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The thesis focus on the precision aspect of the chain of 3D reconstruction.
The origin of imprecision can lie at any step of the chain. The imprecision
caused in a certain step will make useless the precision gained in the previous
steps, then be propagated, amplified or mixed with the error in the following
steps and finally leads to an imprecise 3D reconstruction. It is difficult to
directly improve the precision from final imprecise 3D data. The appropriate
approach to obtain a precise 3D model is to study the precision of every
component.

We pay more attention to the camera calibration for three reasons. First,
it is often the first component in the chain. Second, it is by itself already
a complicated system containing many unknown parameters. Third, the
intrinsic parameters of camera only need to be calibrated once depending
on the camera configuration. In addition, the camera calibration problem is
supposed to have been solved since years. But the result is still not satisfying
if high-precision is required. The global camera methods can leave residual
distortion error as big as one pixel, which can lead to distorted reconstructed
scene. We propose two methods in the thesis to correct the distortion with
high-precision. With an objective evaluation tool, it is shown that the finally
achieved correction precision is about 0.02 pixels.

Precision is also needed in the other image processing tasks like image
registration. In contrast to the advance in the invariance of feature detec-
tors, the matching precision has not been studied carefully. We analyze
the SIFT method (Scale-invariant feature transform) [10] and evaluate its
matching precision. It is shown that by some simple modifications in SIFT
scale space, the matching precision can be improved to be about 0.05 pixels
in the synthetic tests. A more realistic algorithm is also proposed to increase
the matching precision for two real images between which the transforma-
tion is locally smooth. A multiple-image denoising method, called “burst
denoising”, is then proposed to take advantage of precise image registration.
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1 Context

This thesis is integrated into the scope of project CALLISTO (Calibration en
vision stro par mthodes statistiques) sponsored by ANR (Agence Nationale
de la Recherche), whose final aim is to reconstruct 3D scene in high preci-
sion. This project relies on the collaboration between different universities
and grandes coles: CMLA-ENS-Cachan, IMAGINE-ENPC, MAP5-Paris 6
and LCTI-Tlcom Paris. Even though this project mainly concerns about the
images taken by consumer digital cameras, the result can be extended to the
satellite images. The work thus helped to some extent the MISS (Mathma-
tiques de l’imageries stroscopique spatiale) project collaborated with CNES
(Centre National d’Etudes Spatiales), whose aim is to reconstruct a com-
pletely controlled and reliable 3D terrain model from two images taken by
the air-bone satellite camera almost simultaneously.

The 3D scene reconstruction can be mainly divided into five components:
camera calibration, image rectification, dense image registration, 3D scene
reconstruction and 3D merging, meshing and rending (Fig. 1). Some compo-
nents can be replaced by other techniques to make the chain more adapted
for some specific applications.

The camera calibration is the first step in the chain and thus plays a very
important role. It consists of camera internal/external parameters calibra-
tion and distortion model estimation. Camera internal parameters means
the intrinsic parameters of camera, like aspect ration, focal length, principal
point and lens distortion parameters. Camera external parameters means
camera orientation and position in a fixed world coordinate. And the distor-
tion model describes the geometric deviation of real camera from a pinhole
camera.

Image rectification is an auxiliary step for dense image registration. It
virtually rotates two cameras about their optic center respectively such that
the two cameras planes are co-plane and their x-axis are parallel to the
baseline. This generates two images whose corresponding epipolar lines
coincide and are parallel to the x-axis of image. A pair of rectified images is
helpful for dense stereo matching algorithms. It restricts the search domain
for each matching to a line parallel to the x-axis. Due to the redundant
degrees of freedom, the solution to rectification is not unique and actually
can lead to undesirable distortions or be stuck in a local minimum of the
distortion function. This motivated us to propose a robust three-step image
rectification in Chapter ??.

Dense image registration is the thesis subject of Neus Sabater [12], whose
aim is to find dense correspondences between two images. This is a difficult
problem by considering different imaging conditions when taking images,
like different geometric distortion depending on the viewing angle, non-linear
lens distortion of camera, changing lighting condition, non-static scene, oc-
clusion, etc. These problems can be to some extent reduced by using a pair
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of image with “low B/H” (low baseline/height), which are taken by a satel-
lite almost simultaneously. But this raises a higher demand on the precision
on the correspondences. A thorough discussion about how to obtain dense
correspondences with emphasis on the control of false alarms, sub-pixel pre-
cision and the fattening problem at the contour of image can be found in
Neus Sabater’s thesis [12].

Once camera is precisely calibrated and a pair of images is accurately
and reliably registered, a 3D model of scene can be easily reconstructed on
the same order of precision with some classic methods up to a 3D similarity
transformation. One pair of images only permits us to reconstruct a partial
3D model. To have a more complete model, it is necessary to take photos
with different angles of view around the 3D scene. The pair-wise 3D scene
model can be overlapped or completely disjoint. By merging many pair-wise
partial 3D models, a dense 3D point cloud can be obtained.

The chain seems complete with all the above components. But the re-
constructed 3D scene is just a set of 3D points in the space. For the sake
of visualization, it is better to reconstruct also the surface of objects in the
scene, in particular for purpose of parts inspection and repairing in industry.
Since the precision of 3D points is high, it is hoped that the precision will
be kept in the surface reconstruction. This problem is largely discussed in
Julie Digne’s thesis [2], which treats high precision scanned raw data point
sets with up to 35 million points, usually made about 300 different scan
sweeps. Even though in her work, the 3D points directly come from the
laser scanner instead of from 3D reconstruction of images taken by camera,
the principle of problem remains the same: how to reconstruct the surface
reliably by keeping the high precision without smoothing and re-sampling ?

Figure 1: The 3D reconstruction chain.

2 Background

The 3D scene reconstruction is not a new subject in computer vision. Be-
fore the “computer” and digital camera came into history at the end of year
1970s, the scene reconstruction was already a classic problem in photogram-
metry, where it has a different name “stereophotogrammetry”. Its aim is
always to determine the geometric properties of objects from photographes.
At that time, more attention was paid to the methods in optics and metrol-
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ogy due to the lack of computational power. The distances and angles are
directly measured manually from photographs, objects in scene and cameras
separated by a fixed baseline. The precision is not ensured in the measure-
ment, which can lead to inaccurate final result. The lack of imprecision
of manual work limited the practical application of early photogrammetry
techniques.

With the advent of the digital camera and high-performance computers,
the 3D reconstruction becomes more mature with fewer or no manual mea-
surement. The prompt perhaps comes from the remarkable advance in cam-
era calibration techniques. The famous calibration methods, like Zhang’s
flexible pattern based method [13], Lavest et al ’s method [9], Devernay and
Faugeras’ plumb-line method [4], Hartley’s pattern-free method [5], make
it possible to calibrate camera and reconstruct 3D scene on site with few
human intervention. Nonetheless, 3D reconstruction is still a complicated
chain including several components. Any error in a certain component will
make the whole system unreliable.

Another possibility to obtain 3D reconstruction is to use 3D laser or
LIDAR (LIght Detection And Ranging). Not like the above multi-view
geometric method, this kind of methods is active. The position of object
in the space is measured by the time delay between transmission of a pulse
and detection of the reflected signal. Thus a dense 3D points can be directly
obtained by some post-processing like filtering and merging. The traditional
idea is that 3D stereo reconstruction is not as precise as the result obtained
by 3D laser scanner. A high quality 3D scanner can provide 3D point cloud
with the precision about 20 µm. This cannot be achieved by state-of-art
image-based 3D stereo reconstruction algorithm. Yet, 3D laser scanner is
usually a big, expensive and sophisticated machine, which have to be set
up carefully and cannot be easily transported for onsite 3D reconstruction
tasks, while a camera, even a reflex camera of good quality, costs almost
nothing compared to a scanner machine and can be flexibly transported
anywhere to take photos (Fig. 2). In addition, it is not feasible to install
a huge laser scanner on satellite to do 3D reconstruction. So it is still of
interest to use camera photos to reconstruct 3D scene if the precision can
achieve or surpass that of 3D scanner.

3 Challenge

To have a precise final 3D reconstruction from 2D photos, each component
should produce a precise result. This gives the first importance to the cam-
era calibration because its imprecision will be inevitably propagated to the
other components and usually cannot be corrected later. With a precise
camera calibration, it is already sufficient to determine the relative posi-
tion of two cameras and reconstruct a sparse model of 3D scene from the
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Figure 2: Left: 3D laser scanner. Right: Canon EOS Reflex camera.

correspondences between two images. A typical camera model has the form:

C = DKR[I| − T ] (1)

with D non-linear operator of lens distortion, K calibration matrix, R cam-
era orientation matrix and vector T the camera optic center in a fixed world
frame. Given a 3D point, it is first transformed into the camera-based frame
by the translation T then the rotation R. Then it is projected onto the im-
age plane by K, followed by the non-linear lens distortion represented by D.
According to this model, camera calibration consists of two parts: internal
parameters calibration (D and K) and external parameters calibration (R
and T ). The internal calibration is to retrieve the intrinsic parameters of
camera, which should be constant once the camera has fixed its configura-
tion. But in the experiments, it shows that the internal parameters varies
from one experiment to the other even if the same camera was used with
fixed configuration. This makes the internal calibration unreusable for the
other data sets. Similarly, for the external calibration, the camera position
and orientation also varies by using two data sets sharing a common camera
position. This leads us to think over again the whole camera calibration
system. The conjecture about the phenomenon can be two-fold:

1. the distortion model cannot capture the real physical aspect of real
distortion

2. the error in external calibration for R and T compensates the error
in internal calibration for D and K. So the whole camera model can
be precise in the sense that the observed point is close to the point
computed by the camera model. But none of the components (D, K,
R, T ) is precise.

This is in fact the common drawback of many global camera calibra-
tion methods, which perform the internal and external calibration together.
Typical global calibration algorithms were tested to verify the problem. In
particular, Lavest et al. algorithm [9] shows a very small re-projection error
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about 0.02 pixels, which confirms the precision of the global camera model.
But the residual distortion error can be 10 times bigger. Since Lavest et
al. algorithm considers also the non-flatness of the pattern and estimate its
shape, the factor of 10 can only be explained by the error compensation.

4 Virtual Pinhole Camera

The first aim of camera calibration is to recover a pinhole camera by cor-
recting the distortion. But as explained, due to the error compensation, it is
risky to use global calibration methods to correct lens distortion. The error
compensation can be avoided by separating the distortion correction from
the global calibration. So the camera calibration is decomposed into two
steps. The first step is to correct lens distortion to obtain a pinhole cam-
era; the second step is to calibrate the pinhole camera. As for the pinhole
camera, the fundamental theorem must be cited [6, 4]:

Theorem 1 A camera follows the pinhole model if and only if the projection
of every line in space onto the camera is a line.

This theorem can be understood in three different ways. First, the distor-
tion can be corrected by rectifying the distorted lines in image. Second,
the distortion correction can be evaluated by measuring the straightness of
corrected lines in image. Third, the pinhole camera is not unique because a
straight line in image remains to be straight under a 2D homogrpahy. This
means the distortion is corrected up to an arbitrary homography. Assume
the arbitrary homography is H, then the estimated distortion is D̃ = DH
with D the absolute distortion introduced by camera lens system. By ap-
plying the inverse of D̃ on camera, we obtain a new camera noted by C̃:

C̃ = D̃−1C = H−1D−1DKR[I| − T ] = H−1KR[I| − T ]. (2)

H, K being invertible, the decomposition H−1K = K̃R′ is unique by QR
decomposition with the constraint that K̃ is an upper-triangle 3 × 3 ma-
trix and R′ is a 3 × 3 rotation matrix. This new camera becomes C̃ =
K̃R′R[I| − T ] = K̃R̃[I| − T ]. We call it mathematic (or virtual) cam-
era after distortion correction because the calibration matrix K̃ and rota-
tion matrix R̃ do not match the physics of the actual camera, but yield a
virtual pinhole camera that can be used to the very same purposes. In-
deed, consider several positions of the physical camera inducing as many
camera models Ci = DKRi[I| − Ti]. Applying the correction D−1 to all
images obtained from these camera positions yields virtual pinhole cam-
eras C̃i = K̃R̃i[I| − Ti], which maintains the same relative orientations:
R̃−1

i R̃j = R−1
i Rj . From these cameras the whole 3D scene can be recon-

structed by standard methods, up to a 3D similarity.
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5 Image Registration and Denoising

Invariance and precision are two key problems in image registration. Invari-
ance means whether an image matching algorithm can find reliable corre-
spondences under critical geometric or photometric transformations. Pre-
cision means whether the matchings between two images are precise. The
two problems are crucial for the success of many applications, like super-
resolution, image mosaicing, camera calibration, etc. Many efforts have been
recently dedicated to obtaining feature detectors more invariant to geome-
try or photometric transformations, while the matching precision of feature
points is always considered enough and has not been carefully studied. In
fact, some state-of-art feature detectors combining a robust descriptor give
enough invariance for many applications. So it is the time to evaluate and
improve the matching precision. We are interested in the matching precision
of SIFT [10], a popular scale-invariant feature detector. The matching pre-
cision of SIFT method is studied and improved. We show that the matching
precision can achieve the precision better than 0.05 pixels if the transforma-
tion between two images is locally smooth.

Precise image registration inspires us to invent a new image denoising
algorithm, called “burst denoising”. Basically, this algorithm aligns a burst
of images to a reference image and performs the average operation to reduce
the noise level. The average is perhaps the only operation which can preserve
the fine details in images. This method is extended to be a mixed algorithm
by combining the block denoising when the two images are not related by a
rigid transformations.

6 Chapter by Chapter

The thesis is summarized chapter by chapter as follows.

Chapter ??: Camera Model and Projective Geometry

Many algorithms in multi-view geometry are based on the assumption that
the camera is ideal pinhole. But in practice, the camera is deviated from
a pinhole model by lens distortion. In this chapter, some basic concepts
about pinhole camera model and distortion model are introduced. A typical
bundle adjustment camera calibration method is also explained in detail to
show the problems we shall meet in distortion correction.

Once the distortion is removed and the camera becomes pinhole, the
projective geometry is a useful tool to solve different problems in multi-view
geometry, like image rectification and mosacing. The geometric constraint
becomes more complicated when the number of views increases. Here we
concentrate on the simplest two-view geometry because it is difficult for
three or more images to share enough stable feature points in practice. The
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relation between corresponding points in two views is described by epipolar
geometry. In algebraic viewpoint, the epipolar geometry is coded by a 3× 3
matrix, called fundamental matrix, F . Fundamental matrix only depends on
the relative position of two cameras and the intrinsic parameters of cameras,
but not on the 3D scene. Two important observations of epipolar geometry
is:

• Given one point x in the left image, its corresponding point in the right
image must be on the line called epipolar line, which can be explicitly
computed as Fx. This provides a necessary condition to test whether
two points correspond to the same 3D point, see Fig. 3.

• Given a set of corresponding points in two images, the 3D scene can
be reconstructed up to a 3D projective transformation, as well as the
camera position and orientation.

(a) (b)

Figure 3: (a) The optic center of two cameras and a 3D point form a epipolar
plane which intersects two image planes at the epipolar line. (b) Given one
point x in the left image, its correspondence in the right image must be on
the corresponding epipolar line.

Chapter ??: Calibration Harp: A Measurement Tool of Lens
Distortion Correction Precision

A measurement tool of lens distortion correction precision is introduced in
this chapter. Lens distortion is a non-linear deformation which deviates a
pinhole camera from central projection. The alignment is the only prop-
erty preserved in the central projection. So it is reasonable to measure the
straightness of the projection of 3D straight lines to evaluate the lens dis-
tortion correction precision. To have a precise evaluation in practice, we
need some very straight strings of good quality. It is relatively easy to en-
sure the straightness by tightly stretching the strings and attaching them
on a frame, while it is more delicate to choose an appropriate type of string.
We tried four types of strings and found that the opaque fishing string is
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the best choice for our purpose. An evaluation pattern made up of several
parallel tightly stretched opaque fishing strings with a translucent paper as
background, called “calibration harp” is thus built (see Fig. 4). The Dever-
nay sub-pixel precision edge detector [1] is used to extract the edge points
in image, which are then associated to the line segments detected by LSD
(Line Segment Detector) [11]. Finally, the distortion correction is evaluated
as the root-mean-square (RMS) distance from the edge points belonging to
a same line segment to their corresponding linear regression line.

(a) (b)

Figure 4: (a) The harp made up of opaque fishing strings with a translucent
paper as background. (b) A close-up of (a).

Chapter ??: Non-parametric lens distortion correction

This chapter presents a first attempt to correct the distortion in high preci-
sion. By high precision, we mean that the residual error between the camera
and its numerical model obtained by calibration should be far smaller than
the pixel size. At first sight, this problem seemed to have been solved ade-
quately by recent global calibration methods. The celebrated Lavest et al.
method [9] measures the non-flatness of a pattern and yields a remarkably
small re-projection error of about 0.02 pixels, which outperforms the preci-
sion of other methods. For the goals of computer vision, this precision would
be more than sufficient. Yet, this paper describes a seriously discrepant ac-
curacy measurement contradicting this hasty conclusion. According to the
measurement tool of distortion correction precision developed in Chapter ??,
the only objective and correct criterion is straightness of corrected lines.

Following this tool, the accuracy criterion used herewith directly mea-
sures the straightness of corrected lines. We shall see that this straightness
criterion gives a RMSE as big as 0.2 pixel, which contradicts the 0.02 pixel re-
projection accuracy. This significant discrepancy means that, in the global
optimization process, errors in the external and internal camera parameter
are being compensated by opposite errors in the distortion model. Thus,
an inaccurate distortion model can pass undetected. Such facts raise a solid

9



objection to global calibration methods, which estimate simultaneously the
lens distortion and the camera parameters. This chapter reconsiders the
whole calibration chain and examines an alternative way to guarantee a
high accuracy. A useful tool toward this goal will be proposed and carefully
tested. It is a direct non-parametric, non-iterative, and model-free distor-
tion correction method. By non-parametric and model-free, we mean that
the distortion model allows for any diffeomorphism.

This non-parametric method requires a flat and textured pattern. By
using the dense matchings between the pattern and its photo, a distortion
field can be obtained by triangulation and local affine interpolation. The
obtained precision compares favorably to the distortion given by state of the
art global calibration and reaches a RMSE of 0.08 pixels (see Fig. 5 for a
correction example). The non-flatness of the pattern is a limitation of this
method and can introduce a systematic error in the distortion correction.
Nonetheless, we also show that this accuracy can still be improved in the
next two Chapters.

(a) (b)

Figure 5: A correction example. (a) distorted image. (b) corrected image.

Chapter ??: Self-Consistency and Universality of Camera Lens
Distortion Models

This Chapter is a preparation for the next chapter. Due to the difficulty to
control the flatness of a pattern, we will go back to the parametric method in
the next chapter to obtain a higher correction precision. For any parametric
method, an appropriate distortion model is necessary. Even though there
exists many distortion models in literature, it is not clear which one is more
appropriate than the others. In addition, the role of distorted points and
undistorted points seems to be interchangeable in literature, which makes
the distortion model more ambiguous.

In this chapter, the concepts of “self-consistency” and “universality” are
introduced to evaluate the validity and precision of camera lens distortion
models. Self-consistency is evaluated by the residual error when distortion
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generated with a certain model is corrected (using the model in reverse
way) by the best parameters for the same model. Analogously, universality
is measured by the residual error when a model is used to correct distortions
generated by a family of other models.

Five classic camera lens distortion models are reviewed and compared
for their degree of self-consistency and universality. The realistic synthetic
experiments show that the polynomial model is self-consistent and more
universal than the other models. The polynomial model, with order from 8
to 19, permits to approximate any other four models, and the inverse of any
other four models including itself, at the precision about 1/100 pixels. This
high order is more than compensated by its linearity and its translation
invariance, which makes it independent of the distortion center. A real
experiment shows that the polynomial model of degree 6 can approximate a
real distortion field between a textured pattern and its photo at 1/100 pixel
precision (see Fig. 6). So the polynomial model will be chosen in the next
chapter as distortion model to improve the correction precision.

Chapter ??: High Precision Camera Calibration with a Harp

This chapter is a continuation of the last chapter to improve the precision
of lens distortion correction. Even though non-parametric pattern based
method do not depend on the a priori choice of a distortion model with a
fixed number of parameters, to achieve a high precision, they require a very
flat non deformable plate with highly accurate patterns printed on it. It is
shown that 100µm flatness error can introduce 0.3 pixels error in distortion
estimation. Either to fabricate such pattern or to estimate its shape is very
difficult in practice. Perhaps the thing we can easily ensure the quality is the
straightness of strings. That is the reason why we resort to the plumb-line
method to correct the distortion.

Based on the well-known fact that a camera follows the pinhole model if
and only if the projection of every line in space onto the camera is a line, it
is sufficient to correct the distorted lines to obtain the pinhole camera. The
“calibration harp” built in Chapter ?? to evaluate the precision of distortion
correction can be directly used here. But this time, it is used as both a tool
of distortion correction and a validation tool. It seems that the hardware
problem of plumb-line method is solved. But we still need a good distortion
model to integrate into the plumb-line method to treat different types of
realistic lens distortion. According to the test of the self-consistency and
universality of different models, the polynomial model seems more adapted
to correct real distortion. In addition, it is invariant to the translation to the
distortion center. So the distortion center can be fixed anywhere without
being estimated. This is a big advantage compared to other models.

Photos of different orientations are taken to estimate the best coefficients
of polynomial model to correct the distortion (see Fig. 7). Real experiments
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) digital pattern. (b) a photo of the digital pattern. (c) the
distortion field constructed by the estimated parameters of the polynomial
model. (d) level lines of (c) with quantization step of 20. (e) distorted
images of tightly stretched lines. (f) corrected image by polynomial model.
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show that no artificial bias is created on the corrected strings and higher
precision is attained compared to non-parametric pattern based method.
Both the harp of sewing strings and the harp of opaque fishing strings are
tested in the experiments. With the harp of sewing strings, the correction
precision is better than the non-parametric pattern based method and no
global artificial bias is observed. With the harp of opaque fishing strings, the
residual oscillation due to braid pattern of sewing strings is largely reduced
(see Fig. 8). We do gain a factor about 2 over sewing strings harp and
achieve the average correction precision about 0.02 pixels This precision is
much better than the result given the global camera calibration, which is
not stable and varies with the parameters used in the distortion model.

Chapter ??: Three-Step Image Rectification

The epipolar geometry enters into a special situation when the two camera
planes are co-plane and parallel with the line connecting the optic center
of two cameras. In this case, the corresponding epipolar lines also coincide
and align with the x-axis of the image. This means that one point has the
same y-coordinate as its corresponding point. This special geometry can
be achieved by rotating two camera without changing their optic center.
This is equivalent to apply a homography on each image respectively. This
process is called image rectification in two-view geometry (Fig. 9 shows
a pair of images before and after rectification). A pair of stereo-rectified
images is helpful for dense stereo matching algorithms. It restricts the search
domain for each match to a line parallel to the x-axis. Due to the redundant
degrees of freedom, the solution to stereo-rectification is not unique and
actually can lead to undesirable projective distortions or be stuck in a local
minimum of the distortion function. Many rectification methods reduce the
distortion by different explicit measure. But it is not clear which measure
is the most appropriate. We propose a rectification method by three steps
of camera rotation. In each step, the distortion is explicitly reduced by
minimizing the rotation angle. For un-calibrated cameras, this method can
be formulated as an efficient minimization algorithm by optimizing only one
natural parameter, the focal length. This is in contrast with many methods
which optimize between 3 and 6 parameters.

Chapter ??: Matching Precision of SIFT

Image features detection and matching is a fundamental step in many com-
puter vision tasks. Many methods have been proposed in recent years, with
the aim to extract image features fully invariant to any geometric and pho-
tometric transformation. Even though the state-of-art has not achieved the
full invariance, many methods, like SIFT [10], Harris-affine [8] and Hessian-
affine [7] combining a robust and distinctive descriptor, give sufficient in-
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Figure 7: Distorted fishing strings taken by the camera fixed on a tripod
with different orientations.
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(a) 0.027/0.020 (b) 0.034/0.022 (c) 0.034/0.016

(d) 0.027/0.012 (e) 0.021/0.010 (f) 0.018/0.008

(g) 0.012/0.008 (h) 0.020/0.012 (i) 0.021/0.013

(j) 0.023/0.009 (k) 0.026/0.010 (l) 0.025/0.012

(m) 0.020/0.007 (n) 0.008/0.006

Figure 8: Correction performance of the proposed plumb-line method with
a harp made up of fishing strings. The distance (in pixels) from the edge
point to the corresponding linear regression line is plotted. The x-axis is the
index of edge points. The range of y-axis is from −0.3 pixels to 0.3 pixels.
The straightness error (in pixels) measured as root mean square distance
from the edge points to their linear regression line is just below each figure.
Note that each figure contains two curves because there are two sides for one
string. The camera focal length is fixed 55 mm and the distance between
camera and object is about 100 cm.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Rectification example. (a) and (b): two original images. (c) the
blend of two original images. (d) and (e): two rectified images. (f) the blend
of two rectified images. A horizontal line is added to images to check the
rectification.

variance for many practical applications. In contrast to the advance in the
invariance of feature detectors, the matching precision has not been paid
enough attention even though the repeatability and stability are extensively
studied. Matching precision is evaluated on a pair of images and reflects to
some extent the average relative localization precision between two images.
It depends on the localization precision of feature detector, the scale change
between two images, the descriptor construction and matching protocol. In
this chapter, we focus on the SIFT method and measures its matching preci-
sion by average residual error under different geometric transformations. For
scale invariant feature detector, the matching precision decreases with scale
of features. This drawback can be avoided by canceling the sub-sampling in
SIFT scale space. This first schema improves the matching precision only
when there is no scale change between two images. An iterative schema is
thus proposed to treat the scale change. For real images, a local filtering
technique is used to improve the matching precision if the transformation
between two image is locally smooth.

The applications of precise SIFT matchings can be envisaged in three
directions:

• panorama: the aim is to perform a photo montage seamlessly from
several photos. These photos are taken at large distance from the
object and the overlapping between two adjacent photos is important.
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• super-resolution: the aim is to obtain an image in higher resolution
from a burst of low resolution images of a flat object.

• global camera calibration: the aim is to calibrate camera model pa-
rameters by several photos of a flat pattern.

Chapter ??: Burst Denoising

Denoising is one of the most important image enhancement techniques. Even
though denoising algorithms have been largely developed since years, most of
them concentrate on the single image denoising. However, with the increase
of memory size and data storage speed, today it is possible for cameras to
take a burst of images in a few seconds. This opens a new possibility to
do image denoising, in particular with dim light. Perhaps all of us have the
frustrated experience to take photos in museum under low light conditions,
where the flash of camera and tripod are forbidden. In such situation, taking
photographs with a hand-held camera is problematic. If the camera is set to
a long exposure time, the photograph gets motion blur. If it is taken with
short exposure, the image is noisy. This dilemma can be solved by taking
a burst of images, each with short-exposure time, as shown in Fig. 10. But
then, as classical in video processing, an accurate registration technique is
required to align the images. Denote by u(x) the ideal non noisy image
color at a pixel x. Such an image can be obtained from a still scene by a
camera in a fixed position with a long exposure time. The observed value
for a short exposure time τ is a random Poisson variable with mean τu(x)
and the standard variation proportional to τu(x). Thus the SNR increases
with the exposure time proportionally to τ . The core idea of the burst de-
noising method is a slight extension of the same law. The only assumption
is that the various values at a cross-registered pixel obtained by a burst are
i.i.d. Thus, averaging the registered images amounts to averaging several
realizations of these random variables. An easy calculation shows that this
increases the SNR by a factor proportional to

√
n where n is the number

of shots in the burst. (We call SNR of a given pixel the ratio of its tem-
poral standard deviation to its temporal mean). Fig. 10 summarizes the
possibilities offered by an image burst. A long exposure image is exposed
to motion blur. The short exposure image is noisy, but sharp. Finally, the
image obtained by averaging the images of the burst after registration is
both sharp and noiseless. In this real example the burst taken in a gallery
had 16 images. The noise should therefore be divided 4.

Even though the denoising power of burst denoising is eventually hemmed
by the low growth of the square root, dividing the noise by the mentioned
factors and getting an artifact free image is in no way a negligible ambition.
Indeed, even the best state of the art denoising methods can create slightly
annoying artifacts. If a fine non-periodic texture is present in an image, it is
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(a) (b) (c)

Figure 10: (a) one long-exposure image (time = 0.4 sec, ISO=100). (b) one
of 16 short-exposure images (time = 1/40 sec, ISO = 1600). (c) the average
after registration. All images have been color-balanced to show the same
contrast. The long exposure image is blurry due to camera motion. The
middle short-exposure image is noisy, and the third one is some 5.6 times
less noisy, being the result of averaging 32 short-exposure images.

virtually indistinguishable from noise, and actually contains a flat spectrum
part which has the same Fourier spectrum as the white noise. Such fine
textures can be distinguished from noise only if several samples of the same
texture are present in other frames and can be accurately registered.

Yet, this method rises serious technical objections. The main technical
objection is: how to register globally the images of a burst? Fortunately,
there are several situations where the series of snapshots are indeed related
to each other by a homography, and we shall explore these situations first.
The homography assumption is actually valid if one of the assumptions is
satisfied:

• the only motion of the camera is an arbitrary rotation around its optic
center;

• the photographed objects share the same plane in the 3D scene;

• the whole scene is far away from the camera.

In those cases, image registration is equivalent to computing the underlying
image homography. But this registration should be sub-pixel accurate. To
this aim we will use the precise SIFT in Chapter ?? and a generalization
of ORSA (Optimized Random Sampling Algorithm, [3]) to register all the
images together. Yet, in general, the images of 3D scene are not related
by a homography, but by an epipolar geometry. Even if the camera is
well-calibrated, 3D point-to-point correspondence is impossible to obtain
without knowing the depth of the 3D scene. Therefore, we should not expect
that a simple homography will work everywhere in the image, but only on
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a significant part. On this part, we shall say that we have a dominant
homography. At each pixel that is well-registered, the registered samples
are i.i.d. samples of the same underlying Poisson model. As a result, a
signal dependent noise model will be accurately estimated for each colour
channel. This model simply is a curve of image intensity versus the standard
deviation of the noise.

Averaging does not work at the mis-registered pixels, and block match-
ing methods are at risk on the fine image structures. Thus they will be
combined. The simple combination used here will be a convex combination
of them, the weight function being based on the noise curve and on the
observed standard deviation of the values for the accumulation at a certain
pixel. If this standard deviation is compatible with the noise model, the
denoised value will be the mean of the samples. Otherwise, the standard
deviation test will imply that the registration at this point is inaccurate and
a conservative denoising will be applied.

7 Main Contributions

The main contributions of this thesis are listed as follows:

• a concept of virtual pinhole camera

• a tool to evaluate the precision of distortion correction with a calibra-
tion harp

• a non-parametric pattern based distortion correction method

• a concept of “self-consistency” and “universality” of distortion model

• a distortion correction method with a calibration harp

• a robust three-step image rectification

• an evaluation and improvement of SIFT matching precision

• a burst denoising algorithm

And the thesis leads to the following publications and reports:

• R. Grompone von Gioi, P. Monasse, J.M. Morel and Z. Tang. Lens
distortion correction with a calibration harp. IEEE International Con-
ference on Image Processing, 2011

• R. Grompone von Gioi, P. Monasse, J.M. Morel and Z. Tang. Self-
consistency and universality of camera lens distortion models. Sub-
mitted, 2011
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• R. Grompone von Gioi, P. Monasse, J.M. Morel and Z. Tang. Correc-
tion de distorsion optique avec une harpe de calibration. Submitted,
2011

• A. Buades, Y. Lou, J.M. Morel and Z. Tang. Multi image noise esti-
mation and denoising. Preprint, 2010

• P. Monasse, J.M. Morel and Z. Tang. Three-step image rectification.
British Machine Vision conference, 2010

• R. Grompone von Gioi, P. Monasse, J.M. Morel and Z. Tang. To-
wards High-precision Lens Distortion Correction. IEEE International
Conference on Image Processing, 2010

• A. Buades, Y. Lou, J.M. Morel and Z. Tang. A Note on multi-image
denoising. International Workshop on Local and Non-Local Approxi-
mation in Image Processing, 2009
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Cachan, 2010.

[3] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Comm. Of the ACM, 24:381395, 1981.

[4] Olivier Faugeras Frédéric Devernay. Straight lines have to be straight.
Mach. Vision Appli., 13:14–24, 2001.

[5] R. Hartley and S. B. Kang. Parameter-free radial distortion correction
with center of distortion estimation. IEEE PAMI, 13091321, 2007.

[6] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521623049, 2000.

[7] Cordelia Schmid Krystian Mikolajczyk. An affine invariant interest
point detector. ECCV, pages 128–142, 2002.

[8] Cordelia Schmid Krystian Mikolajczyk. Scale and affine invariant in-
terest point detectors. IJCV, 60(1):63–86, 2004.

20



[9] Dhome M. Lavest J., Viala M. Do we really need accurate calibration
pattern to achieve a reliable camera calibration. ECCV, 1:158–174,
1998.

[10] David G Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 60(2):91110, 2OO4.

[11] J.-M. Morel G. Randall R. Grompone von Gioi, J. Jakubowicz. Lsd: A
fast line segment detector with a false detection control. IEEE Trans.
on PAMI, 99, 2008.

[12] N. Sabater. Reliability and Accuracy in Stereovision. Application to
Aerial and Satellite High Resolution Images. PhD thesis, École Normale
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