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ABSTRACT

Most computer vision application rely on algorithms finding local
correspondences between different images. These algorithms de-
tect and compare stable local invariant descriptors centered at scale-
invariant keypoints. Because of the importance of the problem, new
keypoint detectors and descriptors are constantly being proposed,
each one claiming to perform better than the preceding ones. This
raises the question of a fair comparison between very diverse meth-
ods. This evaluation has been mainly based on a repeatability cri-
terion of the keypoints under a series of image perturbations (blur,
illumination, noise, rotations, homotheties, homographies, etc). In
this paper, we argue that the classic repeatability criterion is biased
favoring algorithms producing redundant overlapped detections. We
propose a sound variant of the criterion taking into account the de-
scriptor overlap that seems to invalidate some of the community’s
claims of the last ten years.

Index Terms— Feature detectors, performance evaluation

1. INTRODUCTION

Local stable features are the cornerstone of many image processing
and computer vision applications such as image registration [1, 2],
camera calibration [3], image stitching [4], 3D reconstruction [5],
object recognition [6–9] or visual tracking [10, 11]. The seminal
SIFT method introduced by Lowe in 1999 [12,13] sparked an explo-
sion of local keypoints detector/descriptors seeking discrimination
and invariance to a specific group of image transformations [14].

Ideally, one would like to detect keypoints that are stable to im-
age noise, illumination changes, and geometric transforms such as
scale changes, affinities, homographies, perspective changes, or non-
rigid deformations. Complementarily, the detected points should
be well distributed throughout the entire image to extract informa-
tion from all image regions and from boundary features of all kinds
(e.g., textures, corners, blobs). Hence, there is a variety of detec-
tors/descriptors built on different principles and having different re-
quirements. As opposed to interest point detectors, interest region
detectors [15–18] extract the invariant salient regions of an image
based on its topographic map. To fairly compare the very differ-
ent feature detectors it is fundamental to have a rigorous evaluation
protocol.

Introduced for the assessment of corner detectors [19] and
later reformulated to evaluate scale/affine-invariant keypoint de-
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tectors [20–22], the repeatability criterion is the de facto standard
procedure to assess keypoint detection performance [14].

The repeatability rate measures the detector’s ability to iden-
tify the same features (i.e., repeated detections) despite variations
in the viewing conditions. Defined as the ratio between the number
of keypoints simultaneously present in all the images of the series
(repeated keypoints) over the total number of detections, it can be
seen as a measure of the detector’s efficiency. Indeed, the repeata-
bility rate incorporates two struggling quality criteria: the number of
repeated detections (i.e., potential correspondences) should be max-
imized while the total number of detections should be minimized
since the complexity of the matching grows with the square of the
number of detections.

However, the repeatability criterion suffers from a systematic
bias: it favors redundant and overlapped detections. This has serious
consequences, as evenly distributed and independent detections are
crucial in image matching applications [23]. The concentration of
many keypoints in a few image regions is generally not helpful, no
matter how robust and repeatable they may be.

In this communication, we unmask the repeatability bias, by ex-
plicitly considering the detectors redundancy in a modified repeata-
bility measure. Experimental results show that the ranking of popu-
lar feature detectors is severely disrupted by the amended criterion.

The remainder of the article is organized as follows. Section 2
describes the repeatability criterion, discusses its variants, and il-
lustrates how algorithms with redundant detections and unbalanced
spatial distribution may perform better according to this traditional
quality measure. Section 3 introduces a simple correction of the
repeatability criterion that involves descriptor overlap. Section 4 re-
ports on experimental evidence showing that the hierarchy of detec-
tors is drastically altered by the new repeatability criterion. Section 5
contains a final discussion.

2. THE REPEATABILITY CRITERION AND ITS BIAS

2.1. Definition of the repeatability criterion

Consider a pair of images ua(x), ub(x) defined for x ∈ Ω ⊂ R2

and related by a planar homography H , that is, ub = ua ◦ H . The
detector repeatability rate for the pair (ua, ub) is defined as the ratio
between the number of detections simultaneously present in both
images, i.e., repeated detections, and the total number of detections
in the region covered by both images.

In the repeatability framework, a detection generally consists of
an elliptical region, denoted R(x,Σ), parametrized by its center x
and a 2× 2 positive-definite matrix Σ,

R(x,Σ) =
{
x′ ∈ Ω | (x′ − x)TΣ−1(x′ − x) ≤ 1

}
.



A pair of detections (elliptical regions R(xa,Σa) and R(xb,Σb))
from images ua(x) and ub(x) will be considered repeated if

1− |R(xa,Σa) ∩R(xba,Σba)|
|R(xa,Σa) ∪R(xba,Σba)| ≤ εoverlap, (1)

where xba = Hxa, Σba = A−1Σb(A
T )−1 represents the reprojec-

tion of the ellipse on image ub on the image ua and A is the local
affine approximation of the homography H .

The union and intersection of the detected regions are examined
on the reference image ua(x) by projecting the detection on the im-
age ub into the image ua. The union covers an area denoted by
|R(xa,Σa) ∪R(xba,Σba)| while |R(xa,Σa) ∩R(xba,Σba)| de-
notes the area of their intersection. The parameter εoverlap is the max-
imum overlap error tolerated. In most published benchmarks it is set
to 0.40 [21, 22, 24].

Fig. 1. Illustration of the repeatability criterion. Detection
R(xb,Σb) on image ub is reprojected on the reference image ua. If
the overlap error is lower than εoverlap, the detections are considered
repeated.

Since the number of repeated detections is upper bounded by the
minimal number of detections, the repeatability rate is defined as

rep =
number of repeated detections

min (|Ka|Ω, |Kb|Ω)
(2)

where |Ka|Ω and |Kb|Ω denote the respective numbers of detections
inside the area of Ω covered by both images ua and ub.

2.2. Illustration and alternative definitions

To discuss and illustrate the repeatability criterion and its variants,
let us consider the particular case of a pair of detections R(xa,Σa)
and R(xb,Σb) whose re-projections on the reference image are two
disks, both of radius r and with centers separated by a distance
d (Figure 1). Such a pair will be considered repeated if d/r ≤
f(εoverlap), where f is a monotone function easily derived from (1).
Figure 2 (a) shows the maximum distance d under which both de-
tections will be considered repeated as a function of the radius r.

As pointed out in [22], detectors providing larger regions have
a better chance of yielding good overlap scores, boosting as a result
their repeatability scores. This also means that one can artificially in-
crease the repeatability score of any detector by increasing the scale
associated with its detections.

The authors of [22] proposed to avoid this objection by normal-
izing the detected region size before computing the overlapped error.
The two detected elliptical regions R(xa,Σa) and R(xb,Σb) in (1)
are replaced respectively by the elliptical regionsR(xa, κ

2
/raRaΣa)

and R(xb, κ
2
/rbRbΣb), where ra and Ra are the radii of the ellipti-

cal region R(xa,Σa) and κ = 30 is its radii geometric mean after
normalization.

The idea of such normalization was to prevent boosting a de-
tector’s performance by enlarging its associated ellipse. Yet, such a
criterion is not scale-invariant, meaning that it may be over or under

permissive depending on the detection size. For example, the max-
imal distance separating repeated detections of equal size does not
take into account the scale (e.g., the radius of the circle in our special
case illustration, see Figure 2 (b)). In consequence, with εoverlap set to
its standard value (εoverlap = 40%), two circular detections of radius
1px and centers separated by 12px can still be regarded as repeated,
although their respective descriptors may not even overlap!

Surprisingly, the code provided by the authors of [22]1 does not
implement any of the criteria defined in their article. The code in-
troduces a third definition by incorporating an additional criterion
on the maximum distance separating two repeated keypoints that de-
pends on the scale by

|xa −Hxb| ≤ 4
√
raRa.

This criterion is illustrated in Figure 2 (c) for the same study
case of two circular detections of equal size. This third criterion is
not scale invariant either. Thus in this paper we shall stick to the first
definition, which is scale invariant
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Fig. 2. Illustrating three different definitions of the repeatability
criteria. Consider a pair of detections whose re-projections on the
reference image are two disks of radius r with their centers separated
by d. The maximal tolerated distance dmax between repeated detec-
tions is plotted as a function of the radius r for four values of the
parameter εoverlap (5%, 20%, 40% and 60%). (a) original definition
given by (1), (b) with ellipses normalization κ = 30, (c) definition
implemented in the provided code provided by the authors of [22].
Only the first definition is scale invariant.

2.3. Repeatability favors redundant detectors

The following mental experiment sheds light on how the repeata-
bility favors redundancy. Let DET be a generic keypoint detector,
and let DET2 be a variant in which each detection is simply counted
twice. The number of repeatable keypoints and the total number
of detections are both artificially doubled, leaving the repeatability
rate unchanged. However, although the number of costly descriptor
computations has doubled, no extra benefit can be extracted from
the enlarged set of repeated keypoints. The classic repeatability rate
fails to report that the benefit over cost ratio of DET2 is half the one
of DET. This explains why methods producing correlated detections
may misleadingly get better repeatability ratios.

A popular attempt for mitigating this drawback is to compare
detectors at a fixed number of detections [24, 25]. This would not,
however, solve the problem for two reasons. Firstly, by a similar
reasoning as before, one can imagine a detector that repeats its best
detection N times (N being the “fixed” number of detections) while
discarding the rest. Such a detector would achieve optimal repeata-
bility, despite being useless. But most importantly, given a detector,
selecting the N best detections via a parameter (e.g., a threshold) is
not generally an easy task. For example, in SIFT, the most popular

1Matlab code http://www.robots.ox.ac.uk/˜vgg/
research/affine/ retrieved date 2014/12/01

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/


way of adjusting the number of detected keypoints is by threshold-
ing the analysis operator (Difference of Gaussians) to retain only the
most salient features. However, it is well known that this does not
necessarily lead to a good selection in terms of stability [26]. To im-
prove the selection, Li et al. [25] proposed a supervised regression
process to learn how to rank SIFT keypoints. Although, this scheme
produces good results it requires supervised learning.

For these reasons, we believe that a fair comparison should pre-
fer the genuinely independent detections. The metric introduced in
the following section is a first attempt in this direction.

3. NON-REDUNDANT REPEATABILITY

To demonstrate experimentally how taking into account redundancy
drastically alters the hierarchy of detectors, we introduce in this sec-
tion the non-redundant repeatability.

Besides the repeatability measure, which ignores the keypoints
spatial distribution, other specific metrics have been proposed. Some
examine the spatial distribution of the descriptors and others evaluate
how well they describe the image. The ratio between the convex hull
of the detected features and the total image surface is used in [27] as
a coverage measure. The harmonic mean of the detections positions
is used in [28, 29] as a measure of concentration. In [30], the au-
thors propose to measure the completeness of the detected features,
namely the ability to preserve the information contained in an image
by the detected features. The information content metric proposed
in [20] quantifies the distinctiveness of a detected feature with re-
spect to the whole set of detections. Non specific features are indeed
harmful, as they can match to other many and therefore confuse the
matching. Being complementary to it, these metrics are generally
used in combination with the repeatability rate. Nevertheless, since
the purpose of the repeatability is to report on the benefit/cost ratio
of a given detector, it should also, by itself, report on the description
redundancy. We shall now see that the descriptors redundancy can
be naturally incorporated in the repeatability criterion.

3.1. Non-redundant detected keypoints

To evaluate the redundancy of a set of detections k ∈ K, each de-
tection (xk,Σk) can be assigned, in acccordance with the descriptor
associated canonically with the keypoint for each method, a mask
function fk(x) consisting of a truncated elliptical Gaussian

fk(x) = Ke
− 1

2ζ2
(x−xk)TΣ−1

k
(x−x)

, (3)

if (x− xk)TΣ−1
k (x− x) ≤ ρ2 and 0 elsewhere. Each mask is nor-

malized so that its integral over the image domain is equal to 1. The
values ρ and ζ control the extent of the detected feature, as it can
be derived from the descriptor’s design. They will be fixed here for
each detector by referring to the original paper where it was intro-
duced. Indeed most detectors proposals come up with a descriptor
or at least with a characterization of the region where this descriptor
should be computed.

The sum of all descriptor masks
∑
k∈K fk(x) yields a final map

showing how much each image pixel contributes to the set of all
computed descriptors. Note that one pixel may contribute to sev-
eral descriptors. Similarly, the maximum taken over all detections
maxk∈K fk(x) maps the pixels contribution to the best descriptor.
Thanks to the mask normalization, the number of keypoints K :=
card (K) is given by

K =

∫
Ω

(∑
k∈K

fk(x)

)
dx, (4)

SIFT (17) EBR (249) IBR (13) Harris-Laplace (242)

Hessian-Laplace (1927) Harris-Affine (227) Hessian-Affine (244) MSER (18)

SURF (652) SFOP (59) BRISK (97) SIFER (203)

Fig. 3. Keypoints map on siemens star test image (total num-
ber of detections indicated in brackets). SIFT and SFOP seem to be
the only (experimentally) rotationally invariant methods. The ellip-
tical shapes deduced from the MSER regions have different sizes in
each rotated triangle.

where Ω denotes the image domain. On the other hand,

Knr :=

∫
Ω

(
max
k∈K

fk(x)

)
dx (5)

measures the number of non-redundant keypoints. This value can be
interpreted as a count of the independent detections. To gain some
intuition and see why this measurement is quite natural, let us exam-
ine four illustrative cases. Assume that there are only two detected
keypoints so that K = 2. If the two detections

• completely overlap, then Knr = 1.

• If they share the same center but have different sizes, then
1 < Knr < K = 2. But if their sizes are significantly differ-
ent, then Knr ≈ 2, which makes sense. Indeed, one of them
describes a fine detail and the other one a detail at a larger
scale. Their information contents are roughly independent.

• If both keypoints are very close to each other then again 1 <
Knr < K = 2 and the above remark on scales still applies.

• If the descriptors do not overlap at all then Knr = K = 2.

3.2. Non-redundant repeatability

The above definitions entail a straightforward modification of the
repeatability criterion (2). Let Kr be the set of repeatable keypoints
between two snapshots, and Ω the area simultaneously covered by
both images. We define the non-redundant repeatability rate by

nr-rep :=

∫
Ω

maxk∈Kr fk(x)dxdy

min (|Ka|Ω, |Kb|Ω)
(6)

where |Ka|Ω and |Kb|Ω denote the respective numbers of detections
inside Ω. The number of repeated detections in (2) is replaced in (6)
by the number of non-redundant detections.



SIFT (2038) EBR (644) IBR (652) Harris-Laplace (740)

Hessian-Laplace (3502) Harris-Affine (727) Hessian-Affine (2857) MSER (352)

SURF (781) SFOP (1379) BRISK (339) SIFER (664)

Fig. 4. Keypoints map on an image from the bikes sequence (total
number of detections indicated in brackets). Most algorithms detect
the same structure several times, producing significantly overlapped
detections.

4. EXPERIMENTS

To illustrate how the ranking is changed once redundancy is taken
into account, twelve methods were examined, namely, the Harris-
Laplace and Hessian-Laplace [22], Harris-Affine and Hessian-
Affine [22], EBR [15], IBR [16], MSER [31], SIFT [12, 13],
SURF [32], SFOP [33], BRISK [34] and SIFER [24]2. We also
considered a variant of SIFT that only takes one feature vector per
detection. We called it SIFT-single.

Figures 3 and 4 show the detection maps for the twelve meth-
ods, on a synthetic image and a natural image from the Oxford
dataset [22]3. A simple visual inspection helps to get an overall idea
of the algorithms redundancy.

Using the proposed non-redundant repeatability criterion, we
evaluated the performance of the twelve feature detectors on the
Oxford dataset. The performance evaluation of a detector is two-
dimensional. On the one hand, a detector should produce as many
detections as possible, while on the other, it should keep to a mini-
mum the number of non-repeatable detections. In other words, the
best detector is the one that has simultaneously the largest repeata-
bility ratio and the largest number of detections.

Figure 5 (a), (b), (c) shows the average values, over three se-
quence, of the repeatability and the non-redundant repeatability plot-

2Scripts and codes are available at http://dev.ipol.im/

˜reyotero/comparing_20140906.tar.gz
3Dataset available at http://www.robots.ox.ac.uk/˜vgg/

research/affine/
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(d) Average on eight sequences.
sift harlap heslap haraff hesaff surf

sifer brisk sfop ebr ibr mser

sift single

Fig. 5. (a), (b), (c) For three Oxford sequences, the average over
the sequence of the repeatability and the non-redundant repeatability
plotted as a function of the average number of keypoints detected. To
compare a single detector performance the reader might follow the
relative ordinate position of a particular detector in a particular scene
in the traditional repeatability (left) and the non-redundant repeata-
bility plots (right). For instance, MSER and SIFT algorithms always
go up from the traditional to the non-redundant repeatability plots.
This means that MSER and SIFT detections are less redundant than
the average. (d) Average on eight sequences. For each sequence,
the number of detections, the repeatability and the non-redundant
repeatability are scaled to the full range of [0, 1] and averaged into a
single map.

ted as a function of the average number of keypoints detected. Fig-
ure 5 (d) summarizes the detectors relative performance over the
entire dataset (see caption for details).

On each of these plots, good detectors are on the top-right re-
gion. Thus, the benchmark reveals that the ranking of detectors
is severely disrupted when considering the detectors redundancy.
While for example Harris and Hessian based methods, SURF and
EBR significantly reduce their performance (going down in the
plots), MSER improves its relative position to the others. When
the redundancy is not taken into account the method producing the
most detections and the highest repeatability is the Hessian Laplace,
while when considering the non-redundant variant it is SIFT.

5. DISCUSSION

In this paper, we have shown that the classic repeatability criterion is
biased towards favoring algorithms producing redundant overlapped
detections. This bias motivated the introduction of a variant of the
repeatability rate taking into account the descriptors overlap. Exper-
imental evidence showed that, once the descriptors overlap is taken
into account, the traditional hierarchy of several popular methods is
severely disrupted. Thus, the detections and associated descriptors
generated by several methods are highly correlated. A reassuring
characteristic of the new repeatability criterion is that it seems to
be in agreement with the redundancies observed on patterns and on
natural images. Future work will concentrate on evaluating the pro-
posed criteria in more heterogeneous databases, also incorporating
and discussing matching performance.
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