Truncation Error in Image Interpolation Loïc Simon

SampTA 2013 - Bremen

1

Collaborator

Jean-Michel Morel

Truncation error: What is that?

 X_t 's

 X_k 's

Truncation error: What is that?

 $X_t := \sum X_k \operatorname{sinc}(t-k)$ $k \in \mathbb{Z}^2$

Truncation error:

What is that?

Context

- Motivations
- Assumptions
- Goal
- Related work

Motivations

- Image registration
 - optical flow
 - stereopsis
 - super-resolution
- sub-pixel accuracy

Motivations

- Image registration
 - optical flow
 - stereopsis
 - super-resolution
- sub-pixel accuracy
- error ~ quantization

Assumptions

- $X_t \ (t \in \mathbb{R})$ a 1d random process
 - observed on $k \in \{-K, \ldots, K\}$
 - weakly stationary $\mu, d\Psi_X(\omega)$
 - no aliasing

Goal

• Linear shift-invariant

$$\tilde{X}_t := \sum_{k \le K} X_k h(t-k)$$

• Practical bounds on

$$RMSE[\tilde{X}_t] := \sqrt{\mathbb{E}\left[(\tilde{X}_t - X_t)^2\right]}$$

Goal

• Linear shift-invariant

$$\tilde{X}_t := \sum_{k \le K} X_k h(t - k) \quad \begin{cases} h(t) = \operatorname{sinc}(t) \\ h(t) = \operatorname{sincd}_K(t) \end{cases}$$

• Practical bounds on

$$RMSE[\tilde{X}_t] := \sqrt{\mathbb{E}\left[(\tilde{X}_t - X_t)^2\right]}$$

➡ Sinc interpolation
➡ DFT interpolation

Truncation Error		<u>Approximation</u>	
Jagerman	1966	Strang & Fix	1971
Yao & Thomas	1966	Blu & Unser	1999
Campbell	1968	Condat & al.	2005
Brown	1969		
Xu & Huang & Li	2009		

<u>Other</u>

Jerri

1977 Moisan 2011

Τ	runcation Error		Approximation	
	Jagerman	1966	Strang & Fix	1971
	Yao & Thomas	1966	Blu & Unser	1999
	Campbell	1968	Condat & al.	2005
	Brown	1969		
	Xu & Huang & Li	2009		
	sinc only 👄 oversa	mpled case		
(Dther			
	Jerri	1977	Moisan	2011

Truncation Error

Jagerman	1966
Yao & Thomas	1966
Campbell	1968
Brown	1969
Xu & Huang & Li	2009

ApproximationStrang & Fix1971Blu & Unser1999Condat & al.2005 $\blacktriangleright K = \infty$

<u>Other</u>

		r	r	i
J	C	Ľ.,	١.	5

1977 Moisan 2011

Truncation Error

Jagerman	1966
Yao & Thomas	1966
Campbell	1968
Brown	1969
Xu & Huang & Li	2009

	Approximation	
6	Strang & Fix	1971
6	Blu & Unser	1999
8	Condat & al.	2005
9		
9		

<u>Other</u>

Jerri

1977 Moisan 2011

Rest of the talk

- Theoretical bounds
- Experimental results
- Discussion & conclusion

A bit of intuition...

rmse=19.2

Theoretical bounds

 $MSE[\tilde{X}](t) = \frac{\sin^2(\pi t)}{\pi^2} \times \begin{pmatrix} \mu^2 \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ \sigma'^2_{\alpha} \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ \sigma^2_{\alpha} \mathcal{O}\left(\frac{1}{\delta(t)}\right) \end{pmatrix}$

Theoretical bounds

 $MSE[\tilde{X}](t) = \frac{\sin^2(\pi t)}{\pi^2} \times \begin{pmatrix} \mu^2 \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ \sigma'^2_{\alpha} \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ \sigma^2_{\alpha} \mathcal{O}\left(\frac{1}{\delta(t)}\right) \end{pmatrix}$

Theoretical bounds

$$MSE[\tilde{X}](t) = \frac{\sin^2(\pi t)}{\pi^2} \times \begin{pmatrix} 0\mu^2 \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ 2{\sigma'}_{\alpha}^2 \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ 2\sigma_{\alpha}^2 \mathcal{O}\left(\frac{1}{\delta(t)}\right) \end{pmatrix}$$

$$MSE[\tilde{X}](t) = \mu^{2} \left| 1 - \sum_{|k| \le K} h(t-k) \right|^{2} + \frac{1}{2\pi} \int \left| e^{i\omega t} - \sum_{|k| \le K} e^{i\omega k} h(t-k) \right|^{2} d\Psi_{X}(\omega)$$

$$MSE[d\Psi_{X}](t)$$

Average component Spectral component

$$MSE[\tilde{X}](t) = \mu^{2} \left| 1 - \sum_{|k| \le K} h(t-k) \right|^{2}$$

$$+$$

$$\frac{1}{2\pi} \int \left| e^{i\omega t} - \sum_{|k| \le K} e^{i\omega k} h(t-k) \right|^{2} d\Psi_{X}(\omega)$$

$$MSE[d\Psi_{X}](t)$$

Aliasing is not forbidden

$$MSE[\tilde{X}](t) = \mu^{2} \left| \sum_{k \in \mathbb{Z}} \operatorname{sinc}(t-k) - \sum_{|k| \leq K} h(t-k) \right|^{2}$$

$$MSE[\mu](t) + \frac{1}{2\pi} \int_{|\omega| \leq \pi} \left| \sum_{k \in \mathbb{Z}} e^{i\omega k} \operatorname{sinc}(t-k) - \sum_{|k| \leq K} e^{i\omega k} h(t-k) \right|^{2} d\Psi_{X}(\omega)$$

$$MSE[d\Psi_{X}](t)$$

➡ Under no aliasing condition

$$MSE[\tilde{X}](t) = \mu^{2} \left| \sum_{k \in \mathbb{Z}} \operatorname{sinc}(t-k) - \sum_{|k| \leq K} \operatorname{sinc}(t-k) \right|^{2}$$
$$\stackrel{MSE[\mu](t)}{+}$$
$$\frac{1}{2\pi} \int_{|\omega| \leq \pi} \left| \sum_{k \in \mathbb{Z}} e^{i\omega k} \operatorname{sinc}(t-k) - \sum_{|k| \leq K} e^{i\omega k} \operatorname{sinc}(t-k) \right|^{2} d\Psi_{X}(\omega)$$
$$\stackrel{MSE[d\Psi_{X}](t)}{}$$

Under no aliasing condition

➡ Sinc

Average component

$$MSE[\mu](t) = \frac{\sin^2(\pi t)}{\pi^2} \mu^2 \mathcal{O}\left(\frac{1}{\delta(t)^2}\right)$$

Average component

 $MSE[\mu](t) = 0$

Spectral component

0.50

Spectrum (dB)

1.7dB

15.2dB

Spectral decomposition

 \Rightarrow spectrum \leq oversampled + white-noise

Supp
$$(d\Psi'_{\alpha}) \subset \{|\omega| \le \alpha\pi\}$$

 \Longrightarrow
 $MSE[d\Psi'_{\alpha}](t) = \frac{\sin^2(\pi t)}{\pi^2} \sigma'^2_{\alpha} O\left(\frac{1}{\delta(t)^2}\right)$

where,

$$\sigma_{\alpha}^{\prime 2} = \frac{1}{\pi} \int_{|\omega| \le \alpha \pi} \frac{1}{1 + \cos(\omega)} d\Psi_{\alpha}^{\prime}(\omega)$$

$$\begin{split} \sup(d\Psi'_{\alpha}) &\subset \{|\omega| \leq \alpha\pi\} \\ &\Longrightarrow \\ \left\{ \begin{array}{c} MSE[d\Psi'_{\alpha}](t) \\ MSE[\mu](t) \end{array} \right\} = \frac{\sin^{2}(\pi t)}{\pi^{2}} \left\{ \begin{array}{c} \sigma_{\alpha}^{\prime 2} \\ \mu^{2} \end{array} \right\} \mathcal{O}\left(\frac{1}{\delta(t)^{2}}\right) \end{split}$$

where, $\sigma_{\alpha}^{\prime 2} = \frac{1}{\pi} \int_{|\omega| \le \alpha \pi} \frac{1}{1 + \cos(\omega)} d\Psi_{\alpha}^{\prime}(\omega)$

Recap

$$MSE[\tilde{X}](t) = \frac{\sin^2(\pi t)}{\pi^2} \times \begin{pmatrix} 0\mu^2 \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ 2{\sigma'}_{\alpha}^2 \mathcal{O}\left(\frac{1}{\delta(t)^2}\right) \\ + \\ 2\sigma_{\alpha}^2 \mathcal{O}\left(\frac{1}{\delta(t)}\right) \end{pmatrix}$$

- Bound validity
- Bound tightness
- Order of magnitude

Upload your own image files to use as the algorithm input.

input image Choose File No file chosen

Images larger than 1000000 pixels will be resized. Upload size is limited to 1MB per image file . TIFF, JPEG, PNG, GIF, PNM (and other standard formats) are supported. The uploaded files may be re-used for further analysis Only upload suitable images. See the copyright and legal conditions for details.

- Bound validity
- Bound tightness
- Order of magnitude

	l locanost.8080/101c_trancate/input_select:garden.x=/4@garden.y=0/
Shanno	n Truncation Error
article dem	oarchive
Please cite this a	rticle if you publish results obtained with this online demo.
You can cho	ose a zooming parameter for this algorithm: rx.
Then select be compared	a sub-image that will be zoomed along the x axis and accordingly to rx. Several interpolation will be performed and all of them to a Shannon-Whittaker interpolation computed from the entire image.
Set the a	conthem parameters and run the algorithm
	Zoom factor
x1: 312	Zoom factor 2 2 2 2 2 2 2 2 2 2
x1: 312	Zoom factor 2 $x^2: 462 y1: 0 y2: 517$ $x^3: 60 y2: 517$
x1: 312 Methods	Zoom factor 2 x2: 462 y1: 0 y2: 517 Sinc Bilinear Lanczos 2 B-Spline 2 o-Moms 3 Sinc-mu Bicubic Lanczos 3 ØB-Spline 3 o-Moms 5
x1: 312 Methods	Zoom factor 2 x2: 462 y1: 0 y2: 517 Sinc Bilinear Lanczos 2 B-Spline 2 0-Moms 3 Sinc-mu Bicubic Lanczos 3 SB-Spline 3 0-Moms 5 Sinc-acc Lanczos 4 B-Spline 5 0-Moms 7 Data Boline 5 0-Moms 7

- Bound validity
- Bound tightness
- Order of magnitude

- Bound validity
- Bound tightness
- Order of magnitude

Bound tightness

Bound tightness

Sinc

Sinc w/o μ

DFT

Simulated white-noise

$$\rightarrow \sqrt{\mathbb{E}[\text{quant}^2]} = 0.3$$

Bound tightness

Sinc

Sinc w/o μ

 $\rightarrow \sqrt{\mathbb{E}[\text{quant}^2]} = 0.3$

- Bound validity
- Bound tightness
- Order of magnitude

Sinc w/o μ

Sinc + accel

Bilinear

Bicubic

B-Spline 3

B-Spline II

Conclusion

• Textures are nasty

• Aliasing is not the worst thing in life

• Is there a hope for image interpolation?

Empirical estimate

Textures

• What's special about images?

