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Abstract

The repeatability and efficiency of a corner detector deteeshow likely it is to be useful in
a real-world application. The repeatability is importaretause the same scene viewed from different
positions should yield features which correspond to theeseral-world 3D location$ [1]. The efficiency
is important because this determines whether the detestobined with further processing can operate
at frame rate.

Three advances are described in this paper. First, we fraseew heuristic for feature detection,
and using machine learning we derive a feature detector frosnwhich can fully process live PAL
video usingless than 5%of the available processing time. By comparison, most otle¢ectors cannot
even operate at frame rate (Harris detector 115%, SIFT 195¥g9ond, we generalize the detector,
allowing it to be optimized for repeatability, with littles$s of efficiency. Third, we carry out a rigorous
comparison of corner detectors based on the above repl@gtabiterion applied to 3D scenes. We
show that despite being principally constructed for speedthese stringent tests, our heuristic detector
significantly outperforms existing feature detectors.alfin the comparison demonstrates that using
machine learning produces significant improvements in atgtslity, yielding a detector that is both

very fast and very high quality.

Index Terms

Corner detection, feature detection.

. INTRODUCTION

Corner detection is used as the first step of many vision tag&l as tracking, localisation,
SLAM (simultaneous localisation and mapping), image matgland recognition. This need has
driven the development of a large number of corner detectéosvever, despite the massive
increase in computing power since the inception of cornéeders, it is still true that when
processing live video streams at full frame rate, existemjire detectors leave little if any time
for further processing.

In the applications described above, corners are typidatgcted and matched into a database,
thus it is important that the same real-world points are ateterepeatably from multiple views
[1]. The amount of variation in viewpoint under which thisnclition should hold depends on

the application.
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[I. PREVIOUS WORK
A. Corner detectors

Here we review the literature to place our advances in contaexthe literature, the terms
“point feature”, “feature”, “interest point” and “cornerefer to a small point of interest with
variation in two dimensions. Such points often arise as #sailt of geometric discontinuities,
such as the corners of real world objects, but they may alse fnom small patches of texture.
Most algorithms are capable of detecting both kinds of oaftinterest, though the algorithms
are often designed to detect one type or the other. A numb#reotietectors described below
compute a corner responsé, and define corners to be large local maximaCof

1) Edge based corner detector&n edge (usually a step change in intensity) in an image
corresponds to the boundary between two regions. At carti@issboundary changes direction
rapidly.

a) Chained edge based corner detectoMany techniques have been developed which
involved detecting and chaining edges with a view to anaty$he properties of the edge, often
taking points of high curvature to be corners. Many earlyhuods used chained curves, and
since the curves are highly quantized, the techniques otrate on methods for effectively and
efficiently estimating the curvature. A common approachlieen to use a chord for estimating
the slope of a curve or a pair of chords to find the angle of theecat a point.

Early methods computed the smallest angle of the curve okierds spanning different
numbers of links. Corners are defined as local minima of affjlefter local averaging [3].
Alternatively, corners can be defined as isolated discaitt@s in the mean slope, which can be
computed using a chord spanning a fixed set of links in thencl#i Averaging can be used to
compute the slope and the length of the curve used to deteriha point is isolated [5]. The
angle can be computed using a pair of chords with a centralayappeaks with certain widths
(found by looking for zero crossings of the angle) are defiagatorners/[6].

Instead of using a fixed set of chord spans, some methods ¢enaplregion of support’
which depends on local curve properties. For instance lowtima of chord lengths can be
used to define the region of support, within which a cornertrhase maximal curvature [7].
Corners are can be defined as the centre of a region of suppbrhigh mean curvature, where

the support region is large and symmetric about its cehffeT® region free from significant
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discontinuities around the candidate point can be used euthature being computed as the
slope change across the region [9] or the angle to the regendpoints[[10].

An alternative to using chords of the curves is to apply smiogtto the points on the curve.
Corners can be defined as points with a high rate of changeop&4IL1], or points where the
curvature decreases rapidly to the nearest minima and tjle &mthe neighbouring maxima is
small [12].

A fixed smoothing scale is not necessarily appropriate fbrcatves, so corners can also
be detected at high curvature points which have stableipositunder a range of smoothing
scales([1B]. As smoothing is decreased, curvature maxifiiachie, forming a tree over scale.
Branches of a tree which are longer (in scale) than the pdmamich are considered as stable
corner points[[14]. Instead of Gaussian smoothing, extremthe wavelet transforms of the
slope [15] or wavelet transform modulus maximum of the arfi@@, [17] over multiple scales
can be taken to be corners.

The smoothing scale can be chosen adaptively. The Curv&cmée Space technique [18]
uses a scale proportional to the length and defines cornarséima of curvature where the
maxima are significantly larger than the closest minima. allgcadaptive smoothing using
anisotropic diffusion[[19] or smoothing scaled by the lowafriance of curvature [20] have
also been proposed.

Instead of direct smoothing, edges can be parameterisbadulic splines and corners detected
at points of high second derivative where the spline desiatelong way from the control
point [21], [22].

A different approach is to extend curves past the endpointsitowing saddle minima or ridge
maxima in the gradient image until a nearby edge is croskecely finding junctions [23]. Since
the chain code number corresponds roughly to slope, appedgicurvature can be found using
finite differences, and corners can be found by identifyipgcific patterns [24]. Histograms of
the chain code numbers on either side of the candidate pambe compared using normalized
cross correlation and corners can be found at small locainmairf25]. Also, a measure of the
slope can be computed using circularly smoothed histogi@ntke chain code numbers [26].
Points can be classified as corners using fuzzy rules apfiedeasures computed from the

forward and backward arm and the curve angle [27].
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b) Edgel based corner detectorhained edge techniques rely on the method used to
perform segmentation and edge chaining, so many technifijpgsedge points (edgels) and
examine the local edgels or image to find corners.

For instance, each combination of presence or absence efseniga3 x 3 window can be
assigned a curvature, and corners found as maxima of cueviat@a local window([28]. Corners
can be also found by analysing edge properties in the windmmred along the edge [29]. A
generalized Hough transform_[30] can be used which replaaebl edgel with a line segment,
and corners can be found where lines intersect, i.e. at lar@ema in Hough space [31]. In
a manner similar to chaining, a short line segment can bl fitiethe edgels, and the corner
strength found by the change in gradient direction alonglittee segment([32]. Edge detectors
often fail at junctions, so corners can be defined as pointsreviseveral edges at different
angles end nearby [33]. By finding both edges and their dinest a patch on an edge can
be compared to patches on either side in the direction of dmeoar, to find points with low
self-similarity [34].

Rapid changes in the edge direction can be found by meastiminderivative of the gradient

direction along an edge and multiplying by the magnitudehef gradient:
_ gmmg; + gyygg — 292y929y

Ck
929;

(1)

where, in general,
_9g %
gSC - ax7 gCCJ? - 81’27
andg is either the image or a bivariate polynomial fitted locabytihe image([35]Cx can also

etc. ..,

be multiplied by the change in edge direction along the eBéé [
Corner strength can also be computed as rate of change ifegraahgle when a bicubic

polynomial is fitted to the local image surfacé [37],1[38]:
O, = _Qcicyz — CyCyCay + chxz ’ )

(24 c2)>

where, for exampleg,, is the coefficient ofzy in the fitted polynomial. If edgels are only

detected at the steepest part of an edge, then a score campotial image curvature at the
edgels is given by:
Cw =V - S|VI|. (3)

whereV 1 is the image gradient [39].
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2) Greylevel derivative based detector$he assumption that corners exist along edges is
an inadequate model for patches of texture and point likeufesa, and is difficult to use at
junctions. Therefore a large number of detectors operatxitif on greylevel images without
requiring edge detection.

One of the earliest detectors [40] defines corners to be lextaéma in the determinant of
the Hessian:

Coer = [H[I]| = Lipdyy — (Iny)*. 4)

This is frequently referred to as the DET operatdser moves along a line as the scale changes.
To counteract this, DET extrema can be found two scales andexted by a line. Corners are
then taken as maxima of the Laplacian along the liné [41].

Instead of DET maxima, corners can also be taken as the gtadexima on a line connecting
two nearby points of high Gaussian curvature of opposite siwpere the gradient direction
matches the sign chandge [42]. By considering gradients eanegitary currents, the magnitude
of the corresponding magnetic vector potential can be coatpuhe gradient of this is taken
normal and orthogonal to the local contour direction, areldbrner strength is the multiple of
the magnitude of thesé [43].

a) Local SSD (Sum of Squared Differences) detectbeatures can be defined as points
with low self-similarity in all directions. The self-sinatity of an image patch can be measured
by taking the SSD between an image patch and a shifted vessitself [44]. This is the basis for
a large class of detectors. Harris and Stephens [45] builhisrby computing an approximation
to the second derivative of the SSD with respect to the shifis is both computationally more

efficient and can be made isotropic. The result is:

H L (5)
LI, I?

where™ denotes averaging performed over the area of the image.@¢chause of the wording
used in[[45], it is often mistakenly claimed tHdtis equal to the negative second derivative of the
autocorrelation. This is not the case because the SSD i3 txjtlee sum of the autocorrelation
and some additional termis [46].

The earlier Forstner_[47] algorithm is easily easily expéa in terms ofH. For a more

recently proposed detectdr |48], it has been shown showhtf# under affine motion, it is
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better to use the smallest eigenvaluelfas the corner strength function. A number of other
suggestions [45]/ [50]/ [49][ [51] have been made for howdmpute the corner strength from
H, and these have been shown to all be equivalent to variousxmarms ofH [52]. H can be
generalized by generalizing the number of channels and rdifoeality of the image [53] and
it can also be shown that that [47], [49], [54] are equivalkenspecific choices of the measure
used in [51].

H can be explained in terms of the first fundamental form of thage surface [55]. From
analysis of the second fundamental form, a new detectomoisgsed which detects points where
the probability of the surface being hyperbolic is high.

Instead of local SSD, general template matching, given g wagpearance model and point-
wise comparison which behaves similarly to the SSD (sum ofsgf differences) for small
differences can be consideréd |[56]. The stability with eespo the match parameters is derived,
and the result is a generalization Hf (whereH is maximally stable for no appearance model,
linear translation and SSD matching). This is used to dedctors which will give points
maximally stable for template matching, given similaritarisforms, illumination models and
prefiltering.

b) Laplacian based detectorsAn alternative approach to the problem of finding a scalar
value which measures the amount of second derivative iski® tlze Laplacian of the image.
Since second derivatives greatly amplify noise, the nosseeduced by using the smoothed
Laplacian, which is computed by convolving the image with oG (Laplacian of a Gaussian).
Since the LoG kernel is symmetric, one can interpret this exfopming matched filtering for
features which are the same shape as a LoG. As a result, thacaof the Gaussian determines
the size of features of interest. It has been noted [57] thatdcations of maxima of the LoG
over different scales are particularly stable.

Scale invariant corners can be extracted by convolving riiege with a DoG (Difference of
Gaussians) kernel at a variety of scales (three per octange}selecting local maxima in space
and scale[[58]. DoG is a good approximation for LoG and is nfasker to compute, especially
as the intermediate results are useful for further prongssio reject edge-like features, the
eigenvalues of the Hessian of the image are computed andgrdsatre kept if the eigenvalues
are sufficiently similar (within a factor of 10). This methadn be contrasted witlil(3), where

the Laplacian is compared to the magnitude of the edge respdhtwo scales per octave
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are satisfactory, then a significant speed increase cantievad by using recursive filters to
approximate Gaussian convolutian [59].

Harris-Laplace[[60] features are detected using a simpar@ach. An image pyramid is built
and features are detected by computirig at each layer of the pyramid. Features are selected
if they are a local maximum of’y in the image plane and a local maxima of the LoG across
scales.

Recently, scale invariance has been extended to consakeirés which are invariant to affine
transformations[[57],.[61],[62]/[63]. However, unlikeet8D scale space, the 6D affine space
is too large to search, so all of these detectors start fromees detected in scale space. These
in turn rely on 2D features selected in the layers of an imagamid.

3) Direct greylevel detectorsAnother major class of corner detectors work by examining a
small patch of an image to see if it “looks” like a corner. Thetattors described in this paper
belong in this section.

a) Wedge model detectorgs number of techniques assume that a corner has the general
appearance of one or more wedges of a uniform intensity ortlkgbaund of a different uniform
intensity. For instance a corner can be modelled as a sifidleof family [65] of blurred wedges
where the parameters are found by fitting a parametric mdded. model can include angle,
orientation, contrast, bluntness and curvature of a siwgldge [66]. In a manner similar to [67],
convolution masks can be derived for various wedges whidhmige signal to noise ratio and
localisation error, under assumption that the image isupded by Gaussian noise [68].

It is more straightforward to detect wedges in binary imaged to get useful results, local
thresholding can be used to binarize the imdge [69]. If a @oia a bilevel wedge, then a
response function based on local Zernike moments can betasgetect corners [70]. A more
direct method for finding wedges is to find points where whexecentric contiguous arcs of
pixels are significantly different from the centre pixel[7According to the wedge model, a
corner will be the intersection of several edges. An anglg-blough transform[72] is performed
on edgels belonging to lines passing through a candidatet pwifind their angles and hence
detect corners [73]. Similar reasoning can be used to darresponse function based on gradient
moments to detect V-, T- and X- shaped cornérs [74]. The gtreaf the edgels, wedge angle
and dissimilarity of the wedge regions has also been useddoctirners([75].
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b) Self dissimilarity: The tip of a wedge is not self-similar, so this can be germzdliby
defining corners as points which are not self-similar. Thepprtion of pixels in a disc around
a centre (ornucleug which are similar to the centre is a measure of self sinylaifhis is
the USAN (univalue segment assimilating nucleus). Coraeesdefined as SUSAN (smallest
USAN, i.e. local minima) points which also pass a set of rutesuppress qualitatively bad
features. In practice, a weighted sum of the number of pikedgle a disc whose intensity is
within some threshold of the centre value is used [76]. CORY€&es as Oriented Paif) [77]
computes dominant directions using local averages USANs péir of oriented crosses, and
define corners as points with multiple dominant directions.

Self similarity can be measured using a circle instead ofa [d@i8]. The SSD between the cen-
ter pixel and the pixels at either end of a diameter line isr@@nted measure of self-dissimilarity.
If this is small in any orientation then the point is not a carrThis is computationally efficient
since the process can be stopped as soon as one small valoeoisntered. This detector is
also used by [79] with the additional step that the diffeeehetween the centre pixel and circle
pixels is used to estimate the Laplacian, and points areralgaired to be locally maximal in
the Laplacian.

Small regions with a large range in greyvalues can be usedrasrs. To find these efficiently,
the image can be projected on to theand y axes and large peaks found in the second
derivatives. Candidate corner locations are the intemestof these maxima projected back
in to the image([80]. Paleet. al. [81] proposes self similarity can be measured by comparing
the centre pixel of a window to the median value of pixels ia Window. In practice, several
percentile values (as opposed to just th&)58re used.

Self-dissimilar patches will have a high energy contentn@osing two orthogonal quadrature
pair Gabor filters gives oriented energy. Corners are mawitatal energy (the sum of oriented
energy over a number of direction$) [82].

A fast radial symmetry transform is developed [in![83] to deteoints. Points have a high
score when the gradient is both radially symmetric, strang] of a uniform sign along the
radius. The detected points have some resemblance DoGdegatu

c) Machine learning based detectorall the detectors described above define corners using
a model or algorithm and apply that algorithm directly to theage. An alternative is to train

a classifier on the model and then apply the classifier to tteg@nFor instance, a multilayer
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perception can be trained on example corners from some naodelpplied to the image after
some processing [84], [85].

Human perception can be used instead of a maddel [86]: imagesteown to a number of
test subjects. Image locations which are consistentlyddkain (as measured by an eye tracking
system) are taken to be interesting, and a support vectohinegds trained to recognize these
points.

If a classifier is used, then it can be trained according to howorner should behave, i.e.
that its performance in a system for evaluating detectomilshbe maximized. Trujillo and
Olague [87] state that detected points should have a higkatability (as defined by [1]), be
scattered uniformly across the image and that there shalak least as many points detected
as requested. A corner detector function is optimized @uggnetic programming) to maximize
the score based on these measures.

The FASTx detector (described in Sectibnllll) is related to the wedgmel style of detector
evaluated using a circle surrounding the candidate pix@bgtimize the detector for speed, this
model is used to train a decision tree classifier and the iikxrss applied to the image. The
FAST-ER detector (described in Sectioh V) is a generabratihich allows the detector to be

optimized for repeatability.

B. Comparison of feature detectors

Considerably less work has been done on comparison anda¢iealwf feature detectors than

on inventing new detectors. The tests fall into three brcaegories:

1) Corner detection as object recognitioBince there is no good definition of exactly what a
corner should look like, algorithms can be compared usingpkstic test images where the
performance is evaluated (in terms of true positives, fptsgtives, etc...) as the image is
altered using contrast reduction, warps and added noisee @i synthetic image is used,
corners exist only at known locations, so the existencelséfaegatives and false positives
is well defined. However, the method and results do not gémerto natural images.

2) System performanc&he performance of an application (often tracking) is extdd as the

corner detector is changed. The advantage is that it testsuitebility of detected corners

Tests for the localisation accuracy are not considered bieree for most applications the presence or absence of lusefu

corners is the limiting factor
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for further processing. However, poor results would be ioletfrom a detector ill matched
to the downstream processing. Furthermore the results taauessarily generalize well
to other systems. To counter this, sometimes part of a systersed, though in this case
the results do not necessarily apply to any system.

3) RepeatabilityThis tests whether corners are detected from multiple viéws a low level
measure of corner detector quality and provides an uppeardon performance. Since it is
independent of downstream processing, the results ardyagelicable, but it is possible
that the detected features may not be useful. Care must likimghis technique, since
the trivial detector which identifies every pixel as a coraehieves 100% repeatability.
Furthermore, the repeatability does not provide infororatabout the usefulness of the
detected corners for further processing. For instancebtigitest pixels in the image are

likely to be repeatable but not especially useful.

In the first category, Rajan and Davidson[88] produce a nurob&lementary test images
with a very small number of corners (1 to 4) to test the pertoroe of detectors as various
parameters are varied. The parameters are corner angteercamm length, corner adjacency,
corner sharpness, contrast and additive noise. The positd detected corners are tabulated
against the actual corner positions as the parameters aetlv&ooperet. al. [34], [89] use
a synthetic test image consisting of regions of uniformnsiy arranges to create L-, T-, Y-
and X-shaped corners. The pattern is repeated several tintieslecreasing contrast. Finally,
the image is blurred and Gaussian noise is added. @heal. [85] use a related method. A
known test pattern is subjected to a number random affinesvangl contrast changes. They
note that this is naive, but tractable. They also providesguivalent to the ROC (Receiver
Operating Characteristic) curve. Zhaag al. [90] generate random corners according to their
model and plot localization error, false positive rate aaldd negative rate against the detector
and generated corner parameters. letiocal. [43] use an image of a carefully constructed scene
and plot the proportion of true positives as the scale isedaand noise is added for various
corner angles.

Mohanna and Mokhtarian [91] evaluate performance usingraéeriteria. Firstly, they define
a consistentdetector as one where the number of detected corners doasnyowith various

transforms such as addition of noise and affine warping. Ehiseasured by the ‘consistency
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of corner numbers’ (CCN):
CCON =100 x 1.1~ Ine=nel, (6)

wheren; is the number of features in the transformed imageani$ the number of features in
the original image. This test does not determine the qualfitthe detected corners in any way,

so they also propose measuring the accuracy (ACU) as:

Na Na

ACU =100 x =2 5 = (7)

wheren, is the number of detected corners, is the number of so-called ‘ground truth’ corners
andn, is the number of detected corners which are close to growttd torners. Since real
images are used, there is no good definition of ground tratla, sumber of human test subjects
(e.g. 10) familiar with corner detection in general, but tie# methods under test, label corners
in the test images. Corners which 70% of the test subjectseagn are kept as ground truth
corners. This method unfortunately relies on subjectivasiens.

Remarkably, of the systems above, onlyi[85],[88] and [86)jate ROC curves (or equivalent):
otherwise only a single point (without consistency on eitleas of the ROC graph) is measured.
In the second category, Trajkovic and Hedley![78] defineibtatas the number of ‘strong’

matches, matches detected over three frames in their miga@kigorithm, divided by the total
number of corners. Tissainayagama and Suterb [92] use &siméthod: a corner in frame

is stable if it has been successfully tracked from frame lramn&n. Baeet. al. [/7] detect
optical flow using cross correlation to match corners betwieames and compare the number
of matched corners in each frame to the number of cornerseriirtt frame.

To get more general results than provided by system perfacenathe performance can be
computed using only one part of a system. For instance, Mjépyk and Schmid [93] test a large
number of interest point descriptors and a small numberasfaty related detectors by computing
how accurately interest point matching can be performedrels and Perona [94] perform
detection and matching experiments across a variety ofestygres under a variety of lighting
conditions. Their results illustrate the difficulties inngegalizing from system performance since
the best detector varies with both the choice of descriptor leghting conditions.

In the third category, Schmiet. al. [1] propose that when measuring reliability, the important
factor is whether the same real-world features are detdob@d multiple views. For an image

pair, a feature is ‘detected’ if it is extracted in one imagel appears in the second. It is
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Fig. 1

12 POINT SEGMENT TEST CORNER DETECTION IN AN IMAGE PATCHTHE HIGHLIGHTED SQUARES ARE THE PIXELS USED
IN THE CORNER DETECTION THE PIXEL AT p IS THE CENTRE OF A CANDIDATE CORNERTHE ARC IS INDICATED BY THE

DASHED LINE PASSES THROUGHL2 CONTIGUOUS PIXELS WHICH ARE BRIGHTER THAN» BY MORE THAN THE THRESHOLD.

‘repeated’ if it is also detected nearby in the second. Tipeatability is the ratio of repeated
features to detected features. They perform the tests ogesnaf planar scenes so that the
relationship between point positions is a homography. ¢talunarkers are projected onto the
planar scene using an overhead projector to allow accukatgputation of the homography.
To measure the suitability of interest points for furtheogassing, the information content of

descriptors of patches surrounding detected points isalstputed.

[1l. HIGH-SPEED CORNER DETECTION
A. FAST: Features from Accelerated Segment Test

The segment test criterion operates by considering a anfcééxteen pixels around the corner
candidatep. The original detector [95],[96] classifiesas a corner if there exists a set of
contiguous pixels in the circle which are all brighter thae tntensity of the candidate pixé|
plus a threshold, or all darker thar/,, — ¢, as illustrated in Figurel In was originally chosen to
be twelve because it admits a high-speed test which can loktosxclude a very large number
of non-corners. The high-speed test examines pixels 1 antibdth of these are withirt if
I,, thenp can not be a corner. [§ can still be a corner, pixels 5 and 13 are examinegh. ig
a corner then at least three of these must all be brighter fhant or darker than/, — ¢. If

neither of these is the case, thgrcannot be a corner. The full segment test criterion can then

October 14, 2008 DRAFT



14

be applied to the remaining candidates by examining alllpike the circle. This detector in

itself exhibits high performance, but there are severalkwesses:

1) This high-speed test does not reject as many candidates<fol 2, since the point can be a
corner if only two out of the four pixels are both significgnirighter or both significantly
darker tharp (assuming the pixels are adjacent). Additional tests ase @quired to find
if the complete test needs to be performed for a bright ring dark ring.

2) The efficiency of the detector will depend on the orderirfgttee questions and the
distribution of corner appearances. It is unlikely thastbhoice of pixels is optimal.

3) Multiple features are detected adjacent to one another.

B. Improving generality and speed with machine learning

Here we expand on the work first presented[in| [97] and preserapgproach which uses
machine learning to address the first two points (the thirdddressed in Sectidn 1Il}C). The
process operates in two stages. First, to build a cornercetéor a givenn, all of the 16
pixel rings are extracted a set of images (preferably froenténget application domain). These
are labelled using a straightforward implementation of skegment test criterion for and a
convenient threshold.

For each location on the circlec {1...16}, the pixel at that position relative @ denoted

by p — z, can have one of three states:

d, I, <I,—t (darker)
Spez=98 s, IL,—t< I,, <I,+t (similar) 8)
b, IL+t< I, (brighter)

Let P be the set of all pixels in all training images. Choosing sapartitions P into three

subsets P;, P, and P,, where:
P,={peP:S5,. ., =b}, (9)

and P; and P, are defined similarly. In other words, a given choicexofs used to partition
the data in to three sets. The g&t contains all points where pixel is darker than the center
pixel by a threshold, P, contains points brighter than the centre pixel tyand P, contains

the remaining points where pixel is similar to the centre pixel.
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Let K, be a boolean variable which is true jifis a corner and false otherwise. Stage 2
employs the algorithm used in ID3[98] and begins by selgcthre = which yields the most
information about whether the candidate pixel is a corneasared by the entropy df,,.

The total entropy of for an arbitrary set of corners), is:

H(Q) = (c+ ¢)logy(c+ ¢) — clog, ¢ — clog, ¢ (10)
where c¢=|{i€Q:K;istrug|  (number of corners)
and c¢=|[{ieQ:K,isfals¢|  (number of non corners)

The choice ofr then yields the information gaind):
Hy = H(P)— H(Fy) — H(P,) — H(F) (11)

Having selected the which yields the most information, the process is appliedirgively on
all three subsets i.ey, is selected to partitiod, in to P, 4, Py s, Pyp, x5 IS Selected to partition
P;into P4, Ps, Ps;, and so on, where eachis chosen to yield maximum information about
the set it is applied to. The recursion process terminatesnwhe entropy of a subset is zero.
This means that ajp in this subset have the same valuer9f, i.e. they are either all corners or
all non-corners. This is guaranteed to occur siAces an exact function of the data. In summary,
this procedure creates a decision tree which can correlethgify all corners seen in the training
set and therefore (to a close approximation) correctly etid@sothe rules of the chosen FAST
corner detector.

In some cases, two of the three subtrees may be the sames lease, the boolean test which
separates them is removed. This decision tree is then denvarto C code, creating a long
string of nested if-else statements which is compiled aredi @s a corner detector. For highest
speed operation, the code is compiled using profile guideingations which allow branch
prediction and block reordering optimizations.

For further optimization, we force,, =, and z, to be equal. In this case, the second pixel
tested is always the same. Since this is the case, the taasttiee first and second pixels can
be performed in batch. This allows the first two tests to bdopered in parallel for a strip
of pixels using the vectorizing instructions present on ynaigh performance microprocessors.

Since most points are rejected after two tests, this leadssignificant speed increase.
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Note that since the data contains incomplete coverage obaasible corners, the learned
detector is not precisely the same as the segment test aletéctthe case of the FASH-
detectors, it is straightforward to include an instance \@#rg possible combination of pixels
(there are3's = 43,046, 721 combinations) with a low weight to ensure that the learnaeater

exactly computes the segment test cirterion.

C. Non-maximal suppression

Since the segment test does not compute a corner resporeg®ifiimon maximal suppression
can not be applied directly to the resulting features. Foivarg:, ast is increased, the number
of detected corners will decrease. Since= 9 produces the best repeatability results (see
Section[V]), variations im will not be considered. The corner strength is thereforendefito
be the maximum value of for which a point is detected as a corner.

The decision tree classifier can efficiently determine ttessclof a pixel for a given value
of t. The class of a pixel (for example, 1 for a corner, O for a nomer) is a monotonically
decreasing function of. Therefore, we can use bisection to efficiently find the puihere the
function changes from 1 to 0. This point gives us the largasties oft for which the point is
detected as a corner. Sintés discrete, this is the binary search algorithm.

Alternatively, an iteration scheme can be used. A pixel anrthg ‘passes’ the segment test
if it is not within ¢ of the centre. If enough pixels fail, then the point will na blassified as a
corner. The detector is run, and of all the pixels which passtést, theamountby which they
pass is found. The threshold is then increased by the smaflésese amounts, and the detector
is rerun. This increases the threshold just enough to ernbate different path is taken through
the tree. This process is then iterated until detectiors.fail

Because the speed depends strongly on the learned treeeasykttific processor architecture,
neither technique has a definitive speed advantage overtliee. dNon maximal suppression is

performed in & x 3 mask.

IV. MEASURING DETECTOR REPEATABILITY

For an image pair, a feature is ‘useful’ if it is extracted meamage and can potentially appear
in the second (i.e. it is not occluded). It is ‘repeated’ ifgtalso detected nearby the same real

world point in the second. For the purposes of measuringatepéity this allows several features
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Detect features in frame 1 Detect features in frame 2

Warp frame 1
to match frame 2

compare
warped feature
positions to detected
features in frame 2

Fig. 2

REPEATABILITY IS TESTED BY CHECKING IF THE SAME REAWORLD FEATURES ARE DETECTED IN DIFFERENT VIEWSA

GEOMETRIC MODEL IS USED TO COMPUTE WHERE THE FEATURES REPR&EXJT TO.

in the first image to match a single feature in the second imElge repeatability[, is defined

to be

N, repeated
R= ; 12
N, useful ( )

where Niepeated @aNd Nyserw @are summed over all image pairs in an image sequence. This is
equivalent to the weighted average of the repeatabilibegéch image pair, where the weighting
is the number of useful features. In this paper, we genecaltgpute the repeatability for a given
number of features per frame, varying between zero and 28&@res (for &40 x 480 image).
This also allows us to compute the area under the repedyaduiive, A, as an aggregate score.

The repeatability measurement requires the location asithiNiy of every pixel in the first
image to be known in the second image. In order to compute weasuse a 3D surface model
of the scene to compute if and where where detected feathmddsappear in other views.
This is illustrated in Figurél2. This allows the repeatapibf the detectors to be analysed on
features caused by geometry such as corners of polyhedrlsmns and junctions. We also
allow bas-relief textures to be modelled with a flat planelsat the repeatability can be tested
under non-affine warping.

The definition of ‘nearby’ above must allow a small margin ofoe (¢ pixels) because the
alignment, the 3D model and the camera calibration (eslhedi@e radial distortion) is not

perfect. Furthermore, the detector may find a maximum onghtji different part of the corner.
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Fig. 3

BOX DATASET: PHOTOGRAPHS TAKEN OF A TEST RIGCONSISTING OF PHOTOGRAPHS PASTED TO THE INSIDE OF A
CUBOID) WITH STRONG CHANGES OF PERSPECTIV,EEHANGES IN SCALE AND LARGE AMOUNTS OF RADIAL DISTORTION

THIS TESTS THE CORNER DETECTORS ON PLANAR TEXTURE

This becomes more likely as the change in viewpoint and hehaage in shape of the corner
become large.

Instead of using fiducial markers, the 3D model is alignedh gcene by hand and this is
then optimised using a blend of simulated annealing andigmadescent to minimise the SSD
(sum of squared differences) between all pairs of framesremajections. To compute the SSD
between frame and reprojected framg the position of all points in framg are found in frame
1. The images are then bandpass filtered. High frequencieseareved to reduce noise, while
low frequencies are removed to reduce the impact of lightimgnges. To improve the speed of
the system, the SSD is only computed using 1000 random ¢otsati

The datasets used are shown in Figure 3, Figlre 4 and HigWhbthese datasets, we have

tried to capture a wide range of geometric and textural aotyzes.

V. FAST-ER: ENHANCED REPEATABILITY

Since the segment test detector can be represented as gy tdetssion tree and we have
defined repeatability, the detector can be generalized lfinidg a feature detector to be a
ternary decision tree which detects points with high regaéity. The repeatability of such a
detector is a non-convex function of the configuration of tilee, so we optimize the tree using
simulated annealing. This results in a multi-objectiveimptation. If every point is detected as
a feature, then the repeatability is trivially perfect. @\Isf the tree complexity is allowed to

grow without bound, then the optimization is quite capabléraling one single feature in each
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MAZE DATASET: PHOTOGRAPHS TAKEN OF A PROP USED IN AN AUGMENTED REALITY APACATION. THIS SET CONSISTS

OF TEXTURAL FEATURES UNDERGOING PROJECTIVE WARPS AS WELL ASEOMETRIC FEATURES THERE ARE ALSO

SIGNIFICANT CHANGES OF SCALE

Fig. 5

BAS-RELIEF DATASET. THE MODEL IS A FLAT PLANE, BUT THERE ARE MANY OBJECTS WITH SIGNIFICANT RELIEFTHIS

CAUSES THE APPEARANCE OF FEATURES TO CHANGE IN A NON AFFINE WAFROM DIFFERENT VIEWPOINTS

image in the training set which happens to be repeated. &etththese are useful results. To

account for this, the cost function for the tree is defineddo b

Wy 2 1 < d; 2 s\ 2
k:(1+(7)> 1+N2(w—) 1+(w—) : (13)

wherer is the repeatability (as defined In_{12)),is the number of detected corners in frame
N is the number of frames andis the size (number of nodes) of the decision tree. The effect
these costs are controlled ly., w,, andw,. Note that for efficiency, repeatability is computed
at a fixed threshold as opposed to a fixed number of featureBgee.

The corner detector should be invariant to rotation, reflacand intensity inversion of the
image. To prevent excessive burden on the optimizatiorridhgo, each time the tree is evaluated,
it is applied sixteen times: at four rotations,°S@part, with all combinations of reflection and
intensity inversion. The result is the logical OR of the dé&de applications: a corner is detected

if any one of the sixteen applications of the tree classifiesgoint as a corner.
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Fig. 6

POSITIONS OF OFFSETS USED IN THEAST-ERDETECTOR

Each node of the tree has an offset relative to the centrd, pixevith =z € {0...47} as
defined in Figurél6. Therefore, = 0 refers to the offset—1,4). Each leaf has a clags, with
0 for non-corners and 1 for corners. Apart from the root nadeh node is either onia d or
s branch of its parent, depending on the test outcome whiadltsléa that branch. The tree is
constrained so that each leaf on amranch of its direct parent has = 0. This ensures that
the number of corners generally decreases as the thresholdreased.
The simulated annealing optimizer makes random modifioatio the tree by first selecting
a node at random and then mutating it. If the selected node is:
. a leaf, then with equal probability, either:
1) Replace node with a random subtree of depth 1.
2) Flip classification of node. This choice is not availalfléhe leaf class is constrained.
. a node, then with equal probability, choose any one of:
1) Replace the offset with a random valueOin. . 47.
2) Replace the node with a leaf with a random class (subjettidaonstraint).
3) Remove a randomly selected branch of the node and replacthia copy of another
randomly selected branch of that node. For examplebanch may be replaced with
a copy of ans branch.

The randomly grown subtree consists of a single decisior if@ith a random offset if . . . 47),

and three leaf nodes. With the exception of the constraieafl the leaves of this random
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subtree have random classes. These modifications to thallogegrowing, mutation, mutation
and shrinking of the tree, respectively. The last modifaratof the tree is motivated by our
observations of the FAST-9 detector. In FAST-9, a large nemub nodes have the characteristic
that two out of the three subtrees are identical. Since FASkhibits high repeatability, we
have included this modification to allow FAST-ER to easilgrie a similar structure.

The modifications are accepted according to the Boltzmacepance criterion, where the

probability P of accepting a change at iteratidnis:

kr—1—Fkr

P=e T (14)

where’ is the cost after application of the acceptance criterioth Aris the temperature. The

temperature follows an exponential schedule:
T = Be O e, (15)

wherel . is the number of iterations. The algorithm is initializedhva randomly grown tree of
depth 1, and the algorithm uses a fixed thresholthstead of performing a single optimization,
the optimizer is rerun a number of times using different mandseeds.

Because the detector must be applied to the images eveagidtereach candidate tree in all
sixteen transformations is compiled to machine code in nmgrand executed directly. Since it
is applied with sixteen transformations, the resultingedtdr is not especially efficient. So for
efficiency, the detector is used to generate training daténaba single tree can be generated
using the method described in Sectlon TlI-B. The resultirgg tcontains approximately 30,000

non-leaf nodes.

A. Parameters and justification

The parameters used for training are given in Table |. Thigeeaptimization which consists of
100 repeats of a 100,000 iteration optimization requiresiaB00 hours on a Pentium 4 at 3GHz.
Finding the optimal set of parameters is essentially a higmedsional optimization problem,
with many local optima. Furthermore, each evaluation of ¢hst function is very expensive.
Therefore, the values are in no sense optimal, but they aet af values which produce good
results. Refer to[[99] for techniques for choosing paranseté a simulated annealing based
optimizer. Recall that the training set consists of only finst three images from the ‘box’

dataset.
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Parameter Value
Wy 1
W, 3,500
Wi 10,000
«@ 30
Ié; 100

t 35

Tmax 100,000
Runs 100

€ 5 pixels
Training set| ‘box’ set, images 0-2.

TABLE |

PARAMETERS USED TO OPTIMIZE THE TREE

The weights determine the relative effects of good repddtalvesistance to overfitting and
corner density, and therefore will affect the performantdhe resulting corner detector. To
demonstrate the sensitivity of the detector with respectvtp w,, and w, a detector was
learned for three different values of each, € {0.5,1,2}, w, € {1750,5300,7000} and
ws € {5000, 10000, 20000}, resulting in a total of 27 parameter combinations. Thegreréince
of the detectors are evaluated by computing the mean areer uhe repeatability curve for
the ‘box’, ‘maze’ and ‘bas-relief’ datasets. Since in eadhtlee 27 points, 100 runs of the
optimization are performed, each of the 27 points producéistaibution of scores. The results
of this are shown in Figurel 7. The variation in score with eetfo the parameters is quite low
even though the parameters all vary by a factor of four. Githext, the results for the set of
parameters in Tablg | are very close to the results for thé tessed set of parameters. This

demonstrates that the choices given in Table | are reasanabl

VI. RESULTS

In this section, the FAST and FAST-ER detectors are compagainst a variety of other
detectors both in terms of repeatability and speed. In awléest the detectors further, we have
used the ‘Oxford’ dataset[ [100] in addition to our own. Thaabket models the warp between

images using a homography, and consists of eight sequefhsesimages each. It tests detector
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Fig. 7
DISTRIBUTION OF SCORES FOR VARIOUS PARAMETERS Of0;, Wy, Ws). THE PARAMETERS LEADING TO THE BEST RESULT
ARE (2.0, 3500, 5000) AND THE PARAMETERS FOR THE WORST POINT ARE(.5, 3500, 5000). FOR COMPARISON THE
DISTRIBUTION FOR ALL 27 RUNS AND THE MEDIAN POINT (GIVEN IN TABLE[) ARE GIVEN. THE SCORE GIVEN IS THE

MEAN VALUE OF A COMPUTED OVER THE'BOX’,  MAZE’ AND ‘BAS-RELIEF DATASETS.

repeatability under viewpoint changes (for approximagdbnar scenes), lighting changes, blur
and JPEG compression. Note that the FAST-ER detector isettadn 3 images (6 image pairs),
and is tested on a total of 85 images (688 image pairs).

The parameters used in the various detectors are given la[llan all cases (except SUSAN,
which uses the reference implementation in [101]), nonimaksuppression is performed using
a 3 x 3 mask. The number of features was controlled in a manner algmi to thresholding
on the response. For the Harris-Laplace detector, the $Ha@gponse was used, and for the
SUSAN detector, the ‘distance threshold’ parameter wasl.udeshould be noted that some
experimentation was performed on all the detectors to firdhist results on our dataset. In
the case of FAST-ER, the best detector was selected. Thenptes were then used without
modification on the ‘Oxford’ dataset. The timing results eebtained with the same parameters

used in the repeatability experiment.

A. Repeatability
The repeatability is computed as the number of corners pendris varied. For comparison

we also include a scattering of random points as a baselirsune, since in the limit if every

October 14, 2008 DRAFT



24

DoG SUSAN
Scales per octave 3 Distance threshld 4.0
Initial blur o 0.8
Octaves 4 Harris-Laplace

Initial blur o 0.8
Harris, Shi-Tomasi Harris blur 3
Blur o 25 Octaves 4

Scales per octave 10

General parameters

€ 5 pixels
TABLE I

PARAMETERS USED FOR TESTING CORNER DETECTORS

Detector A
FAST-ER 1313.6
FAST-9 1304.57
DoG 1275.59
Shi & Tomasi | 1219.08
Harris 1195.2
Harris-Laplace| 1153.13
FAST-12 1121.53
SUSAN 1116.79
Random 271.73
TABLE Il

AREA UNDER REPEATABILITY CURVES FORO—2000CORNERS PER FRAME AVERAGED OVER ALL THE EVALUATION

DATASETS (EXCEPT THE ADDITIVE NOISE).

pixel is detected as a corner, then the repeatability is 100%4est robustness to image noise,
increasing amounts of Gaussian noise were added to theehalsdataset, in addition to the
significant amounts of camera noise already present. Agtgegsults taken over all datasets
are given in TabléTll. It can be seen from this that on aver&#e&ST-ER outperforms all the
other tested detectors.

More detailed are shown in Figurek[8] 10 11. As shown inre{@ , FAST-9 performs
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Fig. 8
A COMPARISON OF THEFAST-n DETECTORS ON THE BAS-RELIEF SHOWS THATn = 9 1S THE MOST REPEATABLE FOR

n < 8, THE DETECTOR STARTS TO RESPOND STRONGLY TO EDGES

best (FAST-8 and below are edge detectors), so only FASTHOF&AST-12 (the original FAST
detector) are given.

The FAST-9 feature detector, despite being designed omlgdeed, generally outperforms all
but FAST-ER on these images. FAST-however, is not very robust to the presence of noise.
This is to be expected. High speed is achieved by analysiadetvest pixels possible, so the
detector’s ability to average out noise is reduced.

The best repeatability results are achieved by FAST-ER.THAR easily outperforms FAST-9
in all but Figures I0A[_111B, C and E. These results are skghibre mixed, but FAST-ER still
performs very well for higer corner densities. FAST-ER g¢jseautperforms FAST-9 on the noise
test, (and outperforms all other detectorsdox 7). This is because the training parameters bias
the detector towards detecting more corners for a givershiold than FAST-9. Consequently,
for a given number of features per frame, the threshold ikdrigso the effect of noise will be
reduced.

As the number of corners per frame is increased, all of thectlets, at some point, suffer from
decreasing repeatability. This effect is least pronoungigd the FAST-ER detector. Therefore,

with FAST-ER, the corner density does not need to be as dbrefhiosen as with the other
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Fig. 9
REPEATABILITY RESULTS FOR THE BASRELIEF DATA SET (AT 500 FEATURES PER FRAMB AS THE AMOUNT OF GAUSSIAN

NOISE ADDED TO THE IMAGES IS VARIED SEE FIGURE[LQFOR THE KEY.

detectors. This fall-off is particularly strong in the Harand Shi-Tomasi detectors. Shi and
Tomasi, derive their result for better feature detectiortt@assumption that the deformation of
the features is affine. Their detector performs slightiytdyedver all, and especially in the cases
where the deformations are largely affine. For instancehinhas-relief dataset (Figuke]10C),
this assumption does not hold, and interestingly, the Haetector outperforms Shi and Tomasi
detector in this case. Both of these detectors tend to dotperall others on repeatability for
very low corner densities (less than 100 corners per frame).

The Harris-Laplace is detector was originally evaluatethgigplanar scenes [60]]_[102].
he results show that Harris-Laplace points outperform Hatis points and Harris points in
repeatability. For the box dataset, our results verify tihad is correct for up to about 1000
points per frame (typical numbers, probably commonly uséu results are somewhat less
convincing in the other datasets, where points undergopmojective changes.

In the sample implementation of SIFT [103], approximated@Q points are generated on the
images from the test sets. We concur that this a good choicthéonumber of features since
this appears to be roughly where the repeatability curveDioG features starts to flatten off.

Smith and Brady[[76] claim that the SUSAN corner detectofgrars well in the presence

of noise since it does not compute image derivatives andeheloes not amplify noise. We
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A: Box dataset B: Maze dataset
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A, B, C: REPEATABILITY RESULTS FOR THE REPEATABILITY DATASET AS THE NUMBER OF FEATURES PER FRAME IS
VARIED. D: KEY FOR THIS FIGURE FIGURE[LIAND FIGURE[G. FOR FAST AND SUSAN,THE NUMBER OF FEATURES CAN

NOT BE CHOSEN ARBITRARILY, THE CLOSEST APPROXIMATION TO500 FEATURES IN EACH FRAME IS USED

support this claim. Although the noise results show thatghgormance drops quite rapidly
with increasing noise to start with, it soon levels off andpauforms all but the DoG detector.
The DoG detector is remarkably robust to the presence ofend@®nvolution is linear, so
the computation of DoG is equivalent to convolution with a@dernel. Since this kernel
is symmetric, the convolution is equivalent to matchedrfitig for objects with that shape. The
robustness is achieved because matched filtering is opiimhbé presence of additive Gaussian

noise [104].
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Detector Training set Test set
Pixel rate (MPix/s) % | MPix/s %
FASTn =9 188 490| 179 5.15
FAST n =12 158 5.88| 154 5.98
Original FAST ( = 12) 79.0 11.7| 822 11.2
FAST-ER 75.4 12.2| 675 13.7
SUSAN 12.3 74.7| 13.6 67.9
Harris 8.05 115 7.90 117
Shi-Tomasi 6.50 142 | 6.50 142
DoG 4.72 195| 5.10 179
TABLE IV

TIMING RESULTS FOR A SELECTION OF FEATURE DETECTORS RUN ON FRKES OF TWO VIDEO SEQUENCESTHE
PERCENTAGE OF THE PROCESSING BUDGET FARI0 x 480 VIDEO IS GIVEN FOR COMPARISON NOTE THAT SINCEPAL,
NTSC, DVAND 30Hz VGA (COMMON FOR WEB-CAMS) VIDEO HAVE APPROXIMATELY THE SAME PIXEL RATE, THE
PERCENTAGES ARE WIDELY APPLICABLE THE FEATURE DENSITY IS EQUIVALENT TO APPROXIMATELY500 FEATURES PER

640 x 480 FRAME. THE RESULTS SHOWN INCLUDE THE TIME TAKEN FOR NONMAXIMAL SUPPESSION

B. Speed

Timing tests were performed on a 3.0GHz Pentium 4-D whictepasentative of a modern
desktop computer. The timing tests are performed on twosdtdathe terst set and the training
set. The training set consists 101 monochrome fields frongla tiefinition video source with a
resolution 0f992 x 668 pixels. This video source is used to train the high speed FA&&ctors
and for profile-guided optimizations for all the detectoFse test set consists of 4968 frames
of monochrome352 x 288 (quarter-PAL) video

The learned FAST-ER, FAST-9 and FAST-12 detectors have beerpared to the original
FAST-12 detector, to our implementation of the Harris andsDighe detector used by SIFT)
and to the reference implementation of SUSAN [101]. The FASHarris and DoG detectors
use the SSE-2 vectorizing instructions to speed up the psotg The learned FAST-12 does
not, since using SSE-2 does not yield a speed increase.

As can be seen in Table]lV, FAST in general is mucxh faster thanother tested feature

detectors, and the learned FAST is roughly twice as fastaddndwritten version. In addition,

October 14, 2008 DRAFT



29

it is also able to generate an efficient detector for FAST-Bictv is the most reliable of the
FAST-n detectors. Furthermore, it is able to generate a very dffiaietector for FAST-ER.
Despite the increased complexity of this detector, it i stuch faster than all but FAS#-
On modern hardware, FAST and FAST-ER consume only a fractidhe time available during
video processing, and on low power hardware, it is the onky ohthe detectors tested which

is capable of video rate processing at all.

VIlI. CONCLUSIONS

In this paper, we have presented the FAST family of detectdsing machine learning we
turned the simple and very repeatable segment test heunsti the FAST-9 detector which has
unmatched processing speed. Despite the design for spgeededulting detector has excellent
repeatability. By generalizing the detector and removirgcpnceived ideas about how a corner
should appear, we were able to optimize a detector direatignprove its repeatability, creating
the FAST-ER detector. While still being very efficient, FAER has dramatic improvements in
repeatability over FAST-9 (especially in noisy images)eTasult is a detector which is not only
computationally efficient, but has better repeatabilityutes and more consistent with variation
in corner density than any other tested detector.

These results raise an interesting point about corner tiltetechniques: too much reliance
on intuition can be misleading. Here, rather than concéngaan how the algorithm should do
its job, we focus our attention on what performance measeravant to optimize and this yields
very good results. The result is a detector which companesufably to existing detectors.

experiment freely available. The generated FASTetectors, the datasets for measuring
repeatability, the FAST-ER learning code and the resultiegs are available fro

http://mi.eng.cam.ac.uk/ er258/work/tast.html

2FAST-n detectors are also available in libCVD frofmitp://savannah.nongnu.org/projects/libcvd
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B: Bikes dataset

X X
2 2
3 3
© [0
< T
] [}
o o
(0] (0]
14 12
0 500 1000 1500 2000 500 1000 1500 2000
Corners per frame Corners per frame
C: Boat dataset D: Graffiti dataset
8.2 8-3 SR R R AT
L 07 XX%@%@ b % & S o6 R e ST TS EES
> DA A Do A > . COOOR0-0-0-0-0-0-0-0-6-0
£ 0.6 L B N SR £ 05 {
g 09° S o040
S 04| ©
& 03 g 03 vess?
xr 02% veoe®® 0o g 02 e co®® ]
0.1 eeeee®e®® T 01 ..n“'"“"
0000
0 : : : 0 umee® : : :
0 500 1000 1500 2000 500 1000 1500 2000
Corners per frame Corners per frame
E: Leuven dataset F: Trees dataset
X X
= 2
3 =l
< ]
S ©
(O] [0}
o o
(0] (6]
14 2t o
0.1} ceeeeee®®® 1
0 E’M L L L L L
0 500 1000 1500 2000 500 1000 1500 2000
Corners per frame Corners per frame
G: UBC dataset H: Wall dataset
0.8 0 BB
0.7 EE! i Eﬁ ﬁ%&%e
X X 0.6 » Q&%&% %%%
= 2 4 % X%
= = 0.5
E S 04
© ©
@ x 02
0.1
0
0 500 1000 1500 2000 500 1000 1500 2000
Corners per frame Corners per frame
Fig. 11

A—G: REPEATABILITY RESULTS FOR THE‘OXFORD' DATASET AS THE NUMBER OF FEATURES PER FRAME IS VARIEDSEE

FIGURE[LIOFOR THE KEY.
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