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Abstract

Abstract

Plumb line lens distortion correction methods permit to
avoid numerical compensation between the camera internal
and external parameters in global calibration method. Once
the distortion has been corrected by a plumb line method, the
camera is ensured to transform, up to the distortion precision,
3D straight lines into 2D straight lines, and therefore becomes
a pinhole camera. This paper introduces a plumb line method
for correcting and evaluating camera lens distortion with high
precision. The evaluation criterion is defined as the average
standard deviation from straightness of a set of approximately
equally spaced straight strings photographed uniformly in all
directions by the camera, so that their image crosses the whole
camera field. The method uses an easily built “calibration
harp,” namely a frame on which good quality strings have
been tightly stretched to ensure a very high physical straight-
ness. Real experiments confirm that our method produces high
precision corrections (less than 0.05 pixel), approximating the
distortion with a large number of degrees of freedom given by
a polynomial model of order eleven. This precision is again
improved by a factor about 2 by using fishing strings which
are more smooth.

1 Introduction

This paper presents a method to correct camera lens distor-
tion with high precision. By high precision, we mean figures
like a 0.1 pixel deviation from straightness for a straight line
crossing the whole camera field. Such a precision is not neces-
sary for the human vision which is not affected by distortions
of less than 2 pixels. However, there is no limit to the de-
sired precision when the camera is used for 3D reconstruction
or photogrammetry tasks. Traditionally, lens distortion and
the other camera parameters are estimated simultaneously as
camera internal and external parameters [21, 23, 26, 16, 24]. In
these global calibration methods all parameters are estimated
by minimizing the error between the camera and its numeri-
cal model on feature points identified in several views, all in
a single non-linear optimization. The result will be precise if
(and only if) the model captures the correct physical property
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of cameras and if the minimization algorithm finds a global
minimum. Unfortunately global camera calibration suffers a
common drawback: errors in the external and internal camera
parameter can be compensated by opposite errors in the distor-
tion model. Thus the residual error can be apparently small,
while the distortion model is not precisely estimated [24, 17].
For example the Lavest et al. method [16] measures the non-
flatness of a pattern and yields a remarkably small re-projection
error of about 0.02 pixels, while the straightness of corrected
lines has a 0.2 pixel RMSE. This drawback becomes more se-
rious for high resolution camera because the same amount of
camera orientation/position error can cause more error in pix-
els in image compared to low resolution camera 1. This implies
more freedom in the distortion model to compensate the error.
The error compensation in global calibration can be avoided by
proceeding to distortion correction before camera calibration.
Recent distortion correction methods use the correspondences
between two or several images, without knowledge of any cam-
era information. The main tool they use is slackened epipolar
constraints, which incorporate lens distortion into the epipolar
geometry. Several iterative [22, 25] or non-iterative methods
[4, 13, 5, 17, 8] are used to estimate the distortion and to cor-
rect it. These methods are used with a low order parametric
distortion model and therefore cannot achieve high precision.

Non-parametric methods which establish a direct diffeo-
morphism between a flat pattern and a frontal photograph of it
[14, 9] should be ideal for high precision distortion correction.
Indeed, they do not depend on the a priori choice of a distor-
tion model with a fixed number of parameters. Yet to achieve
a high precision, they depend on the design of a very flat non
deformable plate with highly accurate patterns printed on it2.
This replaces a technological challenge by another, which is
not simpler. Plumb-line methods [6] should therefore be an
alternative, provided it is easier to create very straight lines.
For plumb-line methods, an appropriate distortion model still
is necessary to precisely remove the distortion. Almost all of
the existing models can be directly incorporated into a plumb-
line method. But some of them are too complicated [6], while
some are not general enough to capture the distortion [12].
For most distortion models, the distortion center is a sensi-
tive parameter when a realistic distortion is treated. The bare
polynomials proposed in [19] are therefore a good choice, being
a translation invariant and linear approximation of any vector
field. This model free approximation can approximate complex
radial and non-radial distortions as well provided its degree is
high enough. According to the criteria of self-consistency and
universality 3 developed in [19] to compare many camera dis-

1Assume a camera CCD covers a 60◦ field of view and has 0.1◦ orientation error. For a
low resolution camera 512 × 512 pixels CCD, the 0.1◦ orientation error corresponds to 0.85
pixels in image, while for a high resolution camera with a 1280 × 1280 pixels CCD, the error
becomes 2.13 pixels.

210 micron flatness is needed to achieve the precision 0.01 pixels.
3Self-consistency is evaluated by the residual error when distortion generated with a certain

model is corrected (using the model in reverse way) by the best parameters for the same model.
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tortion models, the polynomial models are the most flexible
and accurate.

The proposed method is introduced in section 2, followed by
real experiments in section 3, along with a comparison to other
methods. The error compensation in global camera calibration
is shown in section ??. Section 6 is a conclusion.

2 The harp calibration method

In one sentence, the proposed method combines the advantage
of plumb-line methods with the universality of the model free
polynomial approximation. The plumb-line method consists
in correcting the distorted points which are supposed to be
on a straight line, by minimizing the average distance from
the corrected points to their corresponding regression lines.
In the sequel, denote (xu, yu) undistorted point, (xd, yd) dis-
torted point, (xc, yc) distortion center, (x̄u, ȳu) radial undis-
torted point and (x̄d, ȳd) radial distorted point with x̄u =
xu − xc, ȳu = yu − yc, x̄d = xd − xc and ȳd = yd − yc. The
distorted radius rd =

p
x̄2
d + ȳ2

d and the undistorted radius

ru =
p
x̄2
u + ȳ2

u.

2.1 Polynomial model

Unlike many radial symmetric distortion models, polynomial
model is not radial symmetric and the distortion in x and y
direction is modeled with different parameters and different
order. Denote p and q the order of distortion for x and y
component respectively, polynomial model has the following
form:

x̄d = b0x̄
p
u + b1x̄

p−1
u ȳu + b2x̄

p−2
u ȳ2

u + · · ·+ bpȳ
p
u

+bp+1x̄
p−1
u + bp+2x̄

p−2
u ȳu + · · ·+ b2pȳ

p−1
u

+ · · ·+ b (p+1)(p+2)
2 −3

x̄u + b (p+1)(p+2)
2 −2

ȳu

+b (p+1)(p+2)
2 −1

ȳd = c0x̄
q
u + c1x̄

q−1
u ȳu + c2x̄

q−2
u ȳ2

u + · · ·+ cq ȳ
q
u

+cq+1x̄
q−1
u + cq+2x̄

q−2
u ȳu + · · ·+ c2q ȳ

q−1
u

+ · · ·+ c (q+1)(q+2)
2 −3

x̄u + c (q+1)(q+2)
2 −2

ȳu

+c (q+1)(q+2)
2 −1

. (1)

The number of parameters for x and y component is respec-
tively (p+1)(p+2)

2
and (q+1)(q+2)

2
. The model is called bicubic

model if p = q = 3. Note that the change of the distortion cen-
ter (xc, yc) can be compensated by the parameters. So (xc, yc)
can be arbitrarily set without changing the correction perfor-
mance, which makes this model quite handy. By the analysis
in [19], polynomial model is self-consistent and more universal

Analogously, universality is measured by the residual error when a model is used to correct
distortions generated by a family of other models. A model is self-consistent and universal if
it can approximate any other model and the inverse of any other model, including itself, with
precision on the order of 0.01 pixels.
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than other traditional models. So the polynomial model can
also be used as a correction model by interchanging the role of
distorted point coordinate and undistorted point coordinate in
Eq. (1).

2.2 Plumb-line method

To correct the distortion from a single image, only the dis-
torted points are available in general. In such case, some prior
or implicit information is necessary to correct the distortion,
for example, the extended epipolar geometry between corre-
sponding distorted points [5, 17] or the prior shape of some
image features [9]. The plumb-line method is based on the fa-
mous fact that a 3D line remains to be straight in 2D image
if the camera is a pinhole camera (no lens distortion). Then
the average distance from the edge points of a corrected line to
their regression line is taken as the residual error of correction.

3 Test

In this section, we detail how to integrate the polynomial model
into the plumb-line method and try different strategies to min-
imize the distortion. The synthetic test shows that the realistic
distortion can be efficiently removed by using an appropriate
minimization algorithm. In real test, the proposed method is
compared to other methods and shows its higher correction
precision.

3.1 Synthetic test

Given a set of corrected points (xui , yui)i=1,··· ,N which are sup-
posed to be on a line, we compute the linear regression line:

αxui + βyui − γ = 0 (2)

with tan 2θ = − 2(Axy−AxAy)

Vxx−Vyy
, α = sin θ, β = cos θ, Ax =

1
N

PN
i=1 xui , Ay = 1

N

PN
i=1 yui , Axy = 1

N

PN
i=1 xuiyui , Vxx =

1
N

PN
i=1(xui−Ax)2, Vyy = 1

N

PN
i=1(yui−Ay)2 and γ = Ax sin θ+

Ay cos θ. The sum of squared distance from the points to this
regression line is

PN
i=1 (αxui + βyui − γ)2. By considering G

groups of lines, the total sum of squared distance is:

S =

GX
g=1

LgX
l=1

NglX
i=1

S2
gli =

GX
g=1

LgX
l=1

NglX
i=1

(αgxugli +βgyugli−γgl)
2 (3)

with Lg the number of lines in group g and Ngl the number
of points of line l in group g and the total number of points
N = N11 + · · ·+N1L1 + · · ·+NG1 + · · ·+NGLG . (xdgli , ydgli)
the i-th distorted point on line l in group g and (xugli , yugli)
the corresponding corrected point. The root mean squared
distance is:

d =

sPG
g=1

PLg

l=1

PNgl

i=1 S
2
gli

N
(4)
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Polynomial model is chosen to correct the distorted lines.
(xc, yc) can be fixed arbitrarily thanks to its invariance to the
translation of distortion center. For the succinctness, the fol-
lowing discussion assumes a bicubic model with p = q = 3.
Combine Eq. (1) and Eq. (3), the energy S becomes:

S =

GX
g=1

LgX
l=1

NglX
i=1

“
αg
`
b0x̄

3
dgli

+ · · ·+ b9 + xc
´

(5)

+βg
`
c0x̄

3
dgli

+ · · ·+ c9 + yc
´
− γgl

”2

It is a non-linear problem to minimize the energy S in param-
eters b0, b1, · · · , c0, c1, · · · . To have an idea what precision we
can achieve, we first make this problem to be linear by assum-
ing αg, βg are known. By derivating S to each parameter, we
obtain a linear system:

Ax = 0 (6)

with

x = (γ11, · · · , γ1L1 , · · · , γG1, · · · , γGLG ,

b0, · · · , b9, c0, · · · , c9)T .

A is composed of 3 sub-matrix:

A =

24Aγ

Ab

Ac

35 (7)

When there is only one group of lines, the rows of Ab are pro-
portional to the corresponding rows Ac. So for test, we always
use several groups of lines to avoid this situation. Yet the coef-
ficient matrix is still singular since the last row of Ab and the
last row of Ac are a linear combination of rows of Aγ . This can
be solved by fixing b9 and c9 to be 0. In this case, the coefficient
matrix is non-singular and only one solution can be solved. But
the solution is trivial because S is 0 by setting all the coeffi-
cients b1, · · · , b9, c1, · · · , c9 to 0 and γgl = xcαg + ycβg. To
avoid this trivial solution, we add a constraint that b7 = 1 and
c8 = 1. This in fact introduces a scale to the solution and the
fixed values of b9 and c9 introduce a translation to the solution.
The minimized S can be changed by the introduced scale. But
this change is consistent if xc, yc, b9, c9, b7, c8 are fixed. In the
test, we use 8 groups of lines with orientations 10◦, 20◦, 30◦,
40◦, 50◦, 60◦, 70◦, 80◦ to estimate the correction parameters
by minimizing S. Once the parameters are estimated, another
independent group of lines with orientation 55◦ is used for the
verification. The ideal lines are distributed in image of size
1761 × 1174. The sampling step of each line is 30 pixels and
the number of samples on each lines are no less than 15. The
distance between two adjacent lines is 30 pixels. The ideal lines
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are distorted by radial distortion plus tangential distortion 4.
The correction result is recapitulated in Table 1. The precision
on the order of 10−2 pixels can be achieved by increasing the
order of polynomial model. An interesting phenomenon is that
a pair of even order and odd order polynomial has almost the
same precision. Fig. 1 shows ideal lines, distorted lines and
corrected lines of the test group with orientation 55◦. Remark
that the corrected lines are close to the ideal lines but they do
not completely superimpose due to the introduced translation
and scale in the correction process. In fact, we can apply any
rotation and translation on the corrected lines to obtain an-
other groups of corrected lines, which gives the same residual
error. However, applying a homography on the corrected lines
can lead to different error depending on the scale introduced
by the homography.

order d (in pixels) in Eq (4)
p = q linear estimation indep. measure
3 0.6935 0.6239
4 0.6096 0.5312
5 0.2439 0.2093
6 0.2419 0.2064
7 0.1050 0.0879
8 0.1031 0.0870
9 0.0521 0.0512
10 0.0515 0.0509
11 0.0477 0.0449
12 0.0474 0.0444

Table 1: Line correction with known orientation. The ideal lines
are distorted by radial distortion plus tangential distortion (see foot-
note 4). The energy in Eq. (5) is minimized by using linear method.
The root mean squared distance in Eq (4) is computed as measure-
ment. Column 1 is the order of the polynomial model. Column 2
is the measurement for the lines with orientation from 10◦ to 80◦.
Column 3 is the measurement for the independent group of lines with
orientation 55◦.

In practice the orientation of lines is unknown. The mini-
mization of the energy in Eq. (5) is a non-linear problem. Dif-
ferent strategies are tried to do this minimization. The first

4 The distortion is added according to the equation:

x̄d = x̄u
`
k0 + k1ru + k2r2

u + · · ·
´

+
ˆ
p1

`
r2
u + 2x̄2

u

´
+ 2p2x̄uȳu

˜ `
1 + p3r2

u

´
+ s1r2

u

ȳd = ȳu
`
k0 + k1ru + k2r2

u + · · ·
´

+
ˆ
p2

`
r2
u + 2ȳ2

u

´
+ 2p1x̄uȳu

˜ `
1 + p3r2

u

´
+ s2r2

u

with k0, k1, · · · the radial distortion coefficients, p1, p2, p3 the decentering distortion coeffi-
cients, s1, s2 thin prism distortion coefficients. In our synthetic test, k0 = 1.0, k1 = 1.0e−4,
k2 = −2.0e−7, k3 = 4.0e−10, k3 = −6.0e−14, p1 = 4.0e−6, p2 = −2.0e−6, p3 = 0, s1 =
3.0e−6, s2 = 1.0e−6.
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Figure 1: The corrected, distorted and ideal lines for the test group
of lines with orientation 55◦ by using linear method. The green lines
are corrected lines by using the estimated parameters; the red lines
are distorted lines and the the blue lines are ideal lines.

strategy is simply Levenberg-Marquardt (LM) algorithm (see
Table 2). But it is often stuck by a local minima. It works
well only if the initialization is already close to the global min-
ima. The second strategy is just to iterate the linear method
to refine the orientation estimation of lines (see Table 3). The
initial orientation is just the one of the regression line of the
corresponding distorted points. The third strategy is to fix
the orientation obtained by LM algorithm and do the iterative
linear minimization to improve the result (see Table 2). The
fourth strategy is the incremental LM algorithm followed by
an iterative linear minimization. Incremental LM algorithm
estimates the parameters of a high order polynomial model
from low order model (see Table 4). For example, to estimate
the parameters of a order-11 polynomial, we begin to estimate
the parameters of a order-3 polynomial. Then the estimated
order-3 parameters are used as the initialization for order-4
polynomial, and so on. This procedure is iterated until order-
11. Finally a step of iterative linear minimization is added to
improve the precision.

It is a difficult non-linear optimization problem to minimize
the energy in Eq. (5) when the orientation of lines is unknown,
in particular when the order of polynomial model is high. Com-
paring the results of different optimization strategies with the
best precision we can obtain in Table 1, the incremental LM
algorithm plus iterative linear method gives the closest perfor-
mance.

7



order d (in pixels) in Eq (4)
p = q estimation indep. measure

LM iter. linear LM iter. linear
3 0.7013 0.6489 0.5988 0.5596
4 0.6419 0.6109 0.5491 0.5087
5 0.2937 0.2852 0.2522 0.2507
6 0.2698 0.2624 0.2280 0.2222
7 0.2609 0.1509 0.1956 0.1452
8 0.3472 0.1611 0.2584 0.1574
9 0.2522 0.1503 0.2300 0.1561
10 0.9814 0.1863 0.5841 0.1763
11 0.5797 0.1593 0.4178 0.1454

Table 2: Line correction with unknown orientation by Levenberg-
Marquardt (LM) algorithm and iterative linear method (strategy 1
and 3). The ideal lines are distorted by radial distortion plus tangen-
tial distortion (see footnote 4). The energy in Eq. (5) is minimized
by LM algorithm plus a step of iterative linear minimization. The
root mean squared distance in Eq (4) is computed as measurement.
Column 1 is the order of the polynomial model. Column 2 is the mea-
surement of LM algorithm (strategy 1) for the lines with orientation
from 10◦ to 80◦. Column 3 is the measurement of LM algorithm plus
a linear minimization (strategy 3) for the lines with orientation from
10◦ to 80◦. Column 4 and 5 corresponds to column 2 and 3 respec-
tively, by using the the independent group of lines with orientation
55◦ which is not used for optimization.
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order d (in pixels) in Eq. (4)
p = q iter. linear indep. measure
3 0.6315 0.5083
4 0.6136 0.4849
5 0.2601 0.2374
6 0.2594 0.2371
7 0.1469 0.1368
8 0.1455 0.1360
9 0.1105 0.1096
10 0.1106 0.1098
11 0.1156 0.1116

Table 3: Line correction with unknown orientation by iterative linear
method (strategy 2). The ideal lines are distorted by radial distor-
tion plus tangential distortion (see footnote 4). The energy in Eq. (5)
is minimized by iterative linear minimization (strategy 2). The root
mean squared distance in Eq. (4) is computed as measurement. Col-
umn 1 is the order of the polynomial model. Column 2 is the mea-
surement of iterative linear minimization for the lines with orientation
from 10◦ to 80◦. Column 3 corresponds to column 2, by using the in-
dependent group of lines with orientation 55◦ which is not used for
optimization.

3.2 Real test

The real experiments were made with a Canon EOS 30D re-
flex camera and an EFS 18 − 55mm lens. The minimal focal
length (18mm) was chosen to produce a fairly large distortion.
The RAW images were demosaicked by summing up the four
pixels of each 2× 2 Bayer cell, obtaining a half-size image. We
built a pattern by tightly stretching strings on a wood frame,
that guarantees straightness. This pattern looks like the harp,
a musical instrument, where comes from the name “calibra-
tion harp”. Fig. ?? shows the distorted images of the harp
with different orientations against the sky as background. The
distortion is visible near the border of the image.

Before showing the correction result, we discuss how to ex-
tract the edge points of the distorted lines from the images in
sub-pixel precision. Briefly, the lines are first detected by LSD
algorithm which groups the pixels having coherent gradient
direction into the line support region [20]. Then, in each val-
idated line support region, Devernay’s algorithm [11] is used
to extract the edge points in sub-pixel precision. Finally, a
Gaussian convolution followed by a sub-sampling is performed
on the extracted edge points to reduce the noise.

Line detection LSD is a linear-time line segment detector
that gives accurate results, controlling number of false detec-
tions, and requires no parameter tuning [20]. The algorithm
starts by computing the gradient direction at each pixel to
produce a vector field. This vector field is segmented into con-
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order d (in pixels) in Eq (4)
p = q estimation indep. measure

LM iter. linear LM iter. linear
3 0.7042 0.6514 0.6018 0.5618
4 0.5995 0.5794 0.5128 0.4735
5 0.2571 0.2510 0.2219 0.2167
6 0.2463 0.2419 0.2093 0.2053
7 0.2126 0.1091 0.1740 0.0925
8 0.2067 0.1062 0.1661 0.0909
9 0.1953 0.0599 0.1569 0.0588
10 0.1823 0.0576 0.1425 0.0571
11 0.1805 0.0546 0.1419 0.0524

Table 4: Line correction with unknown orientation by incremental
Levenberg-Marquardt (LM) algorithm and iterative linear method
(strategy 4). The ideal lines are distorted by radial distortion plus
tangential distortion (see footnote 4). The energy in Eq. (5) is min-
imized by incremental LM algorithm plus a step of iterative linear
minimization. The root mean squared distance in Eq (4) is computed
as measurement. Column 1 is the order of the polynomial model.
Column 2 is the measurement of incremental LM algorithm for the
lines with orientation from 10◦ to 80◦. Column 3 is the measurement
of incremental LM algorithm plus a linear minimization (strategy 4)
for the lines with orientation from 10◦ to 80◦. Column 4 and 5 corre-
sponds to column 2 and 3 respectively, by using the the independent
group of lines with orientation 55◦ which is not used for optimization.
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nected regions of pixels that share the same orientation (up
to a tolerance), called line support regions. Each line support
region (a set of pixels) is a candidate for a line segment, which
is then validated by a contrario approach and the Helmholtz
principle proposed in [1, 2]. More detail will be added by
Rafael.

Devernay’s detector LSD algorithm gives a validated line
support region associated to a line segment, which groups a
set of pixels sharing the same gradient orientation up to some
toleration. Devernay’s detector [11] is then used to extract
the edge points of the line segments with sub-pixel precision
in each validated line support region. It is reported that De-
vernay’s detector can attain the precision about 0.05 pixels.
The implementation of Devernay’s detector is very simple since
it is derivated from the well-known Non-Maxima Suppression
method [7, 10]. It can be recapitulated in the following:

• Let a point (x, y), where x and y are integers and I(x, y)
the intensity of pixel (x, y).

• Calculate the gradient of image intensity and its magni-
tude in (x, y).

• Estimate the magnitude of the gradient along the direction
of the gradient in some neighborhood around (x, y).

• If (x, y) is not a local maximum of the magnitude of the
gradient along the direction of the gradient then it is not
an edge point.

• If (x, y) is a local maximum then estimate the position
of the edge point in the direction of the gradient as the
maximum of an interpolation on the values of gradient
norm at (x, y) and the neighboring points.

Remark that the sub-pixel refinement of Devernay’s detector is
similar to the one of SIFT method [18] except that SIFT works
on the Laplacian value and uses a two-dimension quadric in-
terpolation, while Devernay’s detector works on the magnitude
of gradient and uses a one-dimension quadric interpolation in
the gradient direction.

Convolution and sub-sampling of edge points For
the photos of strings, almost every pixel along each side of one
string is detected as edge point in sub-pixel precision. With
more than 10 strings longer than 1000 pixels in 20 photos,
there are about 400000 edge points in total. This large number
of edge points can make the minimization of the energy in
Eq. (5) very long. A convolution followed by a sub-sampling
can be used to reduce the number of edge points. This process
is similar to the two-dimension case where the Gaussian blur
about 0.8×

√
t2 − 1 is needed before a t-subsampling to avoid

the aliasing [15]. The similar rule can be applied here. But
instead of a two-dimension signal, we have two one-dimension
signals (x-coordinate and y-coordinate of edge points) along
the length of the line. The Gaussian convolution is performed
on two one-dimension signals separately. Since the edge points
are not regularly sampled along the line, a preliminary step
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of re-sampling is needed. This re-sampling is also along the
lenght of the line by taking an uniform sampling step, which is
set to be m times smaller than the average distance between
two adjacent edge points. A linear interpolation is used here
to do the re-sampling fast (see Fig. 2). Assume the distance
between two adjacent edge ponits (x1, y1) and (x2, y2) is l and
the re-sampling step is d. Then the re-sampled point (x′, y′)
can be expressed as:

x′ =
d

l
(x2 − x1) + x1

y′ =
d

l
(y2 − y1) + y1.

Once the line is re-sampled, the Gaussian blur 0.8 ×
√
t2 − 1

can be applied then followed by a sub-sampling of factor mt on
x and y coordinate separately (the re-sampling step is m times
smaller than the average distance between two adjacent edge
points).

Figure 2: Line re-sampling. The red points (x1, y1), (x2, y2), · · · are
the edge points extracted by Devernay’s detector. They are irregularly
sampled along the line. The re-sampling (in green) is along the length
of the line with the uniform step d. The linear interpolation is used
to compute the re-sampled point fast.

Once the edge points associated to the distorted line seg-
ments are extracted in sub-pixel precision, they can be directly
integrated into the energy term in Eq. (5). According to the
performance of different strategies in synthetic test, we only try
the incremental LM followed by iterative linear minimization.
All the distorted lines in Fig. 3 are used in the minimization
with a polynomial model of order 11. An independent dis-
torted image is used for verification. The correction result is
recapitulated in Fig. 4.

Different methods, like the non-parametric method in Chap-
ter ?? [14], Lavest et al. calibration method [16] and an iter-
ative linear plumb-line method [3], are also tried (see the cor-
rection precision in Table 5). The non-parametric method in
[14] estimates the distortion as the diffeomorphism (up to a
homography) mapping the original digital pattern to a pho-
tograph of it by triangulating and interpolating dense corre-
spondences (see result in Fig. 5). The Lavest et al. calibration
method [16] is similar to global camera calibration methods
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except that it assume that pattern is not flat and estimates
also the 3D position of the feature points on the pattern (see
result in Fig. 6). Alvarez’s iterative linear plumb-line method
[3] uses a pure radial distortion model and minimizes the vari-
ance of distance from the corrected points to their regression
line by iterative linear method (see result in Fig. 8). Like the
real experiments in Chapter ??, we can also use the polynomial
model to approximate the mapping between the digital pattern
and its photo, instead of triangulation and affine interpolation
used in Chapter ?? [14] (see result in Fig. 7). The correction
precision, computed as the RMS distance from the edge points
on the corrected line to their regression line, is recapitulated
in Table 5 for different methods.

It seems that two plumb-line based methods (Alvarez et
al. method and the proposed one) give the precision better
than the other methods. This is not surprising because on the
one hand the two methods explicitly minimize the straightness
error of corrected lines; on the other hand, the two methods
do not suffer from the error compensation in global calibra-
tion methods or the non-flatness of pattern in non-parametric
method. The disadvantage of Alvarez et al. method is that
it uses a simple radial distortion model with distortion center
fixed at the center of image to get an iterative linear solution.
But this model is not enough general to explain real distortion.
This explains why Alvarez et al. method correts some lines less
precisely than the other ones.

For Lavest et al. method, the minimized re-projection er-
ror is about 0.02 pixels, while the corrected lines do not have
that precision (see Fig. 6). This can only be explained by the
error compensation between camera internal and external pa-
rameters. For the non-parametric method, a global tendency
in the straightness error of the corrected lines can be observed
(Fig. 5). This was in fact due to the unavoidable drawback
of this method: there is never a guarantee that the pattern is
completely flat. The non-flatness of the pattern introduces a
bias in the estimated distortion field, which causes the observ-
able global distortion in the plotted curves in Fig. 5. Remark
that the very similar global tendancy can be observed when the
distortion is approximated by a 11-order polynomial instead of
triangulation and affine interpolation (see Fig. 7).

To eliminate this error source, the solution is either to con-
struct a very flat pattern, or to recover the 3D shape of a
non-flat pattern. But neither is very feasible in practice. In
contrast, to appropriately use a plumb-line method, we need
a pattern containing very straight lines, and this is far eas-
ier in practice. As shown in Fig. 4, the distortion correction
is so accurate that no global tendency is visible in corrected
curves. The root mean square (RMS) distance of each line is
also significantly smaller than for the non-parametric method
(Table 5). It is particularly striking in Fig. 4 that the super-
imposed curves of the left and right side of each string are
fairly uncorrelated, meaning that no deterministic distortion
is left. The erratic oscillation of very small amplitude can be
attributed to any cause, from the lack of the uniformity of the
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harp background causing a shift in the edge detection, to the
inhomogeneous blur in the image itself or the quality of strings.
But it cannot be due to a residual mismatch of the polynomial
model itself, because otherwise the curves on both sides of each
string would be parallel. This confirms a posteriori the relia-
bility of the polynomial model.

The estimated distortion field of the above methods are
also different. For the non-parametric method, the distortion
field consists of the vectors pointing from a certain point in
the undistorted image to its correspondence in the distorted
image. So an undistorted image can be directly obtained given
a distorted image. Remark that the non-parametric method es-
timates the distortion field up to an unknown homography. So
the distortion field is largely different from radial symmetric.
For all the other methods, the distortion parameters are esti-
mated from the distorted image to the undistorted image. But
this correction model does not necessarily send all the points
in distorted image to cover all the integer-position points of
undistorted image domain. So the resulted undistorted image
can contain holes. This problem can be solved by either revers-
ing the model or computing the corresponding distorted point
in the distorted image for the integer-position point in the cor-
rected image by non-linear minimization, followed by an image
interpolation. The radial model with known distortion center
(used in Alvarez et al. method) is invertible. But this inver-
sion is point by point and does not give an explicit formula of
the inverse model. In contrast, the inverse polynomial model
(distortion model) can be easily computed explicitly. Given a
polynomial model (correction model), an arbitrary set of dis-
torted points and corrected points can be generated. From
these points, the coefficients of the inverse model in Eq. (1)
can be estimated by linear method:26666666664
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ȳ2
ui

· · · 1
x̄pui+1 x̄p−1
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ui+1 ȳui+1 x̄q−2

ui+1 ȳ
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ȳdi+1

...

1CCCCCCCCA
One pair of distorted point and undistorted point gives two
equations. So at least (p+1)(p+2)

4
+ (q+1)(q+2)

4
pairs of corre-

spondences are required to estimate the parameters.

14



Figure 3: Distorted sewing strings taken by the camera by hand with
different orientations.
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Figure 4: Correction performance of the proposed plumb-line based
method with calibration harp. The first row, from left to right: the
independent distorted image, the distortion field and the corrected
image. From the second row to the last row, from left to right: the
distance in pixels from the edge points to their regression line on line
1 to 10 in the distorted image on top-left, after correction. Note each
figure contains two curves because there are two sides for one line.
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Figure 5: Correction performance of the non-parametric pattern-
based method [14]. The first row, from left to right: the independent
distorted image, the distortion field and the corrected image. From
the second row to the last row, from left to right: the distance in
pixels from the edge points to their regression line on line 1 to 10
in the distorted image on top-left, after correction. Note each figure
contains two curves because there are two sides for one line.

17



Figure 6: Correction performance of Lavest et al. method [16]. The
first row, from left to right: the independent distorted image, the
distortion field and the corrected image. From the second row to the
last row, from left to right: the distance in pixels from the edge points
to their regression line on line 1 to 10 in the distorted image on top-
left, after correction. Note each figure contains two curves because
there are two sides for one line.
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Figure 7: Correction performance of textured pattern with polyno-
mial. The first row, from left to right: the independent distorted
image, the distortion field and the corrected image. From the second
row to the last row, from left to right: the distance in pixels from the
edge points to their regression line on line 1 to 10 in the distorted im-
age on top-left, after correction. Note each figure contains two curves
because there are two sides for one line.
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Figure 8: Correction performance of Alvarez et al.. The first row,
from left to right: the independent distorted image and the corrected
image. From the second row to the last row, from left to right: the
distance in pixels from the edge points to their regression line on line
1 to 10 in the distorted image on top-left, after correction. Note each
figure contains two curves because there are two sides for one line.
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line No. RMSE (in pixels)
polynomial model non-parametric [14] Lavest method polynomial textured pattern Alvarez method

1 0.046/0.036 0.048/0.042 0.035/0.062 0.055/0.065 0.038/0.069
2 0.050/0.068 0.088/0.082 0.217/0.218 0.081/0.112 0.157/0.171
3 0.057/0.054 0.166/0.168 0.267/0.270 0.152/0.174 0.147/0.152
4 0.051/0.073 0.135/0.126 0.156/0.139 0.129/0.128 0.076/0.060
5 0.061/0.076 0.082/0.080 0.118/0.137 0.092/0.103 0.029/0.035
6 0.052/0.056 0.069/0.062 0.108/0.099 0.075/0.088 0.041/0.037
7 0.039/0.017 0.095/0.080 0.090/0.072 0.100/0.102 0.067/0.058
8 0.042/0.054 0.133/0.143 0.117/0.127 0.163/0.180 0.129/0.152
9 0.035/0.036 0.154/0.162 0.080/0.095 0.197/0.204 0.131/0.146
10 0.099/0.082 0.040/0.014 0.122/0.120 0.058/0.043 0.058/0.043

Table 5: RMS distance from edge points of corrected lines to their
corresponding regression line. The proposed method is compared to
non-parametric pattern-based method [14], Lavest et al. method, tex-
tured pattern polynomial fitting method and Alvarez method. Note
that each cell in table contains two values because there are two sides
for one line. The lines are numerated in the top-left image in Fig. 4.

4 How to improve?

As explained before, the main motivation to build a “calibra-
tion harp” for distortion correction is to detour the difficult in
obtaining a very flat pattern with flatness error on the order
of 10 micron. Even though it is easier to build a “calibration
harp” with tightly stretched strings, the quality of strings plays
an important role. In the previous experiments, the sewing
strings are used to build the “calibration harp”. But the sewing
string is not very smooth and the thickness varies along the
string due to its twisted structure (see Fig. 10a). All these de-
fects can pose problem to the high-precision extraction of the
edge points from the photos of the strings and thus motivate us
to find the string of better quality. Besides the sewing string,
the tennis string (Fig. 10b) and the fishing string (Fig. 10c) are
also tried in the experiments. Among the three types of string,
the tennis string and the fishing string are more smooth than
the sewing string and have the thickness more uniform. But it
is diffcult to stretch the tennis string to make it very straight
due to its rigidity. To improve the quality of strings, finally we
choose the flexible fishing strings and stretch them tightly on
a wood framework (see Fig. 9).

To ensure the extraction precision of the edge points from
the string images, we prefer an uniform background which is
in contrast with the string color. The first idea is naturally to
use an uniform wall as the background. But the shadow of the
strings can make the edge points detector fail. A background
which does not have the shadow of the strings should be far
away from the harp. So the sky is the only distant and uniform
background we can find. But in the experiments, we found that
it is difficult to take the photos of the harp against the sky.

21



When the angle of view of the camera is large, it is difficult
to avoid the environment around (like buildings, trees, etc) in
the photos. In addition, the sky is rarely uniform (the sky
can be seen as some clouds randomly distributed on the blue
background, for example see the images in Fig. 3 or Fig. 11a).
The final solution we found is to install a semi-transparent
paper on the back of the harp. The semi-transparent paper
blocks the camera to see the other objects than the strings
and let the light come from the back to avoid the shadow (see
Fig. 9b for the harp with the semi-transparent paper). This
setup allows us to take photos more freely by putting the harp
anywhere there is enough light coming from the back.

The Canon EOS 30D reflex camera is installed on the tri-
pod with 10 seconds timer to avoid the hand vibration. Photos
of different orientations are taken by rotating the camera on
the tripod. The camera is always parallel to the harp and has
the same distance to the harp (see Fig. 13 for photos of dif-
ferent orientations). Compared to the photos of sewing strings
taken by hand against the sky (Fig. 11a), the photos of fish-
ing strings with a semi-transparent paper (Fig. 11b) have a
more uniform background. In addition, the images taken by
hand (Fig. 11a) suffers from inhomogeneous blur or variation of
strings thickness caused by the inconstant distance from cam-
era to the harp or the hand motion, while the images taken by
tripod have better quality.

(a) The harp with an uniform
opaque object as background

(b) The harp with a semi-
transparent paper as back-
ground

Figure 9: The harp with an opaque object or a semi-transparent pa-
per as background. (a) The harp with an uniform opaque object as
background. (b) The harp with a semi-transparent paper as back-
ground.

The improvement of the string quality and the photo qual-
ity leads to a better correction performance. As we have seen
before, even though the plumb-line method with a polynomial
model can correct the distortion up to about 0.05 pixels (Fig. 4)
and no big global tendancy can be observed, the maximal am-
plitude of oscillation can still be as big as 0.05 pixels. For the
second line in Fig. 4, the small global tendancy is observed. But
the amplitude of this small global tendancy is on the same order
of the amplitude of oscillation. So the minimization algorithm
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(a) The sewing line

(b) The tennis line

(c) The fishing line

Figure 10: The quality of lines. (a) sewing line. (b) tennis line. (c)
fishing line.

(a) The photo of harp is taken
againt the sky by hand

(b) The photo of harp is taken
againt a semi-transparent pa-
per by a tripod

Figure 11: The quality of photos depends on the harp, its background
and also the stability of camera for taking photos.
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cannot tell apart the two types of error. In such situation, it
is possible that the minimization algorithm pays more atten-
tion to minimize the oscillation than the global tendancy. So
it is ideal to have the oscillation as small as possible such that
the minimization algorithm can concentrate on the the global
tendancy minimization. The oscillation is not the distortion
property of the camera lens. Instead it is related to the qual-
ity of lines. More concretely, the oscillation inherits the high
frequency of the distorted lines, while the distortion stands for
the low frequency of the distorted lines. In Fig. 12, the high
frequency of distorted sewing string, distorted tennis string and
distorted fishing string is compared to the straightnees error of
their corresponding corrected string. The almost superimposed
oscillation proves the inheritance from the high frequency of
distorted strings. Among the three types of strings, the fishing
string shows the smallest oscillation. The bigger oscillation of
the sewing string is due to the variation of the thickness related
to the twisted structure, while the tennis string suffers from its
rigidity which makes it difficult to be stretched straight (even
though visually it is streteched straight in Fig. 10b).

With the fishing strings harp, the same experiments as the
sewing strings harp were performed. Here we do not do a
comprehensive comparaision with the the methods and only
concentrate on the improvement of precision by using a harp of
fishing strings. In the Fig. 14, the straightness error is shown in
the same form as before. Compared to Fig. 4, it is evident that
we have a more precise correction and the residual oscillation
is reduced.

(a) The sewing
string

(b) The tennis
string

(c) The fishing
string

Figure 12: The small oscillation of the corrected lines is related to the
quality of lines. The green curve shows the RMS distance (in pixels)
from the edge points of a corrected line to its regression line. The red
curve shows the high frequency of the corresponding distorted line.
The corrected line will inherit the oscillation from the corresponding
distorted line. (a) the sewing string. (b) the tennis string. (c) the
fishing line. The x-axis is the index of edge points. The range of
y-axis is from −0.3 pixels to 0.3 pixels.
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Figure 13: Distorted fishing strings taken by the camera fixed on a
tripod with different orientations.
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Figure 14: Correction performance of the proposed plumb-line based
method with a harp made up of fishing strings. The x-axis is the
index of edge points. The range of y-axis is from −0.3 pixels to 0.3
pixels.
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5 The correction performance of global
camera calibration is unstable

We have shown a correction example of global camera cali-
bration method (Lavest et al. method). It does not correct
the distortion as well as the plumb-line based method (see the
comparaison in Table 5 or Fig. 4 and Fig. 6). A more impor-
tant drawback of global camera calibration is that it does not
give a stable correction due to the error compensation among
many parameters. When different distortion models are used
in the global calibration, different corrections will be obtained.
This is an annoying problem because a priori we do not know
which distortion model and which parameters are more appro-
riate for a certain camera. The results in Fig. 6 are obtained
by using the Brown’s classic distortion model [6] with 2 ra-
dial parameters and 2 tangential parameters in Lavest et al.
method. Table 6 compares the correction precision by using
different number of distortion parameters. It is clear that the
correction precision varies and we have the best precision by
using 5 radial parameters.

line No. RMSE (in pixels)
2 radial params 5 radial params 2 radial + 2 tangent 5 radial + 2 tangent

1 0.038/0.068 0.032/0.061 0.035/0.062 0.031/0.057
2 0.172/0.173 0.139/0.140 0.217/0.218 0.172/0.175
3 0.190/0.191 0.154/0.160 0.267/0.270 0.219/0.220
4 0.101/0.087 0.099/0.089 0.156/0.139 0.131/0.115
5 0.068/0.085 0.062/0.077 0.118/0.137 0.086/0.106
6 0.055/0.042 0.044/0.035 0.108/0.099 0.076/0.066
7 0.023/0.054 0.029/0.028 0.090/0.072 0.085/0.057
8 0.085/0.072 0.064/0.048 0.117/0.127 0.085/0.103
9 0.073/0.062 0.060/0.036 0.080/0.095 0.073/0.083
10 0.057/0.039 0.047/0.027 0.122/0.120 0.030/0.014

Table 6: The RMSE of corrected lines under estimated parameters by
Lavest et al. method with different number of distortion parameters.

6 Conclusion

By combining the advantages of a model-free polynomial ap-
proximation and of a real plumb line pattern, the proposed
lens distortion correction is significantly more accurate than
parametric methods on flat patterns. The “calibration harp”
construction only requires the acquisition of a string with de-
cent quality. It is far simpler than realizing a flat plate with
highly accurate patterns engraved on it. (The calibration of
such patterns is not easier than lens calibration itself!) The
high number of degrees of freedom in the unstructured model
explains why we can call the method model-free. The only
assumption on the lens distortion is its smoothness, implying
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that a polynomial with high enough order approximates it. In
our experiments, the approximation error stabilizes for poly-
nomials of degree 7 to 11. It might be objected that the high
number of parameters in the polynomial interpolation (156 for
an 11-order polynomial) could cause some bias in the result.
Yet, the number of control points is far higher: There were
about 10 strings for each orientation, some 30 control points
on each string side, and some 18 orientations. Thus the number
of control points is about 10000 and therefore 60 times more
than the number of polynomial coefficients. A visual examina-
tion of the two sides of the strings confirms that no artificial
simultaneous bias has been introduced by the polynomial dis-
tortion correction. This observation seems to indicate that
most of the 0.05 pixels remaining oscillation is due either to
image processing factors, or to background inhomogeneity, to
aliasing in the edge detector, or to string diameter variations.
By building a harp of better quality with fishing strings, we
do gain a factor about 2 even 3. We also show that the global
camera calibration is not reliable to correct the distortion.
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