
The cost function and quality criterion used for distortion estima-
tion and correction is the root mean square distance of sets of points
from best-fit straight lines. This is plausible indeed. One critical is-
sue however is that this measure is not by default invariant to the
degrees of freedom that are unconstrained by distortion correction.
Depending on the distortion model, the distortion correction is de-
fined up to a 2D homography (for a basic distortion model, such as
radial distortion with known distortion center, the result is more con-
strained though). There are two issues with this: [1] to avoid a trivial
solution, one needs to take care of this; in the case of the model and
method of chapter 6, you do this by imposing values on particular
coefficients of the distortion model used. [2] most importantly: how
to objectively compare distortion correction results produced by two
different models if one model is defined up to a 2D homography and
the other not? This is not addressed in the thesis, but is essential.
Please explain if you have done anything about this.

It is true that the measurement of “straightness” is not invariant to a 2D
homography. This measurement can be enlarged or reduced by the scale intro-
duced by the homography. This is related to the two issues you mentioned in
your email.

One issue is to avoid the trivial solution by imposing values on particular
coefficients of the distortion model used. In Chapter 6, coefficients of order-0
terms and order-1 terms of the polynomial model are set such that the correction
is close to identity at the center of image. Namely, for the x-component of the
polynomial model, the coefficient of the term (x− xc) is set to 1, the coefficient
of the term of (y−yc) is set to 0, and the coefficient of order-0 term is set to 0; for
the y-component of the polynomial model, the coefficient of the term (x−xc) is
set to 0, and the coefficient of the term of (y−yc) is set to 1, and the coefficient
of order-0 term is set to 0. This setting up avoids the trivial solution and also
fixes the scale introduced to the measurement of ”straightness” (apply another
homography on the corrected points will change these particular coefficients).
This setting up allows us to compare different polynomial models objectively.

Another issue is how to compare the correction results of two different models
if one model is defined up to a 2D homography and the other not. This point is
very important and is not sufficiently discussed in the thesis. I think there are
two strategies: one is to estimate the homography between the points corrected
by two models (or estimate the homography between the lines fit to the points
corrected by two models) and compensate the homography by applying it on one
model; another strategy is to find two homographies for two models such that
the two models are normalized such that the correction is close to identity at
the center of image. This normalization is equivalent to set up the coefficients
of order-1 and order-0 terms in the models. A more practical method is to
normalize the “straightness” error by the average length of all the corrected
lines of different orientation (if we have many lines of different orientations
uniformly distributed in the image domain, this normalization captures the
scale introduced by the homography).

In the experiments, some particular coefficients of polynomial models are
fixed as above. The coefficients of order-1 terms of the distortion model used
in Lavest’s method are also fixed to be 1. And this is also the case for the
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radial model used in Alvarez’s method. For the non-parametric method based
on the textured pattern, the photo is taken such that the whole camera captor
is covered by the whole pattern. This gives a weak homography which does
not introduce a big factor to reduce or enlarge the correction error. And for
the comparison, the “straightness” error is not the only criteria, we are also
interested in the shape (or global tendency) of the curve of “straightness” error.

The points you indicated are really important and I agree that I have not
sufficiently discussed in the thesis. For a general measurement of the distortion
correction precision, a criteria invariant to 2D homography is indispensable. In
our experiments and comparisons, we set the particular coefficients in para-
metric models (and take photos with the whole camera captor covered by the
whole pattern for the non-parametric textured pattern-based method) to limit
the influence of the homography.

Just for curiosity: did you have access to the original code by
Lavest for the experiments?

For the code of Lavest, he kindly gave it to us during our visit to his lab. We
did the following modifications to his code: 1) the correction of bias by using
the ellipse centers (what we really need is the projection of the circle centers
on the pattern, which are different from the ellipse centers); 2) the calibration
pattern containing more circles (180 circles) is used.

The above modifications are small and give the results similar to the original
code.

In the experiments, if the threshold of re-projection error is set to be too low,
the points whose re-projection error bigger than this threshold will be removed
and the algorithm will be iterated until all the points have the re-projection
error smaller than the threshold. To avoid the problem, we did not set a too
small threshold (about 0.1 pixels in the experiments) such that no point will be
removed.

Table 5.4: is there any explanation why for several columns, entries
in the first five rows, are identical?

For Table 5.4, the first five rows are identical. This is because a tangential
distortion is added. The first five rows represent radial model, division model
and FOV model. These models are radial symmetric and are not capable to
correct tangential distortion. These three models are almost self-consistent to
each other, so the error shown in Table 5.4 (the first five rows) are identical
(only the order of magnitude of the value is shown in Table 5.4).

Section 5.5: it is not entirely clear with which setup the distortion
was estimated with the different models, i.e. which type of images
and what number of images were used for the different models. Could
you please explain this briefly?

In section 5.5, we use the straight lines to verify the correction performance
of different models. First, two photos of a digital textured pattern are taken and
the loop validation in Chapter 4 is used to find the “inliner” matchings between
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the digital pattern and one of its two photos. These matchings are used to
fit different distortion models and the average/max fitting error is presented
in Table 5.5. Second, one photo of straight lines is also taken. This photo
is corrected by different fit models. Then we can measure the average/max
straightness error of the corrected lines in Table 5.6.

Table 5.5: in some instances, the fitting error increases slightly
with increasing model order. Why is this the case? (I had the im-
pression that higher order models are initialized with the results of
the preceding lower order model).

Table 5.5 shows the average/maximal value of fitting error. Since we mini-
mize the average error (not the maximal error), in some instances, the maximal
error increases with the increase of order. I also observed that the average error
sometimes increases very slightly (0.01 pixel for radial model, division model
and FOV model). This should not happen because higher order models are
initialized with the results of the preceding lower order model. I think that this
is due to the non-linear minimization which I do not master in.

Table 5.6: same question as for Table 5.5. Also, it is not clear if
for these results, the distortion center was estimated or not for the
models which do have a distortion center. If not, how was the center
set? Further, what is meant by the order of the FOV model?

In Table 5.6, the fit distortion models are used to correct the distorted lines.
Since the fit distortion models are estimated by fitting the matchings between
the digital pattern and one of its photos, the increase of order of models decrease
the average fitting error as shown in Table 5.5. But the fitting error is not
directly related to the straightness error in Table 5.6. Only when the fit models
can well approximate the deformation between the digital pattern and its photo
(lens distortion + homography), the straight lines can be well corrected and the
straightness error decreases with the model order. This is the case of polynomial
model and rational model. But for the radial model, division model and FOV
model, since they are not capable to approximate the the deformation between
the digital pattern and its photo (lens distortion + homography) (Table 5.5
shows it), the distortion lines are not well corrected. So the increase of model
order does not necessarily lead to the better correction of the distortion lines.
In addition, the algorithm (LSD) used to detect the lines can miss some badly
corrected lines.

Table 5.5 and 5.6 reflect the correction precision of different modes in two
aspects: fitting error and straightness error. In the experiments, the distortion
center are estimated for the models which do have a distortion center (radial,
division and FOV model). The distortion center is initialized by the center of
image and then refined by non-linear minimization. The original FOV model
proposed by Devernay and Faugeras is order 1. The order of FOV can be
extended by adding the radial terms of the other orders.

Page 112: as for the general case of unknown orientation of lines,
it would be good to completely summarize the estimation approach:
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which are exactly the unknowns (i.e. are line orientations explic-
itly estimated or only implicitly as functions of other variables), are
numerical or analytical derivatives used?

As for the general case of unknown orientation of lines, the minimization
problem becomes non-linear. The orientations are parametrized by the param-
eters of polynomial model. So the only unknowns are the parameters of polyno-
mial models. The analytical derivatives are used in the Levenberg-Marquardt
algorithm.

Page 114: Concerning the second strategy. Just for clarity: what
exactly is done by “iterating the linear method”? Same page, fourth
strategy: what exactly is meant by “iterative linear minimization”?

The second strategy is to iterate the linear method. The linear method
requires the orientations of the lines. We first compute the linear regression
lines from the distorted points. The orientations of the linear regression lines are
available and then we can apply the linear method to estimate the parameters
of the polynomial model. Once the parameters of the polynomial model are
estimated, we correct the distorted points and compute again the orientations of
the linear regression lines from the corrected points. The new orientations allow
us to apply again the linear method to estimate the parameters of polynomial
model. This procedures can be iterated until the average error does not decrease
significantly (for example, 0.01 pixel in the experiments).

The “iterative linear minimization” is exactly the same thing as the second
strategy except that in the second strategy, the initial orientations are obtained
from the linear regression lines of the distorted points, while in the fourth strat-
egy, the initial orientations are obtained from the linear regression lines of the
points corrected by incremental LM minimization.

Page 121 and following: In figure 6.3 and similar ones, were the
images used for evaluation, also used for the actual distortion estima-
tion?

The image used for evaluation is not used in the distortion estimation. The
idea is to first use images of the harp with different orientations to estimate the
distortion model, then use another image which is not used in the estimate to
evaluate the result.

Page 123: which images were used for calibration using the Lavest
method? The same as those shown in figure 4.15? Were they taken
at the same time as the images shown in figure 6.5?

The images used for Lavest’s method (page 123) look like those shown in
Fig. 4.15 (but the experiment on page 123 is different from that in Fig. 4.15).
The images used for Lavest’s method (page 123) are taken at the same time as
the images containing straight lines in Fig. 6.5.

Table 6.7: similar to above for other tables, why does the RMSE
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increase sometimes with increasing model order?

The first column of Table 6.7 is not the model order, it is the index of lines.
This table shows that with different number of parameters used in the distortion
model, the performance of correction is different. This implies that there exists a
compensation between the distortion model and the other parameters of camera
in the global camera calibration.

Table 6.7 and other: how many different trials did you perform
with the different models/methods each, I mean calibration trials
with different sets of images?

We did many trials for each model/method, at least five for each, with
different sets of images taken in different days. In the thesis, some typical
results are shown, but the results on the other sets of images are similar.

The trials are also very related to the development of experimental materials
we used, in particular the harp we used. At first, the harp is quickly fabricated
with sewing strings. And the photos are taken against the sky to avoid the
shadow problem, which is in fact a difficult task. Finally, we used the opaque
fishing strings and translucent paper as background to facilitate the experi-
ments. For the non-parametric methods with a textured pattern. We tested the
images in the Bordatz textures to compose a pattern which gives a dense SIFT
matchings.

Page 145: I’m not sure I understand why the Hartley method can
get stuck in a local minimum. As far as I recall, the method only
solves linear equation systems.

Page 145, it is true that Hartley’s method is linear. It is not appropriate to
say that Hartley’s method is stuck at a local minima. It is more appropriate
to say that Hartley’s method uses a metric which does not really reflect the
projective distortion introduced by the rectification process.

Page 145: what is meant by “the geometry of the rectified images
is not correct”?

Page 145, ”the geometry of the rectified images is not correct” means that
when the camera motion is forward, the baseline between two cameras is more
parallel to the y-axis, so are the epipolar lines. From the geometric viewpoint,
to achieve the rectification, the images should be rotated about 90◦. If an
algorithm does not rotate the image, we say that it is not geometry correct.

Page 147: As shown, Hartley’s method does not rotate any of the
two images. This is counterintuitive, since the method’s first step, as
far as I recall, should rotate at least one of the two images such that
the epipolar lines become horizontal.

Page 147, in fact, a variant of Hartley’s method was tested in thesis, it
is the code of Du Huynh available on: http://www.csse.uwa.edu.au/~du/
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Software/Welcome.html. Compared to Hartley’s method, this code has feature
that if the original epipolar lines are more vertical than horizontal, it will do
the rectification such that the epipoles are sent to (0, 1, 0)T ; while if the original
epipolar lines are more horizontal than vertical, it will do the rectification such
that the epipoles are sent to (1, 0, 0)T . So in fact, what we are comparing is the
Du Huynh’s method, even though it is very similar to Hartley’s.

Page 149: Is it possible to run Mallon’s method also for the last
three datasets?

Page 149, the Mallon’s code is not available on line. But we will implement
it soon. We want to implement all the image rectification algorithms and make a
benchmark. This is the idea of IPOL (Image Processing OnLine www.ipol.im),
which is the journal publishes relevant image processing and image analysis
algorithms, where the algorithm can be tested on line on data sets uploaded by
the users.

Page 163 and following: please provide examples of images plus
matches that were found as inliers for the estimated homography. In
particular, how many inlier matches were obtained for the different
methods on the shown examples?

Here I show an example of the affine transformation, represented by the
matrix:

A = R1(ψ)TtR2(φ) =
(

cos24◦ −sin24◦

sin24◦ cos24◦

) (
24/12 0

0 1

) (
cos37◦ −sin37◦

sin37◦ cos37◦

)
(1)

Images plus “inliner” matchings in the first ocatve, for Lowe’s SIFT method,
improved SIFT by cancelling the sub-sampling in scale space and the iterative
SIFT by applying the estimated homography, are shown in Fig. 1.

Table 1 shows the number of “inlier” matchings under different transfor-
mations in different octaves for Lowe’s SIFT. Table 2 shows the number of
“inlier” matchings under different transformations in different octaves for im-
proved SIFT by canceling the sub-sampling in scale space. Table 3 shows the
number of “inlier” matchings under different transformations in different octaves
for iterative SIFT by applying the estimated homography.

Page 164: it is said that for 0 or 90 degrees rotations, results
are better than for in-between rotations and that this is due to the
imprecision in orientation estimation in SIFT. Would another expla-
nation be that for 0 or 90 degrees rotation, the interpolation required
to generate rotated images, introduces less artefacts than for other
angles?

Page 164, The explanation that for 0 or 90 degrees rotation, the interpolation
required to generate rotated images, introduces less artefacts than for the in-
between angles is also plausible. In fact, if the rotation angle is 0 or 90 degrees,
no interpolation is needed. So there is no artifacts introduced.
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Figure 1: Images plus “inliner” matchings in the first ocatve under affine trans-
formation shown in Eq. (1). First row: Lowe’s SIFT method. Second row:
improved SIFT by cancelling the sub-sampling in scale space. Third row: itera-
tive SIFT by applying the estimated homography. The left image is the original
image and the right image is the original image under the affine transformation
in Eq. (1).
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octave −1 octave 0 octave 1 octave 2

translation

(45, 32) 1785 909 186 66
(45.1, 32.1) 1334 757 183 65
(45.3, 32.3) 1245 692 181 70
(45.5, 32.5) 1451 691 184 67
(45.7, 32.7) 1233 704 177 64
(45.9, 32.9) 1361 773 179 62

rotation

15◦ 1243 703 190 65
25◦ 1192 666 173 56
35◦ 1149 652 165 53
45◦ 1160 634 158 55
55◦ 1133 630 158 53
65◦ 1207 664 161 56
75◦ 1266 665 191 58
85◦ 1330 735 201 62

zoom

21/6 872 694 191 61
22/6 904 757 196 67
23/6 628 703 177 60
24/6 432 786 201 65
25/6 172 724 186 61
26/6 14 774 202 76

tilt

21/12 1335 752 201 63
22/12 1123 676 182 56
23/12 964 606 171 48
24/12 752 499 135 38
25/12 505 396 104 28
26/12 283 227 80 21

affine

21/12 981 561 144 45
22/12 861 514 132 42
23/12 756 454 119 36
24/12 605 370 95 33
25/12 436 267 82 27
26/12 236 183 54 19

homography

21/12 916 489 122 34
22/12 845 482 111 39
23/12 671 434 110 31
24/12 527 365 99 29
25/12 376 249 84 26
26/12 223 167 56 15

Table 1: The number of “inlier” matchings under different transformations in
different octaves for Lowe’s SIFT.
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octave −1 octave 0 octave 1 octave 2

translation

(45, 32) 1785 935 229 79
(45.1, 32.1) 1387 807 201 72
(45.3, 32.3) 1263 781 201 69
(45.5, 32.5) 1475 906 224 72
(45.7, 32.7) 1250 786 198 61
(45.9, 32.9) 1376 820 200 63

rotation

15◦ 1257 761 194 53
25◦ 1199 745 190 62
35◦ 1180 719 172 57
45◦ 1166 696 172 61
55◦ 1150 703 168 59
65◦ 1229 737 176 63
75◦ 1274 765 189 62
85◦ 1344 822 215 66

zoom

21/6 900 759 202 60
22/6 939 877 217 83
23/6 652 776 194 64
24/6 447 823 232 76
25/6 196 749 180 63
26/6 22 778 213 75

tilt

21/12 1339 829 209 73
22/12 1137 749 195 64
23/12 986 671 177 60
24/12 773 583 142 48
25/12 508 456 104 42
26/12 284 293 73 31

affine

21/12 996 651 156 49
22/12 865 576 127 42
23/12 776 511 112 27
24/12 617 440 105 24
25/12 438 332 88 18
26/12 241 209 70 18

homography

21/12 952 529 118 31
22/12 889 532 118 34
23/12 710 492 114 32
24/12 550 419 105 29
25/12 396 302 85 20
26/12 236 185 61 15

Table 2: The number of “inlier” matchings under different transformations in
different octaves for improved SIFT by canceling the sub-sampling in scale space.
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octave −1 octave 0 octave 1 octave 2

zoom

21/6 1330 677 207 55
22/6 1435 554 152 38
23/6 1262 427 126 24
24/6 1066 339 104 21
25/6 895 245 88 17
26/6 761 209 69 13

tilt

21/12 1541 860 232 80
22/12 1500 790 225 68
23/12 1345 735 219 65
24/12 1311 675 211 59
25/12 1194 641 210 57
26/12 1066 603 177 46

affine

21/12 1105 646 164 58
22/12 1090 580 160 51
23/12 1088 551 147 51
24/12 1074 536 146 47
25/12 1018 488 134 44
26/12 948 453 123 44

homography

21/12 1591 825 217 83
22/12 1634 843 221 87
23/12 1811 838 227 80
24/12 1944 831 226 88
25/12 1902 783 210 83
26/12 1933 731 212 83

Table 3: The number of “inlier” matchings under different transformations in
different octaves for iterative SIFT by applying the estimated homography.

10



Page 171: I’m not entirely sure what’s done here (section 8.3.3).
Is the homography always applied to the image with larger scale or
always the one with smaller scale, or arbitrarily? Which residuals
are evaluated exactly: residuals in the original image space or in the
space of the images warped by the homography?

Page 171, the homography is always applied on the image with larger scale
and the residuals is evaluated in the original image space.

I agree with all the minor comments and will modify them in the thesis.
For the condition of Theorem 2 and Lemma 1, it also seems to me that 3 non-
collinear points should be sufficient. But I have not a proof for that. I will think
it over and modify it if I find the proof.
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