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Truncation error:
What is that?

Xk’s Xt’s
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Truncation error:
What is that?

Xt :=
X

k2Z2

Xksinc(t� k)
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Truncation error:
What is that?

?
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Context

• Motivations

• Assumptions

• Goal 

• Related work
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Motivations
• Image registration

• optical flow

• stereopsis

• super-resolution

• sub-pixel accuracy
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Motivations
• Image registration

• optical flow

• stereopsis

• super-resolution

• sub-pixel accuracy

• error ~ quantization

8



Assumptions
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Assumptions
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Curriculum Vitae Travaux de thèse Interpolation Projet de recherche Conclusion

FORMALISME D’INTERPOLATION

Xt signal considéré (image)
I Stationnaire au sens large
I Échantillons Xk, |k|  K

X.�K

Interpolation Linéaire.

0 t

Xt

K�K

hK

RMSE(t) :=
q
E[(X̃t � Xt)2]

Définition (RMSE).

Assumptions

•                  a 1d random process

• observed on 

• weakly stationary

• no aliasing

µ, d X(!)

Xt (t 2 R)

k 2 {�K, . . . ,K}

Xt :=
X

k2Z
Xksinc(t� k)
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Goal

• Linear shift-invariant

• Practical bounds on

RMSE[X̃t] :=

r
E
h
(X̃t �Xt)2

i

X̃t :=
X

kK

Xkh(t� k)
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Goal

• Linear shift-invariant

• Practical bounds on

X̃t :=
X

kK

Xkh(t� k)

RMSE[X̃t] :=

r
E
h
(X̃t �Xt)2

i

⇢
h(t) = sinc(t)
h(t) = sincdK(t)

➡ DFT interpolation➡ Sinc interpolation
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➡ oversampled case➡ sinc only
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Rest of the talk

• Theoretical bounds

• Experimental results

• Discussion & conclusion
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A bit of intuition...

t
�(t)

�(t)
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Theoretical bounds

MSE[X̃](t) =
sin2(⇡t)
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Theoretical bounds

MSE[X̃](t) =
sin2(⇡t)
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Theoretical bounds

MSE[X̃](t) =
sin2(⇡t)
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➡ DFT modifications

22



Spectral representation 

➡ Spectral component➡ Average component

MSE[X̃](t) =µ2

������
1�

X

|k|K

h(t� k)

������

2

| {z }
MSE[µ](t)

+

1
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������
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X

|k|K

ei!kh(t� k)

������

2
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| {z }
MSE[d X ](t)
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Spectral representation

MSE[X̃](t) =µ2

������
1�

X

|k|K

h(t� k)

������

2

| {z }
MSE[µ](t)

+

1

2⇡

Z
������
ei!t �

X

|k|K

ei!kh(t� k)

������

2

d X(!)

| {z }
MSE[d X ](t)

➡ Aliasing is not forbidden
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Spectral representation

➡ Under no aliasing condition

MSE[X̃](t) =µ2

������

X

k2Z
sinc(t� k)�
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Spectral representation

➡ Under no aliasing condition

MSE[X̃](t) =µ2

������

X

k2Z
sinc(t� k)�

X

|k|K

sinc(t� k)

������

2

| {z }
MSE[µ](t)

+
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Z
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X

k2Z
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2

d X(!)

| {z }
MSE[d X ](t)

➡ Sinc
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Average component

➡ Gibbs phenomenon

MSE[µ](t) =
sin2(⇡t)

⇡2
µ2O

✓
1

�(t)2

◆

27



Average component

➡ DFT

MSE[µ](t) = 0
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Spectral component
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Spectral decomposition

➡ spectrum ≤ oversampled + white-noise

the Landau notation). Further details (proofs and tightness
analysis) will be included in a forthcoming publication.

II. NOTATIONS AND ASSUMPTIONS

In what follows, Xt stands for a random process (RP),
where t 2 R might be either a time or space variable. The
Fourier transform of a deterministic signal xt will be denoted
by F(x) and defined as F(x)(!) :=

1
2⇡

R
e

i!t
xtdt.

All RPs are assumed weakly stationary, in other terms with
time-invariant first and second order statistics. For such a pro-
cess Xt, we will generically denote by µ := E [Xt] its average,
by RX(t) := E [(X⌧ � µ)(X⌧+t � µ)] its auto-correlation
function and by d X(!) := F(RX)(!) its power spectral
distribution. All RPs are further assumed strictly Nyquist band-
limited, which is to say that d X({|!| � ⇡}) = 0.

Given a RP Xt, we will denote by X.�K :=

P
|k|K Xk�k

the sampled version on the finite grid {k 2 Z, |k|  K}. For a
fixed K > 0, the number of samples will always be denoted by
N = 2K+1. We consider linear shift-invariant reconstructions
from such a sampled version in the form

[(X.�K) ⇤ hK ](t) =

X

|k|K

XkhK(t� k),

where hK(t) is any function referred to as a reconstruction
kernel. In this article, we will mainly consider two examples,

• the Shannon kernel sinc(t) := sin(⇡t)
⇡t and

• the DFT (or Dirichlet) kernel sincd[K](t) :=

sin(⇡t)
N sin(⇡t

N )
.

A. Goal

We will appraise the quality of a given reconstruction based
on the Root Mean Squared Error (RMSE),

RMSE[X,hK ](t)
2
:= E

h
(Xt � [(X.�K) ⇤ hK ](t))

2
i
.

Resting upon intuitive observations, we shall highlight two
predictable features of the RMSE. First, since any interpolation
is supposed to perform perfectly at the sampling locations,
the RMSE is likely to oscillate, being null at any sample and
maximal approximately midway between successive samples.
Besides, a RP can be theoretically recovered through the
Shannon expansion, if sampled on an infinite grid. Therefore,
we expect the error to be tied to the lack of knowledge
outside the finite sampling domain, and as such to diminish
as we move farther away from the borders. Accordingly, our
goal consists in evaluating the decay (up to an oscillating
modulation) of the RMSE as the distance varies. We set

�(t) :=min(K +

1

2

� t,K +

1

2

+ t).

(1)

III. THEORETICAL RMSE BOUNDS

Theorem 1 (Spectral representation of the RMSE): Let Xt

be a RP of average µ and power spectrum d X , K < 1 and
hK a reconstruction system. Then,

RMSE[X,hK ](t)
2
= MSEµ,hK (t) +MSEd X ,hK (t),

0

!

↵⇡

�

2
↵

⇡

�

2
↵ |!|⇡d!

d 

0
↵(!)

 ↵(!)d!

d X(!)

Fig. 1. The spectrum decomposition of Proposition 2.

where

MSEµ,hK (t) :=µ

2 |1��K ⇤ hK(t)|2 ,
MSEd ,hK (t) :=

1

2⇡

Z ��
e

i!t � [(e

i!.
�K) ⇤ hK ](t)

��2
d (!).

This theorem merely states that the mean squared error is the
sum of the squared errors with respect to the average value
of X and with respect to every pure harmonic e

i!t (weighted
by the spectrum of X). The conclusion holds true even if Xt

is not band-limited and under mild assumptions (applying to
a sequence of hK’s) when K ! 1.

We shall need to evaluate the behavior of each component
of the previous decomposition. We refer to them respectively
as the average MSE component and the power spectral MSE
component. Unlike the previous theorem, the next proposition
is specific to strictly Nyquist band-limited RPs.

Proposition 1:

MSEµ,hK (t) =µ2 |[�1 ⇤ sinc](t)� [�K ⇤ hK ](t)|2 ,

MSEd X ,hK (t) =
1
2⇡

Z

|!|⇡

d X(!)⇥
���[(ei!.�1) ⇤ sinc](t)� [(ei!.�K) ⇤ hK ](t)

���
2
.

Building upon existing works and the analysis of their flaws
with respect to specific spectrum characteristics of images, we
propose an essential step to obtain realistic bounds. The trick
resides in decoupling the low frequencies of the spectrum from
a residual component equivalent to band-limited white noise.
This process, illustrated in Figure 1, results in

Proposition 2 (Spectrum decomposition): Let 0  ↵ < 1

and assume that |!|�↵⇡d X(!) =  ↵(!)d!, with  ↵(!) 
�

2
↵. And let d 

0
↵ the positive component of d X � �

2
↵d!.

Then,

MSEd X ,hK (t) MSEd 0
↵,hK (t) + �

2
↵MSE |!|⇡d!,hK (t).

In the previous statement, the first term in the right-hand-side
corresponds to an over-sampled signal and the second one
to the aforementioned residual band-limited white-noise. In
addition, ↵ can be set freely; a freedom we shall exploit to
tighten the RMSE bounds which follow.
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Oversampled case

supp(d 0
↵) ⇢ {|!|  ↵⇡}

=)

MSE[d 0
↵](t) =

sin2(⇡t)

⇡2
�02
↵O

✓
1

�(t)2

◆

 

where, 
�02
↵ =

1

⇡

Z

|!|↵⇡

1

1 + cos(!)
d 0

↵(!)
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Oversampled case

 

where, 
�02
↵ =

1

⇡

Z

|!|↵⇡

1

1 + cos(!)
d 0

↵(!)

supp(d 0
↵) ⇢ {|!|  ↵⇡}

=)
⇢

MSE[d 0
↵](t)

MSE[µ](t)

�
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�02
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✓
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◆
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White-noise

➡ Slow decay

the Landau notation). Further details (proofs and tightness
analysis) will be included in a forthcoming publication.

II. NOTATIONS AND ASSUMPTIONS

In what follows, Xt stands for a random process (RP),
where t 2 R might be either a time or space variable. The
Fourier transform of a deterministic signal xt will be denoted
by F(x) and defined as F(x)(!) :=

1
2⇡

R
e

i!t
xtdt.

All RPs are assumed weakly stationary, in other terms with
time-invariant first and second order statistics. For such a pro-
cess Xt, we will generically denote by µ := E [Xt] its average,
by RX(t) := E [(X⌧ � µ)(X⌧+t � µ)] its auto-correlation
function and by d X(!) := F(RX)(!) its power spectral
distribution. All RPs are further assumed strictly Nyquist band-
limited, which is to say that d X({|!| � ⇡}) = 0.

Given a RP Xt, we will denote by X.�K :=

P
|k|K Xk�k

the sampled version on the finite grid {k 2 Z, |k|  K}. For a
fixed K > 0, the number of samples will always be denoted by
N = 2K+1. We consider linear shift-invariant reconstructions
from such a sampled version in the form

[(X.�K) ⇤ hK ](t) =

X

|k|K

XkhK(t� k),

where hK(t) is any function referred to as a reconstruction
kernel. In this article, we will mainly consider two examples,

• the Shannon kernel sinc(t) := sin(⇡t)
⇡t and

• the DFT (or Dirichlet) kernel sincd[K](t) :=

sin(⇡t)
N sin(⇡t

N )
.

A. Goal

We will appraise the quality of a given reconstruction based
on the Root Mean Squared Error (RMSE),

RMSE[X,hK ](t)
2
:= E

h
(Xt � [(X.�K) ⇤ hK ](t))

2
i
.

Resting upon intuitive observations, we shall highlight two
predictable features of the RMSE. First, since any interpolation
is supposed to perform perfectly at the sampling locations,
the RMSE is likely to oscillate, being null at any sample and
maximal approximately midway between successive samples.
Besides, a RP can be theoretically recovered through the
Shannon expansion, if sampled on an infinite grid. Therefore,
we expect the error to be tied to the lack of knowledge
outside the finite sampling domain, and as such to diminish
as we move farther away from the borders. Accordingly, our
goal consists in evaluating the decay (up to an oscillating
modulation) of the RMSE as the distance varies. We set

�(t) :=min(K +

1

2

� t,K +

1

2

+ t).

(1)

III. THEORETICAL RMSE BOUNDS

Theorem 1 (Spectral representation of the RMSE): Let Xt

be a RP of average µ and power spectrum d X , K < 1 and
hK a reconstruction system. Then,

RMSE[X,hK ](t)
2
= MSEµ,hK (t) +MSEd X ,hK (t),

0
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Fig. 1. The spectrum decomposition of Proposition 2.

where

MSEµ,hK (t) :=µ

2 |1��K ⇤ hK(t)|2 ,
MSEd ,hK (t) :=

1

2⇡

Z ��
e

i!t � [(e

i!.
�K) ⇤ hK ](t)

��2
d (!).

This theorem merely states that the mean squared error is the
sum of the squared errors with respect to the average value
of X and with respect to every pure harmonic e

i!t (weighted
by the spectrum of X). The conclusion holds true even if Xt

is not band-limited and under mild assumptions (applying to
a sequence of hK’s) when K ! 1.

We shall need to evaluate the behavior of each component
of the previous decomposition. We refer to them respectively
as the average MSE component and the power spectral MSE
component. Unlike the previous theorem, the next proposition
is specific to strictly Nyquist band-limited RPs.

Proposition 1:

MSEµ,hK (t) =µ2 |[�1 ⇤ sinc](t)� [�K ⇤ hK ](t)|2 ,

MSEd X ,hK (t) =
1
2⇡

Z

|!|⇡

d X(!)⇥
���[(ei!.�1) ⇤ sinc](t)� [(ei!.�K) ⇤ hK ](t)

���
2
.

Building upon existing works and the analysis of their flaws
with respect to specific spectrum characteristics of images, we
propose an essential step to obtain realistic bounds. The trick
resides in decoupling the low frequencies of the spectrum from
a residual component equivalent to band-limited white noise.
This process, illustrated in Figure 1, results in

Proposition 2 (Spectrum decomposition): Let 0  ↵ < 1

and assume that |!|�↵⇡d X(!) =  ↵(!)d!, with  ↵(!) 
�

2
↵. And let d 

0
↵ the positive component of d X � �

2
↵d!.

Then,

MSEd X ,hK (t) MSEd 0
↵,hK (t) + �

2
↵MSE |!|⇡d!,hK (t).

In the previous statement, the first term in the right-hand-side
corresponds to an over-sampled signal and the second one
to the aforementioned residual band-limited white-noise. In
addition, ↵ can be set freely; a freedom we shall exploit to
tighten the RMSE bounds which follow.

d (!) = �2
↵ |!|⇡d!

=)

MSE[d ](t) =
sin2(⇡t)

⇡2
�2
↵O

✓
1

�(t)

◆
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Recap

MSE[X̃](t) =
sin2(⇡t)
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➡ DFT modifications
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Experimental results

• Bound validity

• Bound tightness

• Order of magnitude

 

➡ online demo:          IPOL · Image Processing On Line
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Experimental results

• Bound validity

• Bound tightness

• Order of magnitude

 

➡ online demo:          IPOL · Image Processing On Line
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Bound tightness

➡ Smooth image
Sinc Sinc w/o   µ DFT

➡
q
E[quant2] = 0.3
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Bound tightness

➡ Simulated white-noise

Sinc Sinc w/o   µ DFT

➡
q
E[quant2] = 0.3
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Bound tightness

➡ Textured image
Sinc Sinc w/o   µ DFT

➡
q
E[quant2] = 0.3
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Other kernels?

• Bound validity

• Bound tightness

• Order of magnitude

 

➡ online demo:          IPOL · Image Processing On Line
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Other kernels?

Sinc w/o   µ
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Other kernels?

Sinc + accel   
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Other kernels?

Bilinear
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Other kernels?

Bicubic
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Other kernels?

B-Spline 3
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Other kernels?

B-Spline 11
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Conclusion

• Textures are nasty

• Aliasing is not the worst thing in life

• Is there a hope for image interpolation?
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Empirical estimate

- ...
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Textures

• What’s special about images?
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