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Overview

In this article, we propose:

a study of SIFT

an experimental framework consistent with SIFT’s camera
model

an analysis of detection stability and invariance

a study on the influence of

scale-space sampling
image aliasing
thresholds aiming at discarding unstable detections
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Overview

This paper is not:

a variant of SIFT
SURF: Speeded Up Robust Feature (Bay et al. 2006)

Affine SIFT (Yu and Morel, 2009)

Spectral-SIFT (Koutaki and Kumamoto, 2014)

a new feature descriptor
On affine invariant descriptors related to SIFT (Sadek and Caselles, 2012)

BRIEF (Calonder et al. 2010)

K-means Hashing (He et al. 2013)

a benchmark
A comparison of affine region detectors (Mikolajczyk et al. 2005)



Overview

Study the influence of scale-space sampling on SIFT

SIFT applied with 3 different sampling settings



SIFT overview

The detection step:
Assumes that the input image u(x) has a Gaussian camera blur of c

Gaussian scale-space v(σ, x) = G√σ2−c2u(x)

Differential operator: DoG (difference of Gaussians)

Extract discrete 3D extrema

Refine position of 3D extrema (local quadratic model)

Filter unstable keypoints (thresholds)



SIFT camera model

The camera model adopted by SIFT approximates the point spread
function (PSF) by a Gaussian kernel of standard deviation c.

u =: S1GcHT Ru0

S1 sampling operator

Gaussian kernel of standard deviation c

H homothety

T translation

R rotation



SIFT overview

The camera model adopted by SIFT approximates the point spread
function (PSF) by a Gaussian kernel of standard deviation c.



SIFT overview

Compute the Gaussian scale-space v(σ, x) = G√σ2−c2u(x)



SIFT overview

Compute differential operator: DoG (difference of Gaussians)

Extract 3D extrema



Theoretically invariant to zoom outs

Let uλ and uµ be two different acquisitions at two different
distances

uλ = S1GcHλu0 uµ = S1GcHµu0

Their respective scale-space

vλ(σ, x) = GσHλu0(x) vµ(σ, x) = GσHµu0(x)

Reparameterizations of v0(σ, x) = Gσu0(σ, x)

vµ(σ/µ, x/µ) = vµ(σ/λ, x/λ)

Does this perfect invariance hold in practice ?



The architecture of digital Gaussian scale-space

A set of digital images with various level of blur σ and sampled at
various rates δ.



The architecture of digital Gaussian scale-space

Supersample by a factor 1/δmin (default 1/δmin = 2)

Add extra blur (G(σmin
2−c2)1/2/δmin

) to reach the minimal level of blur σmin

(default σmin = 0.8)

blur c supersampling factor 1/δmin > 1
blur σmin > c



The architecture of digital Gaussian scale-space

The scale-space is split into octaves, subsets of nspo images (default
nspo = 3) sharing the same sampling rate 1/δ

Blurs follow a geometric progression

σ = σmin2s/nspo

Increase the scale-space sampling rates:

↗ 1/δmin

↗ nspo



Simulating the camera model

How to simulate snapshots having a given level of blur c

Take a large image uin with unknown level of blur cin

Apply a Gaussian filtering of standard deviation s × c

Apply a subsampling of factor s >> 1

usimul = S1/sGs×cuin

The approximated level of blur is√
c2 + (cin/s)2 ≈ c



The experimental setup

Measure the invariance level by accurately simulating image pairs
related through a scale change, a translation or a blur

Comparing the set of detected keypoints

The non repeatability ratio (NRR) is the number of keypoints
detected in one image but not detected on the other at its
expected position (+/−0.25px in space, +/−21/4s relatively in
scale) divided by the total number of detected keypoints



Influence of scale-space sampling - Translation

Subpixel translation of 0.25px

Compare the sets of keypoints for various scale-space
settings
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Influence of scale-space sampling - Zoom-out

2.15× zoom-out

Compare the sets of keypoints for various scale-space
settings
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Influence of image blur

Stability varying the level of blur c in the input image
(0.30 ≤ c ≤ 1.10, no image aliasing for c > 0.75)

Subpixel translation of 0.25px
Keypoint stability to the image blur and the detection
scale
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The DoG threshold

Is the DoG threshold efficient at discarding unstable keypoints ?

Subpixel translation of 0.25px
Increasing the DoG threshold
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The DoG threshold fails to significantly improve the overall
stability of keypoints.



Conclusions

Invariance is limited by insufficient sampling of
the Gaussian scale-space

Invariance is limited by image aliasing

The DoG threshold is not efficient

Future work:

Extend this analysis in the case where the input image blur is
not consistent with SIFT’s camera model

Analyse the influence of image noise
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