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a b s t r a c t

We present a method for matching feature points robustly across widely separated images. In general, it
is difficult to match feature points correctly by using only the similarity between local descriptors. In our
approach, the correspondence problem is formulated as an optimization problem with one-to-one corre-
spondence constraints. A novel objective function is defined to preserve local image-to-image affine
transformations across correspondences. This objective function enables our method to cope with signif-
icant viewpoint or scale changes between images, unlike previous methods that relied on the assumption
that the distance or orientation between neighboring feature points are preserved across images. A relax-
ation algorithm is proposed for maximizing the objective function, which imposes one-to-one correspon-
dence constraints, unlike conventional relaxation labeling algorithms that impose many-to-one
correspondence constraints. Experimental evaluation shows that our method is robust with respect to
significant viewpoint changes, scale changes, and nonrigid deformations between images, in the presence
of repeated textures that make feature point matching more ambiguous. Our method is also applied to
object recognition in cluttered environments, giving some promising results.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Matching feature points across images is one of the fundamen-
tal problems in computer vision, with a variety of applications that
includes 3D reconstruction [1,2], object recognition [3,4], categori-
zation [5], and content-based image retrieval [6]. Although much
research has been directed at reliable matching, there are many
difficulties to overcome for practical use; the difficulties arise at
the lowest level with feature point detection and description, and
at the highest level with reducing ambiguity.

The main difficulty with feature point matching has been the
fact that the images of the same 3D surface patch have quite differ-
ent appearances if they are obtained from different viewpoints.
There have been many approaches to solving this problem
[3,7,8], which use the basic idea of detecting feature points to-
gether with local neighborhood regions that are covariant with
the underlying viewpoint change. The detected regions are trans-
formed into geometrically normalized regions by using local
invariant transformations [8], so that the normalized regions and
their descriptors will be invariant.

Although research directed at covariant region detection and
invariant description has matured [8], there still remains the prob-
lem of ambiguity. The descriptors of the regions projected from dif-
ferent 3D surface patches can be similar because the regions are
ll rights reserved.
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often too small to include sufficient distinctive textures. For this
reason, it is often difficult to match feature points correctly using
only the similarity between the local descriptors, without making
other assumptions. Fig. 1 shows an example of ambiguous match-
ing. Matching fails if we constrain one-to-one correspondence
using only the similarity between the local descriptors, when the
images are highly ambiguous. Various assumptions have been
made to reduce the ambiguity arising from the local comparison,
leading to useful constraints such as the epipolar constraint [1,9–
11] and pairwise constraints [12,5,4,13].

The epipolar constraint is based on the assumption that the
images are obtained concurrently or that the scene is static. The
epipolar constraint is parameterized by a 3� 3 fundamental ma-
trix, and several wide-baseline stereo matching methods [9–11]
have been proposed, together with improved algorithms based
on Random Sample Consensus [15], aiming to estimate the funda-
mental matrix robustly. Although the fundamental matrix plays an
important role not only in constraining the positions of the corre-
sponding feature points but also in reconstructing the 3D structure
of the scene, it hardly applies to object recognition, for which the
images are not obtained concurrently and the objects may be
near-planar and deformed nonrigidly.

Approaches that use pairwise constraints [12,5,4,13] have re-
ceived a great deal of attention, especially for shape matching
applications, because of their capability in matching feature points
detected from deformable objects or shapes across images. In these
approaches, it is often assumed that the distance or orientation be-
tween neighboring feature points are preserved across images,
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Fig. 1. A highly ambiguous image pair with small overlap and repeated textures [14]. The right part of the left image overlaps the left part of the right image. (a)
Correspondences with the most similar local descriptors. (b) Correspondences detected by our method. Only the top 30 correspondences are displayed, to aid visibility. Our
method detects correspondences from the actual overlapped regions.
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resulting in pairwise constraints that aim to preserve them
[12,5,4]. The constraints are usually adapted to an objective func-
tion instead of being applied as hard constraints, and the corre-
spondence problem becomes an optimization problem with
mapping constraints such as many-to-one or one-to-one corre-
spondence constraints. The optimization problem is an NP-hard
integer quadratic programming problem in which either 0 or 1
should be assigned to every candidate correspondence, so these
approaches avoid combinatorial searching by approximating the
objective function or by relaxing the mapping constraints.

To the best of our knowledge, Zhang et al. [12] first used pair-
wise constraints for feature point matching across images. In their
approach, correspondences are initially detected by maximizing
their objective function using a winner-take-all strategy, and the
detected correspondences are used for estimating fundamental
matrices. Berg et al. [5] used pairwise constraints for shape match-
ing across images. They change the problem into simpler subprob-
lems by approximating the quadratic objective function as linear
functions for which integer linear programming finds the global
optimum. Leordeanu and Hebert [4] applied pairwise constraints
to both shape matching and feature point matching across images.
They relax the integer constraints (assigning 0 or 1 to every corre-
spondence) as well as the mapping constraints, and solve the re-
laxed problem with a spectral technique; they use a greedy
algorithm as a postoptimization step to find a discretized solution.
Zheng and Doermann [13] applied pairwise constraints to hand-
drawn shape alignment problems. They relax the integer con-
straints into real-value constraints, and solve the problem using
a relaxation labeling algorithm [16–18] that maximizes the objec-
tive function through simple iterative updates.

Although good optimization algorithms have been proposed in
the approaches that use pairwise constraints [12,5,4,13], the
underlying assumptions may not be suitable for solving the
wide-baseline stereo matching problem that we are interested
in, because the distance and orientation between feature points
are not well preserved across widely separated images. In this pa-
per, we assume that local image-to-image affine transformations,
the so-called local feature transformations [19], are well pre-
served across correspondences. The images may not be obtained
concurrently, and the scene objects may be deformed nonrigidly,
provided any deformation is continuous. Fig. 2 shows our
assumption.

A local feature transformation is a mapping from the neighbor-
hood of a feature point in an image to the neighborhood of a
potentially corresponding feature point in the other image; read-
ers interested in estimating such transformations may refer to
[8,20,19]. Local feature transformations have been used for the
(quasi-)dense propagation of feature correspondences [21,22,20].
Ferrari et al. [21] matched regularly quantized regions in an im-
age to possibly irregular regions in the other image by assuming
that the regions in the neighborhood of a matched pair of features
have a similar transformation to the local feature transformation
of the matched pair. Based on a similar assumption, Vedaldi and
Soatto [22] densely propagated a feature correspondence to the
neighboring pixels, and Kannala and Brandt [20] extended the
original match propagation [23], so that it can be applied to
widely separated images. Although our work relies on a similar
assumption, we focus on finding correct feature point correspon-
dences rather than densely propagating feature correspondences
that may be incorrect if the images are highly ambiguous. It is
clear that the propagation approaches may benefit from the con-
sistent feature point correspondences that we are aiming to
provide.

1.1. Proposed approach

In this paper, we aim to reduce ambiguity in matching feature
points across widely separated images. We formulate the corre-
spondence problem as an optimization problem with one-to-one
correspondence constraints. In our approach, a set of candidate



Fig. 2. The figure illustrates the assumption in this paper. The images I and I0 were adapted from [7]. Feature points xi and xj in image I correspond to feature points x0i0 and x0j0
in image I0 , respectively. The local feature transformations Ha and Hb transform the neighborhoods of xi and xj to the neighborhoods of x0i0 and x0j0 respectively. Our assumption
is that local feature transformations are well preserved across correspondences; Ha and Hb should be similar under this assumption.
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correspondences is given as an input by using conventional local
descriptor-based matching methods [7,3], without enforcing the
mapping constraints. From the set of candidate correspondences,
we aim to find a subset not only maximizing the objective function
but also satisfying one-to-one correspondence constraints.

Our formulation is similar to those of previous approaches
[12,5,4,13] that use pairwise constraints; however, affine view-
point changes are taken into consideration. We define an objec-
tive function to preserve local feature transformations [19]
across correspondences, unlike those of previous approaches
[12,5,4] that were defined to preserve the distance or orientation
between neighboring feature points across images. This newly de-
fined objective function enables our feature point matching meth-
od to cope with significant viewpoint or scale changes between
images.

We propose a relaxation algorithm for maximizing the objec-
tive function. Our algorithm is based on conventional relaxation
labeling algorithms [16–18]. However, it differs from them in
terms of the mapping constraints. Our algorithm imposes one-
to-one correspondence constraints, unlike the conventional algo-
rithms [16–18] that impose many-to-one correspondence con-
straints. We consider that our algorithm is more suitable for
feature point matching problems, because information is more
rapidly conveyed from unambiguous correspondences to ambigu-
ous correspondences in our algorithm. This property may not be
important for general point matching applications, for which the
points may not have neighborhood patterns to be compared. In
our problem, some feature points may have distinctive neighbor-
hood patterns that result in unambiguous correspondences, and
the property may be more effective. The property will be revisited
in Section 3.

The remainder of this paper is organized as follows. In Section 2,
we introduce our novel objective function and formulate feature
point matching as a constrained optimization problem. In Section
3, our relaxation algorithm is described. In Section 4, the effective-
ness of our method is demonstrated via experiments involving im-
age pairs with significant viewpoint changes, scale changes,
nonrigid deformations, and repeated textures. Our method is also
applied to object recognition in Section 4. Finally, Section 5 con-
cludes the paper.

2. Problem definition

In this section, we introduce our novel objective function, and
formulate feature point matching as a constrained optimization
problem. Our algorithm requires a set of candidate correspon-
dences as an input. Although all possible pairs of feature points
could be such an input, in practice we have to limit the number
of candidate correspondences because computers have a limited
amount of memory. We briefly explain how to find such a set of
candidate correspondences, before formulating our problem.
2.1. Detection of candidate correspondences

We use affine invariant features, namely the Scale Invariant
Feature Transform (SIFT) in a Maximally Stable Extremal Region
(MSER) [7,3], although our method can be generalized to use
other features, because significant viewpoint or scale changes
are assumed between images I and I0. Affine regions [7] are de-
tected from images I and I0, and we denote the regions as Ri

and R0i0 , respectively, where i ¼ 1; . . . ;NI and i0 ¼ 1; . . . ;N0I. A fea-
ture point xi is defined as the centroid of an affine region Ri, and
x0i0 is defined as the centroid of R0i0 . A feature point xi is tentatively
matched to a feature point x0i0 if the Euclidean distance da between
the local descriptors (128-dimensional SIFT vectors [3]) vi and v0i0
of the feature points xi and x0i0 is smaller than a threshold value
sd. We also limit the number N of candidate correspondences,
for reasons of computational tractability, by taking Nmax

correspondences.
The set of candidate correspondences is denoted by:

M ¼ fma ¼ ði; i0Þ : a ¼ 1; . . . ;Ng: ð1Þ

Note that the elements in M may not satisfy one-to-one corre-
spondence constraints; M may contain correspondences of the
form ði; j0Þ or ðk; i0Þ, in conflict with ði; i0Þ under one-to-one corre-
spondence constraints.

For each correspondence ma, we consider not only the local-
descriptor distance da, but also the local feature transformation
Ha that maps the neighborhood of the feature point xi to the neigh-
borhood of the feature point x0i0 [19]. Ha is an affine transformation
that can be parameterized by xi, x0i0 and Aa, where Aa is a 2� 2 ma-
trix that can be decomposed as:

Aa ¼ R
0�1

2
i0

RR
1
2
i ; ð2Þ

where Ri and R0i0 are the covariance matrices of the interior pixels of
Ri and R0i0 , respectively, and R is an orthogonal matrix that trans-
forms the reference orientation of Ri into that of R0i0 . A point x
neighboring xi is approximately transformed into a point x0 neigh-
boring x0i0 by the following equation:

x0 ¼ Aaðx� xiÞ þ x0i0 : ð3Þ

The orthogonal matrix R may not be unique for a correspon-
dence ma because the reference orientation of a region is deter-
mined as a dominant image-gradient orientation that may not
be unique [3]. Consequently, M may contain candidate corre-
spondences that share both of the feature points but have differ-
ent local feature transformations; these correspondences are also
in conflict with each other. For this reason, if necessary, we
sometimes write a correspondence as ma ¼ ðxi;x0i0 Þ or
ma ¼ ðxi;x0i0 ;HaÞ to avoid notational ambiguity.
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2.2. Objective function

For every pair of correspondences, ma ¼ ðxi; x0i0 ;HaÞ and
mb ¼ ðxj; x0j0 ;HbÞ, we can define a pairwise transformation error
eab as follows:

eab ¼ eðbjaÞ þ eðajbÞ;
eðbjaÞ ¼ kx0j0 �HaðxjÞk þ kxj �H�1

a ðx0j0 Þk;

eðajbÞ ¼ kx0i0 �HbðxiÞk þ kxi �H�1
b ðx0i0 Þk;

ð4Þ

where HðxÞ denotes the point given by the transformation of x by H.
The error eab will be small if Ha and Hb are similar to each other, and
will be equal to zero when the two transformations are identical,
because eðajaÞ ¼ eðbjbÞ ¼ 0 from (3). If two correspondences ma

and mb are detected from the images of a smooth surface that
can be locally approximated by planar patches, then we can
expect the error eab to be small, although the converse is not always
true.

A cost function hðM�Þmay be defined as the sum of the error eab

to find M� �M whose elements have similar local feature
transformations:

hðM�Þ ¼
X

ma2M�

X
mb2M�

eab: ð5Þ

However, the solution M� minimizing the cost function (5) is al-
ways trivial, namely M� ¼ /, and the trivial solution also satisfies
one-to-one correspondence constraints. To avoid the trivial solu-
tion, we convert the minimization problem into a maximization
problem by transforming the error eab into a binary compatibility
weight wab that increases with decreasing error eab (e.g.,
wab ¼ expð�e2

ab=2r2Þ):

hðM�Þ ¼
X

ma2M�

X
mb2M�

wab: ð6Þ

The solution M� maximizing the function (6) is M; however,
the elements in M may not satisfy one-to-one correspondence
constraints as we discussed in the previous subsection.

To define our objective function more formally, we define a con-
fidence value pa for each candidate correspondence ma, simply re-
ferred to the confidence of ma. The confidence pa takes a value in
f0;1g: pa ¼ 1 if ma 2M�, and pa ¼ 0 otherwise. We denote the
set of confidences as P:

P ¼ fpa : a ¼ 1; . . . ;Ng: ð7Þ

Under the definition of P, the function hðM�Þ is equivalent to a
binary objective function hðPÞ defined as:

hðPÞ ¼
XN

a¼1

XN

b¼1

wabpapb: ð8Þ

Now, the problem becomes to find P that maximizes hðPÞwhile
satisfying one-to-one correspondence constraints.

In previous work, the weight wab has been defined to encourage
correspondences that preserve the distance or orientation between
the feature points across images [12,5,4]. Unlike the previous def-
initions, we define the weight wab as a nonnegative decreasing
function of eab so that pairs of correspondences with similar local
feature transformations can be encouraged:

wab ¼
expð�e2

ab=2r2Þ; if b R Ca and eab < 3r;
0; otherwise;

(
ð9Þ

where Ca is the set of the index a of a correspondence ma ¼ ði; i0Þ
and the indices of all the candidate correspondences in conflict with
ma:

Ca ¼ fb : mb ¼ ðj; j0Þ such that j ¼ i or j0 ¼ i0g: ð10Þ
The weight wab does not construct a link, namely is equal to
zero, if two correspondences ma and mb are identical or in conflict
with each other; note that a 2 Ca. It is natural not to construct a
link between conflicting correspondences because one of them
must be incorrect under one-to-one correspondence constraints,
and it is reasonable not to construct a link between a correspon-
dence and itself. The weight wab also does not construct a link if
eab is greater than 3r. The truncation makes our method more effi-
cient, because it is then not necessary to consider null links during
the computation in Section 3.

The parameter r can either be computed adaptively or chosen
manually. An adaptively computed r value is:

r ¼ 1
N

XN

a¼1

ðminb2f1;...;Ng�CaðeabÞÞ; ð11Þ

where min denotes the minimum value. The adaptive r value (11)
was determined on the assumption that a correct correspondence
ma would have a smaller value of the minimum error
ðminb2f1;...;Ng�Ca ðeabÞÞ than incorrect correspondences. We use this
value unless otherwise specified.

In a similar manner of defining the binary objective function
hðPÞ, we define a unary objective function gðPÞ that encourages
correspondences with small local-descriptor distances.

gðPÞ ¼
XN

a¼1

wapa; ð12Þ

where wa is a unary compatibility weight that is a decreasing func-
tion of the local-descriptor distance da:

wa ¼ 1� da: ð13Þ

Because we use normalized descriptor vectors v such that
kvk ¼ 1 and all the elements of v are nonnegative, the distance
da may be greater than 1. However, the threshold sd is usually
set to 0:5, so the weight wa is nonnegative. We tested various type
of function that includes linear, exponential and Gaussian func-
tions to define the weights wab and wa; and we use Gaussian and
linear weights for wab and wa, respectively, because the combina-
tion gives the best results although the performance gap is not
so significant.

Finally, our objective function is defined as the sum of the unary
and binary objective functions:

f ðPÞ ¼ gðPÞ þ hðPÞ: ð14Þ

There are some interesting issues such as balancing the unary
and binary objective functions [24]; however, such issues are out
of the scope of this paper.

The objective function f ðPÞ is maximized when pa ¼ 1 for every
a 2 f1; . . . ;Ng, i.e., M� ¼M, without any mapping constraints. The
condition for P to satisfy one-to-one correspondence constraints
can be formally described as:

sa ¼
X
b2Ca

pa ¼ 1; 8a 2 fa : pa ¼ 1g: ð15Þ

Our problem is to find P that maximizes the objective function
f ðPÞ and satisfies the condition (15). The proof for the equivalence
between the condition (15) and one-to-one correspondence con-
straints can be found in Appendix A.

3. Relaxation algorithm

In this section, we present our optimization algorithm. Before
presenting the algorithm, we address two basic properties that
an algorithm for maximizing the objective function (14) should
have. First, a good algorithm should find a solution satisfying the
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constraints; this property is denoted by P1. If any kind of relaxation
is used (e.g., pa 2 ½0;1�, 8a 2 f1; . . . ;Ng or kpk ¼ 1, where p is a vec-
tor containing the elements of P), the final values of P should sat-
isfy the condition (15) as closely as possible, because the integer
constraint and one-to-one correspondence constraints are satisfied
if the condition (15) is satisfied. Suppose that P� is the optimal
solution of the relaxed problem, whose elements do not satisfy
the condition (15), and suppose that P̂� is a discretized solution
computed from P�, whose elements satisfy the condition (15). If
the final values of P� are much different from those of P̂�, then it
is clear that f ðP�Þ does not approximate f ðP̂�Þwell. From this point
of view, the first property is important. The second basic property
is that a good algorithm should find a solution that maximizes the
objective function; this property is denoted by P2.

The approximate integer quadratic programming algorithm
proposed by Berg et al. [5] has the second property (P2) approxi-
mately. The algorithm, however, does not have the first property
(P1) because their formulation allows several features in image I

to match the same feature in image I0. The spectral technique pro-
posed by Leordeanu and Hebert [4] has the second property (P2)
approximately but strongly; the algorithm finds the global maxi-
mum of the relaxed problem efficiently. The algorithm, however,
does not have the first property (P1) because of the strong relaxa-
tion, namely kpk ¼ 1. As a postoptimization step, they use a greedy
algorithm to compute a discretized solution so that their final cor-
respondences can satisfy the constraints. Relaxation labeling algo-
rithms [16–18] have the second property (P2) weakly. The
algorithms are based on simple update equations that can be re-
garded as a gradient ascent combined with a normalization; the
algorithms find a local maximum. The algorithms [16–18], in their
original form, are suitable only for correspondence problems with
many-to-one correspondence constraints and therefore do not
have the first property (P1).

3.1. Proposed algorithm

In our algorithm, the confidence pa is relaxed to take on real val-
ues in ½0;1� for every a 2 f1; . . . ;Ng, to avoid combinatorial search-
ing. Although the relaxation is the same as those in conventional
relaxation labeling algorithms [16–18], our algorithm imposes
the condition (15), unlike conventional algorithms.

Because we relax pa to take on real values in ½0;1�, a partial
derivative qa with respect to pa can be computed as follows:

qa ¼
@f ðPÞ
@pa

¼ wa þ 2
XN

b¼1

wabpb; 8a 2 f1; . . . ;Ng: ð16Þ

We can see that the product of pa and qa is the contribution of
ma to f ðPÞ:

f ðPÞ ¼ f ðP� fpagÞ þ paqa: ð17Þ

A correspondence ma, therefore, can be considered good if paqa is
large, because ma contributes to f ðPÞ by a large amount. Motivated
by this simple discussion, and by the fact that qa is nonnegative, we
propose an update equation replacing pa by paqa, followed by a nor-
malization that imposes pa 2 ½0;1� and sa ¼

P
b2Ca

pb ¼ 1.

pðtþ1Þ
a  pðtÞa qðtÞaP

b2Ca

pðtÞb qðtÞb

; 8a 2 f1; . . . ;Ng; ð18Þ

where pðtÞa denotes pa at time t 2 f0; . . . ; Tg, and pð0Þa is set to a con-
stant p0 for every a 2 f1; . . . ;Ng.

The relaxed solution P� found by using our algorithm is defined
as:

P� ¼ fp�a : p�a ¼ pðTþ1Þ
a ; a ¼ 1; . . . ;Ng; ð19Þ
and the discretized solution P̂� is defined as:

P̂� ¼ fp̂�a : a ¼ 1; . . . ;Ng; ð20Þ

where p̂�a ¼ 1 if p�a > p�b for every b 2 Ca � fag, and p̂�a ¼ 0 otherwise.
Finally, the solution set M� of correspondences can be derived from
P̂� as follows:

M� ¼ fma : p̂�a ¼ 1g: ð21Þ

From the discussion in Section 2, our algorithm can be consid-
ered to have the first property (P1) very closely, if p�a � 1 and
s�a ¼

P
b2Ca

p�b � 1 for every a 2S�, where S� is defined as a set of
the correspondence indices with p̂�a ¼ 1:

S� ¼ fa : p̂�a ¼ 1g: ð22Þ

Fig. 3 shows how closely the proposed algorithm satisfies the
first property (P1) for the image pair in Fig. 1; one-to-one corre-
spondence constraints are more closely satisfied with increasing
T. Experimental evaluations similar to this one will be given at
the end of Section 4 for other image pairs.

If we use a conventional relaxation labeling algorithm [18], the
update equation becomes (23) by considering a feature point in
image I0 as a label.

pðtþ1Þ
a  pðtÞa qðtÞaP

b2Crow
a

pðtÞb qðtÞb

; 8a 2 f1; . . . ;Ng; ð23Þ

where Crow
a ¼ fb : mb ¼ ðj; j0Þsuch thatj ¼ ig. The update Eq. (23)

performs normalization only in one direction (i.e., j ¼ i), so many-
to-one correspondence is allowed.

Zheng and Doermann [13] suggested using alternated row and
column normalizations [25] after each relaxation labeling update
(23), if one-to-one matching is necessary. Because of outliers that
do not have a corresponding feature point in the other image, the
alternated normalization algorithm [13] uses dummy points that
are matched to the outliers; the dummy points are also used in a soft
assignment approach [25]. We applied the alternated normalization
algorithm [13] to matching the images in Fig. 1, with 50 alternated
row and column normalizations after each relaxation labeling up-
date (23). Fig. 4 shows the results. We can see that one-to-one corre-
spondence constraints are more closely satisfied by our algorithm
with the same number of updates. Although Zheng and Doermann
detect correspondences whose confidence is greater than pmin

(pmin ¼ 0:95) by matching the remaining feature points to the dum-
my points [26], we kept our definition of the discretized solution (20)
for the comparison in Figs. 3 and 4 except that we harvest correspon-
dences with a higher confidence than the confidence of matching
either feature point to a dummy point. The percentage of correspon-
dences satisfying the condition (15) in Fig. 4 grows from 55:8% into
95:4% at T ¼ 1000, if the definition by Zheng and Doermann [26] is
used. We checked that the converged confidence values are equiva-
lent to a doubly stochastic matrix whose row and column sums are 1
except the last row and column [26]; however, we could not observe
strong convergence of the confidence values to either 1 or 0 when
using the alternated normalization algorithm [13].

Although it is clear from Fig. 3 that a large T value is better for
satisfying the constraints more closely, we cannot set T to an arbi-
trarily large value because the running time of our algorithm is
usually OðNTÞ. As a trade-off, T is determined adaptively by means
of the following two conditions: T should be less than Tmax, and the
percentage of converged confidences, e.g., pðtÞa < 0:01 or pðtÞa > 0:99,
should be greater than sp. If either of these two conditions is satis-
fied, the iteration terminates.

It is not easy to show theoretically that the proposed algorithm
has the second property (P2). One thing that we can do is to com-
pare the values of f ðP̂�Þ to those computed by state-of-the-art
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Fig. 3. Evaluation of the property P1 for the image pair in Fig. 1. The proposed algorithm (18) has been used for the evaluation. (a) The graph displays p�a and s�a values for
every a 2S� . For the case of one-to-one correspondence constraints being strictly satisfied, both values must be 1 (refer to Section 2 for details). p�a is greater than 0.99 (thus,
p�a � 1) for 96:6% of the detected correspondences, such that p̂�a ¼ 1 after 200 updates. (b) The percentage increases to 98:8% after 1000 updates. For both of these cases, s�a � 1
for every a 2S� . (c) The graph displays the percentage as a function of T. One-to-one correspondence constraints are more closely satisfied with increasing T. (d) The graph
displays the relaxed value of f ðPÞ as a function of t. f ðPðtÞÞ, the relaxed value of f ðPÞ, monotonically increases, and approaches the value of f ðP̂�Þwith increasing t. We can see
that f ðP̂�Þ is well approximated by f ðPðtÞÞ.
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Fig. 4. Evaluation of the property P1 for the image pair in Fig. 1. The alternated normalization algorithm [13] have been used for the evaluation. (a) The graph displays p�a and
s�a values for every a 2S� . For the case of one-to-one correspondence constraints being strictly satisfied, both values must be 1 (refer to Section 2 for details). p�a is greater than
0.99 and s�a is less than 1.01 (thus, p�a � 1 and s�a � 1) for 45:2% of the detected correspondences, such that p̂�a ¼ 1 after 200 updates. (b) The percentage increases to 55:8%

after 1000 updates. (c) The graph displays the percentage as a function of T. The percentage slowly grows with increasing T; however, it stops increasing at T ¼ 800. (d) The
graph displays the relaxed value of f ðPÞ as a function of t. f ðPðtÞÞ, the relaxed value of f ðPÞ, does not approximate the value of f ðP̂�Þ.
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Fig. 5. (a) Unambiguous correspondences whose confidences converge to 1 after the first update. (b) Correspondences whose confidences converge to 1 (greater than 0:99)
after the second update. Note that these correspondences also include the unambiguous correspondences in (a), although only the top 30 correspondences are displayed, to
aid visibility. Additional correct correspondences linked to the unambiguous correct correspondences are detected after the second update.
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algorithms such as the spectral technique [4]; the comparison will
be given at the end of Section 4.

Our algorithm has a third important property (denoted by P3)
for feature point matching. Conventional relaxation labeling algo-
(a)

(b)
Fig. 6. (a) An example of an inlier with respect to a ground-truth homography. Both of the
points. (b) An example of an inlier with respect to a ground-truth fundamental matrix.
corresponding feature point.
rithms [16–18] also have this property if one-to-one matching is
not required. The set of candidate correspondences M may contain
a correspondence ma without any correspondences in conflict with
it, i.e., Ca ¼ fag, because we limit the number of candidate corre-
transformed feature points lie inside the fitted ellipses of the corresponding feature
The epipolar line induced by each feature point intersects the fitted ellipse of the
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spondences. For such a correspondence ma, the confidence pðtÞa is 1
for every t such that t P 1, irrespective of the choice of the objec-
tive function and the initial confidence value p0, becauseP

b2Ca
pðtÞb qðtÞb is always equal to pðtÞa qðtÞa for such a correspondence

ma. Let these correspondences be called unambiguous correspon-
dences, in that they already satisfy one-to-one correspondence
constraints. The early-converged confidences can affect other con-
fidences more when the qðtÞb of the geometrically linked correspon-
dences mb is increased. This means that the confidence flows from
the unambiguous correspondences to ambiguous correspondences.
Under the assumption that correct correspondences are more geo-
metrically consistent, correct unambiguous correspondences will
affect other correspondences more than incorrect unambiguous
correspondences. Fig. 5 shows this effect on the image pair in
Fig. 1. This property may not be important for general point match-
ing applications, for which the points may not have neighborhood
regions to be compared. In our problem, some feature points may
have distinctive neighborhood regions resulting in unambiguous
correspondences, so the property is more effective. We consider
this property to be a crucial advantage in comparison with other
algorithms such as integer linear programming [5] and the spectral
technique [4].

4. Experiments

In this section, we assess the proposed method via experi-
ments with various types of image pairs. In the first two subsec-
tions, ground-truth global parametric models, such as
homographies and fundamental matrices between the images,
Fig. 7. A planar scene with a small viewpoint change [8]. (a–e) Only the top 30 correspon
best correspondences are correct (k ¼ sample size).
are given. We count correct correspondences using these models.
The third subsection describes the application of the proposed
method to matching images containing nonrigid objects. In the
last subsection, we apply the proposed method to object
recognition.

We implement four other methods for comparison. The first
method is the texture-descriptor-based matching method pro-
posed by Forssén and Lowe [27] (denoted by the F method), which
uses local-descriptor distances only. We use the same feature
detection and description methods as those used in this paper
for fairness of comparison, although Forssén and Lowe [27] use
multiscale features in their work. The detected correspondences
are sorted in increasing order of the ratio between the best and
the second-best dissimilarities [27], and one-to-one correspon-
dence constraints are enforced by eliminating conflicting corre-
spondences based on the sorting results. In addition, we reject
correspondences with large local-descriptor distances (da > sd) at
the final stage, which we consider as bad correspondences with
high dissimilarity.

The remaining three methods share the same unary objective
function gðPÞ as that of the proposed method. In fact, these meth-
ods are three different combinations of the objective functions and
the optimization algorithms of the proposed method and the spec-
tral method [4]. By decomposing the two methods component-by-
component and recombining them in this way, we can identify
which part of the method is the most effective.

The binary compatibility weight between ma ¼ ðxi;x0i0 Þ and
mb ¼ ðxj;x0j0 Þ, used by Leordeanu and Hebert [4] for matching SIFT
features, can be described by:
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Fig. 8. A planar scene with a large viewpoint change [8]. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of the top k
best correspondences are correct (k ¼ sample size).
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wab ¼
1� e2

ab=c
2; if b R Ca and eab < c;

0; otherwise;

(
ð24Þ

where:

eab ¼ jkxi � xjk � kx0i0 � x0j0 kj: ð25Þ

Additional constraints, for wab to have a nonzero value, are:

kxi � xjk < r;

kx0i0 � x0j0 k < r;
ð26Þ

where r is usually set to 200 pixels. The simple binary compatibility
weight (24) encourages pairs of correspondences to preserve the
distance between the feature points across images; it consequently
tends to preserve the object scale. We set c to be about one-tenth of
the image size (usually 50 pixels), because the proposed adaptive
parameter selection scheme was found not to work for this simple
binary compatibility function.

The second method is the original spectral method [4] (denoted
by the S-S method) that uses the simple binary compatibility
weight (24) and the spectral technique. The ARPACK software
[28] was used for the implementation of the spectral technique,
and the greedy algorithm [4] was used to find discretized solutions.
The third method (denoted by the S-P method) uses the simple
binary compatibility weight (24) and our relaxation algorithm.
The fourth method (denoted by the P-S method) uses our binary
compatibility weight (9) and the spectral technique followed by
the greedy algorithm. Finally, we refer to our proposed method
as the P-P method.

For the S-S and S-P methods that use the simple binary compat-
ibility weight (24), the set M of candidate correspondences is re-
duced by deleting all correspondences mb ¼ ðj; j0Þ for which there
is another correspondence ma ¼ ði; i0Þ such that i ¼ j, i0 ¼ j0, and
da < db, because these correspondences are identical if we do not
consider local feature transformations Ha and Hb. Such identical
correspondences result from multiple dominant image-gradient
orientations used in invariant feature description [3]. For the P-S
method, we use the original set M.

The correspondences detected by the S-P and P-P methods,
which use the proposed relaxation algorithm, are sorted in
decreasing order of p̂�aq̂�a. Those detected by the S-S and P-S meth-
ods, which use the spectral technique [4], are sorted in decreasing
order of p�a because p�a is the confidence of ma in these methods. For
all the image pairs in this paper, we use the set of parameter values
sd ¼ 0:5, Nmax ¼ 20000, p0 ¼ 0:5, Tmax ¼ 200, sp ¼ 99%, unless
otherwise specified.
4.1. Planar and parallax-free scene results

In this subsection, we use image pairs of planar or parallax-free
scenes. Some image pairs (Figs. 7–9) with viewpoint or scale
changes were selected from the data set provided by Mikolajczyk
et al. [8]. Ground-truth homographies between the images are pro-
vided in the data set, and we use them to evaluate the proposed
method. For the other image pairs, handcrafted point-correspon-
dences were used for estimating the ground-truth homographies.

When evaluating matching results using ground-truth models,
the disparity between the centroid of an affine region and the
homography-transformed centroid of the correctly corresponding
affine region tends to be large if the two regions are large, because
the affine assumption breaks more easily for large regions. For this
reason, Mikolajczyk et al. [8] proposed an evaluation scheme based
on region overlap, which encourages correspondences between
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Fig. 9. A scene with a large-scale change [8]. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of the top k best
correspondences are correct (k ¼ sample size).
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large regions to be counted as inliers. Here, we use a simpler scheme
that also encourages correspondences between large regions.

Following [27,8], we fit an ellipse to each region of a detected
correspondence. For example, the ellipse equation for a region Ri

is:

ðx� xiÞTR�1
i ðx� xiÞ ¼ j2; ð27Þ

where xi is the centroid of Ri, Ri is the covariance matrix of the inte-
rior pixels of Ri, and j is a constant. A correspondence ma ¼ ðxi;x0i0 Þ
that satisfies both of the following conditions is counted as an inlier
(a correct correspondence):

ðH�1
trueðx0i0 Þ � xiÞTR�1

i ðH
�1
trueðx0i0 Þ � xiÞ < j2;

ðHtrueðxiÞ � x0i0 Þ
TR0�1

i0 ðHtrueðxiÞ � x0i0 Þ < j2;
ð28Þ

where Htrue is the ground-truth homography. If the conditions are
satisfied, each transformed feature point lies within the fitted el-
lipse of the corresponding feature point. This situation is illustrated
in Fig. 6a. If j is large, correct correspondences are not missed, at
the expense of letting through some false correspondences. If j is
small, we can harvest correct correspondences with high accuracy
at the expense of losing less-accurate correct correspondences.
We set j ¼ 1 for the experiments, which is a small value that
strongly discourages incorrect correspondences from being counted
as inliers.

Figs. 7–12 show the image pairs of planar and parallax-free
scenes. The image pair in Fig. 7 contains distinctive textures, with
the viewpoint change being small. The image pairs in Figs. 8 and 10
contain a viewpoint-changed scene with a relatively small scale
change. The image pairs in Figs. 9 and 11 contain a scale-changed
scene with a relatively small viewpoint change. The image pairs in
Figs. 10 and 11 contain a chessboard pattern, where the only dis-
tinctive part is the house-like pattern in the middle; from this pat-
tern, human referees can find correct correspondences. We use
these image pairs as simulative examples with high ambiguity.
The image pair in Fig. 12 is especially hard to match because of
the reflected tree pattern on the windows, in addition to the re-
peated textures. We can expect the methods using the proposed
objective function (namely P-S and P-P) to work better than the
other methods because our assumption holds best for the image
pairs of planar and parallax-free scenes.

As expected, the P-P and P-S methods give the best results for
most of the image pairs, which means that the proposed objective
function is suitable for finding correct correspondences between
the images robustly, with respect to viewpoint or scale changes.
For the easiest image pair in Fig. 7, which has distinctive textures
and a small viewpoint change, all the methods give good results.
The F method gives good results for the image pairs with distinctive
textures (Figs. 7–9), but does not give good results for the image
pairs with highly repeated textures (Figs. 10–12). The S-P method
gives meaningful results for the image pairs with small scale
changes (Figs. 7, 8, and 10), but the method fails for the other image
pairs. The S-S method gives the worst results for all the image pairs.
It is interesting to note that the P-P method works better than the P-
S method for the challenging image pair in Fig. 12. Indeed, our algo-
rithm gives higher values of f ðP̂�Þ than the spectral technique for
this image pair, as will be revealed at the end of this section.

4.2. 3D scene results

In this subsection, we assess the proposed method for image
pairs of static 3D scenes. The ground-truth fundamental matrices
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Fig. 10. A viewpoint-changed planar scene with repeated textures. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of
the top k best correspondences are correct (k ¼ sample size).
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for the image pairs were estimated from handcrafted point
correspondences.

Moreels and Perona [29] have developed an evaluation scheme
for 3D objects. The necessity for an additional image, however, dis-
courages us from using this scheme. Forssén and Lowe [27] have
recently developed an evaluation scheme that does not require
an additional image, at the expense of letting through some false
correspondences. The scheme uses epipolar tangents for the fitted
ellipses. The tangents, however, do not exist when the epipole lies
within the fitted ellipse. Fortunately, this kind of degeneracy did
not affect their evaluation because the epipole was outside the
images in their experiments.

Here, we use a simpler scheme. We regard a correspondence as
correct if the epipolar line induced by a feature point intersects the
fitted ellipse of the corresponding feature point (Fig. 6(b)). This
scheme is not affected by the position of the epipole, although false
correspondences are more likely to be let through.

Figs. 13–15 show the image pairs of static 3D scenes. Our
assumption holds well for the image pair in Fig. 13 because the
scene is mostly composed of planar objects. For the other image
pairs, we cannot easily say that our assumption holds better, be-
cause the object scale is well preserved and the viewpoint change
is not so severe.

The P-P and P-S methods give the best results for the image
pairs. The F method gives good results for the image pairs in Figs.
13 and 14 with their distinctive textures, but does not give good
results for the image pair in Fig. 15 with its repeated leaves. For
the plant image pairs in Figs. 14 and 15 without severe scale
changes, the S-P method gives good results, but it is less effective
when the viewpoint is changed significantly (Fig. 13). The S-S
method gives similar results to those of the S-P method, although
the S-P method outperforms the S-S method in terms of the
number of correct correspondences in the top k best
correspondences.

4.3. Nonrigid objects

In this subsection, we assess the proposed method for image
pairs of nonrigid objects. Ground-truth parametric models cannot
be used in the evaluation because of the nonrigid deformation, so
we manually count correct correspondences for the image pairs.

Figs. 16–18 show the image pairs of nonrigid objects. Figs. 16
and 17 show simulative examples with high ambiguity. The chess-
board pattern in Fig. 16 is deformed without being occluded, but it
is self-occluded in Fig. 17. For both image pairs, our assumption
holds, so that we can expect the methods using the proposed
objective function (P-S and P-P) to give good results in spite of
the repeated textures. The image pair in Fig. 18 shows a person
and a fountain in both images. Although the print on the T-shirt
contains some repeated textures and is nonrigidly deformed, the
surface is smooth and our assumption still holds. However, the
continuity breaks at the shoulder, and the assumption does not
hold between the arm and the torso. In fact, no algorithm in this
paper finds correct correspondences on the arm and the face: the
correspondences have neither the smallest local-descriptor dis-
tances nor geometric measurements consistent with neighboring
correspondences.

The P-P method consistently gives the best results, for all the
image pairs. Although the P-S method gives a good result for the
image pair in Fig. 16, it gives poor results for the image pairs in
Figs. 17 and 18, because it finds very strongly structured false cor-
respondences for the image pair in Fig. 17, and finds structured
false correspondences on the T-shirt in Fig. 18. In fact, the P-P
method finds higher values of f ðP̂�Þ than the P-S method for the
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Fig. 11. A scale-changed planar scene with repeated textures. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of the
top k best correspondences are correct (k ¼ sample size).
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Fig. 13. A 3D scene with a viewpoint change. (a–e) Only the top 30 matches are displayed, to aid visibility. (f) The graph displays how many of the top k best correspondences
are correct (k ¼ sample size).
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image pairs in Figs. 17 and 18. All the other methods perform
poorly for all the image pairs of nonrigid objects with high
ambiguity.

We evaluated the values of f ðP̂�Þ to determine the effect of the
optimization algorithms. Fig. 19a and b shows the values. As men-
tioned above, the P-P method gives higher values of f ðP̂�Þ than the
P-S method for the image pairs in Figs. 12, 17, and 18, resulting in
the better performance of the P-P method. For the image pair in
Fig. 17, the difference of the values is not so large (less than
20%) because the P-S method finds very strongly structured false
correspondences. However, the difference is large (greater than
40%) for the practical image pairs for which the P-S method does
not find very strongly structured correspondences (Figs. 12 and
18). It can also be observed that the P-P method consistently gives
higher values of f ðP̂�Þ than the P-S method, for the other image
pairs.

For those cases where the S-S and S-P methods are used
(Fig. 19a), we cannot say that the S-P method finds higher values
of f ðP̂�Þ, and we cannot see any correlation between the values
and the number of correct correspondences either. It might be that
they do not have a strong correlation because the assumption does
not reflect the actual changes between the images. In spite of using
an objective function that does not model the viewpoint or scale
changes between the images, the S-P method outperforms the S-S
method for most of the image pairs, in terms of the number of cor-
rect correspondences. We consider this better performance of our
algorithm to be caused by the third property (P3) of our algorithm.

We evaluated the percentage of p�a greater than 0:99 (p�a � 1) for
every a 2S�, to observe how well the proposed relaxation algo-
rithm finds a feasible solution. Fig. 19c shows the results. Although
it is hard to prove theoretically that the solution found by using our
algorithm converges to a feasible solution, the graph shows that
the percentage of converged confidences grows with increasing
T: more than 95% of the confidences converge to 1 at T ¼ 1000
on average. Our choice of Tmax ¼ 200 may not be suitable for find-
ing more converged solutions. However, we did not increase Tmax,
for reasons of computational complexity.

4.4. Recognizing objects in cluttered environments

Background clutter should be considered when developing a ro-
bust recognition system, because false correspondences are fre-
quently detected between the object in a data image and the
cluttered background in a query image. The proposed method
encourages geometrically consistent correspondences to be de-
tected. This property motivates us to apply the proposed method
to object recognition, under the assumption that false correspon-
dences are not geometrically consistent.

The recognition scenario is as follows. A query image is given
as an input, containing an object in a cluttered background. The
proposed method is used to match the query image to every data
image that contains an object in a simple black background (see
Fig. 20). The detected correspondences are clustered to form
Groups of Aggregated Matches (GAMs) [21] by grouping together
correspondences with a small pairwise transformation error
(eab < 3r). The value of f ðP̂�Þ is computed for the correspon-
dences in the largest GAM between every query-and-data image
pair, and is then divided by the number of feature points in the
data image, to discourage an incorrect data image with a large
number of feature points from getting a larger value of f ðP̂�Þ
than a correct data image with a small number of feature points.
We finally classify the cluttered query image as an instance of



1 100 200 299
0

10

20

30

40

Sample size

N
um

be
r 

of
 in

lie
rs

F
S-S
S-P
P-S
P-P

Fig. 14. A plant scene. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of the top k best correspondences are correct
(k ¼ sample size).
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Fig. 15. A plant scene with repeated leaves. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of the top k best
correspondences are correct (k ¼ sample size).
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Fig. 16. A scale-changed nonrigid object with repeated textures. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of the
top k correct correspondences are correct (k ¼ sample size).
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Fig. 17. A partially occluded nonrigid object with repeated textures. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of
the top k best correspondences are correct (k ¼ sample size).
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Fig. 18. People in front of a fountain. (a–e) Only the top 30 correspondences are displayed, to aid visibility. (f) The graph displays how many of the top k correct
correspondences are correct (k ¼ sample size).
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Fig. 19. (a,b) The values of f ðP̂�Þ found by the proposed relaxation algorithm and the spectral technique [4]. In both graphs the values of f ðP̂�Þ were divided by the value of
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Fig. 20. Examples of query-and-data image pairs from the KAIST-104 DB [30]. The inliers of the largest GAM are displayed.
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the data image that maximizes the normalized value of f ðP̂�Þ. For
computing the recognition score f ðP̂�Þ under fair conditions, we
use a fixed parameter value (r ¼ 10) for clustering and score
computation, but not for the matching.

For the experiment, we used images from the KAIST-104 DB
[30]. Fig. 20 shows some examples. Because of the cluttered back-
ground, Kim et al.’s success rate was 71.15%, classifying 74 images
correctly for 104 query images [30]. We could classify 85 images
correctly, which is about a 10% improvement on state-of-the-art
methods [30]. Fig. 21 shows a confusion matrix for the recognition
results. The strong diagonal elements show that the proposed rec-
ognition score is effective.
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5. Conclusions and future work

In this paper, we have proposed a robust feature point matching
method that benefits from a novel objective function and a relaxa-
tion algorithm. The proposed method showed consistently good
matching results for challenging image pairs with viewpoint
changes, scale changes, and nonrigid deformations, in the presence
of repeated textures. The objective function was shown to be suit-
able for matching image pairs with (or without) significant view-
point or scale changes, unlike previous functions that rely on the
assumption that the distance between neighboring feature points
is preserved across images. The proposed relaxation algorithm
found good solutions that not only maximized the objective func-
tion but also maximized the number of correct correspondences.
The proposed relaxation algorithm also showed better perfor-
mance than state-of-the-art algorithms such as the spectral tech-
nique [4], for widely separated practical image pairs.

The major drawback of the proposed method is its memory
requirements for computing and saving the pairwise links, which
is approximately OðKNÞ, where K can be as large as N in the worst
case. We are currently investigating an effective method for reduc-
ing it. The proposed relaxation algorithm can be applied to maximiz-
ing not only quadratic functions but also higher-order functions,
provided they are differentiable. This advantage will lead us to con-
sider higher-order relationships among three or more correspon-
dences, and there may be other kinds of pairwise relationship that
have yet to be discovered. We are investigating such pairwise and
higher-order relationships for robust feature point matching.
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Appendix A

Here is a brief proof for the equivalence between the condition
(15) and one-to-one correspondence constraints. If the condition
(15) is satisfied, then

P
b2Ca�fagpb ¼ 0 for every a such that pa ¼ 1.

In this case, pb ¼ 0 for every b 2 Ca � fag because pb P 0 for every
b 2 f1; . . . ;Ng, meaning that every mb in conflict with ma does not
belong to the solution set M� ¼ fma : pa ¼ 1g. This proves that the
condition (15) is a sufficient condition for one-to-one correspon-
dence constraints. If one-to-one correspondence constraints are
satisfied, then pb ¼ 0 for every pair of a and b such that pa ¼ 1
and b 2 Ca � fag. It follows that

P
b2Ca�fagpb ¼ 0 because pb ¼ 0

for every b 2 Ca � fag. Consequently, sa ¼ pa þ
P

b2Ca�fagpb ¼ 1 for
every a such that pa ¼ 1. This proves that the condition (15) is also
a necessary condition.
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