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Abstract

The repeatability and efficiency of a corner detector determines how likely it is to be useful in

a real-world application. The repeatability is importand because the same scene viewed from different

positions should yield features which correspond to the same real-world 3D locations [1]. The efficiency

is important because this determines whether the detector combined with further processing can operate

at frame rate.

Three advances are described in this paper. First, we present a new heuristic for feature detection,

and using machine learning we derive a feature detector fromthis which can fully process live PAL

video usingless than 5%of the available processing time. By comparison, most otherdetectors cannot

even operate at frame rate (Harris detector 115%, SIFT 195%). Second, we generalize the detector,

allowing it to be optimized for repeatability, with little loss of efficiency. Third, we carry out a rigorous

comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We

show that despite being principally constructed for speed,on these stringent tests, our heuristic detector

significantly outperforms existing feature detectors. Finally, the comparison demonstrates that using

machine learning produces significant improvements in repeatability, yielding a detector that is both

very fast and very high quality.

Index Terms

Corner detection, feature detection.

I. INTRODUCTION

Corner detection is used as the first step of many vision taskssuch as tracking, localisation,

SLAM (simultaneous localisation and mapping), image matching and recognition. This need has

driven the development of a large number of corner detectors. However, despite the massive

increase in computing power since the inception of corner detectors, it is still true that when

processing live video streams at full frame rate, existing feature detectors leave little if any time

for further processing.

In the applications described above, corners are typicallydetected and matched into a database,

thus it is important that the same real-world points are detected repeatably from multiple views

[1]. The amount of variation in viewpoint under which this condition should hold depends on

the application.
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II. PREVIOUS WORK

A. Corner detectors

Here we review the literature to place our advances in context. In the literature, the terms

“point feature”, “feature”, “interest point” and “corner”refer to a small point of interest with

variation in two dimensions. Such points often arise as the result of geometric discontinuities,

such as the corners of real world objects, but they may also arise from small patches of texture.

Most algorithms are capable of detecting both kinds of points of interest, though the algorithms

are often designed to detect one type or the other. A number ofthe detectors described below

compute a corner response,C, and define corners to be large local maxima ofC.

1) Edge based corner detectors:An edge (usually a step change in intensity) in an image

corresponds to the boundary between two regions. At corners, this boundary changes direction

rapidly.

a) Chained edge based corner detectors:Many techniques have been developed which

involved detecting and chaining edges with a view to analysing the properties of the edge, often

taking points of high curvature to be corners. Many early methods used chained curves, and

since the curves are highly quantized, the techniques concentrate on methods for effectively and

efficiently estimating the curvature. A common approach hasbeen to use a chord for estimating

the slope of a curve or a pair of chords to find the angle of the curve at a point.

Early methods computed the smallest angle of the curve over chords spanning different

numbers of links. Corners are defined as local minima of angle[2] after local averaging [3].

Alternatively, corners can be defined as isolated discontinuities in the mean slope, which can be

computed using a chord spanning a fixed set of links in the chain [4]. Averaging can be used to

compute the slope and the length of the curve used to determine if a point is isolated [5]. The

angle can be computed using a pair of chords with a central gap, and peaks with certain widths

(found by looking for zero crossings of the angle) are definedas corners [6].

Instead of using a fixed set of chord spans, some methods compute a ‘region of support’

which depends on local curve properties. For instance localmaxima of chord lengths can be

used to define the region of support, within which a corner must have maximal curvature [7].

Corners are can be defined as the centre of a region of support with high mean curvature, where

the support region is large and symmetric about its centre [8]. The region free from significant
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discontinuities around the candidate point can be used withcurvature being computed as the

slope change across the region [9] or the angle to the region’s endpoints [10].

An alternative to using chords of the curves is to apply smoothing to the points on the curve.

Corners can be defined as points with a high rate of change of slope [11], or points where the

curvature decreases rapidly to the nearest minima and the angle to the neighbouring maxima is

small [12].

A fixed smoothing scale is not necessarily appropriate for all curves, so corners can also

be detected at high curvature points which have stable positions under a range of smoothing

scales [13]. As smoothing is decreased, curvature maxima bifurcate, forming a tree over scale.

Branches of a tree which are longer (in scale) than the parentbranch are considered as stable

corner points [14]. Instead of Gaussian smoothing, extremaof the wavelet transforms of the

slope [15] or wavelet transform modulus maximum of the angle[16], [17] over multiple scales

can be taken to be corners.

The smoothing scale can be chosen adaptively. The CurvatureScale Space technique [18]

uses a scale proportional to the length and defines corners atmaxima of curvature where the

maxima are significantly larger than the closest minima. Locally adaptive smoothing using

anisotropic diffusion [19] or smoothing scaled by the localvariance of curvature [20] have

also been proposed.

Instead of direct smoothing, edges can be parameterised with cubic splines and corners detected

at points of high second derivative where the spline deviates a long way from the control

point [21], [22].

A different approach is to extend curves past the endpoints by following saddle minima or ridge

maxima in the gradient image until a nearby edge is crossed, thereby finding junctions [23]. Since

the chain code number corresponds roughly to slope, approximate curvature can be found using

finite differences, and corners can be found by identifying specific patterns [24]. Histograms of

the chain code numbers on either side of the candidate point can be compared using normalized

cross correlation and corners can be found at small local minima [25]. Also, a measure of the

slope can be computed using circularly smoothed histogramsof the chain code numbers [26].

Points can be classified as corners using fuzzy rules appliedto measures computed from the

forward and backward arm and the curve angle [27].
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b) Edgel based corner detectors:Chained edge techniques rely on the method used to

perform segmentation and edge chaining, so many techniquesfind edge points (edgels) and

examine the local edgels or image to find corners.

For instance, each combination of presence or absence of edgels in a3 × 3 window can be

assigned a curvature, and corners found as maxima of curvature in a local window [28]. Corners

can be also found by analysing edge properties in the window scanned along the edge [29]. A

generalized Hough transform [30] can be used which replaceseach edgel with a line segment,

and corners can be found where lines intersect, i.e. at largemaxima in Hough space [31]. In

a manner similar to chaining, a short line segment can be fitted to the edgels, and the corner

strength found by the change in gradient direction along theline segment [32]. Edge detectors

often fail at junctions, so corners can be defined as points where several edges at different

angles end nearby [33]. By finding both edges and their directions, a patch on an edge can

be compared to patches on either side in the direction of the contour, to find points with low

self-similarity [34].

Rapid changes in the edge direction can be found by measuringthe derivative of the gradient

direction along an edge and multiplying by the magnitude of the gradient:

CK =
gxxg

2

y + gyyg
2

x − 2gxygxgy

g2
xg

2
y

(1)

where, in general,

gx =
∂g

∂x
, gxx =

∂2g

∂x2
, etc. . .,

andg is either the image or a bivariate polynomial fitted locally to the image [35].CK can also

be multiplied by the change in edge direction along the edge [36].

Corner strength can also be computed as rate of change in gradient angle when a bicubic

polynomial is fitted to the local image surface [37], [38]:

CZ = −2
c2

xcy2 − cxcycxy + c2

ycx2

(c2
x + c2

y)
3

2

, (2)

where, for example,cxy is the coefficient ofxy in the fitted polynomial. If edgels are only

detected at the steepest part of an edge, then a score computing total image curvature at the

edgels is given by:

CW = ∇2I − S |∇I|2 . (3)

where∇I is the image gradient [39].
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2) Greylevel derivative based detectors:The assumption that corners exist along edges is

an inadequate model for patches of texture and point like features, and is difficult to use at

junctions. Therefore a large number of detectors operate directly on greylevel images without

requiring edge detection.

One of the earliest detectors [40] defines corners to be localextrema in the determinant of

the Hessian:

CDET = |H[I] | = IxxIyy − (Ixy)
2. (4)

This is frequently referred to as the DET operator.CDET moves along a line as the scale changes.

To counteract this, DET extrema can be found two scales and connected by a line. Corners are

then taken as maxima of the Laplacian along the line [41].

Instead of DET maxima, corners can also be taken as the gradient maxima on a line connecting

two nearby points of high Gaussian curvature of opposite sign where the gradient direction

matches the sign change [42]. By considering gradients as elementary currents, the magnitude

of the corresponding magnetic vector potential can be computed. The gradient of this is taken

normal and orthogonal to the local contour direction, and the corner strength is the multiple of

the magnitude of these [43].

a) Local SSD (Sum of Squared Differences) detectors:Features can be defined as points

with low self-similarity in all directions. The self-similarity of an image patch can be measured

by taking the SSD between an image patch and a shifted versionof itself [44]. This is the basis for

a large class of detectors. Harris and Stephens [45] built onthis by computing an approximation

to the second derivative of the SSD with respect to the shift.This is both computationally more

efficient and can be made isotropic. The result is:

H =


 Î2

x ÎxIy

ÎxIy Î2
y


 , (5)

wherê denotes averaging performed over the area of the image patch. Because of the wording

used in [45], it is often mistakenly claimed thatH is equal to the negative second derivative of the

autocorrelation. This is not the case because the SSD is equal to the sum of the autocorrelation

and some additional terms [46].

The earlier Förstner [47] algorithm is easily easily explained in terms ofH. For a more

recently proposed detector [48], it has been shown shown [49] that under affine motion, it is
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better to use the smallest eigenvalue ofH as the corner strength function. A number of other

suggestions [45], [50], [49], [51] have been made for how to compute the corner strength from

H, and these have been shown to all be equivalent to various matrix norms ofH [52]. H can be

generalized by generalizing the number of channels and dimensionality of the image [53] and

it can also be shown that that [47], [49], [54] are equivalentto specific choices of the measure

used in [51].

H can be explained in terms of the first fundamental form of the image surface [55]. From

analysis of the second fundamental form, a new detector is proposed which detects points where

the probability of the surface being hyperbolic is high.

Instead of local SSD, general template matching, given a warp, appearance model and point-

wise comparison which behaves similarly to the SSD (sum of squared differences) for small

differences can be considered [56]. The stability with respect to the match parameters is derived,

and the result is a generalization ofH (whereH is maximally stable for no appearance model,

linear translation and SSD matching). This is used to derivedetectors which will give points

maximally stable for template matching, given similarity transforms, illumination models and

prefiltering.

b) Laplacian based detectors:An alternative approach to the problem of finding a scalar

value which measures the amount of second derivative is to take the Laplacian of the image.

Since second derivatives greatly amplify noise, the noise is reduced by using the smoothed

Laplacian, which is computed by convolving the image with the LoG (Laplacian of a Gaussian).

Since the LoG kernel is symmetric, one can interpret this as performing matched filtering for

features which are the same shape as a LoG. As a result, the variance of the Gaussian determines

the size of features of interest. It has been noted [57] that the locations of maxima of the LoG

over different scales are particularly stable.

Scale invariant corners can be extracted by convolving the image with a DoG (Difference of

Gaussians) kernel at a variety of scales (three per octave) and selecting local maxima in space

and scale [58]. DoG is a good approximation for LoG and is muchfaster to compute, especially

as the intermediate results are useful for further processing. To reject edge-like features, the

eigenvalues of the Hessian of the image are computed and features are kept if the eigenvalues

are sufficiently similar (within a factor of 10). This methodcan be contrasted with (3), where

the Laplacian is compared to the magnitude of the edge response. If two scales per octave
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are satisfactory, then a significant speed increase can be achieved by using recursive filters to

approximate Gaussian convolution [59].

Harris-Laplace [60] features are detected using a similar approach. An image pyramid is built

and features are detected by computingCH at each layer of the pyramid. Features are selected

if they are a local maximum ofCH in the image plane and a local maxima of the LoG across

scales.

Recently, scale invariance has been extended to consider features which are invariant to affine

transformations [57], [61], [62], [63]. However, unlike the 3D scale space, the 6D affine space

is too large to search, so all of these detectors start from corners detected in scale space. These

in turn rely on 2D features selected in the layers of an image pyramid.

3) Direct greylevel detectors:Another major class of corner detectors work by examining a

small patch of an image to see if it “looks” like a corner. The detectors described in this paper

belong in this section.

a) Wedge model detectors:A number of techniques assume that a corner has the general

appearance of one or more wedges of a uniform intensity on a background of a different uniform

intensity. For instance a corner can be modelled as a single [64] or family [65] of blurred wedges

where the parameters are found by fitting a parametric model.The model can include angle,

orientation, contrast, bluntness and curvature of a singlewedge [66]. In a manner similar to [67],

convolution masks can be derived for various wedges which optimize signal to noise ratio and

localisation error, under assumption that the image is corrupted by Gaussian noise [68].

It is more straightforward to detect wedges in binary imagesand to get useful results, local

thresholding can be used to binarize the image [69]. If a corner is a bilevel wedge, then a

response function based on local Zernike moments can be usedto detect corners [70]. A more

direct method for finding wedges is to find points where where concentric contiguous arcs of

pixels are significantly different from the centre pixel [71]. According to the wedge model, a

corner will be the intersection of several edges. An angle-only Hough transform [72] is performed

on edgels belonging to lines passing through a candidate point to find their angles and hence

detect corners [73]. Similar reasoning can be used to derivea response function based on gradient

moments to detect V-, T- and X- shaped corners [74]. The strength of the edgels, wedge angle

and dissimilarity of the wedge regions has also been used to find corners [75].
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b) Self dissimilarity:The tip of a wedge is not self-similar, so this can be generalized by

defining corners as points which are not self-similar. The proportion of pixels in a disc around

a centre (ornucleus) which are similar to the centre is a measure of self similarity. This is

the USAN (univalue segment assimilating nucleus). Cornersare defined as SUSAN (smallest

USAN, i.e. local minima) points which also pass a set of rulesto suppress qualitatively bad

features. In practice, a weighted sum of the number of pixelsinside a disc whose intensity is

within some threshold of the centre value is used [76]. COP (Crosses as Oriented Pair) [77]

computes dominant directions using local averages USANs ofa pair of oriented crosses, and

define corners as points with multiple dominant directions.

Self similarity can be measured using a circle instead of a disc [78]. The SSD between the cen-

ter pixel and the pixels at either end of a diameter line is an oriented measure of self-dissimilarity.

If this is small in any orientation then the point is not a corner. This is computationally efficient

since the process can be stopped as soon as one small value is encountered. This detector is

also used by [79] with the additional step that the difference between the centre pixel and circle

pixels is used to estimate the Laplacian, and points are alsorequired to be locally maximal in

the Laplacian.

Small regions with a large range in greyvalues can be used as corners. To find these efficiently,

the image can be projected on to thex and y axes and large peaks found in the second

derivatives. Candidate corner locations are the intersections of these maxima projected back

in to the image [80]. Paleret. al. [81] proposes self similarity can be measured by comparing

the centre pixel of a window to the median value of pixels in the window. In practice, several

percentile values (as opposed to just the 50th) are used.

Self-dissimilar patches will have a high energy content. Composing two orthogonal quadrature

pair Gabor filters gives oriented energy. Corners are maximaof total energy (the sum of oriented

energy over a number of directions) [82].

A fast radial symmetry transform is developed in [83] to detect points. Points have a high

score when the gradient is both radially symmetric, strong,and of a uniform sign along the

radius. The detected points have some resemblance DoG features.

c) Machine learning based detectors:All the detectors described above define corners using

a model or algorithm and apply that algorithm directly to theimage. An alternative is to train

a classifier on the model and then apply the classifier to the image. For instance, a multilayer
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perception can be trained on example corners from some modeland applied to the image after

some processing [84], [85].

Human perception can be used instead of a model [86]: images are shown to a number of

test subjects. Image locations which are consistently fixated on (as measured by an eye tracking

system) are taken to be interesting, and a support vector machine is trained to recognize these

points.

If a classifier is used, then it can be trained according to howa corner should behave, i.e.

that its performance in a system for evaluating detectors should be maximized. Trujillo and

Olague [87] state that detected points should have a high repeatability (as defined by [1]), be

scattered uniformly across the image and that there should be at least as many points detected

as requested. A corner detector function is optimized (using genetic programming) to maximize

the score based on these measures.

The FAST-n detector (described in Section III) is related to the wedge-model style of detector

evaluated using a circle surrounding the candidate pixel. To optimize the detector for speed, this

model is used to train a decision tree classifier and the classifier is applied to the image. The

FAST-ER detector (described in Section V) is a generalization which allows the detector to be

optimized for repeatability.

B. Comparison of feature detectors

Considerably less work has been done on comparison and evaluation of feature detectors than

on inventing new detectors. The tests fall into three broad categories1:

1) Corner detection as object recognition.Since there is no good definition of exactly what a

corner should look like, algorithms can be compared using simplistic test images where the

performance is evaluated (in terms of true positives, falsepositives, etc. . . ) as the image is

altered using contrast reduction, warps and added noise. Since a synthetic image is used,

corners exist only at known locations, so the existence of false negatives and false positives

is well defined. However, the method and results do not generalize to natural images.

2) System performance.The performance of an application (often tracking) is evaluated as the

corner detector is changed. The advantage is that it tests the suitability of detected corners

1Tests for the localisation accuracy are not considered heresince for most applications the presence or absence of useful

corners is the limiting factor
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for further processing. However, poor results would be obtained from a detector ill matched

to the downstream processing. Furthermore the results do not necessarily generalize well

to other systems. To counter this, sometimes part of a systemis used, though in this case

the results do not necessarily apply to any system.

3) Repeatability.This tests whether corners are detected from multiple views. It is a low level

measure of corner detector quality and provides an upper bound on performance. Since it is

independent of downstream processing, the results are widely applicable, but it is possible

that the detected features may not be useful. Care must be used in this technique, since

the trivial detector which identifies every pixel as a cornerachieves 100% repeatability.

Furthermore, the repeatability does not provide information about the usefulness of the

detected corners for further processing. For instance, thebrightest pixels in the image are

likely to be repeatable but not especially useful.

In the first category, Rajan and Davidson [88] produce a number of elementary test images

with a very small number of corners (1 to 4) to test the performance of detectors as various

parameters are varied. The parameters are corner angle, corner arm length, corner adjacency,

corner sharpness, contrast and additive noise. The positions of detected corners are tabulated

against the actual corner positions as the parameters are varied. Cooperet. al. [34], [89] use

a synthetic test image consisting of regions of uniform intensity arranges to create L-, T-, Y-

and X-shaped corners. The pattern is repeated several timeswith decreasing contrast. Finally,

the image is blurred and Gaussian noise is added. Chenet. al. [85] use a related method. A

known test pattern is subjected to a number random affine warps and contrast changes. They

note that this is naı̈ve, but tractable. They also provide anequivalent to the ROC (Receiver

Operating Characteristic) curve. Zhanget. al. [90] generate random corners according to their

model and plot localization error, false positive rate and false negative rate against the detector

and generated corner parameters. Luoet. al. [43] use an image of a carefully constructed scene

and plot the proportion of true positives as the scale is varied and noise is added for various

corner angles.

Mohanna and Mokhtarian [91] evaluate performance using several criteria. Firstly, they define

a consistentdetector as one where the number of detected corners does notvary with various

transforms such as addition of noise and affine warping. Thisis measured by the ‘consistency
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of corner numbers’ (CCN):

CCN = 100 × 1.1−|nt−no|, (6)

wherent is the number of features in the transformed image andno is the number of features in

the original image. This test does not determine the qualityof the detected corners in any way,

so they also propose measuring the accuracy (ACU) as:

ACU = 100 ×

na

no
+ na

ng

2
, (7)

whereno is the number of detected corners,ng is the number of so-called ‘ground truth’ corners

and na is the number of detected corners which are close to ground truth corners. Since real

images are used, there is no good definition of ground truth, so a number of human test subjects

(e.g. 10) familiar with corner detection in general, but notthe methods under test, label corners

in the test images. Corners which 70% of the test subjects agree on are kept as ground truth

corners. This method unfortunately relies on subjective decisions.

Remarkably, of the systems above, only [85], [88] and [86] provide ROC curves (or equivalent):

otherwise only a single point (without consistency on either axis of the ROC graph) is measured.

In the second category, Trajkovic and Hedley [78] define stability as the number of ‘strong’

matches, matches detected over three frames in their tracking algorithm, divided by the total

number of corners. Tissainayagama and Suterb [92] use a similar method: a corner in framen

is stable if it has been successfully tracked from frame 1 to framen. Bae et. al. [77] detect

optical flow using cross correlation to match corners between frames and compare the number

of matched corners in each frame to the number of corners in the first frame.

To get more general results than provided by system performance, the performance can be

computed using only one part of a system. For instance, Mikolajczyk and Schmid [93] test a large

number of interest point descriptors and a small number of closely related detectors by computing

how accurately interest point matching can be performed. Moreels and Perona [94] perform

detection and matching experiments across a variety of scene types under a variety of lighting

conditions. Their results illustrate the difficulties in generalizing from system performance since

the best detector varies with both the choice of descriptor and lighting conditions.

In the third category, Schmidet. al. [1] propose that when measuring reliability, the important

factor is whether the same real-world features are detectedfrom multiple views. For an image

pair, a feature is ‘detected’ if it is extracted in one image and appears in the second. It is
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12 POINT SEGMENT TEST CORNER DETECTION IN AN IMAGE PATCH. THE HIGHLIGHTED SQUARES ARE THE PIXELS USED

IN THE CORNER DETECTION. THE PIXEL AT p IS THE CENTRE OF A CANDIDATE CORNER. THE ARC IS INDICATED BY THE

DASHED LINE PASSES THROUGH12 CONTIGUOUS PIXELS WHICH ARE BRIGHTER THANp BY MORE THAN THE THRESHOLD.

‘repeated’ if it is also detected nearby in the second. The repeatability is the ratio of repeated

features to detected features. They perform the tests on images of planar scenes so that the

relationship between point positions is a homography. Fiducial markers are projected onto the

planar scene using an overhead projector to allow accurate computation of the homography.

To measure the suitability of interest points for further processing, the information content of

descriptors of patches surrounding detected points is alsocomputed.

III. H IGH-SPEED CORNER DETECTION

A. FAST: Features from Accelerated Segment Test

The segment test criterion operates by considering a circleof sixteen pixels around the corner

candidatep. The original detector [95], [96] classifiesp as a corner if there exists a set ofn

contiguous pixels in the circle which are all brighter than the intensity of the candidate pixelIp

plus a thresholdt, or all darker thanIp − t, as illustrated in Figure 1.n was originally chosen to

be twelve because it admits a high-speed test which can be used to exclude a very large number

of non-corners. The high-speed test examines pixels 1 and 9.If both of these are withint if

Ip, thenp can not be a corner. Ifp can still be a corner, pixels 5 and 13 are examined. Ifp is

a corner then at least three of these must all be brighter thanIp + t or darker thanIp − t. If

neither of these is the case, thenp cannot be a corner. The full segment test criterion can then
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be applied to the remaining candidates by examining all pixels in the circle. This detector in

itself exhibits high performance, but there are several weaknesses:

1) This high-speed test does not reject as many candidates for n < 12, since the point can be a

corner if only two out of the four pixels are both significantly brighter or both significantly

darker thanp (assuming the pixels are adjacent). Additional tests are also required to find

if the complete test needs to be performed for a bright ring ora dark ring.

2) The efficiency of the detector will depend on the ordering of the questions and the

distribution of corner appearances. It is unlikely that this choice of pixels is optimal.

3) Multiple features are detected adjacent to one another.

B. Improving generality and speed with machine learning

Here we expand on the work first presented in [97] and present an approach which uses

machine learning to address the first two points (the third isaddressed in Section III-C). The

process operates in two stages. First, to build a corner detector for a givenn, all of the 16

pixel rings are extracted a set of images (preferably from the target application domain). These

are labelled using a straightforward implementation of thesegment test criterion forn and a

convenient threshold.

For each location on the circlex ∈ {1 . . . 16}, the pixel at that position relative top, denoted

by p → x, can have one of three states:

Sp→x =





d, Ip→x ≤ Ip − t (darker)

s, Ip − t < Ip→x < Ip + t (similar)

b, Ip + t ≤ Ip→x (brighter)

(8)

Let P be the set of all pixels in all training images. Choosing anx partitions P into three

subsets,Pd, Ps andPb, where:

Pb = {p ∈ P : Sp→x = b}, (9)

and Pd and Ps are defined similarly. In other words, a given choice ofx is used to partition

the data in to three sets. The setPd contains all points where pixelx is darker than the center

pixel by a thresholdt, Pb contains points brighter than the centre pixel byt, andPs contains

the remaining points where pixelx is similar to the centre pixel.
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Let Kp be a boolean variable which is true ifp is a corner and false otherwise. Stage 2

employs the algorithm used in ID3 [98] and begins by selecting the x which yields the most

information about whether the candidate pixel is a corner, measured by the entropy ofKp.

The total entropy ofK for an arbitrary set of corners,Q, is:

H(Q) = (c + c̄) log
2
(c + c̄) − c log

2
c − c̄ log

2
c̄ (10)

where c =
∣∣{i ∈ Q : Ki is true}

∣∣ (number of corners)

and c̄ =
∣∣{i ∈ Q : Ki is false}

∣∣ (number of non corners)

The choice ofx then yields the information gain (Hg):

Hg = H(P ) − H(Pd) − H(Ps) − H(Pb) (11)

Having selected thex which yields the most information, the process is applied recursively on

all three subsets i.e.xb is selected to partitionPb in to Pb,d, Pb,s, Pb,b, xs is selected to partition

Ps in to Ps,d, Ps,s, Ps,b and so on, where eachx is chosen to yield maximum information about

the set it is applied to. The recursion process terminates when the entropy of a subset is zero.

This means that allp in this subset have the same value ofKp, i.e. they are either all corners or

all non-corners. This is guaranteed to occur sinceK is an exact function of the data. In summary,

this procedure creates a decision tree which can correctly classify all corners seen in the training

set and therefore (to a close approximation) correctly embodies the rules of the chosen FAST

corner detector.

In some cases, two of the three subtrees may be the same. In this case, the boolean test which

separates them is removed. This decision tree is then converted into C code, creating a long

string of nested if-else statements which is compiled and used as a corner detector. For highest

speed operation, the code is compiled using profile guided optimizations which allow branch

prediction and block reordering optimizations.

For further optimization, we forcexb, xd and xs to be equal. In this case, the second pixel

tested is always the same. Since this is the case, the test against the first and second pixels can

be performed in batch. This allows the first two tests to be performed in parallel for a strip

of pixels using the vectorizing instructions present on many high performance microprocessors.

Since most points are rejected after two tests, this leads toa significant speed increase.
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Note that since the data contains incomplete coverage of allpossible corners, the learned

detector is not precisely the same as the segment test detector. In the case of the FAST-n

detectors, it is straightforward to include an instance of every possible combination of pixels

(there are316 = 43, 046, 721 combinations) with a low weight to ensure that the learned detector

exactly computes the segment test cirterion.

C. Non-maximal suppression

Since the segment test does not compute a corner response function, non maximal suppression

can not be applied directly to the resulting features. For a given n, ast is increased, the number

of detected corners will decrease. Sincen = 9 produces the best repeatability results (see

Section VI), variations inn will not be considered. The corner strength is therefore defined to

be the maximum value oft for which a point is detected as a corner.

The decision tree classifier can efficiently determine the class of a pixel for a given value

of t. The class of a pixel (for example, 1 for a corner, 0 for a non-corner) is a monotonically

decreasing function oft. Therefore, we can use bisection to efficiently find the pointwhere the

function changes from 1 to 0. This point gives us the largest value of t for which the point is

detected as a corner. Sincet is discrete, this is the binary search algorithm.

Alternatively, an iteration scheme can be used. A pixel on the ring ‘passes’ the segment test

if it is not within t of the centre. If enough pixels fail, then the point will not be classified as a

corner. The detector is run, and of all the pixels which pass the test, theamountby which they

pass is found. The threshold is then increased by the smallest of these amounts, and the detector

is rerun. This increases the threshold just enough to ensurethat a different path is taken through

the tree. This process is then iterated until detection fails.

Because the speed depends strongly on the learned tree and the specific processor architecture,

neither technique has a definitive speed advantage over the other. Non maximal suppression is

performed in a3 × 3 mask.

IV. M EASURING DETECTOR REPEATABILITY

For an image pair, a feature is ‘useful’ if it is extracted in one image and can potentially appear

in the second (i.e. it is not occluded). It is ‘repeated’ if itis also detected nearby the same real

world point in the second. For the purposes of measuring repeatability this allows several features
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Warp frame 1

features in frame 2

positions to detected

warped feature

compare 

Detect features in frame 1 Detect features in frame 2

Fig. 2

REPEATABILITY IS TESTED BY CHECKING IF THE SAME REAL-WORLD FEATURES ARE DETECTED IN DIFFERENT VIEWS. A

GEOMETRIC MODEL IS USED TO COMPUTE WHERE THE FEATURES REPROJECT TO.

in the first image to match a single feature in the second image. The repeatability,R, is defined

to be

R =
Nrepeated

Nuseful
, (12)

where Nrepeated and Nuseful are summed over all image pairs in an image sequence. This is

equivalent to the weighted average of the repeatabilities for each image pair, where the weighting

is the number of useful features. In this paper, we generallycompute the repeatability for a given

number of features per frame, varying between zero and 2000 features (for a640× 480 image).

This also allows us to compute the area under the repeatability curve,A, as an aggregate score.

The repeatability measurement requires the location and visibility of every pixel in the first

image to be known in the second image. In order to compute this, we use a 3D surface model

of the scene to compute if and where where detected features should appear in other views.

This is illustrated in Figure 2. This allows the repeatability of the detectors to be analysed on

features caused by geometry such as corners of polyhedra, occlusions and junctions. We also

allow bas-relief textures to be modelled with a flat plane so that the repeatability can be tested

under non-affine warping.

The definition of ‘nearby’ above must allow a small margin of error (ε pixels) because the

alignment, the 3D model and the camera calibration (especially the radial distortion) is not

perfect. Furthermore, the detector may find a maximum on a slightly different part of the corner.
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Fig. 3

BOX DATASET: PHOTOGRAPHS TAKEN OF A TEST RIG(CONSISTING OF PHOTOGRAPHS PASTED TO THE INSIDE OF A

CUBOID) WITH STRONG CHANGES OF PERSPECTIVE, CHANGES IN SCALE AND LARGE AMOUNTS OF RADIAL DISTORTION.

THIS TESTS THE CORNER DETECTORS ON PLANAR TEXTURE.

This becomes more likely as the change in viewpoint and hencechange in shape of the corner

become large.

Instead of using fiducial markers, the 3D model is aligned to the scene by hand and this is

then optimised using a blend of simulated annealing and gradient descent to minimise the SSD

(sum of squared differences) between all pairs of frames andreprojections. To compute the SSD

between framei and reprojected framej, the position of all points in framej are found in frame

i. The images are then bandpass filtered. High frequencies areremoved to reduce noise, while

low frequencies are removed to reduce the impact of lightingchanges. To improve the speed of

the system, the SSD is only computed using 1000 random locations.

The datasets used are shown in Figure 3, Figure 4 and Figure 5.With these datasets, we have

tried to capture a wide range of geometric and textural corner types.

V. FAST-ER: ENHANCED REPEATABILITY

Since the segment test detector can be represented as a ternary decision tree and we have

defined repeatability, the detector can be generalized by defining a feature detector to be a

ternary decision tree which detects points with high repeatability. The repeatability of such a

detector is a non-convex function of the configuration of thetree, so we optimize the tree using

simulated annealing. This results in a multi-objective optimization. If every point is detected as

a feature, then the repeatability is trivially perfect. Also, if the tree complexity is allowed to

grow without bound, then the optimization is quite capable of finding one single feature in each
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Fig. 4

MAZE DATASET: PHOTOGRAPHS TAKEN OF A PROP USED IN AN AUGMENTED REALITY APPLICATION . THIS SET CONSISTS

OF TEXTURAL FEATURES UNDERGOING PROJECTIVE WARPS AS WELL ASGEOMETRIC FEATURES. THERE ARE ALSO

SIGNIFICANT CHANGES OF SCALE.

Fig. 5

BAS-RELIEF DATASET: THE MODEL IS A FLAT PLANE, BUT THERE ARE MANY OBJECTS WITH SIGNIFICANT RELIEF. THIS

CAUSES THE APPEARANCE OF FEATURES TO CHANGE IN A NON AFFINE WAY FROM DIFFERENT VIEWPOINTS.

image in the training set which happens to be repeated. Neither of these are useful results. To

account for this, the cost function for the tree is defined to be:

k =

(
1 +

(wr

r

)2
)(

1 +
1

N

N∑

i=1

(
di

wn

)2
)(

1 +

(
s

ws

)2
)

, (13)

wherer is the repeatability (as defined in (12)),di is the number of detected corners in framei,

N is the number of frames ands is the size (number of nodes) of the decision tree. The effectof

these costs are controlled bywr, wn, andws. Note that for efficiency, repeatability is computed

at a fixed threshold as opposed to a fixed number of features perframe.

The corner detector should be invariant to rotation, reflection and intensity inversion of the

image. To prevent excessive burden on the optimization algorithm, each time the tree is evaluated,

it is applied sixteen times: at four rotations, 90◦ apart, with all combinations of reflection and

intensity inversion. The result is the logical OR of the detector applications: a corner is detected

if any one of the sixteen applications of the tree classifies the point as a corner.
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POSITIONS OF OFFSETS USED IN THEFAST-ERDETECTOR.

Each node of the tree has an offset relative to the centre pixel, x, with x ∈ {0 . . . 47} as

defined in Figure 6. Therefore,x = 0 refers to the offset(−1, 4). Each leaf has a classK, with

0 for non-corners and 1 for corners. Apart from the root node,each node is either on ab, d or

s branch of its parent, depending on the test outcome which leads to that branch. The tree is

constrained so that each leaf on ans branch of its direct parent hasK = 0. This ensures that

the number of corners generally decreases as the threshold is increased.

The simulated annealing optimizer makes random modifications to the tree by first selecting

a node at random and then mutating it. If the selected node is:

• a leaf, then with equal probability, either:

1) Replace node with a random subtree of depth 1.

2) Flip classification of node. This choice is not available if the leaf class is constrained.

• a node, then with equal probability, choose any one of:

1) Replace the offset with a random value in0 . . . 47.

2) Replace the node with a leaf with a random class (subject tothe constraint).

3) Remove a randomly selected branch of the node and replace it with a copy of another

randomly selected branch of that node. For example, ab branch may be replaced with

a copy of ans branch.

The randomly grown subtree consists of a single decision node (with a random offset in0 . . . 47),

and three leaf nodes. With the exception of the constrained leaf, the leaves of this random
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subtree have random classes. These modifications to the treeallow growing, mutation, mutation

and shrinking of the tree, respectively. The last modification of the tree is motivated by our

observations of the FAST-9 detector. In FAST-9, a large number of nodes have the characteristic

that two out of the three subtrees are identical. Since FAST-9 exhibits high repeatability, we

have included this modification to allow FAST-ER to easily learn a similar structure.

The modifications are accepted according to the Boltzmann acceptance criterion, where the

probability P of accepting a change at iterationI is:

P = e
k̂I−1−kI

T (14)

where k̂ is the cost after application of the acceptance criterion and T is the temperature. The

temperature follows an exponential schedule:

T = βe
−α I

Imax , (15)

whereImax is the number of iterations. The algorithm is initialized with a randomly grown tree of

depth 1, and the algorithm uses a fixed threshold,t. Instead of performing a single optimization,

the optimizer is rerun a number of times using different random seeds.

Because the detector must be applied to the images every iteration, each candidate tree in all

sixteen transformations is compiled to machine code in memory and executed directly. Since it

is applied with sixteen transformations, the resulting detector is not especially efficient. So for

efficiency, the detector is used to generate training data sothat a single tree can be generated

using the method described in Section III-B. The resulting tree contains approximately 30,000

non-leaf nodes.

A. Parameters and justification

The parameters used for training are given in Table I. The entire optimization which consists of

100 repeats of a 100,000 iteration optimization requires about 200 hours on a Pentium 4 at 3GHz.

Finding the optimal set of parameters is essentially a high dimensional optimization problem,

with many local optima. Furthermore, each evaluation of thecost function is very expensive.

Therefore, the values are in no sense optimal, but they are a set of values which produce good

results. Refer to [99] for techniques for choosing parameters of a simulated annealing based

optimizer. Recall that the training set consists of only thefirst three images from the ‘box’

dataset.
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Parameter Value

wr 1

wn 3,500

ws 10,000

α 30

β 100

t 35

Imax 100,000

Runs 100

ε 5 pixels

Training set ‘box’ set, images 0–2.

TABLE I

PARAMETERS USED TO OPTIMIZE THE TREE.

The weights determine the relative effects of good repeatability, resistance to overfitting and

corner density, and therefore will affect the performance of the resulting corner detector. To

demonstrate the sensitivity of the detector with respect towr, wn and ws a detector was

learned for three different values of each,wr ∈ {0.5, 1, 2}, wn ∈ {1750, 5300, 7000} and

ws ∈ {5000, 10000, 20000}, resulting in a total of 27 parameter combinations. The performance

of the detectors are evaluated by computing the mean area under the repeatability curve for

the ‘box’, ‘maze’ and ‘bas-relief’ datasets. Since in each of the 27 points, 100 runs of the

optimization are performed, each of the 27 points produces adistribution of scores. The results

of this are shown in Figure 7. The variation in score with respect to the parameters is quite low

even though the parameters all vary by a factor of four. Giventhat, the results for the set of

parameters in Table I are very close to the results for the best tested set of parameters. This

demonstrates that the choices given in Table I are reasonable.

VI. RESULTS

In this section, the FAST and FAST-ER detectors are comparedagainst a variety of other

detectors both in terms of repeatability and speed. In orderto test the detectors further, we have

used the ‘Oxford’ dataset [100] in addition to our own. This dataset models the warp between

images using a homography, and consists of eight sequences of six images each. It tests detector
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DISTRIBUTION OF SCORES FOR VARIOUS PARAMETERS OF(wr, wn, ws). THE PARAMETERS LEADING TO THE BEST RESULT

ARE (2.0, 3500, 5000) AND THE PARAMETERS FOR THE WORST POINT ARE(0.5, 3500, 5000). FOR COMPARISON, THE

DISTRIBUTION FOR ALL 27 RUNS AND THE MEDIAN POINT (GIVEN IN TABLE I) ARE GIVEN. THE SCORE GIVEN IS THE

MEAN VALUE OF A COMPUTED OVER THE‘ BOX’, ‘ MAZE ’ AND ‘ BAS-RELIEF’ DATASETS.

repeatability under viewpoint changes (for approximatelyplanar scenes), lighting changes, blur

and JPEG compression. Note that the FAST-ER detector is trained on 3 images (6 image pairs),

and is tested on a total of 85 images (688 image pairs).

The parameters used in the various detectors are given in Table II. In all cases (except SUSAN,

which uses the reference implementation in [101]), non-maximal suppression is performed using

a 3 × 3 mask. The number of features was controlled in a manner equivalent to thresholding

on the response. For the Harris-Laplace detector, the Harris response was used, and for the

SUSAN detector, the ‘distance threshold’ parameter was used. It should be noted that some

experimentation was performed on all the detectors to find the best results on our dataset. In

the case of FAST-ER, the best detector was selected. The parameters were then used without

modification on the ‘Oxford’ dataset. The timing results were obtained with the same parameters

used in the repeatability experiment.

A. Repeatability

The repeatability is computed as the number of corners per frame is varied. For comparison

we also include a scattering of random points as a baseline measure, since in the limit if every
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DoG

Scales per octave 3

Initial blur σ 0.8

Octaves 4

Harris, Shi-Tomasi

Blur σ 2.5

General parameters

ε 5 pixels

SUSAN

Distance threshld 4.0

Harris-Laplace

Initial blur σ 0.8

Harris blur 3

Octaves 4

Scales per octave 10

TABLE II

PARAMETERS USED FOR TESTING CORNER DETECTORS.

Detector A

FAST-ER 1313.6

FAST-9 1304.57

DoG 1275.59

Shi & Tomasi 1219.08

Harris 1195.2

Harris-Laplace 1153.13

FAST-12 1121.53

SUSAN 1116.79

Random 271.73

TABLE III

AREA UNDER REPEATABILITY CURVES FOR0–2000CORNERS PER FRAME AVERAGED OVER ALL THE EVALUATION

DATASETS (EXCEPT THE ADDITIVE NOISE).

pixel is detected as a corner, then the repeatability is 100%. To test robustness to image noise,

increasing amounts of Gaussian noise were added to the bas-relief dataset, in addition to the

significant amounts of camera noise already present. Aggregate results taken over all datasets

are given in Table III. It can be seen from this that on average, FAST-ER outperforms all the

other tested detectors.

More detailed are shown in Figures 8, 10 and 11. As shown in Figure 8 , FAST-9 performs
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A COMPARISON OF THEFAST-n DETECTORS ON THE‘ BAS-RELIEF’ SHOWS THATn = 9 IS THE MOST REPEATABLE. FOR

n ≤ 8, THE DETECTOR STARTS TO RESPOND STRONGLY TO EDGES.

best (FAST-8 and below are edge detectors), so only FAST-9 and FAST-12 (the original FAST

detector) are given.

The FAST-9 feature detector, despite being designed only for speed, generally outperforms all

but FAST-ER on these images. FAST-n, however, is not very robust to the presence of noise.

This is to be expected. High speed is achieved by analysing the fewest pixels possible, so the

detector’s ability to average out noise is reduced.

The best repeatability results are achieved by FAST-ER. FAST-ER easily outperforms FAST-9

in all but Figures 10A, 11B, C and E. These results are slightly more mixed, but FAST-ER still

performs very well for higer corner densities. FAST-ER greatly outperforms FAST-9 on the noise

test, (and outperforms all other detectors forσ < 7). This is because the training parameters bias

the detector towards detecting more corners for a given threshold than FAST-9. Consequently,

for a given number of features per frame, the threshold is higher, so the effect of noise will be

reduced.

As the number of corners per frame is increased, all of the detectors, at some point, suffer from

decreasing repeatability. This effect is least pronouncedwith the FAST-ER detector. Therefore,

with FAST-ER, the corner density does not need to be as carefully chosen as with the other
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REPEATABILITY RESULTS FOR THE BAS-RELIEF DATA SET (AT 500 FEATURES PER FRAME) AS THE AMOUNT OF GAUSSIAN

NOISE ADDED TO THE IMAGES IS VARIED. SEE FIGURE 10 FOR THE KEY.

detectors. This fall-off is particularly strong in the Harris and Shi-Tomasi detectors. Shi and

Tomasi, derive their result for better feature detection onthe assumption that the deformation of

the features is affine. Their detector performs slightly better over all, and especially in the cases

where the deformations are largely affine. For instance, in the bas-relief dataset (Figure 10C),

this assumption does not hold, and interestingly, the Harris detector outperforms Shi and Tomasi

detector in this case. Both of these detectors tend to outperform all others on repeatability for

very low corner densities (less than 100 corners per frame).

The Harris-Laplace is detector was originally evaluated using planar scenes [60], [102].

he results show that Harris-Laplace points outperform bothDoG points and Harris points in

repeatability. For the box dataset, our results verify thatthis is correct for up to about 1000

points per frame (typical numbers, probably commonly used); the results are somewhat less

convincing in the other datasets, where points undergo non-projective changes.

In the sample implementation of SIFT [103], approximately 1000 points are generated on the

images from the test sets. We concur that this a good choice for the number of features since

this appears to be roughly where the repeatability curve forDoG features starts to flatten off.

Smith and Brady [76] claim that the SUSAN corner detector performs well in the presence

of noise since it does not compute image derivatives and hence does not amplify noise. We
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C: Bas-relief dataset
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Fig. 10

A, B, C: REPEATABILITY RESULTS FOR THE REPEATABILITY DATASET AS THE NUMBER OF FEATURES PER FRAME IS

VARIED . D: KEY FOR THIS FIGURE, FIGURE 11 AND FIGURE 9. FOR FAST AND SUSAN,THE NUMBER OF FEATURES CAN

NOT BE CHOSEN ARBITRARILY; THE CLOSEST APPROXIMATION TO500 FEATURES IN EACH FRAME IS USED.

support this claim. Although the noise results show that theperformance drops quite rapidly

with increasing noise to start with, it soon levels off and outperforms all but the DoG detector.

The DoG detector is remarkably robust to the presence of noise. Convolution is linear, so

the computation of DoG is equivalent to convolution with a DoG kernel. Since this kernel

is symmetric, the convolution is equivalent to matched filtering for objects with that shape. The

robustness is achieved because matched filtering is optimalin the presence of additive Gaussian

noise [104].
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Detector Training set Test set

Pixel rate (MPix/s) % MPix/s %

FAST n = 9 188 4.90 179 5.15

FAST n = 12 158 5.88 154 5.98

Original FAST (n = 12) 79.0 11.7 82.2 11.2

FAST-ER 75.4 12.2 67.5 13.7

SUSAN 12.3 74.7 13.6 67.9

Harris 8.05 115 7.90 117

Shi-Tomasi 6.50 142 6.50 142

DoG 4.72 195 5.10 179

TABLE IV

TIMING RESULTS FOR A SELECTION OF FEATURE DETECTORS RUN ON FRAMES OF TWO VIDEO SEQUENCES. THE

PERCENTAGE OF THE PROCESSING BUDGET FOR640 × 480 VIDEO IS GIVEN FOR COMPARISON. NOTE THAT SINCEPAL,

NTSC, DV AND 30HZ VGA (COMMON FOR WEB-CAMS) VIDEO HAVE APPROXIMATELY THE SAME PIXEL RATE, THE

PERCENTAGES ARE WIDELY APPLICABLE. THE FEATURE DENSITY IS EQUIVALENT TO APPROXIMATELY500 FEATURES PER

640 × 480 FRAME. THE RESULTS SHOWN INCLUDE THE TIME TAKEN FOR NONMAXIMAL SUPPRESSION.

B. Speed

Timing tests were performed on a 3.0GHz Pentium 4-D which is representative of a modern

desktop computer. The timing tests are performed on two datasets: the terst set and the training

set. The training set consists 101 monochrome fields from a high definition video source with a

resolution of992×668 pixels. This video source is used to train the high speed FASTdetectors

and for profile-guided optimizations for all the detectors.The test set consists of 4968 frames

of monochrome352 × 288 (quarter-PAL) video

The learned FAST-ER, FAST-9 and FAST-12 detectors have beencompared to the original

FAST-12 detector, to our implementation of the Harris and DoG (the detector used by SIFT)

and to the reference implementation of SUSAN [101]. The FAST-9, Harris and DoG detectors

use the SSE-2 vectorizing instructions to speed up the processing. The learned FAST-12 does

not, since using SSE-2 does not yield a speed increase.

As can be seen in Table IV, FAST in general is mucxh faster thanthe other tested feature

detectors, and the learned FAST is roughly twice as fast as the handwritten version. In addition,
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it is also able to generate an efficient detector for FAST-9, which is the most reliable of the

FAST-n detectors. Furthermore, it is able to generate a very efficient detector for FAST-ER.

Despite the increased complexity of this detector, it is still much faster than all but FAST-n.

On modern hardware, FAST and FAST-ER consume only a fractionof the time available during

video processing, and on low power hardware, it is the only one of the detectors tested which

is capable of video rate processing at all.

VII. CONCLUSIONS

In this paper, we have presented the FAST family of detectors. Using machine learning we

turned the simple and very repeatable segment test heuristic into the FAST-9 detector which has

unmatched processing speed. Despite the design for speed, the resulting detector has excellent

repeatability. By generalizing the detector and removing preconceived ideas about how a corner

should appear, we were able to optimize a detector directly to improve its repeatability, creating

the FAST-ER detector. While still being very efficient, FAST-ER has dramatic improvements in

repeatability over FAST-9 (especially in noisy images). The result is a detector which is not only

computationally efficient, but has better repeatability results and more consistent with variation

in corner density than any other tested detector.

These results raise an interesting point about corner detection techniques: too much reliance

on intuition can be misleading. Here, rather than concentrating on how the algorithm should do

its job, we focus our attention on what performance measure we want to optimize and this yields

very good results. The result is a detector which compares favourably to existing detectors.

experiment freely available. The generated FAST-n detectors, the datasets for measuring

repeatability, the FAST-ER learning code and the resultingtrees are available from2

http://mi.eng.cam.ac.uk/ er258/work/fast.html

2FAST-n detectors are also available in libCVD from:http://savannah.nongnu.org/projects/libcvd
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C: Boat dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0  500  1000  1500  2000

R
ep

ea
ta

bi
lit

y 
%

Corners per frame

D: Graffiti dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  500  1000  1500  2000

R
ep

ea
ta

bi
lit

y 
%

Corners per frame

E: Leuven dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  500  1000  1500  2000

R
ep

ea
ta

bi
lit

y 
%

Corners per frame

F: Trees dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  500  1000  1500  2000

R
ep

ea
ta

bi
lit

y 
%

Corners per frame

G: UBC dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0  500  1000  1500  2000

R
ep

ea
ta

bi
lit

y 
%

Corners per frame

H: Wall dataset

Fig. 11

A–G: REPEATABILITY RESULTS FOR THE‘OXFORD’ DATASET AS THE NUMBER OF FEATURES PER FRAME IS VARIED. SEE

FIGURE 10 FOR THE KEY.
October 14, 2008 DRAFT



31

REFERENCES

[1] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detectors,”International Journal of Computer

Vision, vol. 37, no. 2, pp. 151–172, 2000.

[2] A. Rosenfeld and E. Johnston, “Angle detection on digital curves,” IEEE Transactions on Computers, vol. C-22, pp.

875–878, 1973.

[3] A. Rosenfeld and J. S. Weszka, “An improved method of angle detection on digital curves,”IEEE Transactions on

Computers, vol. C-24, no. 9, pp. 940–941, 1975.

[4] H. Freeman and L. S. Davis, “A corner-finding algorithm for chain-coded curves,”IEEE Transactions on Computers, vol.

C-26, no. 3, pp. 297–303, 1977.

[5] H. L. Beus and S. S. H. Tiu, “An improved corner detection algorithm based on chain-coded plane curves,”Pattern

Recognition, vol. 20, no. 3, pp. 291–296, 1987.

[6] L. O’Gorman, “Curvilinear feature detection from curvature estimation,” in9th International Conference on Pattern

Recognition, 1988, pp. 1116–1119.

[7] C.-H. Teh and R. Chin, “On the detection of dominant points on digital curves,”IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 859–872, 1989.

[8] H. Ogawa, “Corner detection on digital curves based on local symmetry of the shape,”Pattern Recognition, vol. 22, no. 4,

pp. 351–357, 1989.

[9] A. Bandera, C. Urdiales, F. Arrebola, and E. Sandoval, “Corner detection by means of adaptively estimated curvature

function,” Electronics Letters, vol. 36, no. 2, pp. 124–126, 2000.

[10] C. Urdiales, C. Trazegnies, A. Bandera, and E. Sandoval, “Corner detection based on adaptively filtered curvature function,”

Electronics Letters, vol. 32, no. 5, pp. 426–428, 2003.

[11] K. Sohn, W. E. Alexander, J. H. Kim, Y. Kim, and W. E. Snyder, “Curvature estimation and unique corner point detection

for boundary representation,” inIEEE International Conference on Robotics and Automation, vol. 2, 1992, pp. 1590–1595.

[12] X. He and N. Yung, “Curvature scale space corner detector with adaptive threshold and dynamic region of support,” in

17th International Conference on Pattern Recognition, 2004, pp. 791–794.

[13] N. Ansari and E. J. Delp, “On detecting dominant points,” Pattern Recognition, vol. 24, no. 5, pp. 441–451, 1991.

[14] A. Rattarangsi and R. T. Chin, “Scale-based detection of corners of planar curves,”IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 14, no. 4, pp. 430–449, 1992.

[15] J. Lee, Y. Sun, and C. Chen, “Wavelet transform for corner detection,” in IEEE Conference on Systems Engineering,

1992.

[16] J.-S. Lee, Y.-N. Sun, and C.-H. Chen, “Multiscale corner detection by using wavelet transform,”IEEE Transactions on

Image Processing, vol. 4, no. 1, pp. 100–104, 1995.

[17] A. Quddus and M. Fahmy, “Fast wavelet-based corner detection technique,”Electronics Letters, vol. 35, no. 4, pp.

287–288, 1999.

[18] F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature scale space,”IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1376–1381, 1998.

[19] P. Saint-Marc, J.-S. Chen, and G. Medioni, “Adaptive smoothing: a general tool for early vision,”IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 514–529, 1991.

[20] B. K. Ray and R. Pandyan, “Acord-an adaptive corner detector for planar curves,”Pattern Recognition Letters, vol. 36,

no. 3, pp. 703–708, 2003.

October 14, 2008 DRAFT



32

[21] D. J. Langridge, “Curve encoding and detection of discontinuities,” Computer Vision, Graphics and Image Processing,

vol. 20, no. 1, pp. 58–71, 1987.

[22] G. Medioni and Y. Yasumoto, “Corner detection and curverepresentation using cubic b-splines,”Computer Vision,

Graphics and Image Processing, vol. 39, no. 3, pp. 279–290, 1987.

[23] D. J. Beymer, “Finding junctions using the image gradient,” in 6th IEEE Conference on Computer Vision and Pattern

Recognition, 1991, pp. 720–721.

[24] U. Seeger and R. Seeger, “Fast corner detection in grey-level images,”Pattern Recognition Letters, vol. 15, no. 7, pp.

669–675, 1994.

[25] F. Arrebola, A. Bandera, P. Camacho, and F. Sandoval, “Corner detection by local histograms of contour chain code,”

Electronics Letters, vol. 33, no. 21, pp. 1769–1771, 1997.

[26] ——, “Corner detection and curve representation by circular histograms of contour chain code,”Electronics Letters,

vol. 35, no. 13, pp. 1065–1067, 1999.

[27] L. Li, “Corner detection and interpretation on planar curves using fuzzy reasoning,”IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 21, no. 11, pp. 1204–1210, 1999.

[28] P. Sankar and C. Sharma, “A parallel procedure for the detection of dominant points on a digital curve,”Computer

Graphics and Image Processing, vol. 7, no. 4, pp. 403–412, 1978.

[29] F.-H. Cheng and W.-H. Hsu, “Parallel algorithm for corner finding on digital curves,”Pattern Recognition Letters, vol. 8,

no. 1, pp. 47–53, 1988.

[30] D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes,”Pattern Recognition, vol. 13, no. 2, pp.

111–122, 1981.

[31] E. R. Davies, “Application of the generalised hough transform to corner detection,” inIEE Proceedings on Computers

and Digital Techniques, vol. 135, no. 1, 1988, pp. 49–54.

[32] R. M. Haralick and L. G. Shapiro,Computer and robot vision. Adison-Wesley, 1993, vol. 1.

[33] R. Mehrotra, S. Nichani, and N. Ranganathan, “Corner detection,” Pattern Recognition, vol. 23, no. 11, pp. 1223–1233,

1990.

[34] J. Cooper, S. Venkatesh, and L. Kitchen, “The dissimilarity corner detector,” in5th International Conference on Advanced

Robotics, 1991, pp. 1377–1382.

[35] L. Kitchen and A. Rosenfeld, “Gray-level corner detection,” Pattern Recognition Letters, vol. 1, no. 2, pp. 95–102, 1982.

[36] A. Singh and M. Shneier, “Grey level corner detection: Ageneralization and a robust real time implementation,”Computer

Vision, Graphics and Image Processing, vol. 51, no. 1, pp. 54–69, 1990.

[37] O. Zuniga and R. Haralick, “Corner detection using the facet model,” in1st IEEE Conference on Computer Vision and

Pattern Recognition, 1983, pp. 30–37.

[38] R. Deriche and G. Giraudon, “A computational approach for corner and vertex detection,”International Journal of

Computer Vision, vol. 10, no. 2, pp. 101–124, 1993.

[39] H. Wang and M. Brady, “Real-time corner detection algorithm for motion estimation.”Image and Vision Computing,

vol. 13, no. 9, pp. 695–703, 1995.

[40] P. Beaudet., “Rotational invariant image operators.”in 4th International Conference on Pattern Recognition, 1978, pp.

579–583.

[41] G. Giraudon and R. Deriche, “On corner and vertex detection,” in 6th IEEE Conference on Computer Vision and Pattern

Recognition, 1991, pp. 650–655.

October 14, 2008 DRAFT



33

[42] L. Dreschler and H.-H. Nagel, “Volumetric model and 3d trajectory of a moving car from monocular tv frames sequence

of a street scene,”Computer Graphics and Image Processing, vol. 20, no. 3, pp. 199–228, 1982.

[43] B. Luo, A. D. J. Cross, and E. R. Hancock, “Corner detection via topographic analysis of vector potential,” in9th British

Machine Vision Conference, 1998.

[44] H. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot rover,” intech. report CMU-RI-TR-

80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University. Carnegie Mellon

University, 1980, available as Stanford AIM-340, CS-80-813 and republished as a Carnegie Mellon University Robotics

Institue Technical Report to increase availability.

[45] C. Harris and M. Stephens, “A combined corner and edge detector,” in Alvey Vision Conference, 1988, pp. 147–151.

[46] E. Rosten, “High performance rigid body tracking,” Ph.D. dissertation, University of Cambridge, Febuary 2006.

[47] W. Förstner, “A feature-based correspondence algorithm for image matching,”International Archive of Photogrammetry

and Remote Sensing, vol. 26, pp. 150–166, 1986.

[48] C. Tomasi and T. Kanade, “Detection and tracking of point features,” Carnegie Mellon University, Tech. Rep. CMU-CS-

91-132, 1991.

[49] J. Shi and C. Tomasi, “Good features to track,” in9th IEEE Conference on Computer Vision and Pattern Recognition,

1994.

[50] J. A. Noble, “Descriptions of image surfaces.” Ph.D. dissertation, Department of Engineering Science, University of

Oxford., 1989.

[51] C. S. Kenney, B. S. Manjunath, M. Zuliani, M. G. A. Hewer,and A. V. Nevel, “A condition number for point

matching with application to registration and postregistration error estimation,”IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 25, no. 11, pp. 1437–1454, 2003.

[52] M. Zuliani, C. Kenney, and B. Manjunath, “A mathematical comparison of point detectors,” inSecond IEEE Image and

Video Registration Workshop (IVR), 2004.

[53] C. Kenney, M. Zuliani, and B. Manjunath, “An axiomatic approach to corner detection,” in18th IEEE Conference on

Computer Vision and Pattern Recognition, 2005, pp. 191–197.

[54] K. Rohr, “On 3d differential operators for detecting point landmarks,”Image and Vision Computing, vol. 15, no. 3, pp.

219–233, 1997.

[55] J. A. Noble, “Finding corners,”Image and Vision Computing, vol. 6, no. 2, pp. 121–128, 1988.

[56] B. Triggs, “Detecting keypoints with stable position,orientation and scale under illumination changes,” in8th Euproean

Conference on Computer Vision, vol. 4, 2004, pp. 100–113.

[57] K. Mikolajczyk and C. Schmid, “An affine invariant interest point detector,” inEuropean Conference on Computer

Vision, 2002, pp. 128–142, copenhagen.

[58] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”International Journal of Computer Vision, vol. 60,

no. 2, pp. 91–110, 2004.

[59] J. L. Crowley, O. Riff, and J. H. Piater, “Fast computation of characteristic scale using a half octave pyramid,” inScale

Space 03: 4th International Conference on Scale-Space theories in Computer Vision, 2003.

[60] K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant interest points,” in8th IEEE International Conference

on Computer Vision, vol. 1, 2001, pp. 525–531.

[61] M. Brown and D. G. Lowe, “Invariant features from interest point groups.” in13th British Machine Vision Conference,

2002, pp. 656–665.

October 14, 2008 DRAFT



34

[62] F. Schaffalitzky and A. Zisserman, “Viewpoint invariant texture matching and wide baseline stereo,” in8th IEEE

International Conference on Computer Vision, 2001, pp. 636–643.

[63] ——, “Multi-view matching for unordered image sets, or How do I organise my holiday snaps?” in7th Euproean

Conference on Computer Vision, 2002, pp. 414–431.

[64] A. Guiducci, “Corner characterization by differential geometry techniques,”Pattern Recognition Letters, vol. 8, no. 5, pp.

311–318, 1988.

[65] K. Rohr, “Recognizing corners by fitting parametric models,” International Journal of Computer Vision, vol. 9, no. 3,

pp. 213–230, 1992.

[66] P. L. Rosin, “Measuring corner properties,”Computer Vision and Image Understanding: CVIU, vol. 73, no. 2, pp.

291–307, 1999.

[67] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 8, no. 6, pp. 679–698, 1986.

[68] K. Rangarajan, M. Shah, and D. van Brackle, “Optimal corner detection,” in2nd IEEE International Conference on

Computer Vision, 1988, pp. 90–94.

[69] S.-T. Liu and W.-H. Tsai, “Moment-preserving corner detection,” Pattern Recognition, vol. 23, no. 5, pp. 441–460, 1990.

[70] S. Ghosal and R. Mehrotra, “Zernike moment-based feature detectors,” in1st International Conference on Image

Processing, vol. 1, 1994, pp. 934–938.

[71] F. Shen and H. Wang, “Real time gray level corner detector,” in 6th International Conference on Control, Automation,

Robotics and Vision, 2000.

[72] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and curves in pictures,”Communications of

the ACM, vol. 15, no. 1, pp. 11–15, 1972.

[73] F. Shen and H. Wang, “Corner detection based on modified hough transform,”Pattern Recognition Letters, vol. 32, no. 8,

pp. 1039–1049, 2002.

[74] B. Luo and D. Pycock, “Unified multi-scale corner detection,” in 4th IASTED International Conference on Visualisation,

Imaging and Image Processing, 2004.

[75] X. Xie, R. Sudhakar, and H. Zhuang, “Corner detection bya cost minimization approach,”Pattern Recognition, vol. 26,

no. 8, pp. 1235–1243, 1993.

[76] S. M. Smith and J. M. Brady, “SUSAN - a new approach to low level image processing,”International Journal of

Computer Vision, vol. 23, no. 1, pp. 45–78, 1997.

[77] S. C. Bae, I. S. Kweon, and C. D. Yoo, “Cop: a new corner detector,” Pattern Recognition Letters, vol. 23, no. 11, pp.

1349–1360, 2002.
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