22), the principal
estimated sub-pixel displacement from n pixels region
that contains both n − 1 pixels region and one pixel
region is

d̂〈1,n〉
SSD+P =

∑n−1
i=1 fi + fn∑n−1
i=1 gi + gn

= d̂〈1,n−1〉
SSD+P

∑n−1
i=1 gi + d̂〈n,n〉

SSD+Pgn∑n
i=1 gi

. (24)

On the other hand, the weighted average estimated
sub-pixel displacement d̄〈1,n〉

SD+P obtained from d̂〈1,n−1〉
SSD+P

and d̂〈n,n〉
SSD+P using region size weight is

d̄〈1,n〉
SD+P = n − 1

n
d̂〈1,n−1〉

SSD+P + 1

n
d̂〈n,n〉

SSD+P. (25)

Therefore, the following δ can be found:

d̂〈1,n−1〉
SSD+P = d̄〈1,n〉

SD+P − 1

n
δ,

(26)
d̂〈n,n〉

SSD+P = d̄〈1,n〉
SD+P + n − 1

n
δ.

Substituting Eq. (26) into Eq. (24) yields

d̂〈1,n〉
SSD+P = d̄〈1,n〉

SD+P −
∑n−1

i=1 gi − (n − 1)gn∑n
i=1 gi

δ

n
. (27)

The compensation term in Eq. (27) describes the
difference between the two estimations. Because∑n−1

i=1 gi − (n − 1)gn 	 ∑n
i=1 gi , and δ 	 n, it can

be considered as ≈0. This fact means that the weighted
average estimation described in Eq. (20) can be used
as the estimation for the region instead of the princi-
pal estimation approximately. While the explanation
uses n − 1 pixels region and one pixel region, it can
be extended easily to any size region by changing the
region size from n = 2 one by one. Although parabola
fitting is used in the above discussion, it is essentially
the same in the case of the equiangular line fitting.

3.5. Characteristics with Taking Account
of Matching Window

The weighting function h(ε) is assumed as a Gaussian-
like distribution with mean zero as

h(ε) =
(

cos

(
π

2
ε

))nopm

, (28)

where nopm is a distribution parameter.
Figure 9 depicts the errors of the weighted average

estimation of Eq. (20) with three different nopm.
Figure 10 illustrates the histograms corresponding

to errors of nopm = 20 (green line) in Fig. 9. The
histograms were obtained numerically by the true in-
put displacement from 0 to 6[pixel] step 1/1000[pixel].
They will be flat if sub-pixel estimation contains no
error.

Figure 10(b) (PB using SAD) indicates high fre-
quency at integer positions. It is called as pixel-locking
effect. On the other hand, Fig. 10(c) (EL using SSD)
indicates that high frequencies avoid integer positions.
We call this anti-pixel-locking in this paper.

The following results derived from the study in this
section.
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Figure 9. Sub-pixel estimation error obtained from the one-pixel-
matching model with the matching window. nopm = 10 (black lines),
20 (green lines), 30 (blue lines). The window region contains more
high frequency components as nopm decreases.

Figure 10. Histograms corresponding to the estimation errors de-
picted in Fig. 9. nopm = 20 (green line) is used.

• Parabola fitting posits that the similarity or dissim-
ilarity values follow a quadratic for displacement.
Such (dis)similarities are SSD, CC, and ZNCC. This
expectation is true for the image region with linearly
changing intensity. On the other hand, equiangular
line fitting posits that the values are on equiangular
two lines. Such dissimilarity is SAD.

• These good combinations (EL using AD and PB us-
ing SD) show a similar simple tendency. Their es-
timation error decreases as the high spatial compo-
nents of the image decrease (nopm increases). The
error magnitude is relatively small.

• Properties of sub-pixel estimation error are derived
from the one-pixel-matching model and a simple
h(ε) distribution with no specific images. Therefore,

we can use these results as the general matching char-
acteristics for making our proposed EEC method.

• The pixel-locking effect can be well explained in
the weighted average estimation. Figures 9(a), (b)
and (d) show an obvious characteristic such that es-
timated values d̂ are greater than true values when
d < 0 and less than true values when d > 0. This
fact causes the histogram of the estimated values d̂
to have peaks at integer pixel locations as shown in
Figs. 10(a), (b) and (d). This phenomenon is called
pixel-locking. The degree of this effect differs with
nopm and the employed similarity measure and fitting
function. It is noteworthy that estimation errors are
rather large over any nopm when SAD is used with
parabola fitting.

On the other hand, the errors of EL using SSD
shown in Fig. 9(c) have inverse-sign against the other
combinations. The anti-pixel-locking effect is ex-
pected with this combination.

4. Edge Image Model

The image contains 2-D information, but each dimen-
sion can be treated independently in many cases. In this
section, investigation is carried out in 1-D for simplic-
ity, but it can be extended easily to 2-D. Additionally,
the real 2-D images are used in the experiments men-
tioned later.

The unit of the position and the spatial frequency
is set to the typical CCD imager pixel interval p =
11.0 × 10−6 [m]. This unit is indicated as a [pixel].

4.1. Imaging Characteristics

When using digital information of the image, knowl-
edge of the transfer functions affected to the image
data must be complete, but it is usually impossible to
know all of them. Major factors affecting the imaging
transfer function are an optical transfer function and a
CCD aperture function. Approximating their combined
function using a Gaussian function provides the edge
image model.

4.1.1. Optical Transfer Function. As is well known,
the point spread function of the optics can be repre-
sented as the following equation. If the lens has a cir-
cular aperture (Driscoll, 1978),

h(x) =
[

2J1(kdx/2z′)
kdx/2z′

]2

, (29)
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Figure 11. Examples of h(x) and H ( f ). (λ = 600 × 10−9 [m],
z′/d = 8).

where x is the distance from the center, J1() is the Bessel
function of the first kind, d is the effective diameter of
the optics, z′ is the focal length of the objective lens,
and k(= 2π/λ) is the wave number.

Its Fourier transform, which is usually referred to as
the optical transfer function (OTF), is approximately

H ( f ) =
{

1 − | f/ fc| if | f/ fc| ≤ 1,

0 otherwise,
(30)

fc = d/λz′,

where f is the spatial frequency and fc is the cut-off
frequency. The cut-off frequency depends on the wave
length λ and the optical aperture z′/d . For example,
fc = 6.88 to 0.86[1/pixel] when λ = 400 × 10−9 to
800 × 10−9 [m] and z′/d = 4 to 16. Figure 11 shows
an example.

4.1.2. CCD Aperture. Any CCD imager has an aper-
ture as its light sensitive area, engendering an integra-
tion effect. Its impulse response is represented as

a(u) =
{

1/a if |u| ≤ a/2,

0 otherwise,
(31)

where a is the CCD aperture and u is the position in
the image. Its Fourier transform is

A( f ) = sinc(a f ). (32)

Figure 12 shows an example.

4.1.3. Approximation. Imaging characteristics de-
pend on the wave length, the optical aperture, and
the CCD aperture. In addition, there are other high-
frequency blocking attributes like the optical lens aber-
ration or the optical LPF in front of CCD. We selected
the Gaussian function with mean zero and standard
deviation σ as the approximated total imaging charac-
teristics. In this subsection, the relations between the

Figure 12. Examples of a(u) and A( f ). (a = 0.8).

Figure 13. Examples of gauss(u) and GAUSS( f ). (σ = 0.7).

Figure 14. An example of the approximation at a = 0.8. Black
line: GAUSS( f ). Green line: H ( f )A( f ).

parameter σ and aparture a are investigated. Then the
range of σ is examined.

The Gaussian function with mean zero and standard
deviation σ , and its Fourier transform are (Fig. 13)

gauss(u) = 1√
2πσ

e− u2

2σ2 , (33)

GAUSS( f ) = e− 1
2 σ 2 f 2

. (34)

The total transfer function H ( f )A( f ) is approxi-
mated with the Gaussian function GAUSS( f ), which
has the same cut-off spatial frequency fe,

H ( fe)A( fe) = GAUSS( fe) = 1/2. (35)

Figure 14 shows this approximation.
Then, from Eqs. (30), (32) and (35), the relation be-

tween σ and a becomes

H

(√
2ln2

σ

)
× sinc

(
a

√
2ln2

σ

)
= 1

2
. (36)
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Figure 15. Relations between σ and a. λ = 600×10−9 [m], z′/d =
4, 5.6, and 8 (=F value).

Some relations are displayed in Fig. 15, computed with
z′/d = 4, 5.6, and 8 under conditions of λ = 600 ×
10−9 [m] and the interval between pixels is 11.0×10−6

[m].
Next, we investigate the range of σ . As shown in

Fig. 15, σ varies with the optical aperture z′/d , and the
CCD aperture a. σ decreases as the optical aperture
z′/d decreases, but z′/d = 4 can be considered as a
lower limit in practical use.

In addition, σ decreases as the CCD aperture a de-
creases, though the CCD makers try to increase a up
to 1.0 so as to gain the sensitivity. It seems unrealis-
tic that a < 0.25 in recent CCD. Therefore, the lower
limit of σ is found at z′/d = 4 and a = 0.25. Accord-
ing to Eq. (36), the range of σ can be considered as
σ ≥ 0.7.

4.2. Edge Image Model

The following step function can be representative of
the objective optical information because step edges
in the images are the most basic element used for
matching.

edge(u) =
{−1 if u < 0,

1 otherwise.
(37)

The pixel values can be described as the convolution
of Eqs. (33) and (37),

f (u) =
∫ ∞

−∞
edge(u − ξ )gauss(ξ ) dξ . (38)

Equation (38) can be simplified as

f (u) = 2
∫ u

0
gauss(ξ )dξ, (39)

Figure 16. Edge image model (black line) (σedge = 0.7). Green
line shows a pure edge.

where u is the pixel position. We use Eq. (39) as edge
image model (Fig. 16). The characteristic of this model
completely depends on the standard deviation σ of the
Gaussian function. We call this the σedge, which is the
function of the CCD aperture a as in Eq. (36). No mat-
ter how sharp the objective optical information is, the
sampled pixel values become smoother to some extent.
The range of σedge is σedge ≥ 0.7.

4.3. Sub-Pixel Estimation

The similarity measures in Eq. (4) or (5) can be com-
puted from Eq. (1) or (2) using Eq. (39). Therefore, the
sub-pixel estimate d̂ can be represented as a function
of given input displacement d and σedge, as presented
below.

EL using SAD:

d̂SAD+EL(d, σedge) = 1

2

∑
i∈W

es(d − i), (40)

where

es(x) = erf

(
x√

2σedge

)

= 2√
π

∫ x√
2σedge

0
e−ξ 2

dξ, (41)

and erf() is the error function.

PB using SAD:

d̂SAD+PB(d, σedge) =
∑

i∈W es(d − i)

4 − 2
∣∣∑

i es(d − i)
∣∣ . (42)
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Figure 17. Sub-pixel estimation errors. σedge = 0.7 (black lines),
1.2 (green lines), and 1.7 (blue lines).

EL using SSD:

d̂SSD+EL(d, σedge)

=




1

2

∑
i∈W [(es(i) + es(d − i − 1))2 − (es(i) + es(d − i + 1))2]∑

i∈W [(es(i) + es(d − i))2 − (es(i) + es(d − i − 1))2]
if d < 0,

1

2

∑
i∈W [(es(i) + es(d − i − 1))2 − (es(i) + es(d − i + 1))2]∑

i∈W [(es(i) + es(d − i))2 − (es(i) + es(d − i + 1))2]
otherwise.

(43)

PB using SSD:

d̂SSD+PB(d, σedge)

= 1

2

∑
i∈W [es(i)(es(d−i +1) − es(d−i −1))]∑

i∈W [(es(i +1) − es(i))(es(d−i) − es(d−i −1))]
.

(44)

Figures 17(a) through 17(d) show the estimation er-
ror d̂(d, σedge)−d , as computed from Eqs. (40) through
(44).

The errors shown in Fig. 17 agree with that in Fig.
9 very well, except 17(a) and 9(a). Still, we can lead
the same conclusions in the Section 3.5 from Fig. 17,
that is, the same good combinations exist, and the same
pixel-locking and anti-pixel-locking effect can be seen.

4.4. Model Relations

To this point in our discussion, two completely dif-
ferent types of matching model have been introduced.

Figure 18. From top to bottom, the edge image model, ε, and con-
trast for the position.

The first one is the one-pixel-matching model, which
illustrates some basic properties of sub-pixel estima-
tion using no assumption regarding image. The second
one is the edge image model, which is useful for math-
ematical operations. Our proposed EEC method uses
the result obtained from the first model, but the second
model will be used in the following sections. There-
fore, the relationship between the two models should
be mentioned.

The one-pixel-matching model uses the parameter of
pixel intensity nonlinearity ε. Its distribution parameter
nopm is used for area extension. The edge model uses
the parameter σedge as its blur strength. The parameter
nopm can be obtained from an edge model with param-
eter σedge if we consider that the one-dimensional edge
model is one horizontal line of a two-dimensional slant
edge image.

Figure 18 shows such an example. The first row de-
picts the edge image models with two different σedge.
The second row depicts ε for the position. ε varies from
−1 to 1. The first row of Fig. 19 shows this variation.

The variation sampled from the edge model is far
different from a Gaussian-like distribution. This is be-
cause that one-pixel-matching model does not consider
an image contrast which can be defined as |I (1) −
I (−1)|. The contrast can be considered as a weight
for the sum of similarities. The third row of Fig. 18 and
the second row of Fig. 19 show the contrast. The third
row of Fig. 19 illustrates the weighted ε histograms and
dashed lines are their approximation with Eq. (28).

Figure 20 shows the relationship between the two
parameters.
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Figure 19. From top to bottom, ε frequency (histogram), contrast
(weight), and total weight for ε.

Figure 20. The relationship between nopm and σedge.

5. Precise Sub-Pixel Estimation

5.1. Proposed Method

In the previous two sections, we have investigated two
completely different types of matching models and
their parameter relation. The both models show the
same properties on the sub-pixel estimation error. The
estimation error has the following features:

• The error is periodic with the pixel interval.
• The error magnitude is symmetric on d = 0.
• It is also nearly symmetric on d = 0.25 for the range

[0, 0.5], and on d = −0.25 for the range [−0.5, 0].

These are considered as general features of sub-
pixel estimation error in area-based image match-
ing, through the studies in the two types of match-
ing models. The same features can also be found in
Dvornychenko (1983), Fincham and Delerce (1999),
Westerweel (1998). Our proposed method utilizes these
features to reduce the sub-pixel estimation error.

If we have another estimation function shifted by a
half pixel from the original function, the resultant er-
ror has a negative phase versus the original estimation,
meaning that this function can cancel the estimation
error.

We employ the following interpolated images to
achieve the cancellation function

g1(u) = ( f (u) + f (u + 1))/2,
(45)

g2(u) = ( f (u − 1) + f (u))/2.

The shift values are −1/2 and +1/2, respectively. The
reason why Eq. (45) is separated into two cases is that
estimation results come into the range [−0.5, +0.5].
g1(u) and g2(u) are the same interpolated image func-
tions with different positions. Linear interpolation is
used in Eq. (45). Another interpolation function is in-
vestigated in the next subsection.

Using these shifted images, the similarity function
for SSD can be represented as

Ri1SSD(s) =
∑
i∈W

(g1(i) − f (i − d + s))2

if −0.5 ≤ d ≤ 0,

Ri2SSD(s) =
∑
i∈W

(g2(i) − f (i − d + s))2

otherwise.

(46)

Consequently, the sub-pixel estimations are

d̂i1(d, σedge) = Ri1(−1) − Ri1(1)

2Ri1(−1) − 4Ri1(0) + 2Ri1(1)
− 1

2
if −0.5 ≤ d ≤ 0,

d̂i2(d, σedge) = Ri2(−1) − Ri2(1)

2Ri2(−1) − 4Ri2(0) + 2Ri2(1)
+ 1

2
otherwise.

(47)

These estimations can be used to cancel the estima-
tion errors as follows:

d̃(d, σedge) =




(d̂(d, σedge) + d̂i1(d, σedge))/2
if −0.5 ≤ d ≤ 0,

(d̂(d, σedge) + d̂i2(d, σedge))/2
otherwise.

(48)
Figure 21 shows estimation errors by conventional es-
timation, the cancellation function, and the proposed
EEC method.
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Figure 21. Illustration of the proposed method.

Figure 22. Residual errors of the proposed EEC method with two
different interpolation functions. Black line: linear. Green line: cubic-
convolution.

An essential feature of EEC method is that the sys-
tematic estimation error is cancelled by the same esti-
mation error with inversed phase. The inversed phase
estimation can be obtained from interpolated images.
Therefore, the characteristics or properties of the im-
ages are irrelevant.

5.2. Another Interpolation Function

The following equations represent cubic-convolution
interpolation (Keys, 1981): instead of the linear inter-
polation used in Eq. (45).

g1(u) = − f (u−1)+5 f (u)+5 f (u+1)− f (u+2)

8
,

g2(u) = − f (u−2)+5 f (u−1)+5 f (u)− f (u+1)

8
.

(49)

Figure 22 shows differences of residual errors with
the two interpolation functions. σedge = 0.7 and SSD
are used. The figure reveals only a small difference,
which become even smaller with increasing σedge.

5.3. Residual Errors

Residual errors can be examined using Eq. (48). In
the case of PB using SAD, the error cancelled

Figure 23. Sub-pixel estimation error using the proposed EEC
method (black line) and conventional method (green line). σedge =
0.7.

estimation is

d̃SAD+PB(d, σedge)

=
(∑

i∈W es(d−i)
)(

5−∣∣∑
i∈W es(d−i)

∣∣)
4
(
2−∣∣∑

i∈W es(d−i)
∣∣)(1+∣∣∑

i∈W es(d−i)
∣∣) .

(50)

Figure 23(b) shows residual errors of the EEC method
compared with conventional errors in Eq. (42). In the
case of the other combinations, only computation re-
sults are shown in Fig. 23.

5.4. Overall Error Reduction Ratio

Figure 24 shows RMS errors of the conventional and
EEC method with four combinations. Figure 25 shows
the error reduction ratio for each combination. The
EEC method can reduce the estimation error up to 1/5
compared with the conventional method. Note that the
equiangular line fitting with SAD (a) has almost no
error.

5.5. 2-D Extension and Implementation

In previous sections, the investigation used the 1-D im-
age model. The 1-D image corresponds to one line in
any 2-D image. Thus, it is quite straightforward to ex-
tend it to the 2-D image.
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Figure 24. RMS errors.

Figure 25. RMS error reduction ratio.

First, conventional sub-pixel estimation using orig-
inal images is executed. Second, an interpolated im-
age in Eq. (45) is generated by checking the sign
of the sub-pixel estimation result d̂ . Third, another
sub-pixel estimation using Eq. (47) is performed. Fi-
nally, the estimation errors can be cancelled with
Eq. (48).

When computation time is not important, an eas-
ier implementation can be taken: (1) Perform normal
matching and sub-pixel estimation using an ordinary
image pair. (2) Creating the hirizontal interpolation
image using one of the image pair to shift the hori-
zontal sampling location and then execute matching
and sub-pixel estimation with another image. Subse-
quently, compensate 0.5 [pixel] to the result. (3) Cre-
ate the vertical interpolation image using one of the
image pair to shift the vertical sampling location and
then executing matching and sub-pixel estimation with
another image. Finally, compensate 0.5 [pixel] to the
result.

With these results, Eq. (48) can be used to cancel
the sub-pixel estimation error. In this case, the total
computation time would be three times that of the con-

ventional method. We used this simple implementation
in the following experiment.

6. Experimental Results

6.1. Synthetic Images

We employ synthetic images to verify the sub-pixel
estimation error for a given input displacement. The
synthetic image consists of a horizontal and vertical
sinusoidal intensity sweep pattern. The normalized in-
tensity at the position (u, v) is

I (u, v) = 1

2
+ 1

4

(
cos

(
πu2

R

)
+ cos

(
πv2

R

))
, (51)

where R is the position at which the spatial frequency
becomes 1[1/pixel]. R = 1000 is used in this case.
The spatial frequency is (u/R, v/R)[1/pixel] at posi-
tion (u, v). Figure 26 shows this synthetic image. The
image size is 640 × 480[pixel].

The 20 images of In(u − n/20, v − n/20), n = 0 to
19, are generated. I10 is used as the reference image.
The size of AOI is 16 × 16[pixel].

To match the position in the image to σedge, a half
period of the sinusoidal function is approximated with
the image model. The correspondence is

σedge = 0.118312T, (52)

where T is the period of the sinusoidal function.
Figures 27(a) and (b) show the approximation of the

intensity of the synthetic image with the edge image
model. The center of the matching window is u =
169[pixel] and u = 99[pixel]; the corresponding σedge

is 0.7 and 1.2, respectively.

Figure 26. A synthetic image.
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Figure 27. Experimental results using the synthetic images. (a) and
(b) A partially normalized intensity pattern of the synthetic image
(green line) and its corresponding edge image model (black line).
Diamond marks denote the sampling position. (c) and (d) SAD. (e)
and (f) SSD. (c) and (e) σedge = 0.7. (d) and (f) σedge = 1.2. Circle
marks denote results using the proposed EEC method, whereas the
black lines are the theoretical values. Squares denote results using
the conventional method, whereas the green lines are the theoretical
values.

Figures 27(c) to (f) display theoretical estimation
errors and experimental results for the given input dis-
placement. The reason that the results are not iden-
tical to the theory is inferred to be that the im-
age is synthesized with 8-bit intensity resolution.
In addition, the matching window contains multiple
edges.

Figure 28 shows the standard deviation of the esti-
mation errors over 20 estimates with respect to σedge.
The black lines describe the theoretical values using the
EEC method obtained from 100 different estimation
values corresponding to different input displacement
using Eq. (48). The green lines describe theoretical val-
ues using the conventional method. Circles and squares
denote the experimental results using the EEC and the
conventional method, respectively. As described in 4.2,
the range of σedge is considered to be σedge ≥ 0.7. In this
region, the results agree well with theoretical values.

Figure 28. Experimental results expressed in standard deviation of
estimated error. (a) SAD. (b) SSD. Circles denote results using the
proposed EEC method, whereas the black lines are the theoretical
values. Squares denote the results using the conventional method,
whereas the green lines are the theoretical values.

Figure 29. Images used for disparity estimation.

The experimental result using CC is almost the same
as that using SSD.

6.2. Disparity Using Real Images

Figure 29 shows images used for the experiment. Im-
ages are captured using parallel stereo cameras. The
objective target is a newspaper glued on a flat board
that is not orthogonal to the optical axis. The image
size is 640×480 [pixel] and the window size is 16×16
[pixel]. Disparities are obtained at 5040 positions.
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Figure 30. 3-D plots of the estimated disparities. (a) and (c) con-
ventional, (b) and (d) proposed. The vertical axis corresponds to the
disparity.

Figure 30 shows a 3-D plot of the disparities. The
conventional method using SAD (30(a) and 30(c)) re-
veals the systematic sub-pixel estimation errors. The
errors are decreased drastically in the proposed method
(30(b) and 30(d)).3

Figure 31 shows the histograms of the horizontal
component of the displacement. These results indicate
that the proposed EEC method can produce an estimate
with almost no systematic errors. Furthermore, the re-
sults show the following: (1) PB using SAD produces
large errors regardless of the image properties; (2) EL
using SSD produces errors which increase if LPF is
applied to the image; (3) if the application uses a LPF,
EL using SAD or PB using SSD are recommended; and
(4) all above mentioned items agree with the analyses
with the two types of image model.

6.3. Precise Target Position

Figure 1 (in Section 1) shows images used for the ex-
periment. The target moves linearly in a horizontal di-
rection at a constant speed. The measured horizontal
positions are expected to increase linearly to the frame
number (time). Compared to Fig. 2, the positions can
be measured very precisely with the EEC method as
shown in Fig. 32(a).

Figure 32(b) shows sub-pixel errors against the target
position. With the EEC method, the errors are reduced
to about 1/5.

Figure 31. Histogram of the estimated disparity using images
showed in Fig. 29.

6.4. Other Real Images

Figure 3 (in Section 1) shows images used for the ex-
periment. The images have been captured at slightly
different camera positions and orientations. The im-
age size is 640 × 480[pixel] and the window size is
16 × 16[pixel]. Flow-vectors are obtained at 5040 dif-
ferent positions.

Figure 33 shows histograms of the horizontal com-
ponent of flow-vectors. The conventional method using
SAD (33(a)) or SSD (33(c)) clearly shows the pixel-
locking effect. This tendency is greatly reduced in the
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Figure 32. (a) Measured target positions with EEC method. (b)
Estimation errors of the conventional method (rectangle) and EEC
method (circle) against the target position.

Figure 33. Histograms of the horizontal component of flow-
vectors. (a) and (c) conventional. (b) and (d) EEC.

proposed EEC method (33(b) and (d)). The experimen-
tal result using CC is almost identical to that using
SSD.

7. Conclusions

The combination of SAD and the sub-pixel estimation
using parabola fitting is commonly used because of
its short computation time. Nevertheless, those results
will contain sub-pixel estimation errors regardless of
σedge. We have proved and verified that equiangular

line fitting using SAD produces almost equal accuracy
to that of parabola fitting using SSD.

Moreover, an alternative sub-pixel estimation
method has been proposed in this paper after analysis of
conventional estimation errors. The proposed method
achieves 1/5 of the estimation errors of the conventional
method. It is independent of the similarity measure and
the fitting function to be used.

Experiments using four types of images demonstrate
the effectiveness of the proposed method.

Notes

1. Portions of this work have appeared in conference proceedings
(Shimizu and Okutomi, 2001).

2. The considered similarity values are only for a one pixel region.
Therefore, these values are termed here as the absolute difference
(AD) or the squared difference (SD).

3. The disparities are not completely flat because the imaging con-
dition is not perfect in the parallel stereo camera. In addition, the
objective lens has aberrations.
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