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唐忠伟，现任法国国立桥路工程师学校 (巴黎高科集团) 博士后研究员。2003 年本科毕业于
复旦大学电子工程系，2004 年前往法国学习，并于 2011 在获得法国高等师范卡尚分校的应用数
学博士，后前往美国明尼苏达大学和杜克大学从事博士后研究，主要研究方向为几何先验信息在

高精度三维重建 (3D stereo reconstruction)，多图像增强 (multiple images enhancement) 和稀疏表
达 (sparse representation) 方面的应用。

近年来从事的项目先后受到过法国国家科研局 (French National Research Agency)，法国国
家空间研究中心 (French National Center for Space Studies)，欧洲科研委员会 (European Research
Council)，美国国家科学基金 (National Science Foundation) 等的资助。从事的具体工作主要
包括高精度的照相机镜头扭曲矫正 (camera lens distortion correction)，高精度的照相机校准
(camera calibration)，多图像去噪 (burst denoting) 和人体动作分类 (unsupervised human actions
classification) 等。开发的一部分软件包被交付给法国国家空间研究中心，用于下一代地球观测卫
星的研发。

我很希望能够到上海科技大学信息科学与技术学院从事教学科研工作，在此附上我的申请材

料，希望各位领导能在百忙之中阅读。如有任何问题，请与我联系。我的联系方式为：

手机电话: +33 (0)6 52 21 57 28
办公室电话: +33 (0)1 47 40 59 43
传真: +33 (0)1 47 40 59 01
电子邮件: tang@cmla.ens-cachan.fr, tangfrch@gmail.com
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School of Information Science and Technology
ShanghaiTech University
Building 8
319, Yueyang Road
Shanghai 200031
China

To whom it may concern,

This is the application from Zhongwei Tang Ph.D., for the faculty position of the School of Informa-
tion Science and Technology (SIST) at ShanghaiTech University. My education background and research
experiences in image processing and computer vision will prove to be an effective match for the position.

I am currently a postdoctoral research associate with Dr. Pascal Monasse in IMAGINE at Ecole des
Ponts ParisTech, working on the STEREO project funded by French National Research Agency (ANR). I
also work closely with Professor Jean-Michel Morel at Ecole Normale Supérieure de Cachan. Before I was
a postdoctoral research associate with Professor Guillermo Sapiro in Electrical and Computer Engineering
department at Duke University.

I obtained my B.S. degree in electronic engineering from Fudan University in 2003. After one-year work
in semiconductor in Shanghai, I was admitted by French National Polytenchique Institute of Toulouse (INP-
T) for two-year engineer study. I then spent the next four years at Ecole Normale Supérieure de Cachan,
first for the master, then the Ph.D. degree, both in applied mathematics, major in image processing and
computer vision.

My researches are at the intersection of multi-view geometry and multi-image enhancement. In the
other words, I want to use the geometric prior deduced from images to guide the image enhancement,
and use the enhanced images to explore more robust and precise geometric structure. The two problems
are complementary to each other and thus benefit each other. The use of geometric prior to stabilize one
image enhancement is not new. However, in the case of multiple images, how to interact the multi-image
enhancement with multi-view geometry has not been completely solved.

I have been working on the 3D stereo reconstruction, where multiple images taken from different
viewpoints are used to reconstruct the 3D rigid scene. As shown in our ANR funded Callisto project, once
the camera model and the lens distortion model have been accurately calibrated, the camera is converted
into a high precision measurement device. Then the final 3D reconstruction precision will only depend on
the precision of matching feature points between images. The software package we have delivered to French
National Center for Space Studies (CNES) follows this idea to first rectify images using accurate camera
calibration information and then search precise matching points between images along one direction. One
part of the software has been modified and integrated into the stereo software of IMAGINE lab, which won
the first award of PRoVisG Mars 3D Challenge, organized by Jet Propulsion Laboratory (JPL) of NASA.
However, the recent computation shows that the matching precision can be further improved by reducing
the noise level of images by accumulating more images taken in a small baseline set up. This is at the core
of our ongoing ANR funded STEREO project, which aims at building a complete 3D stereo reconstruction
chain, testable and reproducible on Image Processing On Line (IPOL project funded by European Research
Council), with an accent on the precision.

Multiple images used in stereo reconstruction are usually taken under control. However, most of images
available on the web are taken quite arbitrarily by hand in wide baseline set up and are contaminated by
noise, blur and other artifacts. Our first attempt for multi-image denoising has achieved the state-of-
art performance for fine image detail restoration. This approach works well in the cases where the scene is
quasi-planar or camera motion is almost a rotation. To exploit more complex geometric relationship between
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multiple arbitrarily taken images, I plan to adopt the sparse representation framework: each enhanced image
patch will be estimated as a sparse linear combination of atoms in an over-complete dictionary. The prior
information, like the structured sparsity and the joint sparsity, will be used to select appropriate atoms and
thus stabilize the estimation. The selected atoms are similar patches to the underlying image patch up to
small approximation error. This is somewhat close to the idea used in our unsupervised human actions
classification, which is developed for National Science Foundation (NSF) funded project for early diagnosis
of psychiatric disorders. More geometric invariance is planned to be added to make the classification more
robust against viewpoint and illumination change.

I hold close collaboration with the team led by Professor Jean-Michel Morel at CMLA of ENS-Cachan,
the team led by Dr. Pascal Monasse at IMAGINE of ENPC and the team led by Professor Guillermo Sapiro
at Duke University. The team led by Professor Jean-Michel Morel has extensive experience on image
denoising and analysis. Its seminal work on Non-Local Mean denoising is considered as the first one to
exploit the self-similarity between patches in one image, and is the basis of many other modern denoising
algorithms. The team at IMAGINE of ENPC has been working for several years on dense multi-view stereo
vision, with the focus on high precision 3D surface reconstruction from images, targeting large-scale data sets
taken under uncontrolled conditions. The team led by Professor Guillermo Sapiro is known for its work on
sparse representation and statistical machine learning with applications in image and video restoration and
classification. Some young and active researchers in China, like Professor Yaxin Peng at Shanghai University,
Professor Chunli Shen and Chaomin Shen at East China Normal University and Professor Tieyong Zeng at
Hong Kong Baptist University, are also interested in my projects and keep in close contact with me. Finally,
technology transfer under license to CNES, Technicolor and DxO Lab is possible in the future.

I apply for the faculty position of SIST at ShanghaiTech University for three reasons. First, it is the
target for ShanghaiTech to become a globally recognized top research university under the sponsorship of
Shanghai Municipal government and Chinese Academy of Science. The guaranteed high quality and high
internationalization level of the university definitely benefits my future career. Second, the new education
system adopted by ShanghaiTech goes along with my teaching and research philosophy (please see my
research plan and teaching statement in the below). With the interaction and collaboration with highly
qualified faculty and students in SIST, I will be able to efficiently deploy my teaching and research plan.
Third, ShanghaiTech is located at Zhangjiang high-tech park, the well-known Shanghai Silicon Valley. The
geographic advantage makes the university closely connected to the industry. This allows me to interact
with the industry and orient my research to real industrial needs.

In summary, I have received rigorous training from image processing and computer vision, holding
both theoretic knowledge and practical experience. I am a dynamic and responsible person, highly motivated
to teaching and research work. I am also considered by my colleagues as a good and reliable collaborator
easy to communicate.

I appreciate that you spend time in reading this letter and the other application materials. I am
looking forward to having an opportunity to interview. Please do not hesitate to contact me if you have any
question.

Sincerely,

Zhongwei Tang

IMAGINE, Ecole des Ponts ParisTech

Email: tangfrch@gmail.com

Phone: +33 (0)6 52 21 57 28
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Curriculum Vitae

Zhongwei TANG
IMAGINE, Ecole des Ponts ParisTech
6-8, Avenue Blaise Pascal - Cité Descartes
Champs-sur-Marne
77455 Marne-la-Vallée, France

Born on April 11th, 1981, in Pudong, Shanghai
Mobile phone: +33 (0)6 52 21 57 28
Office phone: +33 (0)1 47 40 59 43
Fax: +33 (0)1 47 40 59 01
Email: tang@cmla.ens-cachan.fr, tangfrch@gmail.com
Linkedin: http://www.linkedin.com/pub/zhongwei-tang/53/632/66

Skills

More than 7 years’ experience on image processing, multiple view geometry, computer vision, statistical
machine learning and pattern recognition
• Image processing: image enhancement, multiple images merging, contrast enhancement, histogram spec-

ification, Poisson image editing, image compression

• Multiple view geometry: 3D reconstruction, camera calibration, image rectification, lens distortion cor-
rection, image stitching

• Computer vision: feature detection and matching, edge detection, image registration, image segmenta-
tion, object tracking, A Contrario image analysis

• Image processing chain modeling in digital camera: Gamma correction, white balance, contrast enhance-
ment, RAW image generation, JPEG compression, point spread function, diffraction, image demosaicing,
optical lens system, geometric imaging model, anti-aliasing filter, defocus aberration, chromatic aberra-
tion, vignetting

• Statistical machine learning and pattern recognition: support vector machine, linear discriminant analy-
sis, Baysian statistics, sparse dictionary learning, clustering, probabilistic graphical model, robust statis-
tics

• Software: co-author of stereo reconstruction software package delivered to French National Center for
Space Studies (in C++), co-author of line-based lens distortion correction software (in C++), lens
distortion measurement software (in C), pattern-based lens distortion correction software (in C), reflective
symmetry detection software (in Matlab), automatic image rectification software (in Matlab)

Professional Experience
• Postdoctoral Research Associate 07/2013-present

IMAGINE, Ecole des Ponts ParisTech, France
⋄ Work on the project STEREO funded by French National Research Agency (ANR) to study and

improve the precision of 3D stereo reconstruction, which helps French National Center for Space
Studies (CNES) to design the next generation of Earth observation satellite

⋄ Work on a generalized symmetry detection algorithm, including reflective symmetry, mirror symmetry
and translation symmetry
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• Postdoctoral Research Associate 01/2012-06/2013
Electrical and Computer Engineering department, Duke University/University of Minnesota, US
⋄ Develop an automatic human actions classification algorithm by using machine learning techniques,

with potential applications of video surveillance, abnormal events detection, video indexing, etc.

⋄ Develop a reflective symmetry detection algorithm based on image feature points, with potential
applications of face recognition, image segmentation, etc.

• Research Assistant 07/2011-12/2011
CMLA, Ecole Normale Supérieure de Cachan, Cachan, France
⋄ Develop a high-precision pattern-based camera lens distortion correction method

⋄ Develop a high-precision image registration algorithm based on image feature points

⋄ Develop a parametric high-precision line-based camera lens distortion correction method

⋄ Develop an automatic image rectification algorithm

⋄ Develop a burst image denoising algorithm based on multiple photos of different viewpoints

⋄ Study and implement the 3D reconstruction chain, including distortion correction, camera calibration,
image rectification, dense image registration, etc.

• Tesing Engineer 09/2003-09/2004
Semiconductor Manufacturing International Corporation(SMIC), Shanghai, China
⋄ Responsible for probe card room and new room member training

⋄ Repair, maintain and test probe cards

Education
• Ph.D., Applied Mathematics (Image Processing and Computer Vision) 10/2007-07/2011

Centre de Mathématiques et de Leurs Applications (CMLA)
Ecole Normale Supérieure de Cachan (ENS-Cachan), Cachan, France

• M.Sc., Mathematics, Vision, Learning (ex-DEA MVA) 10/2006-09/2007
Ecole Normale Supérieure de Cachan, Cachan, France

• Engineering Degree (Diplôme d’Ingénieur), Electronic and Signal Processing 10/2004-09/2006
Institut National Polytechnique de Toulouse (ENSEEIHT-INPT), Toulouse, France

• B.Sc., Electronic Engineering 10/1999-09/2003
Fudan University, Shanghai, China

Industry Intern Experience
• ENST (Ecole Nationale Supérieure des Télécommunications), Paris, France 04/2007-10/2007

⋄ Involved in the project DIVINE funded by French National Research Agency (ANR), which aims at
developing a system to diffuse image and video flows towards heterogeneous mobile terminals through
heterogeneous networks environment

⋄ Study on multiple descriptors coding which represents the same source information by a set of inde-
pendent flows such that the decoder is able to reconstruct the source information with one or some
flows lost during the transmission

• Philips Semiconductor (now NXP), Caen, France 03/2006-09/2006
⋄ Integrated in the division of “channel decoding” in Philips Semiconductor (now known as NXP
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semiconductor) which designs digital TV decoding chips

⋄ The mobile channel is characterized by the “multi-path” and “time varing” which introduce the effect
of inter symbol interference (ISI) (also known as Doppler effect) and inter carrier interference (ICI)

⋄ Development of mobile channel estimation and equalization algorithms to reduce the above two effects

• IRIT (Institut de Recherche en Informatique de Toulouse), Toulouse, France 07/2005-08/2005
⋄ The watermark is the information hidden in images, robust again attacks, for ownership or copyright

identification

⋄ Study and comparison of image watermark algorithms

Awards
• First Prize of “ChunHui” Venture Competition, Guangzhou, 12/2012

• First Prize of Venture Competition organized by the Embassy of the People‘s Republic of China in
France, 07/2012

• Graduate Summer School travel grants, Park City Mathematics Institute, U.S. 06/2010-07/2010

• International Research Scholarship, ENS-Cachan, France 10/2007-10/2010

Participated Projects
• “Stereo reconstruction at the limits of its precision (STEREO)”, directed by Prof. Jean-Michel Morel,

sponsored by French National Research Agency (ANR)
⋄ Study and improve the precision of 3D stereo reconstruction, which helps French National Center for

Space Studies (CNES) to design the next generation Earth observation satellite

⋄ Automatize the 3D stereo reconstruction from a couple of images from different viewpoints

• “CDI-Type II: Computational Tools for Behavioral Analysis, Diagnosis, and Intervention of at Risk
Children”, directed by Prof. Nikolaos Papanikolopoulos and Prof. Guillermo Sapiro, sponsored by
National Science Foundation (NSF)
⋄ Use video cameras to collect and analyze data regarding human movements

⋄ Assist with the early diagnosis of children at risk of developing psychiatric disorders by computer
vision and image processing techniques, like tracking, segmentation, pose estimation, etc.

• “Calibration in Stereo Vision by Statistics Methods (Callisto)”, directed by Dr. Pascal Monasse, spon-
sored by French National Research Agency (ANR)
⋄ Camera calibration consists in estimating the internal parameters and external positions of camera

⋄ Develop a two-step camera calibration approach, more precise than the state-of-art methods

• “Twelve Labours of Image Processing”, directed by Prof. Jean-Michel Morel, sponsored by European
Research Council (ERC)
⋄ “Image Processing On Line (IPOL)” (www.ipol.im): a new concept of publication to support repro-

ducible research and software in image processing and analysis

⋄ Help to create and boost this new journal, and review regularly the papers submitted to this journal

• “Automatic Computation of Digital Elevation Models from Satellite Images with Small Baseline”, di-
rected by Prof. Jean-Michel Morel, sponsored by French National Center for Space Studies (CNES)
⋄ Help to reconstruct a reliable 3D terrain models from two images taken almost simultaneously by air

borne cameras or satellite cameras
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Journal Reviewer

SIAM Journal on Imaging Sciences, Journal of Mathematical Imaging and Vision, Image Processing On
Line, Optics Express, Applied Optics, Journal of the Optical Society of America A, IEEE Geoscience and
Remote Sensing Letters, IEEE Transaction on Image Processing

Publications
• Reflective symmetry detection by rectifying randomized correspondences, Z. Tang, M. Tepper and G.

Sapiro, British Machine Vision conference, 2013

• “Are you imitating me?”: Unsupervised sparse modeling for single video group activity analysis, Z. Tang,
A. Castrodad, M. Tepper and G. Sapiro, submitted to International Journal of Computer Vision, 2012

• High-precision camera distortion measurements by “calibration harp”, Z. Tang, R. Grompone von Gioi,
P. Monasse and J.M. Morel, Journal of the Optical Society of America A, 2012

• High-precision camera distortion correction, Z. Tang, R. Grompone von Gioi, P. Monasse and J.M.
Morel, preprint, 2012

• Self-consistency and universality of camera lens distortion models, Z. Tang, R. Grompone von Gioi, P.
Monasse and J.M. Morel, Submitted to IEEE Transaction on Image Processing, 2012

• Multi image noise estimation and denoising⋆, A. Buades, Y. Lou, J.M. Morel and Z. Tang, preprint, 2012

• Lens distortion correction with a calibration harp⋆, R. Grompone von Gioi, P. Monasse, J.M. Morel and
Z. Tang, International Conference on Image Processing, 2011

• Three-step image rectification⋆, P. Monasse, J.M. Morel and Z. Tang, British Machine Vision conference,
2010

• Towards High-precision Lens Distortion Correction⋆, R. Grompone von Gioi, P. Monasse, J.M. Morel
and Z. Tang, International Conference on Image Processing, 2010

• A Note on multi-image denoising⋆, A. Buades, Y. Lou, J.M. Morel and Z. Tang, International Workshop
on Local and Non-Local Approximation in Image Processing, 2009

⋆ I am the leading author of the paper, although the authors are ordered in the alphabetic order. Please
contact Prof. Jean-Michel Morel (morel@cmla.ens-cachan.fr), the leader of the image processing group of
CMLA, ENS-Cachan, for a certificate.

Talks
• Reflective symmetry detection by rectifying randomized correspondences, poster presentation, British

Machine Vision Conference, Bristol, U.K., September 2013
• Some geometric problems in image denoising, Siemens Corporate Technology, Beijing, China, June 2013
• High precision lens distortion measurement and correction, CGG Vertitas, Crawley, UK, January 2013
• Sparse modeling in image denoising and human actions classification, Philips Healthcare, Paris, France,

September 2012
• The precision issue on lens distortion correction, International Conference on Image Processing, Brussels,

Belgium, September 2011
• Lens distortion correction with a calibration harp, poster presentation, Gretsi, Bordeaux, France, Septem-

ber 2011
• Towards High-Precision Lens Distortion Correction, International Conference on Image Processing, Hong

Kong, China, September 2010
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• High-precision Lens distortion correction, East China Normal University, Shanghai, China, September
2010

• Three-step image rectification, poster presentation, British Machine Vision Conference, Aberystwyth,
U.K., August 2010

• Three-step image rectification, poster presentation, INRIA Visual Recognition and Machine Learning
Summer School, Grenoble, France, July 2010

• Non-parametric lens distortion correction, Mathématiques de l’Imagerie Stéréoscopique Spatiale (MISS),
Cachan, France, September 2009

• Essential matrix and three-step image rectification, Mathématiques de l’Imagerie Stéréoscopique Spatiale
(MISS), Cachan, France, June 2008

• Fundamental matrix estimation and its application in image rectification, Centre National d’Etudes
Spatiales (CNES), Toulouse, France, March 2008

Language Skills
• Chinese native language
• English fluent (living in U.S from December 2011 to June 2013)
• French fluent (living in France from July 2004 to December 2011)

Computer Skills
• Language: C/C++, Matlab, VHDL, Assembly languages Intel 8086, Intel 8051
• Operation system: Windows, Unix/Linux, MacOS
• Software: LATEX, GIMP, Inkscape, Microsoft Office

References
• Prof. Jean-Michel MOREL

Professor of Applied Mathematics, CMLA, Ecole Normale Supérieure de Cachan, France
Email: morel@cmla.ens-cachan.fr Tel: +33 (0)1 47 40 29 87 Fax: +33 (0)1 47 40 59 01

• Dr. Pascal MONASSE
Researcher of Computer Vision, IMAGINE, Ecole des Ponts, ParisTech, France
Email: monasse@imagine.enpc.fr Tel: +33 (0)1 64 15 21 76 Fax: +33 (0)1 64 15 21 99

• Prof. Guillermo SAPIRO
Edmund T. Pratt, Jr. Professor, Department of Electrical and Computer Engineering, Duke University,
Durham, U.S.
Email: guillermo.sapiro@duke.edu Tel: +16126251343 Fax: +16126254583
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Research Statement and Plan
My research plan is a natural continuation and extension of my current and previous research projects.

I have been working on camera calibration, lens distortion correction, multiple view geometry and image
denoising. All the projects involve the interaction between the geometry with multiple images, which is, in
my opinion, the key to increase the precision and the robustness. Depending on the problem at hand, the
geometric prior can be explicitly used to extract the desired structure or more implicitly incorporated into
the model to stabilize the estimation. Along this line, I will present my research plan in three parts, based
on my current and previous researches.

1 Stereo vision in high precision
It is commonly admitted that the camera-based 3D stereo reconstruction methods have not yet

achieved the precision of 3D laser scanner. A triangulation 3D laser scanner of good quality can produce
a point cloud at the precision about 20 µm (at a distance of about 70 cm), better than the state-of-art of
stereo reconstruction algorithms based on 2D photos. However, this is only possible on Lambertian objects
under very controlled environment with expensive and sophisticated high quality laser scanners. In contrast,
today’s camera is a passive device, much cheaper and flexible, producing high resolution photos. The general
goal is thus to design new algorithms to perform the 3D reconstruction from high quality 2D photos at a
comparable precision as 3D laser scanner, converting the camera into a high precision measurement device,
suitable for on-site 3D reconstruction tasks, particularly for the tasks like architecture modeling, heritage
protection and geology disasters early warning.

1.1 Two-step camera calibration
The 3D stereo reconstruction is a complex chain (see Fig. 1) which requires a maximal precision control

at each step to achieve the final high precision. Our project “Callisto” supported by French Research Agency
(ANR) focuses on the first step of this chain, i.e. camera calibration, which estimates the internal parameters
and external positions of the camera. The preliminary results show that high precision camera calibration is
possible if it is performed in two steps separately: camera distortion correction, followed by pinhole camera
calibration. This procedure deviates from most of the global camera calibration practice, which calibrates
the camera with the distortion together [14]. However, the global camera calibration is a highly non-convex
optimization problem and suffers from the error compensation between parameters, reducing the calibration
precision [15]. Our two-step calibration avoids the error compensation by first correcting the lens distortion
precisely and then linearly calibrate the resulting pinhole camera.

distortion 
correction

pinhole camera
calibration rectification

|{z}
camera 

calibration

dense matchings 
(disparity map)

3D 
reconstruction

point clouds filtering, 
merging, meshing,  

interpretation

Figure 1: The 3D stereo reconstruction chain.

Both the distortion correction and pinhole camera calibration are performed with a pattern. The
common practice is to use the same pattern (for example the pattern in Fig. 2a). But our calculations
show that even a tiny non-flatness of the pattern (100 µm) can produce an imprecision about 0.3 pixels
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in the distortion correction [28]. Due to the difficulty to find a pattern that flat, we built another type of
pattern, called “calibration harp” (see Fig. 2b), containing perfectly straight lines, to estimate and correct
the distortion at high precision about 1/30 pixels (Fig. 3) [27, 26]. Then the camera calibration is performed
with the photos of the calibration pattern (Fig. 2a), corrected by the estimated distortion model.

A caveat is that the distortion depends on the camera focal length and focus, thus on the distance
from the camera to the object. So ideally, two patterns should be placed at the same distance from the
camera. This is somehow delicate for close range calibration because the viewpoint change in taking the
photos of the calibration pattern can possibly change the distance.

0 14

179165

(a) (b)

Figure 2: (a) the pattern for camera calibration. (b) the calibration harp for distortion correction.

(a) (b)

Figure 3: (a) distorted image taken by Canon EOS 30D at focal length 18mm. (b) corrected image.

1.2 Small “b/h”: a new set up for high precision stereo vision
This problem mentioned above is largely alleviated if the camera focus is far away and the movement

of camera (b) during photographing is relatively small with respect to the distance from the camera to the
object (h). In this small baseline situation (typically b/h < 0.1), all photos of the same object look similar
to each other, contain the same distortion and remain sharp at the focus. Except for these advantages, the
challenges, in particular the requirement on the high precision, still exist, even become more important.
Without entering into technical details, I list in the next the main ideas to achieve the high precision at
each step:
• Distortion model estimation: We have shown that, in close range, with the calibration harp, the distortion

can be estimated up to 1/30 pixels, even for short focal length lens presenting big distortion. This
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precision is much higher than the state of art and many commercial software. In the case of small “b/h”
with camera focus at distance, we will need a bigger calibration harp. A smarter way to avoid building
the harp is to automatically find the straight lines in the scene and correct the distortion by rectifying
them. This is in the framework of RANSAC which requires a robust distortion model estimation by
eliminating many “outliers” [9].

• Distortion correction: The estimated distortion model can be used to correct any other image (taken by
the same camera under the same condition). It is equivalent to say that the camera does not introduce any
distortion, thus it is a pinhole camera which is a linear model in terms of projective geometry [12]. The
correction is concerned with the sub-pixel interpolation in the image domain. A high-order interpolation
(Fourier interpolation or high-order spline interpolation) is necessary to produce the corrected image at
the same quality as the original image. Special attention needs to be paid to not introduce aliasing when
the distortion model contains a sub-sampling.

• Pinhole camera calibration: The high precision distortion correction insisted above ensures that the
camera becomes very close to a pinhole camera, thus stabilizes its linear calibration in the small “b/h”
set up, which is otherwise a sensitive set up. Another trump we have in hand is that ellipse centers
on the calibration pattern photos can be detected at about 1/1000 pixels precision, ensuring that the
precision gained in distortion correction will not be offset. An analysis of the optimal precision achievable
according to the residual distortion and the ellipse detection error will be needed.

• Rectification: Rectification can be considered as a generalized image alignment for two images of any
3D scene. Under pure camera rotation, or with a completely flat scene, the whole image domain can be
aligned by a 2D homography. However, in general camera motion and 3D scene, the alignment is only
possible in one direction [12]. For calibrated cameras, the rectification can be computed analytically,
without losing any precision gained before [10, 20]. The rectification is particularly useful for computing
the disparity map, which consists of the shifting value between each point in one image and its corre-
sponding point in the other image. On rectified images, the correspondence search domain is reduced
from whole image domain to one dimension along the alignment direction.

• Disparity map computation: Disparity map computation is another important step in the 3D recon-
struction chain. With calibrated cameras, we can directly compute the 3D position of points from their
disparity values. Small “b/h” is a favorite case for computing disparity map in the sense that two images
taken almost at the same time with minimal occlusion and illumination variation are easier to compare
by block matching. However, since the 3D position is proportional to the corresponding disparity value
and the value of 1

b/h , a small error in the disparity value will be amplified by the big factor 1
b/h . This

emphasizes the importance of obtaining a precise disparity map. It is shown in [24] that disparity pre-
cision largely depends on the noise level in images. So it is preferred to denoise the images before the
disparity computation. In the small “b/h” situation, inspired by our burst denoising algorithm [2, 11],
we plan to accumulate multiple images to reduce the noise without introducing any artifact, to finally
achieve higher disparity map precision.

• Point clouds filtering, merging, meshing and interpretation: Following the above procedures, one pair of
images can produce an accurate and dense point cloud. With more than two images available, we will have
multiple separate point clouds. Point clouds filtering, merging and meshing has been largely discussed
in the thesis of Julie Digne [7]. We will thus refer to her thesis to begin the experiments. However, how
to interpret the geometric structure from point cloud is still an open problem. One possible way is to
adopt the Gestalt theory, which is known to be the single substantial scientific attempt to state the laws
of visual perception. Its first mathematic formalization has been recently proposed in [6], based on the
Helmholtz principle, which states that no meaningful structure can be perceived in white noise. This
formalization has been used to solve many 2D geometric structure detection problems [5, 19, 18]. We
plan to extend its application to 3D point clouds.
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2 Multi-image restoration
With the popularization of smart phone and shared network, today it is very easy to take photos

and share with the others. A direct consequence is that we have access to a large number of photos taken
before one same scene. These photos are usually taken from different viewpoints, at different times and
under varying illumination. As the photos collected on Picasa or Flickr show, they are often made ��by hand
with compact cameras without much effort to improve the quality. A natural question to ask is whether we
can restore an image of good quality from a series of low-quality images. This is somehow similar to the
problem in Section 1, where we claim that clean images are the key to compute an accurate disparity map
and eventual lead to a high-precision 3D reconstruction. Another realistic application is a super-resolution
system which produces high-resolution images for HDTV from low-resolution images for standard TV.

2.1 Burst denoising
Burst denoising [2] is our first attempt to multi-image enhancement, motivated from the frustrating

experience of taking photographs in a museum under low light conditions, where the flash of camera and
tripod are forbidden. In such situation, taking photographs with a hand-held camera is problematic. If the
camera is set to a long exposure time, the photograph gets motion blur. If it is taken with short exposure,
the image is noisy. With the more recent digital cameras, this dilemma can be solved by taking a burst of
images, each with short-exposure time, as shown in Fig. 4. But then, as classical in video processing, an
accurate registration technique is required to align the images. Denote by u(x) the ideal non noisy image
color at a pixel x. Such an image can be obtained from a still scene by a camera in a fixed position with
a long exposure time. The observed value for a short exposure time τ is a random Poisson variable with
mean τu(x) and the variation proportional to τu(x). Thus the SNR (Signal-to-Noise Ratio) increases with
the exposure time proportionally to τ . The core idea of the burst denoising method is a slight extension
of the same law. The only assumption is that the various values at a cross-registered pixel obtained by a
burst are i.i.d. (Independent and Identically Distributed). Thus, averaging the registered images amounts
to averaging several realizations of these random variables. An easy calculation shows that this increases the
SNR by a factor proportional to

√
n where n is the number of shots in the burst. (We call SNR of a given

pixel the ratio of its temporal standard deviation to its temporal mean). Fig. 4 summarizes the possibilities
offered by an image burst. A long exposure image is exposed to motion blur. The short exposure image is
noisy, but sharp. Finally, the image obtained by averaging the images of the burst after registration is both
sharp and noiseless.

(a) (b) (c)

Figure 4: (a) one long-exposure image (time = 0.4 sec, ISO=100). (b) one of 16 short-exposure images
(time = 1/40 sec, ISO = 1600). (c) the average after registration. The long exposure image is blurry due to
camera motion. The middle short-exposure image is noisy, and the third one is some 5.6 times less noisy,
being the result of averaging 32 short-exposure images.
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2.2 Sparse multi-image restoration
While burst denoising benefits from the redundant information in multiple images, it takes the risk

that the registration is not enough precise so that some pixels are slightly misaligned. In fact, the ideal
image registration is only possible when camera motion is a pure rotation around the optic center or the 3D
scene is flat. This seldom happens in practice. So burst denoising usually applies on a dominant plane in
the image and some more reserved denoising methods [1] apply on the other parts of the image. This limits
the application of burst denoising.

Another approach more robust against the registration error is to estimate an image as a sparse linear
combination of atoms in a dictionary. The estimation in a fixed dictionary gives already impressive single
image denoising result [4], which can be again improved by using a dictionary learned from images [8, 17].
The core idea of dictionary learning is to construct a dictionary which is more adapted to the image, thus
promotes a sparse representation for the image and a non-sparse representation for the noise. Since the
over-completeness of dictionary requires a lot of training data, the learning is usually performed on small
image patches due to their low dimension, relatively simple structure and self-similarity [22]. Multiple images
are thus appropriate for dictionary learning, with a large number of image patches whose redundancy and
self-similarity are naturally obtained by the overlapping between images.

In the framework of sparse modeling, image restoration consists in estimating image patches which
are similar to the original image patches and have a sparse representation in the learned dictionary. Due
to the over-completeness of dictionary, the degree of freedom to select such patches is huge, which makes
the estimation unstable. So more prior information should be imposed to stabilize the estimation. Two
concepts are appropriate to stabilize multiple image restoration. One concept is the joint sparsity and the
other one is the structured sparsity. Joint sparsity explores the fact that a set of image patches share the
same atoms in a dictionary. In the other words, they can be represented by the same set of atoms. This
helps to stabilize the estimation. In the case of multiple image restoration, the set of images have some
overlapping areas, which makes the application of the joint sparsity appropriate. Besides the joint sparsity,
the concept of structured sparsity is also appropriate both for dictionary learning and sparse representation.
For dictionary learning, instead of learning a “chaotic” dictionary from natural image patches, we add more
constraints to make the learned atoms more structured, explicitly expressing some geometry like the patch
orientation. For sparse representation, the selected atoms should not be arbitrary neither. Instead, the
atoms should present similar structure as the image patches they want to represent.

3 Transformation invariant classification
Classification can be considered as the complement to image processing in the sense that image

processing produces an enhanced image, while classification determines which class an image belongs to.
The general approach employed in classification is to first extract some features from each class of training
images and then learn a classifier from the features. A new image can be classified according to the classifier
response to its features.

Both the features and the classifier are important for classification. On the one hand, we need distinc-
tive and robust features which are invariant to geometric transformation and illumination change. On the
other hand, we need to find a good classifier which correctly builds separable models for each class of images
from their features. Important advances have been made in both aspects these years. For invariant features,
the seminal work of SIFT first achieved the fully similarity invariance and robustness to illumination change
[16]. ASIFT (Affine SIFT) [21] simulates two missing parameters of camera left by SIFT and achieves fully
affine invariance, which is sufficient to explain any local planar deformation. For classifiers, besides famous
SVM and its kernel variants [3, 13], sparse models also show the state-of-art performance on the action and
image classification [29].

So it is natural to combine the advances of two aspects to boost the performance of classification on
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Our result
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walking to left walking to right running to right waving running to left in-place movement rolling
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Bag-of-words

Figure 5: Analysis of the Outdoor video on 320 1-second intervals. The ground truth is illustrated by
seven colors and captions. The clustering results only show the action grouping, without action identity
information. The nonparametric spectral clustering algorithm detects seven groups of action for our method,
four for Zelnik-Manor and Irani’s method (ZMI) [30], and four for bag-of-words method. The rand index [23]
for the clustering is 92.6%, 62.0%, and 88.9% for our method, ZMI, and bag-of-words method, respectively.

the invariance. One possible path is to first learn a dictionary from each class of images, then simulate the
affine transformation on the atoms in the dictionary to obtain an extended dictionary. A global dictionary
can be constructed by simply concatenating each sub-dictionary. The classification decision on a new image
is then determined by which sub-dictionary contributes the most in its sparse representation. This similar
approach has been employed by our unsupervised human actions classification and achieved state-of-art
performance, even without incorporating the feature invariance (Fig. 5) [25]. We also plan to extend this
work by building features describing actions in a more invariant way against video camera viewpoint and
intrinsic action variation.

4 Summary
All of the above projects require the expertise of image processing, stereo vision, multi-view geometry

and machine learning. The experimentation skills, including the photograph practice and the proficient
coding skill are also indispensable to make the projects successful. Since the projects are closely related to
the work I did with Dr. Pascal Monasse (IMAGINE, Ecole des Ponts ParisTech, France), Prof. Jean-Michel
Morel (CMLA, ENS-Cachan, France) and Prof. Guillermo Sapiro (ECE, Duke University, U.S.), the regular
exchanges and collaborations are under plan. The results will also interest the satellite conception team
led by Dr. Bernard Rougé and Dr. Gwendoline Blanchet at French National Center for Space Studies
(CNES). The transfer of technique and knowledge to CNES will help to design the next generation of Earth
observation satellite.

The School of Information Science and Technology at ShanghaiTech University is very new and dy-
namic, showing high potential to become globally recognized top research university, in particular with its
innovative advisory education system and its high quality faculty team. I am happy to see that there are
many distinguished professors doing the research in satellite design, image processing and computer vision,
which coincides exactly with my research direction. I hope that my research will also interest them and
finally lead to collaboration to boost the research level of the university.
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Teaching Statement
My teaching experiences date back to the years when I did my Ph.D. study in Centre des Mathématiques

et de Leurs Applications (CMLA) at Ecole Normale Supérieure de Cachan (ENS-Cachan). I was responsible
for teaching two computer based courses about image processing at the graduate level, totally 30∼35 stu-
dents per course and 96 hours per academic year. I also supervised some master student projects on image
processing and analysis algorithms. These experiences allowed me to develop and improve my teaching
skills. Due to the lack of teaching materials, I also spent much time in developing the exercises and the
corresponding computer programs.

My first teaching principle is to make the students understand what I teach. Image processing is an
interdisciplinary subject, closely related to mathematics and engineering. But many students in my class
only had either mathematical background or engineering background. This happened to me when I taught
the course “partial differential equation in image processing”. Engineering students usually grabbed the
main idea but had difficulty in understanding the underlying partial differential equation, while mathematic
students can understand every mathematic detail but often lost the big picture. In this situation, I first
encouraged the students to discuss and exchange their ideas. When they were discussing, I walked around in
the class to note down what are the missing points they still do not understand. Then I began to write down
the equations and also show one image on the big screen. Each time the equations evolve or the parameters
change, the image changes correspondingly by computer program I wrote beforehand. This allows both the
mathematic students and engineering students to understand how images are “processed”. I also emphasized
the missing points by using more exemplar images or even some toy examples to make sure that the students
understand. During the course, the students are always encouraged to interrupt me to ask any question,
which were answered through the interactive illustration if possible. The typical questions are collected for
the course preparation of the next year.

My second teaching principle is to make the course interesting. The interest and curiosity are two
prerequisites to learn. In the class, I usually did not ask students to do many mathematic exercises because
this does not tell image processing from other mathematics courses. Instead, I asked them to implement
some basic image processing algorithms. They were all very interested in making their own program work.
The programming is perhaps an awkward exercise for the students who have no or little programming
experience. To solve this problem, I usually make two or three students to work together as a group, at
least one of them having engineering background with basic programming skills and the others probably
having a more mathematical profile. In order to make the students concentrate on the algorithmic aspect,
I designed very well commented programs which only lack some key steps. I went to each group to make
sure that at least one student understood and could teach his teammates. Another very helpful tool I use is
the Image processing On Line (IPOL), which has the ambition to make all the image processing algorithms
accessible and testable on line. Students could directly have a first impression about what image processing
can do by testing the algorithm on their own images. This is very helpful to do a general presentation at
the beginning of the course to attract the attention of students.

I also understand that my future position will require me to lead my own research group and guide
students at undergraduate and graduate level. This is not exactly the same as teaching a course. By
definition, research is an iterative process of search and re-search, and there is no standard solution to
problems. So it is crucial to train the students to think independently. When I guided master students
projects, I never told students the answer or the idea directly. Instead students were asked to first understand
what is the problem, then study the references to see how the others solve the problem and what is the
state-of-art solution. All these must be written as a technical report, as the training for paper writing. The
next phase, which is also more difficult, is to make the students have their own ideas. I usually asked the
students to reproduce the state-of-art algorithm and do extensive tests. Then I sat down with the students
and discussed the results together. In the discussion, I would inspire the students to find the weak points
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of the algorithm and propose their own solutions. Once new results (either worse or better) were available,
the discussion would continue until we converged to a mature solution. During the process, the students
were also required to update the technical report in detail, which will be a good draft for the final paper.

I believe that teaching and research are complementary to each other. A qualified professor should be
good at both aspects. This goes along with the new education system adopted by ShanghaiTech University,
where professors are required to do researches and teaching as well. And each undergraduate is assigned
to a supervisor from a relevant field to guide their studies and researches. So ShanghaiTech University is a
perfect place for me to practice my teaching philosophy. I hope I can have more opportunities to teach in
the future to further improve my teaching skills and stay close to the students as a helpful advisor.
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This paper addresses the high-precision measurement of the distortion of a digital camera from photographs. Tra-
ditionally, this distortion is measured from photographs of a flat pattern that contains aligned elements. Never-
theless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the
attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines
by tightly stretching good quality strings on a frame. Taking literally “plumb-line methods,”we built a “calibration
harp” instead of the classic flat patterns to obtain a high-precisionmeasurement tool, demonstrably reaching 2 ∕100
pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs
two different and complementary lens distortion measurements. The precision of the method is evaluated on
images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications
are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp
permits us to control state-of-the art global camera calibration algorithms: it permits us to select the right distortion
model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual
procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and
precision. © 2012 Optical Society of America

OCIS codes: 100.3008, 150.1488.

1. INTRODUCTION
The precision of three-dimensional (3D) stereovision applica-
tions is intimately related to the precision of the camera cali-
bration, and especially of the camera distortion correction. An
imprecise distortion model produces residual distortion that
will be directly back-projected to the reconstructed 3D scene.
Such imprecision can be a serious hindrance in remote
sensing applications such as the early warnings of geology dis-
asters, or in the construction of topographic maps from
stereographic pairs of aerial photographs. The fast growing
resolution of digital cameras and of their optical quality is
transforming them into (potential) high-precision measure-
ment tools. Thus, it becomes important to measure the cali-
bration precision with ever higher precision.

A first step toward high-precision distortion corrections is
to perform precise distortion measurements. This basic tool
can then be used to evaluate the precision of a correction
method, or can become part of the correction method itself.

Camera and lens distortion measurement methods usually
require a flat pattern containing aligned elements. The pattern
is photographed using the target lens, and the distortion is
measured by how much the observed elements deviate from
the straight alignment on the pattern. For example, the classic
DxO-labs’ software, a good representative of camera maker
practice (http://www.dxo.com/) uses a pattern with a grid
of aligned dots. Distortion is measured by the positional errors
associated with the maximal deviation in a row; see Fig. 1.
Similar methods are proposed by the standard mobile im-
aging architecture (SMIA), European Broadcasting Union

(EBU) (http://www.ebu.ch/), image engineering (IE) (http://
www.image-engineering.de/), and International Imaging In-
dustry Association (I3A) (http://www.i3a.org/) standards.
These measurements are generally manual and require a
perfectly flat pattern.

Every lens distortion correction method includes, impli-
citly, a lens distortion measurement. These methods can be
roughly classified into four groups:

• reprojection error minimization methods,
• pattern matching methods,
• enlarged epipolar geometry-based methods, and
• plumb-line methods.

Reprojection methods usually rely on a planar pattern con-
taining simple geometric shapes. In these methods, the lens
distortion is estimated together with the camera internal
and external parameters [1–5], by minimizing the reprojection
error between the observed control points on the pattern and
the reprojected control points simulated by the pattern model
and camera model. The distortion is measured in terms of re-
projection error once all the parameters have been estimated.
Both the internal parameter errors and the external parameter
errors contribute to the reprojection error. Unfortunately,
these errors can compensate each other. Thus, a small repro-
jection error may be observed while the internal and external
parameters are not well estimated. This compensation effect
reduces the precision of the estimation of the lens distortion
parameters [6]. It hinders accurate distortion estimation from
the reprojection error. Notice that this high precision is not
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always required. In some applications, the distortion esti-
mated in these bundle adjustment-based reprojection meth-
ods, which makes the 3D geometry consistent with the
pin-hole model, is precise enough for a human observer.

A quite different kind of method proceeds by matching a
photograph of a flat pattern to its digital model. These meth-
ods estimate the distortion field by interpolating a continuous
distortion field from a set of matching points. Several variants
exist depending on the kind of pattern, matching, and inter-
polation technique. A common and crucial assumption for
these methods is that the pattern is flat. In practice, however,
it is difficult to produce a very flat pattern, and the conse-
quences of a tiny flatness flaw are considerable. For example,
it is reported in [7] that a flatness error of about 100 μm for a
40 cm broad pattern can lead to an error of about 0.3 pixels in
the distortion field computation for a Canon EOS 30D camera
of focal length 18 mm with the distance between the camera
and the object about 30 cm. The only physical method to as-
sess a pattern flatness at a high precision is interferometry,
but it requires the pattern to be a mirror, which is not adequate
for photography. Furthermore, camera calibration requires
large patterns, which are therefore flexible. Deformations
of the order of 100 μm or more can be caused by temperature
changes, and by a mere position change of the pattern, which
deforms under its own weight.

Recently, more attention has been paid to pattern-free
methods (or self-calibration methods) where the distortion es-
timation is obtained without using any specific pattern. The
distortion is estimated from the correspondences between
two or several images in the absence of any camera informa-
tion. The main tool is the so-called enlarged epipolar con-
straint, which incorporates lens distortion into the epipolar
geometry. Some iterative [8,9] or noniterative methods [10–20]
are used to estimate the distortion and correct it by minimiz-
ing an algebraic error. The estimated distortion can be used as
the initialization in bundle adjustment methods to improve the
camera calibration precision [21].

The so called “plumb-line” methods, which correct the dis-
tortion by rectifying distorted images of 3D straight lines, date
back to the 1970s (see Brown’s seminal paper in 1971 [22]).
Since then, this idea has been applied to many distortion mod-
els: the radial model [23–25], the field of view (FOV) model
[26], or the rational function model [27]. These methods mini-
mize the straightness error of the corrected lines. According
to the fundamental theorem to be introduced in Section 2, the
plumb-line methods minimize an error directly related to
the distortion, without suffering from the above-mentioned

drawback, namely a numerical error compensation. On the
other hand, in spite of their name, current digital plumb-line
methods usually involve flat patterns with alignments on them
and not the plumb lines that were originally proposed in ana-
log photogrammetry.

Taken literally, these methods should use photographs of
3D straight lines. When a high precision is required, this setup
becomes much easier to build than a flat pattern. The main
purpose of this article is to show that very accurate distortion
evaluation and correction can be obtained with a basic plumb-
line tool, which we called “calibration harp.” The calibration
harp is nothing but a frame supporting tightly stretched
strings. Nevertheless, the photographs of a calibration harp
require a new numerical treatment to exploit them. The
strings will have to be detected at high subpixel accuracy
and their distortion converted into an invariant measurement.

Distortion measurements can be used to evaluate the dis-
tortion of a camera, but also its residual distortion after cor-
rection. Two aspects of the measurement should be clarified
here. In this paper we discuss distortion measurements that
apply to the camera conceived as a whole: It is impossible
to tell which part the relative position and deformation of
the CCD, and the lens distortion itself, play in the global cam-
era distortion. The distortion measurement is therefore not a
pure optical lens distortion measurement, but the distortion
measurement of the full acquisition system of camera�
lens in a given state. Different lenses on different cameras can
be compared only when the camera calibration matrix is
known. On the other hand, the residual error due to different
correction algorithms can be compared objectively after ap-
plying an appropriate normalization on the corrected images.

This paper is organized as follows: The fundamental
theorem characterizing undistorted cameras is introduced
in Section 2. Section 3 uncovers the simple fabrication secrets
of calibration harps. The image processing algorithms needed
for an automatic measurement are presented in Section 4,
and Section 5 introduces the two most relevant measures.
Section 6 demonstrates two applications, to the measurement
of residual distortion after applying a calibration method, and
to the transformation of existing manual distortion correction
methods into automatic and far more precise ones. Finally,
Section 7 concludes the paper.

2. FROM STRAIGHT LINES TO STRAIGHT
LINES
In multiple-view geometry, the pinhole camera is the ideal
model that all techniques tend to approximate at best by cali-
brating the real cameras. This model corresponds to the ideal
geometric perspective projection. The next theorem charac-
terizes perspective projections by the fact that they preserve
alignments. Instead of restating the simplified version in [28],
we prefer to make it more precise. The proof of the theorem
can be found in [6].

Theorem 1. Let T be a continuous map from P3 to P2

[from 3D projective space to two-dimensional (2D) projec-

tive plane]. If there is a point C such that

(a) the images of any three points belonging to a line in P3

not containing C are aligned points in P2,
(b) the images of any two points belonging to a line in P3

containing C are the same point in P2,

Fig. 1. (Color online) DxO lens distortion measurement standard.
Estimation of distortion from an image of a dot chart.
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(c) there are at least four points belonging to a plane not

containing C, such that any group of three of them are non-

aligned, and their images are also nomaligned, then T is a

pinhole camera with center C.

This theorem provides us with a fundamental tool to verify
that a camera follows the pinhole model. Nevertheless, recti-
fying straight lines does not define a unique distortion correc-
tion: two corrections can differ by any 2D homography that
preserves all alignments. More concretely, assume that the
real camera model is P � D with C the coordinate of camera
optic center in a given 3D world frame, R the camera 3 × 3
orientation matrix, K the camera 3 × 3 calibration matrix,
andD the camera lens nonlinear distortion. The estimated dis-
tortion can be written as DH−1 with H−1 the unknown homo-
graphy introduced in the distortion correction, and can be
different from one correction algorithm to another. By apply-
ing the inverse of the estimated distortion, the recovered pin-
hole camera is P̂ � H. The homography H can enlarge or
reduce the straightness error, which makes the comparison
of different correction algorithms unfair. This effect can be
compensated by two strategies.

To arrive at a universal measurement, a first strategy that
we will consider is to normalize the homography:

1. Select four points Pi�1;…;4 in the distorted image in gen-
eral position (not three of them aligned). For example,
they can be the four corners of the distorted image.

2. Find their corresponding points P0
i in the corrected im-

age, according to the correction model: P0
i � HD−1Pi.

Note that H is different from one correction algorithm
to another.

3. Compute the normalization homography Ĥ that maps
P0
i to Pi: Pi � ĤP0

i. Note that Ĥ is different from one
correction algorithm to another.

4. Apply the normalization homography Ĥ on the cor-
rected image.

With this normalization, the final correction model
is ĤHD−1.

A second possible strategy would be to fix specific para-
meters in the correction model. For example, since the zoom
factor in the distortion correction is mainly determined by the
order-1 parameters in the correction model, it is sufficient to
set all the order-1 parameters to be 1 to obtain a unique dis-
tortion measurement. Unfortunately, this will not be possible
for some nonparametric distortion correction methods. The
first strategy therefore is more general.

3. BUILDING A CALIBRATION HARP
Theorem 1 suggests to take a set of physical straight lines, as a
calibration pattern. However, a common practice actually con-
tradicts the plumb-line basic idea: line patterns are printed and
pasted over a flat plate. There aremany sources of imprecision
in this setup: the printer quality is not perfect, the paper thick-
ness is not perfectly uniform, the pasting process can add bub-
bles or a nonuniform glue layer, and the supporting surface is
not perfectly flat either. Notwithstanding these defects, if only
a pixel precision is required, this setup is quite sufficient. None-
theless, when high subpixel precision is involved, the flatness
errors cannot be neglected. For current camera precision, a
flatness error of 100μm(the thicknessof currentwriting paper)
for a 40 cm pattern can lead to errors in the observed image

coordinates of about 0.3 pixels [7]. High precision aims at final
3D reconstructions far more precise than this. So the measur-
ing tool error should be also far smaller, if only possible.

The obvious advantage of “real” plumb lines on 2D patterns
with straight lines on them is that it is much easier to ensure a
very precise physical straightness for lines than a very precise
physical flatness for a physical pattern plate. Yet, the precision
of the resulting measurement or correction depends on the
straightness of the physical lines. In [22], to achieve a high
precision, plumb lines were made of very fine white thread
and stabilized by immersion of the plumb bobs in oil contain-
ers. Illumination was provided by a pair of vertically mounted
fluorescent fixtures. A dead black background was provided
for the plumb-line array to highlight the contrast. The points
on the lines were measured with a microscope. The measuring
process required from 5 to 6 h for generating 324 points. The
digital procedure proposed here will be automatic and faster.

For the applications where the precision is not a crucial
point, straight lines present in the natural scene can be used.
In [27,29], the straight lines are obtained by photographing the
architectural scenes and points on the lines are detected by
Canny edge detector.

In order to keep the high precision and simplify the fabrica-
tion procedure, we built a simple calibration pattern by tightly
stretching strings on a frame as shown Fig. 2. The pattern
looks like the musical instrument, hence its name. The setup
warrants the physical straightness of the lines. Its construc-
tion does not require any experimental skill, but only good-
quality strings. Indeed twisted strings show local width
oscillations; other strings do not have a round section, and
a little torsion also results in width variations that can have
a large spatial period. Rigid strings may have a remanent cur-
vature. Finally, a (tiny) gravity effect can be avoided by using
well-stretched vertical lines.

In our experiments, three different strings were tested: a
sewing string, a smooth tennis racket string, and an opaque
fishing string, all shown in Fig. 3. Sewing strings have a braid
pattern and their thickness oscillates. Tennis racket strings are
rigid and require a very strong tension to become straight. Fish-
ing strings are both smooth and flexible, and can therefore be
easily tightened and become very straight. The transparent
ones, however, behave like a cylindrical lens, producing multi-
ple complex edges. Opaque fishing strings end up being the
best choice to build a calibration harp. Figure 5 shows an eva-
luation of the obtained straightness. We took photos of the
three types of strings, and corrected their distortion. The green
curves show the signed distance from edge points of a cor-
rected line to its regression line. The red curve shows the
high-frequency component of the corresponding distorted line.
The high frequency is computed as follows:

• Transform the edge points extracted from the distorted
line into the intrinsic coordinate system, which is determined
by the direction of the regression line computed from these
points. In this coordinate system, the x-coordinate is the dis-
tance between the edge points and a reference edge point
along the regression line and the y-coordinate is the signed
distance from the edge points to the regression line. This pro-
duces a one-dimensional signal (see Fig. 4).

• Apply a big Gaussian convolution of standard deviation
σ � 40 pixels on this one-dimensional signal to keep only the
low frequency component.
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• The difference between this convolved signal and the
original signal in the intrinsic coordinate system is considered
as the high frequency. The red curves in Fig. 5 show the high
frequency (due to the border effect of Gaussian convolution,
there is a sharp increase of magnitude at the border).

To ensure the precision of the edge detection in the string
images, a uniform background whose color contrasts well
with the string color must be preferred. Using an opaque back-
ground is not a good idea because this requires a direct light-
ing and the strings project shadows on the background

[Figs. 2(a) and 2(c)]. The sky itself is hardly usable: a large
open space is needed to avoid buildings and trees entering
the camera field of view, and clouds render it inhomogeneous;
see Fig. 6. The simplest solution is to place a translucent
homogeneous paper or plastic sheet behind the harp and to
use back illumination, preferably natural light to make it more
uniform [see Figs. 2(b) and 2(d)].

The acquisition aspects are also important for producing
high-quality measurements: lens blur, motion blur, aliasing,
and noise, must be as reduced as physically possible. To that
aim, a tripod and timer were used to reduce camera motions,
but also to avoid out-of-focus strings while taking photos at
different orientations. Of course, changing focus changes
the distortion. Thus each distortion calibration must be done
for a fixed focus, and is associated with this focus.

(a) (b)

(c) (d)

Fig. 2. (Color online) “Calibration harp.” Shadows can be observed in (a) and (c), while there is no shadow in (b) or (d).

Fig. 3. Three types of strings. (a) sewing line, (b) tennis racket line,
(c) opaque fishing line.

Fig. 4. (Color online) Intrinsic coordinate system of the edge points
extracted on the distorted line. The red points are the distorted edge
points. The x direction is determined by the direction of the regression
line. The x-coordinate is the distance to the reference point along the
regression line, and the y-coordinate is the signed distance from the
edge points to the regression line.
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4. STRAIGHT EDGES EXTRACTION
In this section, we describe the procedure to extract accu-
rately and smooth the aligned edge points, which will be used
to measure the distortion.

Devernay’s algorithm [30] is the classic subpixel accurate
edge detector. The implementation of Devernay’s detector
is very simple since it is derived from the well-known nonmax-
ima suppression method [31,32]. On good quality images (SNR
larger than 100), Devernay’s detector can attain a precision of
about 0.05 pixels.

Straightness measurements require the detection of groups
of edge points that belong to the same physical straight line,
and the rejection of points that do not belong to any line. To
this aim, line segments are detected on the image using the
line segment detector (LSD) algorithm [33,34]. When applied
to photographs of the calibration harp, the detection essen-
tially corresponds to the strings. In case of a strong distortion,
one string edge could be cut into several line segments.

LSD works by grouping connected pixels into line support
regions; see Fig. 7—for more details we refer to [33,34]. These
regions are then approximated by a rectangle and validated.
The line support region links a line segment to its support pix-
els. Thus, Devernay’s edge points that belong to the same line

support region can be grouped as aligned; points belonging to
none are ignored.

For photos of strings, almost every pixel along each side of
one string is detected as an edge point at subpixel precision.
So there are about 1000 edge points detected for a line of
length of about 1000 pixels. This large number of edge points
opens the possibility to further reduce the detection and alias-
ing noise left by subsampling the edge points.

The subsampling step must be done carefully. First the edge
points are resampled to warrant a uniform sampling step
along the edge; this will facilitate the following steps. The re-
sampling uses a step of d � L ∕N where L is the length of a
line and N is the number of extracted edge points on the line.
The interpolation of an edge point �x0; y0� between two adja-
cent edge points �x1; y1� and �x2; y2� is expressed by

x0 � b
a� b

x1 �
a

a� b
x2; y0 �

b
a� b

y1 �
a

a� b
y2;

where a and b are the distances between the points; see Fig. 8.
Then, a Gaussian blur with σ � 0.8 ×

������������
t2 − 1

p
is needed before

a subsampling of factor t to avoid aliasing [35]. We have two
one-dimensional signals (x-coordinate and y-coordinate of

Fig. 5. (Color online) The small oscillation of the corrected lines is related to the quality of the strings. The green (upper) curves show the signed
distance (in pixels) from the edge points of a corrected line to its regression line. The red (lower) curves show the high frequency of the corre-
sponding distorted line. The corrected line inherits the oscillation from the corresponding distorted line. (a) Sewing string, (b) tennis racket string,
(c) opaque fishing line. The x-axis is the index of edge points. The range of the y-axis is from −0.3 pixels to 0.3 pixels. The almost superimposing
high-frequency oscillation means that the high frequency of the distorted strings is not changed by the distortion correction. In such a case, the
straightness error includes the high frequency of the distorted strings and does not really reflect the correction performance. So it is better to use a
string that contains the smallest high-frequency oscillation. Among the three types of strings, the opaque fishing string shows the smallest such
oscillations. The larger oscillation of the sewing string is due to a variation of the thickness related to its twisted structure, while the tennis racket
string is simply too rigid to be stretched, even though this is not apparent in Fig. 3(b).

(a) (b)

Fig. 6. (Color online) The quality of photos depends on the harp, its background, and the stability of camera for taking photos.
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edge points) along the length of the line. The Gaussian con-
volution is performed on both one-dimensional signals,
parameterized by the length along the edge. Finally, the sub-
sampling of integer factor t keeps one edge point out of t.

5. DISTORTION MEASUREMENTS
This section examines two natural distortion measurements
that are somewhat complementary.

A. Root-Mean-Square Distance
According to Theorem 1, the most direct measure should be
the straightness error, defined as the root-mean-square (RMS)
distance from a set of distorted edge points that correspond to
the same physical line, to their global linear regression line;
see Fig. 9.

Given N edge points �x1; y1�;…; �xN; yN � of a distorted line,
the regression line

αx� βy − γ � 0 (1)

is computed by

α � sin θ; β � cos θ; γ � Ax sin θ� Ay cos θ;

where

Ax � 1
N

XN
i�1

xi; Ay � 1
N

XN
i�1

yi;

Vxx � 1
N

XN
i�1

�xi − Ax�2; Vxy � 1
N

XN
i�1

�xi − Ax��yi − Ay�;

Vyy � 1
N

XN
i�1

�yi − Ay�2; tan 2θ � −
2Vxy

Vxx − Vyy
:

Since �α; β� is a unit vector, the signed distance from point
�xi; yi� to the line is given by

Si � αxi � βyi − γ:

Given L lines, with Nl points in line l, the total sum of squared
signed distance is given by

S �
XL
l�1

XNl

i�1

jSlij2 �
XL
l�1

XNl

i�1

�αlxli � βlyli − γl�2: (2)

Thus, the RMS straightness error is defined as

d �
�������
S
NT

s
; �3�

where NT � ΣL
l�1Nl is the total number of points.

B. Maximal Error
An alternative measure is the average maximal error defined
by

dmax �
�������������������������������������������������������PL

l�1 jmaxiSli −miniSlij2
L

s
: (4)

In the classic camera maker practice, the maximal error is
defined by

max
l

jmax
i

Sli −min
i
Slij;

which would become instable with the calibration harp, some
of the strings being potentially distorted by blur or wrong
detection.

This measure is traditionally used in manual settings; for
example, see Fig. 1. While traditionally the measures are made
relative to the line joining the extremities of the distorted edge
(see Fig. 10), here we use the signed distance to the regression
line to make it more comparable to the previous measure. The
use of a signed distance and the difference between the max-
imal and minimal values is needed to handle correctly the fact
that there are values on both sides of the regression line;
see Fig. 10.

6. APPLICATIONS
In this section, real photographs of the calibration harp will be
used to evaluate the residual camera distortion when this dis-
tortion has been corrected with three state-of-the-art correc-
tion methods or two popular software. In addition, we can
feed any plumb-line method with the precise edge points de-
tected on the harp images to improve the correction precision.
The efficient Alvarez et al. algorithm [23] thus becomes an

Fig. 7. (Color online) The LSD algorithm computes the level-line
field of the image. The level-line field defines at each pixel the direc-
tion of the level line passing by this pixel. The image is then parti-
tioned into connected groups that share roughly the same level-line
direction. They are called line support regions. Only the validated re-
gions are detected as line segments. Devernay’s edge points belonging
to the same validated line support region are considered as the edge
points of the corresponding line segment.

Fig. 8. Line resampling. The black dots �x1; y1�; �x2; y2�;… are the
edge points extracted by Devernay’s detector. They are irregularly
sampled along the line. The resampling (in white dots) is made along
the line with the uniform length step d. Linear interpolation is used to
compute the resampled points.

Fig. 9. (Color online) Distance from a set of points to their global
linear regression line.
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automatic parametric distortion correction method. Our lens
distortion measurement algorithm can be tested on the online
demo version available at http://bit.ly/lens‑distortion.

A. Precision
It is reported in [30] that Devernay edge points have a preci-
sion better than 0.05 pixels under the zero-noise condition. As
proposed in Section 4, the precision of Devernay edge points
can be further improved by applying Gaussian convolution of

standard deviation 0.8 ×
������������
t2 − 1

p
, followed by a subsampling of

factor t. The only parameter to adjust here is the factor t,
which corresponds to the assumed regularity of the lens dis-
tortion. We are only interested in realistic lens distortion,
which makes a straight line globally convex or concave. Thus
local edge oscillations due to noise can be harmlessly re-
moved. In the experiments, the value of t � 30 was chosen,
which is enough to remove the local oscillation while keeping
the global distortion.

B. Measuring the Residual Error after Distortion
As a first main application, the “calibration harp” permits us to
evaluate the performance of any distortion correction algo-
rithm by measuring its residual distortion in corrected images.
The procedure is as follows:

1. A series of photos of the “calibration harp” are taken at
different orientations.

2. These photos are processed by a camera distortion
correction algorithm.

3. The corrected images are normalized by a homography
as described in Section 2.

4. The residual distortion is measured by the proposed
method.

Three distortion correction algorithms and two software
were tested. With the exception of the classic Lavest et al.
[4] calibration method, all the others are designed to only cor-
rect the lens distortion without estimating the other camera
parameters:

• The Lavest et al. method [4]: probably the most ad-
vanced pattern-based global camera calibration method,
which estimates and corrects for the pattern nonflatness,
using a bundle adjustment technique. Various distortion para-
meter configurations are allowed in this method: two radial
parameters and two tangential parameters for a partial distor-
tion model, two radial parameters for a partial radial distor-
tion model, five radial parameters for a complete radial
distortion model, and five radial parameters and two tangen-
tial parameters for a full distortion model.

• A nonparametric lens distortion correction method re-
quiring a textured flat pattern [7]. The pattern is obtained by
printing a textured image and pasting it on an aluminum plate,
which is thick and solid.

• The DxO-Optics-Pro software: a program for profes-
sional photographers automatically correcting lens distortion
(even from fisheyes), color fringing and vignetting, noise, and
blur. This software reads the EXIF of each image to know ex-
actly which camera, lens, and settings have been used. It
therefore uses a fixed lens distortion estimation for each sup-
ported camera model.

• PTLens: Photoshop plug-in that corrects lens pincush-
ion/barrel distortion, vignetting, and chromatic aberration.

The distorted photographs to be corrected are shown in
Fig. 11, and Table 1 shows the residual distortion measure-
ments obtained by the calibration harp, after applying the cor-
rections specified by the various methods.

The Lavest et al. method depends on the parameter config-
uration of the distortion model integrated in the global calibra-
tion process. Since the global calibration process only
minimizes the reprojection error and does not control the dis-
tortion correction, it can happen that the error in internal
parameters compensates the error in external parameters.
In consequence, the minimized reprojection error is small, but
neither the estimated distortion parameters nor the other
parameters are correct. In fact this is the common draw-
back of global camera calibration methods based on bundle

Fig. 10. (Color online) Left: traditional distortion measure: the maximal distance to the line defined by the extremities of the edge. Right:
the regression line crosses the distorted line; the difference between the maximal and minimal signed distance to the line measures the full width
of the distorted line.

Fig. 11. Distorted photos of the “calibration harp.”
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adjustment. The textured pattern-based method requires a
perfectly flat pattern. Even though it is not very feasible to
fabricate a perfectly flat pattern, a pattern made of a thick
and solid aluminium plate gives a good flatness condition
and thus a precise distortion correction. DxO Optics Pro in-
cludes many precalibrated distortion models depending on
the camera type and parameters setting. But these distortion
models are only calibrated on several fixed focused distances
and obtain by interpolation the distortion models focused on
the other distances. Once the camera parameters are ex-
tracted from the EXIF of each image, DxO Optics Pro asks
the user to manually input the focused distance before per-
forming the correction. This makes the distortion correction
result less precise; considering this, the results are surpris-
ingly good. PTLens works in the similar manner as DxOOptics
Pro except that it does not ask users to provide the focused
distance information. It is not clear how PTLens recovers this
information, which is not available in EXIF. Probably PTLens
applies a fixed correction for each focal length, independently
of the focus. This coarse approximation may explain why its
correction precision is not as good as DxO Optics Pro’s.

We also note that dmax is always larger than d. This is not
surprising, since dmax is the largest displacement with respect
to the linear regression line of the edge points.

C. Strengthening Plumb-Line Distortion Correction
Methods
Any plumb-line distortion correction method requires as input
the edge points on distorted lines, which are themselves pro-
jections of 3D straight lines. The distortion can then be cor-
rected by aligning the edge points belonging to the same line.
To see this, let us introduce the widely used radial distortion
correction model:

xu − xc � f �rd��xd − xc�; (5)

yu − yc � f �rd��yd − yc�; (6)

with �xu; yu� the corrected point, �xd; yd� the distorted
point, �xc; yc� the distortion center, and rd �������������������������������������������������
�xd − xc�2 � �yd − yc�2

p
the distorted radius. Usually f �rd�

is a polynomial of rd and can be written as

f �rd� � k0 � k1r � k2r2 � � � � � kNrN (7)

with k0; k1; k2;…; kN the distortion parameters. Assume we
have L lines and there are Nl points on line l, l � 1; 2;…; L.
A natural way to correct the distortion is to minimize the
sum of squared distances from the corrected points to the cor-
responding regression line:

D � 1
L

XL
l�1

1
Nl

XNl

i�1

S2
li �

1
L

XL
l�1

1
Nl

XNl

i�1

�αlxuli
� βlyuli

� γl�2
α2l � β2l

(8)

with the linear regression line l:αlx� βly� γl � 0 computed
from the corrected points �xuli

; yuli
�, i � 1;…; Nl. The only un-

known parameters in D are k0; k1;…; kN and �xc; yc�. With an
appropriate initialization of these parameters, D can be effi-
ciently minimized by nonlinear optimization algorithms, such
as the Levenberg–Marquardt algorithm.

Instead of minimizing D, Alvarez et al. [23] proposed to
minimize the measurement:

E � 1
L

XL
l�1

�Sl
xxSl

yy − �Sl
xy�2�; (9)

where Sl is the covariance matrix for the corrected points on
the line l:

Sl�
�
Sl
xxSl

xy

Sl
xySl

yy

�

� 1
Nl

 PNl
i�1�xul;i

−x̄ul;i
�2 PNl

i�1�xul;i
−x̄ul;i

��yul;i
−ȳul;i

�PNl
i�1�xul;i

−x̄ul;i
��yul;i

−ȳul;i
� PNl

i�1�yul;i
−ȳul;i

�2

!
;

(10)

with x̄ul;i
� 1

Nl

PNl
i�1 xul;i

and ȳul;i
� 1

Nl

PNl
i�1 yul;i

. It can be pro-
ven [23] that this new energy function E is always positive and
equals to 0 if and only if for each line its points are aligned. The
functional E can be further written in the form of matrix-
vector multiplication [23]:

E�k� � 1
L

XL
l�1

kTAlkkTBlk − kTClkkTClk; (11)

Table 1. Distortion Correction Performance of

Three Algorithms, Measured by RMS Distance

d and Maximal Distance dmax

Method d (pixels) dmax

Original distortion 2.21 6.70
Lavest (two radial and two tangential
parameters)

0.07 0.30

Lavest (two radial parameters) 0.07 0.29
Lavest (full distortion parameters) 0.60 3.00
Lavest (full radial distortion parameters) 0.59 2.90
Textured pattern 0.04 0.16
DxO Optics Pro 0.32 0.99
PTLens 0.46 1.51

(a) (b) (c)
Fig. 12. (Color online) Images used in the Alvarez et al. method [23].

Tang et al. Vol. 29, No. 10 / October 2012 / J. Opt. Soc. Am. A 2141



with k � �k0; k1; k2;…; kN �T the distortion parameters in the
form of vector and

Al
m;n � 1

Nl

XNl

i�1

��rdl;i�mxdl;i − ¯�rdl;i�mxdl;i ���rdl;i�nxdl;i

− ¯�rdl;i�nxdl;i �; (12)

Bl
m;n � 1

Nl

XNl

i�1

��rdl;i�mydl;i − ¯�rdl;i�mydl;i ���rdl;i�nydl;i

− ¯�rdl;i�nydl;i �; (13)

Cl
m;n � 1

Nl

XNl

i�1

��rdl;i�mxdl;i − ¯�rdl;i�mxdl;i���rdl;i�nydl;i

− ¯�rdl;i�nydl;i�; (14)

with ¯�rdl;i�mxdl;i � 1
Nl

PNl
i�1 �rdl;i�mxdl;i and ¯�rdl;i�mydl;i � 1

Nl

PNl
i�1

�rdl;i�mydl;i , m � 1;…; N and n � 1;…; N . The trivial solution

k � �0; 0; 0;…; 0�T can be avoided by setting k0 � 1.
In general, minimizing E�k� is equivalent to solve a set of

equations:

∂E�k�
∂ki

� 0; i � 1; 2;…; N: (15)

When there is only one unknown parameter, the solution can
be approximated by solving the root of the resulting univariate
polynomial. When there are two unknown parameters,
resultant-based method can be used to minimize E�k�. The
case of more than two variables requires Gröbner basis tech-
niques or the multivariate-resultants based method (see [23]
for more details). To make the algorithm efficient, [23] opti-
mizes on two parameters at one time and iterates:

1. Obtain distorted edge points that are the 2D projection
of 3D straight segments.

2. Initialize k � �1; 0;…; 0�T .
3. Choose any pair �p; q�, 1 ≤ p, q ≤ N and fix all the other

parameters, then optimize kp and kq by resultant-based
method.

4. Update k0 using a zoom factor such that distorted and
undistorted points are as close as possible.

5. Repeat Steps 3 and 4 until all the parameters are
estimated.

It is usually supposed that the edge points are already avail-
able for the plumb-line methods. But in practice, it is not a
trivial problem to precisely extract aligned edge points in
images. For example, the online demo [36] of the Alvarez et al.
method [23] requires the user to click manually edge points.
This is on the one hand a tedious and time-consuming work,
and on the other hand, it may reduce the precision of edge
points. Our method thus gives the possibility to automatize
plumb-line methods. We fed four kinds of edge points to
the Alvarez et al. method: first the manually clicked edge
points of a natural image [Fig. 12(a)], second the manually
clicked edge points of an image of the grid pattern [Fig. 12(b)],
third the manually clicked edge points of an image of the cali-
bration harp [Fig. 12(c)], and finally the automatically ex-
tracted edge points of an image of the calibration harp

[Fig. 12(c)], as described in Section 4. These points were used
as the input to the Alvarez et al.method to estimate an order-4
radial distortion model, which will be used to correct the dis-
torted images in Fig. 11. The precision of this correction was
finally evaluated by the method proposed in the paper (ap-
plied to a different set of images of the calibration harp from
the one used to estimate the correction).

The results in Table 2 show that the edge point extraction
by our proposed method strengthens the plumb-line method
in terms of precision and spares the long, tedious, and impre-
cise manual point-clicking task. Compared to the manual
clicks with the calibration harp, the improvement in precision
is moderate. Indeed, the Alvarez et al. method is applied on a
very good quality photograph of the harp. The manual clicks
were carefully placed on the lines across the domain of the
image. The slight inaccuracy of the clicks was smoothed out
by our method, which applies a Gaussian convolution of the
edge points along the edges; see Section 4. The manual clicks
on the image of the grid pattern and on the natural image give
a precision that is two or three times lower than the calibra-
tion harp. For the grid pattern, the imprecision may come
from the nonflatness error, the engraved straight lines on
the pattern being not really straight. For the natural image,
the imprecision comes from two aspects: one is again the
nonstraightness error of the lines, and the other is the lack
of lines at the border of the image domain, which can explain
a precision decay near the image border.

7. CONCLUSION
A “calibration harp” has been proposed for camera distortion
measurement, along with its associated image processing
chain. This harp is both a measurement tool and a correction
tool. As a measurement tool, it can be used independently to
measure the residual distortion left by any distortion correc-
tion methods or any software. As a correction tool, the precise
edge points detected on the harp can be used as the input to
plumb-line methods and lead to a more precise distortion cor-
rection result. In the future, we aim at finding a more general
distortion model to correct more severe distortion by using
the calibration harp. The ideal case would be a harp-free dis-
tortion correction method. But we think the harp will always
remain useful, as a final measurement tool to validate any
other correction precision and/or to detect its failures.
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Abstract

We present a method for detecting bilateral or reflective symmetries in images. We
pose the problem as an instance of a multiple model estimation problem. We build can-
didate symmetry models by randomly sampling minimal sets of SIFT matches. Since
these symmetry models can be in non-frontal viewpoints, we rectify them, undoing the
perspective effect. From the models with valid symmetric properties, we compute con-
sensus sets by determining which SIFT matches are compatible with each symmetry
model. We finally recombine these consensus sets, using a clustering algorithm. The
method is able to detect single and multiple symmetries both in frontal and non fronto-
parallel viewpoints, achieving state-of-the-art results.

1 Introduction
Symmetry is omnipresent in natural and synthetic images. Human visual perception of the
world largely depends on cues provided by symmetry and repetitive patterns [3]. Automatic
symmetry detection has long been an active research topic in computer vision because it also
helps to enhance the performance of many vision problems, e.g., image segmentation [18],
object recognition [12], person identification [6], vehicle tracking [9], and low-rank texture
detection [23]. There are four types of symmetries in the 2D Euclidean space: translation,
rotation, reflection and glide-reflection [21]. The human visual system is good at detecting
all these symmetries, even under severely slanted viewpoints, while it remains a tough prob-
lem for computer vision. Among these, the most common form is the reflective (also called
bilateral) symmetry, characterized by a line (the symmetry axis) which defines two recipro-
cally mirrored semi-planes. In this paper, we concentrate on detecting this type of symmetry.
The concepts we propose can be nonetheless extended to the other types of symmetry.

A lot of research efforts have been dedicated to automatically detect a single, global, and
dominant bilateral symmetry in images [1, 8, 13, 17]. These global methods consider the
image as a whole and try to infer the global symmetry that produces the best overall fit. This
poses problems when the background of the image is cluttered or the image contains multi-
ple symmetries at different locations and scales. Although global symmetry is an important
image property, encountering multiple local symmetries is far more common in practice.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Current research is thus oriented to methods based on local features [11, 20]. Finding mul-
tiple symmetries can be posed as a multiple model selection problem. Multi-RANSAC [24]
and randomized Hough transform [22] are two basic model estimation tools that can be used
to detect multiple symmetries. For example, a simple voting strategy was employed for bi-
lateral symmetry detection through a fold-then-cut plane generation and synthesis [10]. Loy
and Eklundh presented a more efficient method based on the Hough transform [11], where
each SIFT match votes either for a bilateral symmetry axis or a center of rotational symmetry
in the parameter space. Later, the work was extended to make use of the recent advance in
invariant features [14] to deal with bilateral symmetry under perspective [4, 5]. Even though
recent work based on a region growing scheme seems to work better [2], Loy and Eklundh’s
work [11] is still considered as the baseline state-of-the-art algorithm.

The Hough transform can naturally cope with multiple symmetries. However, it is not
as robust against outliers as RANSAC [7] and is sensitive to the selection and discretization
of the parameter space. The J-linkage algorithm was recently proposed to detect multiple
primitive geometric structures in noisy and outliers-corrupted data [19]. It combines ideas
from RANSAC (robustness against outliers) and the Hough transform (multiple structures
detection through voting schemes). The input of the algorithm is a set X of geometric objects
(e.g., 2D points). J-linkage randomly samples minimal sets of objects from X and creates
candidate models (e.g., if the model is a line, two points are sufficient to define it). It then
records, for each candidate model, its consensus set, i.e., the subset of X compatible with
that model. This is encoded as a binary preference matrix, whose rows indicate the sampled
models an object belongs to, and whose columns indicate the consensus set for each sampled
model. The objects are finally clustered using the rows as vector features via agglomerative
hierarchical clustering [19]. The clusters that are populated enough, can then be used to
robustly estimate the final models.

We propose a method to detect multiple bilateral symmetries at different scales and view-
points. It is based on the J-linkage framework, presenting specific and novel tools in each
step of the algorithm to adapt it to our problem. These tools, described in Section 2, include:
(1) a rectification step that allows us to transform each symmetry to the 2D Euclidean space,
in which validation can be easily performed, while coping with skewed symmetries; (2) a
simple validation criterion to determine valid rectified symmetries and their consensus set;
(3) a non-uniform adaptive sampling strategy, specifically designed to deal with a large set
of matches corrupted by a high percentage of outliers. In Section 3 we present experimental
results showing state-of-the-art results. Finally, we provide some final remarks in Section 4.

2 Multiple symmetry detection with J-linkage
We start by detecting affine-invariant keypoints and obtaining affine-invariant SIFT descrip-
tors with the ASIFT algorithm [15]. We denote by SIFT(p j) the descriptor at keypoint p j.
SIFT also provides the orientation θ j and scale s(p j) at p j. The elements in each SIFT de-
scriptor vector SIFT(p j) are rearranged to obtain their mirrored version, where the line with
orientation θ j is used as the mirroring axis [11]. We then match the SIFT descriptors with
their mirrored versions using a simple nearest-neighborhood search. LetM = {mi}i=1,··· ,N
be this set of N matches. Each match mi consists of two keypoints, expressed in homoge-
neous coordinates, mi = {pi,p′i}, with pi = (xi,yi,1)T and p′i = (x′i,y

′
i,1)

T . We denote by mi
the line segment connecting pi and p′i. We also denote by ci the midpoint of mi.

The R3×3 matrix H such that h33 = 1 (where hi j is the value at the i-th row and j-th
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column) is a 2D homography. This type of transforms models perspective transformations.
Notice that a transformed point q = (xq,yq,zq)

T = Hp is normalized such that zq = 1, al-
though the normalization to achieve this is implicit in this paper.
J-linkage-based symmetry detection. Given N matches, we estimate K symmetries by
randomly sampling K valid minimal seed sets from M. We will see that two matches are
sufficient to define a minimal seed set. The exact nature of this process will be covered in
the following subsections. We thus obtain K symmetries, each with an associated consensus
set (the subset ofM compatible with each symmetry). A binary N×K matrix is thus built,
where the entry (i, j) is 1 if the i-th match is in the consensus set of the j-th symmetry,
and 0 otherwise. Each row of this matrix indicates which symmetries are preferred by each
match and is considered as a binary feature vector for that match. Using these features,
agglomerative hierarchical clustering based on the Jaccard distance [19] is used to cluster
the matches. Finally, each, large enough, cluster corresponds to a local symmetry.

2.1 Estimating a fronto-parallel symmetry by rectifying match pairs
If the symmetric region only undergoes a similarity transform (rotation, translation and
zoom), one match mi is enough to determine the symmetry axis [11], which is orthogonal to
the segment pip′i and passing through ci. However, in practice, the symmetry is not necessar-
ily observed in a frontal view and can thus undergo some perspective distortion. In this more
general case, two matches m1 = {p1,p′1} and m2 = {p2,p′2} intersecting at the vanishing
point v = (vx,vy,1)T are necessary to determine the symmetric axis (see Fig. 1(a)). We will
undo this perspective distortion, that is, rectify the symmetry, thus being able to determine
the compatibility of the remaining matches in the simpler 2D Euclidean space.

A homography H can be decomposed into

H = ARH0 = AR




1 0 0
0 1 0

h31 h32 1


 , (1)

where H0 and A are a projective transform and a shear, respectively, and R is a rotation. We
will compute H and use it to bring the symmetry into a fronto-parallel setting. This process
is depicted in Fig. 1(a).

We begin by computing H0. This transform needs to send the vanishing point v to infin-
ity, that is,

h31vx +h32vy +1 = 0. (2)

For choosing the remaining degree of freedom we add the constraint that the required scale
change factor at the four keypoints of m1 and m2 is as close as to 1 as possible. Intuitively,
among all possible H0, we select the one that is closer to the identity matrix, i.e., the one
introducing the least perspective effect. This amounts to computing

min
h31,h32

∑
i=1,2

(h31xi +h32yi)
2 +(h31x′i +h32y′i)

2. (3)

Geometrically, this choice can be interpreted by rotating the camera as little as possible to
make the vanishing point at the infinity. By plugging Eq. (2) in this minimization, we obtain
a one-variable least-square problem which can be easily solved.

For computing R, we simply constrain the vanishing point (now at infinity) to lie on
the x axis. Finally, A is obtained by estimating the shear that aligns the two corresponding
midpoints c1,c2 with the y axis.
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Figure 1: (a) Finding the rectification homography (H = ARH0) from a pair of matches.
(b) Compatible matches test given a rectified symmetry.

The homography H is then applied to the keypoints of all the matches mi ∈M. In this
rectified plane, all the matches compatible with the reflective symmetry defined by m1,m2
should be parallel with the seed line segments m1,m2 and have their midpoint on the sym-
metric axis. Obviously, this is an ideal scenario and in practice we need to relax this criterion.
Let Ĥpi (resp. Ĥp′i) be the point that is actually symmetric to Hpi (resp. Hp′i). We then mea-
sure the ratio between the segment with endpoints Hp′i, Ĥpi (resp. Hpi, Ĥp′i) and the segment
with endpoints Hpi, Ĥpi (resp. Hp′i, Ĥp′i). See Fig. 1(b) for a graphical representation. If
both ratios are smaller than a precision parameter η , the match mi is added to the consensus
set.

2.2 Validating the seed matches

We need to ensure that the two randomly sampled seed matches m1 and m2 lead to a valid
symmetry model. We perform the following sanity checks in order to reject invalid models:

• Since we are dealing with reflective symmetries, the segments m1 and m2 must not inter-
sect before and after rectification;
• The keypoint scales must become approximately similar after rectification,

|ŝ(pi)− ŝ(p′i)|/max(ŝ(pi), ŝ(p′i))< δ , i = 1,2, (4)

where ŝ(pi) denotes the scale at pi after rectification and δ is a precision parameter;
• The sum of the orientations θ̂i, θ̂

′
i at pi, p′i after rectification, must be approximately equal

to π (these orientations are not very robust). We check the condition [16] (see Fig. 2)

1+ cos(θ̂i + θ̂
′
i )< ε, i = 1,2, (5)

where ε is a precision parameter.

We could have used these sanity checks to constrain more the homography H. But since the
scale and orientation of the keypoints is not very precise, the estimation of the homography
can be instable.
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pi pi'
i i

'

Figure 2: A schematic representation of two matching keypoints. On the right, the match
mi = {pi,p′i} with corresponding angles θ̂i, θ̂ ′i (i.e., θi, θ ′i transformed by the rectification).

2.3 Adaptively sampling seed matches
One of the keys for the success of the J-linkage algorithm is choosing a proper non-uniform
sampling. The rationale behind this is the intent to oversample the true symmetries in the
image, thus obtaining stable row features that robustify the clustering process. Among all of
the sampled model seeds, it is desirable that there is at least a certain number of outlier-free
model seeds sampled around each underlying true model. In [19, 24], non-uniform sampling
is used to detect multiple simple geometric models in point clouds, like lines, circles, or
planes, by assigning a higher probability to neighboring points.

We use the following adaptive non-uniform sampling strategy. The first match is sampled
according to the following mixed probability, ∀mi = {pi,p′i} ∈M,

Pr(mi) =
1

Z1
exp
(
− 1

σ2
d
(‖SIFT(pi)−SIFT(p′i)‖−d0)

2− 1
σ2

l
(‖pi−p′i‖− l0)2

)
, (6)

where d0 and l0 indicate the scale in the descriptor domain and image domain at which we
prefer to detect the symmetry, Z1 is a normalization factor such that ∑i Pr(mi) = 1, and,
finally, σd and σl decide how strict the preferences are. Ideally, we should have d0 = 0, but
since some parts of the image match closely than others, we might end up missing some
symmetries. We thus relax this constraint.

In practice, an image can contain multiple symmetries at different scales. Automatically
updating the parameters of Eq. (6) to find all possible symmetries is not an easy task. This
motivates us to update the sampling probability of the first match along the sampling process.
Each time two seed matches are sampled and its consensus setM0 is computed, we decrease
the probability of all these matches by a factor κ close to 1, followed by the renormalization
of the probability:

probability update (followed by renormalization) : Pr(mi)← κ Pr(mi), mi ∈M0. (7)

This guarantees that the sampling will not solely focus on symmetries with “high quality”
matches and “lower quality” matches will also be visited.

Once the first match is sampled following the above adaptive non-uniform sampling, we
sample the second match according to the conditional probability:

Pr(m j|mi) =
1

Z2
exp
(
− 1

σ2
c
(‖ci− c j‖− c0)

2
)
, mi ∈M, m j ∈M\{mi}, (8)

where Z2 is a normalization factor such that ∑ j Pr(m j|mi) = 1, ci is the midpoint of line
segment mi, and σc,c0 control the shape of the probability function.
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Algorithm 1: Non-uniform adaptive sampling.
Data: matches M= {mi}, i = 1, · · · ,N
Result: preference matrix P
Initialize the sampling probability Pr(mi) and Pr(m j|mi) according to Eq. (6) and (8 ) ;
Sampling counter Kcounter← 0 ;
f lag_uni f orm_sampling = 0 ;
Consensus set to be uniformly sampled C0← /0 ;
while Kcounter < K do

Ktrial ← 0 ;
while Ktrial < Kmax_trial do

Ktrial ← Ktrial +1;
if f lag_uni f orm_sampling = 0 then

Sample two seed matches according to probability Pr(mi) and Pr(m j|mi);
else

Sample two seed matches uniformly in the consensus set C0;

Rectify m1,m2 (see Section 2.1) ;
If the seeds do not form a valid model (see Section 2.2) continue sampling;

If the seeds do not form a valid model (see Section 2.2) terminate the algorithm;
Compute the consensus set C for the rectified m1,m2 (see Fig. 1(b)) ;
Add the consensus set C to preference matrix P;
Update the probability Pr(mi) according to Eq. (7) ;
Kcounter← Kcounter +1;
if f lag_uni f orm_sampling = 1 then

Kuni f orm_sampling← Kuni f orm_sampling +1;

if f lag_uni f orm_sampling = 0 ∧ |C|> T then
f lag_uni f orm_sampling← 1 ;
Kuni f orm_sampling← 0;
Initialize the set to be uniformly sampled: C0← C ;

if f lag_uni f orm_sampling = 1 ∧ |C|> |C0| then
Update the set to be uniformly sampled: C0← C ;

if f lag_uni f orm_sampling = 1 ∧ Kuni f orm_sampling = Ku then
f lag_uni f orm_sampling← 0;

If the current consensus set C is big enough, i.e., |C| > T for some T , we switch to
uniformly sample Ku seeds inside C. This ensures that good models are oversampled.

The overall adaptive non-uniform sampling procedure is summarized in Alg. 1. Given
the preference matrix, we run the J-linkage algorithm to cluster the matches.

3 Experimental results

For all experiments, we randomly select N = 3000 keypoints/features from the ones provided
by ASIFT [15]. These features are matched to their mirrored version by nearest neighbors
matching (one neighbor per feature for single symmetry detection and four neighbors per
feature for multiple symmetry detection). We initialize the probabilities in eqs. (6) and (8)
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Synthetic Single Synthetic Multiple

LE [11] LHXS [10] CL [2] Proposed LE [11] LHXS [10] CL [2] Proposed
TP/GT 92% 62% 100% 100% 35% 28% 77% 67%
FP/GT 15% 0% 15% 0% 4% 8% 33% 10%

Real Single Real Multiple

LE [11] LHXS [10] CL [2] Proposed LE [11] LHXS [10] CL [2] Proposed
TP/GT 84% 29% 94% 97% 43% 18% 68% 65%
FP/GT 68% 3% 69% 39% 44% 0% 17% 16%

Table 1: Performance comparison of several methods on the PSU dataset [12]. TP, FP,
and GT respectively denote the number of true positives, false positives, and ground truth
symmetries. The percentage of the methods are taken from [12] and [2].

with the values

d0 =
1

2N ∑
mi∈M

‖SIFT(pi)−SIFT(p′i)‖, σ
2
d = 1

10 max
mi∈M

‖SIFT(pi)−SIFT(p′i)‖2, (9)

l0 = 1
10

(
w2 +h2)1/2

, σ
2
l = 1

10 max
mi∈M

‖pi−p′i‖2, (10)

c0 =
1
20

(
w2 +h2)1/2

, σ
2
c = 1

10 max
mi,m j∈M

‖ci− c j‖2, (11)

where w and h are the width and height of the image, respectively. The probability Pr(mi) is
updated using κ = 0.98 in Eq. (7). We check the validity of every non-uniformly sampled
match pair by setting δ = 0.2 and ε = 0.25 in eqs. (4) and (5). The matches compatible with
the sampled symmetry models with parameter η = 0.04 (Fig. 2b) are considered as inliers
and added to the consensus sets. We also set K = 4000, T = 10, and Ku = 30. After the
J-linkage clustering, only symmetries containing at least 10 matches are kept. We finally
apply a non-maximum suppression on the clusters whose symmetry axes are close.

We first compare the proposed method with three recent ones [2, 10, 11] on the PSU
dataset [12], which is composed of 88 images.1 The symmetries are either frontal or slightly
skewed. This dataset covers four types of images: synthetic single reflection, synthetic mul-
tiple reflection, natural single reflection, and natural multiple reflection. We should point
out that even though PSU provides a reliable benchmark dataset for comparing symmetry
detection algorithms, the ground truth it provides is not always complete and/or accurate.
The results in Table 1 (see some examples in Fig. 3) show that our method is much better
than Loy and Eklundh’s (LE [11]) and Liu et al.’s (LHXS [10]). Compared with Cho et al.’s
(CL [2]) method, we have better performance for single symmetry detection. For multiple
symmetries detection, our method is more conservative, sometimes detecting fewer symme-
tries, which explains the decrease in both the true positive and false positives rates. This
conservative strategy can be explained by the strict criterion used to only create precise con-
sensus sets. Nonetheless, the proposed method results are highly competitive. Notice that,
as a post-processing, we could also adopt Loy and Eklundh’s region growing strategy [11],
in order to expand and further improve the detected symmetries.

1The original PSU dataset contained 91 images [2, 12] but the original download link is broken. We obtained
a version of the dataset containing 88 images at http://vivid.cse.psu.edu/texturedb/gallery/
album05. Since code is not available for the methods in [2, 10], the results are not exactly comparable but serve
as a performance indicator.
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In non fronto-parallel symmetries, our algorithm is also able to obtain good results. We
include several examples in Fig. 4. The algorithms that were used for comparing in the
frontal setting are not designed for this type of symmetries and would only succeed in those
images where the perspective effect is weak.

Recently, the TILT algorithm [23] was introduced, combining the concept of low-rank
factorization with perspective estimation. Given a manually selected region of interest, it
computes the homography that produces the sub-image with the lowest possible rank. In
Fig. 5, we show that the detected symmetries with their consensus sets (supporting matches)
can be used to automatically select input regions of interest for the TILT algorithm. This
brings forth the relationship between these two concepts: symmetric regions have necessar-
ily a low rank. Even though the regions are not completely flat, the TILT algorithm is capable
of transforming the regions to be a quasi frontal view. Notice that using the rectifying ho-
mography as an initialization of the TILT optimization might also help further improve and
stabilize the TILT results by obtaining a visually better local minimum.

Original image Ground truth CL [2] LE [11] Proposed Proposed (with
supporting matches)

Figure 3: Several symmetry detection results on the PSU dataset. The images on the third
row are borrowed from [2].

4 Conclusion
We presented a method for detecting bilateral symmetries in images. The method detects
symmetries in a rectified image domain by sampling symmetry seeds in a non-uniform adap-
tive manner, and then building candidate consensus sets. Features are built from the consen-



TANG et al. : REFLECTIVE SYMMETRY DETECTION BY RECTIFYING RANDOMIZED CORRESPONDENCES 9

Original image Proposed Proposed (with Original image Proposed Proposed (with
supporting matches) supporting matches)

Figure 4: Several non fronto-parallel symmetry examples. Our algorithm is able to recover
the symmetries, even when the perspective effect is non-negligible.

Figure 5: Relationship between low rank and symmetry in two examples of images with
detected symmetries. The red bounding boxes represent the regions of the detected symme-
try, which are used as automatic input to the TILT algorithm. The green bounding boxes
represent the low-rank sub-images obtained with the TILT algorithm, projected back to the
original image. We also show the low-rank components before re-projection.
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sus sets and the final symmetries are detected via an agglomerative clustering algorithm.
The method is able to detect single and multiple symmetries both in frontal and skewed
(non fronto-parallel) viewpoints, achieving state-of-the-art results. We plan on extending the
method to detect other symmetry types. We are also investigating a more unified way to
combine the concept of symmetry and low-rank.
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Multi image noise estimation and denoising

A. Buades ∗ Y. Lou † J.M Morel ‡ Z. Tang‡

Abstract

Photon accumulation on a fixed surface is the essence of photography. In the times of
chemical photography this accumulation required the camera to move as little as possible, and
the scene to be still. Yet, most recent reflex and compact cameras propose a burst mode,
permitting to capture quickly dozens of short exposure images of a scene instead of a single one.
This new feature permits in principle to obtain by simple accumulation high quality photographs
in dim light, with no motion or aperture blur. It also gives the right data for an accurate noise
model. Yet, both goals are attainable only if an accurate cross-registration of the burst images
has been performed. The difficulty comes from the non negligible image deformations caused by
the slightest camera motion, in front of a 3D scene, and from the light variations or motions in
the scene. This chapter proposes a numerical processing chain permitting to achieve jointly the
two mentioned goals: an accurate noise model for the camera, which is used crucially to obtain
a state of the art multi-images denoising. The key feature of the proposed processing chain is
a reliable multi-image noise estimator, whose accuracy will be demonstrated by three different
procedures. Thanks to the signal dependent noise model obtained from the burst itself, a faithful
detection of the well registered pixels can be made. The denoising by simple accumulation of
these pixels, which are an overwhelming majority, permits to extend the Nicéphore Niepce
photon accumulation method to image bursts. The denoising performance by accumulation is
shown to reach the theoretical limit, namely a

√
n denoising factor for n frames. Comparison

with state of the art denoising algorithms will be shown on several bursts taken with reflex
cameras in dim light.

1 Introduction

The accumulation of photon impacts on a surface is the essence of photography. The first
Nicephore Niepce photograph [20] was obtained after an eight hours exposure. The serious
objection to a long exposure is the variation of the scene due to changes in light, camera motion,
and incidental motions of parts of the scene. The more these variations can be compensated,
the longer the exposure can be, and the more the noise can be reduced. It is a frustrating
experience for professional photographers to take pictures under bad lighting conditions with a
hand-held camera. If the camera is set to a long exposure time, the photograph gets blurred
by the camera motions and aperture. If it is taken with short exposure, the image is dark, and
enhancing it reveals the noise. Yet, this dilemma can be solved by taking a burst of images, each
with short-exposure time, as shown in Fig. 1, and by averaging them after registration. This
observation is not new and many algorithms have been proposed, mostly for stitching and super-
resolution. These algorithms have thrived in the last decade, probably thanks to the discovery of

∗MAP5, CNRS - Universite Paris Descartes, 45 rue Saints Peres, 75270 Paris Cedex 06, France.
†Mathematics Department, University of California at Los Angeles, Los Angeles, U.S.A.
‡CMLA, ENS Cachan, 61 av. President Wilson, Cachan 94235, France.
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a reliable algorithm for image matching, the SIFT algorithm [53]. All of the multi-image fusion
algorithms share three well separated stages, the search and matching of characteristic points,
the registration of consecutive image pairs and the final accumulation of images. All methods
perform some sort of multi-image registration, but surprisingly do not propose a procedure to
check if the registration is coherent. Thus, there is a non-controlled risk that the accumulation
blurs the final accumulation image, due to wrong registrations. Nevertheless, as we shall see,
the accurate knowledge of noise statistics for the image sequence permits to detect and correct
all registration incoherences. Furthermore, this noise statistics can be most reliably extracted
from the burst itself, be it for raw or for JPEG images. In consequence, a stand alone algorithm
which denoises any image burst is doable. As experiments will show, it even allows for light
variations and moving objects in the scene, and it reaches the

√
n denoising factor predicted for

the sum of the n independent (noise) random variables.
We call in the following “burst”, or “image burst” a set of digital images taken from the same

camera, in the same state, and quasi instantaneously. Such bursts are obtained by video, or by
using the burst mode proposed in recent reflex and compact cameras. The camera is supposed
to be held as steady as possible so that a large majority of pixels are seen through the whole
burst. Thus, no erratic or rash motion of the camera is allowed, but instead incident motions
in the scene do not hamper the method.

There are other new and promising approaches, where taking images with different capture
conditions is taken advantage of. Liu et al. [86] combine a blurred image with long-exposure
time, and a noisy one with short-exposure time for the purpose of denoising the second and
deblurring the first. Beltramio and Levine [10] improve the dynamic range of the final image by
combining an underexposed snapshot with an overexposed one. Combining again two snapshots,
one with and the other without flash, is investigated by Eisemann et. al. [33] and Fattal et. al
[37]. Another case of image fusion worth mentioning is [8], designed for a 3D scanning system.
During each photography session, a high-resolution digital back is used for photography, and
separate macro (close-up) and ultraviolet light shots are taken of specific areas of text. As a
result, a number of folios are captured with two sets of data: a “dirty” image with registered
3D geometry and a “clean” image with the page potentially deformed differently to which the
digital flattening algorithms are applied.

Our purpose here is narrower. We only aim at an accurate noise estimation followed by
denoising for an image burst. No super-resolution will be attempted, nor the combination
of images taken under different apertures, lightings or positions. The main assumption on the
setting is that a hand-held camera has taken an image burst of a still scene, or from a scene with
a minority of moving objects. To get a significant denoising, the number of images can range
from 9 to 64, which grants a noise reduction by a factor 3 to 8. Since the denoising performance
grows like the square root of the number of images, it is less and less advantageous to accumulate
images when their number grows. But impressive denoising factors up to 6 or 8 are reachable
by the simple algorithm proposed here, which we shall call average after registration (AAR).
Probably the closest precursor to the present method is the multiple image denoising method
by Zhang et. al. [89]. Their images are not the result of a burst. They are images taken from
different points of views by different cameras. Each camera uses a small aperture and a short
exposure to ensure minimal optical defocus and motion blur, to the cost of very noisy output. A
global registration evaluating the 3D depth map of the scene is computed from the multi-view
images, before applying a patch based denoising inspired by NL-means [15]. Thus the denoising
strategy is more complex than the simple accumulation after registration which is promoted in
the present chapter. Nevertheless, the authors remark that their denoising performance stalls
when the number of frames grows, and write that this difficulty should be overcome. Yet, their
observed denoising performance curves grow approximately like the square root of the number
of frames, which indicates that the real performance of the algorithm is due to the accumulation.
The method proposed here therefore goes back to accumulation, as the essence of photography.
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Figure 1: From left to right: one long-exposure image (time = 0.4 sec, ISO=100), one of 16 short-
exposure images (time = 1/40 sec, ISO = 1600) and the average after registration. All images have
been color-balanced to show the same contrast. The long exposure image is blurry due to camera
motion. The middle short-exposure image is noisy, and the third one is some four times less noisy,
being the result of averaging 16 short-exposure images. Images may need to be zoomed in on a
screen to compare details and textures.

It uses, however, a hybrid scheme which decides at each pixel between accumulation and block
denoising, depending on the reliability of the match. The comparison of temporal pixel statistics
with the noise model extracted from the scene itself permits a reliable conservative decision so as
to apply or not the accumulation after registration (AAR). Without the accurate nonparametric
noise estimation, this strategy would be unreliable. Therefore estimating accurately the noise
model in a burst of raw or JPEG images is the core contribution of this chapter. A more complex
and primitive version of the hybrid method was announced in the conference paper [17]. It did
not contain the noise estimation method presented here.

Plan and Results The chapter requires a rich bibliographical analysis for the many aspects
of multi-image processing (Section 3). This survey shows that most super-resolution algorithms
do in fact much more denoising than they do super-resolution, since they typically only increase
the size of the image by a factor 2 or 3, while the number of images would theoretically allow for
a 5 to 8 factor. Section 2 reviews the other pilar of the proposed method, the noise estimation
literature. (This corpus is surprisingly poor in comparison to the denoising literature.)

Section 4 is key to the proposed technique, as it demonstrates that a new variant of static
noise blind estimate gives results that exactly coincide with Poisson noise estimates taken from
registered images in a temporal sequence. It is also shown that although JPEG images obtained
by off-the-shelf cameras have no noise model, a usable substitute to this noise model can be
obtained: It simply is the variance of temporal sequences of registered images.

Section 5 describes the proposed multi-image denoising method, which in some sense triv-
ializes the denoising technology, since it proposes to go back as much as possible to a mere
accumulation, and to perform a more sophisticated denoising only at dubiously registered pix-
els. Section 6 compares the proposed strategy with two state of the art multi-images denoising
strategies.
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2 Noise Estimation, a Review

As pointed out in [51], “Compared to the in-depth and wide literature on image denoising, the
literature on noise estimation is very limited”. Following the classical study by Healey et al. [44],
the noise in CCD sensors can be approximated by an additive, white and signal dependent noise
model. The noise model and its variance reflect different aspects of the imaging chain at the
CCD, mainly dark noise and shot noise. Dark noise is due to the creation of spurious electrons
generated by thermal energy which become indistinguishable from photoelectrons. Shot noise
is a result of the quantum nature of light and characterizes the uncertainty in the number
of photons stored at a collection site. This number of photons follows a Poisson distribution
so that its variance equals its mean. The overall combination of the different noise sources
therefore leads to an affine noise variance a+ bu depending on the original signal value u. Yet,
this is only true for the raw CCD image. Further processing stages in the camera hardware
and software such as the white balance, the demosaicking, the gamma correction, the blur and
color corrections, and eventually the compression, correlate the noise and modify its nature and
its standard deviation in a non trivial manner. There is therefore no noise model for JPEG
images. However, as we shall see, a signal dependent noise variance model can still be estimated
from bursts of JPEG images (section 4.2.) It is enough to perform reliably the average after
registration (AAR).

2.1 Additive Gaussian Noise Estimation

Most computer vision algorithms should adjust their parameters according to the image noise
level. Surprisingly, there are few papers dealing with the noise estimation problem, and most of
them only estimate the variance of a signal independent additive white Gaussian noise (AWGN).
This noise statistics is typically measured on the highest-frequency portion of the image spec-
trum, or on homogenous image patches. In the AWGN case a spectral decomposition through an
orthonormal transform such as wavelets or the DCT preserves the noise statistics. To estimate
the noise variance, Donoho et. al [29] consider the finest scale wavelet coefficients, followed by a
median filter to eliminate the outliers. Suppose {yi}i=1,···N be N independent Gaussian random
variables of zero-mean and variance σ2, then

E{MED(|yi|)} ≈ 0.6745σ.

It follows immediately that the noise standard deviation σ is given by

σ̃ =
1

0.6745
MED(|yi|) = 1.4826MED(|yi|).

The standard procedure of the local approaches is to analyze a set of local estimates of
the variance. For example, Rank et. al [71] take the maximum of the distribution of image
derivatives. This method is based on the assumption that the underlying image has a large
portion of homogeneous regions. Yet, if an image is highly textured, the noise variance can
overestimated. To overcome this problem, Ponomarenko et. al [68] have proposed to analyze
the local DCT coefficients. A segmentation-based noise estimation is carried out in [1], which
considers both i.i.d. and spatially correlated noise.

The algorithm in [69] is a modification of the early work [68] dealing with AVIRIS (Airborne
Visible Infrared Imaging Spectrometer) images, in which the evaluation of the noise variance
in sub-band images is addressed. The idea is to divide each block into low frequency and high
frequency components by thresholding, and to use K blocks of the smallest variance of the low
frequency coefficients to calculate a noise variance, where K is adaptively selected so that it is
smaller for highly-textured images.

[25] proposed an improvement of the estimate of the variance of AWGN by using trans-
forms creating a sparse representation (via BM3D [22]) and using robust statistics estimators
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(MAD and ICI). For a univariate data set X1, X2, ..., Xn, the MAD is defined as the median of
the absolute deviations from the data’s median: MAD = mediani ( |Xi −medianj(Xj)| ) . The
algorithm is as follows.

1. for each 8×8 block, group together up to 16 similar non-overlapping blocks into 3D array.
The similarity between blocks in evaluated by comparing corresponding blocks extracted
from a denoised version by BM3D.

2. apply a 3-D orthonormal transform (DCT or wavelet) on each group and sort the coeffi-
cients according to the zig-zag scan.

3. collect the first 6 coefficients c1, · · · , c6 and define their empirical energy as the mean of
the magnitude of the (up to 32) subsequent coefficients:

E{|cj |2} = mean{|c2j+1, · · · , c2j+32|}

4. Sort the coefficients from all the groups (6 coefficients per group) according to their energy

5. do MAD and Intersection of Confidence Intervals (ICI) [42] to achieve the optimal bias-
variance trade-off in the MAD estimation.

All the above mentioned algorithms give reasonable estimates of the standard deviation
when the noise is uniform. Yet, when applying these algorithms to estimate signal dependent
noise, the results are poor. The work of C. Liu et. al. [52] estimates the upper bound on the
noise level fitting to a camera model. The noise estimation from the raw data is discussed in
[39, 40]. The former is a parametric estimation by fitting the model to the additive Poissonian-
Gaussian noise from a single image, while the latter measures the temporal noise based on an
automatic segmentation of 50 images.

2.2 Poisson Noise Removal

This chapter deals with real noise, which in most real images (digital cameras, tomography,
microscopy and astronomy) is a Poisson noise. The Poisson noise is inherent to photon counting.
This noise adds up to a thermal noise and an electronic noise which are approximately AWGN.
In the literature algorithms considering the removal of AWGN are dominant but, if its model is
known, Poisson noise can be approximately reduced to AWGN by a so called variance stabilizing
transformation (VST). The standard procedure follows three steps,

1. apply VST to make the data homoscedastic

2. denoise the transformed data

3. apply the inverse VST.

The square-root operation is widely used as a VST,

f(z) = b
√
z + c. (1)

It follows from the asymptotic unit variance of f(z) that the parameters are given by b = 2
and c = 3/8, which is the Anscombe transform [2]. A multiscale VST (MS-VST) is studied in
[88] along with the conventional denoising schemes based on wavelets, ridgelets and curvelets
depending on morphological features (isotropic, line-like, curvilinear, etc) of the given data. It
is argued in [55] that the inverse transformation of VST is crucial to the denoising performance.
Both the algebraic inverse

IA(D) =

(
D

2

)2

− 3

8
.

and the asymptotically unbiased inverse

IB(D) =

(
D

2

)2

− 1

8
,
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in [2] are biased for low counts. The authors [55] propose an exact unbiased inverse. They
consider an inverse transform IC that maps the value E{f(z)|y} to the desired value Ez|y that

E{f(z)|y} = 2

∞∑
z=0

(√
z +

3

8
· y

z exp−y

z!

)

where f(z) is the forward Anscombe transform (1). In practice, it is sufficient to compute the
above equation for a limited set of values y and approximate IC by IB for large values of y.
Furthermore, the state-of-the-art denoising scheme BM3D [39] is applied in the second step.

There are also wavelets based methods [65, 48] or Bayesian [78, 54, 49] removing Poisson
noise. In particular, the wavelet-domain Wiener filter [65] uses a cross-validation that not only
preserves important image features, but also adapts to the local noise level of the spatially
varying Poisson process. The shrinkage of wavelet coefficients investigates how to correct the
thresholds [48] to explicitly account for effects of the Poisson distribution on the tails of the coeffi-
cient distributions. A recent Bayesian approach by Lefkimmiatis et al. [49] explores a recursive
quad-tree image representation which is suitable for Poisson noise degradation and then fol-
lows an expectation-maximization technique for parameter estimation and Hidden Markov tree
(HMT) structures for inter-scale dependencies. The common denominator to all such methods
is that we need an accurate Poisson model, and this will be thoroughly discussed in Section 4.

It is, however, a fact that the immense majority of accessible images are JPEG images which
contain a noise altered by a long chain of processing algorithms, ending with compression. Thus
the problem of estimating noise in a single JPEG image is extremely ill-posed. It has been
the object of a thorough study in [51]. This chapter proposes a blind estimation and removal
method of color noise from a single image. The interesting feature is that it constructs a “noise
level function” which is signal dependent, obtained by computing empirical standard deviations
image homogeneous segments. Of course the remanent noise in a JPEG image is no way white
or homogeneous, the high frequencies being notoriously removed by the JPEG algorithm. On
the other hand, demosaicking usually acts as a villainous converter of white noise into very
structured colored noise, with very large spots. Thus, even the variance of smooth regions
cannot give a complete account of the noise damage, because noise in JPEG images is converted
in extended flat spots. We shall, however, retain the idea promoted in [51] that, in JPEG images,
a signal dependent model for the noise variance can be found. In section 4.2 a simple algorithm
will be proposed to estimate the color dependent variance in JPEG images from multi-images.
All in all, the problem of estimating a noise variance is indeed much better posed if several
images of the same scene by the same camera, with the same camera parameters, are available.
This technique is classic in lab camera calibration [44].

3 Multi-Images and Super Resolution Algorithms

Photo stitching Probably one of the most popular applications in image processing, photo
stitching [14, 13] is the first method to have popularized the SIFT method permitting to register
into a panorama a set of image of a same scene. Another related application is video stabilization
[7]. In these applications no increase in resolution is gained, the final image has roughly the
same resolution as the initial ones.

Super-Resolution Super-resolution means creating a higher resolution, larger image from
several images of the same scene. Thus, this theme is directly related to the denoising of image
bursts. It is actually far more ambitious, since it involves a deconvolution. However, we shall see
that most super-resolution algorithms actually make a moderate zoom in, out of many images,
and therefore mainly perform a denoising by some sort of accumulation. The convolution model
in the found references is anyway not accurate enough to permit a strong deconvolution.
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A single-frame super-resolution is often referred to as interpolation. See for example [83, 84].
But several exemplar-based super-resolution methods involve other images which are used for
learning, like in Baker and Kanade [4] who use face or text images as priors. Similarly, the
patch-example-based approaches stemming from the seminal paper [41], use a nearest-neighbor
search to find the best match for local patches, and replace them with the corresponding high-
resolution patches in the training set, thus enhancing the resolution. To make the neighbors
compatible, the belief-propagation algorithm to the Markov network is applied, while another
paper [26] considered a weighted average by surrounding pixels (analogue to nonlocal means
[15]). Instead of a nearest-neighbor search, Yang et. al [81] proposed to incorporate the sparsity
in the sense that each local patch can be sparsely represented as a linear combination of low-
resolution image patches; and a high-resolution image is reconstructed by the corresponding
high-resolution elements. The recent remarkable results of [85] go in the same direction. The
example-based video enhancement is discussed in [11], where a simple frame-by-frame approach
is combined with temporal consistency between successive frames. Also to mitigate the flicker
artifacts, a stasis prior is introduced to ensure the consistency in the high frequency information
between two adjacent frames.

Focus on Registration In terms of image registration, most of the existing super-resolution
methods rely either on a computationally intensive optical flow calculation, or on a parametric
global motion estimation. The authors of [92] discuss the effects of multi-image alignment on
super-resolution. The flow algorithm they employ addresses two issues: flow consistency (flow
computed from frame A to frame B should be consistent with that computed from B to A)
and flow accuracy. The flow consistency can be generalized to many frames by computing a
consistent bundle of flow fields. Local motion is usually estimated by optical flow, other local
deformation models include Delaunay triangulation of features [8] and B-splines [60]. Global
motion, on the other hand, can be estimated either in the frequency domain or by feature-based
approaches. For example, Vandewalle et. al. [80] proposed to register a set of images based
on their low-frequencies, aliasing-free part. They assume a planar motion, and as a result, the
rotation angle and shifts between any two images can be precisely calculated in the frequency
domain. The standard procedure for feature-based approaches is (1) to detect the key points
via Harris corner [19, 3] or SIFT [87, 72], (2) match the corresponding points while eliminating
outliers by RANSAC and (3) fit a proper transformation such as a homography. The other
applications of SIFT registration are listed in Tab. 2.

Reconstruction after Registration A number of papers focus on image fusion, assum-
ing the motion between two frames is either known or easily computed. Elad and Feuer [34]
formulate the super-resolution of image sequences in the context of Kalman filtering. They
assume that the matrices which define the state-space system are known. For example, the
blurring kernel can be estimated by a knowledge of the camera characteristics, and the warping
between two consecutive frames is computed by a motion estimation algorithm. But due to
the curse of dimensionality of the Kalman filter, they can only deal with small images, e.g. of
size 50 × 50. The work [56] by Marquina and Osher limited the forward model to be spatial-
invariant blurring kernel with the down-sampling operator, while no local motion was present.
They solved a TV-based reconstruction with Bregman iterations.

A joint approach on demosaicing and super-resolution of color images is addressed in [35],
based on their early super-resolution work [36]. The authors use the bilateral-TV regularization
for the spatial luminance component, the Tikhonov regularization for the chrominance compo-
nent and a penalty term for inter-color dependencies. The motion vectors are computed via
a hierarchical model-based estimation [9]. The initial guess is the result of the Shift-And-Add
method. In addition, the camera PSF is assumed to be a Gaussian kernel with various standard
deviation for different sets of experiments.
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Methods Joining Denoising, Deblurring, and Motion Compensation Super-
resolution and motion deblurring are crossed in the work [5]. First the object is tracked through
the sequence, which gives a reliable and sub-pixel segmentation of a moving object [6]. Then
a high-resolution is constructed by merging the multiple images with the motion estimation.
The deblurring algorithm, which mainly deals with motion blur [46], has been applied only to
the region of interest. The recent paper on super-resolution by L. Baboulaz and P. L. Dragotti
[3] presents several registration and fusion methods. The registration can be performed either
globally by continuous moments from samples, or locally by step edge extraction. The set of
registered images is merged into a single image to which either a Wiener or an iterative Modified
Residual Norm Steepest Descent (MRNSD) method is applied [63] to remove the blur and the
noise. The super-resolution in [72] uses SIFT + RANSAC to compute the homography between
the template image and the others in the video sequence, shifts the low-resolution image with
subpixel accuracy and selects the closest image with the optimal shifts.

Implicit Motion Estimation More recently, inspired by the nonlocal movie denoising
method, which claims that “denoising images sequences does not require motion estimation”
[16], researchers have turned their attention towards super-resolution without motion estimation
[32, 31, 70]. Similar methodologies include the steering kernel regression [76], BM3D [24] and its
many variants. The forward model in [24] does not assume the presence of the noise. Thus the
authors pre-filter the noisy LR input by V-BM3D [21]. They up-sample each image progressively
m times, and at each time, the initial estimate is obtained by zero-padding the spectra of
the output from the previous stage, followed by filtering. The overall enlargement is three
times the original size. Super-resolution in both space and time is discussed in [73, 74], which
combine multiple low-resolution video sequences of the same dynamic scene. They register any
two sequences by a spatial homography and a temporal affine transformation, followed by a
regularization-based reconstruction algorithm.

A Synoptic Table of Super-Resolution Multi-Images Methods Because the
literature is so rich, a table of the mentioned methods, classified by their main features, is worth
looking at. The methods can be characterized by a) their number k of fused images, which goes
from 1 to 60, b) the zoom factor, usually 2 or 3, and therefore far inferior to the potential zoom
factor

√
k, c) the registration method, d) the deblurring method, e) the blur kernel. A survey

of the table demonstrates that a majority of the methods use many images to get a moderate
zoom, meaning that the denoising factor is important. Thus, these methods denoise in some
sense by accumulation. But, precisely because all of them aim at super-resolution, none of them
considers the accumulation by itself.

Tables 1 and 2 confirm the dominance of SIFT+RANSAC as a standard way to register
multi-images, as will also be proposed here in an improved variant. Several of the methods in
Table 1 which do not perform SIFT+RANSAC, actually the last four rows, are “implicit”. This
means that they adhere to the dogma that denoising does not require motion estimation. It is
replaced by multiple block motion estimation, like the one performed in NL-means and BM3D.
However, we shall see in the experimental section that AAR (average after registration) has a
still better performance than such implicit methods. This is one of the main questions that
arose in this exploration, and the answer is clear cut: denoising by accumulation, like in ancient
photography times still is a valid response in the digital era.

4 Noise Blind Estimation

In this section we return to noise estimation and will confront and cross-validate a single frame
noise estimation with a multi-images noise estimation.
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Table 1: comparison of Super Resolution algorithms

Ref. # of images Registration Deblurring blur kernel
V.S. factor

[41] 1 2 KNN to training set NO
[4] to 16

[26] 1 2 MAP penalty 3× 3
3 5× 5

[81] 1 to 4 sparse w.r.t. traning back-projection Not mention

[19] 15 2 Harris+RANSAC Tiknonov Not mention

[18] 25 3 PCA NO

[92] 40 2 consistent flow bundle NO

[80] 4 2 frequency domain NO

[34] 100 2 assume known motion Kalman filter 3× 3 average

[36, 35] 30 3 hierarchical estimates [9] bilateral-TV Gaussian

[72]* 15, 60 2 SIFT+RANSAC NO

[87] 20 4 SIFT+RANSAC Least-square Gauss(σ = 3)

[5] 10 2 region tracking [6] motion analysis [46] motion blur

[3] 20, 40 8 moment-based or Wiener or B-spline
Harris + RANSAC MRNSD [63] of degree 7

[32] 1 2 implicit: NLM NO
[31] 20 3

[70] 30 3 implicit: NLM TV 3× 3 average
[76] kernel regression bilateral-TV

[24] 9 3 Video-BM3D zero-padding spectra 3× 3 average

Table 2: Multi-image SIFT for registration

Application # of images Registration Blending method

[8]* manuscript Not mention SIFT + RANSAC Delaunay triangulation

[60] registration 30 ultrasound SIFT + threshold + B-splines deformation
60 MRI least-square for affine

[82] Mosaic 200 SIFT + RANSAC weighted average
[45] 10

[50] stitching 6 SIFT + RANSAC weighted average

[91] head tracking 1020 SIFT + RANSAC NA (track 3D motion)
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4.1 Single Image Noise Estimation

Most noise estimation methods have in common that the noise standard deviation is computed
by measuring the derivative or equivalently the wavelet coefficient values of the image. As we
mentioned, Donoho et al. [30] proposed to estimate the noise standard deviation as the median
of absolute values of wavelet coefficients at the finest scale. Instead of the median, many authors
[12, 47] prefer to use a robust median.

Olsen [67] and posteriorly Rank et al. [71] proposed to compute the noise standard deviation
by taking a robust estimate on the histogram of sample variances of patches in the derivative
image. In order to minimize the effect of edges small windows were preferred, with 3×3 or 5×5
pixels. The sample variance of small patches or the point-wise derivatives provide a non robust
measure and require a considerable number of samples with few outliers to guarantee the correct
selection of the standard deviation. We observed that the opposite point of view, that is, the use
of larger windows 15× 15 pixels to 21× 21 pixels permits a more robust estimation. However,
since larger windows may contain more edges a much smaller percentile will be preferred to the
median, in practice the 1% or the 0.5%.

Noise in real photograph images is signal dependent. In order to adapt the noise estimation
strategies, the gray level image histogram will be divided adaptively into a fixed number of bins
having all the same number of samples. This is preferable to classical approaches where the
gray range is divided into equal intervals. Such a uniform division can cause many bins to be
almost empty.

To evaluate if a signal dependent noise can be estimated from a single image, 110 images
were taken with a Nikon D80, with ISO 100 and very good illumination conditions. These are
the best conditions we can expect to have a low noise standard deviation. These color images
were converted to gray level by averaging the three color values at each pixel. Finally factor 3
sub-sampling was applied by averaging square groups of nine pixels. These operations having
divided the noise standard deviation by slightly more than five, these images can be considered
as noise free. Finally, a signal dependent noise was added to them, with variance 8 + 2u where
u was the noiseless grey level.

The uniform and adaptive divisions of the grey level range in a fixed number of 15 bins were
compared, and several noise estimation methods were applied to estimate the noise standard
deviation inside each bin. The performance of all methods are compared in Table 3 showing the
average and standard deviation of the errors between the estimated and original noise curves.
The best estimate is obtained by applying the proposed strategy using the variance of large
patches rather than small ones or point derivatives. These measurements also confirm that the
division of the grey level range into bins with fixed cardinality is preferable to the fixed length
interval division. This experiment confirms that a signal dependent noise can be estimated with
a high accuracy.

Ground Truth? In order to evaluate the performance of such a noise estimation algorithm
in real images we need a ground truth to compare with. This ground truth can be obtained for
a given camera by taking a sequence of images of the same pattern, after fixing the camera on
a pedestal. All camera parameters remain unchanged for all photographs of the sequence, thus
avoiding different exposure times or apertures. The temporal average and standard deviation of
the whole sequence of images can therefore be computed without any further registration. The
use of a piecewise constant image reduces the effect of small vibrations of the camera, see Fig.
2. The noise in each channel is estimated independently. Each color range is divided adaptively
into a fixed number of bins taking into account the color channel histogram. Inside each bin a
percentile is used to estimate the standard deviation.

Fig. 3 displays the ground truth estimated curves with this strategy, both in RAW and
JPEG format for two different ISO settings. The ground truth curves are compared with the
ones estimated in the first image of the sequence by the proposed single image noise estimation
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MAD RMAD MVPD MVPD2

e 1.81 2.87 1.58 0.75

std(e) 1.14 2.59 1.06 0.61

a) Uniform gray division

MAD RMAD MVPD MVPD2

e 1.66 1.87 1.36 0.73

std(e) 1.04 1.17 0.90 0.35

b) Adaptive gray division

Table 3: A signal dependent noise with variance 8 + 2u is added to 110 noise free images. The
uniform and adaptive strategies for dividing the grey level range in a fixed number of 15 bins are
compared. For each strategy, the following noise estimation methods in each bin are compared:
median of absolute derivatives (MAD), robust median of absolute derivatives (RMAD), median of
sample variance of patches 3×3 of the derivative image (MVPD) and 0.005 percentile of sample
variance of patches 21×21 of the derivative image (MVPD2). Are displayed the average and
standard deviation of the errors between the estimated and original noise curves for the 110 images.

algorithm. For the RAW case, the single image and ground truth estimated curves are nearly
identical. Fig. 2 shows a lack of red in the RAW image of the calibration pattern, even if this
pattern is actually gray. This effect is corrected by the white balance as observed in the JPEG
image.

The ground truth noise curves estimated from the JPEG images do not agree at all with the
classical noise model. This is due to the various image range nonlinear transformations applied
by the camera hardware during the image formation, which modify the nature and standard
deviation of the noise. The ground truth and single image estimated curves in the JPEG case
have a similar shape but a different magnitude. The main new feature is that the interpolation
and low pass filtering applied to the originally measured values have strongly altered the high
frequency components of the noise. Thus, the noise statistics are no longer computable
from a local patch of the image. The estimation of such a noise curve can only be
accomplished by computing the temporal variance in a sequence of images of the
same scene.

4.2 Multi-Image Noise Estimation

A temporal average requires the images of the sequence to be perfectly registered. Yet, this
registration rises a serious technical objection: how to register globally the images of a burst?
Fortunately, there are several situations where the series of snapshots are indeed related to each
other by a homography, and we shall explore these situations first. The homography assumption
is actually valid in any of the following situations:

1. the only motion of the camera is an arbitrary rotation around its optical center;

2. the photographed objects share the same plane in the 3D scene;

3. the whole scene is far away from the camera.

The computation of an homography between a pair of images needs the accurate correspon-
dence of at least four points in each image. Finding key points in images and matching them
is a fundamental step for many computer vision and image processing applications. One of the
most robust is the Scale Invariant Feature Transform (SIFT) [53], which we will use. Other
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Figure 2: Calibration pattern used for noise ground truth estimation. Left: raw image. Right:
JPEG image. Even if the calibration pattern is nearly gray the raw image looks blue because the
red is less present. This effect is corrected by the white balance applied by the camera image chain
leading to the jpeg image.

possible methods allowing for large baselines are [57, 58, 66, 75, 62, 61], but we are here using
images taken with only slight changes of view point.

Because wrong matches occur in the SIFT method, an accurate estimate of the dominant
homography will require the elimination of outliers. The standard method to eliminate outliers
is RANSAC (RANdom SAmple Consensus) [38]. However, it is efficient only when outliers are a
small portion of the whole matching set. For this reason several variants have been proposed to
improve the performance of outlier elimination, the principal being [77, 90, 79, 64, 59]. The main
difference between our approach and the classic outlier elimination is the fact that we dispose
of a whole sequence of images and not just of a pair. Instead of choosing a more elaborate
version than RANSAC, we preferred to exploit the sequence redundancy in order to improve
the registration stage.

The goal is to estimate a dominant homography for the whole set of images, which are
typically a few dozens. Only matches which are common to the whole sequence must be kept.
In other terms, the keypoints of the first image are kept only if they are matched with another
keypoint in any other image of the sequence. This constraint eliminates most of the outliers (see
Algorithm 1). In order to apply such a strategy, we assume that the images overlap considerably.
Recall that the purpose is not to make a mosaic or a panorama, but to estimate the noise curve
and eventually to denoise the sequence.

A temporal average and standard deviation is computed for the registered sequence. The
average values are used to build a histogram and to divide the grey level range adaptively. Inside
each bin, the median value of the corresponding standard deviations is taken.
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Algorithm 1: Hybrid Accumulation After Registration Algorithm

Input Initial set of images I0, I1, · · · , In, obtained from a burst

SIFT
Apply the SIFT algorithm between to each pair (I0, Ij), j = 1, · · · , n. Call Sj the set of matches.
Retain from Sj only the matches for which the matching key point in I0 has a match in all other images.

RANSAC
Set number of agreed points, m, to 0.
while the number of trials does not exceed N do

Pick up 4 random points from S0

for (each j > 0) do
Compute the homography using these 4 points and the corresponding ones in Sj
Add to m the number of points in Sj which agree with this homography up to the precision p.

end for
If m > maxim, then maxim = m and save the set of agreed points in the whole sequence

end while
Compute for each pair, the homography Hj with the selected points.

FUSION
Apply the homography Hj to each image obtaining Īj , j = 1, · · · , n.
Average the transformed images obtaining the mean µ(x, y). Compute also σ(x, y), the temporal
standard deviation.
Estimate the noise curve using σ(x, y), getting σn(u) the standard deviation associated to each color u.
Obtain the final estimate:

(1− w(µ, σ))µ(x, y) + w(µ, σ)NL(I0)(x, y),

where NL is the NL-means algorithm (Buades et al. [15]) and the function w(ν, σ) is defined by

w(ν, σ) =


0 if σ < 1.5σn(µ)

σ−1.5σn(µ)
1.5σn(µ)

if 1.5σn(µ) < σ < 3σn(µ)

1 if σ > 3σn(µ)

Fig. 4 displays three frames from an image sequence with a rotating pattern and a fixed
pedestal. The noise curves estimated from the first image with the single image algorithm and
those from the registered and averaged sequence are displayed in the same figure. The estimated
curves in the raw image coincide if either of both strategies is applied. However, as previously
observed these are quite different when we take into account the JPEG image.

Images taken with indoor lights often show fast variations of the contrast and brightness,
like those in Fig. 5. This brightness must be rendered consistent through all the images, so
that the standard deviation along time is due to the noise essentially and not to the changes of
lights. For this reason, a joint histogram equalization must conservatively be applied before the
noise estimation chain. The Midway equalization method proposed in [28, 27] is the ideal tool
to do so, since it forces all images to adopt a joint midway histogram which is indeed a kind of
barycenter of the histograms of all images in the burst. Fig. 5 illustrates the noise estimation
after and before color equalization.

5 Average after Registration Denoising

The core idea of the average after registration (AAR) denoising method is that the various
values at a cross-registered pixels obtained by a burst are i.i.d.. Thus, averaging the registered
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images amounts to averaging several realizations of these random variables. An easy calculation
shows that this increases the SNR by a factor proportional to

√
n, where n is the number of

shots in the burst.
There is a strong argument in favor of denoising by simple averaging of the registered samples

instead of block-matching strategies. If a fine non-periodic texture is present in an image,
it is virtually indistinguishable from noise, and actually contains a flat spectrum part which
has the same Fourier spectrum as the white noise. Such fine textures can be distinguished
from noise only if several samples of the same texture are present in other frames and can
be accurately registered. Now, state of the art denoising methods (e.g. BM3D) are based on
nonlocal block matching, which is at risk to confound the repeated noise-like textures with
real noise. A registration process which is far more global than block matching, using strong
features elsewhere in the image, should permit a safer denoising by accumulation, provided the
registration is sub-pixel accurate and the number of images sufficient.

A simple test illustrates this superior noise reduction and texture preservation on fine non
periodic textures. A image was randomly translated by non integer shifts, and signal dependent
noise was added to yield an image sequence of sixteen noisy images. Figure 6 shows the first
image of the sequence and its denoised version obtained by accumulation after registration
(AAR). The theoretical noise reduction factor with sixteen images is four. This factor is indeed
reached by the accumulation process. Table 4 displays the mean square error between the
original image and the denoised one by the different methods. Block based algorithms such as
NLmeans [15] and BM3D [23], have a considerably larger error, even if their noise reduction
could be theoretically superior due to their two dimensional averaging support. But fine details
are lost in the local comparison of small image blocks.

Barbara Couple Hill

noisy 11.30 11.22 10.27

NLM 4.52 3.73 4.50

BM3D 4.33 3.39 3.90

AR 3.55 3.03 2.73

Table 4: Mean square error between the original image and the denoised one by the various con-
sidered methods applied on the noisy image sequences in Figure 6. The block based algorithms,
NLmeans [15] and BM3D [23] have a considerably larger error, even if their noise reduction could be
in theory superior, due to their two dimensional averaging support. AAR is close to the theoretical
reduction factor four.

As mentioned in the introduction, the registration by using the SIFT algorithm and com-
puting a homography registration is by now a standard approach in the image fusion literature.
The main difference of the proposed approach with anterior work is that the mentioned works
do not account for registration errors. Yet, in general, the images of a 3D scene are not related
by a homography, but by an epipolar geometry [43]. Even if the camera is well-calibrated, a 3D
point-to-point correspondence is impossible to obtain without computing the depth of the 3D
scene. However, as we mentioned, a camera held steadily in the hand theoretically produces im-
ages deduced from each other by a homography, the principal image motion being due to slight
rotations of the camera. Nonetheless, we should not expect that a simple homography will be
perfectly accurate everywhere in each pair, but only on a significant part. A coherent registra-
tion will be obtained by retaining only the SIFT matches that are common to the whole burst.
Therefore the registration applies a joint RANSAC strategy, as exposed in Algorithm 1. This
ensures that the same background objects are used in all images to compute the corresponding
homographies.
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The main new feature of the algorithm is this: The averaging is applied only at pixels where
the observed standard deviation after registration is close to the one predicted by the estimated
noise model. Thus, there is no risk whatsoever associated with AAR, because it only averages
sets of samples whose variability is noise compatible.

At the other pixels, the conservative strategy is to apply a state of the art video denoising
algorithm such as the spatiotemporal NL-means algorithm or BM3D. To obtain a smooth tran-
sition between the averaged pixels and the NL-means denoised pixels, a weighting function is
used. This function is equal to 0 when the standard deviation of the current pixel is lower than
1.5 times the estimated noise standard deviation, and equal to 1 if it is larger than 3 times the
estimated noise standard deviation. The weights are linearly interpolated between 1.5 and 3.

6 Discussion and Experimentation

We will compare the visual quality of restored images from real burst sequences. The focus is
on JPEG images, which usually contain non white noise and color artifacts. As we illustrated
in the previous sections, the variability of the color at a certain pixel cannot be estimated from
a single image but from a whole sequence. We will compare the denoised images by using AAR
as well as the classical block based denoising algorithms, NL-means. Fig. 7 shows the results
obtained on three different bursts. Each experiment shows in turn: a) three images extracted
from the burst, b) the burst average after registration performed at all points, followed by a
mask of the image regions in which the temporal standard deviation is significantly larger than
the standard deviation predicted by the noise estimate. At all of these points a block based
denoising estimate is used instead of the temporal mean. The final combined image, obtained
by an hybridization of the average registration and NL-Means or BM3D, is the right image in
each second row.

The first experimental data was provided by the company DxO Labs. It captures a rotating
pattern with a fixed pedestal. In this case, the dominant homography is a rotation of the main
circular pattern, which contains more SIFT points than the pedestal region. Since the proposed
algorithm only finds a dominant homography, which is the rotation of the pattern, the simple
average fails to denoise the region of the fixed pedestals and of the uniform background. As
shown in the white parts of the mask, these regions are detected because they have an excessive
temporal standard deviation. They are therefore treated by NL-means or BM3D in the final
hybrid result. The whole pattern itself is restored by pure average after registration.

The second burst consists of two books, a newspaper and a moving mouse. Since the domi-
nant homography is computed on still parts, the books and the background, the moving mouse
is totally blurred by the averaging after registration, while the rest of the scene is correctly fused.
As a consequence, AAR uses the average everywhere, except the part swept by the mouse.

The last burst is a sequence of photographs with short exposure time of a large painting
taken in Musée d’Orsay, Martyrs chrétiens entrant l’amphithéâtre by Léon Bénouville. Making
good photographs of paintings in the dim light of most museums is a good direct application
for the proposed algorithm, since the images of the painting are related by a homography even
with large changes of view point, the painting being flat. As a result, the average is everywhere
favored by the hybrid scheme. Details on the restored images and comparison with BM3D are
shown in Fig. 8-10. Dim light images are displayed after their color values have been stretched
to [0, 255].
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a) RAW images

b) JPEG images

Figure 3: Ground truth and single image noise estimates for the RAW and JPEG images of Fig.
2. The estimated curve by the temporal average and standard deviation coincide with the one
estimated from the first image by the proposed single image noise estimation algorithm. This is
not the case for the JPEG images. The ground truth and single image estimated curves in the
JPEG case have a similar shape but a different magnitude. The interpolation and low pass filtering
applied to the original measured values have altered the high frequency components of the noise and
have correlated its low frequencies. This means that the noise statistics are no longer computable
from a local patch of the image. The estimation of a noise curve can only be accomplished by
computing the temporal variance in a sequence of images of the same scene.
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Figure 4: Three frames from an image sequence with a rotating pattern and a fixed pedestal both
in RAW (top) and JPG (bottom). The estimated curves in the raw image coincide if either of both
strategies is applied. However, as previously observed these are quite different when we take into
account the JPEG image
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Figure 5: Top: two frames of an image sequence with variations of brightness. Noise curve estimated
by temporal average and standard deviation after registration. Bottom: the same two frames of
the sequence after a joint histogram equalization [27] and estimated noise curves. The second
estimation is correct. The first was not, because of the almost imperceptible lighting conditions.
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Figure 6: Noise curve. From top to bottom: one of the simulated images by moving the image and
adding Poisson noise, denoised by accumulation after registration and the noise curve obtained by
the accumulation process using the sixteen images. The standard deviation of the noise (Y-axis)
fits to the square root of the intensity (X-axis).
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Figure 7: In each double row: three images of a sequence in the first row. In the second row on
the left the average after registration, in the middle the mask of points with a too large temporal
standard deviation, and on the right the restored image by hybrid method. These experiments
illustrate how the hybrid method detects and corrects the potential wrong registrations due to
local errors in the global homography.
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Figure 8: Detail from image in Fig. 7. From left to right: original image, NL-means (BM3D gives
a similar result) and hybrid AAR. The images may need to be zoomed in on a screen to compare
details and textures. Compare the fine texture details in the trees and the noise in the sky.

Figure 9: Detail from image in Fig. 7. From left to right: original image, BM3D (considered the
best state of the art video denoiser) and AAR. The images are displayed after their color values
have been stretched to [0, 255]. The images may need to be zoomed in on a screen to compare
details and textures. Notice how large color spots due to the demosaicking and to JPEG have been
corrected in the final result.
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Figure 10: Detail from image in Fig. 7. From left to right: original image, BM3D (considered the
best state of the art video denoiser) and AAR. Images are displayed after their color values have
been stretched to [0, 255]. The images may need to be zoomed in on a screen to compare details
and textures. Compare details on the face and on the wall texture.
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Figure 11: Top: initial image of the burst containing six images. Bottom: details on the initial and
hybrid AAR images.
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