
J Math Imaging Vis
DOI 10.1007/s10851-016-0657-5

An Analysis of the Factors Affecting Keypoint Stability in
Scale-Space

Ives Rey-Otero1 · Jean-Michel Morel1 · Mauricio Delbracio2

Received: 23 November 2015 / Accepted: 12 April 2016
© Springer Science+Business Media New York 2016

Abstract The most popular image matching algorithm
SIFT, introduced by D. Lowe a decade ago, has proven
to be sufficiently scale invariant to be used in numerous
applications. In practice, however, scale invariance may be
weakened by various sources of error inherent to the SIFT
implementation affecting the stability and accuracy of key-
point detection. The density of the sampling of the Gaussian
scale-space and the level of blur in the input image are two
of these sources. This article presents a numerical analysis
of their impact on the extracted keypoints stability. Such an
analysis has both methodological and practical implications,
on how to compare feature detectors and on how to improve
SIFT. We show that even with a significantly oversampled
scale-space numerical errors prevent from achieving per-
fect stability. Usual strategies to filter out unstable detections
(e.g., poorly contrasted extrema) are shown to be inefficient.
We also prove that the effect of the error in the assump-
tion on the initial blur is asymmetric and that the method is
strongly degraded in the presence of aliasing or without a
correct assumption on the camera blur. This analysis leads to
a series of practical recommendations.

Keywords Scale-space · Keypoint detectors · Scale
invariance · SIFT · Gaussian convolution

1 Introduction

SIFT [19,20] is a popular image matching method exten-
sively used in image processing and computer vision appli-
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cations. SIFT relies on the extraction of keypoints and the
computation of local invariant feature descriptors. The scale
invariance property is crucial. Thematching of SIFT features
is used in various applications such as image stitching [4],
3d reconstruction [31], and camera calibration [35].

SIFT was proved to be theoretically scale invariant [24].
Indeed, SIFT keypoints are covariant, being the extrema of
the image Gaussian scale-space [16,41]. In practice, how-
ever, the computation of the SIFT keypoints is affected in
many ways, which in turn limits the scale invariance.

The literature on SIFT focuses on variants, alterna-
tives, and accelerations [1–7,10,12–15,17,21,23,25–27,32,
34,36–38,40,42,43]. A majority of them use the scale-space
keypoints as defined in the SIFT method. The huge amount
of citations of SIFT indicates that it has become a standard
and a reference in many applications. In contrast, there are
almost no articles discussing the scale-space settings in the
SIFT method and trying to compare SIFT with itself. By this
comparison, we mean the question of comparing the scale
invariance claim in SIFT with its empirical invariance, and
the influence of the SIFT scale-space and keypoint detection
parameters on its own performance. On this strict subject
D. Lowe’s paper [20] remains the principal reference, and it
seems that very few of its claims on the parameter choices of
the method have undergone a serious scrutiny. This paper
intends to fill in the gap for the main claim of the SIFT
method, namely the scale invariance of its keypoint detec-
tor, and incidentally on its translation invariance. This is
investigated by means of a strict image simulation frame-
work allowing us to control the main image and scale-space
sampling parameters: initial blur, scale and space sampling
rates, and noise level. We show that even in a particularly
favorable scenario, many of the detected SIFT keypoints are
unstable.Weprove that the scale-space sampling has an influ-
ence on the scale invariance and that finely sampling the
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Gaussian scale-space improves the detection of scale-space
extrema.Wequantify how the empirical invariance is affected
by image aliasing and other errors due to wrong assumptions
on the input image blur level.

Also, we verify the importance of the quadratic inter-
polation proposed in SIFT for refining the precision of the
localized extrema. This is a fundamental step for the overall
algorithm stability by filtering out unstable discrete extrema.
On the other hand, we show that the contrast threshold
proposed in SIFT is ineffective to remove the unstable detec-
tions.

Some of the conclusions of this paper were announced
in [30]. The present article incorporates a more thorough rig-
orous analysis of the scale-space extrema and their stability.
We reach this by separating the mathematical definition of
the scale-space from the numerical implementation. We also
add an analysis of the difference of Gaussians (DoG) scale-
space operator and a discussion on how fine the scale-space
should be sampled to fulfill the SIFT invariance claim.

The remainder of the paper is organized as follows.
Section 2 presents the SIFT algorithm and details how to
implement the Gaussian scale-space for the requirements of
the present work. Section 3 examines the SIFT theoretical
scale invariance. With that aim in view, we explicit the cam-
era model consistent with the SIFTmethod. Section 4 details
how input images are simulated to be rigorously consistent
with SIFT camera model. Section 5 explores the extraction
of SIFT keypoints at each stage of the algorithm focusing on
the impact of the scale-space sampling on detections. Sec-
tion 6 looks at the impact of image aliasing and of errors in
the estimation of camera blur. To confirm some of the most
obvious findings of this analysis, Sect. 7 briefly examines
performance on a matching scenario. Section 8 is the con-
clusion which contains a list of practical recommendations.

2 The SIFT Method and Its Exact Implementation

In this section, we briefly review the SIFT method and fix
the adjustments that are required to make it ideally precise.
This ideal SIFT will be used in the next sections to explore
the limits of the SIFT method to detect scale-space extrema.

2.1 SIFT Overview

SIFTderives from scale invariance properties of theGaussian
scale-space [16,41]. The Gaussian scale-space of an initial
image u is the 3d function defined as the convolution on R2

with the isotropic Gaussian function of integral equal to one:

v : (σ, x) �→ (Gσ ∗ u)(x) =
∫
R2

Gσ (x′)u(x − x′)dx′,

where the Gaussian kernel is parameterized by its standard
deviation σ > 0 (the scale),

Gσ (x) = 1

2πσ 2 e
− ‖x‖2

2σ2 .

We shall shorten the notation by also letting Gσ denote
the convolution operator, thus simply writing Gσu(x) :=
(Gσ ∗ u)(x). In this framework, the Gaussian kernel acts
as an approximation of the optical blur introduced in the
camera (represented by its point spread function). Among
other important properties [16], the Gaussian approximation
is convenient because it satisfies the semi-group property

GσGγ u(x) = G√
σ 2+γ 2u(x). (1)

In particular, this permits to simulate distant snapshots from
closer ones. Thus, the scale-space can be seen as a stack of
images, each one corresponding to a different zoom factor.
Matching two images with SIFT consists in matching key-
points extracted from these two stacks.

SIFT keypoints are defined as the 3d extrema of the differ-
ence of Gaussians (DoG) scale-space. Let v be the Gaussian
scale-space and κ > 1, the DoG is the 3d function

w : (σ, x) �→ v(κσ, x) − v(σ, x).

When κ → 1, theDoGoperator acts as a good approximation
of the normalized Laplacian of the scale-space [16,20],

v(κσ, x) − v(σ, x) ≈ (κ − 1)σ 2Δv(σ, x).

Continuous 3d extrema of the digital DoG are calculated
in two successive steps. First, theDoG scale-space is scanned
for localizing discrete extrema. This is done by comparing
each voxel to its 26 neighbors. Since the location of the dis-
crete extrema is constrained to the scale-space sampling grid,
SIFT refines the position and scale of each candidate keypoint
using a local interpolation model. Given a detected discrete
extremum (σ, x) of the digital DoG space, we denote by
ωσ,x(α) the quadratic function at sample point (σ, x) given
by

ωσ,x(α) = wσ,x + αT gσ,x + 1

2
αT Hσ,xα, (2)

where α = (α1, α2, α3) ∈ [−1/2, 1/2]3; gσ,x and Hσ,x denote
the 3d gradient and Hessian at (σ, x) computed with a finite
difference scheme. This quadratic function can be interpreted
as an approximation of the second-order Taylor expansion of
the underlying continuous function (where its derivatives are
approximated by finite differences).

To refine the position of a discrete extremum (σ0, x0)SIFT
proceeds as follows.
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1. Initialize (σ, x) = (σ0, x0).
2. Find the extrema of ωσ,x by solving ∇ωσ,x(α) = 0. This

yields α∗ = − (
Hσ,x

)−1
gσ,x and a refined DoG value

ωσ,x(α
∗). The corresponding keypoint coordinates are

updated accordingly.
3. If ‖α∗‖∞ < Moffset = 0.6 the extremum is accepted.

Otherwise, go back to Step 1 and recompute the quadratic
model at the closest point in the scale-space discrete grid.

This process is repeated up to Ninterp times (in SIFT, Ninterp =
5) or until the interpolation is validated. If after five iterations
the result is not yet validated, the candidate keypoint is dis-
carded.

Low contrast detections are filtered out by discarding key-
points with a small DoG value. Keypoints lying on edges are
also discarded since their location is not precise due to their
intrinsic translation invariant nature.

A reference keypoint orientation is computed based on
the dominant gradient orientation in the keypoint surround-
ing. This orientation along with the keypoint coordinates are
used to extract a covariant patch. Finally, the gradient orien-
tation distribution in this patch is encoded into a 128 elements
feature, the so-called SIFT descriptor. We shall not discuss
further the constitution of the descriptor and refer to the abun-
dant literature [6,14,22,25,34,39]. Numerous variations of
the SIFT method exist, each variant substituting one or more
elements of the SIFT algorithmic chain either to lower the
computational cost [3,5] or to improve the localization accu-
racy [8,18,44]. For a detailed description of the SIFTmethod
we refer the reader to [28].

2.2 The Gaussian Scale-Space and Its Implementation

Let us assume that the input image has Gaussian blur level
c. The construction of the digital scale-space begins with the
computation of a seed image. For that purpose, the input
image is oversampled by a factor 1/δmin and filtered by a
Gaussian kernel G√

σmin
2−c2

to reach the minimal level of

blur σmin and inter-pixel distance δmin. The scale-space set is
split into subsets where images share a common inter-pixel
distance. Since in the original SIFT algorithm the sampling
rate is iteratively decreased by a factor of two, these subsets
are called octaves. We shall denote by nspo the number of
scales per octave.

The subsequent images are computed iteratively from the
seed image using the semi-group property (1) to simulate the
blurs following a geometric progression

σs = σmin2
s/nspo , s = 1, . . . , nspo − 1.

The digital Gaussian scale-space architecture is unequivo-
cally defined by four parameters: the number of octaves noct,

the minimal blur level σmin in the scale-space, the number
of scales per octave nspo, and the initial oversampling factor
δmin. The standard values proposed in SIFT [19] are nspo = 3,
δmin = 1/2 and σmin = 0.8. By increasing nspo the scale
dimension can be sampled arbitrarily finely. In the sameway,
by considering a small δmin value, the 2d spatial position can
be sampled finely.

From this digital Gaussian scale-space the difference of
Gaussian scale-space (DoG) is computed. A DoG image at
scale σ is computed by subtracting from the image with blur
level κσ the image with blur level σ (with κ > 1). Origi-
nally, theDoG scale-space is computed as a simple difference
between two successive scales of the Gaussian scale-space
so that κ = 21/nspo . In the present work, we have modified
this definition by unlinking the parameters κ and nspo. This
will allow us to better analyze the implications of the mathe-
matical definition of the DoG operator (given by the κ-value)
and the algorithmic implementation (given by the sampling
parameter nspo).
The Gaussian convolution implementation The architecture
of the Gaussian scale-space requires for the Gaussian con-
volution to be implemented so it satisfies the semi-group
property (1). In SIFT, the Gaussian convolution is imple-
mented as a discrete convolution with a sampled truncated
Gaussian kernel. Such an implementation satisfies the semi-
group property for the SIFT default parameters (nspo = 3),
but it fails for larger values of nspo, as the level of blur to be
added approaches zero.

To illustrate and quantify how the discrete Gaussian con-
volution fails to satisfy the semi-group property, we carried
out the following experiment. A sampled Gaussian function
of standard deviation c = 1.0 was filtered N = 10 times
using a discrete Gaussian filter of standard deviation σ . If
the Gaussian semi-group property were valid, then, applying
N times a Gaussian filter of parameter σ should produce the
same result as filtering only once with a Gaussian function of
parameters

√
Nσ .Wefitted aGaussian function to thefiltered

image by least squares. We compared the estimated stan-

dard deviation to the theoretical expected value
√

σ 2
in + Nσ 2

(Fig. 1a). For low values of σ (i.e., σ < 0.7), the estimated
blur deviates from the theoretical value

√
Nσ indicating that

the method fails to satisfy the semi-group property. This is a
direct consequence of image aliasing produced by excessive
undersampling of the Gaussian kernel [11,29]

To avoid this undesired phenomenon in our experiments
that will consider strong scale oversampling, we replaced
the discrete convolution by a Fourier-domain-based convo-
lution using the discrete cosine transform (DCT). This can be
interpreted as the continuous convolution between the DCT
interpolation the discrete input image and the Gaussian ker-
nel. The implementation details along with a comparison of
the Fourier-based convolution with the discrete convolution

123



J Math Imaging Vis

(a) (b)

Fig. 1 Analysis of the Gaussian convolution implementation through
the semi-group property. An image having a Gaussian blob of stan-
dard deviation c = 1.1 was filtered by (i) a Gaussian convolution of
parameter

√
Nσ , and (ii) by applying N = 10 iterations of a Gaussian

convolution of parameter σ for different values of σ . Then the blur lev-

els of the filtered imageswere estimated and compared to the theoretical
expected value. a Discrete convolution with sampled Gaussian kernel.
For low values of σ , the estimated blur deviates from the theoretical
value

√
Nσ . This is due to image aliasing when sampling the Gaussian

kernel. b The DCT convolution fully satisfies the semi-group property

and Lindeberg’s discrete scale-space smoothingmethod [16]
can be found in [29].

Figure 1b shows that the Fourier-based convolution satis-
fies the semi-group property even for low values of σ .

2.3 Building an Ideal SIFT for Parameter Exploration

Since our goal was to explore extrema detection, we imple-
mented an ideal SIFTwhere not only the convolution is exact,
but also the extrema filters were turned off. The implementa-
tion of SIFT used in the present work differs from the original
one on two aspects (besides the replacement of the discrete
convolution by the Fourier-based one). First, SIFT proposes
two filters to discard unreliable keypoints. The first one elim-
inates poorly contrasted extrema (those with lowDoG value)
and the second one discards extrema laying on edges (using a
threshold on the local Hessian spectrum). These filters were
deactivated to gain a full control of all detected extrema and
to isolate the impact of each of them in terms of keypoints
stability. This choice will be a posteriori justified, as we
demonstrate in Sect. 5.3 that the DoG contrast threshold is
inefficient.

Secondly, we decided to implement the DoG operator in
such a way that the same mathematical definition is kept
(i.e., using the same κ-value) regardless of the scale sam-
pling rate nspo. SIFT approximates the normalized Laplacian
σ 2	 by the difference of Gaussian operator. Different DoG
definitions lead to different extrema. Consider for instance
an image with a Gaussian blob of standard deviation σblob as
input. The normalized Laplacian will have an extremum at
the center of the Gaussian blob, and scale σdetect = σblob. On
the other hand, the DoG scale-space of parameter κ yields

an extremum at scale σdetect = σblob/
√

κ. Consequently, the
range of scales simulated in the scale-space is affected by
the parameter κ .

For the requirements of the present work, and to investi-
gate thoroughly how the operator definition affects extrema
extraction, the considered DoG scale-space implementation
allows us to set κ and nspo independently.
Implementation details The input image was oversampled
by a factor 1/δmin to reach the δmin sampling rate. This was
done by using a cubic B-spline interpolation of order 3. From
this interpolated image all images in the scale-space were
computed using a combination ofDCTGaussian convolution
and subsampling. For each scale σ simulated in an octave, the
algorithm computes two images, the first one corresponding
to scaleσ and the second one corresponding to scale κσ (both
being directly computed from the input image). Although
we lost the benefit of a low computational cost, this gave
us flexibility and allowed us to investigate the influence of
the operator definition regardless of the scale-space sampling
rate.

3 The Theoretical Scale Invariance

In this section, we give the correct proof that SIFT is scale
invariant and stress the fact that this proof also indicates
that knowing exactly the initial camera blur is crucial for
the method’s consistency.

3.1 The Camera Model

In the SIFT framework, the camera point spread function is
modeled by a Gaussian kernel Gc and all digital images are
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frontal snapshots of an ideal planar object described by the
infinite resolution image u0. In the underlying SIFT invari-
ance model, the camera is allowed to rotate around its optical
axis, to take some distance, or to translate while keeping the
same optical axis direction. All digital images can therefore
be expressed as

u =: S1GcHλTyRθu0, (3)

where S1 denotes the sampling operator, Hλ a homothety,
defined by Hλu(x) := u(λx)), Ty a translation such that
Tyu(x) := u(x − y) and with Rθ denoting both the rotation
matrix and the corresponding rotation Rθu(x) := u(Rθx).

3.2 The SIFT Method is Theoretically Invariant to
Zoom O uts

It is not difficult to prove that SIFT is consistent with the
camera model. Nevertheless, the proof in [24] is inexact,
as pointed out in [33]. Let uλ and uμ denote two digital
snapshots of the scene u0. More precisely,

uλ = S1GcHλu0 and uμ = S1GcHμu0. (4)

Assuming that the images are well sampled, namely
that S1 is invertible by Shannon interpolation, and taking
advantage of the semi-group property (1), the respective
scale-spaces are

vλ(σ, x) = G√
σ 2−c2I1S1GcHλu0(x) = Gσ Hλu0(x) (5)

vμ(σ, x) = Gσ Hμu0(x), (6)

where I1 denotes the Shannon interpolation operator. These
formulae imply that both scale-spaces only differ by a repara-
meterization. Indeed, if v0 denotes the Gaussian scale-space
of the infinite resolution image u0 (i.e., v0(σ, x) = Gσu0(x))
we have

vλ(σ, x) = Hλ(Gλσu0(x)) = v0(λσ, λx), (7)

vμ(σ, x) = v0(μσ,μx), (8)

thanks to a commutation relation between homothety and
convolution.1

By a similar argument, the two respective DoG functions
are related to the DoG function w0 derived from u0. For a
ratio κ > 1 we have

1 Indeed, thanks to a change of variable, we have

GcHλu0(x) =
∫
R2

Gc(x′)u0(λx − λx′)dx′

=
∫
R2

Gλc(x′′)u0(λx − x′′)dx′′ = HλGλcu0(x).

wλ(σ, x) = vλ(κσ, x) − vλ(σ, x) (9)

= v0(κλσ, λx) − v0(λσ, λx) (10)

= w0(λσ, λx) (11)

and similarly wμ(σ, x) = w0(μσ,μx).
Consider an extremum point (σ0, x0) of the DoG scale-

space w0. Then if σ0 ≥ max(λc, μc), this extremum
corresponds to extrema (σ1, x1) and (σ2, x2) in wλ and wμ,
respectively, satisfying σ0 = λσ1 = μσ2. This equivalence
of extrema between the two scale-space guarantees that the
SIFT descriptors are identical.

Note that this same relation links the two normalized
Laplacians applied on vλ and vμ, denoted, respectively, nLλ

and nLμ, both related to the normalized Laplacian of v0
denoted nL0. We have

nLλ(σ, x) = σ 2Δvλ(σ, x) (12)

= (λσ)2Δv0(λσ, λx) (13)

= nL0(λσ, λx) (14)

nLμ(σ, x) = nL0(μσ,μx) (15)

Therefore, considering extrema of the normalized Laplacian
as keypoints will also lead to SIFT descriptors that are iden-
tical.

3.3 Knowing the Camera Blur is Crucial for Scale
Invariance

The knowledge of the camera blur is crucial to ensure the
theoretical invariance to zoom-outs [33]. Indeed, DoG scale-
spaces computed with a wrong camera blur have in general
unrelated extrema. Starting again from the two digital snap-
shots uλ and uμ, but assuming a wrong blur c′ instead of the
correct blur c, the respective Gaussian scale-spaces are

vλ(σ, x) = G√
σ 2−c′2I1S1GcHλu0(x) (16)

= G√
σ 2−c′2+c2Hλu0(x) (17)

= v0

(
λ
√

σ 2 − c′2 + c2, λx
)

(18)

and

vμ(σ, x) = v0

(
μ

√
σ 2 − c′2 + c2, μx

)
. (19)

We see that, because of the wrong blur assumption, the scale-
space function v0 is shrunken or dilated along scale. The
corresponding DoG scale-spaces are

wλ(σ, x) = v0

(
λ
√

κ2σ 2 − c′2 + c2, λx
)

− v0

(
λ
√

σ 2 − c′2 + c2, λx
)

,
(20)
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wμ(σ, x) = v0

(
μ

√
κ2σ 2 − c′2 + c2, μx

)

− v0

(
μ

√
σ 2 − c′2 + c2, μx

)
.

(21)

None of these are linear reparameterizations of theDoG func-
tion w0 anymore. They yield therefore unrelated extrema.
Such bias is maximal with detections at finer scales and with
large zoom factors.

4 Simulating the Digital Camera

Controlling the image formation process permits us to mea-
sure how invariant SIFT is in different scenarios. Such a
controlwas achieved by simulating images that are consistent
with the SIFT camera model. Images at different zoom lev-
els were simulated from a large reference real digital image
uref through Gaussian convolution and subsampling. To sim-
ulate a camera having a Gaussian blur level c, a Gaussian
convolution of standard deviation cS, with S > 10 was first
applied to the reference image. The convolved image was
then subsampled by a factor S. Assuming that the reference
image has an intrinsic Gaussian blur level of cref 
 cS, the
resulting Gaussian blur level is

√
c2 + (cref/S)2 ≈ c. We

estimated the blur level introduced by a digital reflex camera
by fitting a Gaussian function to the estimated camera point
spread function (following [9]). The obtained Gaussian blur
levels varied from c = 0.35–0.95, depending on the aperture
of the lens (blur level increases with aperture size). Dif-
ferent zoomed-out and translated versions were simulated
by adjusting the scale parameter S and by translating the
sampling grid. Thanks to the large subsampling factor, the
generated images are noiseless. In addition, the images were
stored with 32-bit precision to mitigate quantization effects.
Figure 2 shows some examples of simulated images used in
the experiments.

Itmight be objected that our simulations are highly unreal-
istic as the images to be compared by SIFT in a real scenario
are not perfectly sampled or noiseless. Nevertheless, with an
ever growing image resolution, more and more images will
be compared by SIFT in large octaves, and therefore after a
large subsampling, so that these properties can become real-
istic in practice. Furthermore, even if applying SIFT to the
originals and regardless of initial noise and blur, the images
at large scales also become anyway perfect so that the accu-

racy and repeatability issues under such favorable conditions
are relevant.

5 Empirical Analysis of the Digital Scale-Space
Sampling

The SIFT method aims at locating accurately the extrema
of the DoG scale-space. Ideally, one would like to detect
and locate all extrema from the underlying continuous DoG
scale-space. However, in practice, we do not have access
to the continuous scale-space but to its discrete counter-
part. In theory, as δmin → 0 and nspo → ∞ the discrete
scale-space better approximates the continuous scale-space
therefore allowing to extract reliably all continuous extrema.
This section investigates what happens when the sampling
rates increase and how sampling affects the successive steps
of the rudimentary procedure for detecting 3d scale-space
discrete extrema, namely the extraction of discrete extrema,
their quadratic interpolation and their filtering based on their
DoG response.

To focus on the influence of the scale-space sampling,
the study was carried out in the most favorable conditions:
noiseless and aliasing-free input images (c = 1.1 and S =
10). In all experiments, we set κ = 21/3 to separate the
mathematical definition of the DoG analysis operator from
the scale-space discretization.

5.1 Number of Detections

To evaluate how the scale-space sampling rates affects the
number of detections we generated different scale-space
discretizations by varying the parameters (δmin, nspo), and
extracted the 3d discrete extrema for each one of them.

Figure 3a shows the number of detected extrema for the
different scale-space samplings. At first sight, it seems that
some digital scale-space samplings produce many more key-
points than the SIFT default sampling (δmin = 1/2, nspo = 3).
However, this increase in detections happens for discretiza-
tions that are significantly unbalanced in space and in scale.
By unbalance we mean that the scale and the space dimen-
sions are sampled with very different sampling rates.

Boundary effect To do a fair comparison of the different
discrete detected extrema when changing the scale-space

Fig. 2 Examples of simulated
images consistent with SIFT’s
image camera model. The
respective blur levels are
c = 0.5, c = 1.0, and c = 0.6
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Fig. 3 Influence of the scale-space sampling rate (nspo, δmin) on the
number of detected DoG extrema. a Number of 3d DoG discrete
extrema. Unbalanced discretizations can produce twice as many detec-
tions as the default scale-space sampling used in SIFT (nspo = 3, δmin =
1/2). This gap is reduced after compensating for a boundary effect by
discarding 3d discrete extrema with detected scale below σmin21/3 (b),
and after removing duplicate detections (c). Unbalanced discretizations
may lead to inaccurate localmodels for the extrema refinement proposed

in SIFT. dMedian of the condition numbers of DoG 3d Hessians used
for extrema interpolations. Unbalanced sampling grids (shown in the
top-right or bottom-left parts of this graph) produce extremawith signif-
icantly poor Hessian condition number. This leads to unstable extrema
interpolations. e Balanced sampling rates (those satisfying (23), shown
in the dotted blue line) lead to extrema havingwell-conditionedHessian
matrices (red line) (Color figure online)

sampling rates, we have to consider that depending on the
scale-space sampling, some extrema close to the finer scale
boundary are not detected. Indeed, due to the scale dis-
cretization there are no detected keypoints with scale below
σmin21/2nspo . To compensate for this dead range, which is a
function of nspo, we restricted the analysis to a common scale
range independent of nspo. This was achieved by discarding
all extrema with scale below σmin21/3. To avoid issues due
to the coarse scale discretization, we used the keypoint scale
obtained after refinement (2). Figure 3b shows, for all scale-
space tested configurations, the number of detections in the
common scale region. The number of detected extrema lying
in the common region is much more similar for all the scale-
space samplings.

Duplicate detectionsWewill say that detections (σ0, x0) and
(σ1, x1) are the same, if

||x0 − x1||∞ ≤ ε and R−1 ≤ σ1/σ0 ≤ R, (22)

where ε and R are the spatial tolerance and scale relative
tolerance values respective.

Clearly, there is a compromise between saying that two
detections are not the same and allowing some displacement
due to numerical errors. Currently, we are not tackling the
problem of precision but the problem of not mixing two dif-
ferent detections. With that aim, it seems reasonable that the
tolerance values are set in order to avoid that one detection
be mistaken for another. We opted to set tolerance values
to ε = 1.0 and R = 21/2 independently of the scale-space
sampling.

Let D be the set of detected DoG extrema. We call
duplicates of (x0, σ0) ∈ D the subset of detected extrema
D(x0, σ0) ⊂ D that satisfy (22). Given the set of all detected
keypoints D, we say that U is a representative set of unique
detections if

U = argmin |U | s.t. U ⊂ D and ∪(x,σ )∈U D(x, σ ) = D,
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where the number of keypoints in the set U is denoted by
|U |. Figure 3c shows the number of unique detections in the
common scale region. The number of unique detections is
similar to the number of detections (Fig. 3b). This indicates
that in general duplicate detections are negligible.

Balancing the scale and space DoG sampling The SIFT
algorithm proposes to refine the position of a discrete
extremum using a quadratic interpolation. Having an unbal-
ance sampling in scale and space may lead to an unreliable
interpolation due to the very different discretization. As we
presented in Sect. 2, the refinement of a keypoint is done
by solving a linear system [from (2)]. The sensitiveness to
numerical errors can be measured by the linear system’s con-
dition number (i.e., the condition number of the Hessian at
the extrema to be refined). Figure 3d shows the median of the
condition number for the sets of detected extrema associated
with different scale-space samplings. It shows that using a
balanced sampling rate improves the overall stability of the
extrema interpolation.

By balanced sampling we mean that the distance separat-
ing adjacent samples in the scale dimension is similar to the
distance separating adjacent samples in space. For a DoG
scale-space with parameter κ , the distance between the first
two simulated scales is

Δσ = κσmin(2
1/nspo − 1).

Thus, to equally sample the Gaussian kernel

G(x, σ ) = 1

2πσ 2 e
−||x||2/2σ 2

in scale and space, the spatial inter-pixel distance should be

δmin = √
2Δσ = √

2κσmin(2
1/nspo − 1). (23)

This relation between both sampling rates is plotted in
Fig. 3e along with the median condition numbers on this set
of balanced sampling rates. The condition number is mostly
constant for balanced samplings.

5.2 Stability of DoG Extrema to Scale-Space Sampling

To evaluate if all 3d discrete extrema are equally stable to
an increase of the DoG sampling rate, we simulated a set of
increasingly dense balanced scale-spaces. We set the min-
imal scale-space blur level to σmin = 1.1. We simulated
increasingly dense scale-space samplings (nspo, δmin)i , for
i = 1, . . . , n with nspo = 3, . . . , 19 and the balanced spatial
sampling rate δmin := δmin(nspo) given by (23) (i = 1 being
the coarsest one and i = n the finest one). Figure 4a shows
that the number of detections is approximately constant for
different balanced sampling rates.

LetDi for i = 1 . . . , n be the sets of detected 3D extrema
for the discretizations described above. Given a detected
extremum (x0, σ0) ∈ Di , we say the extremum is detected
in D j if there exists (x, σ ) ∈ D j such that they are the same
detection according to the precision conditions (22). We say
that a detected extremum (x0, σ0) ∈ Di is new if it was
not detected in Di−1. Given the sampling i , the rate of new
extrema is computed as the proportion of new detected key-
points among the total number of detections. In the same
way, we define the rate of lost extrema as the proportion of
those present in the (coarser) sampling i and not present in
the (finer) sampling i+1. Figure 4b shows the rate of new and
lost detections as a function of the sampling rate. The new
detection rate decreases with the sampling rate and stabilizes
to a minimal rate of 10 % of the total number of detections
for nspo ≥ 14. The same observations apply to the rate of
lost extrema.

This surprising result means that despite sampling the
scale-space very finely, 3d discrete extrema keep appearing
and disappearing when changing the sampling.

We additionally considered pairs of translated, scaled, and
rotated images and evaluated the stability of the extracted
discrete extrema for various sampling grids to understand
the influence of sampling. This led to the same conclusions,
namely that a dense and balanced sampling of the scale-
space leads to more stable discrete extrema and that even
finely sampled scale-spaces are not enough to achieve perfect
stability.

To illustrate how discrete extrema appear and disappear as
scale-space sampling rates change, we decided to investigate
the stability of each single detected extremum. The set of
all unique detected extrema was formed by gathering the
extrema detected on all the simulated scale-spaces Dall =
∪i=1,...,nDi and then by extracting a unique set of detections
Uall. For each detected extremum (x, σ ) ∈ Uall, we checked
for its presence in each of the Di detection sets. This was
done by using the same definition as in (22). The results are
summarized in the occurrencematrix shown in Fig. 4c. Each
simulated discretization is indexed by the nspo value. Each
entry in this matrix indicates if a keypoint in Uall (column)
was found in the scale-space with a given discretization i =
1, . . . , n (where i is the row index in the matrix).

We define the stability of a unique keypoint as the pro-
portion of discretizations where it is detected. Figure 4d
shows the normalized occurence matrix, where each entry
in the occurence matrix is multiplied by the stability value
(therefore each column has the same color). Also, keypoints
(columns) were reorganized from less to more stable (left to
right).

The normalized occurrence matrix confirms that a major-
ity of the keypoints are stable as they appear on at least 80 %
of the discretizations, and that some keypoints tend to appear
and disappear repeatedly as sampling rates increase. It also
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Fig. 4 Influence of sampling
density on keypoint stability. A
set of increasingly dense and
balanced scale-spaces is
computed. The scale-space
samplings are indexed by the
nspo value, and δmin is given by
(23). a The number of detections
is roughly constant for different
sampling rates. b The rates of
lost extrema (detected in the
current sampling but not in the
immediately finer sampling) and
of new extrema (detected in the
current sampling but not in the
immediately coarser sampling)
decrease with the sampling rate
nspo and stabilize around 10 %
of the total number of
detections. c The occurrence
matrix. Each row in this matrix
corresponds to one of the
simulated samplings (nspo),
while each column indicates if a
keypoint was detected in that
particular sampling. d For better
visualization, the columns are
colored and reorganized in
increasing order of stability
(yellow always detected, blue
detected only once). Almost
20% of the detections appear
for all scale-space sampling
rates (Color figure online)
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shows that the proportion of unstable keypoints (e.g., those
appearing less than 20 % of the times) is low overall but is
significantly larger for coarse discretizations than in denser
ones.

5.3 Can Unstable (Intermittent) Detections Be
Detected?

To increase its overall detection stability, SIFT discards
non-contrasted extrema based on their absolute DoG value.
However, many other features, computed from the values
of the extremum and its neighbors, could be used as well.
The DoG value, the Laplacian of the DoG, the DoG Hessian
condition number, and the minimal absolute value of the dif-
ference between the extremum and its adjacent samples are
some of them.

To find out if any of these simple features is good at pre-
dicting if a discrete extremum is stable (to different sampling
rates), we proceeded as follows. Given the set of unique
detections Uall computed by gathering all detections from

the different scale-spaces with different sampling rates, we
considered two subsets of unique keypoints: one subset of
stable unique extrema (with occurrence rate above 80%) and
one subset ofunstableunique extrema (occurrence rate below
20%). Figure 5a–d shows the proportion of extrema in both
stable/unstable sets, respectively, that have a feature value
below a certain threshold. The considered features are (a) the
DoGvalue, (b) theLaplacianof theDoG, (c) theDoGHessian
condition number, and (d) the minimal absolute value of the
difference between the extremum and its adjacent samples.

This figure demonstrates that none of these features man-
ages to faithfully separate the stable from the unstable ones.
This is confirmed by the ROC curve shown in Fig. 5e (see
figure caption for details). Noticeably, the keypoint feature
giving the lowest discrimination performance is the DoG
value used by SIFT.

5.4 Visualizing Unstable (Intermittent) Detections

In an attempt to understand why the rudimentary detection
and filtering procedures fail to avoid spurious detections,
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Fig. 5 Attempts at filtering
keypoints that are unstable to
changes in the scale-space
sampling. Increasing thresholds
are applied, respectively, to the
set of stable and unstable
detections. The considered
features are a the extremum
DoG value, b the difference of
extremum DoG value and the
adjacent samples in the
scale-space, c the DoG 3d
Laplacian value at the
extremum, and d the condition
number of the DoG 3d Hessian
at the extremum. None of the
tested features separates
convincingly the unstable from
the stable detections. This is
confirmed by the ROC curves,
illustrating the performance of
each feature, shown in e. A
point in a ROC curve indicates
the proportion of non-filtered
stable keypoints (good
detections—sensitivity) as a
function of the filtered unstable
ones (good
removals—specificity) for a
particular threshold value. A
perfect feature should produce a
ROC that is always equal to 1.
According to this experiment,
the worst feature for eliminating
keypoints unstable to changes in
the scale-space sampling is the
DoG value.
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we examined visually some of the detected scale-space
local structures. Figure 6 shows the DoG iso-surface com-
puted around several stable and unstable keypoints from a
very dense scale-space. Some detections are associated to
isotropic shapes while others stem from elongated structures.
There is no obvious link between how isotropic a structure is
and its overall stability. As shown in the figure, some elon-
gated structures produce stable detections. It seems therefore
that a local analysis of the scale-space structure is not suffi-
cient to characterize unstable detections.

5.5 The Influence of Extrema Interpolation on Stability,
Precision and Invariance

The refinement of the discrete extrema position proposed in
SIFT has two main purposes. First, it allows to locate the
extrema to subpixel accuracy thanks to a local continuous
model of the DoG scale-space. But this refinement procedure
also detects and discards unstable discrete extrema.

In this section, we analyze the impact of the refinement
procedure. To that aim, we considered an input image and a
series of transformations simulating small displacements of
the camera. Although the analysis was restricted for a sake
of simplicity to the case of translations and scale changes, it
could be easily generalized to more complex image transfor-
mations such as perspective projections.

We examined the influence of the two main parameters in
the refinement procedure (see Sect. 2.1): the maximal num-
ber of allowed interpolations Ninterp, and themaximumoffset
Moffset authorized for the extremum at each refinement iter-
ation.

Our performance measure was the stability, measured by
considering the number of keypoints that appear in at least
a certain percentage of the simulated image transformations.
A perfectly stable keypoint would be one that appears in all
the simulated images, while a perfectly unstable keypoint
would be one that only appears in one of the images. We also
measured the precision by computing the average standard
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Fig. 6 Illustration of the DoG
scale-space around detected
keypoints. DoG Iso-surfaces are
computed from a dense
scale-space. We observe a
variety of configurations from
isotropic shapes to elongated
structures. Furthermore, there
seems to be no obvious
connection between the local
structures and the keypoint’s
stability level

deviation of the location of the stable keypoints, where key-
points were considered stable if they appeared in at least 50%
of the simulated transformations.

Figure 7a,b shows the percentage of unique keypoints that
appear in at least a given percentage of the translations for
different values ofMoffset. Each figure corresponds to a given
sampling rate (nspo = 3 and 15) and agivenmaximal number
of interpolations (Ninterp = 1, 2,∞). Ideally, one would like
to have a large proportion of stable detections, which would
correspond to a flat curve. The percentage of detections for
the SIFT sampling rate (nspo = 3) decreases quickly when
considering only the more stable ones, present in a large per-
centage of the simulated transformations. On the other hand,
nspo = 15 leads to flatter curves, which implies more stable
detections, and demonstrates that increasing the scale-space
sampling improves stability. The refinement of the extrema
helps discard the unstable ones.

The fact that the results with Ninterp = 2 and Ninterp = ∞
are identical (second and third row of Fig. 7), implies that
there is no extra benefit in allowing more than two iterations.
The present analysis indicates that allowing a maximum of
two interpolations (Ninterp = 2) in combination with a max-
imum displacement of Moffset = 0.6 produce on average
keypoints that are more stable. This conclusion is indepen-
dent of the considered nspo. Therefore, for the remainder of

the article, we consider the refinement step with these two
values.

Increasing the scale-space sampling rate in conjunction
with extrema interpolation has a tremendous impact on the
detection precision. Figure 7 shows for both, discrete and
interpolated detections, the mean of the precision of stable
keypoints (appearing in at least 50 % of translations) as a
function of the scale-space sampling rate.

We repeated the same experiment but different camera
zoom-outs were simulated. The results are very similar to the
pure camera translation case (seeFig. 8). In general, sampling
the scale-space finer than what is proposed in SIFT (e.g.,
nspo > 3) allows to better localize the DoG extrema. In addi-
tion, the local refinement of the extrema position increases
the extrema precision.We repeated the experiments with dif-
ferent rotations and reached the same conclusions.

5.6 Influence of κ

The DoG scale-space is formed by computing the differ-
ence of Gaussians operator at scales κσ and σ . To analyze
the influence of the DoG parameter κ , we computed the
extrema of different DoG scale-spaces produced with κ =
21/30, 21/29, . . . , 21/2. In order to minimize sampling related
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Fig. 7 Influence of extrema
refinement parameters Moffset
and Ninterp on the detection
stability/precision. A set of
translated images was simulated
and the keypoints extracted.
Each curve shows the
percentage of unique keypoints
appearing in at least a certain
percentage of the simulated
image translations for different
values of
Moffset = 0.5, 0.6, 1.0,∞. The
plots in the first, second, and
third row were generated
considering a maximum number
of interpolations
Ninterp = 1, 2, and ∞,
respectively. The left block of
plots (a) was generated by
sampling the scale-space with
nspo = 3 (and the corresponding
δmin), while the right block (b)
was generated using nspo = 15.
Allowing two iterations
(Ninterp = 2) and a maximal
offset of Moffset = 0.6 gives the
best performance in terms of
stability of detected keypoints.
Allowing for more
interpolations, attempts did not
increase the performance, as can
be seen by comparing the third
row to the second row. c shows
the influence of the extrema
refinement on the precision of
the stable set of keypoints
(appearing in at least 50 % of
the simulated images). In this
pure translation scenario, it
appears that the precision of the
detected extrema significantly
increases when using extrema
interpolation and when
sampling finely the scale-space
(e.g., nspo > 3)
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instability, the scale-spaces were sampled at nspo = 15 and
the respective δmin.

The number of detected extrema is more or less constant
for different values of κ (Fig. 9 a). Depending on the κ value,

the same structure is detected at a different scale. As pointed
out in Sect. 2.3, a Gaussian blob of standard deviation σ

produces an extrema of the DoG at scale σ/
√

κ . Thus, we
have normalized the detections scale by σnormalized = σ

√
κ .
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Fig. 8 Influence of scale-space sampling and extrema refinement on
the invariance to zoom-outs. A set of zoomed-out images was simu-
lated, scale-space were computed and the keypoints extracted and those
which were detected outside the commonly covered scale range were
discarded. a The percentage of unique detections appearing in at least
a certain percentage of the simulated images for different scale-space
sampling and refinements. The best performance is obtained by signifi-
cantly oversampling the scale-space,with nspo = 15, and by refining the
extrema with the local interpolation. In this case, most of the detected

keypoints are present in all the simulated images. On the other hand,
the original SIFT sampling nspo = 3 leads to low stability even with the
extrema refinement step. bMean precision of stable keypoints location
(appearing in at least 50% of the zoom-outs) plotted as a function of
the sampling rate nspo. The local refinement of the extrema position sig-
nificantly increases the precision of the extrema detection. Also, using
a finer grid than the one proposed in SIFT (e.g., nspo > 3) allows to
better localize the extrema

To compare the keypoints detected with different κ values,
we also restricted the analysis to those lying on the common
scale range, that is, σmin

√
21/2 ≤ σ ≤ 2σmin

√
21/30.

We proceeded similarly as before by gathering all the
detections from the different DoG scale-spaces and com-
puted a set of unique detections. Then,we proceeded to create
the occurrence matrix. The occurrence matrix in Fig. 9b
shows that the different κ’s lead for the most part to identical
detections. Almost half the keypoints are detected in every
DoG scale-space and a large percentage of the keypoints is
detected in most simulated scale-spaces.

6 Impact of Deviations from the Perfect Camera
Model

In order to achieve perfect invariance, SIFT formally requires
that the image is acquired in perfect conditions. This means
that the input image should be noiseless, well sampled
(according to the Nyquist–Shannon sampling theorem) and
with an a priori known level of Gaussian blur c. These ideal
conditions justify the construction of the image scale-space.
In this section, we evaluate what happens when there are
deviations from these ideal requirements.

6.1 Image Aliasing

Let us assume that the input image was generated with a
camera having a Gaussian point spread function of standard

deviation c. If c is low (i.e., c ≤ 0.7) the acquired image will
be subject to aliasing artifacts. We shall assume first that this
camera blur c is known beforehand, so that the SIFT method
can be applied consistently.

To evaluate the SIFT performance in this aliasing situa-
tion, we simulated random translations of the digital camera.
Then, we computed the extrema of the DoG scale-spaces
generated with each translated image and compared the
extrema. All scale-space consisted of one octave computed
with nspo = 15, σmin = 1.1 and the interpolation parameters
were set to Ninterp = 2 and Moffset = 0.6.

Figure 10a shows the average number of keypoints
detected as a function of the camera blur c. The number
of detections is independent of the camera blur. Indeed, a
sharper shot does not increase the number of keypoints.

In Fig. 10b we show the percentage of unique keypoints
that appear in at least a certain percentage of the translated
images. Keypoints detected from well-sampled images (e.g.,
c > 0.6) are stable to translation (the curves are almost flat)
while those from severely undersampled images (c ≈ 0.3)
are very sensitive to the position of the sampling grid, as
expected.

6.2 Unknown Input Image Blur Level

A more realistic scenario is the case where the level of blur
of the input image c is unknown. SIFT requires this value to
create the scale-space starting at a known level of image blur
σmin. A wrong assumption of the input camera blur affects
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Fig. 9 Influence of the DoG parameter κ . The number of detected key-
points is roughly constant for different values of κ (a). The occurrence
matrix for the set of unique normalized keypoints detected in the differ-

ent DoG scale-spaces (b). A largemajority of the keypoints are detected
in most simulated scale-spaces when changing the value of κ
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Fig. 10 Impact of image aliasing. For various camera blurs, 0.25 ≤
c ≤ 1.1, a set of translated images were simulated and the DoG key-
points extracted (nspo = 15, σmin = 1.1). Aliasing does not affect
the number of detections (a). In b we show the percentage of unique

keypoints appearing in at least a certain percentage of the simulated
translations. Detections are less stable for severely aliased images
(c = 0.25), while for c > 0.6, the impact of aliasing is negligible

the range of simulated scales simulated in theGaussian scale-
space.

To demonstrate towhat extent thewrong knowledge of the
input camera blur produces unrelated keypoints, we com-
pared the keypoints extracted assuming an image blur of
c = 0.7 from a set of images having actual random blur
creal uniformly picked from [c − Δc, c + Δc].

Figure 11 shows the number of unique keypoints that
appear in at least a certain percentage of the simulated
images. Thiswas evaluated for different ranges of uncertainty
(i.e., Δc = 0.05 − 0.4). The larger the range of uncertainty
Δc, the more unrelated the extrema are (the curve decreases
very fast, indicating the presence of many unique keypoints
appearing in only a few of the simulated images). Figure 11b
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Fig. 11 The impact of a wrong assumption on the camera blur. Com-
parison of the keypoints extracted assuming c = 0.7 when the real
camera blur was picked randomly in [c − Δc, c + Δc]. a The percent-
age of unique keypoints that appear in at least a certain percentage of
the simulated images is plotted for different levels of uncertainty on
camera blur (Δc = 0.05 − 0.4). b Influence of scale on stability to

wrong blur assumption. For keypoints detected at scales ranging from
σmin and 2σmin, the proportion of unique keypoints that appear in at
least 70% of the simulated images is shown as a function of scale σmin.
The impact of a wrong blur level assumption decreases as we consider
detections at larger scale (i.e., large σmin)

explores the influence of detection scale on stability to wrong
blur assumption. The percentage of unique keypoints appear-
ing in at least 70 % of the simulated images is shown as
a function of scale. The influence of a wrong assumption
decreases with detection scales.

6.3 Image Noise

The digital image acquisition is always affected by noise
that undermines the performance of SIFT. To evaluate the
impact of image noise we simulated different image acqui-
sition, by adding random white Gaussian noise to the input
image. Then, we proceeded to compute the keypoints that
are detected in a certain percentage of the simulated images.

Figure 12 shows results when considering set of input
images with increasing level of noise.

Specifically, Fig. 12a shows the percentage of unique key-
points that appear in at least a certain percentage of the
simulated images.

It demonstrates the strong impact of noise level on
keypoint stability. Such impact however is mitigated for
detections at larger scales. In a Gaussian scale-space, the
level of noise decreases as the scale increases. In fact, the
noise standard deviation observed in a given octave is half
the one observed in the previous octave. This is confirmed in
Fig. 12d, which shows, for keypoints detected in a range of
scale [σmin, 2σmin], the proportion of unique keypoints that
appear in at least 70 % of the simulated noisy image as a
function of scale σmin.

7 Matching Scenario

To illustrate some of the findings of the present analysis,
we examined the following matching scenario. Three pairs
of snapshots are considered: one pair of slightly translated
snapshots, one pair of snapshots taken with two different
zoom factors, and a pair of rotated and zoomed-out snap-
shots (Snapshots in Fig. 13). Keypoints extracted using the
default sampling parameters (nspo = 3, δmin = 1/2) and the
default interpolation setup (Moffset = 0.6, Ninterp = 5) were
compared to the keypoints extracted from a densely sampled
scale-space (nspo = 10, δmin = 0.081) with interpolation
parametersMoffset = 0.6 and Ninterp = 2 (the rest of the algo-
rithm was left unchanged). To prevent border effects biasing
this comparison towards the densely sampled variants (see
Sect. 5.1), detections with scale σ ≤ 1.0 were filtered out.
For all the SIFT feature vectors in one image we found the
most similar feature vector on the other image (in terms of
the Euclidean distance). If the distance to the most similar
one was less than 60% of the distance to the second nearest
feature vector, then the pair of detections was considered as
a match (as proposed in [20]).

For each pair, the numbers of keypoints along with the
number of matches are summarized in Table 1. In gen-
eral, slightly more keypoints were detected in the balanced,
densely sampled scale-spaces. Also, the dense setup led to
proportionally more matches than the default sampling set-
ting, thus confirming the stability gain.

While this simple experiment hints at how to improve the
overall performance of the SIFTmethod, it also demonstrates
that the influence of the numerical implementation should not
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Fig. 12 Impact of image noise. a The proportion of unique keypoints
that appear in at least a certain proportion of the simulated images is
plotted for different levels of image noise. Noise has a significant impact
on the DoG extrema detection. b Crops of the input images simulated
with c = 0.8 and added Gaussian white noise of standard deviation
σnoise = 0.01, 0.03, 0.07, and 0.15. c Number of keypoints detected at
a scale larger than σmin as a function of σmin. The number of detections

decreases as the level of noise increases. d Influence of scale on stability
to noise. For keypoints detected at scales ranging from σmin to 2σmin,
the proportion of unique keypoints that appear in at least 70% of the
simulated images is shown a function of scale σmin. Unsurprisingly we
observe that, for a given level of noise, the stability in the second octave
is comparable to the stability achieved in the first octave with half the
level of noise

Fig. 13 Matching scenario.
Snapshots considered to
constitute pairs of translated,
zoomed-out, and rotated images.
Keypoints were extracted using
the default scale-space sampling
setup as well as a densely
sampled scale-space (nspo = 10,
δmin = 0.081)
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Table 1 Matching scenario: (a) Number of keypoints, respectively,
detected with the standard and the dense scale-space discretization for
each of the four snapshots. In general, slightly more keypoints were
detected in the densely sampled scale-space. Keypoints detected in the
reference image imA were matched to the keypoints in the translated
imB, the zoomed-out imC and the rotated imD (Fig. 13). (b) Num-
ber of matches, the densely sampled scale-space leads to proportionally
more matches demonstrating that the corresponding keypoints are more
stable overall

(a) Number of keypoints imA imB imC imD

Standard 6487 6426 6423 6576

Dense 7393 7408 7973 7354

(b) Number of matches To imB To imC To imD

Standard 2950 430 2295

Dense 4360 585 4076

be overlooked. In particular, the sampling of the multiscale
representations must be taken into account while comparing
the SIFT method to any of its numerous variants to reliably
identify the root causes of eventual improvements.

8 Concluding Remarks

Wepresented a systematic analysis of themain steps involved
in the detection of keypoints in the SIFT algorithm. One of
the main conclusions is that the original parameter choice
in SIFT is not sufficient to ensure a theoretical and practi-
cal scale (and even translation) invariance, which was the
main claim of the SIFT method. In addition, we showed
that the SIFT invariance claim is strongly affected if the
assumption on the level of blur in the input image is
wrong.

A series of practical conclusions can be drawn from our
analysis:

– Increasing the scale-space sampling from nspo = 3 to
nspo = 15 (and respectively the space sampling rate δmin)
improves the stability of the detected keypoints.
This implies that if a series of image transformations (e.g.,
translations, zoom-outs) are applied to an image, the key-
points detected in one of them will be detected with high
probability in all the others.
This stability property is fundamental for fulfilling the
scale invariance claim.

– The extrema refinement improves the precision as well
as the stability of the detected keypoints.
We showed that the largest number of stable keypoints is
achieved with parameters Moffset = 0.6 and Ninterp = 2
(while SIFT recommends Ninterp = 5).

– The DoG threshold fails to filter out unstable keypoints,
and that the different definitions of the DoG scale-space
(parameter κ) lead for themost part to identical detections
up to a normalization of the scale.

– Finally, we showed how the presence of aliasing and
specially of noise in the acquired image deteriorate detec-
tions stability.
The effects of aliasing and noise can be mitigated by
considering in priority the keypoints detected at larger
scales.

One could interpret the large number of variants focusing
on speed rather than stability and precision as the demon-
stration that the SIFT method is “good enough” in terms of
stability and localization. In the light of the results of this
paper, we interpret that the large number of existent vari-
ants, as well as the lack of a general consensus on which
method is the best, is an illustration of the fact that very little
is actually knownwith regard to the actual phenomena affect-
ing keypoint stability in scale-space. Because of its ubiquity,
the SIFT method deserved to be thoroughly analyzed. The
submitted analysis demonstrates that implementation details
such as the sampling rates have an important impact on the
method’s performance. On the one hand, this contributions
has pointed out different practical conclusions on the SIFT
method tomake itmore stable and precise. On the other hand,
it sets the ground for rigorous and interpretable evaluation of
keypoint detectors.
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